[NET]: Introduce and use print_mac() and DECLARE_MAC_BUF()
[deliverable/linux.git] / drivers / net / qla3xxx.c
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36
37 #include "qla3xxx.h"
38
39 #define DRV_NAME "qla3xxx"
40 #define DRV_STRING "QLogic ISP3XXX Network Driver"
41 #define DRV_VERSION "v2.03.00-k4"
42 #define PFX DRV_NAME " "
43
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46
47 MODULE_AUTHOR("QLogic Corporation");
48 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(DRV_VERSION);
51
52 static const u32 default_msg
53 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
54 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
55
56 static int debug = -1; /* defaults above */
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static int msi;
61 module_param(msi, int, 0);
62 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
63
64 static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
65 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
66 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
67 /* required last entry */
68 {0,}
69 };
70
71 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
72
73 /*
74 * These are the known PHY's which are used
75 */
76 typedef enum {
77 PHY_TYPE_UNKNOWN = 0,
78 PHY_VITESSE_VSC8211,
79 PHY_AGERE_ET1011C,
80 MAX_PHY_DEV_TYPES
81 } PHY_DEVICE_et;
82
83 typedef struct {
84 PHY_DEVICE_et phyDevice;
85 u32 phyIdOUI;
86 u16 phyIdModel;
87 char *name;
88 } PHY_DEVICE_INFO_t;
89
90 static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
91 {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
92 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
93 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
94 };
95
96
97 /*
98 * Caller must take hw_lock.
99 */
100 static int ql_sem_spinlock(struct ql3_adapter *qdev,
101 u32 sem_mask, u32 sem_bits)
102 {
103 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
104 u32 value;
105 unsigned int seconds = 3;
106
107 do {
108 writel((sem_mask | sem_bits),
109 &port_regs->CommonRegs.semaphoreReg);
110 value = readl(&port_regs->CommonRegs.semaphoreReg);
111 if ((value & (sem_mask >> 16)) == sem_bits)
112 return 0;
113 ssleep(1);
114 } while(--seconds);
115 return -1;
116 }
117
118 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
119 {
120 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
121 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
122 readl(&port_regs->CommonRegs.semaphoreReg);
123 }
124
125 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
126 {
127 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
128 u32 value;
129
130 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
131 value = readl(&port_regs->CommonRegs.semaphoreReg);
132 return ((value & (sem_mask >> 16)) == sem_bits);
133 }
134
135 /*
136 * Caller holds hw_lock.
137 */
138 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
139 {
140 int i = 0;
141
142 while (1) {
143 if (!ql_sem_lock(qdev,
144 QL_DRVR_SEM_MASK,
145 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
146 * 2) << 1)) {
147 if (i < 10) {
148 ssleep(1);
149 i++;
150 } else {
151 printk(KERN_ERR PFX "%s: Timed out waiting for "
152 "driver lock...\n",
153 qdev->ndev->name);
154 return 0;
155 }
156 } else {
157 printk(KERN_DEBUG PFX
158 "%s: driver lock acquired.\n",
159 qdev->ndev->name);
160 return 1;
161 }
162 }
163 }
164
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
168
169 writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 &port_regs->CommonRegs.ispControlStatus);
171 readl(&port_regs->CommonRegs.ispControlStatus);
172 qdev->current_page = page;
173 }
174
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
176 u32 __iomem * reg)
177 {
178 u32 value;
179 unsigned long hw_flags;
180
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184
185 return value;
186 }
187
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev,
189 u32 __iomem * reg)
190 {
191 return readl(reg);
192 }
193
194 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
195 {
196 u32 value;
197 unsigned long hw_flags;
198
199 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
200
201 if (qdev->current_page != 0)
202 ql_set_register_page(qdev,0);
203 value = readl(reg);
204
205 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
206 return value;
207 }
208
209 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
210 {
211 if (qdev->current_page != 0)
212 ql_set_register_page(qdev,0);
213 return readl(reg);
214 }
215
216 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
217 u32 __iomem *reg, u32 value)
218 {
219 unsigned long hw_flags;
220
221 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
222 writel(value, reg);
223 readl(reg);
224 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
225 return;
226 }
227
228 static void ql_write_common_reg(struct ql3_adapter *qdev,
229 u32 __iomem *reg, u32 value)
230 {
231 writel(value, reg);
232 readl(reg);
233 return;
234 }
235
236 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
237 u32 __iomem *reg, u32 value)
238 {
239 writel(value, reg);
240 readl(reg);
241 udelay(1);
242 return;
243 }
244
245 static void ql_write_page0_reg(struct ql3_adapter *qdev,
246 u32 __iomem *reg, u32 value)
247 {
248 if (qdev->current_page != 0)
249 ql_set_register_page(qdev,0);
250 writel(value, reg);
251 readl(reg);
252 return;
253 }
254
255 /*
256 * Caller holds hw_lock. Only called during init.
257 */
258 static void ql_write_page1_reg(struct ql3_adapter *qdev,
259 u32 __iomem *reg, u32 value)
260 {
261 if (qdev->current_page != 1)
262 ql_set_register_page(qdev,1);
263 writel(value, reg);
264 readl(reg);
265 return;
266 }
267
268 /*
269 * Caller holds hw_lock. Only called during init.
270 */
271 static void ql_write_page2_reg(struct ql3_adapter *qdev,
272 u32 __iomem *reg, u32 value)
273 {
274 if (qdev->current_page != 2)
275 ql_set_register_page(qdev,2);
276 writel(value, reg);
277 readl(reg);
278 return;
279 }
280
281 static void ql_disable_interrupts(struct ql3_adapter *qdev)
282 {
283 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
284
285 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
286 (ISP_IMR_ENABLE_INT << 16));
287
288 }
289
290 static void ql_enable_interrupts(struct ql3_adapter *qdev)
291 {
292 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
293
294 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
295 ((0xff << 16) | ISP_IMR_ENABLE_INT));
296
297 }
298
299 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
300 struct ql_rcv_buf_cb *lrg_buf_cb)
301 {
302 dma_addr_t map;
303 int err;
304 lrg_buf_cb->next = NULL;
305
306 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
307 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
308 } else {
309 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
310 qdev->lrg_buf_free_tail = lrg_buf_cb;
311 }
312
313 if (!lrg_buf_cb->skb) {
314 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
315 qdev->lrg_buffer_len);
316 if (unlikely(!lrg_buf_cb->skb)) {
317 printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
318 qdev->ndev->name);
319 qdev->lrg_buf_skb_check++;
320 } else {
321 /*
322 * We save some space to copy the ethhdr from first
323 * buffer
324 */
325 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
326 map = pci_map_single(qdev->pdev,
327 lrg_buf_cb->skb->data,
328 qdev->lrg_buffer_len -
329 QL_HEADER_SPACE,
330 PCI_DMA_FROMDEVICE);
331 err = pci_dma_mapping_error(map);
332 if(err) {
333 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
334 qdev->ndev->name, err);
335 dev_kfree_skb(lrg_buf_cb->skb);
336 lrg_buf_cb->skb = NULL;
337
338 qdev->lrg_buf_skb_check++;
339 return;
340 }
341
342 lrg_buf_cb->buf_phy_addr_low =
343 cpu_to_le32(LS_64BITS(map));
344 lrg_buf_cb->buf_phy_addr_high =
345 cpu_to_le32(MS_64BITS(map));
346 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
347 pci_unmap_len_set(lrg_buf_cb, maplen,
348 qdev->lrg_buffer_len -
349 QL_HEADER_SPACE);
350 }
351 }
352
353 qdev->lrg_buf_free_count++;
354 }
355
356 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
357 *qdev)
358 {
359 struct ql_rcv_buf_cb *lrg_buf_cb;
360
361 if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
362 if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
363 qdev->lrg_buf_free_tail = NULL;
364 qdev->lrg_buf_free_count--;
365 }
366
367 return lrg_buf_cb;
368 }
369
370 static u32 addrBits = EEPROM_NO_ADDR_BITS;
371 static u32 dataBits = EEPROM_NO_DATA_BITS;
372
373 static void fm93c56a_deselect(struct ql3_adapter *qdev);
374 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
375 unsigned short *value);
376
377 /*
378 * Caller holds hw_lock.
379 */
380 static void fm93c56a_select(struct ql3_adapter *qdev)
381 {
382 struct ql3xxx_port_registers __iomem *port_regs =
383 qdev->mem_map_registers;
384
385 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
386 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
387 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
388 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
389 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
390 }
391
392 /*
393 * Caller holds hw_lock.
394 */
395 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
396 {
397 int i;
398 u32 mask;
399 u32 dataBit;
400 u32 previousBit;
401 struct ql3xxx_port_registers __iomem *port_regs =
402 qdev->mem_map_registers;
403
404 /* Clock in a zero, then do the start bit */
405 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
406 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
407 AUBURN_EEPROM_DO_1);
408 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
409 ISP_NVRAM_MASK | qdev->
410 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
411 AUBURN_EEPROM_CLK_RISE);
412 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
413 ISP_NVRAM_MASK | qdev->
414 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
415 AUBURN_EEPROM_CLK_FALL);
416
417 mask = 1 << (FM93C56A_CMD_BITS - 1);
418 /* Force the previous data bit to be different */
419 previousBit = 0xffff;
420 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
421 dataBit =
422 (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
423 if (previousBit != dataBit) {
424 /*
425 * If the bit changed, then change the DO state to
426 * match
427 */
428 ql_write_nvram_reg(qdev,
429 &port_regs->CommonRegs.
430 serialPortInterfaceReg,
431 ISP_NVRAM_MASK | qdev->
432 eeprom_cmd_data | dataBit);
433 previousBit = dataBit;
434 }
435 ql_write_nvram_reg(qdev,
436 &port_regs->CommonRegs.
437 serialPortInterfaceReg,
438 ISP_NVRAM_MASK | qdev->
439 eeprom_cmd_data | dataBit |
440 AUBURN_EEPROM_CLK_RISE);
441 ql_write_nvram_reg(qdev,
442 &port_regs->CommonRegs.
443 serialPortInterfaceReg,
444 ISP_NVRAM_MASK | qdev->
445 eeprom_cmd_data | dataBit |
446 AUBURN_EEPROM_CLK_FALL);
447 cmd = cmd << 1;
448 }
449
450 mask = 1 << (addrBits - 1);
451 /* Force the previous data bit to be different */
452 previousBit = 0xffff;
453 for (i = 0; i < addrBits; i++) {
454 dataBit =
455 (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
456 AUBURN_EEPROM_DO_0;
457 if (previousBit != dataBit) {
458 /*
459 * If the bit changed, then change the DO state to
460 * match
461 */
462 ql_write_nvram_reg(qdev,
463 &port_regs->CommonRegs.
464 serialPortInterfaceReg,
465 ISP_NVRAM_MASK | qdev->
466 eeprom_cmd_data | dataBit);
467 previousBit = dataBit;
468 }
469 ql_write_nvram_reg(qdev,
470 &port_regs->CommonRegs.
471 serialPortInterfaceReg,
472 ISP_NVRAM_MASK | qdev->
473 eeprom_cmd_data | dataBit |
474 AUBURN_EEPROM_CLK_RISE);
475 ql_write_nvram_reg(qdev,
476 &port_regs->CommonRegs.
477 serialPortInterfaceReg,
478 ISP_NVRAM_MASK | qdev->
479 eeprom_cmd_data | dataBit |
480 AUBURN_EEPROM_CLK_FALL);
481 eepromAddr = eepromAddr << 1;
482 }
483 }
484
485 /*
486 * Caller holds hw_lock.
487 */
488 static void fm93c56a_deselect(struct ql3_adapter *qdev)
489 {
490 struct ql3xxx_port_registers __iomem *port_regs =
491 qdev->mem_map_registers;
492 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
493 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
494 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
495 }
496
497 /*
498 * Caller holds hw_lock.
499 */
500 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
501 {
502 int i;
503 u32 data = 0;
504 u32 dataBit;
505 struct ql3xxx_port_registers __iomem *port_regs =
506 qdev->mem_map_registers;
507
508 /* Read the data bits */
509 /* The first bit is a dummy. Clock right over it. */
510 for (i = 0; i < dataBits; i++) {
511 ql_write_nvram_reg(qdev,
512 &port_regs->CommonRegs.
513 serialPortInterfaceReg,
514 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
515 AUBURN_EEPROM_CLK_RISE);
516 ql_write_nvram_reg(qdev,
517 &port_regs->CommonRegs.
518 serialPortInterfaceReg,
519 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
520 AUBURN_EEPROM_CLK_FALL);
521 dataBit =
522 (ql_read_common_reg
523 (qdev,
524 &port_regs->CommonRegs.
525 serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
526 data = (data << 1) | dataBit;
527 }
528 *value = (u16) data;
529 }
530
531 /*
532 * Caller holds hw_lock.
533 */
534 static void eeprom_readword(struct ql3_adapter *qdev,
535 u32 eepromAddr, unsigned short *value)
536 {
537 fm93c56a_select(qdev);
538 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
539 fm93c56a_datain(qdev, value);
540 fm93c56a_deselect(qdev);
541 }
542
543 static void ql_swap_mac_addr(u8 * macAddress)
544 {
545 #ifdef __BIG_ENDIAN
546 u8 temp;
547 temp = macAddress[0];
548 macAddress[0] = macAddress[1];
549 macAddress[1] = temp;
550 temp = macAddress[2];
551 macAddress[2] = macAddress[3];
552 macAddress[3] = temp;
553 temp = macAddress[4];
554 macAddress[4] = macAddress[5];
555 macAddress[5] = temp;
556 #endif
557 }
558
559 static int ql_get_nvram_params(struct ql3_adapter *qdev)
560 {
561 u16 *pEEPROMData;
562 u16 checksum = 0;
563 u32 index;
564 unsigned long hw_flags;
565
566 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
567
568 pEEPROMData = (u16 *) & qdev->nvram_data;
569 qdev->eeprom_cmd_data = 0;
570 if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
571 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
572 2) << 10)) {
573 printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
574 __func__);
575 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
576 return -1;
577 }
578
579 for (index = 0; index < EEPROM_SIZE; index++) {
580 eeprom_readword(qdev, index, pEEPROMData);
581 checksum += *pEEPROMData;
582 pEEPROMData++;
583 }
584 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
585
586 if (checksum != 0) {
587 printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
588 qdev->ndev->name, checksum);
589 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
590 return -1;
591 }
592
593 /*
594 * We have a problem with endianness for the MAC addresses
595 * and the two 8-bit values version, and numPorts. We
596 * have to swap them on big endian systems.
