qlge: Clear shadow registers before use.
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80 /* required last entry */
81 {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130 unsigned int wait_count = 30;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 udelay(100);
135 } while (--wait_count);
136 return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200 {
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
217 status = ql_wait_cfg(qdev, bit);
218 if (status) {
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
221 goto exit;
222 }
223
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225 if (status)
226 goto exit;
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239 exit:
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242 }
243
244 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247 {
248 u32 offset = 0;
249 int status;
250
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
254 {
255 status =
256 ql_wait_reg_rdy(qdev,
257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
294 MAC_ADDR_MR, 0);
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 }
299 break;
300 }
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
307 }
308 exit:
309 return status;
310 }
311
312 /* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
314 */
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
317 {
318 u32 offset = 0;
319 int status = 0;
320
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
323 case MAC_ADDR_TYPE_CAM_MAC:
324 {
325 u32 cam_output;
326 u32 upper = (addr[0] << 8) | addr[1];
327 u32 lower =
328 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
329 (addr[5]);
330
331 QPRINTK(qdev, IFUP, DEBUG,
332 "Adding %s address %pM"
333 " at index %d in the CAM.\n",
334 ((type ==
335 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
336 "UNICAST"), addr, index);
337
338 status =
339 ql_wait_reg_rdy(qdev,
340 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
341 if (status)
342 goto exit;
343 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
344 (index << MAC_ADDR_IDX_SHIFT) | /* index */
345 type); /* type */
346 ql_write32(qdev, MAC_ADDR_DATA, lower);
347 status =
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350 if (status)
351 goto exit;
352 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
353 (index << MAC_ADDR_IDX_SHIFT) | /* index */
354 type); /* type */
355 ql_write32(qdev, MAC_ADDR_DATA, upper);
356 status =
357 ql_wait_reg_rdy(qdev,
358 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
359 if (status)
360 goto exit;
361 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
362 (index << MAC_ADDR_IDX_SHIFT) | /* index */
363 type); /* type */
364 /* This field should also include the queue id
365 and possibly the function id. Right now we hardcode
366 the route field to NIC core.
367 */
368 if (type == MAC_ADDR_TYPE_CAM_MAC) {
369 cam_output = (CAM_OUT_ROUTE_NIC |
370 (qdev->
371 func << CAM_OUT_FUNC_SHIFT) |
372 (qdev->
373 rss_ring_first_cq_id <<
374 CAM_OUT_CQ_ID_SHIFT));
375 if (qdev->vlgrp)
376 cam_output |= CAM_OUT_RV;
377 /* route to NIC core */
378 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
379 }
380 break;
381 }
382 case MAC_ADDR_TYPE_VLAN:
383 {
384 u32 enable_bit = *((u32 *) &addr[0]);
385 /* For VLAN, the addr actually holds a bit that
386 * either enables or disables the vlan id we are
387 * addressing. It's either MAC_ADDR_E on or off.
388 * That's bit-27 we're talking about.
389 */
390 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
391 (enable_bit ? "Adding" : "Removing"),
392 index, (enable_bit ? "to" : "from"));
393
394 status =
395 ql_wait_reg_rdy(qdev,
396 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
397 if (status)
398 goto exit;
399 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
400 (index << MAC_ADDR_IDX_SHIFT) | /* index */
401 type | /* type */
402 enable_bit); /* enable/disable */
403 break;
404 }
405 case MAC_ADDR_TYPE_MULTI_FLTR:
406 default:
407 QPRINTK(qdev, IFUP, CRIT,
408 "Address type %d not yet supported.\n", type);
409 status = -EPERM;
410 }
411 exit:
412 return status;
413 }
414
415 /* Get a specific frame routing value from the CAM.
416 * Used for debug and reg dump.
417 */
418 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
419 {
420 int status = 0;
421
422 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
423 if (status)
424 goto exit;
425
426 ql_write32(qdev, RT_IDX,
427 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
428 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
429 if (status)
430 goto exit;
431 *value = ql_read32(qdev, RT_DATA);
432 exit:
433 return status;
434 }
435
436 /* The NIC function for this chip has 16 routing indexes. Each one can be used
437 * to route different frame types to various inbound queues. We send broadcast/
438 * multicast/error frames to the default queue for slow handling,
439 * and CAM hit/RSS frames to the fast handling queues.
440 */
441 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
442 int enable)
443 {
444 int status = -EINVAL; /* Return error if no mask match. */
445 u32 value = 0;
446
447 QPRINTK(qdev, IFUP, DEBUG,
448 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449 (enable ? "Adding" : "Removing"),
450 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
451 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
452 ((index ==
453 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
454 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
455 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
456 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
457 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
458 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
459 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
460 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
461 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
462 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
463 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
464 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
465 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
466 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
467 (enable ? "to" : "from"));
468
469 switch (mask) {
470 case RT_IDX_CAM_HIT:
471 {
472 value = RT_IDX_DST_CAM_Q | /* dest */
473 RT_IDX_TYPE_NICQ | /* type */
474 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
475 break;
476 }
477 case RT_IDX_VALID: /* Promiscuous Mode frames. */
478 {
479 value = RT_IDX_DST_DFLT_Q | /* dest */
480 RT_IDX_TYPE_NICQ | /* type */
481 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
482 break;
483 }
484 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
485 {
486 value = RT_IDX_DST_DFLT_Q | /* dest */
487 RT_IDX_TYPE_NICQ | /* type */
488 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
489 break;
490 }
491 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
492 {
493 value = RT_IDX_DST_DFLT_Q | /* dest */
494 RT_IDX_TYPE_NICQ | /* type */
495 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
496 break;
497 }
498 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
499 {
500 value = RT_IDX_DST_CAM_Q | /* dest */
501 RT_IDX_TYPE_NICQ | /* type */
502 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
503 break;
504 }
505 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
506 {
507 value = RT_IDX_DST_CAM_Q | /* dest */
508 RT_IDX_TYPE_NICQ | /* type */
509 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
510 break;
511 }
512 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
513 {
514 value = RT_IDX_DST_RSS | /* dest */
515 RT_IDX_TYPE_NICQ | /* type */
516 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
517 break;
518 }
519 case 0: /* Clear the E-bit on an entry. */
520 {
521 value = RT_IDX_DST_DFLT_Q | /* dest */
522 RT_IDX_TYPE_NICQ | /* type */
523 (index << RT_IDX_IDX_SHIFT);/* index */
524 break;
525 }
526 default:
527 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
528 mask);
529 status = -EPERM;
530 goto exit;
531 }
532
533 if (value) {
534 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
535 if (status)
536 goto exit;
537 value |= (enable ? RT_IDX_E : 0);
538 ql_write32(qdev, RT_IDX, value);
539 ql_write32(qdev, RT_DATA, enable ? mask : 0);
540 }
541 exit:
542 return status;
543 }
544
545 static void ql_enable_interrupts(struct ql_adapter *qdev)
546 {
547 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
548 }
549
550 static void ql_disable_interrupts(struct ql_adapter *qdev)
551 {
552 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
553 }
554
555 /* If we're running with multiple MSI-X vectors then we enable on the fly.
556 * Otherwise, we may have multiple outstanding workers and don't want to
557 * enable until the last one finishes. In this case, the irq_cnt gets
558 * incremented everytime we queue a worker and decremented everytime
559 * a worker finishes. Once it hits zero we enable the interrupt.
560 */
561 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
562 {
563 u32 var = 0;
564 unsigned long hw_flags = 0;
565 struct intr_context *ctx = qdev->intr_context + intr;
566
567 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
568 /* Always enable if we're MSIX multi interrupts and
569 * it's not the default (zeroeth) interrupt.
570 */
571 ql_write32(qdev, INTR_EN,
572 ctx->intr_en_mask);
573 var = ql_read32(qdev, STS);
574 return var;
575 }
576
577 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
578 if (atomic_dec_and_test(&ctx->irq_cnt)) {
579 ql_write32(qdev, INTR_EN,
580 ctx->intr_en_mask);
581 var = ql_read32(qdev, STS);
582 }
583 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
584 return var;
585 }
586
587 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
588 {
589 u32 var = 0;
590 struct intr_context *ctx;
591
592 /* HW disables for us if we're MSIX multi interrupts and
593 * it's not the default (zeroeth) interrupt.
594 */
595 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
596 return 0;
597
598 ctx = qdev->intr_context + intr;
599 spin_lock(&qdev->hw_lock);
600 if (!atomic_read(&ctx->irq_cnt)) {
601 ql_write32(qdev, INTR_EN,
602 ctx->intr_dis_mask);
603 var = ql_read32(qdev, STS);
604 }
605 atomic_inc(&ctx->irq_cnt);
606 spin_unlock(&qdev->hw_lock);
607 return var;
608 }
609
610 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
611 {
612 int i;
613 for (i = 0; i < qdev->intr_count; i++) {
614 /* The enable call does a atomic_dec_and_test
615 * and enables only if the result is zero.
616 * So we precharge it here.
617 */
618 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
619 i == 0))
620 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
621 ql_enable_completion_interrupt(qdev, i);
622 }
623
624 }
625
626 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
627 {
628 int status, i;
629 u16 csum = 0;
630 __le16 *flash = (__le16 *)&qdev->flash;
631
632 status = strncmp((char *)&qdev->flash, str, 4);
633 if (status) {
634 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
635 return status;
636 }
637
638 for (i = 0; i < size; i++)
639 csum += le16_to_cpu(*flash++);
640
641 if (csum)
642 QPRINTK(qdev, IFUP, ERR,
643 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
644
645 return csum;
646 }
647
648 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
649 {
650 int status = 0;
651 /* wait for reg to come ready */
652 status = ql_wait_reg_rdy(qdev,
653 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
654 if (status)
655 goto exit;
656 /* set up for reg read */
657 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
658 /* wait for reg to come ready */
659 status = ql_wait_reg_rdy(qdev,
660 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
661 if (status)
662 goto exit;
663 /* This data is stored on flash as an array of
664 * __le32. Since ql_read32() returns cpu endian
665 * we need to swap it back.
666 */
667 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
668 exit:
669 return status;
670 }
671
672 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
673 {
674 u32 i, size;
675 int status;
676 __le32 *p = (__le32 *)&qdev->flash;
677 u32 offset;
678
679 /* Get flash offset for function and adjust
680 * for dword access.
681 */
682 if (!qdev->func)
683 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
684 else
685 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
686
687 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
688 return -ETIMEDOUT;
689
690 size = sizeof(struct flash_params_8000) / sizeof(u32);
691 for (i = 0; i < size; i++, p++) {
692 status = ql_read_flash_word(qdev, i+offset, p);
693 if (status) {
694 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
695 goto exit;
696 }
697 }
698
699 status = ql_validate_flash(qdev,
700 sizeof(struct flash_params_8000) / sizeof(u16),
701 "8000");
702 if (status) {
703 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
704 status = -EINVAL;
705 goto exit;
706 }
707
708 if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
709 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
710 status = -EINVAL;
711 goto exit;
712 }
713
714 memcpy(qdev->ndev->dev_addr,
715 qdev->flash.flash_params_8000.mac_addr,
716 qdev->ndev->addr_len);
717
718 exit:
719 ql_sem_unlock(qdev, SEM_FLASH_MASK);
720 return status;
721 }
722
723 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
724 {
725 int i;
726 int status;
727 __le32 *p = (__le32 *)&qdev->flash;
728 u32 offset = 0;
729 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
730
731 /* Second function's parameters follow the first
732 * function's.
733 */
734 if (qdev->func)
735 offset = size;
736
737 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
738 return -ETIMEDOUT;
739
740 for (i = 0; i < size; i++, p++) {
741 status = ql_read_flash_word(qdev, i+offset, p);
742 if (status) {
743 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
744 goto exit;
745 }
746
747 }
748
749 status = ql_validate_flash(qdev,
750 sizeof(struct flash_params_8012) / sizeof(u16),
751 "8012");
752 if (status) {
753 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
754 status = -EINVAL;
755 goto exit;
756 }
757
758 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
759 status = -EINVAL;
760 goto exit;
761 }
762
763 memcpy(qdev->ndev->dev_addr,
764 qdev->flash.flash_params_8012.mac_addr,
765 qdev->ndev->addr_len);
766
767 exit:
768 ql_sem_unlock(qdev, SEM_FLASH_MASK);
769 return status;
770 }
771
772 /* xgmac register are located behind the xgmac_addr and xgmac_data
773 * register pair. Each read/write requires us to wait for the ready
774 * bit before reading/writing the data.
775 */
776 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
777 {
778 int status;
779 /* wait for reg to come ready */
780 status = ql_wait_reg_rdy(qdev,
781 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
782 if (status)
783 return status;
784 /* write the data to the data reg */
785 ql_write32(qdev, XGMAC_DATA, data);
786 /* trigger the write */
787 ql_write32(qdev, XGMAC_ADDR, reg);
788 return status;
789 }
790
791 /* xgmac register are located behind the xgmac_addr and xgmac_data
792 * register pair. Each read/write requires us to wait for the ready
793 * bit before reading/writing the data.
794 */
795 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
796 {
797 int status = 0;
798 /* wait for reg to come ready */
799 status = ql_wait_reg_rdy(qdev,
800 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
801 if (status)
802 goto exit;
803 /* set up for reg read */
804 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
805 /* wait for reg to come ready */
806 status = ql_wait_reg_rdy(qdev,
807 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
808 if (status)
809 goto exit;
810 /* get the data */
811 *data = ql_read32(qdev, XGMAC_DATA);
812 exit:
813 return status;
814 }
815
816 /* This is used for reading the 64-bit statistics regs. */
817 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
818 {
819 int status = 0;
820 u32 hi = 0;
821 u32 lo = 0;
822
823 status = ql_read_xgmac_reg(qdev, reg, &lo);
824 if (status)
825 goto exit;
826
827 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
828 if (status)
829 goto exit;
830
831 *data = (u64) lo | ((u64) hi << 32);
832
833 exit:
834 return status;
835 }
836
837 static int ql_8000_port_initialize(struct ql_adapter *qdev)
838 {
839 int status;
840 status = ql_mb_get_fw_state(qdev);
841 if (status)
842 goto exit;
843 /* Wake up a worker to get/set the TX/RX frame sizes. */
844 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
845 exit:
846 return status;
847 }
848
849 /* Take the MAC Core out of reset.
