qla3xxx: bugfix: Move link state machine into a worker thread
[deliverable/linux.git] / drivers / net / qla3xxx.c
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36
37 #include "qla3xxx.h"
38
39 #define DRV_NAME "qla3xxx"
40 #define DRV_STRING "QLogic ISP3XXX Network Driver"
41 #define DRV_VERSION "v2.03.00-k4"
42 #define PFX DRV_NAME " "
43
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46
47 MODULE_AUTHOR("QLogic Corporation");
48 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(DRV_VERSION);
51
52 static const u32 default_msg
53 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
54 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
55
56 static int debug = -1; /* defaults above */
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static int msi;
61 module_param(msi, int, 0);
62 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
63
64 static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
65 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
66 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
67 /* required last entry */
68 {0,}
69 };
70
71 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
72
73 /*
74 * These are the known PHY's which are used
75 */
76 typedef enum {
77 PHY_TYPE_UNKNOWN = 0,
78 PHY_VITESSE_VSC8211,
79 PHY_AGERE_ET1011C,
80 MAX_PHY_DEV_TYPES
81 } PHY_DEVICE_et;
82
83 typedef struct {
84 PHY_DEVICE_et phyDevice;
85 u32 phyIdOUI;
86 u16 phyIdModel;
87 char *name;
88 } PHY_DEVICE_INFO_t;
89
90 static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
91 {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
92 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
93 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
94 };
95
96
97 /*
98 * Caller must take hw_lock.
99 */
100 static int ql_sem_spinlock(struct ql3_adapter *qdev,
101 u32 sem_mask, u32 sem_bits)
102 {
103 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
104 u32 value;
105 unsigned int seconds = 3;
106
107 do {
108 writel((sem_mask | sem_bits),
109 &port_regs->CommonRegs.semaphoreReg);
110 value = readl(&port_regs->CommonRegs.semaphoreReg);
111 if ((value & (sem_mask >> 16)) == sem_bits)
112 return 0;
113 ssleep(1);
114 } while(--seconds);
115 return -1;
116 }
117
118 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
119 {
120 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
121 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
122 readl(&port_regs->CommonRegs.semaphoreReg);
123 }
124
125 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
126 {
127 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
128 u32 value;
129
130 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
131 value = readl(&port_regs->CommonRegs.semaphoreReg);
132 return ((value & (sem_mask >> 16)) == sem_bits);
133 }
134
135 /*
136 * Caller holds hw_lock.
137 */
138 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
139 {
140 int i = 0;
141
142 while (1) {
143 if (!ql_sem_lock(qdev,
144 QL_DRVR_SEM_MASK,
145 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
146 * 2) << 1)) {
147 if (i < 10) {
148 ssleep(1);
149 i++;
150 } else {
151 printk(KERN_ERR PFX "%s: Timed out waiting for "
152 "driver lock...\n",
153 qdev->ndev->name);
154 return 0;
155 }
156 } else {
157 printk(KERN_DEBUG PFX
158 "%s: driver lock acquired.\n",
159 qdev->ndev->name);
160 return 1;
161 }
162 }
163 }
164
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
168
169 writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 &port_regs->CommonRegs.ispControlStatus);
171 readl(&port_regs->CommonRegs.ispControlStatus);
172 qdev->current_page = page;
173 }
174
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
176 u32 __iomem * reg)
177 {
178 u32 value;
179 unsigned long hw_flags;
180
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184
185 return value;
186 }
187
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev,
189 u32 __iomem * reg)
190 {
191 return readl(reg);
192 }
193
194 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
195 {
196 u32 value;
197 unsigned long hw_flags;
198
199 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
200
201 if (qdev->current_page != 0)
202 ql_set_register_page(qdev,0);
203 value = readl(reg);
204
205 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
206 return value;
207 }
208
209 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
210 {
211 if (qdev->current_page != 0)
212 ql_set_register_page(qdev,0);
213 return readl(reg);
214 }
215
216 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
217 u32 __iomem *reg, u32 value)
218 {
219 unsigned long hw_flags;
220
221 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
222 writel(value, reg);
223 readl(reg);
224 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
225 return;
226 }
227
228 static void ql_write_common_reg(struct ql3_adapter *qdev,
229 u32 __iomem *reg, u32 value)
230 {
231 writel(value, reg);
232 readl(reg);
233 return;
234 }
235
236 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
237 u32 __iomem *reg, u32 value)
238 {
239 writel(value, reg);
240 readl(reg);
241 udelay(1);
242 return;
243 }
244
245 static void ql_write_page0_reg(struct ql3_adapter *qdev,
246 u32 __iomem *reg, u32 value)
247 {
248 if (qdev->current_page != 0)
249 ql_set_register_page(qdev,0);
250 writel(value, reg);
251 readl(reg);
252 return;
253 }
254
255 /*
256 * Caller holds hw_lock. Only called during init.
257 */
258 static void ql_write_page1_reg(struct ql3_adapter *qdev,
259 u32 __iomem *reg, u32 value)
260 {
261 if (qdev->current_page != 1)
262 ql_set_register_page(qdev,1);
263 writel(value, reg);
264 readl(reg);
265 return;
266 }
267
268 /*
269 * Caller holds hw_lock. Only called during init.
270 */
271 static void ql_write_page2_reg(struct ql3_adapter *qdev,
272 u32 __iomem *reg, u32 value)
273 {
274 if (qdev->current_page != 2)
275 ql_set_register_page(qdev,2);
276 writel(value, reg);
277 readl(reg);
278 return;
279 }
280
281 static void ql_disable_interrupts(struct ql3_adapter *qdev)
282 {
283 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
284
285 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
286 (ISP_IMR_ENABLE_INT << 16));
287
288 }
289
290 static void ql_enable_interrupts(struct ql3_adapter *qdev)
291 {
292 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
293
294 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
295 ((0xff << 16) | ISP_IMR_ENABLE_INT));
296
297 }
298
299 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
300 struct ql_rcv_buf_cb *lrg_buf_cb)
301 {
302 dma_addr_t map;
303 int err;
304 lrg_buf_cb->next = NULL;
305
306 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
307 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
308 } else {
309 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
310 qdev->lrg_buf_free_tail = lrg_buf_cb;
311 }
312
313 if (!lrg_buf_cb->skb) {
314 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
315 qdev->lrg_buffer_len);
316 if (unlikely(!lrg_buf_cb->skb)) {
317 printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
318 qdev->ndev->name);
319 qdev->lrg_buf_skb_check++;
320 } else {
321 /*
322 * We save some space to copy the ethhdr from first
323 * buffer
324 */
325 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
326 map = pci_map_single(qdev->pdev,
327 lrg_buf_cb->skb->data,
328 qdev->lrg_buffer_len -
329 QL_HEADER_SPACE,
330 PCI_DMA_FROMDEVICE);
331 err = pci_dma_mapping_error(map);
332 if(err) {
333 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
334 qdev->ndev->name, err);
335 dev_kfree_skb(lrg_buf_cb->skb);
336 lrg_buf_cb->skb = NULL;
337
338 qdev->lrg_buf_skb_check++;
339 return;
340 }
341
342 lrg_buf_cb->buf_phy_addr_low =
343 cpu_to_le32(LS_64BITS(map));
344 lrg_buf_cb->buf_phy_addr_high =
345 cpu_to_le32(MS_64BITS(map));
346 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
347 pci_unmap_len_set(lrg_buf_cb, maplen,
348 qdev->lrg_buffer_len -
349 QL_HEADER_SPACE);
350 }
351 }
352
353 qdev->lrg_buf_free_count++;
354 }
355
356 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
357 *qdev)
358 {
359 struct ql_rcv_buf_cb *lrg_buf_cb;
360
361 if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
362 if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
363 qdev->lrg_buf_free_tail = NULL;
364 qdev->lrg_buf_free_count--;
365 }
366
367 return lrg_buf_cb;
368 }
369
370 static u32 addrBits = EEPROM_NO_ADDR_BITS;
371 static u32 dataBits = EEPROM_NO_DATA_BITS;
372
373 static void fm93c56a_deselect(struct ql3_adapter *qdev);
374 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
375 unsigned short *value);
376
377 /*
378 * Caller holds hw_lock.
379 */
380 static void fm93c56a_select(struct ql3_adapter *qdev)
381 {
382 struct ql3xxx_port_registers __iomem *port_regs =
383 qdev->mem_map_registers;
384
385 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
386 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
387 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
388 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
389 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
390 }
391
392 /*
393 * Caller holds hw_lock.
394 */
395 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
396 {
397 int i;
398 u32 mask;
399 u32 dataBit;
400 u32 previousBit;
401 struct ql3xxx_port_registers __iomem *port_regs =
402 qdev->mem_map_registers;
403
404 /* Clock in a zero, then do the start bit */
405 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
406 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
407 AUBURN_EEPROM_DO_1);
408 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
409 ISP_NVRAM_MASK | qdev->
410 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
411 AUBURN_EEPROM_CLK_RISE);
412 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
413 ISP_NVRAM_MASK | qdev->
414 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
415 AUBURN_EEPROM_CLK_FALL);
416
417 mask = 1 << (FM93C56A_CMD_BITS - 1);
418 /* Force the previous data bit to be different */
419 previousBit = 0xffff;
420 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
421 dataBit =
422 (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
423 if (previousBit != dataBit) {
424 /*
425 * If the bit changed, then change the DO state to
426 * match
427 */
428 ql_write_nvram_reg(qdev,
429 &port_regs->CommonRegs.
430 serialPortInterfaceReg,
431 ISP_NVRAM_MASK | qdev->
432 eeprom_cmd_data | dataBit);
433 previousBit = dataBit;
434 }
435 ql_write_nvram_reg(qdev,
436 &port_regs->CommonRegs.
437 serialPortInterfaceReg,
438 ISP_NVRAM_MASK | qdev->
439 eeprom_cmd_data | dataBit |
440 AUBURN_EEPROM_CLK_RISE);
441 ql_write_nvram_reg(qdev,
442 &port_regs->CommonRegs.
443 serialPortInterfaceReg,
444 ISP_NVRAM_MASK | qdev->
445 eeprom_cmd_data | dataBit |
446 AUBURN_EEPROM_CLK_FALL);
447 cmd = cmd << 1;
448 }
449
450 mask = 1 << (addrBits - 1);
451 /* Force the previous data bit to be different */
452 previousBit = 0xffff;
453 for (i = 0; i < addrBits; i++) {
454 dataBit =
455 (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
456 AUBURN_EEPROM_DO_0;
457 if (previousBit != dataBit) {
458 /*
459 * If the bit changed, then change the DO state to
460 * match
461 */
462 ql_write_nvram_reg(qdev,
463 &port_regs->CommonRegs.
464 serialPortInterfaceReg,
465 ISP_NVRAM_MASK | qdev->
466 eeprom_cmd_data | dataBit);
467 previousBit = dataBit;
468 }
469 ql_write_nvram_reg(qdev,
470 &port_regs->CommonRegs.
471 serialPortInterfaceReg,
472 ISP_NVRAM_MASK | qdev->
473 eeprom_cmd_data | dataBit |
474 AUBURN_EEPROM_CLK_RISE);
475 ql_write_nvram_reg(qdev,
476 &port_regs->CommonRegs.
477 serialPortInterfaceReg,
478 ISP_NVRAM_MASK | qdev->
479 eeprom_cmd_data | dataBit |
480 AUBURN_EEPROM_CLK_FALL);
481 eepromAddr = eepromAddr << 1;
482 }
483 }
484
485 /*
486 * Caller holds hw_lock.
487 */
488 static void fm93c56a_deselect(struct ql3_adapter *qdev)
489 {
490 struct ql3xxx_port_registers __iomem *port_regs =
491 qdev->mem_map_registers;
492 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
493 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
494 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
495 }
496
497 /*
498 * Caller holds hw_lock.
499 */
500 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
501 {
502 int i;
503 u32 data = 0;
504 u32 dataBit;
505 struct ql3xxx_port_registers __iomem *port_regs =
506 qdev->mem_map_registers;
507
508 /* Read the data bits */
509 /* The first bit is a dummy. Clock right over it. */
510 for (i = 0; i < dataBits; i++) {
511 ql_write_nvram_reg(qdev,
512 &port_regs->CommonRegs.
513 serialPortInterfaceReg,
514 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
515 AUBURN_EEPROM_CLK_RISE);
516 ql_write_nvram_reg(qdev,
517 &port_regs->CommonRegs.
518 serialPortInterfaceReg,
519 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
520 AUBURN_EEPROM_CLK_FALL);
521 dataBit =
522 (ql_read_common_reg
523 (qdev,
524 &port_regs->CommonRegs.
525 serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
526 data = (data << 1) | dataBit;
527 }
528 *value = (u16) data;
529 }
530
531 /*
532 * Caller holds hw_lock.
533 */
534 static void eeprom_readword(struct ql3_adapter *qdev,
535 u32 eepromAddr, unsigned short *value)
536 {
537 fm93c56a_select(qdev);
538 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
539 fm93c56a_datain(qdev, value);
540 fm93c56a_deselect(qdev);
541 }
542
543 static void ql_swap_mac_addr(u8 * macAddress)
544 {
545 #ifdef __BIG_ENDIAN
546 u8 temp;
547 temp = macAddress[0];
548 macAddress[0] = macAddress[1];
549 macAddress[1] = temp;
550 temp = macAddress[2];
551 macAddress[2] = macAddress[3];
552 macAddress[3] = temp;
553 temp = macAddress[4];
554 macAddress[4] = macAddress[5];
555 macAddress[5] = temp;
556 #endif
557 }
558
559 static int ql_get_nvram_params(struct ql3_adapter *qdev)
560 {
561 u16 *pEEPROMData;
562 u16 checksum = 0;
563 u32 index;
564 unsigned long hw_flags;
565
566 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
567
568 pEEPROMData = (u16 *) & qdev->nvram_data;
569 qdev->eeprom_cmd_data = 0;
570 if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
571 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
572 2) << 10)) {
573 printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
574 __func__);
575 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
576 return -1;
577 }
578
579 for (index = 0; index < EEPROM_SIZE; index++) {
580 eeprom_readword(qdev, index, pEEPROMData);
581 checksum += *pEEPROMData;
582 pEEPROMData++;
583 }
584 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
585
586 if (checksum != 0) {
587 printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
588 qdev->ndev->name, checksum);
589 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
590 return -1;
591 }
592
593 /*
594 * We have a problem with endianness for the MAC addresses
595 * and the two 8-bit values version, and numPorts. We
596 * have to swap them on big endian systems.
