Merge commit 'gcl/merge' into next
[deliverable/linux.git] / drivers / net / qla3xxx.c
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36
37 #include "qla3xxx.h"
38
39 #define DRV_NAME "qla3xxx"
40 #define DRV_STRING "QLogic ISP3XXX Network Driver"
41 #define DRV_VERSION "v2.03.00-k5"
42 #define PFX DRV_NAME " "
43
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46
47 MODULE_AUTHOR("QLogic Corporation");
48 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(DRV_VERSION);
51
52 static const u32 default_msg
53 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
54 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
55
56 static int debug = -1; /* defaults above */
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static int msi;
61 module_param(msi, int, 0);
62 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
63
64 static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
65 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
66 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
67 /* required last entry */
68 {0,}
69 };
70
71 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
72
73 /*
74 * These are the known PHY's which are used
75 */
76 typedef enum {
77 PHY_TYPE_UNKNOWN = 0,
78 PHY_VITESSE_VSC8211,
79 PHY_AGERE_ET1011C,
80 MAX_PHY_DEV_TYPES
81 } PHY_DEVICE_et;
82
83 typedef struct {
84 PHY_DEVICE_et phyDevice;
85 u32 phyIdOUI;
86 u16 phyIdModel;
87 char *name;
88 } PHY_DEVICE_INFO_t;
89
90 static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
91 {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
92 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
93 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
94 };
95
96
97 /*
98 * Caller must take hw_lock.
99 */
100 static int ql_sem_spinlock(struct ql3_adapter *qdev,
101 u32 sem_mask, u32 sem_bits)
102 {
103 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
104 u32 value;
105 unsigned int seconds = 3;
106
107 do {
108 writel((sem_mask | sem_bits),
109 &port_regs->CommonRegs.semaphoreReg);
110 value = readl(&port_regs->CommonRegs.semaphoreReg);
111 if ((value & (sem_mask >> 16)) == sem_bits)
112 return 0;
113 ssleep(1);
114 } while(--seconds);
115 return -1;
116 }
117
118 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
119 {
120 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
121 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
122 readl(&port_regs->CommonRegs.semaphoreReg);
123 }
124
125 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
126 {
127 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
128 u32 value;
129
130 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
131 value = readl(&port_regs->CommonRegs.semaphoreReg);
132 return ((value & (sem_mask >> 16)) == sem_bits);
133 }
134
135 /*
136 * Caller holds hw_lock.
137 */
138 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
139 {
140 int i = 0;
141
142 while (1) {
143 if (!ql_sem_lock(qdev,
144 QL_DRVR_SEM_MASK,
145 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
146 * 2) << 1)) {
147 if (i < 10) {
148 ssleep(1);
149 i++;
150 } else {
151 printk(KERN_ERR PFX "%s: Timed out waiting for "
152 "driver lock...\n",
153 qdev->ndev->name);
154 return 0;
155 }
156 } else {
157 printk(KERN_DEBUG PFX
158 "%s: driver lock acquired.\n",
159 qdev->ndev->name);
160 return 1;
161 }
162 }
163 }
164
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
168
169 writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 &port_regs->CommonRegs.ispControlStatus);
171 readl(&port_regs->CommonRegs.ispControlStatus);
172 qdev->current_page = page;
173 }
174
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
176 u32 __iomem * reg)
177 {
178 u32 value;
179 unsigned long hw_flags;
180
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184
185 return value;
186 }
187
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev,
189 u32 __iomem * reg)
190 {
191 return readl(reg);
192 }
193
194 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
195 {
196 u32 value;
197 unsigned long hw_flags;
198
199 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
200
201 if (qdev->current_page != 0)
202 ql_set_register_page(qdev,0);
203 value = readl(reg);
204
205 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
206 return value;
207 }
208
209 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
210 {
211 if (qdev->current_page != 0)
212 ql_set_register_page(qdev,0);
213 return readl(reg);
214 }
215
216 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
217 u32 __iomem *reg, u32 value)
218 {
219 unsigned long hw_flags;
220
221 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
222 writel(value, reg);
223 readl(reg);
224 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
225 return;
226 }
227
228 static void ql_write_common_reg(struct ql3_adapter *qdev,
229 u32 __iomem *reg, u32 value)
230 {
231 writel(value, reg);
232 readl(reg);
233 return;
234 }
235
236 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
237 u32 __iomem *reg, u32 value)
238 {
239 writel(value, reg);
240 readl(reg);
241 udelay(1);
242 return;
243 }
244
245 static void ql_write_page0_reg(struct ql3_adapter *qdev,
246 u32 __iomem *reg, u32 value)
247 {
248 if (qdev->current_page != 0)
249 ql_set_register_page(qdev,0);
250 writel(value, reg);
251 readl(reg);
252 return;
253 }
254
255 /*
256 * Caller holds hw_lock. Only called during init.
257 */
258 static void ql_write_page1_reg(struct ql3_adapter *qdev,
259 u32 __iomem *reg, u32 value)
260 {
261 if (qdev->current_page != 1)
262 ql_set_register_page(qdev,1);
263 writel(value, reg);
264 readl(reg);
265 return;
266 }
267
268 /*
269 * Caller holds hw_lock. Only called during init.
270 */
271 static void ql_write_page2_reg(struct ql3_adapter *qdev,
272 u32 __iomem *reg, u32 value)
273 {
274 if (qdev->current_page != 2)
275 ql_set_register_page(qdev,2);
276 writel(value, reg);
277 readl(reg);
278 return;
279 }
280
281 static void ql_disable_interrupts(struct ql3_adapter *qdev)
282 {
283 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
284
285 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
286 (ISP_IMR_ENABLE_INT << 16));
287
288 }
289
290 static void ql_enable_interrupts(struct ql3_adapter *qdev)
291 {
292 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
293
294 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
295 ((0xff << 16) | ISP_IMR_ENABLE_INT));
296
297 }
298
299 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
300 struct ql_rcv_buf_cb *lrg_buf_cb)
301 {
302 dma_addr_t map;
303 int err;
304 lrg_buf_cb->next = NULL;
305
306 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
307 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
308 } else {
309 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
310 qdev->lrg_buf_free_tail = lrg_buf_cb;
311 }
312
313 if (!lrg_buf_cb->skb) {
314 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
315 qdev->lrg_buffer_len);
316 if (unlikely(!lrg_buf_cb->skb)) {
317 printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
318 qdev->ndev->name);
319 qdev->lrg_buf_skb_check++;
320 } else {
321 /*
322 * We save some space to copy the ethhdr from first
323 * buffer
324 */
325 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
326 map = pci_map_single(qdev->pdev,
327 lrg_buf_cb->skb->data,
328 qdev->lrg_buffer_len -
329 QL_HEADER_SPACE,
330 PCI_DMA_FROMDEVICE);
331 err = pci_dma_mapping_error(qdev->pdev, map);
332 if(err) {
333 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
334 qdev->ndev->name, err);
335 dev_kfree_skb(lrg_buf_cb->skb);
336 lrg_buf_cb->skb = NULL;
337
338 qdev->lrg_buf_skb_check++;
339 return;
340 }
341
342 lrg_buf_cb->buf_phy_addr_low =
343 cpu_to_le32(LS_64BITS(map));
344 lrg_buf_cb->buf_phy_addr_high =
345 cpu_to_le32(MS_64BITS(map));
346 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
347 pci_unmap_len_set(lrg_buf_cb, maplen,
348 qdev->lrg_buffer_len -
349 QL_HEADER_SPACE);
350 }
351 }
352
353 qdev->lrg_buf_free_count++;
354 }
355
356 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
357 *qdev)
358 {
359 struct ql_rcv_buf_cb *lrg_buf_cb;
360
361 if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
362 if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
363 qdev->lrg_buf_free_tail = NULL;
364 qdev->lrg_buf_free_count--;
365 }
366
367 return lrg_buf_cb;
368 }
369
370 static u32 addrBits = EEPROM_NO_ADDR_BITS;
371 static u32 dataBits = EEPROM_NO_DATA_BITS;
372
373 static void fm93c56a_deselect(struct ql3_adapter *qdev);
374 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
375 unsigned short *value);
376
377 /*
378 * Caller holds hw_lock.
379 */
380 static void fm93c56a_select(struct ql3_adapter *qdev)
381 {
382 struct ql3xxx_port_registers __iomem *port_regs =
383 qdev->mem_map_registers;
384
385 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
386 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
387 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
388 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
389 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
390 }
391
392 /*
393 * Caller holds hw_lock.
394 */
395 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
396 {
397 int i;
398 u32 mask;
399 u32 dataBit;
400 u32 previousBit;
401 struct ql3xxx_port_registers __iomem *port_regs =
402 qdev->mem_map_registers;
403
404 /* Clock in a zero, then do the start bit */
405 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
406 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
407 AUBURN_EEPROM_DO_1);
408 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
409 ISP_NVRAM_MASK | qdev->
410 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
411 AUBURN_EEPROM_CLK_RISE);
412 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
413 ISP_NVRAM_MASK | qdev->
414 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
415 AUBURN_EEPROM_CLK_FALL);
416
417 mask = 1 << (FM93C56A_CMD_BITS - 1);
418 /* Force the previous data bit to be different */
419 previousBit = 0xffff;
420 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
421 dataBit =
422 (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
423 if (previousBit != dataBit) {
424 /*
425 * If the bit changed, then change the DO state to
426 * match
427 */
428 ql_write_nvram_reg(qdev,
429 &port_regs->CommonRegs.
430 serialPortInterfaceReg,
431 ISP_NVRAM_MASK | qdev->
432 eeprom_cmd_data | dataBit);
433 previousBit = dataBit;
434 }
435 ql_write_nvram_reg(qdev,
436 &port_regs->CommonRegs.
437 serialPortInterfaceReg,
438 ISP_NVRAM_MASK | qdev->
439 eeprom_cmd_data | dataBit |
440 AUBURN_EEPROM_CLK_RISE);
441 ql_write_nvram_reg(qdev,
442 &port_regs->CommonRegs.
443 serialPortInterfaceReg,
444 ISP_NVRAM_MASK | qdev->
445 eeprom_cmd_data | dataBit |
446 AUBURN_EEPROM_CLK_FALL);
447 cmd = cmd << 1;
448 }
449
450 mask = 1 << (addrBits - 1);
451 /* Force the previous data bit to be different */
452 previousBit = 0xffff;
453 for (i = 0; i < addrBits; i++) {
454 dataBit =
455 (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
456 AUBURN_EEPROM_DO_0;
457 if (previousBit != dataBit) {
458 /*
459 * If the bit changed, then change the DO state to
460 * match
461 */
462 ql_write_nvram_reg(qdev,
463 &port_regs->CommonRegs.
464 serialPortInterfaceReg,
465 ISP_NVRAM_MASK | qdev->
466 eeprom_cmd_data | dataBit);
467 previousBit = dataBit;
468 }
469 ql_write_nvram_reg(qdev,
470 &port_regs->CommonRegs.
471 serialPortInterfaceReg,
472 ISP_NVRAM_MASK | qdev->
473 eeprom_cmd_data | dataBit |
474 AUBURN_EEPROM_CLK_RISE);
475 ql_write_nvram_reg(qdev,
476 &port_regs->CommonRegs.
477 serialPortInterfaceReg,
478 ISP_NVRAM_MASK | qdev->
479 eeprom_cmd_data | dataBit |
480 AUBURN_EEPROM_CLK_FALL);
481 eepromAddr = eepromAddr << 1;
482 }
483 }
484
485 /*
486 * Caller holds hw_lock.
487 */
488 static void fm93c56a_deselect(struct ql3_adapter *qdev)
489 {
490 struct ql3xxx_port_registers __iomem *port_regs =
491 qdev->mem_map_registers;
492 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
493 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
494 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
495 }
496
497 /*
498 * Caller holds hw_lock.
499 */
500 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
501 {
502 int i;
503 u32 data = 0;
504 u32 dataBit;
505 struct ql3xxx_port_registers __iomem *port_regs =
506 qdev->mem_map_registers;
507
508 /* Read the data bits */
509 /* The first bit is a dummy. Clock right over it. */
510 for (i = 0; i < dataBits; i++) {
511 ql_write_nvram_reg(qdev,
512 &port_regs->CommonRegs.
513 serialPortInterfaceReg,
514 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
515 AUBURN_EEPROM_CLK_RISE);
516 ql_write_nvram_reg(qdev,
517 &port_regs->CommonRegs.
518 serialPortInterfaceReg,
519 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
520 AUBURN_EEPROM_CLK_FALL);
521 dataBit =
522 (ql_read_common_reg
523 (qdev,
524 &port_regs->CommonRegs.
525 serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
526 data = (data << 1) | dataBit;
527 }
528 *value = (u16) data;
529 }
530
531 /*
532 * Caller holds hw_lock.