850 * Enable statistics counting.
851 * Take the transmitter/receiver out of reset.
852 * This functionality may be done in the MPI firmware at a
853 * later date.
854 */
855 static int ql_8012_port_initialize(struct ql_adapter *qdev)
856 {
857 int status = 0;
858 u32 data;
859
860 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
861 /* Another function has the semaphore, so
862 * wait for the port init bit to come ready.
863 */
864 QPRINTK(qdev, LINK, INFO,
865 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
866 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
867 if (status) {
868 QPRINTK(qdev, LINK, CRIT,
869 "Port initialize timed out.\n");
870 }
871 return status;
872 }
873
874 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
875 /* Set the core reset. */
876 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
877 if (status)
878 goto end;
879 data |= GLOBAL_CFG_RESET;
880 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
881 if (status)
882 goto end;
883
884 /* Clear the core reset and turn on jumbo for receiver. */
885 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
886 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
887 data |= GLOBAL_CFG_TX_STAT_EN;
888 data |= GLOBAL_CFG_RX_STAT_EN;
889 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
890 if (status)
891 goto end;
892
893 /* Enable transmitter, and clear it's reset. */
894 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
895 if (status)
896 goto end;
897 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
898 data |= TX_CFG_EN; /* Enable the transmitter. */
899 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
900 if (status)
901 goto end;
902
903 /* Enable receiver and clear it's reset. */
904 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
905 if (status)
906 goto end;
907 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
908 data |= RX_CFG_EN; /* Enable the receiver. */
909 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
910 if (status)
911 goto end;
912
913 /* Turn on jumbo. */
914 status =
915 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
916 if (status)
917 goto end;
918 status =
919 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
920 if (status)
921 goto end;
922
923 /* Signal to the world that the port is enabled. */
924 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
925 end:
926 ql_sem_unlock(qdev, qdev->xg_sem_mask);
927 return status;
928 }
929
930 /* Get the next large buffer. */
931 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
932 {
933 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
934 rx_ring->lbq_curr_idx++;
935 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
936 rx_ring->lbq_curr_idx = 0;
937 rx_ring->lbq_free_cnt++;
938 return lbq_desc;
939 }
940
941 /* Get the next small buffer. */
942 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
943 {
944 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
945 rx_ring->sbq_curr_idx++;
946 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
947 rx_ring->sbq_curr_idx = 0;
948 rx_ring->sbq_free_cnt++;
949 return sbq_desc;
950 }
951
952 /* Update an rx ring index. */
953 static void ql_update_cq(struct rx_ring *rx_ring)
954 {
955 rx_ring->cnsmr_idx++;
956 rx_ring->curr_entry++;
957 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
958 rx_ring->cnsmr_idx = 0;
959 rx_ring->curr_entry = rx_ring->cq_base;
960 }
961 }
962
963 static void ql_write_cq_idx(struct rx_ring *rx_ring)
964 {
965 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
966 }
967
968 /* Process (refill) a large buffer queue. */
969 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
970 {
971 u32 clean_idx = rx_ring->lbq_clean_idx;
972 u32 start_idx = clean_idx;
973 struct bq_desc *lbq_desc;
974 u64 map;
975 int i;
976
977 while (rx_ring->lbq_free_cnt > 16) {
978 for (i = 0; i < 16; i++) {
979 QPRINTK(qdev, RX_STATUS, DEBUG,
980 "lbq: try cleaning clean_idx = %d.\n",
981 clean_idx);
982 lbq_desc = &rx_ring->lbq[clean_idx];
983 if (lbq_desc->p.lbq_page == NULL) {
984 QPRINTK(qdev, RX_STATUS, DEBUG,
985 "lbq: getting new page for index %d.\n",
986 lbq_desc->index);
987 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
988 if (lbq_desc->p.lbq_page == NULL) {
989 rx_ring->lbq_clean_idx = clean_idx;
990 QPRINTK(qdev, RX_STATUS, ERR,
991 "Couldn't get a page.\n");
992 return;
993 }
994 map = pci_map_page(qdev->pdev,
995 lbq_desc->p.lbq_page,
996 0, PAGE_SIZE,
997 PCI_DMA_FROMDEVICE);
998 if (pci_dma_mapping_error(qdev->pdev, map)) {
999 rx_ring->lbq_clean_idx = clean_idx;
1000 put_page(lbq_desc->p.lbq_page);
1001 lbq_desc->p.lbq_page = NULL;
1002 QPRINTK(qdev, RX_STATUS, ERR,
1003 "PCI mapping failed.\n");
1004 return;
1005 }
1006 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1007 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1008 *lbq_desc->addr = cpu_to_le64(map);
1009 }
1010 clean_idx++;
1011 if (clean_idx == rx_ring->lbq_len)
1012 clean_idx = 0;
1013 }
1014
1015 rx_ring->lbq_clean_idx = clean_idx;
1016 rx_ring->lbq_prod_idx += 16;
1017 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1018 rx_ring->lbq_prod_idx = 0;
1019 rx_ring->lbq_free_cnt -= 16;
1020 }
1021
1022 if (start_idx != clean_idx) {
1023 QPRINTK(qdev, RX_STATUS, DEBUG,
1024 "lbq: updating prod idx = %d.\n",
1025 rx_ring->lbq_prod_idx);
1026 ql_write_db_reg(rx_ring->lbq_prod_idx,
1027 rx_ring->lbq_prod_idx_db_reg);
1028 }
1029 }
1030
1031 /* Process (refill) a small buffer queue. */
1032 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1033 {
1034 u32 clean_idx = rx_ring->sbq_clean_idx;
1035 u32 start_idx = clean_idx;
1036 struct bq_desc *sbq_desc;
1037 u64 map;
1038 int i;
1039
1040 while (rx_ring->sbq_free_cnt > 16) {
1041 for (i = 0; i < 16; i++) {
1042 sbq_desc = &rx_ring->sbq[clean_idx];
1043 QPRINTK(qdev, RX_STATUS, DEBUG,
1044 "sbq: try cleaning clean_idx = %d.\n",
1045 clean_idx);
1046 if (sbq_desc->p.skb == NULL) {
1047 QPRINTK(qdev, RX_STATUS, DEBUG,
1048 "sbq: getting new skb for index %d.\n",
1049 sbq_desc->index);
1050 sbq_desc->p.skb =
1051 netdev_alloc_skb(qdev->ndev,
1052 rx_ring->sbq_buf_size);
1053 if (sbq_desc->p.skb == NULL) {
1054 QPRINTK(qdev, PROBE, ERR,
1055 "Couldn't get an skb.\n");
1056 rx_ring->sbq_clean_idx = clean_idx;
1057 return;
1058 }
1059 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1060 map = pci_map_single(qdev->pdev,
1061 sbq_desc->p.skb->data,
1062 rx_ring->sbq_buf_size /
1063 2, PCI_DMA_FROMDEVICE);
1064 if (pci_dma_mapping_error(qdev->pdev, map)) {
1065 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1066 rx_ring->sbq_clean_idx = clean_idx;
1067 dev_kfree_skb_any(sbq_desc->p.skb);
1068 sbq_desc->p.skb = NULL;
1069 return;
1070 }
1071 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1072 pci_unmap_len_set(sbq_desc, maplen,
1073 rx_ring->sbq_buf_size / 2);
1074 *sbq_desc->addr = cpu_to_le64(map);
1075 }
1076
1077 clean_idx++;
1078 if (clean_idx == rx_ring->sbq_len)
1079 clean_idx = 0;
1080 }
1081 rx_ring->sbq_clean_idx = clean_idx;
1082 rx_ring->sbq_prod_idx += 16;
1083 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1084 rx_ring->sbq_prod_idx = 0;
1085 rx_ring->sbq_free_cnt -= 16;
1086 }
1087
1088 if (start_idx != clean_idx) {
1089 QPRINTK(qdev, RX_STATUS, DEBUG,
1090 "sbq: updating prod idx = %d.\n",
1091 rx_ring->sbq_prod_idx);
1092 ql_write_db_reg(rx_ring->sbq_prod_idx,
1093 rx_ring->sbq_prod_idx_db_reg);
1094 }
1095 }
1096
1097 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1098 struct rx_ring *rx_ring)
1099 {
1100 ql_update_sbq(qdev, rx_ring);
1101 ql_update_lbq(qdev, rx_ring);
1102 }
1103
1104 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1105 * fails at some stage, or from the interrupt when a tx completes.
1106 */
1107 static void ql_unmap_send(struct ql_adapter *qdev,
1108 struct tx_ring_desc *tx_ring_desc, int mapped)
1109 {
1110 int i;
1111 for (i = 0; i < mapped; i++) {
1112 if (i == 0 || (i == 7 && mapped > 7)) {
1113 /*
1114 * Unmap the skb->data area, or the
1115 * external sglist (AKA the Outbound
1116 * Address List (OAL)).
1117 * If its the zeroeth element, then it's
1118 * the skb->data area. If it's the 7th
1119 * element and there is more than 6 frags,
1120 * then its an OAL.
1121 */
1122 if (i == 7) {
1123 QPRINTK(qdev, TX_DONE, DEBUG,
1124 "unmapping OAL area.\n");
1125 }
1126 pci_unmap_single(qdev->pdev,
1127 pci_unmap_addr(&tx_ring_desc->map[i],
1128 mapaddr),
1129 pci_unmap_len(&tx_ring_desc->map[i],
1130 maplen),
1131 PCI_DMA_TODEVICE);
1132 } else {
1133 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1134 i);
1135 pci_unmap_page(qdev->pdev,
1136 pci_unmap_addr(&tx_ring_desc->map[i],
1137 mapaddr),
1138 pci_unmap_len(&tx_ring_desc->map[i],
1139 maplen), PCI_DMA_TODEVICE);
1140 }
1141 }
1142
1143 }
1144
1145 /* Map the buffers for this transmit. This will return
1146 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1147 */
1148 static int ql_map_send(struct ql_adapter *qdev,
1149 struct ob_mac_iocb_req *mac_iocb_ptr,
1150 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1151 {
1152 int len = skb_headlen(skb);
1153 dma_addr_t map;
1154 int frag_idx, err, map_idx = 0;
1155 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1156 int frag_cnt = skb_shinfo(skb)->nr_frags;
1157
1158 if (frag_cnt) {
1159 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1160 }
1161 /*
1162 * Map the skb buffer first.
1163 */
1164 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1165
1166 err = pci_dma_mapping_error(qdev->pdev, map);
1167 if (err) {
1168 QPRINTK(qdev, TX_QUEUED, ERR,
1169 "PCI mapping failed with error: %d\n", err);
1170
1171 return NETDEV_TX_BUSY;
1172 }
1173
1174 tbd->len = cpu_to_le32(len);
1175 tbd->addr = cpu_to_le64(map);
1176 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1177 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1178 map_idx++;
1179
1180 /*
1181 * This loop fills the remainder of the 8 address descriptors
1182 * in the IOCB. If there are more than 7 fragments, then the
1183 * eighth address desc will point to an external list (OAL).
1184 * When this happens, the remainder of the frags will be stored
1185 * in this list.
1186 */
1187 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1188 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1189 tbd++;
1190 if (frag_idx == 6 && frag_cnt > 7) {
1191 /* Let's tack on an sglist.
1192 * Our control block will now
1193 * look like this:
1194 * iocb->seg[0] = skb->data
1195 * iocb->seg[1] = frag[0]
1196 * iocb->seg[2] = frag[1]
1197 * iocb->seg[3] = frag[2]
1198 * iocb->seg[4] = frag[3]
1199 * iocb->seg[5] = frag[4]
1200 * iocb->seg[6] = frag[5]
1201 * iocb->seg[7] = ptr to OAL (external sglist)
1202 * oal->seg[0] = frag[6]
1203 * oal->seg[1] = frag[7]
1204 * oal->seg[2] = frag[8]
1205 * oal->seg[3] = frag[9]
1206 * oal->seg[4] = frag[10]
1207 * etc...
1208 */
1209 /* Tack on the OAL in the eighth segment of IOCB. */
1210 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1211 sizeof(struct oal),
1212 PCI_DMA_TODEVICE);
1213 err = pci_dma_mapping_error(qdev->pdev, map);
1214 if (err) {
1215 QPRINTK(qdev, TX_QUEUED, ERR,
1216 "PCI mapping outbound address list with error: %d\n",
1217 err);
1218 goto map_error;
1219 }
1220
1221 tbd->addr = cpu_to_le64(map);
1222 /*
1223 * The length is the number of fragments
1224 * that remain to be mapped times the length
1225 * of our sglist (OAL).
1226 */
1227 tbd->len =
1228 cpu_to_le32((sizeof(struct tx_buf_desc) *
1229 (frag_cnt - frag_idx)) | TX_DESC_C);
1230 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1231 map);
1232 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1233 sizeof(struct oal));
1234 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1235 map_idx++;
1236 }
1237
1238 map =
1239 pci_map_page(qdev->pdev, frag->page,
1240 frag->page_offset, frag->size,
1241 PCI_DMA_TODEVICE);
1242
1243 err = pci_dma_mapping_error(qdev->pdev, map);
1244 if (err) {
1245 QPRINTK(qdev, TX_QUEUED, ERR,
1246 "PCI mapping frags failed with error: %d.\n",
1247 err);
1248 goto map_error;
1249 }
1250
1251 tbd->addr = cpu_to_le64(map);
1252 tbd->len = cpu_to_le32(frag->size);
1253 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1254 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1255 frag->size);
1256
1257 }
1258 /* Save the number of segments we've mapped. */
1259 tx_ring_desc->map_cnt = map_idx;
1260 /* Terminate the last segment. */
1261 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1262 return NETDEV_TX_OK;
1263
1264 map_error:
1265 /*
1266 * If the first frag mapping failed, then i will be zero.
1267 * This causes the unmap of the skb->data area. Otherwise
1268 * we pass in the number of frags that mapped successfully
1269 * so they can be umapped.
1270 */
1271 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1272 return NETDEV_TX_BUSY;
1273 }
1274
1275 static void ql_realign_skb(struct sk_buff *skb, int len)
1276 {
1277 void *temp_addr = skb->data;
1278
1279 /* Undo the skb_reserve(skb,32) we did before
1280 * giving to hardware, and realign data on
1281 * a 2-byte boundary.