597 */
598 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
599 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
600 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
601 ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
602 pEEPROMData = (u16 *) & qdev->nvram_data.version;
603 *pEEPROMData = le16_to_cpu(*pEEPROMData);
604
605 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
606 return checksum;
607 }
608
609 static const u32 PHYAddr[2] = {
610 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
611 };
612
613 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
614 {
615 struct ql3xxx_port_registers __iomem *port_regs =
616 qdev->mem_map_registers;
617 u32 temp;
618 int count = 1000;
619
620 while (count) {
621 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
622 if (!(temp & MAC_MII_STATUS_BSY))
623 return 0;
624 udelay(10);
625 count--;
626 }
627 return -1;
628 }
629
630 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
631 {
632 struct ql3xxx_port_registers __iomem *port_regs =
633 qdev->mem_map_registers;
634 u32 scanControl;
635
636 if (qdev->numPorts > 1) {
637 /* Auto scan will cycle through multiple ports */
638 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
639 } else {
640 scanControl = MAC_MII_CONTROL_SC;
641 }
642
643 /*
644 * Scan register 1 of PHY/PETBI,
645 * Set up to scan both devices
646 * The autoscan starts from the first register, completes
647 * the last one before rolling over to the first
648 */
649 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
650 PHYAddr[0] | MII_SCAN_REGISTER);
651
652 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
653 (scanControl) |
654 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
655 }
656
657 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
658 {
659 u8 ret;
660 struct ql3xxx_port_registers __iomem *port_regs =
661 qdev->mem_map_registers;
662
663 /* See if scan mode is enabled before we turn it off */
664 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
665 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
666 /* Scan is enabled */
667 ret = 1;
668 } else {
669 /* Scan is disabled */
670 ret = 0;
671 }
672
673 /*
674 * When disabling scan mode you must first change the MII register
675 * address
676 */
677 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
678 PHYAddr[0] | MII_SCAN_REGISTER);
679
680 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
681 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
682 MAC_MII_CONTROL_RC) << 16));
683
684 return ret;
685 }
686
687 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
688 u16 regAddr, u16 value, u32 phyAddr)
689 {
690 struct ql3xxx_port_registers __iomem *port_regs =
691 qdev->mem_map_registers;
692 u8 scanWasEnabled;
693
694 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
695
696 if (ql_wait_for_mii_ready(qdev)) {
697 if (netif_msg_link(qdev))
698 printk(KERN_WARNING PFX
699 "%s Timed out waiting for management port to "
700 "get free before issuing command.\n",
701 qdev->ndev->name);
702 return -1;
703 }
704
705 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
706 phyAddr | regAddr);
707
708 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
709
710 /* Wait for write to complete 9/10/04 SJP */
711 if (ql_wait_for_mii_ready(qdev)) {
712 if (netif_msg_link(qdev))
713 printk(KERN_WARNING PFX
714 "%s: Timed out waiting for management port to"
715 "get free before issuing command.\n",
716 qdev->ndev->name);
717 return -1;
718 }
719
720 if (scanWasEnabled)
721 ql_mii_enable_scan_mode(qdev);
722
723 return 0;
724 }
725
726 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
727 u16 * value, u32 phyAddr)
728 {
729 struct ql3xxx_port_registers __iomem *port_regs =
730 qdev->mem_map_registers;
731 u8 scanWasEnabled;
732 u32 temp;
733
734 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
735
736 if (ql_wait_for_mii_ready(qdev)) {
737 if (netif_msg_link(qdev))
738 printk(KERN_WARNING PFX
739 "%s: Timed out waiting for management port to "
740 "get free before issuing command.\n",
741 qdev->ndev->name);
742 return -1;
743 }
744
745 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
746 phyAddr | regAddr);
747
748 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
749 (MAC_MII_CONTROL_RC << 16));
750
751 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
752 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
753
754 /* Wait for the read to complete */
755 if (ql_wait_for_mii_ready(qdev)) {
756 if (netif_msg_link(qdev))
757 printk(KERN_WARNING PFX
758 "%s: Timed out waiting for management port to "
759 "get free after issuing command.\n",
760 qdev->ndev->name);
761 return -1;
762 }
763
764 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
765 *value = (u16) temp;
766
767 if (scanWasEnabled)
768 ql_mii_enable_scan_mode(qdev);
769
770 return 0;
771 }
772
773 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
774 {
775 struct ql3xxx_port_registers __iomem *port_regs =
776 qdev->mem_map_registers;
777
778 ql_mii_disable_scan_mode(qdev);
779
780 if (ql_wait_for_mii_ready(qdev)) {
781 if (netif_msg_link(qdev))
782 printk(KERN_WARNING PFX
783 "%s: Timed out waiting for management port to "
784 "get free before issuing command.\n",
785 qdev->ndev->name);
786 return -1;
787 }
788
789 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
790 qdev->PHYAddr | regAddr);
791
792 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
793
794 /* Wait for write to complete. */
795 if (ql_wait_for_mii_ready(qdev)) {
796 if (netif_msg_link(qdev))
797 printk(KERN_WARNING PFX
798 "%s: Timed out waiting for management port to "
799 "get free before issuing command.\n",
800 qdev->ndev->name);
801 return -1;
802 }
803
804 ql_mii_enable_scan_mode(qdev);
805
806 return 0;
807 }
808
809 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
810 {
811 u32 temp;
812 struct ql3xxx_port_registers __iomem *port_regs =
813 qdev->mem_map_registers;
814
815 ql_mii_disable_scan_mode(qdev);
816
817 if (ql_wait_for_mii_ready(qdev)) {
818 if (netif_msg_link(qdev))
819 printk(KERN_WARNING PFX
820 "%s: Timed out waiting for management port to "
821 "get free before issuing command.\n",
822 qdev->ndev->name);
823 return -1;
824 }
825
826 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
827 qdev->PHYAddr | regAddr);
828
829 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
830 (MAC_MII_CONTROL_RC << 16));
831
832 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
833 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
834
835 /* Wait for the read to complete */
836 if (ql_wait_for_mii_ready(qdev)) {
837 if (netif_msg_link(qdev))
838 printk(KERN_WARNING PFX
839 "%s: Timed out waiting for management port to "
840 "get free before issuing command.\n",
841 qdev->ndev->name);
842 return -1;
843 }
844
845 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
846 *value = (u16) temp;
847
848 ql_mii_enable_scan_mode(qdev);
849
850 return 0;
851 }
852
853 static void ql_petbi_reset(struct ql3_adapter *qdev)
854 {
855 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
856 }
857
858 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
859 {
860 u16 reg;
861
862 /* Enable Auto-negotiation sense */
863 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
864 reg |= PETBI_TBI_AUTO_SENSE;
865 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
866
867 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
868 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
869
870 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
871 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
872 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
873
874 }
875
876 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
877 {
878 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
879 PHYAddr[qdev->mac_index]);
880 }
881
882 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
883 {
884 u16 reg;
885
886 /* Enable Auto-negotiation sense */
887 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
888 PHYAddr[qdev->mac_index]);
889 reg |= PETBI_TBI_AUTO_SENSE;
890 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
891 PHYAddr[qdev->mac_index]);
892
893 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
894 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
895 PHYAddr[qdev->mac_index]);
896
897 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
898 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
899 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
900 PHYAddr[qdev->mac_index]);
901 }
902
903 static void ql_petbi_init(struct ql3_adapter *qdev)
904 {
905 ql_petbi_reset(qdev);
906 ql_petbi_start_neg(qdev);
907 }
908
909 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
910 {
911 ql_petbi_reset_ex(qdev);
912 ql_petbi_start_neg_ex(qdev);
913 }
914
915 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
916 {
917 u16 reg;
918
919 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
920 return 0;
921
922 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
923 }
924
925 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
926 {
927 printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
928 /* power down device bit 11 = 1 */
929 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
930 /* enable diagnostic mode bit 2 = 1 */
931 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
932 /* 1000MB amplitude adjust (see Agere errata) */
933 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
934 /* 1000MB amplitude adjust (see Agere errata) */
935 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
936 /* 100MB amplitude adjust (see Agere errata) */
937 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
938 /* 100MB amplitude adjust (see Agere errata) */
939 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
940 /* 10MB amplitude adjust (see Agere errata) */
941 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
942 /* 10MB amplitude adjust (see Agere errata) */
943 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
944 /* point to hidden reg 0x2806 */
945 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
946 /* Write new PHYAD w/bit 5 set */
947 ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
948 /*
949 * Disable diagnostic mode bit 2 = 0
950 * Power up device bit 11 = 0
951 * Link up (on) and activity (blink)
952 */
953 ql_mii_write_reg(qdev, 0x12, 0x840a);
954 ql_mii_write_reg(qdev, 0x00, 0x1140);
955 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
956 }
957
958 static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
959 u16 phyIdReg0, u16 phyIdReg1)
960 {
961 PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
962 u32 oui;
963 u16 model;
964 int i;
965
966 if (phyIdReg0 == 0xffff) {
967 return result;
968 }
969
970 if (phyIdReg1 == 0xffff) {
971 return result;
972 }
973
974 /* oui is split between two registers */
975 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
976
977 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
978
979 /* Scan table for this PHY */
980 for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
981 if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
982 {
983 result = PHY_DEVICES[i].phyDevice;
984
985 printk(KERN_INFO "%s: Phy: %s\n",
986 qdev->ndev->name, PHY_DEVICES[i].name);
987
988 break;
989 }
990 }
991
992 return result;
993 }
994
995 static int ql_phy_get_speed(struct ql3_adapter *qdev)
996 {
997 u16 reg;
998
999 switch(qdev->phyType) {
1000 case PHY_AGERE_ET1011C:
1001 {
1002 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
1003 return 0;
1004
1005 reg = (reg >> 8) & 3;
1006 break;
1007 }
1008 default:
1009 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1010 return 0;
1011
1012 reg = (((reg & 0x18) >> 3) & 3);
1013 }
1014
1015 switch(reg) {
1016 case 2:
1017 return SPEED_1000;
1018 case 1:
1019 return SPEED_100;
1020 case 0:
1021 return SPEED_10;
1022 default:
1023 return -1;
1024 }
1025 }
1026
1027 static int ql_is_full_dup(struct ql3_adapter *qdev)
1028 {
1029 u16 reg;
1030
1031 switch(qdev->phyType) {
1032 case PHY_AGERE_ET1011C:
1033 {
1034 if (ql_mii_read_reg(qdev, 0x1A, &reg))
1035 return 0;
1036
1037 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
1038 }
1039 case PHY_VITESSE_VSC8211:
1040 default:
1041 {
1042 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1043 return 0;
1044 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
1045 }
1046 }
1047 }
1048
1049 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
1050 {
1051 u16 reg;
1052
1053 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
1054 return 0;
1055
1056 return (reg & PHY_NEG_PAUSE) != 0;
1057 }
1058
1059 static int PHY_Setup(struct ql3_adapter *qdev)
1060 {
1061 u16 reg1;
1062 u16 reg2;
1063 bool agereAddrChangeNeeded = false;
1064 u32 miiAddr = 0;
1065 int err;
1066
1067 /* Determine the PHY we are using by reading the ID's */
1068 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
1069 if(err != 0) {
1070 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1071 qdev->ndev->name);
1072 return err;
1073 }
1074
1075 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
1076 if(err != 0) {
1077 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1078 qdev->ndev->name);
1079 return err;
1080 }
1081
1082 /* Check if we have a Agere PHY */
1083 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
1084
1085 /* Determine which MII address we should be using
1086 determined by the index of the card */
1087 if (qdev->mac_index == 0) {
1088 miiAddr = MII_AGERE_ADDR_1;
1089 } else {
1090 miiAddr = MII_AGERE_ADDR_2;
1091 }
1092
1093 err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1094 if(err != 0) {
1095 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1096 qdev->ndev->name);
1097 return err;
1098 }
1099
1100 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1101 if(err != 0) {
1102 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1103 qdev->ndev->name);
1104 return err;
1105 }
1106
1107 /* We need to remember to initialize the Agere PHY */
1108 agereAddrChangeNeeded = true;
1109 }
1110
1111 /* Determine the particular PHY we have on board to apply
1112 PHY specific initializations */
1113 qdev->phyType = getPhyType(qdev, reg1, reg2);
1114
1115 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1116 /* need this here so address gets changed */
1117 phyAgereSpecificInit(qdev, miiAddr);
1118 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1119 printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
1120 return -EIO;
1121 }
1122
1123 return 0;
1124 }
1125
1126 /*
1127 * Caller holds hw_lock.
1128 */
1129 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1130 {
1131 struct ql3xxx_port_registers __iomem *port_regs =
1132 qdev->mem_map_registers;
1133 u32 value;
1134
1135 if (enable)
1136 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1137 else
1138 value = (MAC_CONFIG_REG_PE << 16);
1139
1140 if (qdev->mac_index)
1141 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1142 else
1143 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1144 }
1145
1146 /*
1147 * Caller holds hw_lock.
1148 */
1149 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1150 {
1151 struct ql3xxx_port_registers __iomem *port_regs =
1152 qdev->mem_map_registers;
1153 u32 value;
1154
1155 if (enable)
1156 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1157 else
1158 value = (MAC_CONFIG_REG_SR << 16);
1159
1160 if (qdev->mac_index)
1161 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1162 else
1163 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1164 }
1165
1166 /*
1167 * Caller holds hw_lock.
1168 */
1169 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1170 {
1171 struct ql3xxx_port_registers __iomem *port_regs =
1172 qdev->mem_map_registers;
1173 u32 value;
1174
1175 if (enable)
1176 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1177 else
1178 value = (MAC_CONFIG_REG_GM << 16);
1179
1180 if (qdev->mac_index)
1181 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1182 else
1183 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1184 }
1185
1186 /*
1187 * Caller holds hw_lock.
1188 */
1189 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1190 {
1191 struct ql3xxx_port_registers __iomem *port_regs =
1192 qdev->mem_map_registers;
1193 u32 value;
1194
1195 if (enable)
1196 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1197 else
1198 value = (MAC_CONFIG_REG_FD << 16);
1199
1200 if (qdev->mac_index)
1201 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1202 else
1203 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1204 }
1205
1206 /*
1207 * Caller holds hw_lock.
1208 */
1209 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1210 {
1211 struct ql3xxx_port_registers __iomem *port_regs =
1212 qdev->mem_map_registers;
1213 u32 value;
1214
1215 if (enable)
1216 value =
1217 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1218 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1219 else
1220 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1221
1222 if (qdev->mac_index)
1223 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1224 else
1225 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1226 }
1227
1228 /*
1229 * Caller holds hw_lock.
1230 */
1231 static int ql_is_fiber(struct ql3_adapter *qdev)
1232 {
1233 struct ql3xxx_port_registers __iomem *port_regs =
1234 qdev->mem_map_registers;
1235 u32 bitToCheck = 0;
1236 u32 temp;
1237
1238 switch (qdev->mac_index) {
1239 case 0:
1240 bitToCheck = PORT_STATUS_SM0;
1241 break;
1242 case 1:
1243 bitToCheck = PORT_STATUS_SM1;
1244 break;
1245 }
1246
1247 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1248 return (temp & bitToCheck) != 0;
1249 }
1250
1251 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1252 {
1253 u16 reg;
1254 ql_mii_read_reg(qdev, 0x00, &reg);
1255 return (reg & 0x1000) != 0;
1256 }
1257
1258 /*
1259 * Caller holds hw_lock.
