net: convert multiple drivers to use netdev_for_each_mc_addr, part5 V2
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <net/ip6_checksum.h>
42
43 #include "qlge.h"
44
45 char qlge_driver_name[] = DRV_NAME;
46 const char qlge_driver_version[] = DRV_VERSION;
47
48 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49 MODULE_DESCRIPTION(DRV_STRING " ");
50 MODULE_LICENSE("GPL");
51 MODULE_VERSION(DRV_VERSION);
52
53 static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55 /* NETIF_MSG_TIMER | */
56 NETIF_MSG_IFDOWN |
57 NETIF_MSG_IFUP |
58 NETIF_MSG_RX_ERR |
59 NETIF_MSG_TX_ERR |
60 /* NETIF_MSG_TX_QUEUED | */
61 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
62 /* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65 static int debug = 0x00007fff; /* defaults above */
66 module_param(debug, int, 0);
67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69 #define MSIX_IRQ 0
70 #define MSI_IRQ 1
71 #define LEG_IRQ 2
72 static int qlge_irq_type = MSIX_IRQ;
73 module_param(qlge_irq_type, int, MSIX_IRQ);
74 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76 static int qlge_mpi_coredump;
77 module_param(qlge_mpi_coredump, int, 0);
78 MODULE_PARM_DESC(qlge_mpi_coredump,
79 "Option to enable MPI firmware dump. "
80 "Default is OFF - Do Not allocate memory. ");
81
82 static int qlge_force_coredump;
83 module_param(qlge_force_coredump, int, 0);
84 MODULE_PARM_DESC(qlge_force_coredump,
85 "Option to allow force of firmware core dump. "
86 "Default is OFF - Do not allow.");
87
88 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
89 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
91 /* required last entry */
92 {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
96
97 /* This hardware semaphore causes exclusive access to
98 * resources shared between the NIC driver, MPI firmware,
99 * FCOE firmware and the FC driver.
100 */
101 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
102 {
103 u32 sem_bits = 0;
104
105 switch (sem_mask) {
106 case SEM_XGMAC0_MASK:
107 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
108 break;
109 case SEM_XGMAC1_MASK:
110 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
111 break;
112 case SEM_ICB_MASK:
113 sem_bits = SEM_SET << SEM_ICB_SHIFT;
114 break;
115 case SEM_MAC_ADDR_MASK:
116 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
117 break;
118 case SEM_FLASH_MASK:
119 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
120 break;
121 case SEM_PROBE_MASK:
122 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
123 break;
124 case SEM_RT_IDX_MASK:
125 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
126 break;
127 case SEM_PROC_REG_MASK:
128 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
129 break;
130 default:
131 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
132 return -EINVAL;
133 }
134
135 ql_write32(qdev, SEM, sem_bits | sem_mask);
136 return !(ql_read32(qdev, SEM) & sem_bits);
137 }
138
139 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141 unsigned int wait_count = 30;
142 do {
143 if (!ql_sem_trylock(qdev, sem_mask))
144 return 0;
145 udelay(100);
146 } while (--wait_count);
147 return -ETIMEDOUT;
148 }
149
150 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
151 {
152 ql_write32(qdev, SEM, sem_mask);
153 ql_read32(qdev, SEM); /* flush */
154 }
155
156 /* This function waits for a specific bit to come ready
157 * in a given register. It is used mostly by the initialize
158 * process, but is also used in kernel thread API such as
159 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
160 */
161 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
162 {
163 u32 temp;
164 int count = UDELAY_COUNT;
165
166 while (count) {
167 temp = ql_read32(qdev, reg);
168
169 /* check for errors */
170 if (temp & err_bit) {
171 netif_alert(qdev, probe, qdev->ndev,
172 "register 0x%.08x access error, value = 0x%.08x!.\n",
173 reg, temp);
174 return -EIO;
175 } else if (temp & bit)
176 return 0;
177 udelay(UDELAY_DELAY);
178 count--;
179 }
180 netif_alert(qdev, probe, qdev->ndev,
181 "Timed out waiting for reg %x to come ready.\n", reg);
182 return -ETIMEDOUT;
183 }
184
185 /* The CFG register is used to download TX and RX control blocks
186 * to the chip. This function waits for an operation to complete.
187 */
188 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
189 {
190 int count = UDELAY_COUNT;
191 u32 temp;
192
193 while (count) {
194 temp = ql_read32(qdev, CFG);
195 if (temp & CFG_LE)
196 return -EIO;
197 if (!(temp & bit))
198 return 0;
199 udelay(UDELAY_DELAY);
200 count--;
201 }
202 return -ETIMEDOUT;
203 }
204
205
206 /* Used to issue init control blocks to hw. Maps control block,
207 * sets address, triggers download, waits for completion.
208 */
209 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
210 u16 q_id)
211 {
212 u64 map;
213 int status = 0;
214 int direction;
215 u32 mask;
216 u32 value;
217
218 direction =
219 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
220 PCI_DMA_FROMDEVICE;
221
222 map = pci_map_single(qdev->pdev, ptr, size, direction);
223 if (pci_dma_mapping_error(qdev->pdev, map)) {
224 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
225 return -ENOMEM;
226 }
227
228 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
229 if (status)
230 return status;
231
232 status = ql_wait_cfg(qdev, bit);
233 if (status) {
234 netif_err(qdev, ifup, qdev->ndev,
235 "Timed out waiting for CFG to come ready.\n");
236 goto exit;
237 }
238
239 ql_write32(qdev, ICB_L, (u32) map);
240 ql_write32(qdev, ICB_H, (u32) (map >> 32));
241
242 mask = CFG_Q_MASK | (bit << 16);
243 value = bit | (q_id << CFG_Q_SHIFT);
244 ql_write32(qdev, CFG, (mask | value));
245
246 /*
247 * Wait for the bit to clear after signaling hw.
248 */
249 status = ql_wait_cfg(qdev, bit);
250 exit:
251 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
252 pci_unmap_single(qdev->pdev, map, size, direction);
253 return status;
254 }
255
256 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
257 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
258 u32 *value)
259 {
260 u32 offset = 0;
261 int status;
262
263 switch (type) {
264 case MAC_ADDR_TYPE_MULTI_MAC:
265 case MAC_ADDR_TYPE_CAM_MAC:
266 {
267 status =
268 ql_wait_reg_rdy(qdev,
269 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
270 if (status)
271 goto exit;
272 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
273 (index << MAC_ADDR_IDX_SHIFT) | /* index */
274 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
275 status =
276 ql_wait_reg_rdy(qdev,
277 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
278 if (status)
279 goto exit;
280 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
284 if (status)
285 goto exit;
286 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
287 (index << MAC_ADDR_IDX_SHIFT) | /* index */
288 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
289 status =
290 ql_wait_reg_rdy(qdev,
291 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
292 if (status)
293 goto exit;
294 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
295 if (type == MAC_ADDR_TYPE_CAM_MAC) {
296 status =
297 ql_wait_reg_rdy(qdev,
298 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
299 if (status)
300 goto exit;
301 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
302 (index << MAC_ADDR_IDX_SHIFT) | /* index */
303 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
304 status =
305 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
306 MAC_ADDR_MR, 0);
307 if (status)
308 goto exit;
309 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
310 }
311 break;
312 }
313 case MAC_ADDR_TYPE_VLAN:
314 case MAC_ADDR_TYPE_MULTI_FLTR:
315 default:
316 netif_crit(qdev, ifup, qdev->ndev,
317 "Address type %d not yet supported.\n", type);
318 status = -EPERM;
319 }
320 exit:
321 return status;
322 }
323
324 /* Set up a MAC, multicast or VLAN address for the
325 * inbound frame matching.
326 */
327 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
328 u16 index)
329 {
330 u32 offset = 0;
331 int status = 0;
332
333 switch (type) {
334 case MAC_ADDR_TYPE_MULTI_MAC:
335 {
336 u32 upper = (addr[0] << 8) | addr[1];
337 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
338 (addr[4] << 8) | (addr[5]);
339
340 status =
341 ql_wait_reg_rdy(qdev,
342 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
343 if (status)
344 goto exit;
345 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
346 (index << MAC_ADDR_IDX_SHIFT) |
347 type | MAC_ADDR_E);
348 ql_write32(qdev, MAC_ADDR_DATA, lower);
349 status =
350 ql_wait_reg_rdy(qdev,
351 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
352 if (status)
353 goto exit;
354 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
355 (index << MAC_ADDR_IDX_SHIFT) |
356 type | MAC_ADDR_E);
357
358 ql_write32(qdev, MAC_ADDR_DATA, upper);
359 status =
360 ql_wait_reg_rdy(qdev,
361 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
362 if (status)
363 goto exit;
364 break;
365 }
366 case MAC_ADDR_TYPE_CAM_MAC:
367 {
368 u32 cam_output;
369 u32 upper = (addr[0] << 8) | addr[1];
370 u32 lower =
371 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
372 (addr[5]);
373
374 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
375 "Adding %s address %pM at index %d in the CAM.\n",
376 type == MAC_ADDR_TYPE_MULTI_MAC ?
377 "MULTICAST" : "UNICAST",
378 addr, index);
379
380 status =
381 ql_wait_reg_rdy(qdev,
382 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
383 if (status)
384 goto exit;
385 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
386 (index << MAC_ADDR_IDX_SHIFT) | /* index */
387 type); /* type */
388 ql_write32(qdev, MAC_ADDR_DATA, lower);
389 status =
390 ql_wait_reg_rdy(qdev,
391 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
392 if (status)
393 goto exit;
394 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
395 (index << MAC_ADDR_IDX_SHIFT) | /* index */
396 type); /* type */
397 ql_write32(qdev, MAC_ADDR_DATA, upper);
398 status =
399 ql_wait_reg_rdy(qdev,
400 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
401 if (status)
402 goto exit;
403 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
404 (index << MAC_ADDR_IDX_SHIFT) | /* index */
405 type); /* type */
406 /* This field should also include the queue id
407 and possibly the function id. Right now we hardcode
408 the route field to NIC core.
409 */
410 cam_output = (CAM_OUT_ROUTE_NIC |
411 (qdev->
412 func << CAM_OUT_FUNC_SHIFT) |
413 (0 << CAM_OUT_CQ_ID_SHIFT));
414 if (qdev->vlgrp)
415 cam_output |= CAM_OUT_RV;
416 /* route to NIC core */
417 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
418 break;
419 }
420 case MAC_ADDR_TYPE_VLAN:
421 {
422 u32 enable_bit = *((u32 *) &addr[0]);
423 /* For VLAN, the addr actually holds a bit that
424 * either enables or disables the vlan id we are
425 * addressing. It's either MAC_ADDR_E on or off.
426 * That's bit-27 we're talking about.
427 */
428 netif_info(qdev, ifup, qdev->ndev,
429 "%s VLAN ID %d %s the CAM.\n",
430 enable_bit ? "Adding" : "Removing",
431 index,
432 enable_bit ? "to" : "from");
433
434 status =
435 ql_wait_reg_rdy(qdev,
436 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
437 if (status)
438 goto exit;
439 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
440 (index << MAC_ADDR_IDX_SHIFT) | /* index */
441 type | /* type */
442 enable_bit); /* enable/disable */
443 break;
444 }
445 case MAC_ADDR_TYPE_MULTI_FLTR:
446 default:
447 netif_crit(qdev, ifup, qdev->ndev,
448 "Address type %d not yet supported.\n", type);
449 status = -EPERM;
450 }
451 exit:
452 return status;
453 }
454
455 /* Set or clear MAC address in hardware. We sometimes
456 * have to clear it to prevent wrong frame routing
457 * especially in a bonding environment.
458 */
459 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
460 {
461 int status;
462 char zero_mac_addr[ETH_ALEN];
463 char *addr;
464
465 if (set) {
466 addr = &qdev->current_mac_addr[0];
467 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
468 "Set Mac addr %pM\n", addr);
469 } else {
470 memset(zero_mac_addr, 0, ETH_ALEN);
471 addr = &zero_mac_addr[0];
472 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
473 "Clearing MAC address\n");
474 }
475 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
476 if (status)
477 return status;
478 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
479 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
480 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
481 if (status)
482 netif_err(qdev, ifup, qdev->ndev,
483 "Failed to init mac address.\n");
484 return status;
485 }
486
487 void ql_link_on(struct ql_adapter *qdev)
488 {
489 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
490 netif_carrier_on(qdev->ndev);
491 ql_set_mac_addr(qdev, 1);
492 }
493
494 void ql_link_off(struct ql_adapter *qdev)
495 {
496 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
497 netif_carrier_off(qdev->ndev);
498 ql_set_mac_addr(qdev, 0);
499 }
500
501 /* Get a specific frame routing value from the CAM.