533 */
534 static void eeprom_readword(struct ql3_adapter *qdev,
535 u32 eepromAddr, unsigned short *value)
536 {
537 fm93c56a_select(qdev);
538 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
539 fm93c56a_datain(qdev, value);
540 fm93c56a_deselect(qdev);
541 }
542
543 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
544 {
545 __le16 *p = (__le16 *)ndev->dev_addr;
546 p[0] = cpu_to_le16(addr[0]);
547 p[1] = cpu_to_le16(addr[1]);
548 p[2] = cpu_to_le16(addr[2]);
549 }
550
551 static int ql_get_nvram_params(struct ql3_adapter *qdev)
552 {
553 u16 *pEEPROMData;
554 u16 checksum = 0;
555 u32 index;
556 unsigned long hw_flags;
557
558 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
559
560 pEEPROMData = (u16 *) & qdev->nvram_data;
561 qdev->eeprom_cmd_data = 0;
562 if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
563 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
564 2) << 10)) {
565 printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
566 __func__);
567 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
568 return -1;
569 }
570
571 for (index = 0; index < EEPROM_SIZE; index++) {
572 eeprom_readword(qdev, index, pEEPROMData);
573 checksum += *pEEPROMData;
574 pEEPROMData++;
575 }
576 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
577
578 if (checksum != 0) {
579 printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
580 qdev->ndev->name, checksum);
581 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
582 return -1;
583 }
584
585 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
586 return checksum;
587 }
588
589 static const u32 PHYAddr[2] = {
590 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
591 };
592
593 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
594 {
595 struct ql3xxx_port_registers __iomem *port_regs =
596 qdev->mem_map_registers;
597 u32 temp;
598 int count = 1000;
599
600 while (count) {
601 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
602 if (!(temp & MAC_MII_STATUS_BSY))
603 return 0;
604 udelay(10);
605 count--;
606 }
607 return -1;
608 }
609
610 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
611 {
612 struct ql3xxx_port_registers __iomem *port_regs =
613 qdev->mem_map_registers;
614 u32 scanControl;
615
616 if (qdev->numPorts > 1) {
617 /* Auto scan will cycle through multiple ports */
618 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
619 } else {
620 scanControl = MAC_MII_CONTROL_SC;
621 }
622
623 /*
624 * Scan register 1 of PHY/PETBI,
625 * Set up to scan both devices
626 * The autoscan starts from the first register, completes
627 * the last one before rolling over to the first
628 */
629 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
630 PHYAddr[0] | MII_SCAN_REGISTER);
631
632 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
633 (scanControl) |
634 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
635 }
636
637 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
638 {
639 u8 ret;
640 struct ql3xxx_port_registers __iomem *port_regs =
641 qdev->mem_map_registers;
642
643 /* See if scan mode is enabled before we turn it off */
644 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
645 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
646 /* Scan is enabled */
647 ret = 1;
648 } else {
649 /* Scan is disabled */
650 ret = 0;
651 }
652
653 /*
654 * When disabling scan mode you must first change the MII register
655 * address
656 */
657 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
658 PHYAddr[0] | MII_SCAN_REGISTER);
659
660 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
661 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
662 MAC_MII_CONTROL_RC) << 16));
663
664 return ret;
665 }
666
667 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
668 u16 regAddr, u16 value, u32 phyAddr)
669 {
670 struct ql3xxx_port_registers __iomem *port_regs =
671 qdev->mem_map_registers;
672 u8 scanWasEnabled;
673
674 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
675
676 if (ql_wait_for_mii_ready(qdev)) {
677 if (netif_msg_link(qdev))
678 printk(KERN_WARNING PFX
679 "%s Timed out waiting for management port to "
680 "get free before issuing command.\n",
681 qdev->ndev->name);
682 return -1;
683 }
684
685 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
686 phyAddr | regAddr);
687
688 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
689
690 /* Wait for write to complete 9/10/04 SJP */
691 if (ql_wait_for_mii_ready(qdev)) {
692 if (netif_msg_link(qdev))
693 printk(KERN_WARNING PFX
694 "%s: Timed out waiting for management port to "
695 "get free before issuing command.\n",
696 qdev->ndev->name);
697 return -1;
698 }
699
700 if (scanWasEnabled)
701 ql_mii_enable_scan_mode(qdev);
702
703 return 0;
704 }
705
706 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
707 u16 * value, u32 phyAddr)
708 {
709 struct ql3xxx_port_registers __iomem *port_regs =
710 qdev->mem_map_registers;
711 u8 scanWasEnabled;
712 u32 temp;
713
714 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
715
716 if (ql_wait_for_mii_ready(qdev)) {
717 if (netif_msg_link(qdev))
718 printk(KERN_WARNING PFX
719 "%s: Timed out waiting for management port to "
720 "get free before issuing command.\n",
721 qdev->ndev->name);
722 return -1;
723 }
724
725 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
726 phyAddr | regAddr);
727
728 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
729 (MAC_MII_CONTROL_RC << 16));
730
731 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
732 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
733
734 /* Wait for the read to complete */
735 if (ql_wait_for_mii_ready(qdev)) {
736 if (netif_msg_link(qdev))
737 printk(KERN_WARNING PFX
738 "%s: Timed out waiting for management port to "
739 "get free after issuing command.\n",
740 qdev->ndev->name);
741 return -1;
742 }
743
744 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
745 *value = (u16) temp;
746
747 if (scanWasEnabled)
748 ql_mii_enable_scan_mode(qdev);
749
750 return 0;
751 }
752
753 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
754 {
755 struct ql3xxx_port_registers __iomem *port_regs =
756 qdev->mem_map_registers;
757
758 ql_mii_disable_scan_mode(qdev);
759
760 if (ql_wait_for_mii_ready(qdev)) {
761 if (netif_msg_link(qdev))
762 printk(KERN_WARNING PFX
763 "%s: Timed out waiting for management port to "
764 "get free before issuing command.\n",
765 qdev->ndev->name);
766 return -1;
767 }
768
769 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
770 qdev->PHYAddr | regAddr);
771
772 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
773
774 /* Wait for write to complete. */
775 if (ql_wait_for_mii_ready(qdev)) {
776 if (netif_msg_link(qdev))
777 printk(KERN_WARNING PFX
778 "%s: Timed out waiting for management port to "
779 "get free before issuing command.\n",
780 qdev->ndev->name);
781 return -1;
782 }
783
784 ql_mii_enable_scan_mode(qdev);
785
786 return 0;
787 }
788
789 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
790 {
791 u32 temp;
792 struct ql3xxx_port_registers __iomem *port_regs =
793 qdev->mem_map_registers;
794
795 ql_mii_disable_scan_mode(qdev);
796
797 if (ql_wait_for_mii_ready(qdev)) {
798 if (netif_msg_link(qdev))
799 printk(KERN_WARNING PFX
800 "%s: Timed out waiting for management port to "
801 "get free before issuing command.\n",
802 qdev->ndev->name);
803 return -1;
804 }
805
806 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
807 qdev->PHYAddr | regAddr);
808
809 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
810 (MAC_MII_CONTROL_RC << 16));
811
812 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
813 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
814
815 /* Wait for the read to complete */
816 if (ql_wait_for_mii_ready(qdev)) {
817 if (netif_msg_link(qdev))
818 printk(KERN_WARNING PFX
819 "%s: Timed out waiting for management port to "
820 "get free before issuing command.\n",
821 qdev->ndev->name);
822 return -1;
823 }
824
825 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
826 *value = (u16) temp;
827
828 ql_mii_enable_scan_mode(qdev);
829
830 return 0;
831 }
832
833 static void ql_petbi_reset(struct ql3_adapter *qdev)
834 {
835 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
836 }
837
838 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
839 {
840 u16 reg;
841
842 /* Enable Auto-negotiation sense */
843 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
844 reg |= PETBI_TBI_AUTO_SENSE;
845 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
846
847 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
848 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
849
850 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
851 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
852 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
853
854 }
855
856 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
857 {
858 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
859 PHYAddr[qdev->mac_index]);
860 }
861
862 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
863 {
864 u16 reg;
865
866 /* Enable Auto-negotiation sense */
867 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
868 PHYAddr[qdev->mac_index]);
869 reg |= PETBI_TBI_AUTO_SENSE;
870 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
871 PHYAddr[qdev->mac_index]);
872
873 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
874 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
875 PHYAddr[qdev->mac_index]);
876
877 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
878 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
879 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
880 PHYAddr[qdev->mac_index]);
881 }
882
883 static void ql_petbi_init(struct ql3_adapter *qdev)
884 {
885 ql_petbi_reset(qdev);
886 ql_petbi_start_neg(qdev);
887 }
888
889 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
890 {
891 ql_petbi_reset_ex(qdev);
892 ql_petbi_start_neg_ex(qdev);
893 }
894
895 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
896 {
897 u16 reg;
898
899 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
900 return 0;
901
902 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
903 }
904
905 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
906 {
907 printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
908 /* power down device bit 11 = 1 */
909 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
910 /* enable diagnostic mode bit 2 = 1 */
911 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
912 /* 1000MB amplitude adjust (see Agere errata) */
913 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
914 /* 1000MB amplitude adjust (see Agere errata) */
915 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
916 /* 100MB amplitude adjust (see Agere errata) */
917 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
918 /* 100MB amplitude adjust (see Agere errata) */
919 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
920 /* 10MB amplitude adjust (see Agere errata) */
921 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
922 /* 10MB amplitude adjust (see Agere errata) */
923 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
924 /* point to hidden reg 0x2806 */
925 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
926 /* Write new PHYAD w/bit 5 set */
927 ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
928 /*
929 * Disable diagnostic mode bit 2 = 0
930 * Power up device bit 11 = 0
931 * Link up (on) and activity (blink)
932 */
933 ql_mii_write_reg(qdev, 0x12, 0x840a);
934 ql_mii_write_reg(qdev, 0x00, 0x1140);
935 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
936 }
937
938 static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
939 u16 phyIdReg0, u16 phyIdReg1)
940 {
941 PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
942 u32 oui;
943 u16 model;
944 int i;
945
946 if (phyIdReg0 == 0xffff) {
947 return result;
948 }
949
950 if (phyIdReg1 == 0xffff) {
951 return result;
952 }
953
954 /* oui is split between two registers */
955 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
956
957 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
958
959 /* Scan table for this PHY */
960 for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
961 if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
962 {
963 result = PHY_DEVICES[i].phyDevice;
964
965 printk(KERN_INFO "%s: Phy: %s\n",
966 qdev->ndev->name, PHY_DEVICES[i].name);
967
968 break;
969 }
970 }
971
972 return result;
973 }
974
975 static int ql_phy_get_speed(struct ql3_adapter *qdev)
976 {
977 u16 reg;
978
979 switch(qdev->phyType) {
980 case PHY_AGERE_ET1011C:
981 {
982 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
983 return 0;
984
985 reg = (reg >> 8) & 3;
986 break;
987 }
988 default:
989 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
990 return 0;
991
992 reg = (((reg & 0x18) >> 3) & 3);
993 }
994
995 switch(reg) {
996 case 2:
997 return SPEED_1000;
998 case 1:
999 return SPEED_100;
1000 case 0:
1001 return SPEED_10;
1002 default:
1003 return -1;
1004 }
1005 }
1006
1007 static int ql_is_full_dup(struct ql3_adapter *qdev)
1008 {
1009 u16 reg;
1010
1011 switch(qdev->phyType) {
1012 case PHY_AGERE_ET1011C:
1013 {
1014 if (ql_mii_read_reg(qdev, 0x1A, &reg))
1015 return 0;
1016
1017 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
1018 }
1019 case PHY_VITESSE_VSC8211:
1020 default:
1021 {
1022 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1023 return 0;
1024 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
1025 }
1026 }
1027 }
1028
1029 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
1030 {
1031 u16 reg;
1032
1033 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
1034 return 0;
1035
1036 return (reg & PHY_NEG_PAUSE) != 0;
1037 }
1038
1039 static int PHY_Setup(struct ql3_adapter *qdev)
1040 {
1041 u16 reg1;
1042 u16 reg2;
1043 bool agereAddrChangeNeeded = false;
1044 u32 miiAddr = 0;
1045 int err;
1046
1047 /* Determine the PHY we are using by reading the ID's */
1048 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
1049 if(err != 0) {
1050 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1051 qdev->ndev->name);
1052 return err;
1053 }
1054
1055 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
1056 if(err != 0) {
1057 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1058 qdev->ndev->name);
1059 return err;
1060 }
1061
1062 /* Check if we have a Agere PHY */
1063 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
1064
1065 /* Determine which MII address we should be using
1066 determined by the index of the card */
1067 if (qdev->mac_index == 0) {
1068 miiAddr = MII_AGERE_ADDR_1;
1069 } else {
1070 miiAddr = MII_AGERE_ADDR_2;
1071 }
1072
1073 err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1074 if(err != 0) {
1075 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1076 qdev->ndev->name);
1077 return err;
1078 }
1079
1080 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1081 if(err != 0) {
1082 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1083 qdev->ndev->name);
1084 return err;
1085 }
1086
1087 /* We need to remember to initialize the Agere PHY */
1088 agereAddrChangeNeeded = true;
1089 }
1090
1091 /* Determine the particular PHY we have on board to apply
1092 PHY specific initializations */
1093 qdev->phyType = getPhyType(qdev, reg1, reg2);
1094
1095 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1096 /* need this here so address gets changed */
1097 phyAgereSpecificInit(qdev, miiAddr);
1098 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1099 printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
1100 return -EIO;
1101 }
1102
1103 return 0;
1104 }
1105
1106 /*
1107 * Caller holds hw_lock.
1108 */
1109 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1110 {
1111 struct ql3xxx_port_registers __iomem *port_regs =
1112 qdev->mem_map_registers;
1113 u32 value;
1114
1115 if (enable)
1116 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1117 else
1118 value = (MAC_CONFIG_REG_PE << 16);
1119
1120 if (qdev->mac_index)
1121 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1122 else
1123 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1124 }
1125
1126 /*
1127 * Caller holds hw_lock.
1128 */
1129 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1130 {
1131 struct ql3xxx_port_registers __iomem *port_regs =
1132 qdev->mem_map_registers;
1133 u32 value;
1134
1135 if (enable)
1136 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1137 else
1138 value = (MAC_CONFIG_REG_SR << 16);
1139
1140 if (qdev->mac_index)
1141 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1142 else
1143 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1144 }
1145
1146 /*
1147 * Caller holds hw_lock.
1148 */
1149 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1150 {
1151 struct ql3xxx_port_registers __iomem *port_regs =
1152 qdev->mem_map_registers;
1153 u32 value;
1154
1155 if (enable)
1156 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1157 else
1158 value = (MAC_CONFIG_REG_GM << 16);
1159
1160 if (qdev->mac_index)
1161 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1162 else
1163 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1164 }
1165
1166 /*
1167 * Caller holds hw_lock.
1168 */
1169 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1170 {
1171 struct ql3xxx_port_registers __iomem *port_regs =
1172 qdev->mem_map_registers;
1173 u32 value;
1174
1175 if (enable)
1176 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1177 else
1178 value = (MAC_CONFIG_REG_FD << 16);
1179
1180 if (qdev->mac_index)
1181 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1182 else
1183 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1184 }
1185
1186 /*
1187 * Caller holds hw_lock.
1188 */
1189 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1190 {
1191 struct ql3xxx_port_registers __iomem *port_regs =
1192 qdev->mem_map_registers;
1193 u32 value;
1194
1195 if (enable)
1196 value =
1197 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1198 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1199 else
1200 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1201
1202 if (qdev->mac_index)
1203 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1204 else
1205 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1206 }
1207
1208 /*
1209 * Caller holds hw_lock.
1210 */
1211 static int ql_is_fiber(struct ql3_adapter *qdev)
1212 {
1213 struct ql3xxx_port_registers __iomem *port_regs =
1214 qdev->mem_map_registers;
1215 u32 bitToCheck = 0;
1216 u32 temp;
1217
1218 switch (qdev->mac_index) {
1219 case 0:
1220 bitToCheck = PORT_STATUS_SM0;
1221 break;
1222 case 1:
1223 bitToCheck = PORT_STATUS_SM1;
1224 break;
1225 }
1226
1227 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1228 return (temp & bitToCheck) != 0;
1229 }
1230
1231 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1232 {
1233 u16 reg;
1234 ql_mii_read_reg(qdev, 0x00, &reg);
1235 return (reg & 0x1000) != 0;
1236 }
1237
1238 /*
1239 * Caller holds hw_lock.