1260 */
1261 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1262 {
1263 struct ql3xxx_port_registers __iomem *port_regs =
1264 qdev->mem_map_registers;
1265 u32 bitToCheck = 0;
1266 u32 temp;
1267
1268 switch (qdev->mac_index) {
1269 case 0:
1270 bitToCheck = PORT_STATUS_AC0;
1271 break;
1272 case 1:
1273 bitToCheck = PORT_STATUS_AC1;
1274 break;
1275 }
1276
1277 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1278 if (temp & bitToCheck) {
1279 if (netif_msg_link(qdev))
1280 printk(KERN_INFO PFX
1281 "%s: Auto-Negotiate complete.\n",
1282 qdev->ndev->name);
1283 return 1;
1284 } else {
1285 if (netif_msg_link(qdev))
1286 printk(KERN_WARNING PFX
1287 "%s: Auto-Negotiate incomplete.\n",
1288 qdev->ndev->name);
1289 return 0;
1290 }
1291 }
1292
1293 /*
1294 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1295 */
1296 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1297 {
1298 if (ql_is_fiber(qdev))
1299 return ql_is_petbi_neg_pause(qdev);
1300 else
1301 return ql_is_phy_neg_pause(qdev);
1302 }
1303
1304 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1305 {
1306 struct ql3xxx_port_registers __iomem *port_regs =
1307 qdev->mem_map_registers;
1308 u32 bitToCheck = 0;
1309 u32 temp;
1310
1311 switch (qdev->mac_index) {
1312 case 0:
1313 bitToCheck = PORT_STATUS_AE0;
1314 break;
1315 case 1:
1316 bitToCheck = PORT_STATUS_AE1;
1317 break;
1318 }
1319 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1320 return (temp & bitToCheck) != 0;
1321 }
1322
1323 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1324 {
1325 if (ql_is_fiber(qdev))
1326 return SPEED_1000;
1327 else
1328 return ql_phy_get_speed(qdev);
1329 }
1330
1331 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1332 {
1333 if (ql_is_fiber(qdev))
1334 return 1;
1335 else
1336 return ql_is_full_dup(qdev);
1337 }
1338
1339 /*
1340 * Caller holds hw_lock.
1341 */
1342 static int ql_link_down_detect(struct ql3_adapter *qdev)
1343 {
1344 struct ql3xxx_port_registers __iomem *port_regs =
1345 qdev->mem_map_registers;
1346 u32 bitToCheck = 0;
1347 u32 temp;
1348
1349 switch (qdev->mac_index) {
1350 case 0:
1351 bitToCheck = ISP_CONTROL_LINK_DN_0;
1352 break;
1353 case 1:
1354 bitToCheck = ISP_CONTROL_LINK_DN_1;
1355 break;
1356 }
1357
1358 temp =
1359 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1360 return (temp & bitToCheck) != 0;
1361 }
1362
1363 /*
1364 * Caller holds hw_lock.
1365 */
1366 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1367 {
1368 struct ql3xxx_port_registers __iomem *port_regs =
1369 qdev->mem_map_registers;
1370
1371 switch (qdev->mac_index) {
1372 case 0:
1373 ql_write_common_reg(qdev,
1374 &port_regs->CommonRegs.ispControlStatus,
1375 (ISP_CONTROL_LINK_DN_0) |
1376 (ISP_CONTROL_LINK_DN_0 << 16));
1377 break;
1378
1379 case 1:
1380 ql_write_common_reg(qdev,
1381 &port_regs->CommonRegs.ispControlStatus,
1382 (ISP_CONTROL_LINK_DN_1) |
1383 (ISP_CONTROL_LINK_DN_1 << 16));
1384 break;
1385
1386 default:
1387 return 1;
1388 }
1389
1390 return 0;
1391 }
1392
1393 /*
1394 * Caller holds hw_lock.
1395 */
1396 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1397 {
1398 struct ql3xxx_port_registers __iomem *port_regs =
1399 qdev->mem_map_registers;
1400 u32 bitToCheck = 0;
1401 u32 temp;
1402
1403 switch (qdev->mac_index) {
1404 case 0:
1405 bitToCheck = PORT_STATUS_F1_ENABLED;
1406 break;
1407 case 1:
1408 bitToCheck = PORT_STATUS_F3_ENABLED;
1409 break;
1410 default:
1411 break;
1412 }
1413
1414 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1415 if (temp & bitToCheck) {
1416 if (netif_msg_link(qdev))
1417 printk(KERN_DEBUG PFX
1418 "%s: is not link master.\n", qdev->ndev->name);
1419 return 0;
1420 } else {
1421 if (netif_msg_link(qdev))
1422 printk(KERN_DEBUG PFX
1423 "%s: is link master.\n", qdev->ndev->name);
1424 return 1;
1425 }
1426 }
1427
1428 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1429 {
1430 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1431 PHYAddr[qdev->mac_index]);
1432 }
1433
1434 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1435 {
1436 u16 reg;
1437 u16 portConfiguration;
1438
1439 if(qdev->phyType == PHY_AGERE_ET1011C) {
1440 /* turn off external loopback */
1441 ql_mii_write_reg(qdev, 0x13, 0x0000);
1442 }
1443
1444 if(qdev->mac_index == 0)
1445 portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
1446 else
1447 portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
1448
1449 /* Some HBA's in the field are set to 0 and they need to
1450 be reinterpreted with a default value */
1451 if(portConfiguration == 0)
1452 portConfiguration = PORT_CONFIG_DEFAULT;
1453
1454 /* Set the 1000 advertisements */
1455 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1456 PHYAddr[qdev->mac_index]);
1457 reg &= ~PHY_GIG_ALL_PARAMS;
1458
1459 if(portConfiguration &
1460 PORT_CONFIG_FULL_DUPLEX_ENABLED &
1461 PORT_CONFIG_1000MB_SPEED) {
1462 reg |= PHY_GIG_ADV_1000F;
1463 }
1464
1465 if(portConfiguration &
1466 PORT_CONFIG_HALF_DUPLEX_ENABLED &
1467 PORT_CONFIG_1000MB_SPEED) {
1468 reg |= PHY_GIG_ADV_1000H;
1469 }
1470
1471 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1472 PHYAddr[qdev->mac_index]);
1473
1474 /* Set the 10/100 & pause negotiation advertisements */
1475 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1476 PHYAddr[qdev->mac_index]);
1477 reg &= ~PHY_NEG_ALL_PARAMS;
1478
1479 if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1480 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1481
1482 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1483 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1484 reg |= PHY_NEG_ADV_100F;
1485
1486 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1487 reg |= PHY_NEG_ADV_10F;
1488 }
1489
1490 if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1491 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1492 reg |= PHY_NEG_ADV_100H;
1493
1494 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1495 reg |= PHY_NEG_ADV_10H;
1496 }
1497
1498 if(portConfiguration &
1499 PORT_CONFIG_1000MB_SPEED) {
1500 reg |= 1;
1501 }
1502
1503 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1504 PHYAddr[qdev->mac_index]);
1505
1506 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1507
1508 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1509 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1510 PHYAddr[qdev->mac_index]);
1511 }
1512
1513 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1514 {
1515 ql_phy_reset_ex(qdev);
1516 PHY_Setup(qdev);
1517 ql_phy_start_neg_ex(qdev);
1518 }
1519
1520 /*
1521 * Caller holds hw_lock.
1522 */
1523 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1524 {
1525 struct ql3xxx_port_registers __iomem *port_regs =
1526 qdev->mem_map_registers;
1527 u32 bitToCheck = 0;
1528 u32 temp, linkState;
1529
1530 switch (qdev->mac_index) {
1531 case 0:
1532 bitToCheck = PORT_STATUS_UP0;
1533 break;
1534 case 1:
1535 bitToCheck = PORT_STATUS_UP1;
1536 break;
1537 }
1538 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1539 if (temp & bitToCheck) {
1540 linkState = LS_UP;
1541 } else {
1542 linkState = LS_DOWN;
1543 if (netif_msg_link(qdev))
1544 printk(KERN_WARNING PFX
1545 "%s: Link is down.\n", qdev->ndev->name);
1546 }
1547 return linkState;
1548 }
1549
1550 static int ql_port_start(struct ql3_adapter *qdev)
1551 {
1552 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1553 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1554 2) << 7)) {
1555 printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
1556 qdev->ndev->name);
1557 return -1;
1558 }
1559
1560 if (ql_is_fiber(qdev)) {
1561 ql_petbi_init(qdev);
1562 } else {
1563 /* Copper port */
1564 ql_phy_init_ex(qdev);
1565 }
1566
1567 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1568 return 0;
1569 }
1570
1571 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1572 {
1573
1574 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1575 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1576 2) << 7))
1577 return -1;
1578
1579 if (!ql_auto_neg_error(qdev)) {
1580 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1581 /* configure the MAC */
1582 if (netif_msg_link(qdev))
1583 printk(KERN_DEBUG PFX
1584 "%s: Configuring link.\n",
1585 qdev->ndev->
1586 name);
1587 ql_mac_cfg_soft_reset(qdev, 1);
1588 ql_mac_cfg_gig(qdev,
1589 (ql_get_link_speed
1590 (qdev) ==
1591 SPEED_1000));
1592 ql_mac_cfg_full_dup(qdev,
1593 ql_is_link_full_dup
1594 (qdev));
1595 ql_mac_cfg_pause(qdev,
1596 ql_is_neg_pause
1597 (qdev));
1598 ql_mac_cfg_soft_reset(qdev, 0);
1599
1600 /* enable the MAC */
1601 if (netif_msg_link(qdev))
1602 printk(KERN_DEBUG PFX
1603 "%s: Enabling mac.\n",
1604 qdev->ndev->
1605 name);
1606 ql_mac_enable(qdev, 1);
1607 }
1608
1609 if (netif_msg_link(qdev))
1610 printk(KERN_DEBUG PFX
1611 "%s: Change port_link_state LS_DOWN to LS_UP.\n",
1612 qdev->ndev->name);
1613 qdev->port_link_state = LS_UP;
1614 netif_start_queue(qdev->ndev);
1615 netif_carrier_on(qdev->ndev);
1616 if (netif_msg_link(qdev))
1617 printk(KERN_INFO PFX
1618 "%s: Link is up at %d Mbps, %s duplex.\n",
1619 qdev->ndev->name,
1620 ql_get_link_speed(qdev),
1621 ql_is_link_full_dup(qdev)
1622 ? "full" : "half");
1623
1624 } else { /* Remote error detected */
1625
1626 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1627 if (netif_msg_link(qdev))
1628 printk(KERN_DEBUG PFX
1629 "%s: Remote error detected. "
1630 "Calling ql_port_start().\n",
1631 qdev->ndev->
1632 name);
1633 /*
1634 * ql_port_start() is shared code and needs
1635 * to lock the PHY on it's own.
1636 */
1637 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1638 if(ql_port_start(qdev)) {/* Restart port */
1639 return -1;
1640 } else
1641 return 0;
1642 }
1643 }
1644 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1645 return 0;
1646 }
1647
1648 static void ql_link_state_machine_work(struct work_struct *work)
1649 {
1650 struct ql3_adapter *qdev =
1651 container_of(work, struct ql3_adapter, link_state_work.work);
1652
1653 u32 curr_link_state;
1654 unsigned long hw_flags;
1655
1656 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1657
1658 curr_link_state = ql_get_link_state(qdev);
1659
1660 if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
1661 if (netif_msg_link(qdev))
1662 printk(KERN_INFO PFX
1663 "%s: Reset in progress, skip processing link "
1664 "state.\n", qdev->ndev->name);
1665
1666 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1667
1668 /* Restart timer on 2 second interval. */
1669 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
1670
1671 return;
1672 }
1673
1674 switch (qdev->port_link_state) {
1675 default:
1676 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1677 ql_port_start(qdev);
1678 }
1679 qdev->port_link_state = LS_DOWN;
1680 /* Fall Through */
1681
1682 case LS_DOWN:
1683 if (netif_msg_link(qdev))
1684 printk(KERN_DEBUG PFX
1685 "%s: port_link_state = LS_DOWN.\n",
1686 qdev->ndev->name);
1687 if (curr_link_state == LS_UP) {
1688 if (netif_msg_link(qdev))
1689 printk(KERN_DEBUG PFX
1690 "%s: curr_link_state = LS_UP.\n",
1691 qdev->ndev->name);
1692 if (ql_is_auto_neg_complete(qdev))
1693 ql_finish_auto_neg(qdev);
1694
1695 if (qdev->port_link_state == LS_UP)
1696 ql_link_down_detect_clear(qdev);
1697
1698 }
1699 break;
1700
1701 case LS_UP:
1702 /*
1703 * See if the link is currently down or went down and came
1704 * back up
1705 */
1706 if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
1707 if (netif_msg_link(qdev))
1708 printk(KERN_INFO PFX "%s: Link is down.\n",
1709 qdev->ndev->name);
1710 qdev->port_link_state = LS_DOWN;
1711 }
1712 break;
1713 }
1714 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1715
1716 /* Restart timer on 2 second interval. */
1717 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1718 }
1719
1720 /*
1721 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1722 */
1723 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1724 {
1725 if (ql_this_adapter_controls_port(qdev))
1726 set_bit(QL_LINK_MASTER,&qdev->flags);
1727 else
1728 clear_bit(QL_LINK_MASTER,&qdev->flags);
1729 }
1730
1731 /*
1732 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1733 */
1734 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1735 {
1736 ql_mii_enable_scan_mode(qdev);
1737
1738 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1739 if (ql_this_adapter_controls_port(qdev))
1740 ql_petbi_init_ex(qdev);
1741 } else {
1742 if (ql_this_adapter_controls_port(qdev))
1743 ql_phy_init_ex(qdev);
1744 }
1745 }
1746
1747 /*
1748 * MII_Setup needs to be called before taking the PHY out of reset so that the
1749 * management interface clock speed can be set properly. It would be better if
1750 * we had a way to disable MDC until after the PHY is out of reset, but we
1751 * don't have that capability.