502 * Used for debug and reg dump.
503 */
504 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
505 {
506 int status = 0;
507
508 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
509 if (status)
510 goto exit;
511
512 ql_write32(qdev, RT_IDX,
513 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
514 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
515 if (status)
516 goto exit;
517 *value = ql_read32(qdev, RT_DATA);
518 exit:
519 return status;
520 }
521
522 /* The NIC function for this chip has 16 routing indexes. Each one can be used
523 * to route different frame types to various inbound queues. We send broadcast/
524 * multicast/error frames to the default queue for slow handling,
525 * and CAM hit/RSS frames to the fast handling queues.
526 */
527 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
528 int enable)
529 {
530 int status = -EINVAL; /* Return error if no mask match. */
531 u32 value = 0;
532
533 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
534 "%s %s mask %s the routing reg.\n",
535 enable ? "Adding" : "Removing",
536 index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
537 index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
538 index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
539 index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
540 index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
541 index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
542 index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
543 index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
544 index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
545 index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
546 index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
547 index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
548 index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
549 index == RT_IDX_UNUSED013 ? "UNUSED13" :
550 index == RT_IDX_UNUSED014 ? "UNUSED14" :
551 index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
552 "(Bad index != RT_IDX)",
553 enable ? "to" : "from");
554
555 switch (mask) {
556 case RT_IDX_CAM_HIT:
557 {
558 value = RT_IDX_DST_CAM_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
561 break;
562 }
563 case RT_IDX_VALID: /* Promiscuous Mode frames. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
571 {
572 value = RT_IDX_DST_DFLT_Q | /* dest */
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
578 {
579 value = RT_IDX_DST_DFLT_Q | /* dest */
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
585 {
586 value = RT_IDX_DST_DFLT_Q | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
599 {
600 value = RT_IDX_DST_RSS | /* dest */
601 RT_IDX_TYPE_NICQ | /* type */
602 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
603 break;
604 }
605 case 0: /* Clear the E-bit on an entry. */
606 {
607 value = RT_IDX_DST_DFLT_Q | /* dest */
608 RT_IDX_TYPE_NICQ | /* type */
609 (index << RT_IDX_IDX_SHIFT);/* index */
610 break;
611 }
612 default:
613 netif_err(qdev, ifup, qdev->ndev,
614 "Mask type %d not yet supported.\n", mask);
615 status = -EPERM;
616 goto exit;
617 }
618
619 if (value) {
620 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
621 if (status)
622 goto exit;
623 value |= (enable ? RT_IDX_E : 0);
624 ql_write32(qdev, RT_IDX, value);
625 ql_write32(qdev, RT_DATA, enable ? mask : 0);
626 }
627 exit:
628 return status;
629 }
630
631 static void ql_enable_interrupts(struct ql_adapter *qdev)
632 {
633 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
634 }
635
636 static void ql_disable_interrupts(struct ql_adapter *qdev)
637 {
638 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
639 }
640
641 /* If we're running with multiple MSI-X vectors then we enable on the fly.
642 * Otherwise, we may have multiple outstanding workers and don't want to
643 * enable until the last one finishes. In this case, the irq_cnt gets
644 * incremented everytime we queue a worker and decremented everytime
645 * a worker finishes. Once it hits zero we enable the interrupt.
646 */
647 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
648 {
649 u32 var = 0;
650 unsigned long hw_flags = 0;
651 struct intr_context *ctx = qdev->intr_context + intr;
652
653 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
654 /* Always enable if we're MSIX multi interrupts and
655 * it's not the default (zeroeth) interrupt.
656 */
657 ql_write32(qdev, INTR_EN,
658 ctx->intr_en_mask);
659 var = ql_read32(qdev, STS);
660 return var;
661 }
662
663 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
664 if (atomic_dec_and_test(&ctx->irq_cnt)) {
665 ql_write32(qdev, INTR_EN,
666 ctx->intr_en_mask);
667 var = ql_read32(qdev, STS);
668 }
669 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
670 return var;
671 }
672
673 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
674 {
675 u32 var = 0;
676 struct intr_context *ctx;
677
678 /* HW disables for us if we're MSIX multi interrupts and
679 * it's not the default (zeroeth) interrupt.
680 */
681 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
682 return 0;
683
684 ctx = qdev->intr_context + intr;
685 spin_lock(&qdev->hw_lock);
686 if (!atomic_read(&ctx->irq_cnt)) {
687 ql_write32(qdev, INTR_EN,
688 ctx->intr_dis_mask);
689 var = ql_read32(qdev, STS);
690 }
691 atomic_inc(&ctx->irq_cnt);
692 spin_unlock(&qdev->hw_lock);
693 return var;
694 }
695
696 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
697 {
698 int i;
699 for (i = 0; i < qdev->intr_count; i++) {
700 /* The enable call does a atomic_dec_and_test
701 * and enables only if the result is zero.
702 * So we precharge it here.
703 */
704 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
705 i == 0))
706 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
707 ql_enable_completion_interrupt(qdev, i);
708 }
709
710 }
711
712 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
713 {
714 int status, i;
715 u16 csum = 0;
716 __le16 *flash = (__le16 *)&qdev->flash;
717
718 status = strncmp((char *)&qdev->flash, str, 4);
719 if (status) {
720 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
721 return status;
722 }
723
724 for (i = 0; i < size; i++)
725 csum += le16_to_cpu(*flash++);
726
727 if (csum)
728 netif_err(qdev, ifup, qdev->ndev,
729 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
730
731 return csum;
732 }
733
734 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
735 {
736 int status = 0;
737 /* wait for reg to come ready */
738 status = ql_wait_reg_rdy(qdev,
739 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
740 if (status)
741 goto exit;
742 /* set up for reg read */
743 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
744 /* wait for reg to come ready */
745 status = ql_wait_reg_rdy(qdev,
746 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
747 if (status)
748 goto exit;
749 /* This data is stored on flash as an array of
750 * __le32. Since ql_read32() returns cpu endian
751 * we need to swap it back.
752 */
753 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
754 exit:
755 return status;
756 }
757
758 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
759 {
760 u32 i, size;
761 int status;
762 __le32 *p = (__le32 *)&qdev->flash;
763 u32 offset;
764 u8 mac_addr[6];
765
766 /* Get flash offset for function and adjust
767 * for dword access.
768 */
769 if (!qdev->port)
770 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
771 else
772 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
773
774 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
775 return -ETIMEDOUT;
776
777 size = sizeof(struct flash_params_8000) / sizeof(u32);
778 for (i = 0; i < size; i++, p++) {
779 status = ql_read_flash_word(qdev, i+offset, p);
780 if (status) {
781 netif_err(qdev, ifup, qdev->ndev,
782 "Error reading flash.\n");
783 goto exit;
784 }
785 }
786
787 status = ql_validate_flash(qdev,
788 sizeof(struct flash_params_8000) / sizeof(u16),
789 "8000");
790 if (status) {
791 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
792 status = -EINVAL;
793 goto exit;
794 }
795
796 /* Extract either manufacturer or BOFM modified
797 * MAC address.
798 */
799 if (qdev->flash.flash_params_8000.data_type1 == 2)
800 memcpy(mac_addr,
801 qdev->flash.flash_params_8000.mac_addr1,
802 qdev->ndev->addr_len);
803 else
804 memcpy(mac_addr,
805 qdev->flash.flash_params_8000.mac_addr,
806 qdev->ndev->addr_len);
807
808 if (!is_valid_ether_addr(mac_addr)) {
809 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
810 status = -EINVAL;
811 goto exit;
812 }
813
814 memcpy(qdev->ndev->dev_addr,
815 mac_addr,
816 qdev->ndev->addr_len);
817
818 exit:
819 ql_sem_unlock(qdev, SEM_FLASH_MASK);
820 return status;
821 }
822
823 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
824 {
825 int i;
826 int status;
827 __le32 *p = (__le32 *)&qdev->flash;
828 u32 offset = 0;
829 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
830
831 /* Second function's parameters follow the first
832 * function's.
833 */
834 if (qdev->port)
835 offset = size;
836
837 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
838 return -ETIMEDOUT;
839
840 for (i = 0; i < size; i++, p++) {
841 status = ql_read_flash_word(qdev, i+offset, p);
842 if (status) {
843 netif_err(qdev, ifup, qdev->ndev,
844 "Error reading flash.\n");
845 goto exit;
846 }
847
848 }
849
850 status = ql_validate_flash(qdev,
851 sizeof(struct flash_params_8012) / sizeof(u16),
852 "8012");
853 if (status) {
854 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
855 status = -EINVAL;
856 goto exit;
857 }
858
859 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
860 status = -EINVAL;
861 goto exit;
862 }
863
864 memcpy(qdev->ndev->dev_addr,
865 qdev->flash.flash_params_8012.mac_addr,
866 qdev->ndev->addr_len);
867
868 exit:
869 ql_sem_unlock(qdev, SEM_FLASH_MASK);
870 return status;
871 }
872
873 /* xgmac register are located behind the xgmac_addr and xgmac_data
874 * register pair. Each read/write requires us to wait for the ready
875 * bit before reading/writing the data.
876 */
877 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
878 {
879 int status;
880 /* wait for reg to come ready */
881 status = ql_wait_reg_rdy(qdev,
882 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
883 if (status)
884 return status;
885 /* write the data to the data reg */
886 ql_write32(qdev, XGMAC_DATA, data);
887 /* trigger the write */
888 ql_write32(qdev, XGMAC_ADDR, reg);
889 return status;
890 }
891
892 /* xgmac register are located behind the xgmac_addr and xgmac_data
893 * register pair. Each read/write requires us to wait for the ready
894 * bit before reading/writing the data.
895 */
896 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
897 {
898 int status = 0;
899 /* wait for reg to come ready */
900 status = ql_wait_reg_rdy(qdev,
901 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
902 if (status)
903 goto exit;
904 /* set up for reg read */
905 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
906 /* wait for reg to come ready */
907 status = ql_wait_reg_rdy(qdev,
908 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
909 if (status)
910 goto exit;
911 /* get the data */
912 *data = ql_read32(qdev, XGMAC_DATA);
913 exit:
914 return status;
915 }
916
917 /* This is used for reading the 64-bit statistics regs. */
918 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
919 {
920 int status = 0;
921 u32 hi = 0;
922 u32 lo = 0;
923
924 status = ql_read_xgmac_reg(qdev, reg, &lo);
925 if (status)
926 goto exit;
927
928 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
929 if (status)
930 goto exit;
931
932 *data = (u64) lo | ((u64) hi << 32);
933
934 exit:
935 return status;
936 }
937
938 static int ql_8000_port_initialize(struct ql_adapter *qdev)
939 {
940 int status;
941 /*
942 * Get MPI firmware version for driver banner
943 * and ethool info.
944 */
945 status = ql_mb_about_fw(qdev);
946 if (status)
947 goto exit;
948 status = ql_mb_get_fw_state(qdev);
949 if (status)
950 goto exit;
951 /* Wake up a worker to get/set the TX/RX frame sizes. */
952 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
953 exit:
954 return status;
955 }
956
957 /* Take the MAC Core out of reset.
958 * Enable statistics counting.
959 * Take the transmitter/receiver out of reset.
960 * This functionality may be done in the MPI firmware at a
961 * later date.
962 */
963 static int ql_8012_port_initialize(struct ql_adapter *qdev)
964 {
965 int status = 0;
966 u32 data;
967
968 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
969 /* Another function has the semaphore, so
970 * wait for the port init bit to come ready.