1240 */
1241 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1242 {
1243 struct ql3xxx_port_registers __iomem *port_regs =
1244 qdev->mem_map_registers;
1245 u32 bitToCheck = 0;
1246 u32 temp;
1247
1248 switch (qdev->mac_index) {
1249 case 0:
1250 bitToCheck = PORT_STATUS_AC0;
1251 break;
1252 case 1:
1253 bitToCheck = PORT_STATUS_AC1;
1254 break;
1255 }
1256
1257 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1258 if (temp & bitToCheck) {
1259 if (netif_msg_link(qdev))
1260 printk(KERN_INFO PFX
1261 "%s: Auto-Negotiate complete.\n",
1262 qdev->ndev->name);
1263 return 1;
1264 } else {
1265 if (netif_msg_link(qdev))
1266 printk(KERN_WARNING PFX
1267 "%s: Auto-Negotiate incomplete.\n",
1268 qdev->ndev->name);
1269 return 0;
1270 }
1271 }
1272
1273 /*
1274 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1275 */
1276 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1277 {
1278 if (ql_is_fiber(qdev))
1279 return ql_is_petbi_neg_pause(qdev);
1280 else
1281 return ql_is_phy_neg_pause(qdev);
1282 }
1283
1284 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1285 {
1286 struct ql3xxx_port_registers __iomem *port_regs =
1287 qdev->mem_map_registers;
1288 u32 bitToCheck = 0;
1289 u32 temp;
1290
1291 switch (qdev->mac_index) {
1292 case 0:
1293 bitToCheck = PORT_STATUS_AE0;
1294 break;
1295 case 1:
1296 bitToCheck = PORT_STATUS_AE1;
1297 break;
1298 }
1299 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1300 return (temp & bitToCheck) != 0;
1301 }
1302
1303 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1304 {
1305 if (ql_is_fiber(qdev))
1306 return SPEED_1000;
1307 else
1308 return ql_phy_get_speed(qdev);
1309 }
1310
1311 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1312 {
1313 if (ql_is_fiber(qdev))
1314 return 1;
1315 else
1316 return ql_is_full_dup(qdev);
1317 }
1318
1319 /*
1320 * Caller holds hw_lock.
1321 */
1322 static int ql_link_down_detect(struct ql3_adapter *qdev)
1323 {
1324 struct ql3xxx_port_registers __iomem *port_regs =
1325 qdev->mem_map_registers;
1326 u32 bitToCheck = 0;
1327 u32 temp;
1328
1329 switch (qdev->mac_index) {
1330 case 0:
1331 bitToCheck = ISP_CONTROL_LINK_DN_0;
1332 break;
1333 case 1:
1334 bitToCheck = ISP_CONTROL_LINK_DN_1;
1335 break;
1336 }
1337
1338 temp =
1339 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1340 return (temp & bitToCheck) != 0;
1341 }
1342
1343 /*
1344 * Caller holds hw_lock.
1345 */
1346 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1347 {
1348 struct ql3xxx_port_registers __iomem *port_regs =
1349 qdev->mem_map_registers;
1350
1351 switch (qdev->mac_index) {
1352 case 0:
1353 ql_write_common_reg(qdev,
1354 &port_regs->CommonRegs.ispControlStatus,
1355 (ISP_CONTROL_LINK_DN_0) |
1356 (ISP_CONTROL_LINK_DN_0 << 16));
1357 break;
1358
1359 case 1:
1360 ql_write_common_reg(qdev,
1361 &port_regs->CommonRegs.ispControlStatus,
1362 (ISP_CONTROL_LINK_DN_1) |
1363 (ISP_CONTROL_LINK_DN_1 << 16));
1364 break;
1365
1366 default:
1367 return 1;
1368 }
1369
1370 return 0;
1371 }
1372
1373 /*
1374 * Caller holds hw_lock.
1375 */
1376 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1377 {
1378 struct ql3xxx_port_registers __iomem *port_regs =
1379 qdev->mem_map_registers;
1380 u32 bitToCheck = 0;
1381 u32 temp;
1382
1383 switch (qdev->mac_index) {
1384 case 0:
1385 bitToCheck = PORT_STATUS_F1_ENABLED;
1386 break;
1387 case 1:
1388 bitToCheck = PORT_STATUS_F3_ENABLED;
1389 break;
1390 default:
1391 break;
1392 }
1393
1394 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1395 if (temp & bitToCheck) {
1396 if (netif_msg_link(qdev))
1397 printk(KERN_DEBUG PFX
1398 "%s: is not link master.\n", qdev->ndev->name);
1399 return 0;
1400 } else {
1401 if (netif_msg_link(qdev))
1402 printk(KERN_DEBUG PFX
1403 "%s: is link master.\n", qdev->ndev->name);
1404 return 1;
1405 }
1406 }
1407
1408 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1409 {
1410 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1411 PHYAddr[qdev->mac_index]);
1412 }
1413
1414 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1415 {
1416 u16 reg;
1417 u16 portConfiguration;
1418
1419 if(qdev->phyType == PHY_AGERE_ET1011C) {
1420 /* turn off external loopback */
1421 ql_mii_write_reg(qdev, 0x13, 0x0000);
1422 }
1423
1424 if(qdev->mac_index == 0)
1425 portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
1426 else
1427 portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
1428
1429 /* Some HBA's in the field are set to 0 and they need to
1430 be reinterpreted with a default value */
1431 if(portConfiguration == 0)
1432 portConfiguration = PORT_CONFIG_DEFAULT;
1433
1434 /* Set the 1000 advertisements */
1435 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1436 PHYAddr[qdev->mac_index]);
1437 reg &= ~PHY_GIG_ALL_PARAMS;
1438
1439 if(portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1440 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1441 reg |= PHY_GIG_ADV_1000F;
1442 else
1443 reg |= PHY_GIG_ADV_1000H;
1444 }
1445
1446 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1447 PHYAddr[qdev->mac_index]);
1448
1449 /* Set the 10/100 & pause negotiation advertisements */
1450 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1451 PHYAddr[qdev->mac_index]);
1452 reg &= ~PHY_NEG_ALL_PARAMS;
1453
1454 if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1455 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1456
1457 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1458 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1459 reg |= PHY_NEG_ADV_100F;
1460
1461 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1462 reg |= PHY_NEG_ADV_10F;
1463 }
1464
1465 if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1466 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1467 reg |= PHY_NEG_ADV_100H;
1468
1469 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1470 reg |= PHY_NEG_ADV_10H;
1471 }
1472
1473 if(portConfiguration &
1474 PORT_CONFIG_1000MB_SPEED) {
1475 reg |= 1;
1476 }
1477
1478 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1479 PHYAddr[qdev->mac_index]);
1480
1481 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1482
1483 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1484 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1485 PHYAddr[qdev->mac_index]);
1486 }
1487
1488 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1489 {
1490 ql_phy_reset_ex(qdev);
1491 PHY_Setup(qdev);
1492 ql_phy_start_neg_ex(qdev);
1493 }
1494
1495 /*
1496 * Caller holds hw_lock.
1497 */
1498 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1499 {
1500 struct ql3xxx_port_registers __iomem *port_regs =
1501 qdev->mem_map_registers;
1502 u32 bitToCheck = 0;
1503 u32 temp, linkState;
1504
1505 switch (qdev->mac_index) {
1506 case 0:
1507 bitToCheck = PORT_STATUS_UP0;
1508 break;
1509 case 1:
1510 bitToCheck = PORT_STATUS_UP1;
1511 break;
1512 }
1513 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1514 if (temp & bitToCheck) {
1515 linkState = LS_UP;
1516 } else {
1517 linkState = LS_DOWN;
1518 }
1519 return linkState;
1520 }
1521
1522 static int ql_port_start(struct ql3_adapter *qdev)
1523 {
1524 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1525 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1526 2) << 7)) {
1527 printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
1528 qdev->ndev->name);
1529 return -1;
1530 }
1531
1532 if (ql_is_fiber(qdev)) {
1533 ql_petbi_init(qdev);
1534 } else {
1535 /* Copper port */
1536 ql_phy_init_ex(qdev);
1537 }
1538
1539 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1540 return 0;
1541 }
1542
1543 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1544 {
1545
1546 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1547 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1548 2) << 7))
1549 return -1;
1550
1551 if (!ql_auto_neg_error(qdev)) {
1552 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1553 /* configure the MAC */
1554 if (netif_msg_link(qdev))
1555 printk(KERN_DEBUG PFX
1556 "%s: Configuring link.\n",
1557 qdev->ndev->
1558 name);
1559 ql_mac_cfg_soft_reset(qdev, 1);
1560 ql_mac_cfg_gig(qdev,
1561 (ql_get_link_speed
1562 (qdev) ==
1563 SPEED_1000));
1564 ql_mac_cfg_full_dup(qdev,
1565 ql_is_link_full_dup
1566 (qdev));
1567 ql_mac_cfg_pause(qdev,
1568 ql_is_neg_pause
1569 (qdev));
1570 ql_mac_cfg_soft_reset(qdev, 0);
1571
1572 /* enable the MAC */
1573 if (netif_msg_link(qdev))
1574 printk(KERN_DEBUG PFX
1575 "%s: Enabling mac.\n",
1576 qdev->ndev->
1577 name);
1578 ql_mac_enable(qdev, 1);
1579 }
1580
1581 qdev->port_link_state = LS_UP;
1582 netif_start_queue(qdev->ndev);
1583 netif_carrier_on(qdev->ndev);
1584 if (netif_msg_link(qdev))
1585 printk(KERN_INFO PFX
1586 "%s: Link is up at %d Mbps, %s duplex.\n",
1587 qdev->ndev->name,
1588 ql_get_link_speed(qdev),
1589 ql_is_link_full_dup(qdev)
1590 ? "full" : "half");
1591
1592 } else { /* Remote error detected */
1593
1594 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1595 if (netif_msg_link(qdev))
1596 printk(KERN_DEBUG PFX
1597 "%s: Remote error detected. "
1598 "Calling ql_port_start().\n",
1599 qdev->ndev->
1600 name);
1601 /*
1602 * ql_port_start() is shared code and needs
1603 * to lock the PHY on it's own.
1604 */
1605 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1606 if(ql_port_start(qdev)) {/* Restart port */
1607 return -1;
1608 } else
1609 return 0;
1610 }
1611 }
1612 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1613 return 0;
1614 }
1615
1616 static void ql_link_state_machine_work(struct work_struct *work)
1617 {
1618 struct ql3_adapter *qdev =
1619 container_of(work, struct ql3_adapter, link_state_work.work);
1620
1621 u32 curr_link_state;
1622 unsigned long hw_flags;
1623
1624 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1625
1626 curr_link_state = ql_get_link_state(qdev);
1627
1628 if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
1629 if (netif_msg_link(qdev))
1630 printk(KERN_INFO PFX
1631 "%s: Reset in progress, skip processing link "
1632 "state.\n", qdev->ndev->name);
1633
1634 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1635
1636 /* Restart timer on 2 second interval. */
1637 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
1638
1639 return;
1640 }
1641
1642 switch (qdev->port_link_state) {
1643 default:
1644 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1645 ql_port_start(qdev);
1646 }
1647 qdev->port_link_state = LS_DOWN;
1648 /* Fall Through */
1649
1650 case LS_DOWN:
1651 if (curr_link_state == LS_UP) {
1652 if (netif_msg_link(qdev))
1653 printk(KERN_INFO PFX "%s: Link is up.\n",
1654 qdev->ndev->name);
1655 if (ql_is_auto_neg_complete(qdev))
1656 ql_finish_auto_neg(qdev);
1657
1658 if (qdev->port_link_state == LS_UP)
1659 ql_link_down_detect_clear(qdev);
1660
1661 qdev->port_link_state = LS_UP;
1662 }
1663 break;
1664
1665 case LS_UP:
1666 /*
1667 * See if the link is currently down or went down and came
1668 * back up
1669 */
1670 if (curr_link_state == LS_DOWN) {
1671 if (netif_msg_link(qdev))
1672 printk(KERN_INFO PFX "%s: Link is down.\n",
1673 qdev->ndev->name);
1674 qdev->port_link_state = LS_DOWN;
1675 }
1676 if (ql_link_down_detect(qdev))
1677 qdev->port_link_state = LS_DOWN;
1678 break;
1679 }
1680 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1681
1682 /* Restart timer on 2 second interval. */
1683 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1684 }
1685
1686 /*
1687 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1688 */
1689 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1690 {
1691 if (ql_this_adapter_controls_port(qdev))
1692 set_bit(QL_LINK_MASTER,&qdev->flags);
1693 else
1694 clear_bit(QL_LINK_MASTER,&qdev->flags);
1695 }
1696
1697 /*
1698 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1699 */
1700 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1701 {
1702 ql_mii_enable_scan_mode(qdev);
1703
1704 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1705 if (ql_this_adapter_controls_port(qdev))
1706 ql_petbi_init_ex(qdev);
1707 } else {
1708 if (ql_this_adapter_controls_port(qdev))
1709 ql_phy_init_ex(qdev);
1710 }
1711 }
1712
1713 /*
1714 * MII_Setup needs to be called before taking the PHY out of reset so that the
1715 * management interface clock speed can be set properly. It would be better if
1716 * we had a way to disable MDC until after the PHY is out of reset, but we
1717 * don't have that capability.