1752 */
1753 static int ql_mii_setup(struct ql3_adapter *qdev)
1754 {
1755 u32 reg;
1756 struct ql3xxx_port_registers __iomem *port_regs =
1757 qdev->mem_map_registers;
1758
1759 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1760 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1761 2) << 7))
1762 return -1;
1763
1764 if (qdev->device_id == QL3032_DEVICE_ID)
1765 ql_write_page0_reg(qdev,
1766 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1767
1768 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1769 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1770
1771 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1772 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1773
1774 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1775 return 0;
1776 }
1777
1778 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1779 {
1780 u32 supported;
1781
1782 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1783 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
1784 | SUPPORTED_Autoneg;
1785 } else {
1786 supported = SUPPORTED_10baseT_Half
1787 | SUPPORTED_10baseT_Full
1788 | SUPPORTED_100baseT_Half
1789 | SUPPORTED_100baseT_Full
1790 | SUPPORTED_1000baseT_Half
1791 | SUPPORTED_1000baseT_Full
1792 | SUPPORTED_Autoneg | SUPPORTED_TP;
1793 }
1794
1795 return supported;
1796 }
1797
1798 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1799 {
1800 int status;
1801 unsigned long hw_flags;
1802 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1803 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1804 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1805 2) << 7)) {
1806 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1807 return 0;
1808 }
1809 status = ql_is_auto_cfg(qdev);
1810 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1811 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1812 return status;
1813 }
1814
1815 static u32 ql_get_speed(struct ql3_adapter *qdev)
1816 {
1817 u32 status;
1818 unsigned long hw_flags;
1819 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1820 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1821 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1822 2) << 7)) {
1823 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1824 return 0;
1825 }
1826 status = ql_get_link_speed(qdev);
1827 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1828 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1829 return status;
1830 }
1831
1832 static int ql_get_full_dup(struct ql3_adapter *qdev)
1833 {
1834 int status;
1835 unsigned long hw_flags;
1836 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1837 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1838 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1839 2) << 7)) {
1840 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1841 return 0;
1842 }
1843 status = ql_is_link_full_dup(qdev);
1844 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1845 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1846 return status;
1847 }
1848
1849
1850 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1851 {
1852 struct ql3_adapter *qdev = netdev_priv(ndev);
1853
1854 ecmd->transceiver = XCVR_INTERNAL;
1855 ecmd->supported = ql_supported_modes(qdev);
1856
1857 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1858 ecmd->port = PORT_FIBRE;
1859 } else {
1860 ecmd->port = PORT_TP;
1861 ecmd->phy_address = qdev->PHYAddr;
1862 }
1863 ecmd->advertising = ql_supported_modes(qdev);
1864 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1865 ecmd->speed = ql_get_speed(qdev);
1866 ecmd->duplex = ql_get_full_dup(qdev);
1867 return 0;
1868 }
1869
1870 static void ql_get_drvinfo(struct net_device *ndev,
1871 struct ethtool_drvinfo *drvinfo)
1872 {
1873 struct ql3_adapter *qdev = netdev_priv(ndev);
1874 strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
1875 strncpy(drvinfo->version, ql3xxx_driver_version, 32);
1876 strncpy(drvinfo->fw_version, "N/A", 32);
1877 strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
1878 drvinfo->regdump_len = 0;
1879 drvinfo->eedump_len = 0;
1880 }
1881
1882 static u32 ql_get_msglevel(struct net_device *ndev)
1883 {
1884 struct ql3_adapter *qdev = netdev_priv(ndev);
1885 return qdev->msg_enable;
1886 }
1887
1888 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1889 {
1890 struct ql3_adapter *qdev = netdev_priv(ndev);
1891 qdev->msg_enable = value;
1892 }
1893
1894 static void ql_get_pauseparam(struct net_device *ndev,
1895 struct ethtool_pauseparam *pause)
1896 {
1897 struct ql3_adapter *qdev = netdev_priv(ndev);
1898 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1899
1900 u32 reg;
1901 if(qdev->mac_index == 0)
1902 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1903 else
1904 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1905
1906 pause->autoneg = ql_get_auto_cfg_status(qdev);
1907 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1908 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1909 }
1910
1911 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1912 .get_settings = ql_get_settings,
1913 .get_drvinfo = ql_get_drvinfo,
1914 .get_link = ethtool_op_get_link,
1915 .get_msglevel = ql_get_msglevel,
1916 .set_msglevel = ql_set_msglevel,
1917 .get_pauseparam = ql_get_pauseparam,
1918 };
1919
1920 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1921 {
1922 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1923 dma_addr_t map;
1924 int err;
1925
1926 while (lrg_buf_cb) {
1927 if (!lrg_buf_cb->skb) {
1928 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
1929 qdev->lrg_buffer_len);
1930 if (unlikely(!lrg_buf_cb->skb)) {
1931 printk(KERN_DEBUG PFX
1932 "%s: Failed netdev_alloc_skb().\n",
1933 qdev->ndev->name);
1934 break;
1935 } else {
1936 /*
1937 * We save some space to copy the ethhdr from
1938 * first buffer
1939 */
1940 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1941 map = pci_map_single(qdev->pdev,
1942 lrg_buf_cb->skb->data,
1943 qdev->lrg_buffer_len -
1944 QL_HEADER_SPACE,
1945 PCI_DMA_FROMDEVICE);
1946
1947 err = pci_dma_mapping_error(map);
1948 if(err) {
1949 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
1950 qdev->ndev->name, err);
1951 dev_kfree_skb(lrg_buf_cb->skb);
1952 lrg_buf_cb->skb = NULL;
1953 break;
1954 }
1955
1956
1957 lrg_buf_cb->buf_phy_addr_low =
1958 cpu_to_le32(LS_64BITS(map));
1959 lrg_buf_cb->buf_phy_addr_high =
1960 cpu_to_le32(MS_64BITS(map));
1961 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1962 pci_unmap_len_set(lrg_buf_cb, maplen,
1963 qdev->lrg_buffer_len -
1964 QL_HEADER_SPACE);
1965 --qdev->lrg_buf_skb_check;
1966 if (!qdev->lrg_buf_skb_check)
1967 return 1;
1968 }
1969 }
1970 lrg_buf_cb = lrg_buf_cb->next;
1971 }
1972 return 0;
1973 }
1974
1975 /*
1976 * Caller holds hw_lock.
1977 */
1978 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1979 {
1980 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1981 if (qdev->small_buf_release_cnt >= 16) {
1982 while (qdev->small_buf_release_cnt >= 16) {
1983 qdev->small_buf_q_producer_index++;
1984
1985 if (qdev->small_buf_q_producer_index ==
1986 NUM_SBUFQ_ENTRIES)
1987 qdev->small_buf_q_producer_index = 0;
1988 qdev->small_buf_release_cnt -= 8;
1989 }
1990 wmb();
1991 writel(qdev->small_buf_q_producer_index,
1992 &port_regs->CommonRegs.rxSmallQProducerIndex);
1993 }
1994 }
1995
1996 /*
1997 * Caller holds hw_lock.
1998 */
1999 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
2000 {
2001 struct bufq_addr_element *lrg_buf_q_ele;
2002 int i;
2003 struct ql_rcv_buf_cb *lrg_buf_cb;
2004 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2005
2006 if ((qdev->lrg_buf_free_count >= 8)
2007 && (qdev->lrg_buf_release_cnt >= 16)) {
2008
2009 if (qdev->lrg_buf_skb_check)
2010 if (!ql_populate_free_queue(qdev))
2011 return;
2012
2013 lrg_buf_q_ele = qdev->lrg_buf_next_free;
2014
2015 while ((qdev->lrg_buf_release_cnt >= 16)
2016 && (qdev->lrg_buf_free_count >= 8)) {
2017
2018 for (i = 0; i < 8; i++) {
2019 lrg_buf_cb =
2020 ql_get_from_lrg_buf_free_list(qdev);
2021 lrg_buf_q_ele->addr_high =
2022 lrg_buf_cb->buf_phy_addr_high;
2023 lrg_buf_q_ele->addr_low =
2024 lrg_buf_cb->buf_phy_addr_low;
2025 lrg_buf_q_ele++;
2026
2027 qdev->lrg_buf_release_cnt--;
2028 }
2029
2030 qdev->lrg_buf_q_producer_index++;
2031
2032 if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
2033 qdev->lrg_buf_q_producer_index = 0;
2034
2035 if (qdev->lrg_buf_q_producer_index ==
2036 (qdev->num_lbufq_entries - 1)) {
2037 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
2038 }
2039 }
2040 wmb();
2041 qdev->lrg_buf_next_free = lrg_buf_q_ele;
2042 writel(qdev->lrg_buf_q_producer_index,
2043 &port_regs->CommonRegs.rxLargeQProducerIndex);
2044 }
2045 }
2046
2047 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
2048 struct ob_mac_iocb_rsp *mac_rsp)
2049 {
2050 struct ql_tx_buf_cb *tx_cb;
2051 int i;
2052 int retval = 0;
2053
2054 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2055 printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
2056 }
2057
2058 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
2059
2060 /* Check the transmit response flags for any errors */
2061 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2062 printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
2063
2064 qdev->ndev->stats.tx_errors++;
2065 retval = -EIO;
2066 goto frame_not_sent;
2067 }
2068
2069 if(tx_cb->seg_count == 0) {
2070 printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
2071
2072 qdev->ndev->stats.tx_errors++;
2073 retval = -EIO;
2074 goto invalid_seg_count;
2075 }
2076
2077 pci_unmap_single(qdev->pdev,
2078 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2079 pci_unmap_len(&tx_cb->map[0], maplen),
2080 PCI_DMA_TODEVICE);
2081 tx_cb->seg_count--;
2082 if (tx_cb->seg_count) {
2083 for (i = 1; i < tx_cb->seg_count; i++) {
2084 pci_unmap_page(qdev->pdev,
2085 pci_unmap_addr(&tx_cb->map[i],
2086 mapaddr),
2087 pci_unmap_len(&tx_cb->map[i], maplen),
2088 PCI_DMA_TODEVICE);
2089 }
2090 }
2091 qdev->ndev->stats.tx_packets++;
2092 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
2093
2094 frame_not_sent:
2095 dev_kfree_skb_irq(tx_cb->skb);
2096 tx_cb->skb = NULL;
2097
2098 invalid_seg_count:
2099 atomic_inc(&qdev->tx_count);
2100 }
2101
2102 static void ql_get_sbuf(struct ql3_adapter *qdev)
2103 {
2104 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
2105 qdev->small_buf_index = 0;
2106 qdev->small_buf_release_cnt++;
2107 }
2108
2109 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
2110 {
2111 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
2112 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
2113 qdev->lrg_buf_release_cnt++;
2114 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
2115 qdev->lrg_buf_index = 0;
2116 return(lrg_buf_cb);
2117 }
2118
2119 /*
2120 * The difference between 3022 and 3032 for inbound completions:
2121 * 3022 uses two buffers per completion. The first buffer contains
2122 * (some) header info, the second the remainder of the headers plus
2123 * the data. For this chip we reserve some space at the top of the
2124 * receive buffer so that the header info in buffer one can be
2125 * prepended to the buffer two. Buffer two is the sent up while
2126 * buffer one is returned to the hardware to be reused.
2127 * 3032 receives all of it's data and headers in one buffer for a
2128 * simpler process. 3032 also supports checksum verification as
2129 * can be seen in ql_process_macip_rx_intr().
2130 */
2131 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2132 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2133 {
2134 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2135 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2136 struct sk_buff *skb;
2137 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2138
2139 /*
2140 * Get the inbound address list (small buffer).
2141 */
2142 ql_get_sbuf(qdev);
2143
2144 if (qdev->device_id == QL3022_DEVICE_ID)
2145 lrg_buf_cb1 = ql_get_lbuf(qdev);
2146
2147 /* start of second buffer */
2148 lrg_buf_cb2 = ql_get_lbuf(qdev);
2149 skb = lrg_buf_cb2->skb;
2150
2151 qdev->ndev->stats.rx_packets++;
2152 qdev->ndev->stats.rx_bytes += length;
2153
2154 skb_put(skb, length);
2155 pci_unmap_single(qdev->pdev,
2156 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2157 pci_unmap_len(lrg_buf_cb2, maplen),
2158 PCI_DMA_FROMDEVICE);
2159 prefetch(skb->data);
2160 skb->ip_summed = CHECKSUM_NONE;
2161 skb->protocol = eth_type_trans(skb, qdev->ndev);
2162
2163 netif_receive_skb(skb);
2164 qdev->ndev->last_rx = jiffies;
2165 lrg_buf_cb2->skb = NULL;
2166
2167 if (qdev->device_id == QL3022_DEVICE_ID)
2168 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2169 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2170 }
2171
2172 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2173 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2174 {
2175 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2176 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2177 struct sk_buff *skb1 = NULL, *skb2;
2178 struct net_device *ndev = qdev->ndev;
2179 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2180 u16 size = 0;
2181
2182 /*
2183 * Get the inbound address list (small buffer).
2184 */
2185
2186 ql_get_sbuf(qdev);
2187
2188 if (qdev->device_id == QL3022_DEVICE_ID) {
2189 /* start of first buffer on 3022 */
2190 lrg_buf_cb1 = ql_get_lbuf(qdev);
2191 skb1 = lrg_buf_cb1->skb;
2192 size = ETH_HLEN;
2193 if (*((u16 *) skb1->data) != 0xFFFF)
2194 size += VLAN_ETH_HLEN - ETH_HLEN;
2195 }
2196
2197 /* start of second buffer */
2198 lrg_buf_cb2 = ql_get_lbuf(qdev);
2199 skb2 = lrg_buf_cb2->skb;
2200
2201 skb_put(skb2, length); /* Just the second buffer length here. */
2202 pci_unmap_single(qdev->pdev,
2203 pci_unmap_addr(lrg_buf_cb2, mapaddr),
2204 pci_unmap_len(lrg_buf_cb2, maplen),
2205 PCI_DMA_FROMDEVICE);
2206 prefetch(skb2->data);
2207
2208 skb2->ip_summed = CHECKSUM_NONE;
2209 if (qdev->device_id == QL3022_DEVICE_ID) {
2210 /*
2211 * Copy the ethhdr from first buffer to second. This
2212 * is necessary for 3022 IP completions.
2213 */
2214 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2215 skb_push(skb2, size), size);
2216 } else {
2217 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2218 if (checksum &
2219 (IB_IP_IOCB_RSP_3032_ICE |
2220 IB_IP_IOCB_RSP_3032_CE)) {
2221 printk(KERN_ERR
2222 "%s: Bad checksum for this %s packet, checksum = %x.\n",
2223 __func__,
2224 ((checksum &
2225 IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
2226 "UDP"),checksum);
2227 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2228 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2229 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2230 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2231 }
2232 }
2233 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2234
2235 netif_receive_skb(skb2);
2236 ndev->stats.rx_packets++;
2237 ndev->stats.rx_bytes += length;
2238 ndev->last_rx = jiffies;
2239 lrg_buf_cb2->skb = NULL;
2240
2241 if (qdev->device_id == QL3022_DEVICE_ID)
2242 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2243 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2244 }
2245
2246 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2247 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2248 {
2249 struct net_rsp_iocb *net_rsp;
2250 struct net_device *ndev = qdev->ndev;
2251 int work_done = 0;
2252
2253 /* While there are entries in the completion queue. */
2254 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2255 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2256
2257 net_rsp = qdev->rsp_current;
2258 rmb();
2259 /*
2260 * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
2261 * inbound completion is for a VLAN.