971 */
972 netif_info(qdev, link, qdev->ndev,
973 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
974 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
975 if (status) {
976 netif_crit(qdev, link, qdev->ndev,
977 "Port initialize timed out.\n");
978 }
979 return status;
980 }
981
982 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
983 /* Set the core reset. */
984 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
985 if (status)
986 goto end;
987 data |= GLOBAL_CFG_RESET;
988 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
989 if (status)
990 goto end;
991
992 /* Clear the core reset and turn on jumbo for receiver. */
993 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
994 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
995 data |= GLOBAL_CFG_TX_STAT_EN;
996 data |= GLOBAL_CFG_RX_STAT_EN;
997 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
998 if (status)
999 goto end;
1000
1001 /* Enable transmitter, and clear it's reset. */
1002 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
1003 if (status)
1004 goto end;
1005 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
1006 data |= TX_CFG_EN; /* Enable the transmitter. */
1007 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
1008 if (status)
1009 goto end;
1010
1011 /* Enable receiver and clear it's reset. */
1012 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1013 if (status)
1014 goto end;
1015 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1016 data |= RX_CFG_EN; /* Enable the receiver. */
1017 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1018 if (status)
1019 goto end;
1020
1021 /* Turn on jumbo. */
1022 status =
1023 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1024 if (status)
1025 goto end;
1026 status =
1027 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1028 if (status)
1029 goto end;
1030
1031 /* Signal to the world that the port is enabled. */
1032 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1033 end:
1034 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1035 return status;
1036 }
1037
1038 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1039 {
1040 return PAGE_SIZE << qdev->lbq_buf_order;
1041 }
1042
1043 /* Get the next large buffer. */
1044 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1045 {
1046 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1047 rx_ring->lbq_curr_idx++;
1048 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1049 rx_ring->lbq_curr_idx = 0;
1050 rx_ring->lbq_free_cnt++;
1051 return lbq_desc;
1052 }
1053
1054 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1055 struct rx_ring *rx_ring)
1056 {
1057 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1058
1059 pci_dma_sync_single_for_cpu(qdev->pdev,
1060 pci_unmap_addr(lbq_desc, mapaddr),
1061 rx_ring->lbq_buf_size,
1062 PCI_DMA_FROMDEVICE);
1063
1064 /* If it's the last chunk of our master page then
1065 * we unmap it.
1066 */
1067 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1068 == ql_lbq_block_size(qdev))
1069 pci_unmap_page(qdev->pdev,
1070 lbq_desc->p.pg_chunk.map,
1071 ql_lbq_block_size(qdev),
1072 PCI_DMA_FROMDEVICE);
1073 return lbq_desc;
1074 }
1075
1076 /* Get the next small buffer. */
1077 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1078 {
1079 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1080 rx_ring->sbq_curr_idx++;
1081 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1082 rx_ring->sbq_curr_idx = 0;
1083 rx_ring->sbq_free_cnt++;
1084 return sbq_desc;
1085 }
1086
1087 /* Update an rx ring index. */
1088 static void ql_update_cq(struct rx_ring *rx_ring)
1089 {
1090 rx_ring->cnsmr_idx++;
1091 rx_ring->curr_entry++;
1092 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1093 rx_ring->cnsmr_idx = 0;
1094 rx_ring->curr_entry = rx_ring->cq_base;
1095 }
1096 }
1097
1098 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1099 {
1100 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1101 }
1102
1103 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1104 struct bq_desc *lbq_desc)
1105 {
1106 if (!rx_ring->pg_chunk.page) {
1107 u64 map;
1108 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1109 GFP_ATOMIC,
1110 qdev->lbq_buf_order);
1111 if (unlikely(!rx_ring->pg_chunk.page)) {
1112 netif_err(qdev, drv, qdev->ndev,
1113 "page allocation failed.\n");
1114 return -ENOMEM;
1115 }
1116 rx_ring->pg_chunk.offset = 0;
1117 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1118 0, ql_lbq_block_size(qdev),
1119 PCI_DMA_FROMDEVICE);
1120 if (pci_dma_mapping_error(qdev->pdev, map)) {
1121 __free_pages(rx_ring->pg_chunk.page,
1122 qdev->lbq_buf_order);
1123 netif_err(qdev, drv, qdev->ndev,
1124 "PCI mapping failed.\n");
1125 return -ENOMEM;
1126 }
1127 rx_ring->pg_chunk.map = map;
1128 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1129 }
1130
1131 /* Copy the current master pg_chunk info
1132 * to the current descriptor.
1133 */
1134 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1135
1136 /* Adjust the master page chunk for next
1137 * buffer get.
1138 */
1139 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1140 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1141 rx_ring->pg_chunk.page = NULL;
1142 lbq_desc->p.pg_chunk.last_flag = 1;
1143 } else {
1144 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1145 get_page(rx_ring->pg_chunk.page);
1146 lbq_desc->p.pg_chunk.last_flag = 0;
1147 }
1148 return 0;
1149 }
1150 /* Process (refill) a large buffer queue. */
1151 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1152 {
1153 u32 clean_idx = rx_ring->lbq_clean_idx;
1154 u32 start_idx = clean_idx;
1155 struct bq_desc *lbq_desc;
1156 u64 map;
1157 int i;
1158
1159 while (rx_ring->lbq_free_cnt > 32) {
1160 for (i = 0; i < 16; i++) {
1161 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1162 "lbq: try cleaning clean_idx = %d.\n",
1163 clean_idx);
1164 lbq_desc = &rx_ring->lbq[clean_idx];
1165 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1166 netif_err(qdev, ifup, qdev->ndev,
1167 "Could not get a page chunk.\n");
1168 return;
1169 }
1170
1171 map = lbq_desc->p.pg_chunk.map +
1172 lbq_desc->p.pg_chunk.offset;
1173 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1174 pci_unmap_len_set(lbq_desc, maplen,
1175 rx_ring->lbq_buf_size);
1176 *lbq_desc->addr = cpu_to_le64(map);
1177
1178 pci_dma_sync_single_for_device(qdev->pdev, map,
1179 rx_ring->lbq_buf_size,
1180 PCI_DMA_FROMDEVICE);
1181 clean_idx++;
1182 if (clean_idx == rx_ring->lbq_len)
1183 clean_idx = 0;
1184 }
1185
1186 rx_ring->lbq_clean_idx = clean_idx;
1187 rx_ring->lbq_prod_idx += 16;
1188 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1189 rx_ring->lbq_prod_idx = 0;
1190 rx_ring->lbq_free_cnt -= 16;
1191 }
1192
1193 if (start_idx != clean_idx) {
1194 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1195 "lbq: updating prod idx = %d.\n",
1196 rx_ring->lbq_prod_idx);
1197 ql_write_db_reg(rx_ring->lbq_prod_idx,
1198 rx_ring->lbq_prod_idx_db_reg);
1199 }
1200 }
1201
1202 /* Process (refill) a small buffer queue. */
1203 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1204 {
1205 u32 clean_idx = rx_ring->sbq_clean_idx;
1206 u32 start_idx = clean_idx;
1207 struct bq_desc *sbq_desc;
1208 u64 map;
1209 int i;
1210
1211 while (rx_ring->sbq_free_cnt > 16) {
1212 for (i = 0; i < 16; i++) {
1213 sbq_desc = &rx_ring->sbq[clean_idx];
1214 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1215 "sbq: try cleaning clean_idx = %d.\n",
1216 clean_idx);
1217 if (sbq_desc->p.skb == NULL) {
1218 netif_printk(qdev, rx_status, KERN_DEBUG,
1219 qdev->ndev,
1220 "sbq: getting new skb for index %d.\n",
1221 sbq_desc->index);
1222 sbq_desc->p.skb =
1223 netdev_alloc_skb(qdev->ndev,
1224 SMALL_BUFFER_SIZE);
1225 if (sbq_desc->p.skb == NULL) {
1226 netif_err(qdev, probe, qdev->ndev,
1227 "Couldn't get an skb.\n");
1228 rx_ring->sbq_clean_idx = clean_idx;
1229 return;
1230 }
1231 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1232 map = pci_map_single(qdev->pdev,
1233 sbq_desc->p.skb->data,
1234 rx_ring->sbq_buf_size,
1235 PCI_DMA_FROMDEVICE);
1236 if (pci_dma_mapping_error(qdev->pdev, map)) {
1237 netif_err(qdev, ifup, qdev->ndev,
1238 "PCI mapping failed.\n");
1239 rx_ring->sbq_clean_idx = clean_idx;
1240 dev_kfree_skb_any(sbq_desc->p.skb);
1241 sbq_desc->p.skb = NULL;
1242 return;
1243 }
1244 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1245 pci_unmap_len_set(sbq_desc, maplen,
1246 rx_ring->sbq_buf_size);
1247 *sbq_desc->addr = cpu_to_le64(map);
1248 }
1249
1250 clean_idx++;
1251 if (clean_idx == rx_ring->sbq_len)
1252 clean_idx = 0;
1253 }
1254 rx_ring->sbq_clean_idx = clean_idx;
1255 rx_ring->sbq_prod_idx += 16;
1256 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1257 rx_ring->sbq_prod_idx = 0;
1258 rx_ring->sbq_free_cnt -= 16;
1259 }
1260
1261 if (start_idx != clean_idx) {
1262 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1263 "sbq: updating prod idx = %d.\n",
1264 rx_ring->sbq_prod_idx);
1265 ql_write_db_reg(rx_ring->sbq_prod_idx,
1266 rx_ring->sbq_prod_idx_db_reg);
1267 }
1268 }
1269
1270 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1271 struct rx_ring *rx_ring)
1272 {
1273 ql_update_sbq(qdev, rx_ring);
1274 ql_update_lbq(qdev, rx_ring);
1275 }
1276
1277 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1278 * fails at some stage, or from the interrupt when a tx completes.
1279 */
1280 static void ql_unmap_send(struct ql_adapter *qdev,
1281 struct tx_ring_desc *tx_ring_desc, int mapped)
1282 {
1283 int i;
1284 for (i = 0; i < mapped; i++) {
1285 if (i == 0 || (i == 7 && mapped > 7)) {
1286 /*
1287 * Unmap the skb->data area, or the
1288 * external sglist (AKA the Outbound
1289 * Address List (OAL)).
1290 * If its the zeroeth element, then it's
1291 * the skb->data area. If it's the 7th
1292 * element and there is more than 6 frags,
1293 * then its an OAL.
1294 */
1295 if (i == 7) {
1296 netif_printk(qdev, tx_done, KERN_DEBUG,
1297 qdev->ndev,
1298 "unmapping OAL area.\n");
1299 }
1300 pci_unmap_single(qdev->pdev,
1301 pci_unmap_addr(&tx_ring_desc->map[i],
1302 mapaddr),
1303 pci_unmap_len(&tx_ring_desc->map[i],
1304 maplen),
1305 PCI_DMA_TODEVICE);
1306 } else {
1307 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1308 "unmapping frag %d.\n", i);
1309 pci_unmap_page(qdev->pdev,
1310 pci_unmap_addr(&tx_ring_desc->map[i],
1311 mapaddr),
1312 pci_unmap_len(&tx_ring_desc->map[i],
1313 maplen), PCI_DMA_TODEVICE);
1314 }
1315 }
1316
1317 }
1318
1319 /* Map the buffers for this transmit. This will return
1320 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1321 */
1322 static int ql_map_send(struct ql_adapter *qdev,
1323 struct ob_mac_iocb_req *mac_iocb_ptr,
1324 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1325 {
1326 int len = skb_headlen(skb);
1327 dma_addr_t map;
1328 int frag_idx, err, map_idx = 0;
1329 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1330 int frag_cnt = skb_shinfo(skb)->nr_frags;
1331
1332 if (frag_cnt) {
1333 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1334 "frag_cnt = %d.\n", frag_cnt);
1335 }
1336 /*
1337 * Map the skb buffer first.
1338 */
1339 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1340
1341 err = pci_dma_mapping_error(qdev->pdev, map);
1342 if (err) {
1343 netif_err(qdev, tx_queued, qdev->ndev,
1344 "PCI mapping failed with error: %d\n", err);
1345
1346 return NETDEV_TX_BUSY;
1347 }
1348
1349 tbd->len = cpu_to_le32(len);
1350 tbd->addr = cpu_to_le64(map);
1351 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1352 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1353 map_idx++;
1354
1355 /*
1356 * This loop fills the remainder of the 8 address descriptors
1357 * in the IOCB. If there are more than 7 fragments, then the
1358 * eighth address desc will point to an external list (OAL).
1359 * When this happens, the remainder of the frags will be stored
1360 * in this list.
1361 */
1362 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1363 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1364 tbd++;
1365 if (frag_idx == 6 && frag_cnt > 7) {
1366 /* Let's tack on an sglist.
1367 * Our control block will now
1368 * look like this:
1369 * iocb->seg[0] = skb->data
1370 * iocb->seg[1] = frag[0]
1371 * iocb->seg[2] = frag[1]
1372 * iocb->seg[3] = frag[2]
1373 * iocb->seg[4] = frag[3]
1374 * iocb->seg[5] = frag[4]
1375 * iocb->seg[6] = frag[5]
1376 * iocb->seg[7] = ptr to OAL (external sglist)
1377 * oal->seg[0] = frag[6]
1378 * oal->seg[1] = frag[7]
1379 * oal->seg[2] = frag[8]
1380 * oal->seg[3] = frag[9]
1381 * oal->seg[4] = frag[10]
1382 * etc...