597 */
598 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
599 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
600 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
601 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
602 pEEPROMData = (u16 *) & qdev->nvram_data.version;
603 *pEEPROMData = le16_to_cpu(*pEEPROMData);
604
605 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
606 return checksum;
607 }
608
609 static const u32 PHYAddr[2] = {
610 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
611 };
612
613 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
614 {
615 struct ql3xxx_port_registers __iomem *port_regs =
616 qdev->mem_map_registers;
617 u32 temp;
618 int count = 1000;
619
620 while (count) {
621 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
622 if (!(temp & MAC_MII_STATUS_BSY))
623 return 0;
624 udelay(10);
625 count--;
626 }
627 return -1;
628 }
629
630 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
631 {
632 struct ql3xxx_port_registers __iomem *port_regs =
633 qdev->mem_map_registers;
634 u32 scanControl;
635
636 if (qdev->numPorts > 1) {
637 /* Auto scan will cycle through multiple ports */
638 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
639 } else {
640 scanControl = MAC_MII_CONTROL_SC;
641 }
642
643 /*
644 * Scan register 1 of PHY/PETBI,
645 * Set up to scan both devices
646 * The autoscan starts from the first register, completes
647 * the last one before rolling over to the first
648 */
649 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
650 PHYAddr[0] | MII_SCAN_REGISTER);
651
652 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
653 (scanControl) |
654 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
655 }
656
657 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
658 {
659 u8 ret;
660 struct ql3xxx_port_registers __iomem *port_regs =
661 qdev->mem_map_registers;
662
663 /* See if scan mode is enabled before we turn it off */
664 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
665 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
666 /* Scan is enabled */
667 ret = 1;
668 } else {
669 /* Scan is disabled */
670 ret = 0;
671 }
672
673 /*
674 * When disabling scan mode you must first change the MII register
675 * address
676 */
677 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
678 PHYAddr[0] | MII_SCAN_REGISTER);
679
680 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
681 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
682 MAC_MII_CONTROL_RC) << 16));
683
684 return ret;
685 }
686
687 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
688 u16 regAddr, u16 value, u32 phyAddr)
689 {
690 struct ql3xxx_port_registers __iomem *port_regs =
691 qdev->mem_map_registers;
692 u8 scanWasEnabled;
693
694 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
695
696 if (ql_wait_for_mii_ready(qdev)) {
697 if (netif_msg_link(qdev))
698 printk(KERN_WARNING PFX
699 "%s Timed out waiting for management port to "
700 "get free before issuing command.\n",
701 qdev->ndev->name);
702 return -1;
703 }
704
705 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
706 phyAddr | regAddr);
707
708 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
709
710 /* Wait for write to complete 9/10/04 SJP */
711 if (ql_wait_for_mii_ready(qdev)) {
712 if (netif_msg_link(qdev))
713 printk(KERN_WARNING PFX
714 "%s: Timed out waiting for management port to"
715 "get free before issuing command.\n",
716 qdev->ndev->name);
717 return -1;
718 }
719
720 if (scanWasEnabled)
721 ql_mii_enable_scan_mode(qdev);
722
723 return 0;
724 }
725
726 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
727 u16 * value, u32 phyAddr)
728 {
729 struct ql3xxx_port_registers __iomem *port_regs =
730 qdev->mem_map_registers;
731 u8 scanWasEnabled;
732 u32 temp;
733
734 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
735
736 if (ql_wait_for_mii_ready(qdev)) {
737 if (netif_msg_link(qdev))
738 printk(KERN_WARNING PFX
739 "%s: Timed out waiting for management port to "
740 "get free before issuing command.\n",
741 qdev->ndev->name);
742 return -1;
743 }
744
745 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
746 phyAddr | regAddr);
747
748 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
749 (MAC_MII_CONTROL_RC << 16));
750
751 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
752 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
753
754 /* Wait for the read to complete */
755 if (ql_wait_for_mii_ready(qdev)) {
756 if (netif_msg_link(qdev))
757 printk(KERN_WARNING PFX
758 "%s: Timed out waiting for management port to "
759 "get free after issuing command.\n",
760 qdev->ndev->name);
761 return -1;
762 }
763
764 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
765 *value = (u16) temp;
766
767 if (scanWasEnabled)
768 ql_mii_enable_scan_mode(qdev);
769
770 return 0;
771 }
772
773 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
774 {
775 struct ql3xxx_port_registers __iomem *port_regs =
776 qdev->mem_map_registers;
777
778 ql_mii_disable_scan_mode(qdev);
779
780 if (ql_wait_for_mii_ready(qdev)) {
781 if (netif_msg_link(qdev))
782 printk(KERN_WARNING PFX
783 "%s: Timed out waiting for management port to "
784 "get free before issuing command.\n",
785 qdev->ndev->name);
786 return -1;
787 }
788
789 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
790 qdev->PHYAddr | regAddr);
791
792 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
793
794 /* Wait for write to complete. */
795 if (ql_wait_for_mii_ready(qdev)) {
796 if (netif_msg_link(qdev))
797 printk(KERN_WARNING PFX
798 "%s: Timed out waiting for management port to "
799 "get free before issuing command.\n",
800 qdev->ndev->name);
801 return -1;
802 }
803
804 ql_mii_enable_scan_mode(qdev);
805
806 return 0;
807 }
808
809 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
810 {
811 u32 temp;
812 struct ql3xxx_port_registers __iomem *port_regs =
813 qdev->mem_map_registers;
814
815 ql_mii_disable_scan_mode(qdev);
816
817 if (ql_wait_for_mii_ready(qdev)) {
818 if (netif_msg_link(qdev))
819 printk(KERN_WARNING PFX
820 "%s: Timed out waiting for management port to "
821 "get free before issuing command.\n",
822 qdev->ndev->name);
823 return -1;
824 }
825
826 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
827 qdev->PHYAddr | regAddr);
828
829 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
830 (MAC_MII_CONTROL_RC << 16));
831
832 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
833 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
834
835 /* Wait for the read to complete */
836 if (ql_wait_for_mii_ready(qdev)) {
837 if (netif_msg_link(qdev))
838 printk(KERN_WARNING PFX
839 "%s: Timed out waiting for management port to "
840 "get free before issuing command.\n",
841 qdev->ndev->name);
842 return -1;
843 }
844
845 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
846 *value = (u16) temp;
847
848 ql_mii_enable_scan_mode(qdev);
849
850 return 0;
851 }
852
853 static void ql_petbi_reset(struct ql3_adapter *qdev)
854 {
855 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
856 }
857
858 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
859 {
860 u16 reg;
861
862 /* Enable Auto-negotiation sense */
863 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
864 reg |= PETBI_TBI_AUTO_SENSE;
865 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
866
867 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
868 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
869
870 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
871 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
872 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
873
874 }
875
876 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
877 {
878 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
879 PHYAddr[qdev->mac_index]);
880 }
881
882 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
883 {
884 u16 reg;
885
886 /* Enable Auto-negotiation sense */
887 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
888 PHYAddr[qdev->mac_index]);
889 reg |= PETBI_TBI_AUTO_SENSE;
890 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
891 PHYAddr[qdev->mac_index]);
892
893 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
894 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
895 PHYAddr[qdev->mac_index]);
896
897 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
898 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
899 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
900 PHYAddr[qdev->mac_index]);
901 }
902
903 static void ql_petbi_init(struct ql3_adapter *qdev)
904 {
905 ql_petbi_reset(qdev);
906 ql_petbi_start_neg(qdev);
907 }
908
909 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
910 {
911 ql_petbi_reset_ex(qdev);
912 ql_petbi_start_neg_ex(qdev);
913 }
914
915 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
916 {
917 u16 reg;
918
919 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
920 return 0;
921
922 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
923 }
924
925 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
926 {
927 printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
928 /* power down device bit 11 = 1 */
929 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
930 /* enable diagnostic mode bit 2 = 1 */
931 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
932 /* 1000MB amplitude adjust (see Agere errata) */
933 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
934 /* 1000MB amplitude adjust (see Agere errata) */
935 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
936 /* 100MB amplitude adjust (see Agere errata) */
937 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
938 /* 100MB amplitude adjust (see Agere errata) */
939 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
940 /* 10MB amplitude adjust (see Agere errata) */
941 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
942 /* 10MB amplitude adjust (see Agere errata) */
943 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
944 /* point to hidden reg 0x2806 */
945 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
946 /* Write new PHYAD w/bit 5 set */
947 ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
948 /*
949 * Disable diagnostic mode bit 2 = 0
950 * Power up device bit 11 = 0
951 * Link up (on) and activity (blink)
952 */
953 ql_mii_write_reg(qdev, 0x12, 0x840a);
954 ql_mii_write_reg(qdev, 0x00, 0x1140);
955 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
956 }
957
958 static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
959 u16 phyIdReg0, u16 phyIdReg1)
960 {
961 PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
962 u32 oui;
963 u16 model;
964 int i;
965
966 if (phyIdReg0 == 0xffff) {
967 return result;
968 }
969
970 if (phyIdReg1 == 0xffff) {
971 return result;
972 }
973
974 /* oui is split between two registers */
975 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
976
977 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
978
979 /* Scan table for this PHY */
980 for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
981 if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
982 {
983 result = PHY_DEVICES[i].phyDevice;
984
985 printk(KERN_INFO "%s: Phy: %s\n",
986 qdev->ndev->name, PHY_DEVICES[i].name);
987
988 break;
989 }
990 }
991
992 return result;
993 }
994
995 static int ql_phy_get_speed(struct ql3_adapter *qdev)
996 {
997 u16 reg;
998
999 switch(qdev->phyType) {
1000 case PHY_AGERE_ET1011C:
1001 {
1002 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
1003 return 0;
1004
1005 reg = (reg >> 8) & 3;
1006 break;
1007 }
1008 default:
1009 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1010 return 0;
1011
1012 reg = (((reg & 0x18) >> 3) & 3);
1013 }
1014
1015 switch(reg) {
1016 case 2:
1017 return SPEED_1000;
1018 case 1:
1019 return SPEED_100;
1020 case 0:
1021 return SPEED_10;
1022 default:
1023 return -1;
1024 }
1025 }
1026
1027 static int ql_is_full_dup(struct ql3_adapter *qdev)
1028 {
1029 u16 reg;
1030
1031 switch(qdev->phyType) {
1032 case PHY_AGERE_ET1011C:
1033 {
1034 if (ql_mii_read_reg(qdev, 0x1A, &reg))
1035 return 0;
1036
1037 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
1038 }
1039 case PHY_VITESSE_VSC8211:
1040 default:
1041 {
1042 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1043 return 0;
1044 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
1045 }
1046 }
1047 }
1048
1049 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
1050 {
1051 u16 reg;
1052
1053 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
1054 return 0;
1055
1056 return (reg & PHY_NEG_PAUSE) != 0;
1057 }
1058
1059 static int PHY_Setup(struct ql3_adapter *qdev)
1060 {
1061 u16 reg1;
1062 u16 reg2;
1063 bool agereAddrChangeNeeded = false;
1064 u32 miiAddr = 0;
1065 int err;
1066
1067 /* Determine the PHY we are using by reading the ID's */
1068 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
1069 if(err != 0) {
1070 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1071 qdev->ndev->name);
1072 return err;
1073 }
1074
1075 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
1076 if(err != 0) {
1077 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1078 qdev->ndev->name);
1079 return err;
1080 }
1081
1082 /* Check if we have a Agere PHY */
1083 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
1084
1085 /* Determine which MII address we should be using
1086 determined by the index of the card */
1087 if (qdev->mac_index == 0) {
1088 miiAddr = MII_AGERE_ADDR_1;
1089 } else {
1090 miiAddr = MII_AGERE_ADDR_2;
1091 }
1092
1093 err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1094 if(err != 0) {
1095 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1096 qdev->ndev->name);
1097 return err;
1098 }
1099
1100 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1101 if(err != 0) {
1102 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1103 qdev->ndev->name);
1104 return err;
1105 }
1106
1107 /* We need to remember to initialize the Agere PHY */
1108 agereAddrChangeNeeded = true;
1109 }
1110
1111 /* Determine the particular PHY we have on board to apply
1112 PHY specific initializations */
1113 qdev->phyType = getPhyType(qdev, reg1, reg2);
1114
1115 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1116 /* need this here so address gets changed */
1117 phyAgereSpecificInit(qdev, miiAddr);
1118 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1119 printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
1120 return -EIO;
1121 }
1122
1123 return 0;
1124 }
1125
1126 /*
1127 * Caller holds hw_lock.
1128 */
1129 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1130 {
1131 struct ql3xxx_port_registers __iomem *port_regs =
1132 qdev->mem_map_registers;
1133 u32 value;
1134
1135 if (enable)
1136 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1137 else
1138 value = (MAC_CONFIG_REG_PE << 16);
1139
1140 if (qdev->mac_index)
1141 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1142 else
1143 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1144 }
1145
1146 /*
1147 * Caller holds hw_lock.
1148 */
1149 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1150 {
1151 struct ql3xxx_port_registers __iomem *port_regs =
1152 qdev->mem_map_registers;
1153 u32 value;
1154
1155 if (enable)
1156 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1157 else
1158 value = (MAC_CONFIG_REG_SR << 16);
1159
1160 if (qdev->mac_index)
1161 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1162 else
1163 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1164 }
1165
1166 /*
1167 * Caller holds hw_lock.
1168 */
1169 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1170 {
1171 struct ql3xxx_port_registers __iomem *port_regs =
1172 qdev->mem_map_registers;
1173 u32 value;
1174
1175 if (enable)
1176 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1177 else
1178 value = (MAC_CONFIG_REG_GM << 16);
1179
1180 if (qdev->mac_index)
1181 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1182 else
1183 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1184 }
1185
1186 /*
1187 * Caller holds hw_lock.
1188 */
1189 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1190 {
1191 struct ql3xxx_port_registers __iomem *port_regs =
1192 qdev->mem_map_registers;
1193 u32 value;
1194
1195 if (enable)
1196 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1197 else
1198 value = (MAC_CONFIG_REG_FD << 16);
1199
1200 if (qdev->mac_index)
1201 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1202 else
1203 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1204 }
1205
1206 /*
1207 * Caller holds hw_lock.
1208 */
1209 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1210 {
1211 struct ql3xxx_port_registers __iomem *port_regs =
1212 qdev->mem_map_registers;
1213 u32 value;
1214
1215 if (enable)
1216 value =
1217 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1218 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1219 else
1220 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1221
1222 if (qdev->mac_index)
1223 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1224 else
1225 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1226 }
1227
1228 /*
1229 * Caller holds hw_lock.
1230 */
1231 static int ql_is_fiber(struct ql3_adapter *qdev)
1232 {
1233 struct ql3xxx_port_registers __iomem *port_regs =
1234 qdev->mem_map_registers;
1235 u32 bitToCheck = 0;
1236 u32 temp;
1237
1238 switch (qdev->mac_index) {
1239 case 0:
1240 bitToCheck = PORT_STATUS_SM0;
1241 break;
1242 case 1:
1243 bitToCheck = PORT_STATUS_SM1;
1244 break;
1245 }
1246
1247 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1248 return (temp & bitToCheck) != 0;
1249 }
1250
1251 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1252 {
1253 u16 reg;
1254 ql_mii_read_reg(qdev, 0x00, &reg);
1255 return (reg & 0x1000) != 0;
1256 }
1257
1258 /*
1259 * Caller holds hw_lock.