1282 */
1283 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1284 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1285 skb_copy_to_linear_data(skb, temp_addr,
1286 (unsigned int)len);
1287 }
1288
1289 /*
1290 * This function builds an skb for the given inbound
1291 * completion. It will be rewritten for readability in the near
1292 * future, but for not it works well.
1293 */
1294 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1295 struct rx_ring *rx_ring,
1296 struct ib_mac_iocb_rsp *ib_mac_rsp)
1297 {
1298 struct bq_desc *lbq_desc;
1299 struct bq_desc *sbq_desc;
1300 struct sk_buff *skb = NULL;
1301 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1302 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1303
1304 /*
1305 * Handle the header buffer if present.
1306 */
1307 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1308 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1309 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1310 /*
1311 * Headers fit nicely into a small buffer.
1312 */
1313 sbq_desc = ql_get_curr_sbuf(rx_ring);
1314 pci_unmap_single(qdev->pdev,
1315 pci_unmap_addr(sbq_desc, mapaddr),
1316 pci_unmap_len(sbq_desc, maplen),
1317 PCI_DMA_FROMDEVICE);
1318 skb = sbq_desc->p.skb;
1319 ql_realign_skb(skb, hdr_len);
1320 skb_put(skb, hdr_len);
1321 sbq_desc->p.skb = NULL;
1322 }
1323
1324 /*
1325 * Handle the data buffer(s).
1326 */
1327 if (unlikely(!length)) { /* Is there data too? */
1328 QPRINTK(qdev, RX_STATUS, DEBUG,
1329 "No Data buffer in this packet.\n");
1330 return skb;
1331 }
1332
1333 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1334 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1335 QPRINTK(qdev, RX_STATUS, DEBUG,
1336 "Headers in small, data of %d bytes in small, combine them.\n", length);
1337 /*
1338 * Data is less than small buffer size so it's
1339 * stuffed in a small buffer.
1340 * For this case we append the data
1341 * from the "data" small buffer to the "header" small
1342 * buffer.
1343 */
1344 sbq_desc = ql_get_curr_sbuf(rx_ring);
1345 pci_dma_sync_single_for_cpu(qdev->pdev,
1346 pci_unmap_addr
1347 (sbq_desc, mapaddr),
1348 pci_unmap_len
1349 (sbq_desc, maplen),
1350 PCI_DMA_FROMDEVICE);
1351 memcpy(skb_put(skb, length),
1352 sbq_desc->p.skb->data, length);
1353 pci_dma_sync_single_for_device(qdev->pdev,
1354 pci_unmap_addr
1355 (sbq_desc,
1356 mapaddr),
1357 pci_unmap_len
1358 (sbq_desc,
1359 maplen),
1360 PCI_DMA_FROMDEVICE);
1361 } else {
1362 QPRINTK(qdev, RX_STATUS, DEBUG,
1363 "%d bytes in a single small buffer.\n", length);
1364 sbq_desc = ql_get_curr_sbuf(rx_ring);
1365 skb = sbq_desc->p.skb;
1366 ql_realign_skb(skb, length);
1367 skb_put(skb, length);
1368 pci_unmap_single(qdev->pdev,
1369 pci_unmap_addr(sbq_desc,
1370 mapaddr),
1371 pci_unmap_len(sbq_desc,
1372 maplen),
1373 PCI_DMA_FROMDEVICE);
1374 sbq_desc->p.skb = NULL;
1375 }
1376 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1377 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1378 QPRINTK(qdev, RX_STATUS, DEBUG,
1379 "Header in small, %d bytes in large. Chain large to small!\n", length);
1380 /*
1381 * The data is in a single large buffer. We
1382 * chain it to the header buffer's skb and let
1383 * it rip.
1384 */
1385 lbq_desc = ql_get_curr_lbuf(rx_ring);
1386 pci_unmap_page(qdev->pdev,
1387 pci_unmap_addr(lbq_desc,
1388 mapaddr),
1389 pci_unmap_len(lbq_desc, maplen),
1390 PCI_DMA_FROMDEVICE);
1391 QPRINTK(qdev, RX_STATUS, DEBUG,
1392 "Chaining page to skb.\n");
1393 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1394 0, length);
1395 skb->len += length;
1396 skb->data_len += length;
1397 skb->truesize += length;
1398 lbq_desc->p.lbq_page = NULL;
1399 } else {
1400 /*
1401 * The headers and data are in a single large buffer. We
1402 * copy it to a new skb and let it go. This can happen with
1403 * jumbo mtu on a non-TCP/UDP frame.
1404 */
1405 lbq_desc = ql_get_curr_lbuf(rx_ring);
1406 skb = netdev_alloc_skb(qdev->ndev, length);
1407 if (skb == NULL) {
1408 QPRINTK(qdev, PROBE, DEBUG,
1409 "No skb available, drop the packet.\n");
1410 return NULL;
1411 }
1412 pci_unmap_page(qdev->pdev,
1413 pci_unmap_addr(lbq_desc,
1414 mapaddr),
1415 pci_unmap_len(lbq_desc, maplen),
1416 PCI_DMA_FROMDEVICE);
1417 skb_reserve(skb, NET_IP_ALIGN);
1418 QPRINTK(qdev, RX_STATUS, DEBUG,
1419 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1420 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1421 0, length);
1422 skb->len += length;
1423 skb->data_len += length;
1424 skb->truesize += length;
1425 length -= length;
1426 lbq_desc->p.lbq_page = NULL;
1427 __pskb_pull_tail(skb,
1428 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1429 VLAN_ETH_HLEN : ETH_HLEN);
1430 }
1431 } else {
1432 /*
1433 * The data is in a chain of large buffers
1434 * pointed to by a small buffer. We loop
1435 * thru and chain them to the our small header
1436 * buffer's skb.
1437 * frags: There are 18 max frags and our small
1438 * buffer will hold 32 of them. The thing is,
1439 * we'll use 3 max for our 9000 byte jumbo
1440 * frames. If the MTU goes up we could
1441 * eventually be in trouble.
1442 */
1443 int size, offset, i = 0;
1444 __le64 *bq, bq_array[8];
1445 sbq_desc = ql_get_curr_sbuf(rx_ring);
1446 pci_unmap_single(qdev->pdev,
1447 pci_unmap_addr(sbq_desc, mapaddr),
1448 pci_unmap_len(sbq_desc, maplen),
1449 PCI_DMA_FROMDEVICE);
1450 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1451 /*
1452 * This is an non TCP/UDP IP frame, so
1453 * the headers aren't split into a small
1454 * buffer. We have to use the small buffer
1455 * that contains our sg list as our skb to
1456 * send upstairs. Copy the sg list here to
1457 * a local buffer and use it to find the
1458 * pages to chain.
1459 */
1460 QPRINTK(qdev, RX_STATUS, DEBUG,
1461 "%d bytes of headers & data in chain of large.\n", length);
1462 skb = sbq_desc->p.skb;
1463 bq = &bq_array[0];
1464 memcpy(bq, skb->data, sizeof(bq_array));
1465 sbq_desc->p.skb = NULL;
1466 skb_reserve(skb, NET_IP_ALIGN);
1467 } else {
1468 QPRINTK(qdev, RX_STATUS, DEBUG,
1469 "Headers in small, %d bytes of data in chain of large.\n", length);
1470 bq = (__le64 *)sbq_desc->p.skb->data;
1471 }
1472 while (length > 0) {
1473 lbq_desc = ql_get_curr_lbuf(rx_ring);
1474 pci_unmap_page(qdev->pdev,
1475 pci_unmap_addr(lbq_desc,
1476 mapaddr),
1477 pci_unmap_len(lbq_desc,
1478 maplen),
1479 PCI_DMA_FROMDEVICE);
1480 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1481 offset = 0;
1482
1483 QPRINTK(qdev, RX_STATUS, DEBUG,
1484 "Adding page %d to skb for %d bytes.\n",
1485 i, size);
1486 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1487 offset, size);
1488 skb->len += size;
1489 skb->data_len += size;
1490 skb->truesize += size;
1491 length -= size;
1492 lbq_desc->p.lbq_page = NULL;
1493 bq++;
1494 i++;
1495 }
1496 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1497 VLAN_ETH_HLEN : ETH_HLEN);
1498 }
1499 return skb;
1500 }
1501
1502 /* Process an inbound completion from an rx ring. */
1503 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1504 struct rx_ring *rx_ring,
1505 struct ib_mac_iocb_rsp *ib_mac_rsp)
1506 {
1507 struct net_device *ndev = qdev->ndev;
1508 struct sk_buff *skb = NULL;
1509 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1510 IB_MAC_IOCB_RSP_VLAN_MASK)
1511
1512 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1513
1514 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1515 if (unlikely(!skb)) {
1516 QPRINTK(qdev, RX_STATUS, DEBUG,
1517 "No skb available, drop packet.\n");
1518 return;
1519 }
1520
1521 prefetch(skb->data);
1522 skb->dev = ndev;
1523 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1524 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1525 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1526 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1527 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1528 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1529 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1530 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1531 }
1532 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1533 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1534 }
1535
1536
1537 skb->protocol = eth_type_trans(skb, ndev);
1538 skb->ip_summed = CHECKSUM_NONE;
1539
1540 /* If rx checksum is on, and there are no
1541 * csum or frame errors.
1542 */
1543 if (qdev->rx_csum &&
1544 !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1545 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1546 /* TCP frame. */
1547 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1548 QPRINTK(qdev, RX_STATUS, DEBUG,
1549 "TCP checksum done!\n");
1550 skb->ip_summed = CHECKSUM_UNNECESSARY;
1551 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1552 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1553 /* Unfragmented ipv4 UDP frame. */
1554 struct iphdr *iph = (struct iphdr *) skb->data;
1555 if (!(iph->frag_off &
1556 cpu_to_be16(IP_MF|IP_OFFSET))) {
1557 skb->ip_summed = CHECKSUM_UNNECESSARY;
1558 QPRINTK(qdev, RX_STATUS, DEBUG,
1559 "TCP checksum done!\n");
1560 }
1561 }
1562 }
1563
1564 qdev->stats.rx_packets++;
1565 qdev->stats.rx_bytes += skb->len;
1566 skb_record_rx_queue(skb,
1567 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1568 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1569 if (qdev->vlgrp &&
1570 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1571 (vlan_id != 0))
1572 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1573 vlan_id, skb);
1574 else
1575 napi_gro_receive(&rx_ring->napi, skb);
1576 } else {
1577 if (qdev->vlgrp &&
1578 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1579 (vlan_id != 0))
1580 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1581 else
1582 netif_receive_skb(skb);
1583 }
1584 }
1585
1586 /* Process an outbound completion from an rx ring. */
1587 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1588 struct ob_mac_iocb_rsp *mac_rsp)
1589 {
1590 struct tx_ring *tx_ring;
1591 struct tx_ring_desc *tx_ring_desc;
1592
1593 QL_DUMP_OB_MAC_RSP(mac_rsp);
1594 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1595 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1596 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1597 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1598 qdev->stats.tx_packets++;
1599 dev_kfree_skb(tx_ring_desc->skb);
1600 tx_ring_desc->skb = NULL;
1601
1602 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1603 OB_MAC_IOCB_RSP_S |
1604 OB_MAC_IOCB_RSP_L |
1605 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1606 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1607 QPRINTK(qdev, TX_DONE, WARNING,
1608 "Total descriptor length did not match transfer length.\n");
1609 }
1610 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1611 QPRINTK(qdev, TX_DONE, WARNING,
1612 "Frame too short to be legal, not sent.\n");
1613 }
1614 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1615 QPRINTK(qdev, TX_DONE, WARNING,
1616 "Frame too long, but sent anyway.\n");
1617 }
1618 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1619 QPRINTK(qdev, TX_DONE, WARNING,
1620 "PCI backplane error. Frame not sent.\n");
1621 }
1622 }
1623 atomic_inc(&tx_ring->tx_count);
1624 }
1625
1626 /* Fire up a handler to reset the MPI processor. */
1627 void ql_queue_fw_error(struct ql_adapter *qdev)
1628 {
1629 netif_carrier_off(qdev->ndev);
1630 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1631 }
1632
1633 void ql_queue_asic_error(struct ql_adapter *qdev)
1634 {
1635 netif_carrier_off(qdev->ndev);
1636 ql_disable_interrupts(qdev);
1637 /* Clear adapter up bit to signal the recovery
1638 * process that it shouldn't kill the reset worker
1639 * thread
1640 */
1641 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1642 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1643 }
1644
1645 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1646 struct ib_ae_iocb_rsp *ib_ae_rsp)
1647 {
1648 switch (ib_ae_rsp->event) {
1649 case MGMT_ERR_EVENT:
1650 QPRINTK(qdev, RX_ERR, ERR,
1651 "Management Processor Fatal Error.\n");
1652 ql_queue_fw_error(qdev);
1653 return;
1654
1655 case CAM_LOOKUP_ERR_EVENT:
1656 QPRINTK(qdev, LINK, ERR,
1657 "Multiple CAM hits lookup occurred.\n");
1658 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1659 ql_queue_asic_error(qdev);
1660 return;
1661
1662 case SOFT_ECC_ERROR_EVENT:
1663 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1664 ql_queue_asic_error(qdev);
1665 break;
1666
1667 case PCI_ERR_ANON_BUF_RD:
1668 QPRINTK(qdev, RX_ERR, ERR,
1669 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1670 ib_ae_rsp->q_id);
1671 ql_queue_asic_error(qdev);
1672 break;
1673
1674 default:
1675 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1676 ib_ae_rsp->event);
1677 ql_queue_asic_error(qdev);
1678 break;
1679 }
1680 }
1681
1682 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1683 {
1684 struct ql_adapter *qdev = rx_ring->qdev;
1685 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1686 struct ob_mac_iocb_rsp *net_rsp = NULL;
1687 int count = 0;
1688
1689 struct tx_ring *tx_ring;
1690 /* While there are entries in the completion queue. */
1691 while (prod != rx_ring->cnsmr_idx) {
1692
1693 QPRINTK(qdev, RX_STATUS, DEBUG,
1694 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1695 prod, rx_ring->cnsmr_idx);
1696
1697 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1698 rmb();
1699 switch (net_rsp->opcode) {
1700
1701 case OPCODE_OB_MAC_TSO_IOCB:
1702 case OPCODE_OB_MAC_IOCB:
1703 ql_process_mac_tx_intr(qdev, net_rsp);
1704 break;
1705 default:
1706 QPRINTK(qdev, RX_STATUS, DEBUG,
1707 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1708 net_rsp->opcode);
1709 }
1710 count++;
1711 ql_update_cq(rx_ring);
1712 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1713 }
1714 ql_write_cq_idx(rx_ring);
1715 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1716 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1717 net_rsp != NULL) {
1718 if (atomic_read(&tx_ring->queue_stopped) &&
1719 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1720 /*
1721 * The queue got stopped because the tx_ring was full.