2262 */
2263 if (qdev->device_id == QL3032_DEVICE_ID)
2264 net_rsp->opcode &= 0x7f;
2265 switch (net_rsp->opcode) {
2266
2267 case OPCODE_OB_MAC_IOCB_FN0:
2268 case OPCODE_OB_MAC_IOCB_FN2:
2269 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2270 net_rsp);
2271 (*tx_cleaned)++;
2272 break;
2273
2274 case OPCODE_IB_MAC_IOCB:
2275 case OPCODE_IB_3032_MAC_IOCB:
2276 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2277 net_rsp);
2278 (*rx_cleaned)++;
2279 break;
2280
2281 case OPCODE_IB_IP_IOCB:
2282 case OPCODE_IB_3032_IP_IOCB:
2283 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2284 net_rsp);
2285 (*rx_cleaned)++;
2286 break;
2287 default:
2288 {
2289 u32 *tmp = (u32 *) net_rsp;
2290 printk(KERN_ERR PFX
2291 "%s: Hit default case, not "
2292 "handled!\n"
2293 " dropping the packet, opcode = "
2294 "%x.\n",
2295 ndev->name, net_rsp->opcode);
2296 printk(KERN_ERR PFX
2297 "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
2298 (unsigned long int)tmp[0],
2299 (unsigned long int)tmp[1],
2300 (unsigned long int)tmp[2],
2301 (unsigned long int)tmp[3]);
2302 }
2303 }
2304
2305 qdev->rsp_consumer_index++;
2306
2307 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2308 qdev->rsp_consumer_index = 0;
2309 qdev->rsp_current = qdev->rsp_q_virt_addr;
2310 } else {
2311 qdev->rsp_current++;
2312 }
2313
2314 work_done = *tx_cleaned + *rx_cleaned;
2315 }
2316
2317 return work_done;
2318 }
2319
2320 static int ql_poll(struct napi_struct *napi, int budget)
2321 {
2322 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2323 struct net_device *ndev = qdev->ndev;
2324 int rx_cleaned = 0, tx_cleaned = 0;
2325 unsigned long hw_flags;
2326 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2327
2328 if (!netif_carrier_ok(ndev))
2329 goto quit_polling;
2330
2331 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2332
2333 if (tx_cleaned + rx_cleaned != budget ||
2334 !netif_running(ndev)) {
2335 quit_polling:
2336 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2337 __netif_rx_complete(ndev, napi);
2338 ql_update_small_bufq_prod_index(qdev);
2339 ql_update_lrg_bufq_prod_index(qdev);
2340 writel(qdev->rsp_consumer_index,
2341 &port_regs->CommonRegs.rspQConsumerIndex);
2342 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2343
2344 ql_enable_interrupts(qdev);
2345 }
2346 return tx_cleaned + rx_cleaned;
2347 }
2348
2349 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2350 {
2351
2352 struct net_device *ndev = dev_id;
2353 struct ql3_adapter *qdev = netdev_priv(ndev);
2354 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2355 u32 value;
2356 int handled = 1;
2357 u32 var;
2358
2359 port_regs = qdev->mem_map_registers;
2360
2361 value =
2362 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
2363
2364 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2365 spin_lock(&qdev->adapter_lock);
2366 netif_stop_queue(qdev->ndev);
2367 netif_carrier_off(qdev->ndev);
2368 ql_disable_interrupts(qdev);
2369 qdev->port_link_state = LS_DOWN;
2370 set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
2371
2372 if (value & ISP_CONTROL_FE) {
2373 /*
2374 * Chip Fatal Error.
2375 */
2376 var =
2377 ql_read_page0_reg_l(qdev,
2378 &port_regs->PortFatalErrStatus);
2379 printk(KERN_WARNING PFX
2380 "%s: Resetting chip. PortFatalErrStatus "
2381 "register = 0x%x\n", ndev->name, var);
2382 set_bit(QL_RESET_START,&qdev->flags) ;
2383 } else {
2384 /*
2385 * Soft Reset Requested.
2386 */
2387 set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
2388 printk(KERN_ERR PFX
2389 "%s: Another function issued a reset to the "
2390 "chip. ISR value = %x.\n", ndev->name, value);
2391 }
2392 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2393 spin_unlock(&qdev->adapter_lock);
2394 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2395 ql_disable_interrupts(qdev);
2396 if (likely(netif_rx_schedule_prep(ndev, &qdev->napi))) {
2397 __netif_rx_schedule(ndev, &qdev->napi);
2398 }
2399 } else {
2400 return IRQ_NONE;
2401 }
2402
2403 return IRQ_RETVAL(handled);
2404 }
2405
2406 /*
2407 * Get the total number of segments needed for the
2408 * given number of fragments. This is necessary because
2409 * outbound address lists (OAL) will be used when more than
2410 * two frags are given. Each address list has 5 addr/len
2411 * pairs. The 5th pair in each AOL is used to point to
2412 * the next AOL if more frags are coming.
2413 * That is why the frags:segment count ratio is not linear.
2414 */
2415 static int ql_get_seg_count(struct ql3_adapter *qdev,
2416 unsigned short frags)
2417 {
2418 if (qdev->device_id == QL3022_DEVICE_ID)
2419 return 1;
2420
2421 switch(frags) {
2422 case 0: return 1; /* just the skb->data seg */
2423 case 1: return 2; /* skb->data + 1 frag */
2424 case 2: return 3; /* skb->data + 2 frags */
2425 case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
2426 case 4: return 6;
2427 case 5: return 7;
2428 case 6: return 8;
2429 case 7: return 10;
2430 case 8: return 11;
2431 case 9: return 12;
2432 case 10: return 13;
2433 case 11: return 15;
2434 case 12: return 16;
2435 case 13: return 17;
2436 case 14: return 18;
2437 case 15: return 20;
2438 case 16: return 21;
2439 case 17: return 22;
2440 case 18: return 23;
2441 }
2442 return -1;
2443 }
2444
2445 static void ql_hw_csum_setup(const struct sk_buff *skb,
2446 struct ob_mac_iocb_req *mac_iocb_ptr)
2447 {
2448 const struct iphdr *ip = ip_hdr(skb);
2449
2450 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2451 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2452
2453 if (ip->protocol == IPPROTO_TCP) {
2454 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2455 OB_3032MAC_IOCB_REQ_IC;
2456 } else {
2457 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2458 OB_3032MAC_IOCB_REQ_IC;
2459 }
2460
2461 }
2462
2463 /*
2464 * Map the buffers for this transmit. This will return
2465 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2466 */
2467 static int ql_send_map(struct ql3_adapter *qdev,
2468 struct ob_mac_iocb_req *mac_iocb_ptr,
2469 struct ql_tx_buf_cb *tx_cb,
2470 struct sk_buff *skb)
2471 {
2472 struct oal *oal;
2473 struct oal_entry *oal_entry;
2474 int len = skb_headlen(skb);
2475 dma_addr_t map;
2476 int err;
2477 int completed_segs, i;
2478 int seg_cnt, seg = 0;
2479 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2480
2481 seg_cnt = tx_cb->seg_count;
2482 /*
2483 * Map the skb buffer first.
2484 */
2485 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2486
2487 err = pci_dma_mapping_error(map);
2488 if(err) {
2489 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2490 qdev->ndev->name, err);
2491
2492 return NETDEV_TX_BUSY;
2493 }
2494
2495 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2496 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2497 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2498 oal_entry->len = cpu_to_le32(len);
2499 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2500 pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
2501 seg++;
2502
2503 if (seg_cnt == 1) {
2504 /* Terminate the last segment. */
2505 oal_entry->len =
2506 cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
2507 } else {
2508 oal = tx_cb->oal;
2509 for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
2510 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2511 oal_entry++;
2512 if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2513 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2514 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2515 (seg == 17 && seg_cnt > 18)) {
2516 /* Continuation entry points to outbound address list. */
2517 map = pci_map_single(qdev->pdev, oal,
2518 sizeof(struct oal),
2519 PCI_DMA_TODEVICE);
2520
2521 err = pci_dma_mapping_error(map);
2522 if(err) {
2523
2524 printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
2525 qdev->ndev->name, err);
2526 goto map_error;
2527 }
2528
2529 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2530 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2531 oal_entry->len =
2532 cpu_to_le32(sizeof(struct oal) |
2533 OAL_CONT_ENTRY);
2534 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
2535 map);
2536 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2537 sizeof(struct oal));
2538 oal_entry = (struct oal_entry *)oal;
2539 oal++;
2540 seg++;
2541 }
2542
2543 map =
2544 pci_map_page(qdev->pdev, frag->page,
2545 frag->page_offset, frag->size,
2546 PCI_DMA_TODEVICE);
2547
2548 err = pci_dma_mapping_error(map);
2549 if(err) {
2550 printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
2551 qdev->ndev->name, err);
2552 goto map_error;
2553 }
2554
2555 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2556 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2557 oal_entry->len = cpu_to_le32(frag->size);
2558 pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2559 pci_unmap_len_set(&tx_cb->map[seg], maplen,
2560 frag->size);
2561 }
2562 /* Terminate the last segment. */
2563 oal_entry->len =
2564 cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
2565 }
2566
2567 return NETDEV_TX_OK;
2568
2569 map_error:
2570 /* A PCI mapping failed and now we will need to back out
2571 * We need to traverse through the oal's and associated pages which
2572 * have been mapped and now we must unmap them to clean up properly
2573 */
2574
2575 seg = 1;
2576 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2577 oal = tx_cb->oal;
2578 for (i=0; i<completed_segs; i++,seg++) {
2579 oal_entry++;
2580
2581 if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2582 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2583 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2584 (seg == 17 && seg_cnt > 18)) {
2585 pci_unmap_single(qdev->pdev,
2586 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2587 pci_unmap_len(&tx_cb->map[seg], maplen),
2588 PCI_DMA_TODEVICE);
2589 oal++;
2590 seg++;
2591 }
2592
2593 pci_unmap_page(qdev->pdev,
2594 pci_unmap_addr(&tx_cb->map[seg], mapaddr),
2595 pci_unmap_len(&tx_cb->map[seg], maplen),
2596 PCI_DMA_TODEVICE);
2597 }
2598
2599 pci_unmap_single(qdev->pdev,
2600 pci_unmap_addr(&tx_cb->map[0], mapaddr),
2601 pci_unmap_addr(&tx_cb->map[0], maplen),
2602 PCI_DMA_TODEVICE);
2603
2604 return NETDEV_TX_BUSY;
2605
2606 }
2607
2608 /*
2609 * The difference between 3022 and 3032 sends:
2610 * 3022 only supports a simple single segment transmission.
2611 * 3032 supports checksumming and scatter/gather lists (fragments).
2612 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2613 * in the IOCB plus a chain of outbound address lists (OAL) that
2614 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2615 * will used to point to an OAL when more ALP entries are required.
2616 * The IOCB is always the top of the chain followed by one or more
2617 * OALs (when necessary).