1718 */
1719 static int ql_mii_setup(struct ql3_adapter *qdev)
1720 {
1721 u32 reg;
1722 struct ql3xxx_port_registers __iomem *port_regs =
1723 qdev->mem_map_registers;
1724
1725 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1726 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1727 2) << 7))
1728 return -1;
1729
1730 if (qdev->device_id == QL3032_DEVICE_ID)
1731 ql_write_page0_reg(qdev,
1732 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1733
1734 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1735 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1736
1737 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1738 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1739
1740 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1741 return 0;
1742 }
1743
1744 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1745 {
1746 u32 supported;
1747
1748 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1749 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
1750 | SUPPORTED_Autoneg;
1751 } else {
1752 supported = SUPPORTED_10baseT_Half
1753 | SUPPORTED_10baseT_Full
1754 | SUPPORTED_100baseT_Half
1755 | SUPPORTED_100baseT_Full
1756 | SUPPORTED_1000baseT_Half
1757 | SUPPORTED_1000baseT_Full
1758 | SUPPORTED_Autoneg | SUPPORTED_TP;
1759 }
1760
1761 return supported;
1762 }
1763
1764 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1765 {
1766 int status;
1767 unsigned long hw_flags;
1768 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1769 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1770 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1771 2) << 7)) {
1772 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1773 return 0;
1774 }
1775 status = ql_is_auto_cfg(qdev);
1776 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1777 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1778 return status;
1779 }
1780
1781 static u32 ql_get_speed(struct ql3_adapter *qdev)
1782 {
1783 u32 status;
1784 unsigned long hw_flags;
1785 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1786 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1787 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1788 2) << 7)) {
1789 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1790 return 0;
1791 }
1792 status = ql_get_link_speed(qdev);
1793 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1794 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1795 return status;
1796 }
1797
1798 static int ql_get_full_dup(struct ql3_adapter *qdev)
1799 {
1800 int status;
1801 unsigned long hw_flags;
1802 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1803 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1804 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1805 2) << 7)) {
1806 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1807 return 0;
1808 }
1809 status = ql_is_link_full_dup(qdev);
1810 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1811 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1812 return status;
1813 }
1814
1815
1816 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1817 {
1818 struct ql3_adapter *qdev = netdev_priv(ndev);
1819
1820 ecmd->transceiver = XCVR_INTERNAL;
1821 ecmd->supported = ql_supported_modes(qdev);
1822
1823 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1824 ecmd->port = PORT_FIBRE;
1825 } else {
1826 ecmd->port = PORT_TP;
1827 ecmd->phy_address = qdev->PHYAddr;
1828 }
1829 ecmd->advertising = ql_supported_modes(qdev);
1830 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1831 ecmd->speed = ql_get_speed(qdev);
1832 ecmd->duplex = ql_get_full_dup(qdev);
1833 return 0;
1834 }
1835
1836 static void ql_get_drvinfo(struct net_device *ndev,
1837 struct ethtool_drvinfo *drvinfo)
1838 {
1839 struct ql3_adapter *qdev = netdev_priv(ndev);
1840 strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
1841 strncpy(drvinfo->version, ql3xxx_driver_version, 32);
1842 strncpy(drvinfo->fw_version, "N/A", 32);
1843 strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
1844 drvinfo->regdump_len = 0;
1845 drvinfo->eedump_len = 0;
1846 }
1847
1848 static u32 ql_get_msglevel(struct net_device *ndev)
1849 {
1850 struct ql3_adapter *qdev = netdev_priv(ndev);
1851 return qdev->msg_enable;
1852 }
1853
1854 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1855 {
1856 struct ql3_adapter *qdev = netdev_priv(ndev);
1857 qdev->msg_enable = value;
1858 }
1859
1860 static void ql_get_pauseparam(struct net_device *ndev,
1861 struct ethtool_pauseparam *pause)
1862 {
1863 struct ql3_adapter *qdev = netdev_priv(ndev);
1864 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1865
1866 u32 reg;
1867 if(qdev->mac_index == 0)
1868 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1869 else
1870 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1871
1872 pause->autoneg = ql_get_auto_cfg_status(qdev);
1873 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1874 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1875 }
1876
1877 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1878 .get_settings = ql_get_settings,
1879 .get_drvinfo = ql_get_drvinfo,
1880 .get_link = ethtool_op_get_link,
1881 .get_msglevel = ql_get_msglevel,
1882 .set_msglevel = ql_set_msglevel,
1883 .get_pauseparam = ql_get_pauseparam,
1884 };
1885
1886 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1887 {
1888 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1889 dma_addr_t map;
1890 int err;
1891
1892 while (lrg_buf_cb) {
1893 if (!lrg_buf_cb->skb) {
1894 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
1895 qdev->lrg_buffer_len);
1896 if (unlikely(!lrg_buf_cb->skb)) {
1897 printk(KERN_DEBUG PFX
1898 "%s: Failed netdev_alloc_skb().\n",
1899 qdev->ndev->name);
1900 break;
1901 } else {
1902 /*
1903 * We save some space to copy the ethhdr from
1904 * first buffer
1905 */
1906 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1907 map = pci_map_single(qdev->pdev,
1908 lrg_buf_cb->skb->data,
1909 qdev->lrg_buffer_len -
1910 QL_HEADER_SPACE,
1911 PCI_DMA_FROMDEVICE);
1912
1913 err = pci_dma_mapping_error(qdev->pdev, map);
1914 if(err) {
1915 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
1916 qdev->ndev->name, err);
1917 dev_kfree_skb(lrg_buf_cb->skb);
1918 lrg_buf_cb->skb = NULL;
1919 break;
1920 }
1921
1922
1923 lrg_buf_cb->buf_phy_addr_low =
1924 cpu_to_le32(LS_64BITS(map));
1925 lrg_buf_cb->buf_phy_addr_high =
1926 cpu_to_le32(MS_64BITS(map));
1927 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1928 pci_unmap_len_set(lrg_buf_cb, maplen,
1929 qdev->lrg_buffer_len -
1930 QL_HEADER_SPACE);
1931 --qdev->lrg_buf_skb_check;
1932 if (!qdev->lrg_buf_skb_check)
1933 return 1;
1934 }
1935 }
1936 lrg_buf_cb = lrg_buf_cb->next;
1937 }
1938 return 0;
1939 }
1940
1941 /*
1942 * Caller holds hw_lock.
1943 */
1944 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1945 {
1946 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1947 if (qdev->small_buf_release_cnt >= 16) {
1948 while (qdev->small_buf_release_cnt >= 16) {
1949 qdev->small_buf_q_producer_index++;
1950
1951 if (qdev->small_buf_q_producer_index ==
1952 NUM_SBUFQ_ENTRIES)
1953 qdev->small_buf_q_producer_index = 0;
1954 qdev->small_buf_release_cnt -= 8;
1955 }
1956 wmb();
1957 writel(qdev->small_buf_q_producer_index,
1958 &port_regs->CommonRegs.rxSmallQProducerIndex);
1959 }
1960 }
1961
1962 /*
1963 * Caller holds hw_lock.
1964 */
1965 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1966 {
1967 struct bufq_addr_element *lrg_buf_q_ele;
1968 int i;
1969 struct ql_rcv_buf_cb *lrg_buf_cb;
1970 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1971
1972 if ((qdev->lrg_buf_free_count >= 8)
1973 && (qdev->lrg_buf_release_cnt >= 16)) {
1974
1975 if (qdev->lrg_buf_skb_check)
1976 if (!ql_populate_free_queue(qdev))
1977 return;
1978
1979 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1980
1981 while ((qdev->lrg_buf_release_cnt >= 16)
1982 && (qdev->lrg_buf_free_count >= 8)) {
1983
1984 for (i = 0; i < 8; i++) {
1985 lrg_buf_cb =
1986 ql_get_from_lrg_buf_free_list(qdev);
1987 lrg_buf_q_ele->addr_high =
1988 lrg_buf_cb->buf_phy_addr_high;
1989 lrg_buf_q_ele->addr_low =
1990 lrg_buf_cb->buf_phy_addr_low;
1991 lrg_buf_q_ele++;
1992
1993 qdev->lrg_buf_release_cnt--;
1994 }
1995
1996 qdev->lrg_buf_q_producer_index++;
1997
1998 if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
1999 qdev->lrg_buf_q_producer_index = 0;
2000
2001 if (qdev->lrg_buf_q_producer_index ==
2002 (qdev->num_lbufq_entries - 1)) {
2003 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
2004 }
2005 }
2006 wmb();
2007 qdev->lrg_buf_next_free = lrg_buf_q_ele;
2008 writel(qdev->lrg_buf_q_producer_index,
2009 &port_regs->CommonRegs.rxLargeQProducerIndex);
2010 }
2011 }
2012
2013 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
2014 struct ob_mac_iocb_rsp *mac_rsp)
2015 {
2016 struct ql_tx_buf_cb *tx_cb;
2017 int i;
2018 int retval = 0;
2019
2020 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2021 printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
2022 }
2023
2024 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
2025
2026 /* Check the transmit response flags for any errors */
2027 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2028 printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
2029
2030 qdev->ndev->stats.tx_errors++;
2031 retval = -EIO;
2032 goto frame_not_sent;
2033 }
2034
2035 if(tx_cb->seg_count == 0) {
2036 printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
2037
2038 qdev->ndev->stats.tx_errors++;
2039 retval = -EIO;
2040 goto invalid_seg_count;
2041 }
2042
2043 pci_unmap_single(qdev->pdev,
2044 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2045 pci_unmap_len(&tx_cb->map[0], maplen),
2046 PCI_DMA_TODEVICE);
2047 tx_cb->seg_count--;
2048 if (tx_cb->seg_count) {
2049 for (i = 1; i < tx_cb->seg_count; i++) {
2050 pci_unmap_page(qdev->pdev,
2051 pci_unmap_addr(&tx_cb->map[i],
2052 mapaddr),
2053 pci_unmap_len(&tx_cb->map[i], maplen),
2054 PCI_DMA_TODEVICE);
2055 }
2056 }
2057 qdev->ndev->stats.tx_packets++;
2058 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
2059
2060 frame_not_sent:
2061 dev_kfree_skb_irq(tx_cb->skb);
2062 tx_cb->skb = NULL;
2063
2064 invalid_seg_count:
2065 atomic_inc(&qdev->tx_count);
2066 }
2067
2068 static void ql_get_sbuf(struct ql3_adapter *qdev)
2069 {
2070 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
2071 qdev->small_buf_index = 0;
2072 qdev->small_buf_release_cnt++;
2073 }
2074
2075 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
2076 {
2077 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
2078 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
2079 qdev->lrg_buf_release_cnt++;
2080 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
2081 qdev->lrg_buf_index = 0;
2082 return(lrg_buf_cb);
2083 }
2084
2085 /*
2086 * The difference between 3022 and 3032 for inbound completions:
2087 * 3022 uses two buffers per completion. The first buffer contains
2088 * (some) header info, the second the remainder of the headers plus
2089 * the data. For this chip we reserve some space at the top of the
2090 * receive buffer so that the header info in buffer one can be
2091 * prepended to the buffer two. Buffer two is the sent up while
2092 * buffer one is returned to the hardware to be reused.
2093 * 3032 receives all of it's data and headers in one buffer for a
2094 * simpler process. 3032 also supports checksum verification as
2095 * can be seen in ql_process_macip_rx_intr().
2096 */
2097 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2098 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2099 {
2100 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2101 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2102 struct sk_buff *skb;
2103 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2104
2105 /*
2106 * Get the inbound address list (small buffer).
2107 */
2108 ql_get_sbuf(qdev);
2109
2110 if (qdev->device_id == QL3022_DEVICE_ID)
2111 lrg_buf_cb1 = ql_get_lbuf(qdev);
2112
2113 /* start of second buffer */
2114 lrg_buf_cb2 = ql_get_lbuf(qdev);
2115 skb = lrg_buf_cb2->skb;
2116
2117 qdev->ndev->stats.rx_packets++;
2118 qdev->ndev->stats.rx_bytes += length;
2119
2120 skb_put(skb, length);
2121 pci_unmap_single(qdev->pdev,
2122 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2123 pci_unmap_len(lrg_buf_cb2, maplen),
2124 PCI_DMA_FROMDEVICE);
2125 prefetch(skb->data);
2126 skb->ip_summed = CHECKSUM_NONE;
2127 skb->protocol = eth_type_trans(skb, qdev->ndev);
2128
2129 netif_receive_skb(skb);
2130 lrg_buf_cb2->skb = NULL;
2131
2132 if (qdev->device_id == QL3022_DEVICE_ID)
2133 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2134 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2135 }
2136
2137 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2138 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2139 {
2140 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2141 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2142 struct sk_buff *skb1 = NULL, *skb2;
2143 struct net_device *ndev = qdev->ndev;
2144 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2145 u16 size = 0;
2146
2147 /*
2148 * Get the inbound address list (small buffer).
2149 */
2150
2151 ql_get_sbuf(qdev);
2152
2153 if (qdev->device_id == QL3022_DEVICE_ID) {
2154 /* start of first buffer on 3022 */
2155 lrg_buf_cb1 = ql_get_lbuf(qdev);
2156 skb1 = lrg_buf_cb1->skb;
2157 size = ETH_HLEN;
2158 if (*((u16 *) skb1->data) != 0xFFFF)
2159 size += VLAN_ETH_HLEN - ETH_HLEN;
2160 }
2161
2162 /* start of second buffer */
2163 lrg_buf_cb2 = ql_get_lbuf(qdev);
2164 skb2 = lrg_buf_cb2->skb;
2165
2166 skb_put(skb2, length); /* Just the second buffer length here. */
2167 pci_unmap_single(qdev->pdev,
2168 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2169 pci_unmap_len(lrg_buf_cb2, maplen),
2170 PCI_DMA_FROMDEVICE);
2171 prefetch(skb2->data);
2172
2173 skb2->ip_summed = CHECKSUM_NONE;
2174 if (qdev->device_id == QL3022_DEVICE_ID) {
2175 /*
2176 * Copy the ethhdr from first buffer to second. This
2177 * is necessary for 3022 IP completions.
2178 */
2179 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2180 skb_push(skb2, size), size);
2181 } else {
2182 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2183 if (checksum &
2184 (IB_IP_IOCB_RSP_3032_ICE |
2185 IB_IP_IOCB_RSP_3032_CE)) {
2186 printk(KERN_ERR
2187 "%s: Bad checksum for this %s packet, checksum = %x.\n",
2188 __func__,
2189 ((checksum &
2190 IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
2191 "UDP"),checksum);
2192 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2193 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2194 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2195 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2196 }
2197 }
2198 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2199
2200 netif_receive_skb(skb2);
2201 ndev->stats.rx_packets++;
2202 ndev->stats.rx_bytes += length;
2203 lrg_buf_cb2->skb = NULL;
2204
2205 if (qdev->device_id == QL3022_DEVICE_ID)
2206 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2207 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2208 }
2209
2210 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2211 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2212 {
2213 struct net_rsp_iocb *net_rsp;
2214 struct net_device *ndev = qdev->ndev;
2215 int work_done = 0;
2216
2217 /* While there are entries in the completion queue. */
2218 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2219 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2220
2221 net_rsp = qdev->rsp_current;
2222 rmb();
2223 /*
2224 * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
2225 * inbound completion is for a VLAN.