1260 */
1261 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1262 {
1263 struct ql3xxx_port_registers __iomem *port_regs =
1264 qdev->mem_map_registers;
1265 u32 bitToCheck = 0;
1266 u32 temp;
1267
1268 switch (qdev->mac_index) {
1269 case 0:
1270 bitToCheck = PORT_STATUS_AC0;
1271 break;
1272 case 1:
1273 bitToCheck = PORT_STATUS_AC1;
1274 break;
1275 }
1276
1277 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1278 if (temp & bitToCheck) {
1279 if (netif_msg_link(qdev))
1280 printk(KERN_INFO PFX
1281 "%s: Auto-Negotiate complete.\n",
1282 qdev->ndev->name);
1283 return 1;
1284 } else {
1285 if (netif_msg_link(qdev))
1286 printk(KERN_WARNING PFX
1287 "%s: Auto-Negotiate incomplete.\n",
1288 qdev->ndev->name);
1289 return 0;
1290 }
1291 }
1292
1293 /*
1294 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1295 */
1296 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1297 {
1298 if (ql_is_fiber(qdev))
1299 return ql_is_petbi_neg_pause(qdev);
1300 else
1301 return ql_is_phy_neg_pause(qdev);
1302 }
1303
1304 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1305 {
1306 struct ql3xxx_port_registers __iomem *port_regs =
1307 qdev->mem_map_registers;
1308 u32 bitToCheck = 0;
1309 u32 temp;
1310
1311 switch (qdev->mac_index) {
1312 case 0:
1313 bitToCheck = PORT_STATUS_AE0;
1314 break;
1315 case 1:
1316 bitToCheck = PORT_STATUS_AE1;
1317 break;
1318 }
1319 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1320 return (temp & bitToCheck) != 0;
1321 }
1322
1323 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1324 {
1325 if (ql_is_fiber(qdev))
1326 return SPEED_1000;
1327 else
1328 return ql_phy_get_speed(qdev);
1329 }
1330
1331 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1332 {
1333 if (ql_is_fiber(qdev))
1334 return 1;
1335 else
1336 return ql_is_full_dup(qdev);
1337 }
1338
1339 /*
1340 * Caller holds hw_lock.
1341 */
1342 static int ql_link_down_detect(struct ql3_adapter *qdev)
1343 {
1344 struct ql3xxx_port_registers __iomem *port_regs =
1345 qdev->mem_map_registers;
1346 u32 bitToCheck = 0;
1347 u32 temp;
1348
1349 switch (qdev->mac_index) {
1350 case 0:
1351 bitToCheck = ISP_CONTROL_LINK_DN_0;
1352 break;
1353 case 1:
1354 bitToCheck = ISP_CONTROL_LINK_DN_1;
1355 break;
1356 }
1357
1358 temp =
1359 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1360 return (temp & bitToCheck) != 0;
1361 }
1362
1363 /*
1364 * Caller holds hw_lock.
1365 */
1366 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1367 {
1368 struct ql3xxx_port_registers __iomem *port_regs =
1369 qdev->mem_map_registers;
1370
1371 switch (qdev->mac_index) {
1372 case 0:
1373 ql_write_common_reg(qdev,
1374 &port_regs->CommonRegs.ispControlStatus,
1375 (ISP_CONTROL_LINK_DN_0) |
1376 (ISP_CONTROL_LINK_DN_0 << 16));
1377 break;
1378
1379 case 1:
1380 ql_write_common_reg(qdev,
1381 &port_regs->CommonRegs.ispControlStatus,
1382 (ISP_CONTROL_LINK_DN_1) |
1383 (ISP_CONTROL_LINK_DN_1 << 16));
1384 break;
1385
1386 default:
1387 return 1;
1388 }
1389
1390 return 0;
1391 }
1392
1393 /*
1394 * Caller holds hw_lock.
1395 */
1396 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1397 {
1398 struct ql3xxx_port_registers __iomem *port_regs =
1399 qdev->mem_map_registers;
1400 u32 bitToCheck = 0;
1401 u32 temp;
1402
1403 switch (qdev->mac_index) {
1404 case 0:
1405 bitToCheck = PORT_STATUS_F1_ENABLED;
1406 break;
1407 case 1:
1408 bitToCheck = PORT_STATUS_F3_ENABLED;
1409 break;
1410 default:
1411 break;
1412 }
1413
1414 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1415 if (temp & bitToCheck) {
1416 if (netif_msg_link(qdev))
1417 printk(KERN_DEBUG PFX
1418 "%s: is not link master.\n", qdev->ndev->name);
1419 return 0;
1420 } else {
1421 if (netif_msg_link(qdev))
1422 printk(KERN_DEBUG PFX
1423 "%s: is link master.\n", qdev->ndev->name);
1424 return 1;
1425 }
1426 }
1427
1428 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1429 {
1430 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1431 PHYAddr[qdev->mac_index]);
1432 }
1433
1434 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1435 {
1436 u16 reg;
1437 u16 portConfiguration;
1438
1439 if(qdev->phyType == PHY_AGERE_ET1011C) {
1440 /* turn off external loopback */
1441 ql_mii_write_reg(qdev, 0x13, 0x0000);
1442 }
1443
1444 if(qdev->mac_index == 0)
1445 portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
1446 else
1447 portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
1448
1449 /* Some HBA's in the field are set to 0 and they need to
1450 be reinterpreted with a default value */
1451 if(portConfiguration == 0)
1452 portConfiguration = PORT_CONFIG_DEFAULT;
1453
1454 /* Set the 1000 advertisements */
1455 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1456 PHYAddr[qdev->mac_index]);
1457 reg &= ~PHY_GIG_ALL_PARAMS;
1458
1459 if(portConfiguration &
1460 PORT_CONFIG_FULL_DUPLEX_ENABLED &
1461 PORT_CONFIG_1000MB_SPEED) {
1462 reg |= PHY_GIG_ADV_1000F;
1463 }
1464
1465 if(portConfiguration &
1466 PORT_CONFIG_HALF_DUPLEX_ENABLED &
1467 PORT_CONFIG_1000MB_SPEED) {
1468 reg |= PHY_GIG_ADV_1000H;
1469 }
1470
1471 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1472 PHYAddr[qdev->mac_index]);
1473
1474 /* Set the 10/100 & pause negotiation advertisements */
1475 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1476 PHYAddr[qdev->mac_index]);
1477 reg &= ~PHY_NEG_ALL_PARAMS;
1478
1479 if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1480 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1481
1482 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1483 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1484 reg |= PHY_NEG_ADV_100F;
1485
1486 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1487 reg |= PHY_NEG_ADV_10F;
1488 }
1489
1490 if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1491 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1492 reg |= PHY_NEG_ADV_100H;
1493
1494 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1495 reg |= PHY_NEG_ADV_10H;
1496 }
1497
1498 if(portConfiguration &
1499 PORT_CONFIG_1000MB_SPEED) {
1500 reg |= 1;
1501 }
1502
1503 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1504 PHYAddr[qdev->mac_index]);
1505
1506 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1507
1508 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1509 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1510 PHYAddr[qdev->mac_index]);
1511 }
1512
1513 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1514 {
1515 ql_phy_reset_ex(qdev);
1516 PHY_Setup(qdev);
1517 ql_phy_start_neg_ex(qdev);
1518 }
1519
1520 /*
1521 * Caller holds hw_lock.
1522 */
1523 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1524 {
1525 struct ql3xxx_port_registers __iomem *port_regs =
1526 qdev->mem_map_registers;
1527 u32 bitToCheck = 0;
1528 u32 temp, linkState;
1529
1530 switch (qdev->mac_index) {
1531 case 0:
1532 bitToCheck = PORT_STATUS_UP0;
1533 break;
1534 case 1:
1535 bitToCheck = PORT_STATUS_UP1;
1536 break;
1537 }
1538 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1539 if (temp & bitToCheck) {
1540 linkState = LS_UP;
1541 } else {
1542 linkState = LS_DOWN;
1543 if (netif_msg_link(qdev))
1544 printk(KERN_WARNING PFX
1545 "%s: Link is down.\n", qdev->ndev->name);
1546 }
1547 return linkState;
1548 }
1549
1550 static int ql_port_start(struct ql3_adapter *qdev)
1551 {
1552 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1553 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1554 2) << 7)) {
1555 printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
1556 qdev->ndev->name);
1557 return -1;
1558 }
1559
1560 if (ql_is_fiber(qdev)) {
1561 ql_petbi_init(qdev);
1562 } else {
1563 /* Copper port */
1564 ql_phy_init_ex(qdev);
1565 }
1566
1567 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1568 return 0;
1569 }
1570
1571 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1572 {
1573
1574 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1575 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1576 2) << 7))
1577 return -1;
1578
1579 if (!ql_auto_neg_error(qdev)) {
1580 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1581 /* configure the MAC */
1582 if (netif_msg_link(qdev))
1583 printk(KERN_DEBUG PFX
1584 "%s: Configuring link.\n",
1585 qdev->ndev->
1586 name);
1587 ql_mac_cfg_soft_reset(qdev, 1);
1588 ql_mac_cfg_gig(qdev,
1589 (ql_get_link_speed
1590 (qdev) ==
1591 SPEED_1000));
1592 ql_mac_cfg_full_dup(qdev,
1593 ql_is_link_full_dup
1594 (qdev));
1595 ql_mac_cfg_pause(qdev,
1596 ql_is_neg_pause
1597 (qdev));
1598 ql_mac_cfg_soft_reset(qdev, 0);
1599
1600 /* enable the MAC */
1601 if (netif_msg_link(qdev))
1602 printk(KERN_DEBUG PFX
1603 "%s: Enabling mac.\n",
1604 qdev->ndev->
1605 name);
1606 ql_mac_enable(qdev, 1);
1607 }
1608
1609 if (netif_msg_link(qdev))
1610 printk(KERN_DEBUG PFX
1611 "%s: Change port_link_state LS_DOWN to LS_UP.\n",
1612 qdev->ndev->name);
1613 qdev->port_link_state = LS_UP;
1614 netif_start_queue(qdev->ndev);
1615 netif_carrier_on(qdev->ndev);
1616 if (netif_msg_link(qdev))
1617 printk(KERN_INFO PFX
1618 "%s: Link is up at %d Mbps, %s duplex.\n",
1619 qdev->ndev->name,
1620 ql_get_link_speed(qdev),
1621 ql_is_link_full_dup(qdev)
1622 ? "full" : "half");
1623
1624 } else { /* Remote error detected */
1625
1626 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1627 if (netif_msg_link(qdev))
1628 printk(KERN_DEBUG PFX
1629 "%s: Remote error detected. "
1630 "Calling ql_port_start().\n",
1631 qdev->ndev->
1632 name);
1633 /*
1634 * ql_port_start() is shared code and needs
1635 * to lock the PHY on it's own.
1636 */
1637 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1638 if(ql_port_start(qdev)) {/* Restart port */
1639 return -1;
1640 } else
1641 return 0;
1642 }
1643 }
1644 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1645 return 0;
1646 }
1647
1648 static void ql_link_state_machine(struct ql3_adapter *qdev)
1649 {
1650 u32 curr_link_state;
1651 unsigned long hw_flags;
1652
1653 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1654
1655 curr_link_state = ql_get_link_state(qdev);
1656
1657 if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
1658 if (netif_msg_link(qdev))
1659 printk(KERN_INFO PFX
1660 "%s: Reset in progress, skip processing link "
1661 "state.\n", qdev->ndev->name);
1662
1663 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1664 return;
1665 }
1666
1667 switch (qdev->port_link_state) {
1668 default:
1669 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1670 ql_port_start(qdev);
1671 }
1672 qdev->port_link_state = LS_DOWN;
1673 /* Fall Through */
1674
1675 case LS_DOWN:
1676 if (netif_msg_link(qdev))
1677 printk(KERN_DEBUG PFX
1678 "%s: port_link_state = LS_DOWN.\n",
1679 qdev->ndev->name);
1680 if (curr_link_state == LS_UP) {
1681 if (netif_msg_link(qdev))
1682 printk(KERN_DEBUG PFX
1683 "%s: curr_link_state = LS_UP.\n",
1684 qdev->ndev->name);
1685 if (ql_is_auto_neg_complete(qdev))
1686 ql_finish_auto_neg(qdev);
1687
1688 if (qdev->port_link_state == LS_UP)
1689 ql_link_down_detect_clear(qdev);
1690
1691 }
1692 break;
1693
1694 case LS_UP:
1695 /*
1696 * See if the link is currently down or went down and came
1697 * back up
1698 */
1699 if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
1700 if (netif_msg_link(qdev))
1701 printk(KERN_INFO PFX "%s: Link is down.\n",
1702 qdev->ndev->name);
1703 qdev->port_link_state = LS_DOWN;
1704 }
1705 break;
1706 }
1707 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1708 }
1709
1710 /*
1711 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1712 */
1713 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1714 {
1715 if (ql_this_adapter_controls_port(qdev))
1716 set_bit(QL_LINK_MASTER,&qdev->flags);
1717 else
1718 clear_bit(QL_LINK_MASTER,&qdev->flags);
1719 }
1720
1721 /*
1722 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1723 */
1724 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1725 {
1726 ql_mii_enable_scan_mode(qdev);
1727
1728 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1729 if (ql_this_adapter_controls_port(qdev))
1730 ql_petbi_init_ex(qdev);
1731 } else {
1732 if (ql_this_adapter_controls_port(qdev))
1733 ql_phy_init_ex(qdev);
1734 }
1735 }
1736
1737 /*
1738 * MII_Setup needs to be called before taking the PHY out of reset so that the
1739 * management interface clock speed can be set properly. It would be better if
1740 * we had a way to disable MDC until after the PHY is out of reset, but we
1741 * don't have that capability.