1722 * Wake it up, because it's now at least 25% empty.
1723 */
1724 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1725 }
1726
1727 return count;
1728 }
1729
1730 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1731 {
1732 struct ql_adapter *qdev = rx_ring->qdev;
1733 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1734 struct ql_net_rsp_iocb *net_rsp;
1735 int count = 0;
1736
1737 /* While there are entries in the completion queue. */
1738 while (prod != rx_ring->cnsmr_idx) {
1739
1740 QPRINTK(qdev, RX_STATUS, DEBUG,
1741 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1742 prod, rx_ring->cnsmr_idx);
1743
1744 net_rsp = rx_ring->curr_entry;
1745 rmb();
1746 switch (net_rsp->opcode) {
1747 case OPCODE_IB_MAC_IOCB:
1748 ql_process_mac_rx_intr(qdev, rx_ring,
1749 (struct ib_mac_iocb_rsp *)
1750 net_rsp);
1751 break;
1752
1753 case OPCODE_IB_AE_IOCB:
1754 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1755 net_rsp);
1756 break;
1757 default:
1758 {
1759 QPRINTK(qdev, RX_STATUS, DEBUG,
1760 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1761 net_rsp->opcode);
1762 }
1763 }
1764 count++;
1765 ql_update_cq(rx_ring);
1766 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1767 if (count == budget)
1768 break;
1769 }
1770 ql_update_buffer_queues(qdev, rx_ring);
1771 ql_write_cq_idx(rx_ring);
1772 return count;
1773 }
1774
1775 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1776 {
1777 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1778 struct ql_adapter *qdev = rx_ring->qdev;
1779 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1780
1781 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1782 rx_ring->cq_id);
1783
1784 if (work_done < budget) {
1785 napi_complete(napi);
1786 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1787 }
1788 return work_done;
1789 }
1790
1791 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1792 {
1793 struct ql_adapter *qdev = netdev_priv(ndev);
1794
1795 qdev->vlgrp = grp;
1796 if (grp) {
1797 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1798 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1799 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1800 } else {
1801 QPRINTK(qdev, IFUP, DEBUG,
1802 "Turning off VLAN in NIC_RCV_CFG.\n");
1803 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1804 }
1805 }
1806
1807 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1808 {
1809 struct ql_adapter *qdev = netdev_priv(ndev);
1810 u32 enable_bit = MAC_ADDR_E;
1811 int status;
1812
1813 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1814 if (status)
1815 return;
1816 spin_lock(&qdev->hw_lock);
1817 if (ql_set_mac_addr_reg
1818 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1819 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1820 }
1821 spin_unlock(&qdev->hw_lock);
1822 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1823 }
1824
1825 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1826 {
1827 struct ql_adapter *qdev = netdev_priv(ndev);
1828 u32 enable_bit = 0;
1829 int status;
1830
1831 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1832 if (status)
1833 return;
1834
1835 spin_lock(&qdev->hw_lock);
1836 if (ql_set_mac_addr_reg
1837 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1838 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1839 }
1840 spin_unlock(&qdev->hw_lock);
1841 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1842
1843 }
1844
1845 /* Worker thread to process a given rx_ring that is dedicated
1846 * to outbound completions.
1847 */
1848 static void ql_tx_clean(struct work_struct *work)
1849 {
1850 struct rx_ring *rx_ring =
1851 container_of(work, struct rx_ring, rx_work.work);
1852 ql_clean_outbound_rx_ring(rx_ring);
1853 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1854
1855 }
1856
1857 /* Worker thread to process a given rx_ring that is dedicated
1858 * to inbound completions.
1859 */
1860 static void ql_rx_clean(struct work_struct *work)
1861 {
1862 struct rx_ring *rx_ring =
1863 container_of(work, struct rx_ring, rx_work.work);
1864 ql_clean_inbound_rx_ring(rx_ring, 64);
1865 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1866 }
1867
1868 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1869 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1870 {
1871 struct rx_ring *rx_ring = dev_id;
1872 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1873 &rx_ring->rx_work, 0);
1874 return IRQ_HANDLED;
1875 }
1876
1877 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1878 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1879 {
1880 struct rx_ring *rx_ring = dev_id;
1881 napi_schedule(&rx_ring->napi);
1882 return IRQ_HANDLED;
1883 }
1884
1885 /* This handles a fatal error, MPI activity, and the default
1886 * rx_ring in an MSI-X multiple vector environment.
1887 * In MSI/Legacy environment it also process the rest of
1888 * the rx_rings.
1889 */
1890 static irqreturn_t qlge_isr(int irq, void *dev_id)
1891 {
1892 struct rx_ring *rx_ring = dev_id;
1893 struct ql_adapter *qdev = rx_ring->qdev;
1894 struct intr_context *intr_context = &qdev->intr_context[0];
1895 u32 var;
1896 int i;
1897 int work_done = 0;
1898
1899 spin_lock(&qdev->hw_lock);
1900 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1901 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1902 spin_unlock(&qdev->hw_lock);
1903 return IRQ_NONE;
1904 }
1905 spin_unlock(&qdev->hw_lock);
1906
1907 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1908
1909 /*
1910 * Check for fatal error.
1911 */
1912 if (var & STS_FE) {
1913 ql_queue_asic_error(qdev);
1914 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1915 var = ql_read32(qdev, ERR_STS);
1916 QPRINTK(qdev, INTR, ERR,
1917 "Resetting chip. Error Status Register = 0x%x\n", var);
1918 return IRQ_HANDLED;
1919 }
1920
1921 /*
1922 * Check MPI processor activity.
1923 */
1924 if (var & STS_PI) {
1925 /*
1926 * We've got an async event or mailbox completion.
1927 * Handle it and clear the source of the interrupt.
1928 */
1929 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1930 ql_disable_completion_interrupt(qdev, intr_context->intr);
1931 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1932 &qdev->mpi_work, 0);
1933 work_done++;
1934 }
1935
1936 /*
1937 * Check the default queue and wake handler if active.
1938 */
1939 rx_ring = &qdev->rx_ring[0];
1940 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1941 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1942 ql_disable_completion_interrupt(qdev, intr_context->intr);
1943 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1944 &rx_ring->rx_work, 0);
1945 work_done++;
1946 }
1947
1948 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1949 /*
1950 * Start the DPC for each active queue.
1951 */
1952 for (i = 1; i < qdev->rx_ring_count; i++) {
1953 rx_ring = &qdev->rx_ring[i];
1954 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1955 rx_ring->cnsmr_idx) {
1956 QPRINTK(qdev, INTR, INFO,
1957 "Waking handler for rx_ring[%d].\n", i);
1958 ql_disable_completion_interrupt(qdev,
1959 intr_context->
1960 intr);
1961 if (i < qdev->rss_ring_first_cq_id)
1962 queue_delayed_work_on(rx_ring->cpu,
1963 qdev->q_workqueue,
1964 &rx_ring->rx_work,
1965 0);
1966 else
1967 napi_schedule(&rx_ring->napi);
1968 work_done++;
1969 }
1970 }
1971 }
1972 ql_enable_completion_interrupt(qdev, intr_context->intr);
1973 return work_done ? IRQ_HANDLED : IRQ_NONE;
1974 }
1975
1976 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1977 {
1978
1979 if (skb_is_gso(skb)) {
1980 int err;
1981 if (skb_header_cloned(skb)) {
1982 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1983 if (err)
1984 return err;
1985 }
1986
1987 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1988 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1989 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1990 mac_iocb_ptr->total_hdrs_len =
1991 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1992 mac_iocb_ptr->net_trans_offset =
1993 cpu_to_le16(skb_network_offset(skb) |
1994 skb_transport_offset(skb)
1995 << OB_MAC_TRANSPORT_HDR_SHIFT);
1996 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1997 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1998 if (likely(skb->protocol == htons(ETH_P_IP))) {
1999 struct iphdr *iph = ip_hdr(skb);
2000 iph->check = 0;
2001 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2002 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2003 iph->daddr, 0,
2004 IPPROTO_TCP,
2005 0);
2006 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2007 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2008 tcp_hdr(skb)->check =
2009 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2010 &ipv6_hdr(skb)->daddr,
2011 0, IPPROTO_TCP, 0);
2012 }
2013 return 1;
2014 }
2015 return 0;
2016 }
2017
2018 static void ql_hw_csum_setup(struct sk_buff *skb,
2019 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2020 {
2021 int len;
2022 struct iphdr *iph = ip_hdr(skb);
2023 __sum16 *check;
2024 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2025 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2026 mac_iocb_ptr->net_trans_offset =
2027 cpu_to_le16(skb_network_offset(skb) |
2028 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2029
2030 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2031 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2032 if (likely(iph->protocol == IPPROTO_TCP)) {
2033 check = &(tcp_hdr(skb)->check);
2034 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2035 mac_iocb_ptr->total_hdrs_len =
2036 cpu_to_le16(skb_transport_offset(skb) +
2037 (tcp_hdr(skb)->doff << 2));
2038 } else {
2039 check = &(udp_hdr(skb)->check);
2040 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2041 mac_iocb_ptr->total_hdrs_len =
2042 cpu_to_le16(skb_transport_offset(skb) +
2043 sizeof(struct udphdr));
2044 }
2045 *check = ~csum_tcpudp_magic(iph->saddr,
2046 iph->daddr, len, iph->protocol, 0);
2047 }
2048
2049 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2050 {
2051 struct tx_ring_desc *tx_ring_desc;
2052 struct ob_mac_iocb_req *mac_iocb_ptr;
2053 struct ql_adapter *qdev = netdev_priv(ndev);
2054 int tso;
2055 struct tx_ring *tx_ring;
2056 u32 tx_ring_idx = (u32) skb->queue_mapping;
2057
2058 tx_ring = &qdev->tx_ring[tx_ring_idx];
2059
2060 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2061 QPRINTK(qdev, TX_QUEUED, INFO,
2062 "%s: shutting down tx queue %d du to lack of resources.\n",
2063 __func__, tx_ring_idx);
2064 netif_stop_subqueue(ndev, tx_ring->wq_id);
2065 atomic_inc(&tx_ring->queue_stopped);
2066 return NETDEV_TX_BUSY;
2067 }
2068 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2069 mac_iocb_ptr = tx_ring_desc->queue_entry;
2070 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
2071
2072 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2073 mac_iocb_ptr->tid = tx_ring_desc->index;
2074 /* We use the upper 32-bits to store the tx queue for this IO.
2075 * When we get the completion we can use it to establish the context.
2076 */
2077 mac_iocb_ptr->txq_idx = tx_ring_idx;
2078 tx_ring_desc->skb = skb;
2079
2080 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2081
2082 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2083 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2084 vlan_tx_tag_get(skb));
2085 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2086 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2087 }
2088 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2089 if (tso < 0) {
2090 dev_kfree_skb_any(skb);
2091 return NETDEV_TX_OK;
2092 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2093 ql_hw_csum_setup(skb,
2094 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2095 }
2096 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2097 NETDEV_TX_OK) {
2098 QPRINTK(qdev, TX_QUEUED, ERR,
2099 "Could not map the segments.\n");
2100 return NETDEV_TX_BUSY;
2101 }
2102 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2103 tx_ring->prod_idx++;
2104 if (tx_ring->prod_idx == tx_ring->wq_len)
2105 tx_ring->prod_idx = 0;
2106 wmb();
2107
2108 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2109 ndev->trans_start = jiffies;
2110 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2111 tx_ring->prod_idx, skb->len);
2112
2113 atomic_dec(&tx_ring->tx_count);
2114 return NETDEV_TX_OK;
2115 }
2116
2117 static void ql_free_shadow_space(struct ql_adapter *qdev)
2118 {
2119 if (qdev->rx_ring_shadow_reg_area) {
2120 pci_free_consistent(qdev->pdev,
2121 PAGE_SIZE,
2122 qdev->rx_ring_shadow_reg_area,
2123 qdev->rx_ring_shadow_reg_dma);
2124 qdev->rx_ring_shadow_reg_area = NULL;
2125 }
2126 if (qdev->tx_ring_shadow_reg_area) {
2127 pci_free_consistent(qdev->pdev,
2128 PAGE_SIZE,
2129 qdev->tx_ring_shadow_reg_area,
2130 qdev->tx_ring_shadow_reg_dma);
2131 qdev->tx_ring_shadow_reg_area = NULL;
2132 }
2133 }
2134
2135 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2136 {
2137 qdev->rx_ring_shadow_reg_area =
2138 pci_alloc_consistent(qdev->pdev,
2139 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2140 if (qdev->rx_ring_shadow_reg_area == NULL) {
2141 QPRINTK(qdev, IFUP, ERR,
2142 "Allocation of RX shadow space failed.\n");
2143 return -ENOMEM;
2144 }
2145 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2146 qdev->tx_ring_shadow_reg_area =
2147 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2148 &qdev->tx_ring_shadow_reg_dma);
2149 if (qdev->tx_ring_shadow_reg_area == NULL) {
2150 QPRINTK(qdev, IFUP, ERR,
2151 "Allocation of TX shadow space failed.\n");
2152 goto err_wqp_sh_area;
2153 }
2154 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2155 return 0;
2156
2157 err_wqp_sh_area:
2158 pci_free_consistent(qdev->pdev,
2159 PAGE_SIZE,
2160 qdev->rx_ring_shadow_reg_area,
2161 qdev->rx_ring_shadow_reg_dma);
2162 return -ENOMEM;
2163 }
2164
2165 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2166 {
2167 struct tx_ring_desc *tx_ring_desc;
2168 int i;
2169 struct ob_mac_iocb_req *mac_iocb_ptr;
2170
2171 mac_iocb_ptr = tx_ring->wq_base;
2172 tx_ring_desc = tx_ring->q;
2173 for (i = 0; i < tx_ring->wq_len; i++) {
2174 tx_ring_desc->index = i;
2175 tx_ring_desc->skb = NULL;
2176 tx_ring_desc->queue_entry = mac_iocb_ptr;
2177 mac_iocb_ptr++;
2178 tx_ring_desc++;
2179 }
2180 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2181 atomic_set(&tx_ring->queue_stopped, 0);
2182 }
2183
2184 static void ql_free_tx_resources(struct ql_adapter *qdev,
2185 struct tx_ring *tx_ring)
2186 {
2187 if (tx_ring->wq_base) {
2188 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2189 tx_ring->wq_base, tx_ring->wq_base_dma);
2190 tx_ring->wq_base = NULL;
2191 }
2192 kfree(tx_ring->q);
2193 tx_ring->q = NULL;
2194 }
2195
2196 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2197 struct tx_ring *tx_ring)
2198 {
2199 tx_ring->wq_base =
2200 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2201 &tx_ring->wq_base_dma);
2202
2203 if ((tx_ring->wq_base == NULL)
2204 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2205 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2206 return -ENOMEM;
2207 }
2208 tx_ring->q =
2209 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2210 if (tx_ring->q == NULL)
2211 goto err;
2212
2213 return 0;
2214 err:
2215 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2216 tx_ring->wq_base, tx_ring->wq_base_dma);
2217 return -ENOMEM;
2218 }
2219
2220 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2221 {
2222 int i;
2223 struct bq_desc *lbq_desc;
2224
2225 for (i = 0; i < rx_ring->lbq_len; i++) {
2226 lbq_desc = &rx_ring->lbq[i];
2227 if (lbq_desc->p.lbq_page) {
2228 pci_unmap_page(qdev->pdev,
2229 pci_unmap_addr(lbq_desc, mapaddr),
2230 pci_unmap_len(lbq_desc, maplen),
2231 PCI_DMA_FROMDEVICE);
2232
2233 put_page(lbq_desc->p.lbq_page);
2234 lbq_desc->p.lbq_page = NULL;
2235 }
2236 }
2237 }
2238
2239 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2240 {
2241 int i;
2242 struct bq_desc *sbq_desc;
2243
2244 for (i = 0; i < rx_ring->sbq_len; i++) {
2245 sbq_desc = &rx_ring->sbq[i];
2246 if (sbq_desc == NULL) {
2247 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2248 return;
2249 }
2250 if (sbq_desc->p.skb) {
2251 pci_unmap_single(qdev->pdev,
2252 pci_unmap_addr(sbq_desc, mapaddr),
2253 pci_unmap_len(sbq_desc, maplen),
2254 PCI_DMA_FROMDEVICE);
2255 dev_kfree_skb(sbq_desc->p.skb);
2256 sbq_desc->p.skb = NULL;
2257 }
2258 }
2259 }
2260
2261 /* Free all large and small rx buffers associated
2262 * with the completion queues for this device.