2618 */
2619 static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
2620 {
2621 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
2622 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2623 struct ql_tx_buf_cb *tx_cb;
2624 u32 tot_len = skb->len;
2625 struct ob_mac_iocb_req *mac_iocb_ptr;
2626
2627 if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
2628 return NETDEV_TX_BUSY;
2629 }
2630
2631 tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
2632 if((tx_cb->seg_count = ql_get_seg_count(qdev,
2633 (skb_shinfo(skb)->nr_frags))) == -1) {
2634 printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
2635 return NETDEV_TX_OK;
2636 }
2637
2638 mac_iocb_ptr = tx_cb->queue_entry;
2639 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2640 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2641 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2642 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2643 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2644 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2645 tx_cb->skb = skb;
2646 if (qdev->device_id == QL3032_DEVICE_ID &&
2647 skb->ip_summed == CHECKSUM_PARTIAL)
2648 ql_hw_csum_setup(skb, mac_iocb_ptr);
2649
2650 if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
2651 printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
2652 return NETDEV_TX_BUSY;
2653 }
2654
2655 wmb();
2656 qdev->req_producer_index++;
2657 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2658 qdev->req_producer_index = 0;
2659 wmb();
2660 ql_write_common_reg_l(qdev,
2661 &port_regs->CommonRegs.reqQProducerIndex,
2662 qdev->req_producer_index);
2663
2664 ndev->trans_start = jiffies;
2665 if (netif_msg_tx_queued(qdev))
2666 printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
2667 ndev->name, qdev->req_producer_index, skb->len);
2668
2669 atomic_dec(&qdev->tx_count);
2670 return NETDEV_TX_OK;
2671 }
2672
2673 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2674 {
2675 qdev->req_q_size =
2676 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2677
2678 qdev->req_q_virt_addr =
2679 pci_alloc_consistent(qdev->pdev,
2680 (size_t) qdev->req_q_size,
2681 &qdev->req_q_phy_addr);
2682
2683 if ((qdev->req_q_virt_addr == NULL) ||
2684 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2685 printk(KERN_ERR PFX "%s: reqQ failed.\n",
2686 qdev->ndev->name);
2687 return -ENOMEM;
2688 }
2689
2690 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2691
2692 qdev->rsp_q_virt_addr =
2693 pci_alloc_consistent(qdev->pdev,
2694 (size_t) qdev->rsp_q_size,
2695 &qdev->rsp_q_phy_addr);
2696
2697 if ((qdev->rsp_q_virt_addr == NULL) ||
2698 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2699 printk(KERN_ERR PFX
2700 "%s: rspQ allocation failed\n",
2701 qdev->ndev->name);
2702 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2703 qdev->req_q_virt_addr,
2704 qdev->req_q_phy_addr);
2705 return -ENOMEM;
2706 }
2707
2708 set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2709
2710 return 0;
2711 }
2712
2713 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2714 {
2715 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
2716 printk(KERN_INFO PFX
2717 "%s: Already done.\n", qdev->ndev->name);
2718 return;
2719 }
2720
2721 pci_free_consistent(qdev->pdev,
2722 qdev->req_q_size,
2723 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2724
2725 qdev->req_q_virt_addr = NULL;
2726
2727 pci_free_consistent(qdev->pdev,
2728 qdev->rsp_q_size,
2729 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2730
2731 qdev->rsp_q_virt_addr = NULL;
2732
2733 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2734 }
2735
2736 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2737 {
2738 /* Create Large Buffer Queue */
2739 qdev->lrg_buf_q_size =
2740 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2741 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2742 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2743 else
2744 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2745
2746 qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
2747 if (qdev->lrg_buf == NULL) {
2748 printk(KERN_ERR PFX
2749 "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
2750 return -ENOMEM;
2751 }
2752
2753 qdev->lrg_buf_q_alloc_virt_addr =
2754 pci_alloc_consistent(qdev->pdev,
2755 qdev->lrg_buf_q_alloc_size,
2756 &qdev->lrg_buf_q_alloc_phy_addr);
2757
2758 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2759 printk(KERN_ERR PFX
2760 "%s: lBufQ failed\n", qdev->ndev->name);
2761 return -ENOMEM;
2762 }
2763 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2764 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2765
2766 /* Create Small Buffer Queue */
2767 qdev->small_buf_q_size =
2768 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2769 if (qdev->small_buf_q_size < PAGE_SIZE)
2770 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2771 else
2772 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2773
2774 qdev->small_buf_q_alloc_virt_addr =
2775 pci_alloc_consistent(qdev->pdev,
2776 qdev->small_buf_q_alloc_size,
2777 &qdev->small_buf_q_alloc_phy_addr);
2778
2779 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2780 printk(KERN_ERR PFX
2781 "%s: Small Buffer Queue allocation failed.\n",
2782 qdev->ndev->name);
2783 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2784 qdev->lrg_buf_q_alloc_virt_addr,
2785 qdev->lrg_buf_q_alloc_phy_addr);
2786 return -ENOMEM;
2787 }
2788
2789 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2790 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2791 set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2792 return 0;
2793 }
2794
2795 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2796 {
2797 if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
2798 printk(KERN_INFO PFX
2799 "%s: Already done.\n", qdev->ndev->name);
2800 return;
2801 }
2802 if(qdev->lrg_buf) kfree(qdev->lrg_buf);
2803 pci_free_consistent(qdev->pdev,
2804 qdev->lrg_buf_q_alloc_size,
2805 qdev->lrg_buf_q_alloc_virt_addr,
2806 qdev->lrg_buf_q_alloc_phy_addr);
2807
2808 qdev->lrg_buf_q_virt_addr = NULL;
2809
2810 pci_free_consistent(qdev->pdev,
2811 qdev->small_buf_q_alloc_size,
2812 qdev->small_buf_q_alloc_virt_addr,
2813 qdev->small_buf_q_alloc_phy_addr);
2814
2815 qdev->small_buf_q_virt_addr = NULL;
2816
2817 clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2818 }
2819
2820 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2821 {
2822 int i;
2823 struct bufq_addr_element *small_buf_q_entry;
2824
2825 /* Currently we allocate on one of memory and use it for smallbuffers */
2826 qdev->small_buf_total_size =
2827 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2828 QL_SMALL_BUFFER_SIZE);
2829
2830 qdev->small_buf_virt_addr =
2831 pci_alloc_consistent(qdev->pdev,
2832 qdev->small_buf_total_size,
2833 &qdev->small_buf_phy_addr);
2834
2835 if (qdev->small_buf_virt_addr == NULL) {
2836 printk(KERN_ERR PFX
2837 "%s: Failed to get small buffer memory.\n",
2838 qdev->ndev->name);
2839 return -ENOMEM;
2840 }
2841
2842 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2843 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2844
2845 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2846
2847 /* Initialize the small buffer queue. */
2848 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2849 small_buf_q_entry->addr_high =
2850 cpu_to_le32(qdev->small_buf_phy_addr_high);
2851 small_buf_q_entry->addr_low =
2852 cpu_to_le32(qdev->small_buf_phy_addr_low +
2853 (i * QL_SMALL_BUFFER_SIZE));
2854 small_buf_q_entry++;
2855 }
2856 qdev->small_buf_index = 0;
2857 set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
2858 return 0;
2859 }
2860
2861 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2862 {
2863 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
2864 printk(KERN_INFO PFX
2865 "%s: Already done.\n", qdev->ndev->name);
2866 return;
2867 }
2868 if (qdev->small_buf_virt_addr != NULL) {
2869 pci_free_consistent(qdev->pdev,
2870 qdev->small_buf_total_size,
2871 qdev->small_buf_virt_addr,
2872 qdev->small_buf_phy_addr);
2873
2874 qdev->small_buf_virt_addr = NULL;
2875 }
2876 }
2877
2878 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2879 {
2880 int i = 0;
2881 struct ql_rcv_buf_cb *lrg_buf_cb;
2882
2883 for (i = 0; i < qdev->num_large_buffers; i++) {
2884 lrg_buf_cb = &qdev->lrg_buf[i];
2885 if (lrg_buf_cb->skb) {
2886 dev_kfree_skb(lrg_buf_cb->skb);
2887 pci_unmap_single(qdev->pdev,
2888 pci_unmap_addr(lrg_buf_cb, mapaddr),
2889 pci_unmap_len(lrg_buf_cb, maplen),
2890 PCI_DMA_FROMDEVICE);
2891 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2892 } else {
2893 break;
2894 }
2895 }
2896 }
2897
2898 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2899 {
2900 int i;
2901 struct ql_rcv_buf_cb *lrg_buf_cb;
2902 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2903
2904 for (i = 0; i < qdev->num_large_buffers; i++) {
2905 lrg_buf_cb = &qdev->lrg_buf[i];
2906 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2907 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2908 buf_addr_ele++;
2909 }
2910 qdev->lrg_buf_index = 0;
2911 qdev->lrg_buf_skb_check = 0;
2912 }
2913
2914 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2915 {
2916 int i;
2917 struct ql_rcv_buf_cb *lrg_buf_cb;
2918 struct sk_buff *skb;
2919 dma_addr_t map;
2920 int err;
2921
2922 for (i = 0; i < qdev->num_large_buffers; i++) {
2923 skb = netdev_alloc_skb(qdev->ndev,
2924 qdev->lrg_buffer_len);
2925 if (unlikely(!skb)) {
2926 /* Better luck next round */
2927 printk(KERN_ERR PFX
2928 "%s: large buff alloc failed, "
2929 "for %d bytes at index %d.\n",
2930 qdev->ndev->name,
2931 qdev->lrg_buffer_len * 2, i);
2932 ql_free_large_buffers(qdev);
2933 return -ENOMEM;
2934 } else {
2935
2936 lrg_buf_cb = &qdev->lrg_buf[i];
2937 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2938 lrg_buf_cb->index = i;
2939 lrg_buf_cb->skb = skb;
2940 /*
2941 * We save some space to copy the ethhdr from first
2942 * buffer
2943 */
2944 skb_reserve(skb, QL_HEADER_SPACE);
2945 map = pci_map_single(qdev->pdev,
2946 skb->data,
2947 qdev->lrg_buffer_len -
2948 QL_HEADER_SPACE,
2949 PCI_DMA_FROMDEVICE);
2950
2951 err = pci_dma_mapping_error(map);
2952 if(err) {
2953 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2954 qdev->ndev->name, err);
2955 ql_free_large_buffers(qdev);
2956 return -ENOMEM;
2957 }
2958
2959 pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2960 pci_unmap_len_set(lrg_buf_cb, maplen,
2961 qdev->lrg_buffer_len -
2962 QL_HEADER_SPACE);
2963 lrg_buf_cb->buf_phy_addr_low =
2964 cpu_to_le32(LS_64BITS(map));
2965 lrg_buf_cb->buf_phy_addr_high =
2966 cpu_to_le32(MS_64BITS(map));
2967 }
2968 }
2969 return 0;
2970 }
2971
2972 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2973 {
2974 struct ql_tx_buf_cb *tx_cb;
2975 int i;
2976
2977 tx_cb = &qdev->tx_buf[0];
2978 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2979 if (tx_cb->oal) {
2980 kfree(tx_cb->oal);
2981 tx_cb->oal = NULL;
2982 }
2983 tx_cb++;
2984 }
2985 }
2986
2987 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2988 {
2989 struct ql_tx_buf_cb *tx_cb;
2990 int i;
2991 struct ob_mac_iocb_req *req_q_curr =
2992 qdev->req_q_virt_addr;
2993
2994 /* Create free list of transmit buffers */
2995 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2996
2997 tx_cb = &qdev->tx_buf[i];
2998 tx_cb->skb = NULL;
2999 tx_cb->queue_entry = req_q_curr;
3000 req_q_curr++;
3001 tx_cb->oal = kmalloc(512, GFP_KERNEL);
3002 if (tx_cb->oal == NULL)
3003 return -1;
3004 }
3005 return 0;
3006 }
3007
3008 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
3009 {
3010 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
3011 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
3012 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
3013 }
3014 else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
3015 /*
3016 * Bigger buffers, so less of them.
3017 */
3018 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
3019 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
3020 } else {
3021 printk(KERN_ERR PFX
3022 "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
3023 qdev->ndev->name);
3024 return -ENOMEM;
3025 }
3026 qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
3027 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
3028 qdev->max_frame_size =
3029 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
3030
3031 /*
3032 * First allocate a page of shared memory and use it for shadow
3033 * locations of Network Request Queue Consumer Address Register and
3034 * Network Completion Queue Producer Index Register
3035 */
3036 qdev->shadow_reg_virt_addr =
3037 pci_alloc_consistent(qdev->pdev,
3038 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
3039
3040 if (qdev->shadow_reg_virt_addr != NULL) {
3041 qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
3042 qdev->req_consumer_index_phy_addr_high =
3043 MS_64BITS(qdev->shadow_reg_phy_addr);
3044 qdev->req_consumer_index_phy_addr_low =
3045 LS_64BITS(qdev->shadow_reg_phy_addr);
3046
3047 qdev->prsp_producer_index =
3048 (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
3049 qdev->rsp_producer_index_phy_addr_high =
3050 qdev->req_consumer_index_phy_addr_high;
3051 qdev->rsp_producer_index_phy_addr_low =
3052 qdev->req_consumer_index_phy_addr_low + 8;
3053 } else {
3054 printk(KERN_ERR PFX
3055 "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
3056 return -ENOMEM;
3057 }
3058
3059 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
3060 printk(KERN_ERR PFX
3061 "%s: ql_alloc_net_req_rsp_queues failed.\n",
3062 qdev->ndev->name);
3063 goto err_req_rsp;
3064 }
3065
3066 if (ql_alloc_buffer_queues(qdev) != 0) {
3067 printk(KERN_ERR PFX
3068 "%s: ql_alloc_buffer_queues failed.\n",
3069 qdev->ndev->name);
3070 goto err_buffer_queues;
3071 }
3072
3073 if (ql_alloc_small_buffers(qdev) != 0) {
3074 printk(KERN_ERR PFX
3075 "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
3076 goto err_small_buffers;
3077 }
3078
3079 if (ql_alloc_large_buffers(qdev) != 0) {
3080 printk(KERN_ERR PFX
3081 "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
3082 goto err_small_buffers;
3083 }
3084
3085 /* Initialize the large buffer queue. */
3086 ql_init_large_buffers(qdev);
3087 if (ql_create_send_free_list(qdev))
3088 goto err_free_list;
3089
3090 qdev->rsp_current = qdev->rsp_q_virt_addr;
3091
3092 return 0;
3093 err_free_list:
3094 ql_free_send_free_list(qdev);
3095 err_small_buffers:
3096 ql_free_buffer_queues(qdev);
3097 err_buffer_queues:
3098 ql_free_net_req_rsp_queues(qdev);
3099 err_req_rsp:
3100 pci_free_consistent(qdev->pdev,
3101 PAGE_SIZE,
3102 qdev->shadow_reg_virt_addr,
3103 qdev->shadow_reg_phy_addr);
3104
3105 return -ENOMEM;
3106 }
3107
3108 static void ql_free_mem_resources(struct ql3_adapter *qdev)
3109 {
3110 ql_free_send_free_list(qdev);
3111 ql_free_large_buffers(qdev);
3112 ql_free_small_buffers(qdev);
3113 ql_free_buffer_queues(qdev);
3114 ql_free_net_req_rsp_queues(qdev);
3115 if (qdev->shadow_reg_virt_addr != NULL) {
3116 pci_free_consistent(qdev->pdev,
3117 PAGE_SIZE,
3118 qdev->shadow_reg_virt_addr,
3119 qdev->shadow_reg_phy_addr);
3120 qdev->shadow_reg_virt_addr = NULL;
3121 }
3122 }
3123
3124 static int ql_init_misc_registers(struct ql3_adapter *qdev)
3125 {
3126 struct ql3xxx_local_ram_registers __iomem *local_ram =
3127 (void __iomem *)qdev->mem_map_registers;
3128
3129 if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
3130 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3131 2) << 4))
3132 return -1;
3133
3134 ql_write_page2_reg(qdev,
3135 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
3136
3137 ql_write_page2_reg(qdev,
3138 &local_ram->maxBufletCount,
3139 qdev->nvram_data.bufletCount);
3140
3141 ql_write_page2_reg(qdev,
3142 &local_ram->freeBufletThresholdLow,
3143 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
3144 (qdev->nvram_data.tcpWindowThreshold0));
3145
3146 ql_write_page2_reg(qdev,
3147 &local_ram->freeBufletThresholdHigh,
3148 qdev->nvram_data.tcpWindowThreshold50);
3149
3150 ql_write_page2_reg(qdev,
3151 &local_ram->ipHashTableBase,
3152 (qdev->nvram_data.ipHashTableBaseHi << 16) |
3153 qdev->nvram_data.ipHashTableBaseLo);
3154 ql_write_page2_reg(qdev,
3155 &local_ram->ipHashTableCount,
3156 qdev->nvram_data.ipHashTableSize);
3157 ql_write_page2_reg(qdev,
3158 &local_ram->tcpHashTableBase,
3159 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
3160 qdev->nvram_data.tcpHashTableBaseLo);
3161 ql_write_page2_reg(qdev,
3162 &local_ram->tcpHashTableCount,
3163 qdev->nvram_data.tcpHashTableSize);
3164 ql_write_page2_reg(qdev,
3165 &local_ram->ncbBase,
3166 (qdev->nvram_data.ncbTableBaseHi << 16) |
3167 qdev->nvram_data.ncbTableBaseLo);
3168 ql_write_page2_reg(qdev,
3169 &local_ram->maxNcbCount,
3170 qdev->nvram_data.ncbTableSize);
3171 ql_write_page2_reg(qdev,
3172 &local_ram->drbBase,
3173 (qdev->nvram_data.drbTableBaseHi << 16) |
3174 qdev->nvram_data.drbTableBaseLo);
3175 ql_write_page2_reg(qdev,
3176 &local_ram->maxDrbCount,
3177 qdev->nvram_data.drbTableSize);
3178 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3179 return 0;
3180 }
3181
3182 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3183 {
3184 u32 value;
3185 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3186 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3187 (void __iomem *)port_regs;
3188 u32 delay = 10;
3189 int status = 0;
3190
3191 if(ql_mii_setup(qdev))
3192 return -1;
3193
3194 /* Bring out PHY out of reset */
3195 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3196 (ISP_SERIAL_PORT_IF_WE |
3197 (ISP_SERIAL_PORT_IF_WE << 16)));
3198
3199 qdev->port_link_state = LS_DOWN;
3200 netif_carrier_off(qdev->ndev);
3201
3202 /* V2 chip fix for ARS-39168. */
3203 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3204 (ISP_SERIAL_PORT_IF_SDE |
3205 (ISP_SERIAL_PORT_IF_SDE << 16)));
3206
3207 /* Request Queue Registers */
3208 *((u32 *) (qdev->preq_consumer_index)) = 0;
3209 atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
3210 qdev->req_producer_index = 0;
3211
3212 ql_write_page1_reg(qdev,
3213 &hmem_regs->reqConsumerIndexAddrHigh,
3214 qdev->req_consumer_index_phy_addr_high);
3215 ql_write_page1_reg(qdev,
3216 &hmem_regs->reqConsumerIndexAddrLow,
3217 qdev->req_consumer_index_phy_addr_low);
3218
3219 ql_write_page1_reg(qdev,
3220 &hmem_regs->reqBaseAddrHigh,
3221 MS_64BITS(qdev->req_q_phy_addr));
3222 ql_write_page1_reg(qdev,
3223 &hmem_regs->reqBaseAddrLow,
3224 LS_64BITS(qdev->req_q_phy_addr));
3225 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3226
3227 /* Response Queue Registers */
3228 *((u16 *) (qdev->prsp_producer_index)) = 0;
3229 qdev->rsp_consumer_index = 0;
3230 qdev->rsp_current = qdev->rsp_q_virt_addr;
3231
3232 ql_write_page1_reg(qdev,
3233 &hmem_regs->rspProducerIndexAddrHigh,
3234 qdev->rsp_producer_index_phy_addr_high);
3235
3236 ql_write_page1_reg(qdev,
3237 &hmem_regs->rspProducerIndexAddrLow,
3238 qdev->rsp_producer_index_phy_addr_low);
3239
3240 ql_write_page1_reg(qdev,
3241 &hmem_regs->rspBaseAddrHigh,
3242 MS_64BITS(qdev->rsp_q_phy_addr));
3243
3244 ql_write_page1_reg(qdev,
3245 &hmem_regs->rspBaseAddrLow,
3246 LS_64BITS(qdev->rsp_q_phy_addr));
3247
3248 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3249
3250 /* Large Buffer Queue */
3251 ql_write_page1_reg(qdev,
3252 &hmem_regs->rxLargeQBaseAddrHigh,
3253 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3254
3255 ql_write_page1_reg(qdev,
3256 &hmem_regs->rxLargeQBaseAddrLow,
3257 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3258
3259 ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
3260
3261 ql_write_page1_reg(qdev,
3262 &hmem_regs->rxLargeBufferLength,
3263 qdev->lrg_buffer_len);
3264
3265 /* Small Buffer Queue */
3266 ql_write_page1_reg(qdev,
3267 &hmem_regs->rxSmallQBaseAddrHigh,
3268 MS_64BITS(qdev->small_buf_q_phy_addr));
3269
3270 ql_write_page1_reg(qdev,
3271 &hmem_regs->rxSmallQBaseAddrLow,
3272 LS_64BITS(qdev->small_buf_q_phy_addr));
3273
3274 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3275 ql_write_page1_reg(qdev,
3276 &hmem_regs->rxSmallBufferLength,
3277 QL_SMALL_BUFFER_SIZE);
3278
3279 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3280 qdev->small_buf_release_cnt = 8;
3281 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3282 qdev->lrg_buf_release_cnt = 8;
3283 qdev->lrg_buf_next_free =
3284 (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
3285 qdev->small_buf_index = 0;
3286 qdev->lrg_buf_index = 0;
3287 qdev->lrg_buf_free_count = 0;
3288 qdev->lrg_buf_free_head = NULL;
3289 qdev->lrg_buf_free_tail = NULL;
3290
3291 ql_write_common_reg(qdev,
3292 &port_regs->CommonRegs.