1742 */
1743 static int ql_mii_setup(struct ql3_adapter *qdev)
1744 {
1745 u32 reg;
1746 struct ql3xxx_port_registers __iomem *port_regs =
1747 qdev->mem_map_registers;
1748
1749 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1750 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1751 2) << 7))
1752 return -1;
1753
1754 if (qdev->device_id == QL3032_DEVICE_ID)
1755 ql_write_page0_reg(qdev,
1756 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1757
1758 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1759 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1760
1761 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1762 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1763
1764 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1765 return 0;
1766 }
1767
1768 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1769 {
1770 u32 supported;
1771
1772 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1773 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
1774 | SUPPORTED_Autoneg;
1775 } else {
1776 supported = SUPPORTED_10baseT_Half
1777 | SUPPORTED_10baseT_Full
1778 | SUPPORTED_100baseT_Half
1779 | SUPPORTED_100baseT_Full
1780 | SUPPORTED_1000baseT_Half
1781 | SUPPORTED_1000baseT_Full
1782 | SUPPORTED_Autoneg | SUPPORTED_TP;
1783 }
1784
1785 return supported;
1786 }
1787
1788 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1789 {
1790 int status;
1791 unsigned long hw_flags;
1792 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1793 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1794 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1795 2) << 7)) {
1796 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1797 return 0;
1798 }
1799 status = ql_is_auto_cfg(qdev);
1800 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1801 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1802 return status;
1803 }
1804
1805 static u32 ql_get_speed(struct ql3_adapter *qdev)
1806 {
1807 u32 status;
1808 unsigned long hw_flags;
1809 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1810 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1811 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1812 2) << 7)) {
1813 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1814 return 0;
1815 }
1816 status = ql_get_link_speed(qdev);
1817 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1818 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1819 return status;
1820 }
1821
1822 static int ql_get_full_dup(struct ql3_adapter *qdev)
1823 {
1824 int status;
1825 unsigned long hw_flags;
1826 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1827 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1828 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1829 2) << 7)) {
1830 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1831 return 0;
1832 }
1833 status = ql_is_link_full_dup(qdev);
1834 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1835 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1836 return status;
1837 }
1838
1839
1840 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1841 {
1842 struct ql3_adapter *qdev = netdev_priv(ndev);
1843
1844 ecmd->transceiver = XCVR_INTERNAL;
1845 ecmd->supported = ql_supported_modes(qdev);
1846
1847 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1848 ecmd->port = PORT_FIBRE;
1849 } else {
1850 ecmd->port = PORT_TP;
1851 ecmd->phy_address = qdev->PHYAddr;
1852 }
1853 ecmd->advertising = ql_supported_modes(qdev);
1854 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1855 ecmd->speed = ql_get_speed(qdev);
1856 ecmd->duplex = ql_get_full_dup(qdev);
1857 return 0;
1858 }
1859
1860 static void ql_get_drvinfo(struct net_device *ndev,
1861 struct ethtool_drvinfo *drvinfo)
1862 {
1863 struct ql3_adapter *qdev = netdev_priv(ndev);
1864 strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
1865 strncpy(drvinfo->version, ql3xxx_driver_version, 32);
1866 strncpy(drvinfo->fw_version, "N/A", 32);
1867 strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
1868 drvinfo->n_stats = 0;
1869 drvinfo->testinfo_len = 0;
1870 drvinfo->regdump_len = 0;
1871 drvinfo->eedump_len = 0;
1872 }
1873
1874 static u32 ql_get_msglevel(struct net_device *ndev)
1875 {
1876 struct ql3_adapter *qdev = netdev_priv(ndev);
1877 return qdev->msg_enable;
1878 }
1879
1880 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1881 {
1882 struct ql3_adapter *qdev = netdev_priv(ndev);
1883 qdev->msg_enable = value;
1884 }
1885
1886 static void ql_get_pauseparam(struct net_device *ndev,
1887 struct ethtool_pauseparam *pause)
1888 {
1889 struct ql3_adapter *qdev = netdev_priv(ndev);
1890 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1891
1892 u32 reg;
1893 if(qdev->mac_index == 0)
1894 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1895 else
1896 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1897
1898 pause->autoneg = ql_get_auto_cfg_status(qdev);
1899 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1900 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1901 }
1902
1903 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1904 .get_settings = ql_get_settings,
1905 .get_drvinfo = ql_get_drvinfo,
1906 .get_link = ethtool_op_get_link,
1907 .get_msglevel = ql_get_msglevel,
1908 .set_msglevel = ql_set_msglevel,
1909 .get_pauseparam = ql_get_pauseparam,
1910 };
1911
1912 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1913 {
1914 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1915 dma_addr_t map;
1916 int err;
1917
1918 while (lrg_buf_cb) {
1919 if (!lrg_buf_cb->skb) {
1920 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
1921 qdev->lrg_buffer_len);
1922 if (unlikely(!lrg_buf_cb->skb)) {
1923 printk(KERN_DEBUG PFX
1924 "%s: Failed netdev_alloc_skb().\n",
1925 qdev->ndev->name);
1926 break;
1927 } else {
1928 /*
1929 * We save some space to copy the ethhdr from
1930 * first buffer
1931 */
1932 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1933 map = pci_map_single(qdev->pdev,
1934 lrg_buf_cb->skb->data,
1935 qdev->lrg_buffer_len -
1936 QL_HEADER_SPACE,
1937 PCI_DMA_FROMDEVICE);
1938
1939 err = pci_dma_mapping_error(map);
1940 if(err) {
1941 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
1942 qdev->ndev->name, err);
1943 dev_kfree_skb(lrg_buf_cb->skb);
1944 lrg_buf_cb->skb = NULL;
1945 break;
1946 }
1947
1948
1949 lrg_buf_cb->buf_phy_addr_low =
1950 cpu_to_le32(LS_64BITS(map));
1951 lrg_buf_cb->buf_phy_addr_high =
1952 cpu_to_le32(MS_64BITS(map));
1953 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1954 pci_unmap_len_set(lrg_buf_cb, maplen,
1955 qdev->lrg_buffer_len -
1956 QL_HEADER_SPACE);
1957 --qdev->lrg_buf_skb_check;
1958 if (!qdev->lrg_buf_skb_check)
1959 return 1;
1960 }
1961 }
1962 lrg_buf_cb = lrg_buf_cb->next;
1963 }
1964 return 0;
1965 }
1966
1967 /*
1968 * Caller holds hw_lock.
1969 */
1970 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1971 {
1972 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1973 if (qdev->small_buf_release_cnt >= 16) {
1974 while (qdev->small_buf_release_cnt >= 16) {
1975 qdev->small_buf_q_producer_index++;
1976
1977 if (qdev->small_buf_q_producer_index ==
1978 NUM_SBUFQ_ENTRIES)
1979 qdev->small_buf_q_producer_index = 0;
1980 qdev->small_buf_release_cnt -= 8;
1981 }
1982 wmb();
1983 writel(qdev->small_buf_q_producer_index,
1984 &port_regs->CommonRegs.rxSmallQProducerIndex);
1985 }
1986 }
1987
1988 /*
1989 * Caller holds hw_lock.
1990 */
1991 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1992 {
1993 struct bufq_addr_element *lrg_buf_q_ele;
1994 int i;
1995 struct ql_rcv_buf_cb *lrg_buf_cb;
1996 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1997
1998 if ((qdev->lrg_buf_free_count >= 8)
1999 && (qdev->lrg_buf_release_cnt >= 16)) {
2000
2001 if (qdev->lrg_buf_skb_check)
2002 if (!ql_populate_free_queue(qdev))
2003 return;
2004
2005 lrg_buf_q_ele = qdev->lrg_buf_next_free;
2006
2007 while ((qdev->lrg_buf_release_cnt >= 16)
2008 && (qdev->lrg_buf_free_count >= 8)) {
2009
2010 for (i = 0; i < 8; i++) {
2011 lrg_buf_cb =
2012 ql_get_from_lrg_buf_free_list(qdev);
2013 lrg_buf_q_ele->addr_high =
2014 lrg_buf_cb->buf_phy_addr_high;
2015 lrg_buf_q_ele->addr_low =
2016 lrg_buf_cb->buf_phy_addr_low;
2017 lrg_buf_q_ele++;
2018
2019 qdev->lrg_buf_release_cnt--;
2020 }
2021
2022 qdev->lrg_buf_q_producer_index++;
2023
2024 if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
2025 qdev->lrg_buf_q_producer_index = 0;
2026
2027 if (qdev->lrg_buf_q_producer_index ==
2028 (qdev->num_lbufq_entries - 1)) {
2029 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
2030 }
2031 }
2032 wmb();
2033 qdev->lrg_buf_next_free = lrg_buf_q_ele;
2034 writel(qdev->lrg_buf_q_producer_index,
2035 &port_regs->CommonRegs.rxLargeQProducerIndex);
2036 }
2037 }
2038
2039 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
2040 struct ob_mac_iocb_rsp *mac_rsp)
2041 {
2042 struct ql_tx_buf_cb *tx_cb;
2043 int i;
2044 int retval = 0;
2045
2046 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2047 printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
2048 }
2049
2050 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
2051
2052 /* Check the transmit response flags for any errors */
2053 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2054 printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
2055
2056 qdev->ndev->stats.tx_errors++;
2057 retval = -EIO;
2058 goto frame_not_sent;
2059 }
2060
2061 if(tx_cb->seg_count == 0) {
2062 printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
2063
2064 qdev->ndev->stats.tx_errors++;
2065 retval = -EIO;
2066 goto invalid_seg_count;
2067 }
2068
2069 pci_unmap_single(qdev->pdev,
2070 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2071 pci_unmap_len(&tx_cb->map[0], maplen),
2072 PCI_DMA_TODEVICE);
2073 tx_cb->seg_count--;
2074 if (tx_cb->seg_count) {
2075 for (i = 1; i < tx_cb->seg_count; i++) {
2076 pci_unmap_page(qdev->pdev,
2077 pci_unmap_addr(&tx_cb->map[i],
2078 mapaddr),
2079 pci_unmap_len(&tx_cb->map[i], maplen),
2080 PCI_DMA_TODEVICE);
2081 }
2082 }
2083 qdev->ndev->stats.tx_packets++;
2084 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
2085
2086 frame_not_sent:
2087 dev_kfree_skb_irq(tx_cb->skb);
2088 tx_cb->skb = NULL;
2089
2090 invalid_seg_count:
2091 atomic_inc(&qdev->tx_count);
2092 }
2093
2094 static void ql_get_sbuf(struct ql3_adapter *qdev)
2095 {
2096 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
2097 qdev->small_buf_index = 0;
2098 qdev->small_buf_release_cnt++;
2099 }
2100
2101 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
2102 {
2103 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
2104 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
2105 qdev->lrg_buf_release_cnt++;
2106 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
2107 qdev->lrg_buf_index = 0;
2108 return(lrg_buf_cb);
2109 }
2110
2111 /*
2112 * The difference between 3022 and 3032 for inbound completions:
2113 * 3022 uses two buffers per completion. The first buffer contains
2114 * (some) header info, the second the remainder of the headers plus
2115 * the data. For this chip we reserve some space at the top of the
2116 * receive buffer so that the header info in buffer one can be
2117 * prepended to the buffer two. Buffer two is the sent up while
2118 * buffer one is returned to the hardware to be reused.
2119 * 3032 receives all of it's data and headers in one buffer for a
2120 * simpler process. 3032 also supports checksum verification as
2121 * can be seen in ql_process_macip_rx_intr().
2122 */
2123 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2124 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2125 {
2126 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2127 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2128 struct sk_buff *skb;
2129 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2130
2131 /*
2132 * Get the inbound address list (small buffer).
2133 */
2134 ql_get_sbuf(qdev);
2135
2136 if (qdev->device_id == QL3022_DEVICE_ID)
2137 lrg_buf_cb1 = ql_get_lbuf(qdev);
2138
2139 /* start of second buffer */
2140 lrg_buf_cb2 = ql_get_lbuf(qdev);
2141 skb = lrg_buf_cb2->skb;
2142
2143 qdev->ndev->stats.rx_packets++;
2144 qdev->ndev->stats.rx_bytes += length;
2145
2146 skb_put(skb, length);
2147 pci_unmap_single(qdev->pdev,
2148 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2149 pci_unmap_len(lrg_buf_cb2, maplen),
2150 PCI_DMA_FROMDEVICE);
2151 prefetch(skb->data);
2152 skb->ip_summed = CHECKSUM_NONE;
2153 skb->protocol = eth_type_trans(skb, qdev->ndev);
2154
2155 netif_receive_skb(skb);
2156 qdev->ndev->last_rx = jiffies;
2157 lrg_buf_cb2->skb = NULL;
2158
2159 if (qdev->device_id == QL3022_DEVICE_ID)
2160 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2161 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2162 }
2163
2164 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2165 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2166 {
2167 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2168 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2169 struct sk_buff *skb1 = NULL, *skb2;
2170 struct net_device *ndev = qdev->ndev;
2171 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2172 u16 size = 0;
2173
2174 /*
2175 * Get the inbound address list (small buffer).
2176 */
2177
2178 ql_get_sbuf(qdev);
2179
2180 if (qdev->device_id == QL3022_DEVICE_ID) {
2181 /* start of first buffer on 3022 */
2182 lrg_buf_cb1 = ql_get_lbuf(qdev);
2183 skb1 = lrg_buf_cb1->skb;
2184 size = ETH_HLEN;
2185 if (*((u16 *) skb1->data) != 0xFFFF)
2186 size += VLAN_ETH_HLEN - ETH_HLEN;
2187 }
2188
2189 /* start of second buffer */
2190 lrg_buf_cb2 = ql_get_lbuf(qdev);
2191 skb2 = lrg_buf_cb2->skb;
2192
2193 skb_put(skb2, length); /* Just the second buffer length here. */
2194 pci_unmap_single(qdev->pdev,
2195 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2196 pci_unmap_len(lrg_buf_cb2, maplen),
2197 PCI_DMA_FROMDEVICE);
2198 prefetch(skb2->data);
2199
2200 skb2->ip_summed = CHECKSUM_NONE;
2201 if (qdev->device_id == QL3022_DEVICE_ID) {
2202 /*
2203 * Copy the ethhdr from first buffer to second. This
2204 * is necessary for 3022 IP completions.
2205 */
2206 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2207 skb_push(skb2, size), size);
2208 } else {
2209 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2210 if (checksum &
2211 (IB_IP_IOCB_RSP_3032_ICE |
2212 IB_IP_IOCB_RSP_3032_CE)) {
2213 printk(KERN_ERR
2214 "%s: Bad checksum for this %s packet, checksum = %x.\n",
2215 __func__,
2216 ((checksum &
2217 IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
2218 "UDP"),checksum);
2219 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2220 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2221 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2222 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2223 }
2224 }
2225 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2226
2227 netif_receive_skb(skb2);
2228 ndev->stats.rx_packets++;
2229 ndev->stats.rx_bytes += length;
2230 ndev->last_rx = jiffies;
2231 lrg_buf_cb2->skb = NULL;
2232
2233 if (qdev->device_id == QL3022_DEVICE_ID)
2234 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2235 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2236 }
2237
2238 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2239 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2240 {
2241 struct net_rsp_iocb *net_rsp;
2242 struct net_device *ndev = qdev->ndev;
2243 int work_done = 0;
2244
2245 /* While there are entries in the completion queue. */
2246 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2247 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2248
2249 net_rsp = qdev->rsp_current;
2250 rmb();
2251 /*
2252 * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
2253 * inbound completion is for a VLAN.