1383 */
1384 /* Tack on the OAL in the eighth segment of IOCB. */
1385 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1386 sizeof(struct oal),
1387 PCI_DMA_TODEVICE);
1388 err = pci_dma_mapping_error(qdev->pdev, map);
1389 if (err) {
1390 netif_err(qdev, tx_queued, qdev->ndev,
1391 "PCI mapping outbound address list with error: %d\n",
1392 err);
1393 goto map_error;
1394 }
1395
1396 tbd->addr = cpu_to_le64(map);
1397 /*
1398 * The length is the number of fragments
1399 * that remain to be mapped times the length
1400 * of our sglist (OAL).
1401 */
1402 tbd->len =
1403 cpu_to_le32((sizeof(struct tx_buf_desc) *
1404 (frag_cnt - frag_idx)) | TX_DESC_C);
1405 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1406 map);
1407 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1408 sizeof(struct oal));
1409 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1410 map_idx++;
1411 }
1412
1413 map =
1414 pci_map_page(qdev->pdev, frag->page,
1415 frag->page_offset, frag->size,
1416 PCI_DMA_TODEVICE);
1417
1418 err = pci_dma_mapping_error(qdev->pdev, map);
1419 if (err) {
1420 netif_err(qdev, tx_queued, qdev->ndev,
1421 "PCI mapping frags failed with error: %d.\n",
1422 err);
1423 goto map_error;
1424 }
1425
1426 tbd->addr = cpu_to_le64(map);
1427 tbd->len = cpu_to_le32(frag->size);
1428 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1429 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1430 frag->size);
1431
1432 }
1433 /* Save the number of segments we've mapped. */
1434 tx_ring_desc->map_cnt = map_idx;
1435 /* Terminate the last segment. */
1436 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1437 return NETDEV_TX_OK;
1438
1439 map_error:
1440 /*
1441 * If the first frag mapping failed, then i will be zero.
1442 * This causes the unmap of the skb->data area. Otherwise
1443 * we pass in the number of frags that mapped successfully
1444 * so they can be umapped.
1445 */
1446 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1447 return NETDEV_TX_BUSY;
1448 }
1449
1450 /* Process an inbound completion from an rx ring. */
1451 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1452 struct rx_ring *rx_ring,
1453 struct ib_mac_iocb_rsp *ib_mac_rsp,
1454 u32 length,
1455 u16 vlan_id)
1456 {
1457 struct sk_buff *skb;
1458 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1459 struct skb_frag_struct *rx_frag;
1460 int nr_frags;
1461 struct napi_struct *napi = &rx_ring->napi;
1462
1463 napi->dev = qdev->ndev;
1464
1465 skb = napi_get_frags(napi);
1466 if (!skb) {
1467 netif_err(qdev, drv, qdev->ndev,
1468 "Couldn't get an skb, exiting.\n");
1469 rx_ring->rx_dropped++;
1470 put_page(lbq_desc->p.pg_chunk.page);
1471 return;
1472 }
1473 prefetch(lbq_desc->p.pg_chunk.va);
1474 rx_frag = skb_shinfo(skb)->frags;
1475 nr_frags = skb_shinfo(skb)->nr_frags;
1476 rx_frag += nr_frags;
1477 rx_frag->page = lbq_desc->p.pg_chunk.page;
1478 rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
1479 rx_frag->size = length;
1480
1481 skb->len += length;
1482 skb->data_len += length;
1483 skb->truesize += length;
1484 skb_shinfo(skb)->nr_frags++;
1485
1486 rx_ring->rx_packets++;
1487 rx_ring->rx_bytes += length;
1488 skb->ip_summed = CHECKSUM_UNNECESSARY;
1489 skb_record_rx_queue(skb, rx_ring->cq_id);
1490 if (qdev->vlgrp && (vlan_id != 0xffff))
1491 vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
1492 else
1493 napi_gro_frags(napi);
1494 }
1495
1496 /* Process an inbound completion from an rx ring. */
1497 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1498 struct rx_ring *rx_ring,
1499 struct ib_mac_iocb_rsp *ib_mac_rsp,
1500 u32 length,
1501 u16 vlan_id)
1502 {
1503 struct net_device *ndev = qdev->ndev;
1504 struct sk_buff *skb = NULL;
1505 void *addr;
1506 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1507 struct napi_struct *napi = &rx_ring->napi;
1508
1509 skb = netdev_alloc_skb(ndev, length);
1510 if (!skb) {
1511 netif_err(qdev, drv, qdev->ndev,
1512 "Couldn't get an skb, need to unwind!.\n");
1513 rx_ring->rx_dropped++;
1514 put_page(lbq_desc->p.pg_chunk.page);
1515 return;
1516 }
1517
1518 addr = lbq_desc->p.pg_chunk.va;
1519 prefetch(addr);
1520
1521
1522 /* Frame error, so drop the packet. */
1523 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1524 netif_err(qdev, drv, qdev->ndev,
1525 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1526 rx_ring->rx_errors++;
1527 goto err_out;
1528 }
1529
1530 /* The max framesize filter on this chip is set higher than
1531 * MTU since FCoE uses 2k frames.
1532 */
1533 if (skb->len > ndev->mtu + ETH_HLEN) {
1534 netif_err(qdev, drv, qdev->ndev,
1535 "Segment too small, dropping.\n");
1536 rx_ring->rx_dropped++;
1537 goto err_out;
1538 }
1539 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1540 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1541 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1542 length);
1543 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1544 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1545 length-ETH_HLEN);
1546 skb->len += length-ETH_HLEN;
1547 skb->data_len += length-ETH_HLEN;
1548 skb->truesize += length-ETH_HLEN;
1549
1550 rx_ring->rx_packets++;
1551 rx_ring->rx_bytes += skb->len;
1552 skb->protocol = eth_type_trans(skb, ndev);
1553 skb->ip_summed = CHECKSUM_NONE;
1554
1555 if (qdev->rx_csum &&
1556 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1557 /* TCP frame. */
1558 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1559 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1560 "TCP checksum done!\n");
1561 skb->ip_summed = CHECKSUM_UNNECESSARY;
1562 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1563 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1564 /* Unfragmented ipv4 UDP frame. */
1565 struct iphdr *iph = (struct iphdr *) skb->data;
1566 if (!(iph->frag_off &
1567 cpu_to_be16(IP_MF|IP_OFFSET))) {
1568 skb->ip_summed = CHECKSUM_UNNECESSARY;
1569 netif_printk(qdev, rx_status, KERN_DEBUG,
1570 qdev->ndev,
1571 "TCP checksum done!\n");
1572 }
1573 }
1574 }
1575
1576 skb_record_rx_queue(skb, rx_ring->cq_id);
1577 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1578 if (qdev->vlgrp && (vlan_id != 0xffff))
1579 vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
1580 else
1581 napi_gro_receive(napi, skb);
1582 } else {
1583 if (qdev->vlgrp && (vlan_id != 0xffff))
1584 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1585 else
1586 netif_receive_skb(skb);
1587 }
1588 return;
1589 err_out:
1590 dev_kfree_skb_any(skb);
1591 put_page(lbq_desc->p.pg_chunk.page);
1592 }
1593
1594 /* Process an inbound completion from an rx ring. */
1595 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1596 struct rx_ring *rx_ring,
1597 struct ib_mac_iocb_rsp *ib_mac_rsp,
1598 u32 length,
1599 u16 vlan_id)
1600 {
1601 struct net_device *ndev = qdev->ndev;
1602 struct sk_buff *skb = NULL;
1603 struct sk_buff *new_skb = NULL;
1604 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1605
1606 skb = sbq_desc->p.skb;
1607 /* Allocate new_skb and copy */
1608 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1609 if (new_skb == NULL) {
1610 netif_err(qdev, probe, qdev->ndev,
1611 "No skb available, drop the packet.\n");
1612 rx_ring->rx_dropped++;
1613 return;
1614 }
1615 skb_reserve(new_skb, NET_IP_ALIGN);
1616 memcpy(skb_put(new_skb, length), skb->data, length);
1617 skb = new_skb;
1618
1619 /* Frame error, so drop the packet. */
1620 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1621 netif_err(qdev, drv, qdev->ndev,
1622 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1623 dev_kfree_skb_any(skb);
1624 rx_ring->rx_errors++;
1625 return;
1626 }
1627
1628 /* loopback self test for ethtool */
1629 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1630 ql_check_lb_frame(qdev, skb);
1631 dev_kfree_skb_any(skb);
1632 return;
1633 }
1634
1635 /* The max framesize filter on this chip is set higher than
1636 * MTU since FCoE uses 2k frames.
1637 */
1638 if (skb->len > ndev->mtu + ETH_HLEN) {
1639 dev_kfree_skb_any(skb);
1640 rx_ring->rx_dropped++;
1641 return;
1642 }
1643
1644 prefetch(skb->data);
1645 skb->dev = ndev;
1646 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1647 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1648 "%s Multicast.\n",
1649 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1650 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1651 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1652 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1653 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1654 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1655 }
1656 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1657 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1658 "Promiscuous Packet.\n");
1659
1660 rx_ring->rx_packets++;
1661 rx_ring->rx_bytes += skb->len;
1662 skb->protocol = eth_type_trans(skb, ndev);
1663 skb->ip_summed = CHECKSUM_NONE;
1664
1665 /* If rx checksum is on, and there are no
1666 * csum or frame errors.
1667 */
1668 if (qdev->rx_csum &&
1669 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1670 /* TCP frame. */
1671 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1672 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1673 "TCP checksum done!\n");
1674 skb->ip_summed = CHECKSUM_UNNECESSARY;
1675 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1676 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1677 /* Unfragmented ipv4 UDP frame. */
1678 struct iphdr *iph = (struct iphdr *) skb->data;
1679 if (!(iph->frag_off &
1680 cpu_to_be16(IP_MF|IP_OFFSET))) {
1681 skb->ip_summed = CHECKSUM_UNNECESSARY;
1682 netif_printk(qdev, rx_status, KERN_DEBUG,
1683 qdev->ndev,
1684 "TCP checksum done!\n");
1685 }
1686 }
1687 }
1688
1689 skb_record_rx_queue(skb, rx_ring->cq_id);
1690 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1691 if (qdev->vlgrp && (vlan_id != 0xffff))
1692 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1693 vlan_id, skb);
1694 else
1695 napi_gro_receive(&rx_ring->napi, skb);
1696 } else {
1697 if (qdev->vlgrp && (vlan_id != 0xffff))
1698 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1699 else
1700 netif_receive_skb(skb);
1701 }
1702 }
1703
1704 static void ql_realign_skb(struct sk_buff *skb, int len)
1705 {
1706 void *temp_addr = skb->data;
1707
1708 /* Undo the skb_reserve(skb,32) we did before
1709 * giving to hardware, and realign data on
1710 * a 2-byte boundary.
1711 */
1712 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1713 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1714 skb_copy_to_linear_data(skb, temp_addr,
1715 (unsigned int)len);
1716 }
1717
1718 /*
1719 * This function builds an skb for the given inbound
1720 * completion. It will be rewritten for readability in the near
1721 * future, but for not it works well.
1722 */
1723 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1724 struct rx_ring *rx_ring,
1725 struct ib_mac_iocb_rsp *ib_mac_rsp)
1726 {
1727 struct bq_desc *lbq_desc;
1728 struct bq_desc *sbq_desc;
1729 struct sk_buff *skb = NULL;
1730 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1731 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1732
1733 /*
1734 * Handle the header buffer if present.
1735 */
1736 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1737 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1738 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1739 "Header of %d bytes in small buffer.\n", hdr_len);
1740 /*
1741 * Headers fit nicely into a small buffer.
1742 */
1743 sbq_desc = ql_get_curr_sbuf(rx_ring);
1744 pci_unmap_single(qdev->pdev,
1745 pci_unmap_addr(sbq_desc, mapaddr),
1746 pci_unmap_len(sbq_desc, maplen),
1747 PCI_DMA_FROMDEVICE);
1748 skb = sbq_desc->p.skb;
1749 ql_realign_skb(skb, hdr_len);
1750 skb_put(skb, hdr_len);
1751 sbq_desc->p.skb = NULL;
1752 }
1753
1754 /*
1755 * Handle the data buffer(s).