2226 */
2227 if (qdev->device_id == QL3032_DEVICE_ID)
2228 net_rsp->opcode &= 0x7f;
2229 switch (net_rsp->opcode) {
2230
2231 case OPCODE_OB_MAC_IOCB_FN0:
2232 case OPCODE_OB_MAC_IOCB_FN2:
2233 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2234 net_rsp);
2235 (*tx_cleaned)++;
2236 break;
2237
2238 case OPCODE_IB_MAC_IOCB:
2239 case OPCODE_IB_3032_MAC_IOCB:
2240 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2241 net_rsp);
2242 (*rx_cleaned)++;
2243 break;
2244
2245 case OPCODE_IB_IP_IOCB:
2246 case OPCODE_IB_3032_IP_IOCB:
2247 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2248 net_rsp);
2249 (*rx_cleaned)++;
2250 break;
2251 default:
2252 {
2253 u32 *tmp = (u32 *) net_rsp;
2254 printk(KERN_ERR PFX
2255 "%s: Hit default case, not "
2256 "handled!\n"
2257 " dropping the packet, opcode = "
2258 "%x.\n",
2259 ndev->name, net_rsp->opcode);
2260 printk(KERN_ERR PFX
2261 "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
2262 (unsigned long int)tmp[0],
2263 (unsigned long int)tmp[1],
2264 (unsigned long int)tmp[2],
2265 (unsigned long int)tmp[3]);
2266 }
2267 }
2268
2269 qdev->rsp_consumer_index++;
2270
2271 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2272 qdev->rsp_consumer_index = 0;
2273 qdev->rsp_current = qdev->rsp_q_virt_addr;
2274 } else {
2275 qdev->rsp_current++;
2276 }
2277
2278 work_done = *tx_cleaned + *rx_cleaned;
2279 }
2280
2281 return work_done;
2282 }
2283
2284 static int ql_poll(struct napi_struct *napi, int budget)
2285 {
2286 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2287 int rx_cleaned = 0, tx_cleaned = 0;
2288 unsigned long hw_flags;
2289 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2290
2291 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2292
2293 if (tx_cleaned + rx_cleaned != budget) {
2294 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2295 __napi_complete(napi);
2296 ql_update_small_bufq_prod_index(qdev);
2297 ql_update_lrg_bufq_prod_index(qdev);
2298 writel(qdev->rsp_consumer_index,
2299 &port_regs->CommonRegs.rspQConsumerIndex);
2300 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2301
2302 ql_enable_interrupts(qdev);
2303 }
2304 return tx_cleaned + rx_cleaned;
2305 }
2306
2307 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2308 {
2309
2310 struct net_device *ndev = dev_id;
2311 struct ql3_adapter *qdev = netdev_priv(ndev);
2312 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2313 u32 value;
2314 int handled = 1;
2315 u32 var;
2316
2317 port_regs = qdev->mem_map_registers;
2318
2319 value =
2320 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
2321
2322 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2323 spin_lock(&qdev->adapter_lock);
2324 netif_stop_queue(qdev->ndev);
2325 netif_carrier_off(qdev->ndev);
2326 ql_disable_interrupts(qdev);
2327 qdev->port_link_state = LS_DOWN;
2328 set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
2329
2330 if (value & ISP_CONTROL_FE) {
2331 /*
2332 * Chip Fatal Error.
2333 */
2334 var =
2335 ql_read_page0_reg_l(qdev,
2336 &port_regs->PortFatalErrStatus);
2337 printk(KERN_WARNING PFX
2338 "%s: Resetting chip. PortFatalErrStatus "
2339 "register = 0x%x\n", ndev->name, var);
2340 set_bit(QL_RESET_START,&qdev->flags) ;
2341 } else {
2342 /*
2343 * Soft Reset Requested.
2344 */
2345 set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
2346 printk(KERN_ERR PFX
2347 "%s: Another function issued a reset to the "
2348 "chip. ISR value = %x.\n", ndev->name, value);
2349 }
2350 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2351 spin_unlock(&qdev->adapter_lock);
2352 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2353 ql_disable_interrupts(qdev);
2354 if (likely(napi_schedule_prep(&qdev->napi))) {
2355 __napi_schedule(&qdev->napi);
2356 }
2357 } else {
2358 return IRQ_NONE;
2359 }
2360
2361 return IRQ_RETVAL(handled);
2362 }
2363
2364 /*
2365 * Get the total number of segments needed for the
2366 * given number of fragments. This is necessary because
2367 * outbound address lists (OAL) will be used when more than
2368 * two frags are given. Each address list has 5 addr/len
2369 * pairs. The 5th pair in each AOL is used to point to
2370 * the next AOL if more frags are coming.
2371 * That is why the frags:segment count ratio is not linear.
2372 */
2373 static int ql_get_seg_count(struct ql3_adapter *qdev,
2374 unsigned short frags)
2375 {
2376 if (qdev->device_id == QL3022_DEVICE_ID)
2377 return 1;
2378
2379 switch(frags) {
2380 case 0: return 1; /* just the skb->data seg */
2381 case 1: return 2; /* skb->data + 1 frag */
2382 case 2: return 3; /* skb->data + 2 frags */
2383 case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
2384 case 4: return 6;
2385 case 5: return 7;
2386 case 6: return 8;
2387 case 7: return 10;
2388 case 8: return 11;
2389 case 9: return 12;
2390 case 10: return 13;
2391 case 11: return 15;
2392 case 12: return 16;
2393 case 13: return 17;
2394 case 14: return 18;
2395 case 15: return 20;
2396 case 16: return 21;
2397 case 17: return 22;
2398 case 18: return 23;
2399 }
2400 return -1;
2401 }
2402
2403 static void ql_hw_csum_setup(const struct sk_buff *skb,
2404 struct ob_mac_iocb_req *mac_iocb_ptr)
2405 {
2406 const struct iphdr *ip = ip_hdr(skb);
2407
2408 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2409 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2410
2411 if (ip->protocol == IPPROTO_TCP) {
2412 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2413 OB_3032MAC_IOCB_REQ_IC;
2414 } else {
2415 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2416 OB_3032MAC_IOCB_REQ_IC;
2417 }
2418
2419 }
2420
2421 /*
2422 * Map the buffers for this transmit. This will return
2423 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2424 */
2425 static int ql_send_map(struct ql3_adapter *qdev,
2426 struct ob_mac_iocb_req *mac_iocb_ptr,
2427 struct ql_tx_buf_cb *tx_cb,
2428 struct sk_buff *skb)
2429 {
2430 struct oal *oal;
2431 struct oal_entry *oal_entry;
2432 int len = skb_headlen(skb);
2433 dma_addr_t map;
2434 int err;
2435 int completed_segs, i;
2436 int seg_cnt, seg = 0;
2437 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2438
2439 seg_cnt = tx_cb->seg_count;
2440 /*
2441 * Map the skb buffer first.
2442 */
2443 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2444
2445 err = pci_dma_mapping_error(qdev->pdev, map);
2446 if(err) {
2447 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2448 qdev->ndev->name, err);
2449
2450 return NETDEV_TX_BUSY;
2451 }
2452
2453 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2454 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2455 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2456 oal_entry->len = cpu_to_le32(len);
2457 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2458 pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
2459 seg++;
2460
2461 if (seg_cnt == 1) {
2462 /* Terminate the last segment. */
2463 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2464 } else {
2465 oal = tx_cb->oal;
2466 for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
2467 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2468 oal_entry++;
2469 if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2470 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2471 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2472 (seg == 17 && seg_cnt > 18)) {
2473 /* Continuation entry points to outbound address list. */
2474 map = pci_map_single(qdev->pdev, oal,
2475 sizeof(struct oal),
2476 PCI_DMA_TODEVICE);
2477
2478 err = pci_dma_mapping_error(qdev->pdev, map);
2479 if(err) {
2480
2481 printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
2482 qdev->ndev->name, err);
2483 goto map_error;
2484 }
2485
2486 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2487 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2488 oal_entry->len =
2489 cpu_to_le32(sizeof(struct oal) |
2490 OAL_CONT_ENTRY);
2491 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
2492 map);
2493 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2494 sizeof(struct oal));
2495 oal_entry = (struct oal_entry *)oal;
2496 oal++;
2497 seg++;
2498 }
2499
2500 map =
2501 pci_map_page(qdev->pdev, frag->page,
2502 frag->page_offset, frag->size,
2503 PCI_DMA_TODEVICE);
2504
2505 err = pci_dma_mapping_error(qdev->pdev, map);
2506 if(err) {
2507 printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
2508 qdev->ndev->name, err);
2509 goto map_error;
2510 }
2511
2512 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2513 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2514 oal_entry->len = cpu_to_le32(frag->size);
2515 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2516 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2517 frag->size);
2518 }
2519 /* Terminate the last segment. */
2520 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2521 }
2522
2523 return NETDEV_TX_OK;
2524
2525 map_error:
2526 /* A PCI mapping failed and now we will need to back out
2527 * We need to traverse through the oal's and associated pages which
2528 * have been mapped and now we must unmap them to clean up properly
2529 */
2530
2531 seg = 1;
2532 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2533 oal = tx_cb->oal;
2534 for (i=0; i<completed_segs; i++,seg++) {
2535 oal_entry++;
2536
2537 if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2538 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2539 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2540 (seg == 17 && seg_cnt > 18)) {
2541 pci_unmap_single(qdev->pdev,
2542 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2543 pci_unmap_len(&tx_cb->map[seg], maplen),
2544 PCI_DMA_TODEVICE);
2545 oal++;
2546 seg++;
2547 }
2548
2549 pci_unmap_page(qdev->pdev,
2550 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2551 pci_unmap_len(&tx_cb->map[seg], maplen),
2552 PCI_DMA_TODEVICE);
2553 }
2554
2555 pci_unmap_single(qdev->pdev,
2556 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2557 pci_unmap_addr(&tx_cb->map[0], maplen),
2558 PCI_DMA_TODEVICE);
2559
2560 return NETDEV_TX_BUSY;
2561
2562 }
2563
2564 /*
2565 * The difference between 3022 and 3032 sends:
2566 * 3022 only supports a simple single segment transmission.
2567 * 3032 supports checksumming and scatter/gather lists (fragments).
2568 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2569 * in the IOCB plus a chain of outbound address lists (OAL) that
2570 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2571 * will used to point to an OAL when more ALP entries are required.
2572 * The IOCB is always the top of the chain followed by one or more
2573 * OALs (when necessary).
2574 */
2575 static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
2576 {
2577 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
2578 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2579 struct ql_tx_buf_cb *tx_cb;
2580 u32 tot_len = skb->len;
2581 struct ob_mac_iocb_req *mac_iocb_ptr;
2582
2583 if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
2584 return NETDEV_TX_BUSY;
2585 }
2586
2587 tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
2588 if((tx_cb->seg_count = ql_get_seg_count(qdev,
2589 (skb_shinfo(skb)->nr_frags))) == -1) {
2590 printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
2591 return NETDEV_TX_OK;
2592 }
2593
2594 mac_iocb_ptr = tx_cb->queue_entry;
2595 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2596 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2597 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2598 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2599 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2600 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2601 tx_cb->skb = skb;
2602 if (qdev->device_id == QL3032_DEVICE_ID &&
2603 skb->ip_summed == CHECKSUM_PARTIAL)
2604 ql_hw_csum_setup(skb, mac_iocb_ptr);
2605
2606 if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
2607 printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
2608 return NETDEV_TX_BUSY;
2609 }
2610
2611 wmb();
2612 qdev->req_producer_index++;
2613 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2614 qdev->req_producer_index = 0;
2615 wmb();
2616 ql_write_common_reg_l(qdev,
2617 &port_regs->CommonRegs.reqQProducerIndex,
2618 qdev->req_producer_index);
2619
2620 if (netif_msg_tx_queued(qdev))
2621 printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
2622 ndev->name, qdev->req_producer_index, skb->len);
2623
2624 atomic_dec(&qdev->tx_count);
2625 return NETDEV_TX_OK;
2626 }
2627
2628 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2629 {
2630 qdev->req_q_size =
2631 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2632
2633 qdev->req_q_virt_addr =
2634 pci_alloc_consistent(qdev->pdev,
2635 (size_t) qdev->req_q_size,
2636 &qdev->req_q_phy_addr);
2637
2638 if ((qdev->req_q_virt_addr == NULL) ||
2639 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2640 printk(KERN_ERR PFX "%s: reqQ failed.\n",
2641 qdev->ndev->name);
2642 return -ENOMEM;
2643 }
2644
2645 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2646
2647 qdev->rsp_q_virt_addr =
2648 pci_alloc_consistent(qdev->pdev,
2649 (size_t) qdev->rsp_q_size,
2650 &qdev->rsp_q_phy_addr);
2651
2652 if ((qdev->rsp_q_virt_addr == NULL) ||
2653 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2654 printk(KERN_ERR PFX
2655 "%s: rspQ allocation failed\n",
2656 qdev->ndev->name);
2657 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2658 qdev->req_q_virt_addr,
2659 qdev->req_q_phy_addr);
2660 return -ENOMEM;
2661 }
2662
2663 set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2664
2665 return 0;
2666 }
2667
2668 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2669 {
2670 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
2671 printk(KERN_INFO PFX
2672 "%s: Already done.\n", qdev->ndev->name);
2673 return;
2674 }
2675
2676 pci_free_consistent(qdev->pdev,
2677 qdev->req_q_size,
2678 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2679
2680 qdev->req_q_virt_addr = NULL;
2681
2682 pci_free_consistent(qdev->pdev,
2683 qdev->rsp_q_size,
2684 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2685
2686 qdev->rsp_q_virt_addr = NULL;
2687
2688 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2689 }
2690
2691 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2692 {
2693 /* Create Large Buffer Queue */
2694 qdev->lrg_buf_q_size =
2695 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2696 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2697 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2698 else
2699 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2700
2701 qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
2702 if (qdev->lrg_buf == NULL) {
2703 printk(KERN_ERR PFX
2704 "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
2705 return -ENOMEM;
2706 }
2707
2708 qdev->lrg_buf_q_alloc_virt_addr =
2709 pci_alloc_consistent(qdev->pdev,
2710 qdev->lrg_buf_q_alloc_size,
2711 &qdev->lrg_buf_q_alloc_phy_addr);
2712
2713 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2714 printk(KERN_ERR PFX
2715 "%s: lBufQ failed\n", qdev->ndev->name);
2716 return -ENOMEM;
2717 }
2718 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2719 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2720
2721 /* Create Small Buffer Queue */
2722 qdev->small_buf_q_size =
2723 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2724 if (qdev->small_buf_q_size < PAGE_SIZE)
2725 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2726 else
2727 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2728
2729 qdev->small_buf_q_alloc_virt_addr =
2730 pci_alloc_consistent(qdev->pdev,