2254 */
2255 if (qdev->device_id == QL3032_DEVICE_ID)
2256 net_rsp->opcode &= 0x7f;
2257 switch (net_rsp->opcode) {
2258
2259 case OPCODE_OB_MAC_IOCB_FN0:
2260 case OPCODE_OB_MAC_IOCB_FN2:
2261 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2262 net_rsp);
2263 (*tx_cleaned)++;
2264 break;
2265
2266 case OPCODE_IB_MAC_IOCB:
2267 case OPCODE_IB_3032_MAC_IOCB:
2268 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2269 net_rsp);
2270 (*rx_cleaned)++;
2271 break;
2272
2273 case OPCODE_IB_IP_IOCB:
2274 case OPCODE_IB_3032_IP_IOCB:
2275 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2276 net_rsp);
2277 (*rx_cleaned)++;
2278 break;
2279 default:
2280 {
2281 u32 *tmp = (u32 *) net_rsp;
2282 printk(KERN_ERR PFX
2283 "%s: Hit default case, not "
2284 "handled!\n"
2285 " dropping the packet, opcode = "
2286 "%x.\n",
2287 ndev->name, net_rsp->opcode);
2288 printk(KERN_ERR PFX
2289 "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
2290 (unsigned long int)tmp[0],
2291 (unsigned long int)tmp[1],
2292 (unsigned long int)tmp[2],
2293 (unsigned long int)tmp[3]);
2294 }
2295 }
2296
2297 qdev->rsp_consumer_index++;
2298
2299 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2300 qdev->rsp_consumer_index = 0;
2301 qdev->rsp_current = qdev->rsp_q_virt_addr;
2302 } else {
2303 qdev->rsp_current++;
2304 }
2305
2306 work_done = *tx_cleaned + *rx_cleaned;
2307 }
2308
2309 return work_done;
2310 }
2311
2312 static int ql_poll(struct napi_struct *napi, int budget)
2313 {
2314 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2315 struct net_device *ndev = qdev->ndev;
2316 int rx_cleaned = 0, tx_cleaned = 0;
2317 unsigned long hw_flags;
2318 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2319
2320 if (!netif_carrier_ok(ndev))
2321 goto quit_polling;
2322
2323 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2324
2325 if (tx_cleaned + rx_cleaned != budget ||
2326 !netif_running(ndev)) {
2327 quit_polling:
2328 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2329 __netif_rx_complete(ndev, napi);
2330 ql_update_small_bufq_prod_index(qdev);
2331 ql_update_lrg_bufq_prod_index(qdev);
2332 writel(qdev->rsp_consumer_index,
2333 &port_regs->CommonRegs.rspQConsumerIndex);
2334 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2335
2336 ql_enable_interrupts(qdev);
2337 }
2338 return tx_cleaned + rx_cleaned;
2339 }
2340
2341 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2342 {
2343
2344 struct net_device *ndev = dev_id;
2345 struct ql3_adapter *qdev = netdev_priv(ndev);
2346 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2347 u32 value;
2348 int handled = 1;
2349 u32 var;
2350
2351 port_regs = qdev->mem_map_registers;
2352
2353 value =
2354 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
2355
2356 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2357 spin_lock(&qdev->adapter_lock);
2358 netif_stop_queue(qdev->ndev);
2359 netif_carrier_off(qdev->ndev);
2360 ql_disable_interrupts(qdev);
2361 qdev->port_link_state = LS_DOWN;
2362 set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
2363
2364 if (value & ISP_CONTROL_FE) {
2365 /*
2366 * Chip Fatal Error.
2367 */
2368 var =
2369 ql_read_page0_reg_l(qdev,
2370 &port_regs->PortFatalErrStatus);
2371 printk(KERN_WARNING PFX
2372 "%s: Resetting chip. PortFatalErrStatus "
2373 "register = 0x%x\n", ndev->name, var);
2374 set_bit(QL_RESET_START,&qdev->flags) ;
2375 } else {
2376 /*
2377 * Soft Reset Requested.
2378 */
2379 set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
2380 printk(KERN_ERR PFX
2381 "%s: Another function issued a reset to the "
2382 "chip. ISR value = %x.\n", ndev->name, value);
2383 }
2384 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2385 spin_unlock(&qdev->adapter_lock);
2386 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2387 ql_disable_interrupts(qdev);
2388 if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
2389 __netif_rx_schedule(ndev, &qdev->napi);
2390 }
2391 } else {
2392 return IRQ_NONE;
2393 }
2394
2395 return IRQ_RETVAL(handled);
2396 }
2397
2398 /*
2399 * Get the total number of segments needed for the
2400 * given number of fragments. This is necessary because
2401 * outbound address lists (OAL) will be used when more than
2402 * two frags are given. Each address list has 5 addr/len
2403 * pairs. The 5th pair in each AOL is used to point to
2404 * the next AOL if more frags are coming.
2405 * That is why the frags:segment count ratio is not linear.
2406 */
2407 static int ql_get_seg_count(struct ql3_adapter *qdev,
2408 unsigned short frags)
2409 {
2410 if (qdev->device_id == QL3022_DEVICE_ID)
2411 return 1;
2412
2413 switch(frags) {
2414 case 0: return 1; /* just the skb->data seg */
2415 case 1: return 2; /* skb->data + 1 frag */
2416 case 2: return 3; /* skb->data + 2 frags */
2417 case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
2418 case 4: return 6;
2419 case 5: return 7;
2420 case 6: return 8;
2421 case 7: return 10;
2422 case 8: return 11;
2423 case 9: return 12;
2424 case 10: return 13;
2425 case 11: return 15;
2426 case 12: return 16;
2427 case 13: return 17;
2428 case 14: return 18;
2429 case 15: return 20;
2430 case 16: return 21;
2431 case 17: return 22;
2432 case 18: return 23;
2433 }
2434 return -1;
2435 }
2436
2437 static void ql_hw_csum_setup(const struct sk_buff *skb,
2438 struct ob_mac_iocb_req *mac_iocb_ptr)
2439 {
2440 const struct iphdr *ip = ip_hdr(skb);
2441
2442 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2443 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2444
2445 if (ip->protocol == IPPROTO_TCP) {
2446 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2447 OB_3032MAC_IOCB_REQ_IC;
2448 } else {
2449 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2450 OB_3032MAC_IOCB_REQ_IC;
2451 }
2452
2453 }
2454
2455 /*
2456 * Map the buffers for this transmit. This will return
2457 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2458 */
2459 static int ql_send_map(struct ql3_adapter *qdev,
2460 struct ob_mac_iocb_req *mac_iocb_ptr,
2461 struct ql_tx_buf_cb *tx_cb,
2462 struct sk_buff *skb)
2463 {
2464 struct oal *oal;
2465 struct oal_entry *oal_entry;
2466 int len = skb_headlen(skb);
2467 dma_addr_t map;
2468 int err;
2469 int completed_segs, i;
2470 int seg_cnt, seg = 0;
2471 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2472
2473 seg_cnt = tx_cb->seg_count;
2474 /*
2475 * Map the skb buffer first.
2476 */
2477 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2478
2479 err = pci_dma_mapping_error(map);
2480 if(err) {
2481 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2482 qdev->ndev->name, err);
2483
2484 return NETDEV_TX_BUSY;
2485 }
2486
2487 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2488 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2489 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2490 oal_entry->len = cpu_to_le32(len);
2491 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2492 pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
2493 seg++;
2494
2495 if (seg_cnt == 1) {
2496 /* Terminate the last segment. */
2497 oal_entry->len =
2498 cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
2499 } else {
2500 oal = tx_cb->oal;
2501 for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
2502 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2503 oal_entry++;
2504 if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2505 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2506 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2507 (seg == 17 && seg_cnt > 18)) {
2508 /* Continuation entry points to outbound address list. */
2509 map = pci_map_single(qdev->pdev, oal,
2510 sizeof(struct oal),
2511 PCI_DMA_TODEVICE);
2512
2513 err = pci_dma_mapping_error(map);
2514 if(err) {
2515
2516 printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
2517 qdev->ndev->name, err);
2518 goto map_error;
2519 }
2520
2521 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2522 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2523 oal_entry->len =
2524 cpu_to_le32(sizeof(struct oal) |
2525 OAL_CONT_ENTRY);
2526 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
2527 map);
2528 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2529 sizeof(struct oal));
2530 oal_entry = (struct oal_entry *)oal;
2531 oal++;
2532 seg++;
2533 }
2534
2535 map =
2536 pci_map_page(qdev->pdev, frag->page,
2537 frag->page_offset, frag->size,
2538 PCI_DMA_TODEVICE);
2539
2540 err = pci_dma_mapping_error(map);
2541 if(err) {
2542 printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
2543 qdev->ndev->name, err);
2544 goto map_error;
2545 }
2546
2547 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2548 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2549 oal_entry->len = cpu_to_le32(frag->size);
2550 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2551 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2552 frag->size);
2553 }
2554 /* Terminate the last segment. */
2555 oal_entry->len =
2556 cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
2557 }
2558
2559 return NETDEV_TX_OK;
2560
2561 map_error:
2562 /* A PCI mapping failed and now we will need to back out
2563 * We need to traverse through the oal's and associated pages which
2564 * have been mapped and now we must unmap them to clean up properly
2565 */
2566
2567 seg = 1;
2568 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2569 oal = tx_cb->oal;
2570 for (i=0; i<completed_segs; i++,seg++) {
2571 oal_entry++;
2572
2573 if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2574 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2575 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2576 (seg == 17 && seg_cnt > 18)) {
2577 pci_unmap_single(qdev->pdev,
2578 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2579 pci_unmap_len(&tx_cb->map[seg], maplen),
2580 PCI_DMA_TODEVICE);
2581 oal++;
2582 seg++;
2583 }
2584
2585 pci_unmap_page(qdev->pdev,
2586 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2587 pci_unmap_len(&tx_cb->map[seg], maplen),
2588 PCI_DMA_TODEVICE);
2589 }
2590
2591 pci_unmap_single(qdev->pdev,
2592 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2593 pci_unmap_addr(&tx_cb->map[0], maplen),
2594 PCI_DMA_TODEVICE);
2595
2596 return NETDEV_TX_BUSY;
2597
2598 }
2599
2600 /*
2601 * The difference between 3022 and 3032 sends:
2602 * 3022 only supports a simple single segment transmission.
2603 * 3032 supports checksumming and scatter/gather lists (fragments).
2604 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2605 * in the IOCB plus a chain of outbound address lists (OAL) that
2606 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2607 * will used to point to an OAL when more ALP entries are required.
2608 * The IOCB is always the top of the chain followed by one or more
2609 * OALs (when necessary).
2610 */
2611 static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
2612 {
2613 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
2614 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2615 struct ql_tx_buf_cb *tx_cb;
2616 u32 tot_len = skb->len;
2617 struct ob_mac_iocb_req *mac_iocb_ptr;
2618
2619 if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
2620 return NETDEV_TX_BUSY;
2621 }
2622
2623 tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
2624 if((tx_cb->seg_count = ql_get_seg_count(qdev,
2625 (skb_shinfo(skb)->nr_frags))) == -1) {
2626 printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
2627 return NETDEV_TX_OK;
2628 }
2629
2630 mac_iocb_ptr = tx_cb->queue_entry;
2631 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2632 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2633 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2634 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2635 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2636 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2637 tx_cb->skb = skb;
2638 if (qdev->device_id == QL3032_DEVICE_ID &&
2639 skb->ip_summed == CHECKSUM_PARTIAL)
2640 ql_hw_csum_setup(skb, mac_iocb_ptr);
2641
2642 if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
2643 printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
2644 return NETDEV_TX_BUSY;
2645 }
2646
2647 wmb();
2648 qdev->req_producer_index++;
2649 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2650 qdev->req_producer_index = 0;
2651 wmb();
2652 ql_write_common_reg_l(qdev,
2653 &port_regs->CommonRegs.reqQProducerIndex,
2654 qdev->req_producer_index);
2655
2656 ndev->trans_start = jiffies;
2657 if (netif_msg_tx_queued(qdev))
2658 printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
2659 ndev->name, qdev->req_producer_index, skb->len);
2660
2661 atomic_dec(&qdev->tx_count);
2662 return NETDEV_TX_OK;
2663 }
2664
2665 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2666 {
2667 qdev->req_q_size =
2668 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2669
2670 qdev->req_q_virt_addr =
2671 pci_alloc_consistent(qdev->pdev,
2672 (size_t) qdev->req_q_size,
2673 &qdev->req_q_phy_addr);
2674
2675 if ((qdev->req_q_virt_addr == NULL) ||
2676 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2677 printk(KERN_ERR PFX "%s: reqQ failed.\n",
2678 qdev->ndev->name);
2679 return -ENOMEM;
2680 }
2681
2682 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2683
2684 qdev->rsp_q_virt_addr =
2685 pci_alloc_consistent(qdev->pdev,
2686 (size_t) qdev->rsp_q_size,
2687 &qdev->rsp_q_phy_addr);
2688
2689 if ((qdev->rsp_q_virt_addr == NULL) ||
2690 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2691 printk(KERN_ERR PFX
2692 "%s: rspQ allocation failed\n",
2693 qdev->ndev->name);
2694 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2695 qdev->req_q_virt_addr,
2696 qdev->req_q_phy_addr);
2697 return -ENOMEM;
2698 }
2699
2700 set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2701
2702 return 0;
2703 }
2704
2705 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2706 {
2707 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
2708 printk(KERN_INFO PFX
2709 "%s: Already done.\n", qdev->ndev->name);
2710 return;
2711 }
2712
2713 pci_free_consistent(qdev->pdev,
2714 qdev->req_q_size,
2715 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2716
2717 qdev->req_q_virt_addr = NULL;
2718
2719 pci_free_consistent(qdev->pdev,
2720 qdev->rsp_q_size,
2721 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2722
2723 qdev->rsp_q_virt_addr = NULL;
2724
2725 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2726 }
2727
2728 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2729 {
2730 /* Create Large Buffer Queue */
2731 qdev->lrg_buf_q_size =
2732 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2733 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2734 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2735 else
2736 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2737
2738 qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
2739 if (qdev->lrg_buf == NULL) {
2740 printk(KERN_ERR PFX
2741 "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
2742 return -ENOMEM;
2743 }
2744
2745 qdev->lrg_buf_q_alloc_virt_addr =
2746 pci_alloc_consistent(qdev->pdev,
2747 qdev->lrg_buf_q_alloc_size,
2748 &qdev->lrg_buf_q_alloc_phy_addr);
2749
2750 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2751 printk(KERN_ERR PFX
2752 "%s: lBufQ failed\n", qdev->ndev->name);
2753 return -ENOMEM;
2754 }
2755 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2756 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2757
2758 /* Create Small Buffer Queue */
2759 qdev->small_buf_q_size =
2760 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2761 if (qdev->small_buf_q_size < PAGE_SIZE)
2762 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2763 else
2764 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2765