2263 */
2264 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2265 {
2266 int i;
2267 struct rx_ring *rx_ring;
2268
2269 for (i = 0; i < qdev->rx_ring_count; i++) {
2270 rx_ring = &qdev->rx_ring[i];
2271 if (rx_ring->lbq)
2272 ql_free_lbq_buffers(qdev, rx_ring);
2273 if (rx_ring->sbq)
2274 ql_free_sbq_buffers(qdev, rx_ring);
2275 }
2276 }
2277
2278 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2279 {
2280 struct rx_ring *rx_ring;
2281 int i;
2282
2283 for (i = 0; i < qdev->rx_ring_count; i++) {
2284 rx_ring = &qdev->rx_ring[i];
2285 if (rx_ring->type != TX_Q)
2286 ql_update_buffer_queues(qdev, rx_ring);
2287 }
2288 }
2289
2290 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2291 struct rx_ring *rx_ring)
2292 {
2293 int i;
2294 struct bq_desc *lbq_desc;
2295 __le64 *bq = rx_ring->lbq_base;
2296
2297 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2298 for (i = 0; i < rx_ring->lbq_len; i++) {
2299 lbq_desc = &rx_ring->lbq[i];
2300 memset(lbq_desc, 0, sizeof(*lbq_desc));
2301 lbq_desc->index = i;
2302 lbq_desc->addr = bq;
2303 bq++;
2304 }
2305 }
2306
2307 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2308 struct rx_ring *rx_ring)
2309 {
2310 int i;
2311 struct bq_desc *sbq_desc;
2312 __le64 *bq = rx_ring->sbq_base;
2313
2314 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2315 for (i = 0; i < rx_ring->sbq_len; i++) {
2316 sbq_desc = &rx_ring->sbq[i];
2317 memset(sbq_desc, 0, sizeof(*sbq_desc));
2318 sbq_desc->index = i;
2319 sbq_desc->addr = bq;
2320 bq++;
2321 }
2322 }
2323
2324 static void ql_free_rx_resources(struct ql_adapter *qdev,
2325 struct rx_ring *rx_ring)
2326 {
2327 /* Free the small buffer queue. */
2328 if (rx_ring->sbq_base) {
2329 pci_free_consistent(qdev->pdev,
2330 rx_ring->sbq_size,
2331 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2332 rx_ring->sbq_base = NULL;
2333 }
2334
2335 /* Free the small buffer queue control blocks. */
2336 kfree(rx_ring->sbq);
2337 rx_ring->sbq = NULL;
2338
2339 /* Free the large buffer queue. */
2340 if (rx_ring->lbq_base) {
2341 pci_free_consistent(qdev->pdev,
2342 rx_ring->lbq_size,
2343 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2344 rx_ring->lbq_base = NULL;
2345 }
2346
2347 /* Free the large buffer queue control blocks. */
2348 kfree(rx_ring->lbq);
2349 rx_ring->lbq = NULL;
2350
2351 /* Free the rx queue. */
2352 if (rx_ring->cq_base) {
2353 pci_free_consistent(qdev->pdev,
2354 rx_ring->cq_size,
2355 rx_ring->cq_base, rx_ring->cq_base_dma);
2356 rx_ring->cq_base = NULL;
2357 }
2358 }
2359
2360 /* Allocate queues and buffers for this completions queue based
2361 * on the values in the parameter structure. */
2362 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2363 struct rx_ring *rx_ring)
2364 {
2365
2366 /*
2367 * Allocate the completion queue for this rx_ring.
2368 */
2369 rx_ring->cq_base =
2370 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2371 &rx_ring->cq_base_dma);
2372
2373 if (rx_ring->cq_base == NULL) {
2374 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2375 return -ENOMEM;
2376 }
2377
2378 if (rx_ring->sbq_len) {
2379 /*
2380 * Allocate small buffer queue.
2381 */
2382 rx_ring->sbq_base =
2383 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2384 &rx_ring->sbq_base_dma);
2385
2386 if (rx_ring->sbq_base == NULL) {
2387 QPRINTK(qdev, IFUP, ERR,
2388 "Small buffer queue allocation failed.\n");
2389 goto err_mem;
2390 }
2391
2392 /*
2393 * Allocate small buffer queue control blocks.
2394 */
2395 rx_ring->sbq =
2396 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2397 GFP_KERNEL);
2398 if (rx_ring->sbq == NULL) {
2399 QPRINTK(qdev, IFUP, ERR,
2400 "Small buffer queue control block allocation failed.\n");
2401 goto err_mem;
2402 }
2403
2404 ql_init_sbq_ring(qdev, rx_ring);
2405 }
2406
2407 if (rx_ring->lbq_len) {
2408 /*
2409 * Allocate large buffer queue.
2410 */
2411 rx_ring->lbq_base =
2412 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2413 &rx_ring->lbq_base_dma);
2414
2415 if (rx_ring->lbq_base == NULL) {
2416 QPRINTK(qdev, IFUP, ERR,
2417 "Large buffer queue allocation failed.\n");
2418 goto err_mem;
2419 }
2420 /*
2421 * Allocate large buffer queue control blocks.
2422 */
2423 rx_ring->lbq =
2424 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2425 GFP_KERNEL);
2426 if (rx_ring->lbq == NULL) {
2427 QPRINTK(qdev, IFUP, ERR,
2428 "Large buffer queue control block allocation failed.\n");
2429 goto err_mem;
2430 }
2431
2432 ql_init_lbq_ring(qdev, rx_ring);
2433 }
2434
2435 return 0;
2436
2437 err_mem:
2438 ql_free_rx_resources(qdev, rx_ring);
2439 return -ENOMEM;
2440 }
2441
2442 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2443 {
2444 struct tx_ring *tx_ring;
2445 struct tx_ring_desc *tx_ring_desc;
2446 int i, j;
2447
2448 /*
2449 * Loop through all queues and free
2450 * any resources.
2451 */
2452 for (j = 0; j < qdev->tx_ring_count; j++) {
2453 tx_ring = &qdev->tx_ring[j];
2454 for (i = 0; i < tx_ring->wq_len; i++) {
2455 tx_ring_desc = &tx_ring->q[i];
2456 if (tx_ring_desc && tx_ring_desc->skb) {
2457 QPRINTK(qdev, IFDOWN, ERR,
2458 "Freeing lost SKB %p, from queue %d, index %d.\n",
2459 tx_ring_desc->skb, j,
2460 tx_ring_desc->index);
2461 ql_unmap_send(qdev, tx_ring_desc,
2462 tx_ring_desc->map_cnt);
2463 dev_kfree_skb(tx_ring_desc->skb);
2464 tx_ring_desc->skb = NULL;
2465 }
2466 }
2467 }
2468 }
2469
2470 static void ql_free_mem_resources(struct ql_adapter *qdev)
2471 {
2472 int i;
2473
2474 for (i = 0; i < qdev->tx_ring_count; i++)
2475 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2476 for (i = 0; i < qdev->rx_ring_count; i++)
2477 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2478 ql_free_shadow_space(qdev);
2479 }
2480
2481 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2482 {
2483 int i;
2484
2485 /* Allocate space for our shadow registers and such. */
2486 if (ql_alloc_shadow_space(qdev))
2487 return -ENOMEM;
2488
2489 for (i = 0; i < qdev->rx_ring_count; i++) {
2490 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2491 QPRINTK(qdev, IFUP, ERR,
2492 "RX resource allocation failed.\n");
2493 goto err_mem;
2494 }
2495 }
2496 /* Allocate tx queue resources */
2497 for (i = 0; i < qdev->tx_ring_count; i++) {
2498 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2499 QPRINTK(qdev, IFUP, ERR,
2500 "TX resource allocation failed.\n");
2501 goto err_mem;
2502 }
2503 }
2504 return 0;
2505
2506 err_mem:
2507 ql_free_mem_resources(qdev);
2508 return -ENOMEM;
2509 }
2510
2511 /* Set up the rx ring control block and pass it to the chip.
2512 * The control block is defined as
2513 * "Completion Queue Initialization Control Block", or cqicb.
2514 */
2515 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2516 {
2517 struct cqicb *cqicb = &rx_ring->cqicb;
2518 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2519 (rx_ring->cq_id * sizeof(u64) * 4);
2520 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2521 (rx_ring->cq_id * sizeof(u64) * 4);
2522 void __iomem *doorbell_area =
2523 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2524 int err = 0;
2525 u16 bq_len;
2526
2527 /* Set up the shadow registers for this ring. */
2528 rx_ring->prod_idx_sh_reg = shadow_reg;
2529 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2530 shadow_reg += sizeof(u64);
2531 shadow_reg_dma += sizeof(u64);
2532 rx_ring->lbq_base_indirect = shadow_reg;
2533 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2534 shadow_reg += sizeof(u64);
2535 shadow_reg_dma += sizeof(u64);
2536 rx_ring->sbq_base_indirect = shadow_reg;
2537 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2538
2539 /* PCI doorbell mem area + 0x00 for consumer index register */
2540 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2541 rx_ring->cnsmr_idx = 0;
2542 rx_ring->curr_entry = rx_ring->cq_base;
2543
2544 /* PCI doorbell mem area + 0x04 for valid register */
2545 rx_ring->valid_db_reg = doorbell_area + 0x04;
2546
2547 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2548 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2549
2550 /* PCI doorbell mem area + 0x1c */
2551 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2552
2553 memset((void *)cqicb, 0, sizeof(struct cqicb));
2554 cqicb->msix_vect = rx_ring->irq;
2555
2556 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2557 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2558
2559 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2560
2561 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2562
2563 /*
2564 * Set up the control block load flags.
2565 */
2566 cqicb->flags = FLAGS_LC | /* Load queue base address */
2567 FLAGS_LV | /* Load MSI-X vector */
2568 FLAGS_LI; /* Load irq delay values */
2569 if (rx_ring->lbq_len) {
2570 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2571 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2572 cqicb->lbq_addr =
2573 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2574 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2575 (u16) rx_ring->lbq_buf_size;
2576 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2577 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2578 (u16) rx_ring->lbq_len;
2579 cqicb->lbq_len = cpu_to_le16(bq_len);
2580 rx_ring->lbq_prod_idx = 0;
2581 rx_ring->lbq_curr_idx = 0;
2582 rx_ring->lbq_clean_idx = 0;
2583 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2584 }
2585 if (rx_ring->sbq_len) {
2586 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2587 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2588 cqicb->sbq_addr =
2589 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2590 cqicb->sbq_buf_size =
2591 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2592 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2593 (u16) rx_ring->sbq_len;
2594 cqicb->sbq_len = cpu_to_le16(bq_len);
2595 rx_ring->sbq_prod_idx = 0;
2596 rx_ring->sbq_curr_idx = 0;
2597 rx_ring->sbq_clean_idx = 0;
2598 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2599 }
2600 switch (rx_ring->type) {
2601 case TX_Q:
2602 /* If there's only one interrupt, then we use
2603 * worker threads to process the outbound
2604 * completion handling rx_rings. We do this so
2605 * they can be run on multiple CPUs. There is
2606 * room to play with this more where we would only
2607 * run in a worker if there are more than x number
2608 * of outbound completions on the queue and more
2609 * than one queue active. Some threshold that
2610 * would indicate a benefit in spite of the cost
2611 * of a context switch.
2612 * If there's more than one interrupt, then the
2613 * outbound completions are processed in the ISR.
2614 */
2615 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2616 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2617 else {
2618 /* With all debug warnings on we see a WARN_ON message
2619 * when we free the skb in the interrupt context.