3293 rxSmallQProducerIndex,
3294 qdev->small_buf_q_producer_index);
3295 ql_write_common_reg(qdev,
3296 &port_regs->CommonRegs.
3297 rxLargeQProducerIndex,
3298 qdev->lrg_buf_q_producer_index);
3299
3300 /*
3301 * Find out if the chip has already been initialized. If it has, then
3302 * we skip some of the initialization.
3303 */
3304 clear_bit(QL_LINK_MASTER, &qdev->flags);
3305 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3306 if ((value & PORT_STATUS_IC) == 0) {
3307
3308 /* Chip has not been configured yet, so let it rip. */
3309 if(ql_init_misc_registers(qdev)) {
3310 status = -1;
3311 goto out;
3312 }
3313
3314 value = qdev->nvram_data.tcpMaxWindowSize;
3315 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3316
3317 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3318
3319 if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3320 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3321 * 2) << 13)) {
3322 status = -1;
3323 goto out;
3324 }
3325 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3326 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3327 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3328 16) | (INTERNAL_CHIP_SD |
3329 INTERNAL_CHIP_WE)));
3330 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3331 }
3332
3333 if (qdev->mac_index)
3334 ql_write_page0_reg(qdev,
3335 &port_regs->mac1MaxFrameLengthReg,
3336 qdev->max_frame_size);
3337 else
3338 ql_write_page0_reg(qdev,
3339 &port_regs->mac0MaxFrameLengthReg,
3340 qdev->max_frame_size);
3341
3342 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3343 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3344 2) << 7)) {
3345 status = -1;
3346 goto out;
3347 }
3348
3349 PHY_Setup(qdev);
3350 ql_init_scan_mode(qdev);
3351 ql_get_phy_owner(qdev);
3352
3353 /* Load the MAC Configuration */
3354
3355 /* Program lower 32 bits of the MAC address */
3356 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3357 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3358 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3359 ((qdev->ndev->dev_addr[2] << 24)
3360 | (qdev->ndev->dev_addr[3] << 16)
3361 | (qdev->ndev->dev_addr[4] << 8)
3362 | qdev->ndev->dev_addr[5]));
3363
3364 /* Program top 16 bits of the MAC address */
3365 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3366 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3367 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3368 ((qdev->ndev->dev_addr[0] << 8)
3369 | qdev->ndev->dev_addr[1]));
3370
3371 /* Enable Primary MAC */
3372 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3373 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3374 MAC_ADDR_INDIRECT_PTR_REG_PE));
3375
3376 /* Clear Primary and Secondary IP addresses */
3377 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3378 ((IP_ADDR_INDEX_REG_MASK << 16) |
3379 (qdev->mac_index << 2)));
3380 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3381
3382 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3383 ((IP_ADDR_INDEX_REG_MASK << 16) |
3384 ((qdev->mac_index << 2) + 1)));
3385 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3386
3387 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3388
3389 /* Indicate Configuration Complete */
3390 ql_write_page0_reg(qdev,
3391 &port_regs->portControl,
3392 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3393
3394 do {
3395 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3396 if (value & PORT_STATUS_IC)
3397 break;
3398 msleep(500);
3399 } while (--delay);
3400
3401 if (delay == 0) {
3402 printk(KERN_ERR PFX
3403 "%s: Hw Initialization timeout.\n", qdev->ndev->name);
3404 status = -1;
3405 goto out;
3406 }
3407
3408 /* Enable Ethernet Function */
3409 if (qdev->device_id == QL3032_DEVICE_ID) {
3410 value =
3411 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3412 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3413 QL3032_PORT_CONTROL_ET);
3414 ql_write_page0_reg(qdev, &port_regs->functionControl,
3415 ((value << 16) | value));
3416 } else {
3417 value =
3418 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3419 PORT_CONTROL_HH);
3420 ql_write_page0_reg(qdev, &port_regs->portControl,
3421 ((value << 16) | value));
3422 }
3423
3424
3425 out:
3426 return status;
3427 }
3428
3429 /*
3430 * Caller holds hw_lock.
3431 */
3432 static int ql_adapter_reset(struct ql3_adapter *qdev)
3433 {
3434 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3435 int status = 0;
3436 u16 value;
3437 int max_wait_time;
3438
3439 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3440 clear_bit(QL_RESET_DONE, &qdev->flags);
3441
3442 /*
3443 * Issue soft reset to chip.
3444 */
3445 printk(KERN_DEBUG PFX
3446 "%s: Issue soft reset to chip.\n",
3447 qdev->ndev->name);
3448 ql_write_common_reg(qdev,
3449 &port_regs->CommonRegs.ispControlStatus,
3450 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3451
3452 /* Wait 3 seconds for reset to complete. */
3453 printk(KERN_DEBUG PFX
3454 "%s: Wait 10 milliseconds for reset to complete.\n",
3455 qdev->ndev->name);
3456
3457 /* Wait until the firmware tells us the Soft Reset is done */
3458 max_wait_time = 5;
3459 do {
3460 value =
3461 ql_read_common_reg(qdev,
3462 &port_regs->CommonRegs.ispControlStatus);
3463 if ((value & ISP_CONTROL_SR) == 0)
3464 break;
3465
3466 ssleep(1);
3467 } while ((--max_wait_time));
3468
3469 /*
3470 * Also, make sure that the Network Reset Interrupt bit has been
3471 * cleared after the soft reset has taken place.
3472 */
3473 value =
3474 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3475 if (value & ISP_CONTROL_RI) {
3476 printk(KERN_DEBUG PFX
3477 "ql_adapter_reset: clearing RI after reset.\n");
3478 ql_write_common_reg(qdev,
3479 &port_regs->CommonRegs.
3480 ispControlStatus,
3481 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3482 }
3483
3484 if (max_wait_time == 0) {
3485 /* Issue Force Soft Reset */
3486 ql_write_common_reg(qdev,
3487 &port_regs->CommonRegs.
3488 ispControlStatus,
3489 ((ISP_CONTROL_FSR << 16) |
3490 ISP_CONTROL_FSR));
3491 /*
3492 * Wait until the firmware tells us the Force Soft Reset is
3493 * done
3494 */
3495 max_wait_time = 5;
3496 do {
3497 value =
3498 ql_read_common_reg(qdev,
3499 &port_regs->CommonRegs.
3500 ispControlStatus);
3501 if ((value & ISP_CONTROL_FSR) == 0) {
3502 break;
3503 }
3504 ssleep(1);
3505 } while ((--max_wait_time));
3506 }
3507 if (max_wait_time == 0)
3508 status = 1;
3509
3510 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3511 set_bit(QL_RESET_DONE, &qdev->flags);
3512 return status;
3513 }
3514
3515 static void ql_set_mac_info(struct ql3_adapter *qdev)
3516 {
3517 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3518 u32 value, port_status;
3519 u8 func_number;
3520
3521 /* Get the function number */
3522 value =
3523 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3524 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3525 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3526 switch (value & ISP_CONTROL_FN_MASK) {
3527 case ISP_CONTROL_FN0_NET:
3528 qdev->mac_index = 0;
3529 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3530 qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
3531 qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
3532 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3533 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3534 if (port_status & PORT_STATUS_SM0)
3535 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3536 else
3537 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3538 break;
3539
3540 case ISP_CONTROL_FN1_NET:
3541 qdev->mac_index = 1;
3542 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3543 qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
3544 qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
3545 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3546 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3547 if (port_status & PORT_STATUS_SM1)
3548 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3549 else
3550 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3551 break;
3552
3553 case ISP_CONTROL_FN0_SCSI:
3554 case ISP_CONTROL_FN1_SCSI:
3555 default:
3556 printk(KERN_DEBUG PFX
3557 "%s: Invalid function number, ispControlStatus = 0x%x\n",
3558 qdev->ndev->name,value);
3559 break;
3560 }
3561 qdev->numPorts = qdev->nvram_data.numPorts;
3562 }
3563
3564 static void ql_display_dev_info(struct net_device *ndev)
3565 {
3566 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3567 struct pci_dev *pdev = qdev->pdev;
3568 DECLARE_MAC_BUF(mac);
3569
3570 printk(KERN_INFO PFX
3571 "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
3572 DRV_NAME, qdev->index, qdev->chip_rev_id,
3573 (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
3574 qdev->pci_slot);
3575 printk(KERN_INFO PFX
3576 "%s Interface.\n",
3577 test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
3578
3579 /*
3580 * Print PCI bus width/type.
3581 */
3582 printk(KERN_INFO PFX
3583 "Bus interface is %s %s.\n",
3584 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3585 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3586
3587 printk(KERN_INFO PFX
3588 "mem IO base address adjusted = 0x%p\n",
3589 qdev->mem_map_registers);
3590 printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
3591
3592 if (netif_msg_probe(qdev))
3593 printk(KERN_INFO PFX
3594 "%s: MAC address %s\n",
3595 ndev->name, print_mac(mac, ndev->dev_addr));
3596 }
3597
3598 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3599 {
3600 struct net_device *ndev = qdev->ndev;
3601 int retval = 0;
3602
3603 netif_stop_queue(ndev);
3604 netif_carrier_off(ndev);
3605
3606 clear_bit(QL_ADAPTER_UP,&qdev->flags);
3607 clear_bit(QL_LINK_MASTER,&qdev->flags);
3608
3609 ql_disable_interrupts(qdev);
3610
3611 free_irq(qdev->pdev->irq, ndev);
3612
3613 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3614 printk(KERN_INFO PFX
3615 "%s: calling pci_disable_msi().\n", qdev->ndev->name);
3616 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3617 pci_disable_msi(qdev->pdev);
3618 }
3619
3620 del_timer_sync(&qdev->adapter_timer);
3621
3622 napi_disable(&qdev->napi);
3623
3624 if (do_reset) {
3625 int soft_reset;
3626 unsigned long hw_flags;
3627
3628 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3629 if (ql_wait_for_drvr_lock(qdev)) {
3630 if ((soft_reset = ql_adapter_reset(qdev))) {
3631 printk(KERN_ERR PFX
3632 "%s: ql_adapter_reset(%d) FAILED!\n",
3633 ndev->name, qdev->index);
3634 }
3635 printk(KERN_ERR PFX
3636 "%s: Releaseing driver lock via chip reset.\n",ndev->name);
3637 } else {
3638 printk(KERN_ERR PFX
3639 "%s: Could not acquire driver lock to do "
3640 "reset!\n", ndev->name);
3641 retval = -1;
3642 }
3643 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3644 }
3645 ql_free_mem_resources(qdev);
3646 return retval;
3647 }
3648
3649 static int ql_adapter_up(struct ql3_adapter *qdev)
3650 {
3651 struct net_device *ndev = qdev->ndev;
3652 int err;
3653 unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
3654 unsigned long hw_flags;
3655
3656 if (ql_alloc_mem_resources(qdev)) {
3657 printk(KERN_ERR PFX
3658 "%s Unable to allocate buffers.\n", ndev->name);
3659 return -ENOMEM;
3660 }
3661
3662 if (qdev->msi) {
3663 if (pci_enable_msi(qdev->pdev)) {
3664 printk(KERN_ERR PFX
3665 "%s: User requested MSI, but MSI failed to "
3666 "initialize. Continuing without MSI.\n",
3667 qdev->ndev->name);
3668 qdev->msi = 0;
3669 } else {
3670 printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
3671 set_bit(QL_MSI_ENABLED,&qdev->flags);
3672 irq_flags &= ~IRQF_SHARED;
3673 }
3674 }
3675
3676 if ((err = request_irq(qdev->pdev->irq,
3677 ql3xxx_isr,
3678 irq_flags, ndev->name, ndev))) {
3679 printk(KERN_ERR PFX
3680 "%s: Failed to reserve interrupt %d already in use.\n",
3681 ndev->name, qdev->pdev->irq);
3682 goto err_irq;
3683 }
3684
3685 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3686
3687 if ((err = ql_wait_for_drvr_lock(qdev))) {
3688 if ((err = ql_adapter_initialize(qdev))) {
3689 printk(KERN_ERR PFX
3690 "%s: Unable to initialize adapter.\n",
3691 ndev->name);
3692 goto err_init;
3693 }
3694 printk(KERN_ERR PFX
3695 "%s: Releaseing driver lock.\n",ndev->name);
3696 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3697 } else {
3698 printk(KERN_ERR PFX
3699 "%s: Could not aquire driver lock.\n",
3700 ndev->name);
3701 goto err_lock;
3702 }
3703
3704 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3705
3706 set_bit(QL_ADAPTER_UP,&qdev->flags);
3707
3708 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3709
3710 napi_enable(&qdev->napi);
3711 ql_enable_interrupts(qdev);
3712 return 0;
3713
3714 err_init:
3715 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3716 err_lock:
3717 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3718 free_irq(qdev->pdev->irq, ndev);
3719 err_irq:
3720 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3721 printk(KERN_INFO PFX
3722 "%s: calling pci_disable_msi().\n",
3723 qdev->ndev->name);
3724 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3725 pci_disable_msi(qdev->pdev);
3726 }
3727 return err;
3728 }
3729
3730 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3731 {
3732 if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
3733 printk(KERN_ERR PFX
3734 "%s: Driver up/down cycle failed, "
3735 "closing device\n",qdev->ndev->name);
3736 dev_close(qdev->ndev);
3737 return -1;
3738 }
3739 return 0;
3740 }
3741
3742 static int ql3xxx_close(struct net_device *ndev)
3743 {
3744 struct ql3_adapter *qdev = netdev_priv(ndev);
3745
3746 /*
3747 * Wait for device to recover from a reset.