2766 qdev->small_buf_q_alloc_virt_addr =
2767 pci_alloc_consistent(qdev->pdev,
2768 qdev->small_buf_q_alloc_size,
2769 &qdev->small_buf_q_alloc_phy_addr);
2770
2771 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2772 printk(KERN_ERR PFX
2773 "%s: Small Buffer Queue allocation failed.\n",
2774 qdev->ndev->name);
2775 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2776 qdev->lrg_buf_q_alloc_virt_addr,
2777 qdev->lrg_buf_q_alloc_phy_addr);
2778 return -ENOMEM;
2779 }
2780
2781 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2782 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2783 set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2784 return 0;
2785 }
2786
2787 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2788 {
2789 if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
2790 printk(KERN_INFO PFX
2791 "%s: Already done.\n", qdev->ndev->name);
2792 return;
2793 }
2794 if(qdev->lrg_buf) kfree(qdev->lrg_buf);
2795 pci_free_consistent(qdev->pdev,
2796 qdev->lrg_buf_q_alloc_size,
2797 qdev->lrg_buf_q_alloc_virt_addr,
2798 qdev->lrg_buf_q_alloc_phy_addr);
2799
2800 qdev->lrg_buf_q_virt_addr = NULL;
2801
2802 pci_free_consistent(qdev->pdev,
2803 qdev->small_buf_q_alloc_size,
2804 qdev->small_buf_q_alloc_virt_addr,
2805 qdev->small_buf_q_alloc_phy_addr);
2806
2807 qdev->small_buf_q_virt_addr = NULL;
2808
2809 clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2810 }
2811
2812 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2813 {
2814 int i;
2815 struct bufq_addr_element *small_buf_q_entry;
2816
2817 /* Currently we allocate on one of memory and use it for smallbuffers */
2818 qdev->small_buf_total_size =
2819 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2820 QL_SMALL_BUFFER_SIZE);
2821
2822 qdev->small_buf_virt_addr =
2823 pci_alloc_consistent(qdev->pdev,
2824 qdev->small_buf_total_size,
2825 &qdev->small_buf_phy_addr);
2826
2827 if (qdev->small_buf_virt_addr == NULL) {
2828 printk(KERN_ERR PFX
2829 "%s: Failed to get small buffer memory.\n",
2830 qdev->ndev->name);
2831 return -ENOMEM;
2832 }
2833
2834 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2835 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2836
2837 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2838
2839 /* Initialize the small buffer queue. */
2840 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2841 small_buf_q_entry->addr_high =
2842 cpu_to_le32(qdev->small_buf_phy_addr_high);
2843 small_buf_q_entry->addr_low =
2844 cpu_to_le32(qdev->small_buf_phy_addr_low +
2845 (i * QL_SMALL_BUFFER_SIZE));
2846 small_buf_q_entry++;
2847 }
2848 qdev->small_buf_index = 0;
2849 set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
2850 return 0;
2851 }
2852
2853 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2854 {
2855 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
2856 printk(KERN_INFO PFX
2857 "%s: Already done.\n", qdev->ndev->name);
2858 return;
2859 }
2860 if (qdev->small_buf_virt_addr != NULL) {
2861 pci_free_consistent(qdev->pdev,
2862 qdev->small_buf_total_size,
2863 qdev->small_buf_virt_addr,
2864 qdev->small_buf_phy_addr);
2865
2866 qdev->small_buf_virt_addr = NULL;
2867 }
2868 }
2869
2870 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2871 {
2872 int i = 0;
2873 struct ql_rcv_buf_cb *lrg_buf_cb;
2874
2875 for (i = 0; i < qdev->num_large_buffers; i++) {
2876 lrg_buf_cb = &qdev->lrg_buf[i];
2877 if (lrg_buf_cb->skb) {
2878 dev_kfree_skb(lrg_buf_cb->skb);
2879 pci_unmap_single(qdev->pdev,
2880 pci_unmap_addr(lrg_buf_cb, mapaddr),
2881 pci_unmap_len(lrg_buf_cb, maplen),
2882 PCI_DMA_FROMDEVICE);
2883 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2884 } else {
2885 break;
2886 }
2887 }
2888 }
2889
2890 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2891 {
2892 int i;
2893 struct ql_rcv_buf_cb *lrg_buf_cb;
2894 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2895
2896 for (i = 0; i < qdev->num_large_buffers; i++) {
2897 lrg_buf_cb = &qdev->lrg_buf[i];
2898 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2899 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2900 buf_addr_ele++;
2901 }
2902 qdev->lrg_buf_index = 0;
2903 qdev->lrg_buf_skb_check = 0;
2904 }
2905
2906 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2907 {
2908 int i;
2909 struct ql_rcv_buf_cb *lrg_buf_cb;
2910 struct sk_buff *skb;
2911 dma_addr_t map;
2912 int err;
2913
2914 for (i = 0; i < qdev->num_large_buffers; i++) {
2915 skb = netdev_alloc_skb(qdev->ndev,
2916 qdev->lrg_buffer_len);
2917 if (unlikely(!skb)) {
2918 /* Better luck next round */
2919 printk(KERN_ERR PFX
2920 "%s: large buff alloc failed, "
2921 "for %d bytes at index %d.\n",
2922 qdev->ndev->name,
2923 qdev->lrg_buffer_len * 2, i);
2924 ql_free_large_buffers(qdev);
2925 return -ENOMEM;
2926 } else {
2927
2928 lrg_buf_cb = &qdev->lrg_buf[i];
2929 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2930 lrg_buf_cb->index = i;
2931 lrg_buf_cb->skb = skb;
2932 /*
2933 * We save some space to copy the ethhdr from first
2934 * buffer
2935 */
2936 skb_reserve(skb, QL_HEADER_SPACE);
2937 map = pci_map_single(qdev->pdev,
2938 skb->data,
2939 qdev->lrg_buffer_len -
2940 QL_HEADER_SPACE,
2941 PCI_DMA_FROMDEVICE);
2942
2943 err = pci_dma_mapping_error(map);
2944 if(err) {
2945 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2946 qdev->ndev->name, err);
2947 ql_free_large_buffers(qdev);
2948 return -ENOMEM;
2949 }
2950
2951 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2952 pci_unmap_len_set(lrg_buf_cb, maplen,
2953 qdev->lrg_buffer_len -
2954 QL_HEADER_SPACE);
2955 lrg_buf_cb->buf_phy_addr_low =
2956 cpu_to_le32(LS_64BITS(map));
2957 lrg_buf_cb->buf_phy_addr_high =
2958 cpu_to_le32(MS_64BITS(map));
2959 }
2960 }
2961 return 0;
2962 }
2963
2964 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2965 {
2966 struct ql_tx_buf_cb *tx_cb;
2967 int i;
2968
2969 tx_cb = &qdev->tx_buf[0];
2970 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2971 if (tx_cb->oal) {
2972 kfree(tx_cb->oal);
2973 tx_cb->oal = NULL;
2974 }
2975 tx_cb++;
2976 }
2977 }
2978
2979 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2980 {
2981 struct ql_tx_buf_cb *tx_cb;
2982 int i;
2983 struct ob_mac_iocb_req *req_q_curr =
2984 qdev->req_q_virt_addr;
2985
2986 /* Create free list of transmit buffers */
2987 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2988
2989 tx_cb = &qdev->tx_buf[i];
2990 tx_cb->skb = NULL;
2991 tx_cb->queue_entry = req_q_curr;
2992 req_q_curr++;
2993 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2994 if (tx_cb->oal == NULL)
2995 return -1;
2996 }
2997 return 0;
2998 }
2999
3000 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
3001 {
3002 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
3003 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
3004 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
3005 }
3006 else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
3007 /*
3008 * Bigger buffers, so less of them.
3009 */
3010 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
3011 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
3012 } else {
3013 printk(KERN_ERR PFX
3014 "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
3015 qdev->ndev->name);
3016 return -ENOMEM;
3017 }
3018 qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
3019 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
3020 qdev->max_frame_size =
3021 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
3022
3023 /*
3024 * First allocate a page of shared memory and use it for shadow
3025 * locations of Network Request Queue Consumer Address Register and
3026 * Network Completion Queue Producer Index Register
3027 */
3028 qdev->shadow_reg_virt_addr =
3029 pci_alloc_consistent(qdev->pdev,
3030 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
3031
3032 if (qdev->shadow_reg_virt_addr != NULL) {
3033 qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
3034 qdev->req_consumer_index_phy_addr_high =
3035 MS_64BITS(qdev->shadow_reg_phy_addr);
3036 qdev->req_consumer_index_phy_addr_low =
3037 LS_64BITS(qdev->shadow_reg_phy_addr);
3038
3039 qdev->prsp_producer_index =
3040 (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
3041 qdev->rsp_producer_index_phy_addr_high =
3042 qdev->req_consumer_index_phy_addr_high;
3043 qdev->rsp_producer_index_phy_addr_low =
3044 qdev->req_consumer_index_phy_addr_low + 8;
3045 } else {
3046 printk(KERN_ERR PFX
3047 "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
3048 return -ENOMEM;
3049 }
3050
3051 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
3052 printk(KERN_ERR PFX
3053 "%s: ql_alloc_net_req_rsp_queues failed.\n",
3054 qdev->ndev->name);
3055 goto err_req_rsp;
3056 }
3057
3058 if (ql_alloc_buffer_queues(qdev) != 0) {
3059 printk(KERN_ERR PFX
3060 "%s: ql_alloc_buffer_queues failed.\n",
3061 qdev->ndev->name);
3062 goto err_buffer_queues;
3063 }
3064
3065 if (ql_alloc_small_buffers(qdev) != 0) {
3066 printk(KERN_ERR PFX
3067 "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
3068 goto err_small_buffers;
3069 }
3070
3071 if (ql_alloc_large_buffers(qdev) != 0) {
3072 printk(KERN_ERR PFX
3073 "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
3074 goto err_small_buffers;
3075 }
3076
3077 /* Initialize the large buffer queue. */
3078 ql_init_large_buffers(qdev);
3079 if (ql_create_send_free_list(qdev))
3080 goto err_free_list;
3081
3082 qdev->rsp_current = qdev->rsp_q_virt_addr;
3083
3084 return 0;
3085 err_free_list:
3086 ql_free_send_free_list(qdev);
3087 err_small_buffers:
3088 ql_free_buffer_queues(qdev);
3089 err_buffer_queues:
3090 ql_free_net_req_rsp_queues(qdev);
3091 err_req_rsp:
3092 pci_free_consistent(qdev->pdev,
3093 PAGE_SIZE,
3094 qdev->shadow_reg_virt_addr,
3095 qdev->shadow_reg_phy_addr);
3096
3097 return -ENOMEM;
3098 }
3099
3100 static void ql_free_mem_resources(struct ql3_adapter *qdev)
3101 {
3102 ql_free_send_free_list(qdev);
3103 ql_free_large_buffers(qdev);
3104 ql_free_small_buffers(qdev);
3105 ql_free_buffer_queues(qdev);
3106 ql_free_net_req_rsp_queues(qdev);
3107 if (qdev->shadow_reg_virt_addr != NULL) {
3108 pci_free_consistent(qdev->pdev,
3109 PAGE_SIZE,
3110 qdev->shadow_reg_virt_addr,
3111 qdev->shadow_reg_phy_addr);
3112 qdev->shadow_reg_virt_addr = NULL;
3113 }
3114 }
3115
3116 static int ql_init_misc_registers(struct ql3_adapter *qdev)
3117 {
3118 struct ql3xxx_local_ram_registers __iomem *local_ram =
3119 (void __iomem *)qdev->mem_map_registers;
3120
3121 if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
3122 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3123 2) << 4))
3124 return -1;
3125
3126 ql_write_page2_reg(qdev,
3127 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
3128
3129 ql_write_page2_reg(qdev,
3130 &local_ram->maxBufletCount,
3131 qdev->nvram_data.bufletCount);
3132
3133 ql_write_page2_reg(qdev,
3134 &local_ram->freeBufletThresholdLow,
3135 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
3136 (qdev->nvram_data.tcpWindowThreshold0));
3137
3138 ql_write_page2_reg(qdev,
3139 &local_ram->freeBufletThresholdHigh,
3140 qdev->nvram_data.tcpWindowThreshold50);
3141
3142 ql_write_page2_reg(qdev,
3143 &local_ram->ipHashTableBase,
3144 (qdev->nvram_data.ipHashTableBaseHi << 16) |
3145 qdev->nvram_data.ipHashTableBaseLo);
3146 ql_write_page2_reg(qdev,
3147 &local_ram->ipHashTableCount,
3148 qdev->nvram_data.ipHashTableSize);
3149 ql_write_page2_reg(qdev,
3150 &local_ram->tcpHashTableBase,
3151 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
3152 qdev->nvram_data.tcpHashTableBaseLo);
3153 ql_write_page2_reg(qdev,
3154 &local_ram->tcpHashTableCount,
3155 qdev->nvram_data.tcpHashTableSize);
3156 ql_write_page2_reg(qdev,
3157 &local_ram->ncbBase,
3158 (qdev->nvram_data.ncbTableBaseHi << 16) |
3159 qdev->nvram_data.ncbTableBaseLo);
3160 ql_write_page2_reg(qdev,
3161 &local_ram->maxNcbCount,
3162 qdev->nvram_data.ncbTableSize);
3163 ql_write_page2_reg(qdev,
3164 &local_ram->drbBase,
3165 (qdev->nvram_data.drbTableBaseHi << 16) |
3166 qdev->nvram_data.drbTableBaseLo);
3167 ql_write_page2_reg(qdev,
3168 &local_ram->maxDrbCount,
3169 qdev->nvram_data.drbTableSize);
3170 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3171 return 0;
3172 }
3173
3174 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3175 {
3176 u32 value;
3177 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3178 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3179 (void __iomem *)port_regs;
3180 u32 delay = 10;
3181 int status = 0;
3182
3183 if(ql_mii_setup(qdev))
3184 return -1;
3185
3186 /* Bring out PHY out of reset */
3187 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3188 (ISP_SERIAL_PORT_IF_WE |
3189 (ISP_SERIAL_PORT_IF_WE << 16)));
3190
3191 qdev->port_link_state = LS_DOWN;
3192 netif_carrier_off(qdev->ndev);
3193
3194 /* V2 chip fix for ARS-39168. */
3195 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3196 (ISP_SERIAL_PORT_IF_SDE |
3197 (ISP_SERIAL_PORT_IF_SDE << 16)));
3198
3199 /* Request Queue Registers */
3200 *((u32 *) (qdev->preq_consumer_index)) = 0;
3201 atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
3202 qdev->req_producer_index = 0;
3203
3204 ql_write_page1_reg(qdev,
3205 &hmem_regs->reqConsumerIndexAddrHigh,
3206 qdev->req_consumer_index_phy_addr_high);
3207 ql_write_page1_reg(qdev,
3208 &hmem_regs->reqConsumerIndexAddrLow,
3209 qdev->req_consumer_index_phy_addr_low);
3210
3211 ql_write_page1_reg(qdev,
3212 &hmem_regs->reqBaseAddrHigh,
3213 MS_64BITS(qdev->req_q_phy_addr));
3214 ql_write_page1_reg(qdev,
3215 &hmem_regs->reqBaseAddrLow,
3216 LS_64BITS(qdev->req_q_phy_addr));
3217 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3218
3219 /* Response Queue Registers */
3220 *((u16 *) (qdev->prsp_producer_index)) = 0;
3221 qdev->rsp_consumer_index = 0;
3222 qdev->rsp_current = qdev->rsp_q_virt_addr;
3223
3224 ql_write_page1_reg(qdev,
3225 &hmem_regs->rspProducerIndexAddrHigh,
3226 qdev->rsp_producer_index_phy_addr_high);
3227
3228 ql_write_page1_reg(qdev,
3229 &hmem_regs->rspProducerIndexAddrLow,
3230 qdev->rsp_producer_index_phy_addr_low);
3231
3232 ql_write_page1_reg(qdev,
3233 &hmem_regs->rspBaseAddrHigh,
3234 MS_64BITS(qdev->rsp_q_phy_addr));
3235
3236 ql_write_page1_reg(qdev,
3237 &hmem_regs->rspBaseAddrLow,
3238 LS_64BITS(qdev->rsp_q_phy_addr));
3239
3240 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3241
3242 /* Large Buffer Queue */
3243 ql_write_page1_reg(qdev,
3244 &hmem_regs->rxLargeQBaseAddrHigh,
3245 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3246
3247 ql_write_page1_reg(qdev,
3248 &hmem_regs->rxLargeQBaseAddrLow,
3249 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3250
3251 ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
3252
3253 ql_write_page1_reg(qdev,
3254 &hmem_regs->rxLargeBufferLength,
3255 qdev->lrg_buffer_len);
3256
3257 /* Small Buffer Queue */
3258 ql_write_page1_reg(qdev,
3259 &hmem_regs->rxSmallQBaseAddrHigh,
3260 MS_64BITS(qdev->small_buf_q_phy_addr));
3261
3262 ql_write_page1_reg(qdev,
3263 &hmem_regs->rxSmallQBaseAddrLow,
3264 LS_64BITS(qdev->small_buf_q_phy_addr));
3265
3266 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3267 ql_write_page1_reg(qdev,
3268 &hmem_regs->rxSmallBufferLength,
3269 QL_SMALL_BUFFER_SIZE);
3270
3271 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3272 qdev->small_buf_release_cnt = 8;
3273 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3274 qdev->lrg_buf_release_cnt = 8;
3275 qdev->lrg_buf_next_free =
3276 (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
3277 qdev->small_buf_index = 0;
3278 qdev->lrg_buf_index = 0;
3279 qdev->lrg_buf_free_count = 0;
3280 qdev->lrg_buf_free_head = NULL;
3281 qdev->lrg_buf_free_tail = NULL;
3282
3283 ql_write_common_reg(qdev,
3284 &port_regs->CommonRegs.