1756 */
1757 if (unlikely(!length)) { /* Is there data too? */
1758 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1759 "No Data buffer in this packet.\n");
1760 return skb;
1761 }
1762
1763 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1764 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Headers in small, data of %d bytes in small, combine them.\n",
1767 length);
1768 /*
1769 * Data is less than small buffer size so it's
1770 * stuffed in a small buffer.
1771 * For this case we append the data
1772 * from the "data" small buffer to the "header" small
1773 * buffer.
1774 */
1775 sbq_desc = ql_get_curr_sbuf(rx_ring);
1776 pci_dma_sync_single_for_cpu(qdev->pdev,
1777 pci_unmap_addr
1778 (sbq_desc, mapaddr),
1779 pci_unmap_len
1780 (sbq_desc, maplen),
1781 PCI_DMA_FROMDEVICE);
1782 memcpy(skb_put(skb, length),
1783 sbq_desc->p.skb->data, length);
1784 pci_dma_sync_single_for_device(qdev->pdev,
1785 pci_unmap_addr
1786 (sbq_desc,
1787 mapaddr),
1788 pci_unmap_len
1789 (sbq_desc,
1790 maplen),
1791 PCI_DMA_FROMDEVICE);
1792 } else {
1793 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1794 "%d bytes in a single small buffer.\n",
1795 length);
1796 sbq_desc = ql_get_curr_sbuf(rx_ring);
1797 skb = sbq_desc->p.skb;
1798 ql_realign_skb(skb, length);
1799 skb_put(skb, length);
1800 pci_unmap_single(qdev->pdev,
1801 pci_unmap_addr(sbq_desc,
1802 mapaddr),
1803 pci_unmap_len(sbq_desc,
1804 maplen),
1805 PCI_DMA_FROMDEVICE);
1806 sbq_desc->p.skb = NULL;
1807 }
1808 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1809 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1810 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1811 "Header in small, %d bytes in large. Chain large to small!\n",
1812 length);
1813 /*
1814 * The data is in a single large buffer. We
1815 * chain it to the header buffer's skb and let
1816 * it rip.
1817 */
1818 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1819 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1820 "Chaining page at offset = %d, for %d bytes to skb.\n",
1821 lbq_desc->p.pg_chunk.offset, length);
1822 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1823 lbq_desc->p.pg_chunk.offset,
1824 length);
1825 skb->len += length;
1826 skb->data_len += length;
1827 skb->truesize += length;
1828 } else {
1829 /*
1830 * The headers and data are in a single large buffer. We
1831 * copy it to a new skb and let it go. This can happen with
1832 * jumbo mtu on a non-TCP/UDP frame.
1833 */
1834 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1835 skb = netdev_alloc_skb(qdev->ndev, length);
1836 if (skb == NULL) {
1837 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1838 "No skb available, drop the packet.\n");
1839 return NULL;
1840 }
1841 pci_unmap_page(qdev->pdev,
1842 pci_unmap_addr(lbq_desc,
1843 mapaddr),
1844 pci_unmap_len(lbq_desc, maplen),
1845 PCI_DMA_FROMDEVICE);
1846 skb_reserve(skb, NET_IP_ALIGN);
1847 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1848 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1849 length);
1850 skb_fill_page_desc(skb, 0,
1851 lbq_desc->p.pg_chunk.page,
1852 lbq_desc->p.pg_chunk.offset,
1853 length);
1854 skb->len += length;
1855 skb->data_len += length;
1856 skb->truesize += length;
1857 length -= length;
1858 __pskb_pull_tail(skb,
1859 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1860 VLAN_ETH_HLEN : ETH_HLEN);
1861 }
1862 } else {
1863 /*
1864 * The data is in a chain of large buffers
1865 * pointed to by a small buffer. We loop
1866 * thru and chain them to the our small header
1867 * buffer's skb.
1868 * frags: There are 18 max frags and our small
1869 * buffer will hold 32 of them. The thing is,
1870 * we'll use 3 max for our 9000 byte jumbo
1871 * frames. If the MTU goes up we could
1872 * eventually be in trouble.
1873 */
1874 int size, i = 0;
1875 sbq_desc = ql_get_curr_sbuf(rx_ring);
1876 pci_unmap_single(qdev->pdev,
1877 pci_unmap_addr(sbq_desc, mapaddr),
1878 pci_unmap_len(sbq_desc, maplen),
1879 PCI_DMA_FROMDEVICE);
1880 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1881 /*
1882 * This is an non TCP/UDP IP frame, so
1883 * the headers aren't split into a small
1884 * buffer. We have to use the small buffer
1885 * that contains our sg list as our skb to
1886 * send upstairs. Copy the sg list here to
1887 * a local buffer and use it to find the
1888 * pages to chain.
1889 */
1890 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1891 "%d bytes of headers & data in chain of large.\n",
1892 length);
1893 skb = sbq_desc->p.skb;
1894 sbq_desc->p.skb = NULL;
1895 skb_reserve(skb, NET_IP_ALIGN);
1896 }
1897 while (length > 0) {
1898 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1899 size = (length < rx_ring->lbq_buf_size) ? length :
1900 rx_ring->lbq_buf_size;
1901
1902 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1903 "Adding page %d to skb for %d bytes.\n",
1904 i, size);
1905 skb_fill_page_desc(skb, i,
1906 lbq_desc->p.pg_chunk.page,
1907 lbq_desc->p.pg_chunk.offset,
1908 size);
1909 skb->len += size;
1910 skb->data_len += size;
1911 skb->truesize += size;
1912 length -= size;
1913 i++;
1914 }
1915 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1916 VLAN_ETH_HLEN : ETH_HLEN);
1917 }
1918 return skb;
1919 }
1920
1921 /* Process an inbound completion from an rx ring. */
1922 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1923 struct rx_ring *rx_ring,
1924 struct ib_mac_iocb_rsp *ib_mac_rsp,
1925 u16 vlan_id)
1926 {
1927 struct net_device *ndev = qdev->ndev;
1928 struct sk_buff *skb = NULL;
1929
1930 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1931
1932 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1933 if (unlikely(!skb)) {
1934 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1935 "No skb available, drop packet.\n");
1936 rx_ring->rx_dropped++;
1937 return;
1938 }
1939
1940 /* Frame error, so drop the packet. */
1941 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1942 netif_err(qdev, drv, qdev->ndev,
1943 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1944 dev_kfree_skb_any(skb);
1945 rx_ring->rx_errors++;
1946 return;
1947 }
1948
1949 /* The max framesize filter on this chip is set higher than
1950 * MTU since FCoE uses 2k frames.
1951 */
1952 if (skb->len > ndev->mtu + ETH_HLEN) {
1953 dev_kfree_skb_any(skb);
1954 rx_ring->rx_dropped++;
1955 return;
1956 }
1957
1958 /* loopback self test for ethtool */
1959 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1960 ql_check_lb_frame(qdev, skb);
1961 dev_kfree_skb_any(skb);
1962 return;
1963 }
1964
1965 prefetch(skb->data);
1966 skb->dev = ndev;
1967 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1968 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1969 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1970 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1971 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1972 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1973 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1974 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1975 rx_ring->rx_multicast++;
1976 }
1977 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1978 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1979 "Promiscuous Packet.\n");
1980 }
1981
1982 skb->protocol = eth_type_trans(skb, ndev);
1983 skb->ip_summed = CHECKSUM_NONE;
1984
1985 /* If rx checksum is on, and there are no
1986 * csum or frame errors.
1987 */
1988 if (qdev->rx_csum &&
1989 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1990 /* TCP frame. */
1991 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1992 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1993 "TCP checksum done!\n");
1994 skb->ip_summed = CHECKSUM_UNNECESSARY;
1995 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1996 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1997 /* Unfragmented ipv4 UDP frame. */
1998 struct iphdr *iph = (struct iphdr *) skb->data;
1999 if (!(iph->frag_off &
2000 cpu_to_be16(IP_MF|IP_OFFSET))) {
2001 skb->ip_summed = CHECKSUM_UNNECESSARY;
2002 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2003 "TCP checksum done!\n");
2004 }
2005 }
2006 }
2007
2008 rx_ring->rx_packets++;
2009 rx_ring->rx_bytes += skb->len;
2010 skb_record_rx_queue(skb, rx_ring->cq_id);
2011 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2012 if (qdev->vlgrp &&
2013 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2014 (vlan_id != 0))
2015 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
2016 vlan_id, skb);
2017 else
2018 napi_gro_receive(&rx_ring->napi, skb);
2019 } else {
2020 if (qdev->vlgrp &&
2021 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2022 (vlan_id != 0))
2023 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
2024 else
2025 netif_receive_skb(skb);
2026 }
2027 }
2028
2029 /* Process an inbound completion from an rx ring. */
2030 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2031 struct rx_ring *rx_ring,
2032 struct ib_mac_iocb_rsp *ib_mac_rsp)
2033 {
2034 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2035 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2036 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2037 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2038
2039 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2040
2041 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2042 /* The data and headers are split into
2043 * separate buffers.
2044 */
2045 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2046 vlan_id);
2047 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2048 /* The data fit in a single small buffer.
2049 * Allocate a new skb, copy the data and
2050 * return the buffer to the free pool.
2051 */
2052 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2053 length, vlan_id);
2054 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2055 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2056 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2057 /* TCP packet in a page chunk that's been checksummed.
2058 * Tack it on to our GRO skb and let it go.
2059 */
2060 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2061 length, vlan_id);
2062 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2063 /* Non-TCP packet in a page chunk. Allocate an
2064 * skb, tack it on frags, and send it up.
2065 */
2066 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2067 length, vlan_id);
2068 } else {
2069 /* Non-TCP/UDP large frames that span multiple buffers
2070 * can be processed corrrectly by the split frame logic.
2071 */
2072 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2073 vlan_id);
2074 }
2075
2076 return (unsigned long)length;
2077 }
2078
2079 /* Process an outbound completion from an rx ring. */
2080 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2081 struct ob_mac_iocb_rsp *mac_rsp)
2082 {
2083 struct tx_ring *tx_ring;
2084 struct tx_ring_desc *tx_ring_desc;
2085
2086 QL_DUMP_OB_MAC_RSP(mac_rsp);
2087 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2088 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2089 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2090 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2091 tx_ring->tx_packets++;
2092 dev_kfree_skb(tx_ring_desc->skb);
2093 tx_ring_desc->skb = NULL;
2094
2095 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2096 OB_MAC_IOCB_RSP_S |
2097 OB_MAC_IOCB_RSP_L |
2098 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2099 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2100 netif_warn(qdev, tx_done, qdev->ndev,
2101 "Total descriptor length did not match transfer length.\n");
2102 }
2103 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2104 netif_warn(qdev, tx_done, qdev->ndev,
2105 "Frame too short to be valid, not sent.\n");
2106 }
2107 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2108 netif_warn(qdev, tx_done, qdev->ndev,
2109 "Frame too long, but sent anyway.\n");
2110 }
2111 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2112 netif_warn(qdev, tx_done, qdev->ndev,
2113 "PCI backplane error. Frame not sent.\n");
2114 }
2115 }
2116 atomic_inc(&tx_ring->tx_count);
2117 }
2118
2119 /* Fire up a handler to reset the MPI processor. */
2120 void ql_queue_fw_error(struct ql_adapter *qdev)
2121 {
2122 ql_link_off(qdev);
2123 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2124 }
2125
2126 void ql_queue_asic_error(struct ql_adapter *qdev)
2127 {
2128 ql_link_off(qdev);
2129 ql_disable_interrupts(qdev);
2130 /* Clear adapter up bit to signal the recovery
2131 * process that it shouldn't kill the reset worker
2132 * thread
2133 */
2134 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2135 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2136 }
2137
2138 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2139 struct ib_ae_iocb_rsp *ib_ae_rsp)
2140 {
2141 switch (ib_ae_rsp->event) {
2142 case MGMT_ERR_EVENT:
2143 netif_err(qdev, rx_err, qdev->ndev,
2144 "Management Processor Fatal Error.\n");
2145 ql_queue_fw_error(qdev);
2146 return;
2147
2148 case CAM_LOOKUP_ERR_EVENT:
2149 netif_err(qdev, link, qdev->ndev,
2150 "Multiple CAM hits lookup occurred.\n");
2151 netif_err(qdev, drv, qdev->ndev,
2152 "This event shouldn't occur.\n");
2153 ql_queue_asic_error(qdev);
2154 return;
2155
2156 case SOFT_ECC_ERROR_EVENT:
2157 netif_err(qdev, rx_err, qdev->ndev,
2158 "Soft ECC error detected.\n");
2159 ql_queue_asic_error(qdev);
2160 break;
2161
2162 case PCI_ERR_ANON_BUF_RD:
2163 netif_err(qdev, rx_err, qdev->ndev,
2164 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
2165 ib_ae_rsp->q_id);
2166 ql_queue_asic_error(qdev);
2167 break;
2168
2169 default:
2170 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2171 ib_ae_rsp->event);
2172 ql_queue_asic_error(qdev);
2173 break;
2174 }
2175 }
2176
2177 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2178 {
2179 struct ql_adapter *qdev = rx_ring->qdev;
2180 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2181 struct ob_mac_iocb_rsp *net_rsp = NULL;
2182 int count = 0;
2183
2184 struct tx_ring *tx_ring;
2185 /* While there are entries in the completion queue. */
2186 while (prod != rx_ring->cnsmr_idx) {
2187
2188 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2189 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2190 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2191
2192 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2193 rmb();
2194 switch (net_rsp->opcode) {
2195
2196 case OPCODE_OB_MAC_TSO_IOCB:
2197 case OPCODE_OB_MAC_IOCB:
2198 ql_process_mac_tx_intr(qdev, net_rsp);
2199 break;
2200 default:
2201 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2202 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2203 net_rsp->opcode);
2204 }
2205 count++;
2206 ql_update_cq(rx_ring);
2207 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2208 }
2209 ql_write_cq_idx(rx_ring);
2210 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2211 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
2212 net_rsp != NULL) {
2213 if (atomic_read(&tx_ring->queue_stopped) &&
2214 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2215 /*
2216 * The queue got stopped because the tx_ring was full.