2620 */
2621 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2622 }
2623 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2624 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2625 break;
2626 case DEFAULT_Q:
2627 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2628 cqicb->irq_delay = 0;
2629 cqicb->pkt_delay = 0;
2630 break;
2631 case RX_Q:
2632 /* Inbound completion handling rx_rings run in
2633 * separate NAPI contexts.
2634 */
2635 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2636 64);
2637 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2638 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2639 break;
2640 default:
2641 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2642 rx_ring->type);
2643 }
2644 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2645 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2646 CFG_LCQ, rx_ring->cq_id);
2647 if (err) {
2648 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2649 return err;
2650 }
2651 return err;
2652 }
2653
2654 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2655 {
2656 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2657 void __iomem *doorbell_area =
2658 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2659 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2660 (tx_ring->wq_id * sizeof(u64));
2661 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2662 (tx_ring->wq_id * sizeof(u64));
2663 int err = 0;
2664
2665 /*
2666 * Assign doorbell registers for this tx_ring.
2667 */
2668 /* TX PCI doorbell mem area for tx producer index */
2669 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2670 tx_ring->prod_idx = 0;
2671 /* TX PCI doorbell mem area + 0x04 */
2672 tx_ring->valid_db_reg = doorbell_area + 0x04;
2673
2674 /*
2675 * Assign shadow registers for this tx_ring.
2676 */
2677 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2678 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2679
2680 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2681 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2682 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2683 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2684 wqicb->rid = 0;
2685 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2686
2687 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2688
2689 ql_init_tx_ring(qdev, tx_ring);
2690
2691 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2692 (u16) tx_ring->wq_id);
2693 if (err) {
2694 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2695 return err;
2696 }
2697 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2698 return err;
2699 }
2700
2701 static void ql_disable_msix(struct ql_adapter *qdev)
2702 {
2703 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2704 pci_disable_msix(qdev->pdev);
2705 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2706 kfree(qdev->msi_x_entry);
2707 qdev->msi_x_entry = NULL;
2708 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2709 pci_disable_msi(qdev->pdev);
2710 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2711 }
2712 }
2713
2714 static void ql_enable_msix(struct ql_adapter *qdev)
2715 {
2716 int i;
2717
2718 qdev->intr_count = 1;
2719 /* Get the MSIX vectors. */
2720 if (irq_type == MSIX_IRQ) {
2721 /* Try to alloc space for the msix struct,
2722 * if it fails then go to MSI/legacy.
2723 */
2724 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2725 sizeof(struct msix_entry),
2726 GFP_KERNEL);
2727 if (!qdev->msi_x_entry) {
2728 irq_type = MSI_IRQ;
2729 goto msi;
2730 }
2731
2732 for (i = 0; i < qdev->rx_ring_count; i++)
2733 qdev->msi_x_entry[i].entry = i;
2734
2735 if (!pci_enable_msix
2736 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2737 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2738 qdev->intr_count = qdev->rx_ring_count;
2739 QPRINTK(qdev, IFUP, DEBUG,
2740 "MSI-X Enabled, got %d vectors.\n",
2741 qdev->intr_count);
2742 return;
2743 } else {
2744 kfree(qdev->msi_x_entry);
2745 qdev->msi_x_entry = NULL;
2746 QPRINTK(qdev, IFUP, WARNING,
2747 "MSI-X Enable failed, trying MSI.\n");
2748 irq_type = MSI_IRQ;
2749 }
2750 }
2751 msi:
2752 if (irq_type == MSI_IRQ) {
2753 if (!pci_enable_msi(qdev->pdev)) {
2754 set_bit(QL_MSI_ENABLED, &qdev->flags);
2755 QPRINTK(qdev, IFUP, INFO,
2756 "Running with MSI interrupts.\n");
2757 return;
2758 }
2759 }
2760 irq_type = LEG_IRQ;
2761 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2762 }
2763
2764 /*
2765 * Here we build the intr_context structures based on
2766 * our rx_ring count and intr vector count.
2767 * The intr_context structure is used to hook each vector
2768 * to possibly different handlers.
2769 */
2770 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2771 {
2772 int i = 0;
2773 struct intr_context *intr_context = &qdev->intr_context[0];
2774
2775 ql_enable_msix(qdev);
2776
2777 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2778 /* Each rx_ring has it's
2779 * own intr_context since we have separate
2780 * vectors for each queue.
2781 * This only true when MSI-X is enabled.
2782 */
2783 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2784 qdev->rx_ring[i].irq = i;
2785 intr_context->intr = i;
2786 intr_context->qdev = qdev;
2787 /*
2788 * We set up each vectors enable/disable/read bits so
2789 * there's no bit/mask calculations in the critical path.
2790 */
2791 intr_context->intr_en_mask =
2792 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2793 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2794 | i;
2795 intr_context->intr_dis_mask =
2796 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2797 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2798 INTR_EN_IHD | i;
2799 intr_context->intr_read_mask =
2800 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2801 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2802 i;
2803
2804 if (i == 0) {
2805 /*
2806 * Default queue handles bcast/mcast plus
2807 * async events. Needs buffers.
2808 */
2809 intr_context->handler = qlge_isr;
2810 sprintf(intr_context->name, "%s-default-queue",
2811 qdev->ndev->name);
2812 } else if (i < qdev->rss_ring_first_cq_id) {
2813 /*
2814 * Outbound queue is for outbound completions only.
2815 */
2816 intr_context->handler = qlge_msix_tx_isr;
2817 sprintf(intr_context->name, "%s-tx-%d",
2818 qdev->ndev->name, i);
2819 } else {
2820 /*
2821 * Inbound queues handle unicast frames only.
2822 */
2823 intr_context->handler = qlge_msix_rx_isr;
2824 sprintf(intr_context->name, "%s-rx-%d",
2825 qdev->ndev->name, i);
2826 }
2827 }
2828 } else {
2829 /*
2830 * All rx_rings use the same intr_context since
2831 * there is only one vector.
2832 */
2833 intr_context->intr = 0;
2834 intr_context->qdev = qdev;
2835 /*
2836 * We set up each vectors enable/disable/read bits so
2837 * there's no bit/mask calculations in the critical path.
2838 */
2839 intr_context->intr_en_mask =
2840 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2841 intr_context->intr_dis_mask =
2842 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2843 INTR_EN_TYPE_DISABLE;
2844 intr_context->intr_read_mask =
2845 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2846 /*
2847 * Single interrupt means one handler for all rings.
2848 */
2849 intr_context->handler = qlge_isr;
2850 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2851 for (i = 0; i < qdev->rx_ring_count; i++)
2852 qdev->rx_ring[i].irq = 0;
2853 }
2854 }
2855
2856 static void ql_free_irq(struct ql_adapter *qdev)
2857 {
2858 int i;
2859 struct intr_context *intr_context = &qdev->intr_context[0];
2860
2861 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2862 if (intr_context->hooked) {
2863 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2864 free_irq(qdev->msi_x_entry[i].vector,
2865 &qdev->rx_ring[i]);
2866 QPRINTK(qdev, IFDOWN, DEBUG,
2867 "freeing msix interrupt %d.\n", i);
2868 } else {
2869 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2870 QPRINTK(qdev, IFDOWN, DEBUG,
2871 "freeing msi interrupt %d.\n", i);
2872 }
2873 }
2874 }
2875 ql_disable_msix(qdev);
2876 }
2877
2878 static int ql_request_irq(struct ql_adapter *qdev)
2879 {
2880 int i;
2881 int status = 0;
2882 struct pci_dev *pdev = qdev->pdev;
2883 struct intr_context *intr_context = &qdev->intr_context[0];
2884
2885 ql_resolve_queues_to_irqs(qdev);
2886
2887 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2888 atomic_set(&intr_context->irq_cnt, 0);
2889 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2890 status = request_irq(qdev->msi_x_entry[i].vector,
2891 intr_context->handler,
2892 0,
2893 intr_context->name,
2894 &qdev->rx_ring[i]);
2895 if (status) {
2896 QPRINTK(qdev, IFUP, ERR,
2897 "Failed request for MSIX interrupt %d.\n",
2898 i);
2899 goto err_irq;
2900 } else {
2901 QPRINTK(qdev, IFUP, DEBUG,
2902 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2903 i,
2904 qdev->rx_ring[i].type ==
2905 DEFAULT_Q ? "DEFAULT_Q" : "",
2906 qdev->rx_ring[i].type ==
2907 TX_Q ? "TX_Q" : "",
2908 qdev->rx_ring[i].type ==
2909 RX_Q ? "RX_Q" : "", intr_context->name);
2910 }
2911 } else {
2912 QPRINTK(qdev, IFUP, DEBUG,
2913 "trying msi or legacy interrupts.\n");
2914 QPRINTK(qdev, IFUP, DEBUG,
2915 "%s: irq = %d.\n", __func__, pdev->irq);
2916 QPRINTK(qdev, IFUP, DEBUG,
2917 "%s: context->name = %s.\n", __func__,
2918 intr_context->name);
2919 QPRINTK(qdev, IFUP, DEBUG,
2920 "%s: dev_id = 0x%p.\n", __func__,
2921 &qdev->rx_ring[0]);
2922 status =
2923 request_irq(pdev->irq, qlge_isr,
2924 test_bit(QL_MSI_ENABLED,
2925 &qdev->
2926 flags) ? 0 : IRQF_SHARED,
2927 intr_context->name, &qdev->rx_ring[0]);
2928 if (status)
2929 goto err_irq;
2930
2931 QPRINTK(qdev, IFUP, ERR,
2932 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2933 i,
2934 qdev->rx_ring[0].type ==
2935 DEFAULT_Q ? "DEFAULT_Q" : "",
2936 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2937 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2938 intr_context->name);
2939 }
2940 intr_context->hooked = 1;
2941 }
2942 return status;
2943 err_irq:
2944 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2945 ql_free_irq(qdev);
2946 return status;
2947 }
2948
2949 static int ql_start_rss(struct ql_adapter *qdev)
2950 {
2951 struct ricb *ricb = &qdev->ricb;
2952 int status = 0;
2953 int i;
2954 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2955
2956 memset((void *)ricb, 0, sizeof(ricb));
2957
2958 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2959 ricb->flags =
2960 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2961 RSS_RT6);
2962 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2963
2964 /*
2965 * Fill out the Indirection Table.
2966 */
2967 for (i = 0; i < 256; i++)
2968 hash_id[i] = i & (qdev->rss_ring_count - 1);
2969
2970 /*
2971 * Random values for the IPv6 and IPv4 Hash Keys.
2972 */
2973 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2974 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2975
2976 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
2977
2978 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2979 if (status) {
2980 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2981 return status;
2982 }
2983 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
2984 return status;
2985 }
2986
2987 /* Initialize the frame-to-queue routing. */
2988 static int ql_route_initialize(struct ql_adapter *qdev)
2989 {
2990 int status = 0;
2991 int i;
2992
2993 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2994 if (status)
2995 return status;
2996
2997 /* Clear all the entries in the routing table. */
2998 for (i = 0; i < 16; i++) {
2999 status = ql_set_routing_reg(qdev, i, 0, 0);
3000 if (status) {
3001 QPRINTK(qdev, IFUP, ERR,
3002 "Failed to init routing register for CAM packets.\n");
3003 goto exit;
3004 }
3005 }
3006
3007 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3008 if (status) {
3009 QPRINTK(qdev, IFUP, ERR,
3010 "Failed to init routing register for error packets.\n");
3011 goto exit;
3012 }
3013 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3014 if (status) {
3015 QPRINTK(qdev, IFUP, ERR,
3016 "Failed to init routing register for broadcast packets.\n");
3017 goto exit;
3018 }
3019 /* If we have more than one inbound queue, then turn on RSS in the
3020 * routing block.
3021 */
3022 if (qdev->rss_ring_count > 1) {
3023 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3024 RT_IDX_RSS_MATCH, 1);
3025 if (status) {
3026 QPRINTK(qdev, IFUP, ERR,
3027 "Failed to init routing register for MATCH RSS packets.\n");
3028 goto exit;
3029 }
3030 }
3031
3032 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3033 RT_IDX_CAM_HIT, 1);
3034 if (status)
3035 QPRINTK(qdev, IFUP, ERR,
3036 "Failed to init routing register for CAM packets.\n");
3037 exit:
3038 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3039 return status;
3040 }
3041
3042 int ql_cam_route_initialize(struct ql_adapter *qdev)
3043 {
3044 int status;
3045
3046 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3047 if (status)
3048 return status;
3049 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3050 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3051 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3052 if (status) {
3053 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3054 return status;
3055 }
3056
3057 status = ql_route_initialize(qdev);
3058 if (status)
3059 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3060
3061 return status;
3062 }
3063
3064 static int ql_adapter_initialize(struct ql_adapter *qdev)
3065 {
3066 u32 value, mask;
3067 int i;
3068 int status = 0;
3069
3070 /*
3071 * Set up the System register to halt on errors.
3072 */
3073 value = SYS_EFE | SYS_FAE;
3074 mask = value << 16;
3075 ql_write32(qdev, SYS, mask | value);
3076
3077 /* Set the default queue, and VLAN behavior. */
3078 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3079 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3080 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3081
3082 /* Set the MPI interrupt to enabled. */
3083 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3084
3085 /* Enable the function, set pagesize, enable error checking. */
3086 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3087 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3088
3089 /* Set/clear header splitting. */
3090 mask = FSC_VM_PAGESIZE_MASK |
3091 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3092 ql_write32(qdev, FSC, mask | value);
3093
3094 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3095 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3096
3097 /* Start up the rx queues. */
3098 for (i = 0; i < qdev->rx_ring_count; i++) {
3099 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3100 if (status) {
3101 QPRINTK(qdev, IFUP, ERR,
3102 "Failed to start rx ring[%d].\n", i);
3103 return status;
3104 }
3105 }
3106
3107 /* If there is more than one inbound completion queue
3108 * then download a RICB to configure RSS.