3285 rxSmallQProducerIndex,
3286 qdev->small_buf_q_producer_index);
3287 ql_write_common_reg(qdev,
3288 &port_regs->CommonRegs.
3289 rxLargeQProducerIndex,
3290 qdev->lrg_buf_q_producer_index);
3291
3292 /*
3293 * Find out if the chip has already been initialized. If it has, then
3294 * we skip some of the initialization.
3295 */
3296 clear_bit(QL_LINK_MASTER, &qdev->flags);
3297 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3298 if ((value & PORT_STATUS_IC) == 0) {
3299
3300 /* Chip has not been configured yet, so let it rip. */
3301 if(ql_init_misc_registers(qdev)) {
3302 status = -1;
3303 goto out;
3304 }
3305
3306 value = qdev->nvram_data.tcpMaxWindowSize;
3307 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3308
3309 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3310
3311 if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3312 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3313 * 2) << 13)) {
3314 status = -1;
3315 goto out;
3316 }
3317 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3318 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3319 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3320 16) | (INTERNAL_CHIP_SD |
3321 INTERNAL_CHIP_WE)));
3322 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3323 }
3324
3325 if (qdev->mac_index)
3326 ql_write_page0_reg(qdev,
3327 &port_regs->mac1MaxFrameLengthReg,
3328 qdev->max_frame_size);
3329 else
3330 ql_write_page0_reg(qdev,
3331 &port_regs->mac0MaxFrameLengthReg,
3332 qdev->max_frame_size);
3333
3334 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3335 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3336 2) << 7)) {
3337 status = -1;
3338 goto out;
3339 }
3340
3341 PHY_Setup(qdev);
3342 ql_init_scan_mode(qdev);
3343 ql_get_phy_owner(qdev);
3344
3345 /* Load the MAC Configuration */
3346
3347 /* Program lower 32 bits of the MAC address */
3348 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3349 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3350 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3351 ((qdev->ndev->dev_addr[2] << 24)
3352 | (qdev->ndev->dev_addr[3] << 16)
3353 | (qdev->ndev->dev_addr[4] << 8)
3354 | qdev->ndev->dev_addr[5]));
3355
3356 /* Program top 16 bits of the MAC address */
3357 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3358 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3359 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3360 ((qdev->ndev->dev_addr[0] << 8)
3361 | qdev->ndev->dev_addr[1]));
3362
3363 /* Enable Primary MAC */
3364 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3365 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3366 MAC_ADDR_INDIRECT_PTR_REG_PE));
3367
3368 /* Clear Primary and Secondary IP addresses */
3369 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3370 ((IP_ADDR_INDEX_REG_MASK << 16) |
3371 (qdev->mac_index << 2)));
3372 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3373
3374 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3375 ((IP_ADDR_INDEX_REG_MASK << 16) |
3376 ((qdev->mac_index << 2) + 1)));
3377 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3378
3379 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3380
3381 /* Indicate Configuration Complete */
3382 ql_write_page0_reg(qdev,
3383 &port_regs->portControl,
3384 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3385
3386 do {
3387 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3388 if (value & PORT_STATUS_IC)
3389 break;
3390 msleep(500);
3391 } while (--delay);
3392
3393 if (delay == 0) {
3394 printk(KERN_ERR PFX
3395 "%s: Hw Initialization timeout.\n", qdev->ndev->name);
3396 status = -1;
3397 goto out;
3398 }
3399
3400 /* Enable Ethernet Function */
3401 if (qdev->device_id == QL3032_DEVICE_ID) {
3402 value =
3403 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3404 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3405 QL3032_PORT_CONTROL_ET);
3406 ql_write_page0_reg(qdev, &port_regs->functionControl,
3407 ((value << 16) | value));
3408 } else {
3409 value =
3410 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3411 PORT_CONTROL_HH);
3412 ql_write_page0_reg(qdev, &port_regs->portControl,
3413 ((value << 16) | value));
3414 }
3415
3416
3417 out:
3418 return status;
3419 }
3420
3421 /*
3422 * Caller holds hw_lock.
3423 */
3424 static int ql_adapter_reset(struct ql3_adapter *qdev)
3425 {
3426 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3427 int status = 0;
3428 u16 value;
3429 int max_wait_time;
3430
3431 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3432 clear_bit(QL_RESET_DONE, &qdev->flags);
3433
3434 /*
3435 * Issue soft reset to chip.
3436 */
3437 printk(KERN_DEBUG PFX
3438 "%s: Issue soft reset to chip.\n",
3439 qdev->ndev->name);
3440 ql_write_common_reg(qdev,
3441 &port_regs->CommonRegs.ispControlStatus,
3442 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3443
3444 /* Wait 3 seconds for reset to complete. */
3445 printk(KERN_DEBUG PFX
3446 "%s: Wait 10 milliseconds for reset to complete.\n",
3447 qdev->ndev->name);
3448
3449 /* Wait until the firmware tells us the Soft Reset is done */
3450 max_wait_time = 5;
3451 do {
3452 value =
3453 ql_read_common_reg(qdev,
3454 &port_regs->CommonRegs.ispControlStatus);
3455 if ((value & ISP_CONTROL_SR) == 0)
3456 break;
3457
3458 ssleep(1);
3459 } while ((--max_wait_time));
3460
3461 /*
3462 * Also, make sure that the Network Reset Interrupt bit has been
3463 * cleared after the soft reset has taken place.
3464 */
3465 value =
3466 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3467 if (value & ISP_CONTROL_RI) {
3468 printk(KERN_DEBUG PFX
3469 "ql_adapter_reset: clearing RI after reset.\n");
3470 ql_write_common_reg(qdev,
3471 &port_regs->CommonRegs.
3472 ispControlStatus,
3473 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3474 }
3475
3476 if (max_wait_time == 0) {
3477 /* Issue Force Soft Reset */
3478 ql_write_common_reg(qdev,
3479 &port_regs->CommonRegs.
3480 ispControlStatus,
3481 ((ISP_CONTROL_FSR << 16) |
3482 ISP_CONTROL_FSR));
3483 /*
3484 * Wait until the firmware tells us the Force Soft Reset is
3485 * done
3486 */
3487 max_wait_time = 5;
3488 do {
3489 value =
3490 ql_read_common_reg(qdev,
3491 &port_regs->CommonRegs.
3492 ispControlStatus);
3493 if ((value & ISP_CONTROL_FSR) == 0) {
3494 break;
3495 }
3496 ssleep(1);
3497 } while ((--max_wait_time));
3498 }
3499 if (max_wait_time == 0)
3500 status = 1;
3501
3502 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3503 set_bit(QL_RESET_DONE, &qdev->flags);
3504 return status;
3505 }
3506
3507 static void ql_set_mac_info(struct ql3_adapter *qdev)
3508 {
3509 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3510 u32 value, port_status;
3511 u8 func_number;
3512
3513 /* Get the function number */
3514 value =
3515 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3516 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3517 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3518 switch (value & ISP_CONTROL_FN_MASK) {
3519 case ISP_CONTROL_FN0_NET:
3520 qdev->mac_index = 0;
3521 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3522 qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
3523 qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
3524 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3525 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3526 if (port_status & PORT_STATUS_SM0)
3527 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3528 else
3529 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3530 break;
3531
3532 case ISP_CONTROL_FN1_NET:
3533 qdev->mac_index = 1;
3534 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3535 qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
3536 qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
3537 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3538 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3539 if (port_status & PORT_STATUS_SM1)
3540 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3541 else
3542 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3543 break;
3544
3545 case ISP_CONTROL_FN0_SCSI:
3546 case ISP_CONTROL_FN1_SCSI:
3547 default:
3548 printk(KERN_DEBUG PFX
3549 "%s: Invalid function number, ispControlStatus = 0x%x\n",
3550 qdev->ndev->name,value);
3551 break;
3552 }
3553 qdev->numPorts = qdev->nvram_data.numPorts;
3554 }
3555
3556 static void ql_display_dev_info(struct net_device *ndev)
3557 {
3558 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3559 struct pci_dev *pdev = qdev->pdev;
3560 DECLARE_MAC_BUF(mac);
3561
3562 printk(KERN_INFO PFX
3563 "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
3564 DRV_NAME, qdev->index, qdev->chip_rev_id,
3565 (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
3566 qdev->pci_slot);
3567 printk(KERN_INFO PFX
3568 "%s Interface.\n",
3569 test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
3570
3571 /*
3572 * Print PCI bus width/type.
3573 */
3574 printk(KERN_INFO PFX
3575 "Bus interface is %s %s.\n",
3576 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3577 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3578
3579 printk(KERN_INFO PFX
3580 "mem IO base address adjusted = 0x%p\n",
3581 qdev->mem_map_registers);
3582 printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
3583
3584 if (netif_msg_probe(qdev))
3585 printk(KERN_INFO PFX
3586 "%s: MAC address %s\n",
3587 ndev->name, print_mac(mac, ndev->dev_addr));
3588 }
3589
3590 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3591 {
3592 struct net_device *ndev = qdev->ndev;
3593 int retval = 0;
3594
3595 netif_stop_queue(ndev);
3596 netif_carrier_off(ndev);
3597
3598 clear_bit(QL_ADAPTER_UP,&qdev->flags);
3599 clear_bit(QL_LINK_MASTER,&qdev->flags);
3600
3601 ql_disable_interrupts(qdev);
3602
3603 free_irq(qdev->pdev->irq, ndev);
3604
3605 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3606 printk(KERN_INFO PFX
3607 "%s: calling pci_disable_msi().\n", qdev->ndev->name);
3608 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3609 pci_disable_msi(qdev->pdev);
3610 }
3611
3612 del_timer_sync(&qdev->adapter_timer);
3613
3614 napi_disable(&qdev->napi);
3615
3616 if (do_reset) {
3617 int soft_reset;
3618 unsigned long hw_flags;
3619
3620 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3621 if (ql_wait_for_drvr_lock(qdev)) {
3622 if ((soft_reset = ql_adapter_reset(qdev))) {
3623 printk(KERN_ERR PFX
3624 "%s: ql_adapter_reset(%d) FAILED!\n",
3625 ndev->name, qdev->index);
3626 }
3627 printk(KERN_ERR PFX
3628 "%s: Releaseing driver lock via chip reset.\n",ndev->name);
3629 } else {
3630 printk(KERN_ERR PFX
3631 "%s: Could not acquire driver lock to do "
3632 "reset!\n", ndev->name);
3633 retval = -1;
3634 }
3635 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3636 }
3637 ql_free_mem_resources(qdev);
3638 return retval;
3639 }
3640
3641 static int ql_adapter_up(struct ql3_adapter *qdev)
3642 {
3643 struct net_device *ndev = qdev->ndev;
3644 int err;
3645 unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
3646 unsigned long hw_flags;
3647
3648 if (ql_alloc_mem_resources(qdev)) {
3649 printk(KERN_ERR PFX
3650 "%s Unable to allocate buffers.\n", ndev->name);
3651 return -ENOMEM;
3652 }
3653
3654 if (qdev->msi) {
3655 if (pci_enable_msi(qdev->pdev)) {
3656 printk(KERN_ERR PFX
3657 "%s: User requested MSI, but MSI failed to "
3658 "initialize. Continuing without MSI.\n",
3659 qdev->ndev->name);
3660 qdev->msi = 0;
3661 } else {
3662 printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
3663 set_bit(QL_MSI_ENABLED,&qdev->flags);
3664 irq_flags &= ~IRQF_SHARED;
3665 }
3666 }
3667
3668 if ((err = request_irq(qdev->pdev->irq,
3669 ql3xxx_isr,
3670 irq_flags, ndev->name, ndev))) {
3671 printk(KERN_ERR PFX
3672 "%s: Failed to reserve interrupt %d already in use.\n",
3673 ndev->name, qdev->pdev->irq);
3674 goto err_irq;
3675 }
3676
3677 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3678
3679 if ((err = ql_wait_for_drvr_lock(qdev))) {
3680 if ((err = ql_adapter_initialize(qdev))) {
3681 printk(KERN_ERR PFX
3682 "%s: Unable to initialize adapter.\n",
3683 ndev->name);
3684 goto err_init;
3685 }
3686 printk(KERN_ERR PFX
3687 "%s: Releaseing driver lock.\n",ndev->name);
3688 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3689 } else {
3690 printk(KERN_ERR PFX
3691 "%s: Could not aquire driver lock.\n",
3692 ndev->name);
3693 goto err_lock;
3694 }
3695
3696 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3697
3698 set_bit(QL_ADAPTER_UP,&qdev->flags);
3699
3700 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3701
3702 napi_enable(&qdev->napi);
3703 ql_enable_interrupts(qdev);
3704 return 0;
3705
3706 err_init:
3707 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3708 err_lock:
3709 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3710 free_irq(qdev->pdev->irq, ndev);
3711 err_irq:
3712 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3713 printk(KERN_INFO PFX
3714 "%s: calling pci_disable_msi().\n",
3715 qdev->ndev->name);
3716 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3717 pci_disable_msi(qdev->pdev);
3718 }
3719 return err;
3720 }
3721
3722 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3723 {
3724 if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
3725 printk(KERN_ERR PFX
3726 "%s: Driver up/down cycle failed, "
3727 "closing device\n",qdev->ndev->name);
3728 dev_close(qdev->ndev);
3729 return -1;
3730 }
3731 return 0;
3732 }
3733
3734 static int ql3xxx_close(struct net_device *ndev)
3735 {
3736 struct ql3_adapter *qdev = netdev_priv(ndev);
3737
3738 /*
3739 * Wait for device to recover from a reset.