2217 * Wake it up, because it's now at least 25% empty.
2218 */
2219 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2220 }
2221
2222 return count;
2223 }
2224
2225 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2226 {
2227 struct ql_adapter *qdev = rx_ring->qdev;
2228 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2229 struct ql_net_rsp_iocb *net_rsp;
2230 int count = 0;
2231
2232 /* While there are entries in the completion queue. */
2233 while (prod != rx_ring->cnsmr_idx) {
2234
2235 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2236 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2237 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2238
2239 net_rsp = rx_ring->curr_entry;
2240 rmb();
2241 switch (net_rsp->opcode) {
2242 case OPCODE_IB_MAC_IOCB:
2243 ql_process_mac_rx_intr(qdev, rx_ring,
2244 (struct ib_mac_iocb_rsp *)
2245 net_rsp);
2246 break;
2247
2248 case OPCODE_IB_AE_IOCB:
2249 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2250 net_rsp);
2251 break;
2252 default:
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2255 net_rsp->opcode);
2256 break;
2257 }
2258 count++;
2259 ql_update_cq(rx_ring);
2260 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2261 if (count == budget)
2262 break;
2263 }
2264 ql_update_buffer_queues(qdev, rx_ring);
2265 ql_write_cq_idx(rx_ring);
2266 return count;
2267 }
2268
2269 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2270 {
2271 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2272 struct ql_adapter *qdev = rx_ring->qdev;
2273 struct rx_ring *trx_ring;
2274 int i, work_done = 0;
2275 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2276
2277 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2278 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2279
2280 /* Service the TX rings first. They start
2281 * right after the RSS rings. */
2282 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2283 trx_ring = &qdev->rx_ring[i];
2284 /* If this TX completion ring belongs to this vector and
2285 * it's not empty then service it.
2286 */
2287 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2288 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2289 trx_ring->cnsmr_idx)) {
2290 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2291 "%s: Servicing TX completion ring %d.\n",
2292 __func__, trx_ring->cq_id);
2293 ql_clean_outbound_rx_ring(trx_ring);
2294 }
2295 }
2296
2297 /*
2298 * Now service the RSS ring if it's active.
2299 */
2300 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2301 rx_ring->cnsmr_idx) {
2302 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2303 "%s: Servicing RX completion ring %d.\n",
2304 __func__, rx_ring->cq_id);
2305 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2306 }
2307
2308 if (work_done < budget) {
2309 napi_complete(napi);
2310 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2311 }
2312 return work_done;
2313 }
2314
2315 static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
2316 {
2317 struct ql_adapter *qdev = netdev_priv(ndev);
2318
2319 qdev->vlgrp = grp;
2320 if (grp) {
2321 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2322 "Turning on VLAN in NIC_RCV_CFG.\n");
2323 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2324 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2325 } else {
2326 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2327 "Turning off VLAN in NIC_RCV_CFG.\n");
2328 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2329 }
2330 }
2331
2332 static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2333 {
2334 struct ql_adapter *qdev = netdev_priv(ndev);
2335 u32 enable_bit = MAC_ADDR_E;
2336 int status;
2337
2338 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2339 if (status)
2340 return;
2341 if (ql_set_mac_addr_reg
2342 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2343 netif_err(qdev, ifup, qdev->ndev,
2344 "Failed to init vlan address.\n");
2345 }
2346 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2347 }
2348
2349 static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2350 {
2351 struct ql_adapter *qdev = netdev_priv(ndev);
2352 u32 enable_bit = 0;
2353 int status;
2354
2355 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2356 if (status)
2357 return;
2358
2359 if (ql_set_mac_addr_reg
2360 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2361 netif_err(qdev, ifup, qdev->ndev,
2362 "Failed to clear vlan address.\n");
2363 }
2364 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2365
2366 }
2367
2368 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2369 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2370 {
2371 struct rx_ring *rx_ring = dev_id;
2372 napi_schedule(&rx_ring->napi);
2373 return IRQ_HANDLED;
2374 }
2375
2376 /* This handles a fatal error, MPI activity, and the default
2377 * rx_ring in an MSI-X multiple vector environment.
2378 * In MSI/Legacy environment it also process the rest of
2379 * the rx_rings.
2380 */
2381 static irqreturn_t qlge_isr(int irq, void *dev_id)
2382 {
2383 struct rx_ring *rx_ring = dev_id;
2384 struct ql_adapter *qdev = rx_ring->qdev;
2385 struct intr_context *intr_context = &qdev->intr_context[0];
2386 u32 var;
2387 int work_done = 0;
2388
2389 spin_lock(&qdev->hw_lock);
2390 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2391 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2392 "Shared Interrupt, Not ours!\n");
2393 spin_unlock(&qdev->hw_lock);
2394 return IRQ_NONE;
2395 }
2396 spin_unlock(&qdev->hw_lock);
2397
2398 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2399
2400 /*
2401 * Check for fatal error.
2402 */
2403 if (var & STS_FE) {
2404 ql_queue_asic_error(qdev);
2405 netif_err(qdev, intr, qdev->ndev,
2406 "Got fatal error, STS = %x.\n", var);
2407 var = ql_read32(qdev, ERR_STS);
2408 netif_err(qdev, intr, qdev->ndev,
2409 "Resetting chip. Error Status Register = 0x%x\n", var);
2410 return IRQ_HANDLED;
2411 }
2412
2413 /*
2414 * Check MPI processor activity.
2415 */
2416 if ((var & STS_PI) &&
2417 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2418 /*
2419 * We've got an async event or mailbox completion.
2420 * Handle it and clear the source of the interrupt.
2421 */
2422 netif_err(qdev, intr, qdev->ndev,
2423 "Got MPI processor interrupt.\n");
2424 ql_disable_completion_interrupt(qdev, intr_context->intr);
2425 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2426 queue_delayed_work_on(smp_processor_id(),
2427 qdev->workqueue, &qdev->mpi_work, 0);
2428 work_done++;
2429 }
2430
2431 /*
2432 * Get the bit-mask that shows the active queues for this
2433 * pass. Compare it to the queues that this irq services
2434 * and call napi if there's a match.
2435 */
2436 var = ql_read32(qdev, ISR1);
2437 if (var & intr_context->irq_mask) {
2438 netif_info(qdev, intr, qdev->ndev,
2439 "Waking handler for rx_ring[0].\n");
2440 ql_disable_completion_interrupt(qdev, intr_context->intr);
2441 napi_schedule(&rx_ring->napi);
2442 work_done++;
2443 }
2444 ql_enable_completion_interrupt(qdev, intr_context->intr);
2445 return work_done ? IRQ_HANDLED : IRQ_NONE;
2446 }
2447
2448 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2449 {
2450
2451 if (skb_is_gso(skb)) {
2452 int err;
2453 if (skb_header_cloned(skb)) {
2454 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2455 if (err)
2456 return err;
2457 }
2458
2459 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2460 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2461 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2462 mac_iocb_ptr->total_hdrs_len =
2463 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2464 mac_iocb_ptr->net_trans_offset =
2465 cpu_to_le16(skb_network_offset(skb) |
2466 skb_transport_offset(skb)
2467 << OB_MAC_TRANSPORT_HDR_SHIFT);
2468 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2469 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2470 if (likely(skb->protocol == htons(ETH_P_IP))) {
2471 struct iphdr *iph = ip_hdr(skb);
2472 iph->check = 0;
2473 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2474 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2475 iph->daddr, 0,
2476 IPPROTO_TCP,
2477 0);
2478 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2479 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2480 tcp_hdr(skb)->check =
2481 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2482 &ipv6_hdr(skb)->daddr,
2483 0, IPPROTO_TCP, 0);
2484 }
2485 return 1;
2486 }
2487 return 0;
2488 }
2489
2490 static void ql_hw_csum_setup(struct sk_buff *skb,
2491 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2492 {
2493 int len;
2494 struct iphdr *iph = ip_hdr(skb);
2495 __sum16 *check;
2496 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2497 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2498 mac_iocb_ptr->net_trans_offset =
2499 cpu_to_le16(skb_network_offset(skb) |
2500 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2501
2502 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2503 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2504 if (likely(iph->protocol == IPPROTO_TCP)) {
2505 check = &(tcp_hdr(skb)->check);
2506 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2507 mac_iocb_ptr->total_hdrs_len =
2508 cpu_to_le16(skb_transport_offset(skb) +
2509 (tcp_hdr(skb)->doff << 2));
2510 } else {
2511 check = &(udp_hdr(skb)->check);
2512 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2513 mac_iocb_ptr->total_hdrs_len =
2514 cpu_to_le16(skb_transport_offset(skb) +
2515 sizeof(struct udphdr));
2516 }
2517 *check = ~csum_tcpudp_magic(iph->saddr,
2518 iph->daddr, len, iph->protocol, 0);
2519 }
2520
2521 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2522 {
2523 struct tx_ring_desc *tx_ring_desc;
2524 struct ob_mac_iocb_req *mac_iocb_ptr;
2525 struct ql_adapter *qdev = netdev_priv(ndev);
2526 int tso;
2527 struct tx_ring *tx_ring;
2528 u32 tx_ring_idx = (u32) skb->queue_mapping;
2529
2530 tx_ring = &qdev->tx_ring[tx_ring_idx];
2531
2532 if (skb_padto(skb, ETH_ZLEN))
2533 return NETDEV_TX_OK;
2534
2535 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2536 netif_info(qdev, tx_queued, qdev->ndev,
2537 "%s: shutting down tx queue %d du to lack of resources.\n",
2538 __func__, tx_ring_idx);
2539 netif_stop_subqueue(ndev, tx_ring->wq_id);
2540 atomic_inc(&tx_ring->queue_stopped);
2541 tx_ring->tx_errors++;
2542 return NETDEV_TX_BUSY;
2543 }
2544 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2545 mac_iocb_ptr = tx_ring_desc->queue_entry;
2546 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2547
2548 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2549 mac_iocb_ptr->tid = tx_ring_desc->index;
2550 /* We use the upper 32-bits to store the tx queue for this IO.
2551 * When we get the completion we can use it to establish the context.