3109 */
3110 if (qdev->rss_ring_count > 1) {
3111 status = ql_start_rss(qdev);
3112 if (status) {
3113 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3114 return status;
3115 }
3116 }
3117
3118 /* Start up the tx queues. */
3119 for (i = 0; i < qdev->tx_ring_count; i++) {
3120 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3121 if (status) {
3122 QPRINTK(qdev, IFUP, ERR,
3123 "Failed to start tx ring[%d].\n", i);
3124 return status;
3125 }
3126 }
3127
3128 /* Initialize the port and set the max framesize. */
3129 status = qdev->nic_ops->port_initialize(qdev);
3130 if (status) {
3131 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3132 return status;
3133 }
3134
3135 /* Set up the MAC address and frame routing filter. */
3136 status = ql_cam_route_initialize(qdev);
3137 if (status) {
3138 QPRINTK(qdev, IFUP, ERR,
3139 "Failed to init CAM/Routing tables.\n");
3140 return status;
3141 }
3142
3143 /* Start NAPI for the RSS queues. */
3144 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3145 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3146 i);
3147 napi_enable(&qdev->rx_ring[i].napi);
3148 }
3149
3150 return status;
3151 }
3152
3153 /* Issue soft reset to chip. */
3154 static int ql_adapter_reset(struct ql_adapter *qdev)
3155 {
3156 u32 value;
3157 int status = 0;
3158 unsigned long end_jiffies = jiffies +
3159 max((unsigned long)1, usecs_to_jiffies(30));
3160
3161 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3162
3163 do {
3164 value = ql_read32(qdev, RST_FO);
3165 if ((value & RST_FO_FR) == 0)
3166 break;
3167 cpu_relax();
3168 } while (time_before(jiffies, end_jiffies));
3169
3170 if (value & RST_FO_FR) {
3171 QPRINTK(qdev, IFDOWN, ERR,
3172 "ETIMEOUT!!! errored out of resetting the chip!\n");
3173 status = -ETIMEDOUT;
3174 }
3175
3176 return status;
3177 }
3178
3179 static void ql_display_dev_info(struct net_device *ndev)
3180 {
3181 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3182
3183 QPRINTK(qdev, PROBE, INFO,
3184 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3185 "XG Roll = %d, XG Rev = %d.\n",
3186 qdev->func,
3187 qdev->chip_rev_id & 0x0000000f,
3188 qdev->chip_rev_id >> 4 & 0x0000000f,
3189 qdev->chip_rev_id >> 8 & 0x0000000f,
3190 qdev->chip_rev_id >> 12 & 0x0000000f);
3191 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3192 }
3193
3194 static int ql_adapter_down(struct ql_adapter *qdev)
3195 {
3196 int i, status = 0;
3197 struct rx_ring *rx_ring;
3198
3199 netif_carrier_off(qdev->ndev);
3200
3201 /* Don't kill the reset worker thread if we
3202 * are in the process of recovery.
3203 */
3204 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3205 cancel_delayed_work_sync(&qdev->asic_reset_work);
3206 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3207 cancel_delayed_work_sync(&qdev->mpi_work);
3208 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3209 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3210
3211 /* The default queue at index 0 is always processed in
3212 * a workqueue.
3213 */
3214 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3215
3216 /* The rest of the rx_rings are processed in
3217 * a workqueue only if it's a single interrupt
3218 * environment (MSI/Legacy).
3219 */
3220 for (i = 1; i < qdev->rx_ring_count; i++) {
3221 rx_ring = &qdev->rx_ring[i];
3222 /* Only the RSS rings use NAPI on multi irq
3223 * environment. Outbound completion processing
3224 * is done in interrupt context.
3225 */
3226 if (i >= qdev->rss_ring_first_cq_id) {
3227 napi_disable(&rx_ring->napi);
3228 } else {
3229 cancel_delayed_work_sync(&rx_ring->rx_work);
3230 }
3231 }
3232
3233 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3234
3235 ql_disable_interrupts(qdev);
3236
3237 ql_tx_ring_clean(qdev);
3238
3239 ql_free_rx_buffers(qdev);
3240 spin_lock(&qdev->hw_lock);
3241 status = ql_adapter_reset(qdev);
3242 if (status)
3243 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3244 qdev->func);
3245 spin_unlock(&qdev->hw_lock);
3246 return status;
3247 }
3248
3249 static int ql_adapter_up(struct ql_adapter *qdev)
3250 {
3251 int err = 0;
3252
3253 spin_lock(&qdev->hw_lock);
3254 err = ql_adapter_initialize(qdev);
3255 if (err) {
3256 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3257 spin_unlock(&qdev->hw_lock);
3258 goto err_init;
3259 }
3260 spin_unlock(&qdev->hw_lock);
3261 set_bit(QL_ADAPTER_UP, &qdev->flags);
3262 ql_alloc_rx_buffers(qdev);
3263 if ((ql_read32(qdev, STS) & qdev->port_init))
3264 netif_carrier_on(qdev->ndev);
3265 ql_enable_interrupts(qdev);
3266 ql_enable_all_completion_interrupts(qdev);
3267 netif_tx_start_all_queues(qdev->ndev);
3268
3269 return 0;
3270 err_init:
3271 ql_adapter_reset(qdev);
3272 return err;
3273 }
3274
3275 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3276 {
3277 ql_free_mem_resources(qdev);
3278 ql_free_irq(qdev);
3279 }
3280
3281 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3282 {
3283 int status = 0;
3284
3285 if (ql_alloc_mem_resources(qdev)) {
3286 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3287 return -ENOMEM;
3288 }
3289 status = ql_request_irq(qdev);
3290 if (status)
3291 goto err_irq;
3292 return status;
3293 err_irq:
3294 ql_free_mem_resources(qdev);
3295 return status;
3296 }
3297
3298 static int qlge_close(struct net_device *ndev)
3299 {
3300 struct ql_adapter *qdev = netdev_priv(ndev);
3301
3302 /*
3303 * Wait for device to recover from a reset.
3304 * (Rarely happens, but possible.)
3305 */
3306 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3307 msleep(1);
3308 ql_adapter_down(qdev);
3309 ql_release_adapter_resources(qdev);
3310 return 0;
3311 }
3312
3313 static int ql_configure_rings(struct ql_adapter *qdev)
3314 {
3315 int i;
3316 struct rx_ring *rx_ring;
3317 struct tx_ring *tx_ring;
3318 int cpu_cnt = num_online_cpus();
3319
3320 /*
3321 * For each processor present we allocate one
3322 * rx_ring for outbound completions, and one
3323 * rx_ring for inbound completions. Plus there is
3324 * always the one default queue. For the CPU
3325 * counts we end up with the following rx_rings:
3326 * rx_ring count =
3327 * one default queue +
3328 * (CPU count * outbound completion rx_ring) +
3329 * (CPU count * inbound (RSS) completion rx_ring)
3330 * To keep it simple we limit the total number of
3331 * queues to < 32, so we truncate CPU to 8.
3332 * This limitation can be removed when requested.
3333 */
3334
3335 if (cpu_cnt > MAX_CPUS)
3336 cpu_cnt = MAX_CPUS;
3337
3338 /*
3339 * rx_ring[0] is always the default queue.
3340 */
3341 /* Allocate outbound completion ring for each CPU. */
3342 qdev->tx_ring_count = cpu_cnt;
3343 /* Allocate inbound completion (RSS) ring for each CPU. */
3344 qdev->rss_ring_count = cpu_cnt;
3345 /* cq_id for the first inbound ring handler. */
3346 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3347 /*
3348 * qdev->rx_ring_count:
3349 * Total number of rx_rings. This includes the one
3350 * default queue, a number of outbound completion
3351 * handler rx_rings, and the number of inbound
3352 * completion handler rx_rings.
3353 */
3354 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3355 netif_set_gso_max_size(qdev->ndev, 65536);
3356
3357 for (i = 0; i < qdev->tx_ring_count; i++) {
3358 tx_ring = &qdev->tx_ring[i];
3359 memset((void *)tx_ring, 0, sizeof(tx_ring));
3360 tx_ring->qdev = qdev;
3361 tx_ring->wq_id = i;
3362 tx_ring->wq_len = qdev->tx_ring_size;
3363 tx_ring->wq_size =
3364 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3365
3366 /*
3367 * The completion queue ID for the tx rings start
3368 * immediately after the default Q ID, which is zero.
3369 */
3370 tx_ring->cq_id = i + 1;
3371 }
3372
3373 for (i = 0; i < qdev->rx_ring_count; i++) {
3374 rx_ring = &qdev->rx_ring[i];
3375 memset((void *)rx_ring, 0, sizeof(rx_ring));
3376 rx_ring->qdev = qdev;
3377 rx_ring->cq_id = i;
3378 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3379 if (i == 0) { /* Default queue at index 0. */
3380 /*
3381 * Default queue handles bcast/mcast plus
3382 * async events. Needs buffers.
3383 */
3384 rx_ring->cq_len = qdev->rx_ring_size;
3385 rx_ring->cq_size =
3386 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3387 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3388 rx_ring->lbq_size =
3389 rx_ring->lbq_len * sizeof(__le64);
3390 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3391 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3392 rx_ring->sbq_size =
3393 rx_ring->sbq_len * sizeof(__le64);
3394 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3395 rx_ring->type = DEFAULT_Q;
3396 } else if (i < qdev->rss_ring_first_cq_id) {
3397 /*
3398 * Outbound queue handles outbound completions only.
3399 */
3400 /* outbound cq is same size as tx_ring it services. */
3401 rx_ring->cq_len = qdev->tx_ring_size;
3402 rx_ring->cq_size =
3403 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3404 rx_ring->lbq_len = 0;
3405 rx_ring->lbq_size = 0;
3406 rx_ring->lbq_buf_size = 0;
3407 rx_ring->sbq_len = 0;
3408 rx_ring->sbq_size = 0;
3409 rx_ring->sbq_buf_size = 0;
3410 rx_ring->type = TX_Q;
3411 } else { /* Inbound completions (RSS) queues */
3412 /*
3413 * Inbound queues handle unicast frames only.
3414 */
3415 rx_ring->cq_len = qdev->rx_ring_size;
3416 rx_ring->cq_size =
3417 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3418 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3419 rx_ring->lbq_size =
3420 rx_ring->lbq_len * sizeof(__le64);
3421 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3422 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3423 rx_ring->sbq_size =
3424 rx_ring->sbq_len * sizeof(__le64);
3425 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3426 rx_ring->type = RX_Q;
3427 }
3428 }
3429 return 0;
3430 }
3431
3432 static int qlge_open(struct net_device *ndev)
3433 {
3434 int err = 0;
3435 struct ql_adapter *qdev = netdev_priv(ndev);
3436
3437 err = ql_configure_rings(qdev);
3438 if (err)
3439 return err;
3440
3441 err = ql_get_adapter_resources(qdev);
3442 if (err)
3443 goto error_up;
3444
3445 err = ql_adapter_up(qdev);
3446 if (err)
3447 goto error_up;
3448
3449 return err;
3450
3451 error_up:
3452 ql_release_adapter_resources(qdev);
3453 return err;
3454 }
3455
3456 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3457 {
3458 struct ql_adapter *qdev = netdev_priv(ndev);
3459
3460 if (ndev->mtu == 1500 && new_mtu == 9000) {
3461 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3462 queue_delayed_work(qdev->workqueue,
3463 &qdev->mpi_port_cfg_work, 0);
3464 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3465 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3466 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3467 (ndev->mtu == 9000 && new_mtu == 9000)) {
3468 return 0;
3469 } else
3470 return -EINVAL;
3471 ndev->mtu = new_mtu;
3472 return 0;
3473 }
3474
3475 static struct net_device_stats *qlge_get_stats(struct net_device
3476 *ndev)
3477 {
3478 struct ql_adapter *qdev = netdev_priv(ndev);
3479 return &qdev->stats;
3480 }
3481
3482 static void qlge_set_multicast_list(struct net_device *ndev)
3483 {
3484 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3485 struct dev_mc_list *mc_ptr;
3486 int i, status;
3487
3488 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3489 if (status)
3490 return;
3491 spin_lock(&qdev->hw_lock);
3492 /*
3493 * Set or clear promiscuous mode if a
3494 * transition is taking place.
3495 */
3496 if (ndev->flags & IFF_PROMISC) {
3497 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3498 if (ql_set_routing_reg
3499 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3500 QPRINTK(qdev, HW, ERR,
3501 "Failed to set promiscous mode.\n");
3502 } else {
3503 set_bit(QL_PROMISCUOUS, &qdev->flags);
3504 }
3505 }
3506 } else {
3507 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3508 if (ql_set_routing_reg
3509 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3510 QPRINTK(qdev, HW, ERR,
3511 "Failed to clear promiscous mode.\n");
3512 } else {
3513 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3514 }
3515 }
3516 }
3517
3518 /*
3519 * Set or clear all multicast mode if a
3520 * transition is taking place.