2731 qdev->small_buf_q_alloc_size,
2732 &qdev->small_buf_q_alloc_phy_addr);
2733
2734 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2735 printk(KERN_ERR PFX
2736 "%s: Small Buffer Queue allocation failed.\n",
2737 qdev->ndev->name);
2738 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2739 qdev->lrg_buf_q_alloc_virt_addr,
2740 qdev->lrg_buf_q_alloc_phy_addr);
2741 return -ENOMEM;
2742 }
2743
2744 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2745 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2746 set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2747 return 0;
2748 }
2749
2750 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2751 {
2752 if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
2753 printk(KERN_INFO PFX
2754 "%s: Already done.\n", qdev->ndev->name);
2755 return;
2756 }
2757 if(qdev->lrg_buf) kfree(qdev->lrg_buf);
2758 pci_free_consistent(qdev->pdev,
2759 qdev->lrg_buf_q_alloc_size,
2760 qdev->lrg_buf_q_alloc_virt_addr,
2761 qdev->lrg_buf_q_alloc_phy_addr);
2762
2763 qdev->lrg_buf_q_virt_addr = NULL;
2764
2765 pci_free_consistent(qdev->pdev,
2766 qdev->small_buf_q_alloc_size,
2767 qdev->small_buf_q_alloc_virt_addr,
2768 qdev->small_buf_q_alloc_phy_addr);
2769
2770 qdev->small_buf_q_virt_addr = NULL;
2771
2772 clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2773 }
2774
2775 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2776 {
2777 int i;
2778 struct bufq_addr_element *small_buf_q_entry;
2779
2780 /* Currently we allocate on one of memory and use it for smallbuffers */
2781 qdev->small_buf_total_size =
2782 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2783 QL_SMALL_BUFFER_SIZE);
2784
2785 qdev->small_buf_virt_addr =
2786 pci_alloc_consistent(qdev->pdev,
2787 qdev->small_buf_total_size,
2788 &qdev->small_buf_phy_addr);
2789
2790 if (qdev->small_buf_virt_addr == NULL) {
2791 printk(KERN_ERR PFX
2792 "%s: Failed to get small buffer memory.\n",
2793 qdev->ndev->name);
2794 return -ENOMEM;
2795 }
2796
2797 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2798 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2799
2800 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2801
2802 /* Initialize the small buffer queue. */
2803 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2804 small_buf_q_entry->addr_high =
2805 cpu_to_le32(qdev->small_buf_phy_addr_high);
2806 small_buf_q_entry->addr_low =
2807 cpu_to_le32(qdev->small_buf_phy_addr_low +
2808 (i * QL_SMALL_BUFFER_SIZE));
2809 small_buf_q_entry++;
2810 }
2811 qdev->small_buf_index = 0;
2812 set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
2813 return 0;
2814 }
2815
2816 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2817 {
2818 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
2819 printk(KERN_INFO PFX
2820 "%s: Already done.\n", qdev->ndev->name);
2821 return;
2822 }
2823 if (qdev->small_buf_virt_addr != NULL) {
2824 pci_free_consistent(qdev->pdev,
2825 qdev->small_buf_total_size,
2826 qdev->small_buf_virt_addr,
2827 qdev->small_buf_phy_addr);
2828
2829 qdev->small_buf_virt_addr = NULL;
2830 }
2831 }
2832
2833 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2834 {
2835 int i = 0;
2836 struct ql_rcv_buf_cb *lrg_buf_cb;
2837
2838 for (i = 0; i < qdev->num_large_buffers; i++) {
2839 lrg_buf_cb = &qdev->lrg_buf[i];
2840 if (lrg_buf_cb->skb) {
2841 dev_kfree_skb(lrg_buf_cb->skb);
2842 pci_unmap_single(qdev->pdev,
2843 pci_unmap_addr(lrg_buf_cb, mapaddr),
2844 pci_unmap_len(lrg_buf_cb, maplen),
2845 PCI_DMA_FROMDEVICE);
2846 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2847 } else {
2848 break;
2849 }
2850 }
2851 }
2852
2853 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2854 {
2855 int i;
2856 struct ql_rcv_buf_cb *lrg_buf_cb;
2857 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2858
2859 for (i = 0; i < qdev->num_large_buffers; i++) {
2860 lrg_buf_cb = &qdev->lrg_buf[i];
2861 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2862 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2863 buf_addr_ele++;
2864 }
2865 qdev->lrg_buf_index = 0;
2866 qdev->lrg_buf_skb_check = 0;
2867 }
2868
2869 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2870 {
2871 int i;
2872 struct ql_rcv_buf_cb *lrg_buf_cb;
2873 struct sk_buff *skb;
2874 dma_addr_t map;
2875 int err;
2876
2877 for (i = 0; i < qdev->num_large_buffers; i++) {
2878 skb = netdev_alloc_skb(qdev->ndev,
2879 qdev->lrg_buffer_len);
2880 if (unlikely(!skb)) {
2881 /* Better luck next round */
2882 printk(KERN_ERR PFX
2883 "%s: large buff alloc failed, "
2884 "for %d bytes at index %d.\n",
2885 qdev->ndev->name,
2886 qdev->lrg_buffer_len * 2, i);
2887 ql_free_large_buffers(qdev);
2888 return -ENOMEM;
2889 } else {
2890
2891 lrg_buf_cb = &qdev->lrg_buf[i];
2892 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2893 lrg_buf_cb->index = i;
2894 lrg_buf_cb->skb = skb;
2895 /*
2896 * We save some space to copy the ethhdr from first
2897 * buffer
2898 */
2899 skb_reserve(skb, QL_HEADER_SPACE);
2900 map = pci_map_single(qdev->pdev,
2901 skb->data,
2902 qdev->lrg_buffer_len -
2903 QL_HEADER_SPACE,
2904 PCI_DMA_FROMDEVICE);
2905
2906 err = pci_dma_mapping_error(qdev->pdev, map);
2907 if(err) {
2908 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2909 qdev->ndev->name, err);
2910 ql_free_large_buffers(qdev);
2911 return -ENOMEM;
2912 }
2913
2914 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2915 pci_unmap_len_set(lrg_buf_cb, maplen,
2916 qdev->lrg_buffer_len -
2917 QL_HEADER_SPACE);
2918 lrg_buf_cb->buf_phy_addr_low =
2919 cpu_to_le32(LS_64BITS(map));
2920 lrg_buf_cb->buf_phy_addr_high =
2921 cpu_to_le32(MS_64BITS(map));
2922 }
2923 }
2924 return 0;
2925 }
2926
2927 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2928 {
2929 struct ql_tx_buf_cb *tx_cb;
2930 int i;
2931
2932 tx_cb = &qdev->tx_buf[0];
2933 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2934 if (tx_cb->oal) {
2935 kfree(tx_cb->oal);
2936 tx_cb->oal = NULL;
2937 }
2938 tx_cb++;
2939 }
2940 }
2941
2942 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2943 {
2944 struct ql_tx_buf_cb *tx_cb;
2945 int i;
2946 struct ob_mac_iocb_req *req_q_curr =
2947 qdev->req_q_virt_addr;
2948
2949 /* Create free list of transmit buffers */
2950 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2951
2952 tx_cb = &qdev->tx_buf[i];
2953 tx_cb->skb = NULL;
2954 tx_cb->queue_entry = req_q_curr;
2955 req_q_curr++;
2956 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2957 if (tx_cb->oal == NULL)
2958 return -1;
2959 }
2960 return 0;
2961 }
2962
2963 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2964 {
2965 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2966 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2967 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2968 }
2969 else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2970 /*
2971 * Bigger buffers, so less of them.
2972 */
2973 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2974 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2975 } else {
2976 printk(KERN_ERR PFX
2977 "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
2978 qdev->ndev->name);
2979 return -ENOMEM;
2980 }
2981 qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2982 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2983 qdev->max_frame_size =
2984 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2985
2986 /*
2987 * First allocate a page of shared memory and use it for shadow
2988 * locations of Network Request Queue Consumer Address Register and
2989 * Network Completion Queue Producer Index Register
2990 */
2991 qdev->shadow_reg_virt_addr =
2992 pci_alloc_consistent(qdev->pdev,
2993 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2994
2995 if (qdev->shadow_reg_virt_addr != NULL) {
2996 qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
2997 qdev->req_consumer_index_phy_addr_high =
2998 MS_64BITS(qdev->shadow_reg_phy_addr);
2999 qdev->req_consumer_index_phy_addr_low =
3000 LS_64BITS(qdev->shadow_reg_phy_addr);
3001
3002 qdev->prsp_producer_index =
3003 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
3004 qdev->rsp_producer_index_phy_addr_high =
3005 qdev->req_consumer_index_phy_addr_high;
3006 qdev->rsp_producer_index_phy_addr_low =
3007 qdev->req_consumer_index_phy_addr_low + 8;
3008 } else {
3009 printk(KERN_ERR PFX
3010 "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
3011 return -ENOMEM;
3012 }
3013
3014 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
3015 printk(KERN_ERR PFX
3016 "%s: ql_alloc_net_req_rsp_queues failed.\n",
3017 qdev->ndev->name);
3018 goto err_req_rsp;
3019 }
3020
3021 if (ql_alloc_buffer_queues(qdev) != 0) {
3022 printk(KERN_ERR PFX
3023 "%s: ql_alloc_buffer_queues failed.\n",
3024 qdev->ndev->name);
3025 goto err_buffer_queues;
3026 }
3027
3028 if (ql_alloc_small_buffers(qdev) != 0) {
3029 printk(KERN_ERR PFX
3030 "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
3031 goto err_small_buffers;
3032 }
3033
3034 if (ql_alloc_large_buffers(qdev) != 0) {
3035 printk(KERN_ERR PFX
3036 "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
3037 goto err_small_buffers;
3038 }
3039
3040 /* Initialize the large buffer queue. */
3041 ql_init_large_buffers(qdev);
3042 if (ql_create_send_free_list(qdev))
3043 goto err_free_list;
3044
3045 qdev->rsp_current = qdev->rsp_q_virt_addr;
3046
3047 return 0;
3048 err_free_list:
3049 ql_free_send_free_list(qdev);
3050 err_small_buffers:
3051 ql_free_buffer_queues(qdev);
3052 err_buffer_queues:
3053 ql_free_net_req_rsp_queues(qdev);
3054 err_req_rsp:
3055 pci_free_consistent(qdev->pdev,
3056 PAGE_SIZE,
3057 qdev->shadow_reg_virt_addr,
3058 qdev->shadow_reg_phy_addr);
3059
3060 return -ENOMEM;
3061 }
3062
3063 static void ql_free_mem_resources(struct ql3_adapter *qdev)
3064 {
3065 ql_free_send_free_list(qdev);
3066 ql_free_large_buffers(qdev);
3067 ql_free_small_buffers(qdev);
3068 ql_free_buffer_queues(qdev);
3069 ql_free_net_req_rsp_queues(qdev);
3070 if (qdev->shadow_reg_virt_addr != NULL) {
3071 pci_free_consistent(qdev->pdev,
3072 PAGE_SIZE,
3073 qdev->shadow_reg_virt_addr,
3074 qdev->shadow_reg_phy_addr);
3075 qdev->shadow_reg_virt_addr = NULL;
3076 }
3077 }
3078
3079 static int ql_init_misc_registers(struct ql3_adapter *qdev)
3080 {
3081 struct ql3xxx_local_ram_registers __iomem *local_ram =
3082 (void __iomem *)qdev->mem_map_registers;
3083
3084 if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
3085 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3086 2) << 4))
3087 return -1;
3088
3089 ql_write_page2_reg(qdev,
3090 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
3091
3092 ql_write_page2_reg(qdev,
3093 &local_ram->maxBufletCount,
3094 qdev->nvram_data.bufletCount);
3095
3096 ql_write_page2_reg(qdev,
3097 &local_ram->freeBufletThresholdLow,
3098 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
3099 (qdev->nvram_data.tcpWindowThreshold0));
3100
3101 ql_write_page2_reg(qdev,
3102 &local_ram->freeBufletThresholdHigh,
3103 qdev->nvram_data.tcpWindowThreshold50);
3104
3105 ql_write_page2_reg(qdev,
3106 &local_ram->ipHashTableBase,
3107 (qdev->nvram_data.ipHashTableBaseHi << 16) |
3108 qdev->nvram_data.ipHashTableBaseLo);
3109 ql_write_page2_reg(qdev,
3110 &local_ram->ipHashTableCount,
3111 qdev->nvram_data.ipHashTableSize);
3112 ql_write_page2_reg(qdev,
3113 &local_ram->tcpHashTableBase,
3114 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
3115 qdev->nvram_data.tcpHashTableBaseLo);
3116 ql_write_page2_reg(qdev,
3117 &local_ram->tcpHashTableCount,
3118 qdev->nvram_data.tcpHashTableSize);
3119 ql_write_page2_reg(qdev,
3120 &local_ram->ncbBase,
3121 (qdev->nvram_data.ncbTableBaseHi << 16) |
3122 qdev->nvram_data.ncbTableBaseLo);
3123 ql_write_page2_reg(qdev,
3124 &local_ram->maxNcbCount,
3125 qdev->nvram_data.ncbTableSize);
3126 ql_write_page2_reg(qdev,
3127 &local_ram->drbBase,
3128 (qdev->nvram_data.drbTableBaseHi << 16) |
3129 qdev->nvram_data.drbTableBaseLo);
3130 ql_write_page2_reg(qdev,
3131 &local_ram->maxDrbCount,
3132 qdev->nvram_data.drbTableSize);
3133 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3134 return 0;
3135 }
3136
3137 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3138 {
3139 u32 value;
3140 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3141 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3142 (void __iomem *)port_regs;
3143 u32 delay = 10;
3144 int status = 0;
3145
3146 if(ql_mii_setup(qdev))
3147 return -1;
3148
3149 /* Bring out PHY out of reset */
3150 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3151 (ISP_SERIAL_PORT_IF_WE |
3152 (ISP_SERIAL_PORT_IF_WE << 16)));
3153
3154 qdev->port_link_state = LS_DOWN;
3155 netif_carrier_off(qdev->ndev);
3156
3157 /* V2 chip fix for ARS-39168. */
3158 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3159 (ISP_SERIAL_PORT_IF_SDE |
3160 (ISP_SERIAL_PORT_IF_SDE << 16)));
3161
3162 /* Request Queue Registers */
3163 *((u32 *) (qdev->preq_consumer_index)) = 0;
3164 atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
3165 qdev->req_producer_index = 0;
3166
3167 ql_write_page1_reg(qdev,
3168 &hmem_regs->reqConsumerIndexAddrHigh,
3169 qdev->req_consumer_index_phy_addr_high);
3170 ql_write_page1_reg(qdev,
3171 &hmem_regs->reqConsumerIndexAddrLow,
3172 qdev->req_consumer_index_phy_addr_low);
3173
3174 ql_write_page1_reg(qdev,
3175 &hmem_regs->reqBaseAddrHigh,
3176 MS_64BITS(qdev->req_q_phy_addr));
3177 ql_write_page1_reg(qdev,
3178 &hmem_regs->reqBaseAddrLow,
3179 LS_64BITS(qdev->req_q_phy_addr));
3180 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3181
3182 /* Response Queue Registers */
3183 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3184 qdev->rsp_consumer_index = 0;
3185 qdev->rsp_current = qdev->rsp_q_virt_addr;
3186
3187 ql_write_page1_reg(qdev,
3188 &hmem_regs->rspProducerIndexAddrHigh,
3189 qdev->rsp_producer_index_phy_addr_high);
3190
3191 ql_write_page1_reg(qdev,
3192 &hmem_regs->rspProducerIndexAddrLow,
3193 qdev->rsp_producer_index_phy_addr_low);
3194
3195 ql_write_page1_reg(qdev,
3196 &hmem_regs->rspBaseAddrHigh,
3197 MS_64BITS(qdev->rsp_q_phy_addr));
3198
3199 ql_write_page1_reg(qdev,
3200 &hmem_regs->rspBaseAddrLow,
3201 LS_64BITS(qdev->rsp_q_phy_addr));
3202
3203 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3204
3205 /* Large Buffer Queue */
3206 ql_write_page1_reg(qdev,
3207 &hmem_regs->rxLargeQBaseAddrHigh,
3208 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3209
3210 ql_write_page1_reg(qdev,
3211 &hmem_regs->rxLargeQBaseAddrLow,
3212 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3213
3214 ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
3215
3216 ql_write_page1_reg(qdev,
3217 &hmem_regs->rxLargeBufferLength,
3218 qdev->lrg_buffer_len);
3219
3220 /* Small Buffer Queue */
3221 ql_write_page1_reg(qdev,
3222 &hmem_regs->rxSmallQBaseAddrHigh,
3223 MS_64BITS(qdev->small_buf_q_phy_addr));
3224
3225 ql_write_page1_reg(qdev,
3226 &hmem_regs->rxSmallQBaseAddrLow,
3227 LS_64BITS(qdev->small_buf_q_phy_addr));
3228
3229 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3230 ql_write_page1_reg(qdev,
3231 &hmem_regs->rxSmallBufferLength,
3232 QL_SMALL_BUFFER_SIZE);
3233
3234 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3235 qdev->small_buf_release_cnt = 8;
3236 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3237 qdev->lrg_buf_release_cnt = 8;
3238 qdev->lrg_buf_next_free =
3239 (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
3240 qdev->small_buf_index = 0;
3241 qdev->lrg_buf_index = 0;
3242 qdev->lrg_buf_free_count = 0;
3243 qdev->lrg_buf_free_head = NULL;
3244 qdev->lrg_buf_free_tail = NULL;
3245
3246 ql_write_common_reg(qdev,
3247 &port_regs->CommonRegs.