3740 * (Rarely happens, but possible.)
3741 */
3742 while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
3743 msleep(50);
3744
3745 ql_adapter_down(qdev,QL_DO_RESET);
3746 return 0;
3747 }
3748
3749 static int ql3xxx_open(struct net_device *ndev)
3750 {
3751 struct ql3_adapter *qdev = netdev_priv(ndev);
3752 return (ql_adapter_up(qdev));
3753 }
3754
3755 static void ql3xxx_set_multicast_list(struct net_device *ndev)
3756 {
3757 /*
3758 * We are manually parsing the list in the net_device structure.
3759 */
3760 return;
3761 }
3762
3763 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3764 {
3765 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3766 struct ql3xxx_port_registers __iomem *port_regs =
3767 qdev->mem_map_registers;
3768 struct sockaddr *addr = p;
3769 unsigned long hw_flags;
3770
3771 if (netif_running(ndev))
3772 return -EBUSY;
3773
3774 if (!is_valid_ether_addr(addr->sa_data))
3775 return -EADDRNOTAVAIL;
3776
3777 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3778
3779 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3780 /* Program lower 32 bits of the MAC address */
3781 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3782 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3783 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3784 ((ndev->dev_addr[2] << 24) | (ndev->
3785 dev_addr[3] << 16) |
3786 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3787
3788 /* Program top 16 bits of the MAC address */
3789 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3790 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3791 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3792 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3793 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3794
3795 return 0;
3796 }
3797
3798 static void ql3xxx_tx_timeout(struct net_device *ndev)
3799 {
3800 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3801
3802 printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
3803 /*
3804 * Stop the queues, we've got a problem.
3805 */
3806 netif_stop_queue(ndev);
3807
3808 /*
3809 * Wake up the worker to process this event.
3810 */
3811 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3812 }
3813
3814 static void ql_reset_work(struct work_struct *work)
3815 {
3816 struct ql3_adapter *qdev =
3817 container_of(work, struct ql3_adapter, reset_work.work);
3818 struct net_device *ndev = qdev->ndev;
3819 u32 value;
3820 struct ql_tx_buf_cb *tx_cb;
3821 int max_wait_time, i;
3822 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3823 unsigned long hw_flags;
3824
3825 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
3826 clear_bit(QL_LINK_MASTER,&qdev->flags);
3827
3828 /*
3829 * Loop through the active list and return the skb.
3830 */
3831 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3832 int j;
3833 tx_cb = &qdev->tx_buf[i];
3834 if (tx_cb->skb) {
3835 printk(KERN_DEBUG PFX
3836 "%s: Freeing lost SKB.\n",
3837 qdev->ndev->name);
3838 pci_unmap_single(qdev->pdev,
3839 pci_unmap_addr(&tx_cb->map[0], mapaddr),
3840 pci_unmap_len(&tx_cb->map[0], maplen),
3841 PCI_DMA_TODEVICE);
3842 for(j=1;j<tx_cb->seg_count;j++) {
3843 pci_unmap_page(qdev->pdev,
3844 pci_unmap_addr(&tx_cb->map[j],mapaddr),
3845 pci_unmap_len(&tx_cb->map[j],maplen),
3846 PCI_DMA_TODEVICE);
3847 }
3848 dev_kfree_skb(tx_cb->skb);
3849 tx_cb->skb = NULL;
3850 }
3851 }
3852
3853 printk(KERN_ERR PFX
3854 "%s: Clearing NRI after reset.\n", qdev->ndev->name);
3855 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3856 ql_write_common_reg(qdev,
3857 &port_regs->CommonRegs.
3858 ispControlStatus,
3859 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3860 /*
3861 * Wait the for Soft Reset to Complete.
3862 */
3863 max_wait_time = 10;
3864 do {
3865 value = ql_read_common_reg(qdev,
3866 &port_regs->CommonRegs.
3867
3868 ispControlStatus);
3869 if ((value & ISP_CONTROL_SR) == 0) {
3870 printk(KERN_DEBUG PFX
3871 "%s: reset completed.\n",
3872 qdev->ndev->name);
3873 break;
3874 }
3875
3876 if (value & ISP_CONTROL_RI) {
3877 printk(KERN_DEBUG PFX
3878 "%s: clearing NRI after reset.\n",
3879 qdev->ndev->name);
3880 ql_write_common_reg(qdev,
3881 &port_regs->
3882 CommonRegs.
3883 ispControlStatus,
3884 ((ISP_CONTROL_RI <<
3885 16) | ISP_CONTROL_RI));
3886 }
3887
3888 ssleep(1);
3889 } while (--max_wait_time);
3890 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3891
3892 if (value & ISP_CONTROL_SR) {
3893
3894 /*
3895 * Set the reset flags and clear the board again.
3896 * Nothing else to do...
3897 */
3898 printk(KERN_ERR PFX
3899 "%s: Timed out waiting for reset to "
3900 "complete.\n", ndev->name);
3901 printk(KERN_ERR PFX
3902 "%s: Do a reset.\n", ndev->name);
3903 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3904 clear_bit(QL_RESET_START,&qdev->flags);
3905 ql_cycle_adapter(qdev,QL_DO_RESET);
3906 return;
3907 }
3908
3909 clear_bit(QL_RESET_ACTIVE,&qdev->flags);
3910 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3911 clear_bit(QL_RESET_START,&qdev->flags);
3912 ql_cycle_adapter(qdev,QL_NO_RESET);
3913 }
3914 }
3915
3916 static void ql_tx_timeout_work(struct work_struct *work)
3917 {
3918 struct ql3_adapter *qdev =
3919 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3920
3921 ql_cycle_adapter(qdev, QL_DO_RESET);
3922 }
3923
3924 static void ql_get_board_info(struct ql3_adapter *qdev)
3925 {
3926 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3927 u32 value;
3928
3929 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3930
3931 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3932 if (value & PORT_STATUS_64)
3933 qdev->pci_width = 64;
3934 else
3935 qdev->pci_width = 32;
3936 if (value & PORT_STATUS_X)
3937 qdev->pci_x = 1;
3938 else
3939 qdev->pci_x = 0;
3940 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3941 }
3942
3943 static void ql3xxx_timer(unsigned long ptr)
3944 {
3945 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3946
3947 if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
3948 printk(KERN_DEBUG PFX
3949 "%s: Reset in progress.\n",
3950 qdev->ndev->name);
3951 goto end;
3952 }
3953
3954 ql_link_state_machine(qdev);
3955
3956 /* Restart timer on 2 second interval. */
3957 end:
3958 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3959 }
3960
3961 static int __devinit ql3xxx_probe(struct pci_dev *pdev,
3962 const struct pci_device_id *pci_entry)
3963 {
3964 struct net_device *ndev = NULL;
3965 struct ql3_adapter *qdev = NULL;
3966 static int cards_found = 0;
3967 int pci_using_dac, err;
3968
3969 err = pci_enable_device(pdev);
3970 if (err) {
3971 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3972 pci_name(pdev));
3973 goto err_out;
3974 }
3975
3976 err = pci_request_regions(pdev, DRV_NAME);
3977 if (err) {
3978 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3979 pci_name(pdev));
3980 goto err_out_disable_pdev;
3981 }
3982
3983 pci_set_master(pdev);
3984
3985 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3986 pci_using_dac = 1;
3987 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3988 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3989 pci_using_dac = 0;
3990 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3991 }
3992
3993 if (err) {
3994 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3995 pci_name(pdev));
3996 goto err_out_free_regions;
3997 }
3998
3999 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
4000 if (!ndev) {
4001 printk(KERN_ERR PFX "%s could not alloc etherdev\n",
4002 pci_name(pdev));
4003 err = -ENOMEM;
4004 goto err_out_free_regions;
4005 }
4006
4007 SET_NETDEV_DEV(ndev, &pdev->dev);
4008
4009 pci_set_drvdata(pdev, ndev);
4010
4011 qdev = netdev_priv(ndev);
4012 qdev->index = cards_found;
4013 qdev->ndev = ndev;
4014 qdev->pdev = pdev;
4015 qdev->device_id = pci_entry->device;
4016 qdev->port_link_state = LS_DOWN;
4017 if (msi)
4018 qdev->msi = 1;
4019
4020 qdev->msg_enable = netif_msg_init(debug, default_msg);
4021
4022 if (pci_using_dac)
4023 ndev->features |= NETIF_F_HIGHDMA;
4024 if (qdev->device_id == QL3032_DEVICE_ID)
4025 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
4026
4027 qdev->mem_map_registers =
4028 ioremap_nocache(pci_resource_start(pdev, 1),
4029 pci_resource_len(qdev->pdev, 1));
4030 if (!qdev->mem_map_registers) {
4031 printk(KERN_ERR PFX "%s: cannot map device registers\n",
4032 pci_name(pdev));
4033 err = -EIO;
4034 goto err_out_free_ndev;
4035 }
4036
4037 spin_lock_init(&qdev->adapter_lock);
4038 spin_lock_init(&qdev->hw_lock);
4039
4040 /* Set driver entry points */
4041 ndev->open = ql3xxx_open;
4042 ndev->hard_start_xmit = ql3xxx_send;
4043 ndev->stop = ql3xxx_close;
4044 ndev->set_multicast_list = ql3xxx_set_multicast_list;
4045 SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
4046 ndev->set_mac_address = ql3xxx_set_mac_address;
4047 ndev->tx_timeout = ql3xxx_tx_timeout;
4048 ndev->watchdog_timeo = 5 * HZ;
4049
4050 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
4051
4052 ndev->irq = pdev->irq;
4053
4054 /* make sure the EEPROM is good */
4055 if (ql_get_nvram_params(qdev)) {
4056 printk(KERN_ALERT PFX
4057 "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
4058 qdev->index);
4059 err = -EIO;
4060 goto err_out_iounmap;
4061 }
4062
4063 ql_set_mac_info(qdev);
4064
4065 /* Validate and set parameters */
4066 if (qdev->mac_index) {
4067 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
4068 memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
4069 ETH_ALEN);
4070 } else {
4071 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
4072 memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
4073 ETH_ALEN);
4074 }
4075 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4076
4077 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
4078
4079 /* Turn off support for multicasting */
4080 ndev->flags &= ~IFF_MULTICAST;
4081
4082 /* Record PCI bus information. */
4083 ql_get_board_info(qdev);
4084
4085 /*
4086 * Set the Maximum Memory Read Byte Count value. We do this to handle
4087 * jumbo frames.
4088 */
4089 if (qdev->pci_x) {
4090 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
4091 }
4092
4093 err = register_netdev(ndev);
4094 if (err) {
4095 printk(KERN_ERR PFX "%s: cannot register net device\n",
4096 pci_name(pdev));
4097 goto err_out_iounmap;
4098 }
4099
4100 /* we're going to reset, so assume we have no link for now */
4101
4102 netif_carrier_off(ndev);
4103 netif_stop_queue(ndev);
4104
4105 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4106 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
4107 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
4108
4109 init_timer(&qdev->adapter_timer);
4110 qdev->adapter_timer.function = ql3xxx_timer;
4111 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
4112 qdev->adapter_timer.data = (unsigned long)qdev;
4113
4114 if(!cards_found) {
4115 printk(KERN_ALERT PFX "%s\n", DRV_STRING);
4116 printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
4117 DRV_NAME, DRV_VERSION);
4118 }
4119 ql_display_dev_info(ndev);
4120
4121 cards_found++;
4122 return 0;
4123
4124 err_out_iounmap:
4125 iounmap(qdev->mem_map_registers);
4126 err_out_free_ndev:
4127 free_netdev(ndev);
4128 err_out_free_regions:
4129 pci_release_regions(pdev);
4130 err_out_disable_pdev:
4131 pci_disable_device(pdev);
4132 pci_set_drvdata(pdev, NULL);
4133 err_out:
4134 return err;
4135 }
4136
4137 static void __devexit ql3xxx_remove(struct pci_dev *pdev)
4138 {
4139 struct net_device *ndev = pci_get_drvdata(pdev);
4140 struct ql3_adapter *qdev = netdev_priv(ndev);
4141
4142 unregister_netdev(ndev);
4143 qdev = netdev_priv(ndev);
4144
4145 ql_disable_interrupts(qdev);
4146
4147 if (qdev->workqueue) {
4148 cancel_delayed_work(&qdev->reset_work);
4149 cancel_delayed_work(&qdev->tx_timeout_work);
4150 destroy_workqueue(qdev->workqueue);
4151 qdev->workqueue = NULL;
4152 }
4153
4154 iounmap(qdev->mem_map_registers);
4155 pci_release_regions(pdev);
4156 pci_set_drvdata(pdev, NULL);
4157 free_netdev(ndev);
4158 }
4159
4160 static struct pci_driver ql3xxx_driver = {
4161
4162 .name = DRV_NAME,
4163 .id_table = ql3xxx_pci_tbl,
4164 .probe = ql3xxx_probe,
4165 .remove = __devexit_p(ql3xxx_remove),
4166 };
4167
4168 static int __init ql3xxx_init_module(void)
4169 {
4170 return pci_register_driver(&ql3xxx_driver);
4171 }
4172
4173 static void __exit ql3xxx_exit(void)
4174 {
4175 pci_unregister_driver(&ql3xxx_driver);
4176 }
4177
4178 module_init(ql3xxx_init_module);
4179 module_exit(ql3xxx_exit);
This page took 0.124212 seconds and 5 git commands to generate.