2552 */
2553 mac_iocb_ptr->txq_idx = tx_ring_idx;
2554 tx_ring_desc->skb = skb;
2555
2556 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2557
2558 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2559 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2560 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2561 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2562 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2563 }
2564 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2565 if (tso < 0) {
2566 dev_kfree_skb_any(skb);
2567 return NETDEV_TX_OK;
2568 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2569 ql_hw_csum_setup(skb,
2570 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2571 }
2572 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2573 NETDEV_TX_OK) {
2574 netif_err(qdev, tx_queued, qdev->ndev,
2575 "Could not map the segments.\n");
2576 tx_ring->tx_errors++;
2577 return NETDEV_TX_BUSY;
2578 }
2579 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2580 tx_ring->prod_idx++;
2581 if (tx_ring->prod_idx == tx_ring->wq_len)
2582 tx_ring->prod_idx = 0;
2583 wmb();
2584
2585 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2586 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2587 "tx queued, slot %d, len %d\n",
2588 tx_ring->prod_idx, skb->len);
2589
2590 atomic_dec(&tx_ring->tx_count);
2591 return NETDEV_TX_OK;
2592 }
2593
2594
2595 static void ql_free_shadow_space(struct ql_adapter *qdev)
2596 {
2597 if (qdev->rx_ring_shadow_reg_area) {
2598 pci_free_consistent(qdev->pdev,
2599 PAGE_SIZE,
2600 qdev->rx_ring_shadow_reg_area,
2601 qdev->rx_ring_shadow_reg_dma);
2602 qdev->rx_ring_shadow_reg_area = NULL;
2603 }
2604 if (qdev->tx_ring_shadow_reg_area) {
2605 pci_free_consistent(qdev->pdev,
2606 PAGE_SIZE,
2607 qdev->tx_ring_shadow_reg_area,
2608 qdev->tx_ring_shadow_reg_dma);
2609 qdev->tx_ring_shadow_reg_area = NULL;
2610 }
2611 }
2612
2613 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2614 {
2615 qdev->rx_ring_shadow_reg_area =
2616 pci_alloc_consistent(qdev->pdev,
2617 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2618 if (qdev->rx_ring_shadow_reg_area == NULL) {
2619 netif_err(qdev, ifup, qdev->ndev,
2620 "Allocation of RX shadow space failed.\n");
2621 return -ENOMEM;
2622 }
2623 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2624 qdev->tx_ring_shadow_reg_area =
2625 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2626 &qdev->tx_ring_shadow_reg_dma);
2627 if (qdev->tx_ring_shadow_reg_area == NULL) {
2628 netif_err(qdev, ifup, qdev->ndev,
2629 "Allocation of TX shadow space failed.\n");
2630 goto err_wqp_sh_area;
2631 }
2632 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2633 return 0;
2634
2635 err_wqp_sh_area:
2636 pci_free_consistent(qdev->pdev,
2637 PAGE_SIZE,
2638 qdev->rx_ring_shadow_reg_area,
2639 qdev->rx_ring_shadow_reg_dma);
2640 return -ENOMEM;
2641 }
2642
2643 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2644 {
2645 struct tx_ring_desc *tx_ring_desc;
2646 int i;
2647 struct ob_mac_iocb_req *mac_iocb_ptr;
2648
2649 mac_iocb_ptr = tx_ring->wq_base;
2650 tx_ring_desc = tx_ring->q;
2651 for (i = 0; i < tx_ring->wq_len; i++) {
2652 tx_ring_desc->index = i;
2653 tx_ring_desc->skb = NULL;
2654 tx_ring_desc->queue_entry = mac_iocb_ptr;
2655 mac_iocb_ptr++;
2656 tx_ring_desc++;
2657 }
2658 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2659 atomic_set(&tx_ring->queue_stopped, 0);
2660 }
2661
2662 static void ql_free_tx_resources(struct ql_adapter *qdev,
2663 struct tx_ring *tx_ring)
2664 {
2665 if (tx_ring->wq_base) {
2666 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2667 tx_ring->wq_base, tx_ring->wq_base_dma);
2668 tx_ring->wq_base = NULL;
2669 }
2670 kfree(tx_ring->q);
2671 tx_ring->q = NULL;
2672 }
2673
2674 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2675 struct tx_ring *tx_ring)
2676 {
2677 tx_ring->wq_base =
2678 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2679 &tx_ring->wq_base_dma);
2680
2681 if ((tx_ring->wq_base == NULL) ||
2682 tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2683 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2684 return -ENOMEM;
2685 }
2686 tx_ring->q =
2687 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2688 if (tx_ring->q == NULL)
2689 goto err;
2690
2691 return 0;
2692 err:
2693 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2694 tx_ring->wq_base, tx_ring->wq_base_dma);
2695 return -ENOMEM;
2696 }
2697
2698 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2699 {
2700 struct bq_desc *lbq_desc;
2701
2702 uint32_t curr_idx, clean_idx;
2703
2704 curr_idx = rx_ring->lbq_curr_idx;
2705 clean_idx = rx_ring->lbq_clean_idx;
2706 while (curr_idx != clean_idx) {
2707 lbq_desc = &rx_ring->lbq[curr_idx];
2708
2709 if (lbq_desc->p.pg_chunk.last_flag) {
2710 pci_unmap_page(qdev->pdev,
2711 lbq_desc->p.pg_chunk.map,
2712 ql_lbq_block_size(qdev),
2713 PCI_DMA_FROMDEVICE);
2714 lbq_desc->p.pg_chunk.last_flag = 0;
2715 }
2716
2717 put_page(lbq_desc->p.pg_chunk.page);
2718 lbq_desc->p.pg_chunk.page = NULL;
2719
2720 if (++curr_idx == rx_ring->lbq_len)
2721 curr_idx = 0;
2722
2723 }
2724 }
2725
2726 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2727 {
2728 int i;
2729 struct bq_desc *sbq_desc;
2730
2731 for (i = 0; i < rx_ring->sbq_len; i++) {
2732 sbq_desc = &rx_ring->sbq[i];
2733 if (sbq_desc == NULL) {
2734 netif_err(qdev, ifup, qdev->ndev,
2735 "sbq_desc %d is NULL.\n", i);
2736 return;
2737 }
2738 if (sbq_desc->p.skb) {
2739 pci_unmap_single(qdev->pdev,
2740 pci_unmap_addr(sbq_desc, mapaddr),
2741 pci_unmap_len(sbq_desc, maplen),
2742 PCI_DMA_FROMDEVICE);
2743 dev_kfree_skb(sbq_desc->p.skb);
2744 sbq_desc->p.skb = NULL;
2745 }
2746 }
2747 }
2748
2749 /* Free all large and small rx buffers associated
2750 * with the completion queues for this device.
2751 */
2752 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2753 {
2754 int i;
2755 struct rx_ring *rx_ring;
2756
2757 for (i = 0; i < qdev->rx_ring_count; i++) {
2758 rx_ring = &qdev->rx_ring[i];
2759 if (rx_ring->lbq)
2760 ql_free_lbq_buffers(qdev, rx_ring);
2761 if (rx_ring->sbq)
2762 ql_free_sbq_buffers(qdev, rx_ring);
2763 }
2764 }
2765
2766 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2767 {
2768 struct rx_ring *rx_ring;
2769 int i;
2770
2771 for (i = 0; i < qdev->rx_ring_count; i++) {
2772 rx_ring = &qdev->rx_ring[i];
2773 if (rx_ring->type != TX_Q)
2774 ql_update_buffer_queues(qdev, rx_ring);
2775 }
2776 }
2777
2778 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2779 struct rx_ring *rx_ring)
2780 {
2781 int i;
2782 struct bq_desc *lbq_desc;
2783 __le64 *bq = rx_ring->lbq_base;
2784
2785 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2786 for (i = 0; i < rx_ring->lbq_len; i++) {
2787 lbq_desc = &rx_ring->lbq[i];
2788 memset(lbq_desc, 0, sizeof(*lbq_desc));
2789 lbq_desc->index = i;
2790 lbq_desc->addr = bq;
2791 bq++;
2792 }
2793 }
2794
2795 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2796 struct rx_ring *rx_ring)
2797 {
2798 int i;
2799 struct bq_desc *sbq_desc;
2800 __le64 *bq = rx_ring->sbq_base;
2801
2802 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2803 for (i = 0; i < rx_ring->sbq_len; i++) {
2804 sbq_desc = &rx_ring->sbq[i];
2805 memset(sbq_desc, 0, sizeof(*sbq_desc));
2806 sbq_desc->index = i;
2807 sbq_desc->addr = bq;
2808 bq++;
2809 }
2810 }
2811
2812 static void ql_free_rx_resources(struct ql_adapter *qdev,
2813 struct rx_ring *rx_ring)
2814 {
2815 /* Free the small buffer queue. */
2816 if (rx_ring->sbq_base) {
2817 pci_free_consistent(qdev->pdev,
2818 rx_ring->sbq_size,
2819 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2820 rx_ring->sbq_base = NULL;
2821 }
2822
2823 /* Free the small buffer queue control blocks. */
2824 kfree(rx_ring->sbq);
2825 rx_ring->sbq = NULL;
2826
2827 /* Free the large buffer queue. */
2828 if (rx_ring->lbq_base) {
2829 pci_free_consistent(qdev->pdev,
2830 rx_ring->lbq_size,
2831 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2832 rx_ring->lbq_base = NULL;
2833 }
2834
2835 /* Free the large buffer queue control blocks. */
2836 kfree(rx_ring->lbq);
2837 rx_ring->lbq = NULL;
2838
2839 /* Free the rx queue. */
2840 if (rx_ring->cq_base) {
2841 pci_free_consistent(qdev->pdev,
2842 rx_ring->cq_size,
2843 rx_ring->cq_base, rx_ring->cq_base_dma);
2844 rx_ring->cq_base = NULL;
2845 }
2846 }
2847
2848 /* Allocate queues and buffers for this completions queue based
2849 * on the values in the parameter structure. */
2850 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2851 struct rx_ring *rx_ring)
2852 {
2853
2854 /*
2855 * Allocate the completion queue for this rx_ring.
2856 */
2857 rx_ring->cq_base =
2858 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2859 &rx_ring->cq_base_dma);
2860
2861 if (rx_ring->cq_base == NULL) {
2862 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2863 return -ENOMEM;
2864 }
2865
2866 if (rx_ring->sbq_len) {
2867 /*
2868 * Allocate small buffer queue.
2869 */
2870 rx_ring->sbq_base =
2871 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2872 &rx_ring->sbq_base_dma);
2873
2874 if (rx_ring->sbq_base == NULL) {
2875 netif_err(qdev, ifup, qdev->ndev,
2876 "Small buffer queue allocation failed.\n");
2877 goto err_mem;
2878 }
2879
2880 /*
2881 * Allocate small buffer queue control blocks.
2882 */
2883 rx_ring->sbq =
2884 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2885 GFP_KERNEL);
2886 if (rx_ring->sbq == NULL) {
2887 netif_err(qdev, ifup, qdev->ndev,
2888 "Small buffer queue control block allocation failed.\n");
2889 goto err_mem;
2890 }
2891
2892 ql_init_sbq_ring(qdev, rx_ring);
2893 }
2894
2895 if (rx_ring->lbq_len) {
2896 /*
2897 * Allocate large buffer queue.
2898 */
2899 rx_ring->lbq_base =
2900 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2901 &rx_ring->lbq_base_dma);
2902
2903 if (rx_ring->lbq_base == NULL) {
2904 netif_err(qdev, ifup, qdev->ndev,
2905 "Large buffer queue allocation failed.\n");
2906 goto err_mem;
2907 }
2908 /*
2909 * Allocate large buffer queue control blocks.
2910 */
2911 rx_ring->lbq =
2912 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2913 GFP_KERNEL);
2914 if (rx_ring->lbq == NULL) {
2915 netif_err(qdev, ifup, qdev->ndev,
2916 "Large buffer queue control block allocation failed.\n");
2917 goto err_mem;
2918 }
2919
2920 ql_init_lbq_ring(qdev, rx_ring);
2921 }
2922
2923 return 0;
2924
2925 err_mem:
2926 ql_free_rx_resources(qdev, rx_ring);
2927 return -ENOMEM;
2928 }
2929
2930 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2931 {
2932 struct tx_ring *tx_ring;
2933 struct tx_ring_desc *tx_ring_desc;
2934 int i, j;
2935
2936 /*
2937 * Loop through all queues and free
2938 * any resources.