3248 rxSmallQProducerIndex,
3249 qdev->small_buf_q_producer_index);
3250 ql_write_common_reg(qdev,
3251 &port_regs->CommonRegs.
3252 rxLargeQProducerIndex,
3253 qdev->lrg_buf_q_producer_index);
3254
3255 /*
3256 * Find out if the chip has already been initialized. If it has, then
3257 * we skip some of the initialization.
3258 */
3259 clear_bit(QL_LINK_MASTER, &qdev->flags);
3260 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3261 if ((value & PORT_STATUS_IC) == 0) {
3262
3263 /* Chip has not been configured yet, so let it rip. */
3264 if(ql_init_misc_registers(qdev)) {
3265 status = -1;
3266 goto out;
3267 }
3268
3269 value = qdev->nvram_data.tcpMaxWindowSize;
3270 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3271
3272 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3273
3274 if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3275 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3276 * 2) << 13)) {
3277 status = -1;
3278 goto out;
3279 }
3280 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3281 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3282 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3283 16) | (INTERNAL_CHIP_SD |
3284 INTERNAL_CHIP_WE)));
3285 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3286 }
3287
3288 if (qdev->mac_index)
3289 ql_write_page0_reg(qdev,
3290 &port_regs->mac1MaxFrameLengthReg,
3291 qdev->max_frame_size);
3292 else
3293 ql_write_page0_reg(qdev,
3294 &port_regs->mac0MaxFrameLengthReg,
3295 qdev->max_frame_size);
3296
3297 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3298 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3299 2) << 7)) {
3300 status = -1;
3301 goto out;
3302 }
3303
3304 PHY_Setup(qdev);
3305 ql_init_scan_mode(qdev);
3306 ql_get_phy_owner(qdev);
3307
3308 /* Load the MAC Configuration */
3309
3310 /* Program lower 32 bits of the MAC address */
3311 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3312 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3313 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3314 ((qdev->ndev->dev_addr[2] << 24)
3315 | (qdev->ndev->dev_addr[3] << 16)
3316 | (qdev->ndev->dev_addr[4] << 8)
3317 | qdev->ndev->dev_addr[5]));
3318
3319 /* Program top 16 bits of the MAC address */
3320 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3321 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3322 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3323 ((qdev->ndev->dev_addr[0] << 8)
3324 | qdev->ndev->dev_addr[1]));
3325
3326 /* Enable Primary MAC */
3327 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3328 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3329 MAC_ADDR_INDIRECT_PTR_REG_PE));
3330
3331 /* Clear Primary and Secondary IP addresses */
3332 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3333 ((IP_ADDR_INDEX_REG_MASK << 16) |
3334 (qdev->mac_index << 2)));
3335 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3336
3337 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3338 ((IP_ADDR_INDEX_REG_MASK << 16) |
3339 ((qdev->mac_index << 2) + 1)));
3340 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3341
3342 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3343
3344 /* Indicate Configuration Complete */
3345 ql_write_page0_reg(qdev,
3346 &port_regs->portControl,
3347 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3348
3349 do {
3350 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3351 if (value & PORT_STATUS_IC)
3352 break;
3353 msleep(500);
3354 } while (--delay);
3355
3356 if (delay == 0) {
3357 printk(KERN_ERR PFX
3358 "%s: Hw Initialization timeout.\n", qdev->ndev->name);
3359 status = -1;
3360 goto out;
3361 }
3362
3363 /* Enable Ethernet Function */
3364 if (qdev->device_id == QL3032_DEVICE_ID) {
3365 value =
3366 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3367 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3368 QL3032_PORT_CONTROL_ET);
3369 ql_write_page0_reg(qdev, &port_regs->functionControl,
3370 ((value << 16) | value));
3371 } else {
3372 value =
3373 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3374 PORT_CONTROL_HH);
3375 ql_write_page0_reg(qdev, &port_regs->portControl,
3376 ((value << 16) | value));
3377 }
3378
3379
3380 out:
3381 return status;
3382 }
3383
3384 /*
3385 * Caller holds hw_lock.
3386 */
3387 static int ql_adapter_reset(struct ql3_adapter *qdev)
3388 {
3389 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3390 int status = 0;
3391 u16 value;
3392 int max_wait_time;
3393
3394 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3395 clear_bit(QL_RESET_DONE, &qdev->flags);
3396
3397 /*
3398 * Issue soft reset to chip.
3399 */
3400 printk(KERN_DEBUG PFX
3401 "%s: Issue soft reset to chip.\n",
3402 qdev->ndev->name);
3403 ql_write_common_reg(qdev,
3404 &port_regs->CommonRegs.ispControlStatus,
3405 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3406
3407 /* Wait 3 seconds for reset to complete. */
3408 printk(KERN_DEBUG PFX
3409 "%s: Wait 10 milliseconds for reset to complete.\n",
3410 qdev->ndev->name);
3411
3412 /* Wait until the firmware tells us the Soft Reset is done */
3413 max_wait_time = 5;
3414 do {
3415 value =
3416 ql_read_common_reg(qdev,
3417 &port_regs->CommonRegs.ispControlStatus);
3418 if ((value & ISP_CONTROL_SR) == 0)
3419 break;
3420
3421 ssleep(1);
3422 } while ((--max_wait_time));
3423
3424 /*
3425 * Also, make sure that the Network Reset Interrupt bit has been
3426 * cleared after the soft reset has taken place.
3427 */
3428 value =
3429 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3430 if (value & ISP_CONTROL_RI) {
3431 printk(KERN_DEBUG PFX
3432 "ql_adapter_reset: clearing RI after reset.\n");
3433 ql_write_common_reg(qdev,
3434 &port_regs->CommonRegs.
3435 ispControlStatus,
3436 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3437 }
3438
3439 if (max_wait_time == 0) {
3440 /* Issue Force Soft Reset */
3441 ql_write_common_reg(qdev,
3442 &port_regs->CommonRegs.
3443 ispControlStatus,
3444 ((ISP_CONTROL_FSR << 16) |
3445 ISP_CONTROL_FSR));
3446 /*
3447 * Wait until the firmware tells us the Force Soft Reset is
3448 * done
3449 */
3450 max_wait_time = 5;
3451 do {
3452 value =
3453 ql_read_common_reg(qdev,
3454 &port_regs->CommonRegs.
3455 ispControlStatus);
3456 if ((value & ISP_CONTROL_FSR) == 0) {
3457 break;
3458 }
3459 ssleep(1);
3460 } while ((--max_wait_time));
3461 }
3462 if (max_wait_time == 0)
3463 status = 1;
3464
3465 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3466 set_bit(QL_RESET_DONE, &qdev->flags);
3467 return status;
3468 }
3469
3470 static void ql_set_mac_info(struct ql3_adapter *qdev)
3471 {
3472 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3473 u32 value, port_status;
3474 u8 func_number;
3475
3476 /* Get the function number */
3477 value =
3478 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3479 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3480 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3481 switch (value & ISP_CONTROL_FN_MASK) {
3482 case ISP_CONTROL_FN0_NET:
3483 qdev->mac_index = 0;
3484 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3485 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3486 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3487 if (port_status & PORT_STATUS_SM0)
3488 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3489 else
3490 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3491 break;
3492
3493 case ISP_CONTROL_FN1_NET:
3494 qdev->mac_index = 1;
3495 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3496 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3497 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3498 if (port_status & PORT_STATUS_SM1)
3499 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3500 else
3501 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3502 break;
3503
3504 case ISP_CONTROL_FN0_SCSI:
3505 case ISP_CONTROL_FN1_SCSI:
3506 default:
3507 printk(KERN_DEBUG PFX
3508 "%s: Invalid function number, ispControlStatus = 0x%x\n",
3509 qdev->ndev->name,value);
3510 break;
3511 }
3512 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3513 }
3514
3515 static void ql_display_dev_info(struct net_device *ndev)
3516 {
3517 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3518 struct pci_dev *pdev = qdev->pdev;
3519
3520 printk(KERN_INFO PFX
3521 "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
3522 DRV_NAME, qdev->index, qdev->chip_rev_id,
3523 (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
3524 qdev->pci_slot);
3525 printk(KERN_INFO PFX
3526 "%s Interface.\n",
3527 test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
3528
3529 /*
3530 * Print PCI bus width/type.
3531 */
3532 printk(KERN_INFO PFX
3533 "Bus interface is %s %s.\n",
3534 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3535 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3536
3537 printk(KERN_INFO PFX
3538 "mem IO base address adjusted = 0x%p\n",
3539 qdev->mem_map_registers);
3540 printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
3541
3542 if (netif_msg_probe(qdev))
3543 printk(KERN_INFO PFX
3544 "%s: MAC address %pM\n",
3545 ndev->name, ndev->dev_addr);
3546 }
3547
3548 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3549 {
3550 struct net_device *ndev = qdev->ndev;
3551 int retval = 0;
3552
3553 netif_stop_queue(ndev);
3554 netif_carrier_off(ndev);
3555
3556 clear_bit(QL_ADAPTER_UP,&qdev->flags);
3557 clear_bit(QL_LINK_MASTER,&qdev->flags);
3558
3559 ql_disable_interrupts(qdev);
3560
3561 free_irq(qdev->pdev->irq, ndev);
3562
3563 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3564 printk(KERN_INFO PFX
3565 "%s: calling pci_disable_msi().\n", qdev->ndev->name);
3566 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3567 pci_disable_msi(qdev->pdev);
3568 }
3569
3570 del_timer_sync(&qdev->adapter_timer);
3571
3572 napi_disable(&qdev->napi);
3573
3574 if (do_reset) {
3575 int soft_reset;
3576 unsigned long hw_flags;
3577
3578 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3579 if (ql_wait_for_drvr_lock(qdev)) {
3580 if ((soft_reset = ql_adapter_reset(qdev))) {
3581 printk(KERN_ERR PFX
3582 "%s: ql_adapter_reset(%d) FAILED!\n",
3583 ndev->name, qdev->index);
3584 }
3585 printk(KERN_ERR PFX
3586 "%s: Releaseing driver lock via chip reset.\n",ndev->name);
3587 } else {
3588 printk(KERN_ERR PFX
3589 "%s: Could not acquire driver lock to do "
3590 "reset!\n", ndev->name);
3591 retval = -1;
3592 }
3593 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3594 }
3595 ql_free_mem_resources(qdev);
3596 return retval;
3597 }
3598
3599 static int ql_adapter_up(struct ql3_adapter *qdev)
3600 {
3601 struct net_device *ndev = qdev->ndev;
3602 int err;
3603 unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
3604 unsigned long hw_flags;
3605
3606 if (ql_alloc_mem_resources(qdev)) {
3607 printk(KERN_ERR PFX
3608 "%s Unable to allocate buffers.\n", ndev->name);
3609 return -ENOMEM;
3610 }
3611
3612 if (qdev->msi) {
3613 if (pci_enable_msi(qdev->pdev)) {
3614 printk(KERN_ERR PFX
3615 "%s: User requested MSI, but MSI failed to "
3616 "initialize. Continuing without MSI.\n",
3617 qdev->ndev->name);
3618 qdev->msi = 0;
3619 } else {
3620 printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
3621 set_bit(QL_MSI_ENABLED,&qdev->flags);
3622 irq_flags &= ~IRQF_SHARED;
3623 }
3624 }
3625
3626 if ((err = request_irq(qdev->pdev->irq,
3627 ql3xxx_isr,
3628 irq_flags, ndev->name, ndev))) {
3629 printk(KERN_ERR PFX
3630 "%s: Failed to reserve interrupt %d already in use.\n",
3631 ndev->name, qdev->pdev->irq);
3632 goto err_irq;
3633 }
3634
3635 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3636
3637 if ((err = ql_wait_for_drvr_lock(qdev))) {
3638 if ((err = ql_adapter_initialize(qdev))) {
3639 printk(KERN_ERR PFX
3640 "%s: Unable to initialize adapter.\n",
3641 ndev->name);
3642 goto err_init;
3643 }
3644 printk(KERN_ERR PFX
3645 "%s: Releaseing driver lock.\n",ndev->name);
3646 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3647 } else {
3648 printk(KERN_ERR PFX
3649 "%s: Could not aquire driver lock.\n",
3650 ndev->name);
3651 goto err_lock;
3652 }
3653
3654 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3655
3656 set_bit(QL_ADAPTER_UP,&qdev->flags);
3657
3658 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3659
3660 napi_enable(&qdev->napi);
3661 ql_enable_interrupts(qdev);
3662 return 0;
3663
3664 err_init:
3665 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3666 err_lock:
3667 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3668 free_irq(qdev->pdev->irq, ndev);
3669 err_irq:
3670 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3671 printk(KERN_INFO PFX
3672 "%s: calling pci_disable_msi().\n",
3673 qdev->ndev->name);
3674 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3675 pci_disable_msi(qdev->pdev);
3676 }
3677 return err;
3678 }
3679
3680 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3681 {
3682 if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
3683 printk(KERN_ERR PFX
3684 "%s: Driver up/down cycle failed, "
3685 "closing device\n",qdev->ndev->name);
3686 rtnl_lock();
3687 dev_close(qdev->ndev);
3688 rtnl_unlock();
3689 return -1;
3690 }
3691 return 0;
3692 }
3693
3694 static int ql3xxx_close(struct net_device *ndev)
3695 {
3696 struct ql3_adapter *qdev = netdev_priv(ndev);
3697
3698 /*
3699 * Wait for device to recover from a reset.