3748 * (Rarely happens, but possible.)
3749 */
3750 while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
3751 msleep(50);
3752
3753 ql_adapter_down(qdev,QL_DO_RESET);
3754 return 0;
3755 }
3756
3757 static int ql3xxx_open(struct net_device *ndev)
3758 {
3759 struct ql3_adapter *qdev = netdev_priv(ndev);
3760 return (ql_adapter_up(qdev));
3761 }
3762
3763 static void ql3xxx_set_multicast_list(struct net_device *ndev)
3764 {
3765 /*
3766 * We are manually parsing the list in the net_device structure.
3767 */
3768 return;
3769 }
3770
3771 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3772 {
3773 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3774 struct ql3xxx_port_registers __iomem *port_regs =
3775 qdev->mem_map_registers;
3776 struct sockaddr *addr = p;
3777 unsigned long hw_flags;
3778
3779 if (netif_running(ndev))
3780 return -EBUSY;
3781
3782 if (!is_valid_ether_addr(addr->sa_data))
3783 return -EADDRNOTAVAIL;
3784
3785 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3786
3787 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3788 /* Program lower 32 bits of the MAC address */
3789 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3790 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3791 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3792 ((ndev->dev_addr[2] << 24) | (ndev->
3793 dev_addr[3] << 16) |
3794 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3795
3796 /* Program top 16 bits of the MAC address */
3797 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3798 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3799 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3800 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3801 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3802
3803 return 0;
3804 }
3805
3806 static void ql3xxx_tx_timeout(struct net_device *ndev)
3807 {
3808 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3809
3810 printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
3811 /*
3812 * Stop the queues, we've got a problem.
3813 */
3814 netif_stop_queue(ndev);
3815
3816 /*
3817 * Wake up the worker to process this event.
3818 */
3819 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3820 }
3821
3822 static void ql_reset_work(struct work_struct *work)
3823 {
3824 struct ql3_adapter *qdev =
3825 container_of(work, struct ql3_adapter, reset_work.work);
3826 struct net_device *ndev = qdev->ndev;
3827 u32 value;
3828 struct ql_tx_buf_cb *tx_cb;
3829 int max_wait_time, i;
3830 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3831 unsigned long hw_flags;
3832
3833 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
3834 clear_bit(QL_LINK_MASTER,&qdev->flags);
3835
3836 /*
3837 * Loop through the active list and return the skb.
3838 */
3839 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3840 int j;
3841 tx_cb = &qdev->tx_buf[i];
3842 if (tx_cb->skb) {
3843 printk(KERN_DEBUG PFX
3844 "%s: Freeing lost SKB.\n",
3845 qdev->ndev->name);
3846 pci_unmap_single(qdev->pdev,
3847 pci_unmap_addr(&tx_cb->map[0], mapaddr),
3848 pci_unmap_len(&tx_cb->map[0], maplen),
3849 PCI_DMA_TODEVICE);
3850 for(j=1;j<tx_cb->seg_count;j++) {
3851 pci_unmap_page(qdev->pdev,
3852 pci_unmap_addr(&tx_cb->map[j],mapaddr),
3853 pci_unmap_len(&tx_cb->map[j],maplen),
3854 PCI_DMA_TODEVICE);
3855 }
3856 dev_kfree_skb(tx_cb->skb);
3857 tx_cb->skb = NULL;
3858 }
3859 }
3860
3861 printk(KERN_ERR PFX
3862 "%s: Clearing NRI after reset.\n", qdev->ndev->name);
3863 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3864 ql_write_common_reg(qdev,
3865 &port_regs->CommonRegs.
3866 ispControlStatus,
3867 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3868 /*
3869 * Wait the for Soft Reset to Complete.
3870 */
3871 max_wait_time = 10;
3872 do {
3873 value = ql_read_common_reg(qdev,
3874 &port_regs->CommonRegs.
3875
3876 ispControlStatus);
3877 if ((value & ISP_CONTROL_SR) == 0) {
3878 printk(KERN_DEBUG PFX
3879 "%s: reset completed.\n",
3880 qdev->ndev->name);
3881 break;
3882 }
3883
3884 if (value & ISP_CONTROL_RI) {
3885 printk(KERN_DEBUG PFX
3886 "%s: clearing NRI after reset.\n",
3887 qdev->ndev->name);
3888 ql_write_common_reg(qdev,
3889 &port_regs->
3890 CommonRegs.
3891 ispControlStatus,
3892 ((ISP_CONTROL_RI <<
3893 16) | ISP_CONTROL_RI));
3894 }
3895
3896 ssleep(1);
3897 } while (--max_wait_time);
3898 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3899
3900 if (value & ISP_CONTROL_SR) {
3901
3902 /*
3903 * Set the reset flags and clear the board again.
3904 * Nothing else to do...
3905 */
3906 printk(KERN_ERR PFX
3907 "%s: Timed out waiting for reset to "
3908 "complete.\n", ndev->name);
3909 printk(KERN_ERR PFX
3910 "%s: Do a reset.\n", ndev->name);
3911 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3912 clear_bit(QL_RESET_START,&qdev->flags);
3913 ql_cycle_adapter(qdev,QL_DO_RESET);
3914 return;
3915 }
3916
3917 clear_bit(QL_RESET_ACTIVE,&qdev->flags);
3918 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3919 clear_bit(QL_RESET_START,&qdev->flags);
3920 ql_cycle_adapter(qdev,QL_NO_RESET);
3921 }
3922 }
3923
3924 static void ql_tx_timeout_work(struct work_struct *work)
3925 {
3926 struct ql3_adapter *qdev =
3927 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3928
3929 ql_cycle_adapter(qdev, QL_DO_RESET);
3930 }
3931
3932 static void ql_get_board_info(struct ql3_adapter *qdev)
3933 {
3934 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3935 u32 value;
3936
3937 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3938
3939 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3940 if (value & PORT_STATUS_64)
3941 qdev->pci_width = 64;
3942 else
3943 qdev->pci_width = 32;
3944 if (value & PORT_STATUS_X)
3945 qdev->pci_x = 1;
3946 else
3947 qdev->pci_x = 0;
3948 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3949 }
3950
3951 static void ql3xxx_timer(unsigned long ptr)
3952 {
3953 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3954 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3955 }
3956
3957 static int __devinit ql3xxx_probe(struct pci_dev *pdev,
3958 const struct pci_device_id *pci_entry)
3959 {
3960 struct net_device *ndev = NULL;
3961 struct ql3_adapter *qdev = NULL;
3962 static int cards_found = 0;
3963 int pci_using_dac, err;
3964
3965 err = pci_enable_device(pdev);
3966 if (err) {
3967 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3968 pci_name(pdev));
3969 goto err_out;
3970 }
3971
3972 err = pci_request_regions(pdev, DRV_NAME);
3973 if (err) {
3974 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3975 pci_name(pdev));
3976 goto err_out_disable_pdev;
3977 }
3978
3979 pci_set_master(pdev);
3980
3981 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3982 pci_using_dac = 1;
3983 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3984 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3985 pci_using_dac = 0;
3986 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3987 }
3988
3989 if (err) {
3990 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3991 pci_name(pdev));
3992 goto err_out_free_regions;
3993 }
3994
3995 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3996 if (!ndev) {
3997 printk(KERN_ERR PFX "%s could not alloc etherdev\n",
3998 pci_name(pdev));
3999 err = -ENOMEM;
4000 goto err_out_free_regions;
4001 }
4002
4003 SET_NETDEV_DEV(ndev, &pdev->dev);
4004
4005 pci_set_drvdata(pdev, ndev);
4006
4007 qdev = netdev_priv(ndev);
4008 qdev->index = cards_found;
4009 qdev->ndev = ndev;
4010 qdev->pdev = pdev;
4011 qdev->device_id = pci_entry->device;
4012 qdev->port_link_state = LS_DOWN;
4013 if (msi)
4014 qdev->msi = 1;
4015
4016 qdev->msg_enable = netif_msg_init(debug, default_msg);
4017
4018 if (pci_using_dac)
4019 ndev->features |= NETIF_F_HIGHDMA;
4020 if (qdev->device_id == QL3032_DEVICE_ID)
4021 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
4022
4023 qdev->mem_map_registers =
4024 ioremap_nocache(pci_resource_start(pdev, 1),
4025 pci_resource_len(qdev->pdev, 1));
4026 if (!qdev->mem_map_registers) {
4027 printk(KERN_ERR PFX "%s: cannot map device registers\n",
4028 pci_name(pdev));
4029 err = -EIO;
4030 goto err_out_free_ndev;
4031 }
4032
4033 spin_lock_init(&qdev->adapter_lock);
4034 spin_lock_init(&qdev->hw_lock);
4035
4036 /* Set driver entry points */
4037 ndev->open = ql3xxx_open;
4038 ndev->hard_start_xmit = ql3xxx_send;
4039 ndev->stop = ql3xxx_close;
4040 ndev->set_multicast_list = ql3xxx_set_multicast_list;
4041 SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
4042 ndev->set_mac_address = ql3xxx_set_mac_address;
4043 ndev->tx_timeout = ql3xxx_tx_timeout;
4044 ndev->watchdog_timeo = 5 * HZ;
4045
4046 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
4047
4048 ndev->irq = pdev->irq;
4049
4050 /* make sure the EEPROM is good */
4051 if (ql_get_nvram_params(qdev)) {
4052 printk(KERN_ALERT PFX
4053 "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
4054 qdev->index);
4055 err = -EIO;
4056 goto err_out_iounmap;
4057 }
4058
4059 ql_set_mac_info(qdev);
4060
4061 /* Validate and set parameters */
4062 if (qdev->mac_index) {
4063 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
4064 memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
4065 ETH_ALEN);
4066 } else {
4067 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
4068 memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
4069 ETH_ALEN);
4070 }
4071 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4072
4073 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
4074
4075 /* Turn off support for multicasting */
4076 ndev->flags &= ~IFF_MULTICAST;
4077
4078 /* Record PCI bus information. */
4079 ql_get_board_info(qdev);
4080
4081 /*
4082 * Set the Maximum Memory Read Byte Count value. We do this to handle
4083 * jumbo frames.
4084 */
4085 if (qdev->pci_x) {
4086 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
4087 }
4088
4089 err = register_netdev(ndev);
4090 if (err) {
4091 printk(KERN_ERR PFX "%s: cannot register net device\n",
4092 pci_name(pdev));
4093 goto err_out_iounmap;
4094 }
4095
4096 /* we're going to reset, so assume we have no link for now */
4097
4098 netif_carrier_off(ndev);
4099 netif_stop_queue(ndev);
4100
4101 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4102 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
4103 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
4104 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
4105
4106 init_timer(&qdev->adapter_timer);
4107 qdev->adapter_timer.function = ql3xxx_timer;
4108 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
4109 qdev->adapter_timer.data = (unsigned long)qdev;
4110
4111 if(!cards_found) {
4112 printk(KERN_ALERT PFX "%s\n", DRV_STRING);
4113 printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
4114 DRV_NAME, DRV_VERSION);
4115 }
4116 ql_display_dev_info(ndev);
4117
4118 cards_found++;
4119 return 0;
4120
4121 err_out_iounmap:
4122 iounmap(qdev->mem_map_registers);
4123 err_out_free_ndev:
4124 free_netdev(ndev);
4125 err_out_free_regions:
4126 pci_release_regions(pdev);
4127 err_out_disable_pdev:
4128 pci_disable_device(pdev);
4129 pci_set_drvdata(pdev, NULL);
4130 err_out:
4131 return err;
4132 }
4133
4134 static void __devexit ql3xxx_remove(struct pci_dev *pdev)
4135 {
4136 struct net_device *ndev = pci_get_drvdata(pdev);
4137 struct ql3_adapter *qdev = netdev_priv(ndev);
4138
4139 unregister_netdev(ndev);
4140 qdev = netdev_priv(ndev);
4141
4142 ql_disable_interrupts(qdev);
4143
4144 if (qdev->workqueue) {
4145 cancel_delayed_work(&qdev->reset_work);
4146 cancel_delayed_work(&qdev->tx_timeout_work);
4147 destroy_workqueue(qdev->workqueue);
4148 qdev->workqueue = NULL;
4149 }
4150
4151 iounmap(qdev->mem_map_registers);
4152 pci_release_regions(pdev);
4153 pci_set_drvdata(pdev, NULL);
4154 free_netdev(ndev);
4155 }
4156
4157 static struct pci_driver ql3xxx_driver = {
4158
4159 .name = DRV_NAME,
4160 .id_table = ql3xxx_pci_tbl,
4161 .probe = ql3xxx_probe,
4162 .remove = __devexit_p(ql3xxx_remove),
4163 };
4164
4165 static int __init ql3xxx_init_module(void)
4166 {
4167 return pci_register_driver(&ql3xxx_driver);
4168 }
4169
4170 static void __exit ql3xxx_exit(void)
4171 {
4172 pci_unregister_driver(&ql3xxx_driver);
4173 }
4174
4175 module_init(ql3xxx_init_module);
4176 module_exit(ql3xxx_exit);
This page took 0.186734 seconds and 6 git commands to generate.