3521 */
3522 if ((ndev->flags & IFF_ALLMULTI) ||
3523 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3524 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3525 if (ql_set_routing_reg
3526 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3527 QPRINTK(qdev, HW, ERR,
3528 "Failed to set all-multi mode.\n");
3529 } else {
3530 set_bit(QL_ALLMULTI, &qdev->flags);
3531 }
3532 }
3533 } else {
3534 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3535 if (ql_set_routing_reg
3536 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3537 QPRINTK(qdev, HW, ERR,
3538 "Failed to clear all-multi mode.\n");
3539 } else {
3540 clear_bit(QL_ALLMULTI, &qdev->flags);
3541 }
3542 }
3543 }
3544
3545 if (ndev->mc_count) {
3546 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3547 if (status)
3548 goto exit;
3549 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3550 i++, mc_ptr = mc_ptr->next)
3551 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3552 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3553 QPRINTK(qdev, HW, ERR,
3554 "Failed to loadmulticast address.\n");
3555 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3556 goto exit;
3557 }
3558 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3559 if (ql_set_routing_reg
3560 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3561 QPRINTK(qdev, HW, ERR,
3562 "Failed to set multicast match mode.\n");
3563 } else {
3564 set_bit(QL_ALLMULTI, &qdev->flags);
3565 }
3566 }
3567 exit:
3568 spin_unlock(&qdev->hw_lock);
3569 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3570 }
3571
3572 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3573 {
3574 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3575 struct sockaddr *addr = p;
3576 int status;
3577
3578 if (netif_running(ndev))
3579 return -EBUSY;
3580
3581 if (!is_valid_ether_addr(addr->sa_data))
3582 return -EADDRNOTAVAIL;
3583 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3584
3585 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3586 if (status)
3587 return status;
3588 spin_lock(&qdev->hw_lock);
3589 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3590 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3591 spin_unlock(&qdev->hw_lock);
3592 if (status)
3593 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3594 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3595 return status;
3596 }
3597
3598 static void qlge_tx_timeout(struct net_device *ndev)
3599 {
3600 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3601 ql_queue_asic_error(qdev);
3602 }
3603
3604 static void ql_asic_reset_work(struct work_struct *work)
3605 {
3606 struct ql_adapter *qdev =
3607 container_of(work, struct ql_adapter, asic_reset_work.work);
3608 int status;
3609
3610 status = ql_adapter_down(qdev);
3611 if (status)
3612 goto error;
3613
3614 status = ql_adapter_up(qdev);
3615 if (status)
3616 goto error;
3617
3618 return;
3619 error:
3620 QPRINTK(qdev, IFUP, ALERT,
3621 "Driver up/down cycle failed, closing device\n");
3622 rtnl_lock();
3623 set_bit(QL_ADAPTER_UP, &qdev->flags);
3624 dev_close(qdev->ndev);
3625 rtnl_unlock();
3626 }
3627
3628 static struct nic_operations qla8012_nic_ops = {
3629 .get_flash = ql_get_8012_flash_params,
3630 .port_initialize = ql_8012_port_initialize,
3631 };
3632
3633 static struct nic_operations qla8000_nic_ops = {
3634 .get_flash = ql_get_8000_flash_params,
3635 .port_initialize = ql_8000_port_initialize,
3636 };
3637
3638
3639 static void ql_get_board_info(struct ql_adapter *qdev)
3640 {
3641 qdev->func =
3642 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3643 if (qdev->func) {
3644 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3645 qdev->port_link_up = STS_PL1;
3646 qdev->port_init = STS_PI1;
3647 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3648 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3649 } else {
3650 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3651 qdev->port_link_up = STS_PL0;
3652 qdev->port_init = STS_PI0;
3653 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3654 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3655 }
3656 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3657 qdev->device_id = qdev->pdev->device;
3658 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3659 qdev->nic_ops = &qla8012_nic_ops;
3660 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3661 qdev->nic_ops = &qla8000_nic_ops;
3662 }
3663
3664 static void ql_release_all(struct pci_dev *pdev)
3665 {
3666 struct net_device *ndev = pci_get_drvdata(pdev);
3667 struct ql_adapter *qdev = netdev_priv(ndev);
3668
3669 if (qdev->workqueue) {
3670 destroy_workqueue(qdev->workqueue);
3671 qdev->workqueue = NULL;
3672 }
3673 if (qdev->q_workqueue) {
3674 destroy_workqueue(qdev->q_workqueue);
3675 qdev->q_workqueue = NULL;
3676 }
3677 if (qdev->reg_base)
3678 iounmap(qdev->reg_base);
3679 if (qdev->doorbell_area)
3680 iounmap(qdev->doorbell_area);
3681 pci_release_regions(pdev);
3682 pci_set_drvdata(pdev, NULL);
3683 }
3684
3685 static int __devinit ql_init_device(struct pci_dev *pdev,
3686 struct net_device *ndev, int cards_found)
3687 {
3688 struct ql_adapter *qdev = netdev_priv(ndev);
3689 int pos, err = 0;
3690 u16 val16;
3691
3692 memset((void *)qdev, 0, sizeof(qdev));
3693 err = pci_enable_device(pdev);
3694 if (err) {
3695 dev_err(&pdev->dev, "PCI device enable failed.\n");
3696 return err;
3697 }
3698
3699 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3700 if (pos <= 0) {
3701 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3702 "aborting.\n");
3703 goto err_out;
3704 } else {
3705 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3706 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3707 val16 |= (PCI_EXP_DEVCTL_CERE |
3708 PCI_EXP_DEVCTL_NFERE |
3709 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3710 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3711 }
3712
3713 err = pci_request_regions(pdev, DRV_NAME);
3714 if (err) {
3715 dev_err(&pdev->dev, "PCI region request failed.\n");
3716 goto err_out;
3717 }
3718
3719 pci_set_master(pdev);
3720 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3721 set_bit(QL_DMA64, &qdev->flags);
3722 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3723 } else {
3724 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3725 if (!err)
3726 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3727 }
3728
3729 if (err) {
3730 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3731 goto err_out;
3732 }
3733
3734 pci_set_drvdata(pdev, ndev);
3735 qdev->reg_base =
3736 ioremap_nocache(pci_resource_start(pdev, 1),
3737 pci_resource_len(pdev, 1));
3738 if (!qdev->reg_base) {
3739 dev_err(&pdev->dev, "Register mapping failed.\n");
3740 err = -ENOMEM;
3741 goto err_out;
3742 }
3743
3744 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3745 qdev->doorbell_area =
3746 ioremap_nocache(pci_resource_start(pdev, 3),
3747 pci_resource_len(pdev, 3));
3748 if (!qdev->doorbell_area) {
3749 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3750 err = -ENOMEM;
3751 goto err_out;
3752 }
3753
3754 qdev->ndev = ndev;
3755 qdev->pdev = pdev;
3756 ql_get_board_info(qdev);
3757 qdev->msg_enable = netif_msg_init(debug, default_msg);
3758 spin_lock_init(&qdev->hw_lock);
3759 spin_lock_init(&qdev->stats_lock);
3760
3761 /* make sure the EEPROM is good */
3762 err = qdev->nic_ops->get_flash(qdev);
3763 if (err) {
3764 dev_err(&pdev->dev, "Invalid FLASH.\n");
3765 goto err_out;
3766 }
3767
3768 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3769
3770 /* Set up the default ring sizes. */
3771 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3772 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3773
3774 /* Set up the coalescing parameters. */
3775 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3776 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3777 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3778 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3779
3780 /*
3781 * Set up the operating parameters.
3782 */
3783 qdev->rx_csum = 1;
3784
3785 qdev->q_workqueue = create_workqueue(ndev->name);
3786 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3787 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3788 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3789 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3790 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3791 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3792 mutex_init(&qdev->mpi_mutex);
3793 init_completion(&qdev->ide_completion);
3794
3795 if (!cards_found) {
3796 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3797 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3798 DRV_NAME, DRV_VERSION);
3799 }
3800 return 0;
3801 err_out:
3802 ql_release_all(pdev);
3803 pci_disable_device(pdev);
3804 return err;
3805 }
3806
3807
3808 static const struct net_device_ops qlge_netdev_ops = {
3809 .ndo_open = qlge_open,
3810 .ndo_stop = qlge_close,
3811 .ndo_start_xmit = qlge_send,
3812 .ndo_change_mtu = qlge_change_mtu,
3813 .ndo_get_stats = qlge_get_stats,
3814 .ndo_set_multicast_list = qlge_set_multicast_list,
3815 .ndo_set_mac_address = qlge_set_mac_address,
3816 .ndo_validate_addr = eth_validate_addr,
3817 .ndo_tx_timeout = qlge_tx_timeout,
3818 .ndo_vlan_rx_register = ql_vlan_rx_register,
3819 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3820 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3821 };
3822
3823 static int __devinit qlge_probe(struct pci_dev *pdev,
3824 const struct pci_device_id *pci_entry)
3825 {
3826 struct net_device *ndev = NULL;
3827 struct ql_adapter *qdev = NULL;
3828 static int cards_found = 0;
3829 int err = 0;
3830
3831 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3832 min(MAX_CPUS, (int)num_online_cpus()));
3833 if (!ndev)
3834 return -ENOMEM;
3835
3836 err = ql_init_device(pdev, ndev, cards_found);
3837 if (err < 0) {
3838 free_netdev(ndev);
3839 return err;
3840 }
3841
3842 qdev = netdev_priv(ndev);
3843 SET_NETDEV_DEV(ndev, &pdev->dev);
3844 ndev->features = (0
3845 | NETIF_F_IP_CSUM
3846 | NETIF_F_SG
3847 | NETIF_F_TSO
3848 | NETIF_F_TSO6
3849 | NETIF_F_TSO_ECN
3850 | NETIF_F_HW_VLAN_TX
3851 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3852 ndev->features |= NETIF_F_GRO;
3853
3854 if (test_bit(QL_DMA64, &qdev->flags))
3855 ndev->features |= NETIF_F_HIGHDMA;
3856
3857 /*
3858 * Set up net_device structure.
3859 */
3860 ndev->tx_queue_len = qdev->tx_ring_size;
3861 ndev->irq = pdev->irq;
3862
3863 ndev->netdev_ops = &qlge_netdev_ops;
3864 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3865 ndev->watchdog_timeo = 10 * HZ;
3866
3867 err = register_netdev(ndev);
3868 if (err) {
3869 dev_err(&pdev->dev, "net device registration failed.\n");
3870 ql_release_all(pdev);
3871 pci_disable_device(pdev);
3872 return err;
3873 }
3874 netif_carrier_off(ndev);
3875 ql_display_dev_info(ndev);
3876 cards_found++;
3877 return 0;
3878 }
3879
3880 static void __devexit qlge_remove(struct pci_dev *pdev)
3881 {
3882 struct net_device *ndev = pci_get_drvdata(pdev);
3883 unregister_netdev(ndev);
3884 ql_release_all(pdev);
3885 pci_disable_device(pdev);
3886 free_netdev(ndev);
3887 }
3888
3889 /*
3890 * This callback is called by the PCI subsystem whenever
3891 * a PCI bus error is detected.
3892 */
3893 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3894 enum pci_channel_state state)
3895 {
3896 struct net_device *ndev = pci_get_drvdata(pdev);
3897 struct ql_adapter *qdev = netdev_priv(ndev);
3898
3899 if (netif_running(ndev))
3900 ql_adapter_down(qdev);
3901
3902 pci_disable_device(pdev);
3903
3904 /* Request a slot reset. */
3905 return PCI_ERS_RESULT_NEED_RESET;
3906 }
3907
3908 /*
3909 * This callback is called after the PCI buss has been reset.
3910 * Basically, this tries to restart the card from scratch.
3911 * This is a shortened version of the device probe/discovery code,
3912 * it resembles the first-half of the () routine.
3913 */
3914 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3915 {
3916 struct net_device *ndev = pci_get_drvdata(pdev);
3917 struct ql_adapter *qdev = netdev_priv(ndev);
3918
3919 if (pci_enable_device(pdev)) {
3920 QPRINTK(qdev, IFUP, ERR,
3921 "Cannot re-enable PCI device after reset.\n");
3922 return PCI_ERS_RESULT_DISCONNECT;
3923 }
3924
3925 pci_set_master(pdev);
3926
3927 netif_carrier_off(ndev);
3928 ql_adapter_reset(qdev);
3929
3930 /* Make sure the EEPROM is good */
3931 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3932
3933 if (!is_valid_ether_addr(ndev->perm_addr)) {
3934 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3935 return PCI_ERS_RESULT_DISCONNECT;
3936 }
3937
3938 return PCI_ERS_RESULT_RECOVERED;
3939 }
3940
3941 static void qlge_io_resume(struct pci_dev *pdev)
3942 {
3943 struct net_device *ndev = pci_get_drvdata(pdev);
3944 struct ql_adapter *qdev = netdev_priv(ndev);
3945
3946 pci_set_master(pdev);
3947
3948 if (netif_running(ndev)) {
3949 if (ql_adapter_up(qdev)) {
3950 QPRINTK(qdev, IFUP, ERR,
3951 "Device initialization failed after reset.\n");
3952 return;
3953 }
3954 }
3955
3956 netif_device_attach(ndev);
3957 }
3958
3959 static struct pci_error_handlers qlge_err_handler = {
3960 .error_detected = qlge_io_error_detected,
3961 .slot_reset = qlge_io_slot_reset,
3962 .resume = qlge_io_resume,
3963 };
3964
3965 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3966 {
3967 struct net_device *ndev = pci_get_drvdata(pdev);
3968 struct ql_adapter *qdev = netdev_priv(ndev);
3969 int err, i;
3970
3971 netif_device_detach(ndev);
3972
3973 if (netif_running(ndev)) {
3974 err = ql_adapter_down(qdev);
3975 if (!err)
3976 return err;
3977 }
3978
3979 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3980 netif_napi_del(&qdev->rx_ring[i].napi);
3981
3982 err = pci_save_state(pdev);
3983 if (err)
3984 return err;
3985
3986 pci_disable_device(pdev);
3987
3988 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3989
3990 return 0;
3991 }
3992
3993 #ifdef CONFIG_PM
3994 static int qlge_resume(struct pci_dev *pdev)
3995 {
3996 struct net_device *ndev = pci_get_drvdata(pdev);
3997 struct ql_adapter *qdev = netdev_priv(ndev);
3998 int err;
3999
4000 pci_set_power_state(pdev, PCI_D0);
4001 pci_restore_state(pdev);
4002 err = pci_enable_device(pdev);
4003 if (err) {
4004 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4005 return err;
4006 }
4007 pci_set_master(pdev);
4008
4009 pci_enable_wake(pdev, PCI_D3hot, 0);
4010 pci_enable_wake(pdev, PCI_D3cold, 0);
4011
4012 if (netif_running(ndev)) {
4013 err = ql_adapter_up(qdev);
4014 if (err)
4015 return err;
4016 }
4017
4018 netif_device_attach(ndev);
4019
4020 return 0;
4021 }
4022 #endif /* CONFIG_PM */
4023
4024 static void qlge_shutdown(struct pci_dev *pdev)
4025 {
4026 qlge_suspend(pdev, PMSG_SUSPEND);
4027 }
4028
4029 static struct pci_driver qlge_driver = {
4030 .name = DRV_NAME,
4031 .id_table = qlge_pci_tbl,
4032 .probe = qlge_probe,
4033 .remove = __devexit_p(qlge_remove),
4034 #ifdef CONFIG_PM
4035 .suspend = qlge_suspend,
4036 .resume = qlge_resume,
4037 #endif
4038 .shutdown = qlge_shutdown,
4039 .err_handler = &qlge_err_handler
4040 };
4041
4042 static int __init qlge_init_module(void)
4043 {
4044 return pci_register_driver(&qlge_driver);
4045 }
4046
4047 static void __exit qlge_exit(void)
4048 {
4049 pci_unregister_driver(&qlge_driver);
4050 }
4051
4052 module_init(qlge_init_module);
4053 module_exit(qlge_exit);
This page took 0.204783 seconds and 5 git commands to generate.