3700 * (Rarely happens, but possible.)
3701 */
3702 while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
3703 msleep(50);
3704
3705 ql_adapter_down(qdev,QL_DO_RESET);
3706 return 0;
3707 }
3708
3709 static int ql3xxx_open(struct net_device *ndev)
3710 {
3711 struct ql3_adapter *qdev = netdev_priv(ndev);
3712 return (ql_adapter_up(qdev));
3713 }
3714
3715 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3716 {
3717 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3718 struct ql3xxx_port_registers __iomem *port_regs =
3719 qdev->mem_map_registers;
3720 struct sockaddr *addr = p;
3721 unsigned long hw_flags;
3722
3723 if (netif_running(ndev))
3724 return -EBUSY;
3725
3726 if (!is_valid_ether_addr(addr->sa_data))
3727 return -EADDRNOTAVAIL;
3728
3729 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3730
3731 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3732 /* Program lower 32 bits of the MAC address */
3733 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3734 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3735 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3736 ((ndev->dev_addr[2] << 24) | (ndev->
3737 dev_addr[3] << 16) |
3738 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3739
3740 /* Program top 16 bits of the MAC address */
3741 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3742 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3743 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3744 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3745 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3746
3747 return 0;
3748 }
3749
3750 static void ql3xxx_tx_timeout(struct net_device *ndev)
3751 {
3752 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3753
3754 printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
3755 /*
3756 * Stop the queues, we've got a problem.
3757 */
3758 netif_stop_queue(ndev);
3759
3760 /*
3761 * Wake up the worker to process this event.
3762 */
3763 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3764 }
3765
3766 static void ql_reset_work(struct work_struct *work)
3767 {
3768 struct ql3_adapter *qdev =
3769 container_of(work, struct ql3_adapter, reset_work.work);
3770 struct net_device *ndev = qdev->ndev;
3771 u32 value;
3772 struct ql_tx_buf_cb *tx_cb;
3773 int max_wait_time, i;
3774 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3775 unsigned long hw_flags;
3776
3777 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
3778 clear_bit(QL_LINK_MASTER,&qdev->flags);
3779
3780 /*
3781 * Loop through the active list and return the skb.
3782 */
3783 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3784 int j;
3785 tx_cb = &qdev->tx_buf[i];
3786 if (tx_cb->skb) {
3787 printk(KERN_DEBUG PFX
3788 "%s: Freeing lost SKB.\n",
3789 qdev->ndev->name);
3790 pci_unmap_single(qdev->pdev,
3791 pci_unmap_addr(&tx_cb->map[0], mapaddr),
3792 pci_unmap_len(&tx_cb->map[0], maplen),
3793 PCI_DMA_TODEVICE);
3794 for(j=1;j<tx_cb->seg_count;j++) {
3795 pci_unmap_page(qdev->pdev,
3796 pci_unmap_addr(&tx_cb->map[j],mapaddr),
3797 pci_unmap_len(&tx_cb->map[j],maplen),
3798 PCI_DMA_TODEVICE);
3799 }
3800 dev_kfree_skb(tx_cb->skb);
3801 tx_cb->skb = NULL;
3802 }
3803 }
3804
3805 printk(KERN_ERR PFX
3806 "%s: Clearing NRI after reset.\n", qdev->ndev->name);
3807 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3808 ql_write_common_reg(qdev,
3809 &port_regs->CommonRegs.
3810 ispControlStatus,
3811 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3812 /*
3813 * Wait the for Soft Reset to Complete.
3814 */
3815 max_wait_time = 10;
3816 do {
3817 value = ql_read_common_reg(qdev,
3818 &port_regs->CommonRegs.
3819
3820 ispControlStatus);
3821 if ((value & ISP_CONTROL_SR) == 0) {
3822 printk(KERN_DEBUG PFX
3823 "%s: reset completed.\n",
3824 qdev->ndev->name);
3825 break;
3826 }
3827
3828 if (value & ISP_CONTROL_RI) {
3829 printk(KERN_DEBUG PFX
3830 "%s: clearing NRI after reset.\n",
3831 qdev->ndev->name);
3832 ql_write_common_reg(qdev,
3833 &port_regs->
3834 CommonRegs.
3835 ispControlStatus,
3836 ((ISP_CONTROL_RI <<
3837 16) | ISP_CONTROL_RI));
3838 }
3839
3840 ssleep(1);
3841 } while (--max_wait_time);
3842 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3843
3844 if (value & ISP_CONTROL_SR) {
3845
3846 /*
3847 * Set the reset flags and clear the board again.
3848 * Nothing else to do...
3849 */
3850 printk(KERN_ERR PFX
3851 "%s: Timed out waiting for reset to "
3852 "complete.\n", ndev->name);
3853 printk(KERN_ERR PFX
3854 "%s: Do a reset.\n", ndev->name);
3855 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3856 clear_bit(QL_RESET_START,&qdev->flags);
3857 ql_cycle_adapter(qdev,QL_DO_RESET);
3858 return;
3859 }
3860
3861 clear_bit(QL_RESET_ACTIVE,&qdev->flags);
3862 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3863 clear_bit(QL_RESET_START,&qdev->flags);
3864 ql_cycle_adapter(qdev,QL_NO_RESET);
3865 }
3866 }
3867
3868 static void ql_tx_timeout_work(struct work_struct *work)
3869 {
3870 struct ql3_adapter *qdev =
3871 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3872
3873 ql_cycle_adapter(qdev, QL_DO_RESET);
3874 }
3875
3876 static void ql_get_board_info(struct ql3_adapter *qdev)
3877 {
3878 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3879 u32 value;
3880
3881 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3882
3883 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3884 if (value & PORT_STATUS_64)
3885 qdev->pci_width = 64;
3886 else
3887 qdev->pci_width = 32;
3888 if (value & PORT_STATUS_X)
3889 qdev->pci_x = 1;
3890 else
3891 qdev->pci_x = 0;
3892 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3893 }
3894
3895 static void ql3xxx_timer(unsigned long ptr)
3896 {
3897 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3898 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3899 }
3900
3901 static const struct net_device_ops ql3xxx_netdev_ops = {
3902 .ndo_open = ql3xxx_open,
3903 .ndo_start_xmit = ql3xxx_send,
3904 .ndo_stop = ql3xxx_close,
3905 .ndo_set_multicast_list = NULL, /* not allowed on NIC side */
3906 .ndo_change_mtu = eth_change_mtu,
3907 .ndo_validate_addr = eth_validate_addr,
3908 .ndo_set_mac_address = ql3xxx_set_mac_address,
3909 .ndo_tx_timeout = ql3xxx_tx_timeout,
3910 };
3911
3912 static int __devinit ql3xxx_probe(struct pci_dev *pdev,
3913 const struct pci_device_id *pci_entry)
3914 {
3915 struct net_device *ndev = NULL;
3916 struct ql3_adapter *qdev = NULL;
3917 static int cards_found = 0;
3918 int uninitialized_var(pci_using_dac), err;
3919
3920 err = pci_enable_device(pdev);
3921 if (err) {
3922 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3923 pci_name(pdev));
3924 goto err_out;
3925 }
3926
3927 err = pci_request_regions(pdev, DRV_NAME);
3928 if (err) {
3929 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3930 pci_name(pdev));
3931 goto err_out_disable_pdev;
3932 }
3933
3934 pci_set_master(pdev);
3935
3936 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3937 pci_using_dac = 1;
3938 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3939 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3940 pci_using_dac = 0;
3941 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3942 }
3943
3944 if (err) {
3945 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3946 pci_name(pdev));
3947 goto err_out_free_regions;
3948 }
3949
3950 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3951 if (!ndev) {
3952 printk(KERN_ERR PFX "%s could not alloc etherdev\n",
3953 pci_name(pdev));
3954 err = -ENOMEM;
3955 goto err_out_free_regions;
3956 }
3957
3958 SET_NETDEV_DEV(ndev, &pdev->dev);
3959
3960 pci_set_drvdata(pdev, ndev);
3961
3962 qdev = netdev_priv(ndev);
3963 qdev->index = cards_found;
3964 qdev->ndev = ndev;
3965 qdev->pdev = pdev;
3966 qdev->device_id = pci_entry->device;
3967 qdev->port_link_state = LS_DOWN;
3968 if (msi)
3969 qdev->msi = 1;
3970
3971 qdev->msg_enable = netif_msg_init(debug, default_msg);
3972
3973 if (pci_using_dac)
3974 ndev->features |= NETIF_F_HIGHDMA;
3975 if (qdev->device_id == QL3032_DEVICE_ID)
3976 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3977
3978 qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3979 if (!qdev->mem_map_registers) {
3980 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3981 pci_name(pdev));
3982 err = -EIO;
3983 goto err_out_free_ndev;
3984 }
3985
3986 spin_lock_init(&qdev->adapter_lock);
3987 spin_lock_init(&qdev->hw_lock);
3988
3989 /* Set driver entry points */
3990 ndev->netdev_ops = &ql3xxx_netdev_ops;
3991 SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
3992 ndev->watchdog_timeo = 5 * HZ;
3993
3994 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3995
3996 ndev->irq = pdev->irq;
3997
3998 /* make sure the EEPROM is good */
3999 if (ql_get_nvram_params(qdev)) {
4000 printk(KERN_ALERT PFX
4001 "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
4002 qdev->index);
4003 err = -EIO;
4004 goto err_out_iounmap;
4005 }
4006
4007 ql_set_mac_info(qdev);
4008
4009 /* Validate and set parameters */
4010 if (qdev->mac_index) {
4011 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
4012 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
4013 } else {
4014 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
4015 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
4016 }
4017 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4018
4019 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
4020
4021 /* Record PCI bus information. */
4022 ql_get_board_info(qdev);
4023
4024 /*
4025 * Set the Maximum Memory Read Byte Count value. We do this to handle
4026 * jumbo frames.
4027 */
4028 if (qdev->pci_x) {
4029 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
4030 }
4031
4032 err = register_netdev(ndev);
4033 if (err) {
4034 printk(KERN_ERR PFX "%s: cannot register net device\n",
4035 pci_name(pdev));
4036 goto err_out_iounmap;
4037 }
4038
4039 /* we're going to reset, so assume we have no link for now */
4040
4041 netif_carrier_off(ndev);
4042 netif_stop_queue(ndev);
4043
4044 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4045 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
4046 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
4047 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
4048
4049 init_timer(&qdev->adapter_timer);
4050 qdev->adapter_timer.function = ql3xxx_timer;
4051 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
4052 qdev->adapter_timer.data = (unsigned long)qdev;
4053
4054 if(!cards_found) {
4055 printk(KERN_ALERT PFX "%s\n", DRV_STRING);
4056 printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
4057 DRV_NAME, DRV_VERSION);
4058 }
4059 ql_display_dev_info(ndev);
4060
4061 cards_found++;
4062 return 0;
4063
4064 err_out_iounmap:
4065 iounmap(qdev->mem_map_registers);
4066 err_out_free_ndev:
4067 free_netdev(ndev);
4068 err_out_free_regions:
4069 pci_release_regions(pdev);
4070 err_out_disable_pdev:
4071 pci_disable_device(pdev);
4072 pci_set_drvdata(pdev, NULL);
4073 err_out:
4074 return err;
4075 }
4076
4077 static void __devexit ql3xxx_remove(struct pci_dev *pdev)
4078 {
4079 struct net_device *ndev = pci_get_drvdata(pdev);
4080 struct ql3_adapter *qdev = netdev_priv(ndev);
4081
4082 unregister_netdev(ndev);
4083 qdev = netdev_priv(ndev);
4084
4085 ql_disable_interrupts(qdev);
4086
4087 if (qdev->workqueue) {
4088 cancel_delayed_work(&qdev->reset_work);
4089 cancel_delayed_work(&qdev->tx_timeout_work);
4090 destroy_workqueue(qdev->workqueue);
4091 qdev->workqueue = NULL;
4092 }
4093
4094 iounmap(qdev->mem_map_registers);
4095 pci_release_regions(pdev);
4096 pci_set_drvdata(pdev, NULL);
4097 free_netdev(ndev);
4098 }
4099
4100 static struct pci_driver ql3xxx_driver = {
4101
4102 .name = DRV_NAME,
4103 .id_table = ql3xxx_pci_tbl,
4104 .probe = ql3xxx_probe,
4105 .remove = __devexit_p(ql3xxx_remove),
4106 };
4107
4108 static int __init ql3xxx_init_module(void)
4109 {
4110 return pci_register_driver(&ql3xxx_driver);
4111 }
4112
4113 static void __exit ql3xxx_exit(void)
4114 {
4115 pci_unregister_driver(&ql3xxx_driver);
4116 }
4117
4118 module_init(ql3xxx_init_module);
4119 module_exit(ql3xxx_exit);
This page took 0.119407 seconds and 5 git commands to generate.