2939 */
2940 for (j = 0; j < qdev->tx_ring_count; j++) {
2941 tx_ring = &qdev->tx_ring[j];
2942 for (i = 0; i < tx_ring->wq_len; i++) {
2943 tx_ring_desc = &tx_ring->q[i];
2944 if (tx_ring_desc && tx_ring_desc->skb) {
2945 netif_err(qdev, ifdown, qdev->ndev,
2946 "Freeing lost SKB %p, from queue %d, index %d.\n",
2947 tx_ring_desc->skb, j,
2948 tx_ring_desc->index);
2949 ql_unmap_send(qdev, tx_ring_desc,
2950 tx_ring_desc->map_cnt);
2951 dev_kfree_skb(tx_ring_desc->skb);
2952 tx_ring_desc->skb = NULL;
2953 }
2954 }
2955 }
2956 }
2957
2958 static void ql_free_mem_resources(struct ql_adapter *qdev)
2959 {
2960 int i;
2961
2962 for (i = 0; i < qdev->tx_ring_count; i++)
2963 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2964 for (i = 0; i < qdev->rx_ring_count; i++)
2965 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2966 ql_free_shadow_space(qdev);
2967 }
2968
2969 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2970 {
2971 int i;
2972
2973 /* Allocate space for our shadow registers and such. */
2974 if (ql_alloc_shadow_space(qdev))
2975 return -ENOMEM;
2976
2977 for (i = 0; i < qdev->rx_ring_count; i++) {
2978 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2979 netif_err(qdev, ifup, qdev->ndev,
2980 "RX resource allocation failed.\n");
2981 goto err_mem;
2982 }
2983 }
2984 /* Allocate tx queue resources */
2985 for (i = 0; i < qdev->tx_ring_count; i++) {
2986 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2987 netif_err(qdev, ifup, qdev->ndev,
2988 "TX resource allocation failed.\n");
2989 goto err_mem;
2990 }
2991 }
2992 return 0;
2993
2994 err_mem:
2995 ql_free_mem_resources(qdev);
2996 return -ENOMEM;
2997 }
2998
2999 /* Set up the rx ring control block and pass it to the chip.
3000 * The control block is defined as
3001 * "Completion Queue Initialization Control Block", or cqicb.
3002 */
3003 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3004 {
3005 struct cqicb *cqicb = &rx_ring->cqicb;
3006 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3007 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3008 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3009 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3010 void __iomem *doorbell_area =
3011 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3012 int err = 0;
3013 u16 bq_len;
3014 u64 tmp;
3015 __le64 *base_indirect_ptr;
3016 int page_entries;
3017
3018 /* Set up the shadow registers for this ring. */
3019 rx_ring->prod_idx_sh_reg = shadow_reg;
3020 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3021 *rx_ring->prod_idx_sh_reg = 0;
3022 shadow_reg += sizeof(u64);
3023 shadow_reg_dma += sizeof(u64);
3024 rx_ring->lbq_base_indirect = shadow_reg;
3025 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3026 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3027 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3028 rx_ring->sbq_base_indirect = shadow_reg;
3029 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3030
3031 /* PCI doorbell mem area + 0x00 for consumer index register */
3032 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3033 rx_ring->cnsmr_idx = 0;
3034 rx_ring->curr_entry = rx_ring->cq_base;
3035
3036 /* PCI doorbell mem area + 0x04 for valid register */
3037 rx_ring->valid_db_reg = doorbell_area + 0x04;
3038
3039 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3040 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3041
3042 /* PCI doorbell mem area + 0x1c */
3043 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3044
3045 memset((void *)cqicb, 0, sizeof(struct cqicb));
3046 cqicb->msix_vect = rx_ring->irq;
3047
3048 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3049 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3050
3051 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3052
3053 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3054
3055 /*
3056 * Set up the control block load flags.
3057 */
3058 cqicb->flags = FLAGS_LC | /* Load queue base address */
3059 FLAGS_LV | /* Load MSI-X vector */
3060 FLAGS_LI; /* Load irq delay values */
3061 if (rx_ring->lbq_len) {
3062 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3063 tmp = (u64)rx_ring->lbq_base_dma;
3064 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
3065 page_entries = 0;
3066 do {
3067 *base_indirect_ptr = cpu_to_le64(tmp);
3068 tmp += DB_PAGE_SIZE;
3069 base_indirect_ptr++;
3070 page_entries++;
3071 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3072 cqicb->lbq_addr =
3073 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3074 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3075 (u16) rx_ring->lbq_buf_size;
3076 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3077 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3078 (u16) rx_ring->lbq_len;
3079 cqicb->lbq_len = cpu_to_le16(bq_len);
3080 rx_ring->lbq_prod_idx = 0;
3081 rx_ring->lbq_curr_idx = 0;
3082 rx_ring->lbq_clean_idx = 0;
3083 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3084 }
3085 if (rx_ring->sbq_len) {
3086 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3087 tmp = (u64)rx_ring->sbq_base_dma;
3088 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
3089 page_entries = 0;
3090 do {
3091 *base_indirect_ptr = cpu_to_le64(tmp);
3092 tmp += DB_PAGE_SIZE;
3093 base_indirect_ptr++;
3094 page_entries++;
3095 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3096 cqicb->sbq_addr =
3097 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3098 cqicb->sbq_buf_size =
3099 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3100 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3101 (u16) rx_ring->sbq_len;
3102 cqicb->sbq_len = cpu_to_le16(bq_len);
3103 rx_ring->sbq_prod_idx = 0;
3104 rx_ring->sbq_curr_idx = 0;
3105 rx_ring->sbq_clean_idx = 0;
3106 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3107 }
3108 switch (rx_ring->type) {
3109 case TX_Q:
3110 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3111 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3112 break;
3113 case RX_Q:
3114 /* Inbound completion handling rx_rings run in
3115 * separate NAPI contexts.
3116 */
3117 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3118 64);
3119 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3120 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3121 break;
3122 default:
3123 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3124 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3125 }
3126 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3127 "Initializing rx work queue.\n");
3128 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3129 CFG_LCQ, rx_ring->cq_id);
3130 if (err) {
3131 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3132 return err;
3133 }
3134 return err;
3135 }
3136
3137 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3138 {
3139 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3140 void __iomem *doorbell_area =
3141 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3142 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3143 (tx_ring->wq_id * sizeof(u64));
3144 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3145 (tx_ring->wq_id * sizeof(u64));
3146 int err = 0;
3147
3148 /*
3149 * Assign doorbell registers for this tx_ring.
3150 */
3151 /* TX PCI doorbell mem area for tx producer index */
3152 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3153 tx_ring->prod_idx = 0;
3154 /* TX PCI doorbell mem area + 0x04 */
3155 tx_ring->valid_db_reg = doorbell_area + 0x04;
3156
3157 /*
3158 * Assign shadow registers for this tx_ring.
3159 */
3160 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3161 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3162
3163 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3164 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3165 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3166 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3167 wqicb->rid = 0;
3168 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3169
3170 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3171
3172 ql_init_tx_ring(qdev, tx_ring);
3173
3174 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3175 (u16) tx_ring->wq_id);
3176 if (err) {
3177 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3178 return err;
3179 }
3180 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3181 "Successfully loaded WQICB.\n");
3182 return err;
3183 }
3184
3185 static void ql_disable_msix(struct ql_adapter *qdev)
3186 {
3187 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3188 pci_disable_msix(qdev->pdev);
3189 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3190 kfree(qdev->msi_x_entry);
3191 qdev->msi_x_entry = NULL;
3192 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3193 pci_disable_msi(qdev->pdev);
3194 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3195 }
3196 }
3197
3198 /* We start by trying to get the number of vectors
3199 * stored in qdev->intr_count. If we don't get that
3200 * many then we reduce the count and try again.
3201 */
3202 static void ql_enable_msix(struct ql_adapter *qdev)
3203 {
3204 int i, err;
3205
3206 /* Get the MSIX vectors. */
3207 if (qlge_irq_type == MSIX_IRQ) {
3208 /* Try to alloc space for the msix struct,
3209 * if it fails then go to MSI/legacy.
3210 */
3211 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3212 sizeof(struct msix_entry),
3213 GFP_KERNEL);
3214 if (!qdev->msi_x_entry) {
3215 qlge_irq_type = MSI_IRQ;
3216 goto msi;
3217 }
3218
3219 for (i = 0; i < qdev->intr_count; i++)
3220 qdev->msi_x_entry[i].entry = i;
3221
3222 /* Loop to get our vectors. We start with
3223 * what we want and settle for what we get.
3224 */
3225 do {
3226 err = pci_enable_msix(qdev->pdev,
3227 qdev->msi_x_entry, qdev->intr_count);
3228 if (err > 0)
3229 qdev->intr_count = err;
3230 } while (err > 0);
3231
3232 if (err < 0) {
3233 kfree(qdev->msi_x_entry);
3234 qdev->msi_x_entry = NULL;
3235 netif_warn(qdev, ifup, qdev->ndev,
3236 "MSI-X Enable failed, trying MSI.\n");
3237 qdev->intr_count = 1;
3238 qlge_irq_type = MSI_IRQ;
3239 } else if (err == 0) {
3240 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3241 netif_info(qdev, ifup, qdev->ndev,
3242 "MSI-X Enabled, got %d vectors.\n",
3243 qdev->intr_count);
3244 return;
3245 }
3246 }
3247 msi:
3248 qdev->intr_count = 1;
3249 if (qlge_irq_type == MSI_IRQ) {
3250 if (!pci_enable_msi(qdev->pdev)) {
3251 set_bit(QL_MSI_ENABLED, &qdev->flags);
3252 netif_info(qdev, ifup, qdev->ndev,
3253 "Running with MSI interrupts.\n");
3254 return;
3255 }
3256 }
3257 qlge_irq_type = LEG_IRQ;
3258 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3259 "Running with legacy interrupts.\n");
3260 }
3261
3262 /* Each vector services 1 RSS ring and and 1 or more
3263 * TX completion rings. This function loops through
3264 * the TX completion rings and assigns the vector that
3265 * will service it. An example would be if there are
3266 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3267 * This would mean that vector 0 would service RSS ring 0
3268 * and TX competion rings 0,1,2 and 3. Vector 1 would
3269 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3270 */
3271 static void ql_set_tx_vect(struct ql_adapter *qdev)
3272 {
3273 int i, j, vect;
3274 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3275
3276 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3277 /* Assign irq vectors to TX rx_rings.*/
3278 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3279 i < qdev->rx_ring_count; i++) {
3280 if (j == tx_rings_per_vector) {
3281 vect++;
3282 j = 0;
3283 }
3284 qdev->rx_ring[i].irq = vect;
3285 j++;
3286 }
3287 } else {
3288 /* For single vector all rings have an irq
3289 * of zero.
3290 */
3291 for (i = 0; i < qdev->rx_ring_count; i++)
3292 qdev->rx_ring[i].irq = 0;
3293 }
3294 }
3295
3296 /* Set the interrupt mask for this vector. Each vector
3297 * will service 1 RSS ring and 1 or more TX completion
3298 * rings. This function sets up a bit mask per vector
3299 * that indicates which rings it services.
3300 */
3301 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3302 {
3303 int j, vect = ctx->intr;
3304 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3305
3306 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3307 /* Add the RSS ring serviced by this vector
3308 * to the mask.
3309 */
3310 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3311 /* Add the TX ring(s) serviced by this vector
3312 * to the mask. */
3313 for (j = 0; j < tx_rings_per_vector; j++) {
3314 ctx->irq_mask |=
3315 (1 << qdev->rx_ring[qdev->rss_ring_count +
3316 (vect * tx_rings_per_vector) + j].cq_id);
3317 }
3318 } else {
3319 /* For single vector we just shift each queue's
3320 * ID into the mask.
3321 */
3322 for (j = 0; j < qdev->rx_ring_count; j++)
3323 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3324 }
3325 }
3326
3327 /*
3328 * Here we build the intr_context structures based on
3329 * our rx_ring count and intr vector count.
3330 * The intr_context structure is used to hook each vector
3331 * to possibly different handlers.
3332 */
3333 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3334 {
3335 int i = 0;
3336 struct intr_context *intr_context = &qdev->intr_context[0];
3337
3338 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3339 /* Each rx_ring has it's
3340 * own intr_context since we have separate
3341 * vectors for each queue.
3342 */
3343 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3344 qdev->rx_ring[i].irq = i;
3345 intr_context->intr = i;
3346 intr_context->qdev = qdev;
3347 /* Set up this vector's bit-mask that indicates
3348 * which queues it services.
3349 */
3350 ql_set_irq_mask(qdev, intr_context);
3351 /*
3352 * We set up each vectors enable/disable/read bits so
3353 * there's no bit/mask calculations in the critical path.
3354 */
3355 intr_context->intr_en_mask =
3356 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3357 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3358 | i;
3359 intr_context->intr_dis_mask =
3360 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3361 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3362 INTR_EN_IHD | i;
3363 intr_context->intr_read_mask =
3364 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3365 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3366 i;
3367 if (i == 0) {
3368 /* The first vector/queue handles
3369 * broadcast/multicast, fatal errors,
3370 * and firmware events. This in addition
3371 * to normal inbound NAPI processing.
3372 */
3373 intr_context->handler = qlge_isr;
3374 sprintf(intr_context->name, "%s-rx-%d",
3375 qdev->ndev->name, i);
3376 } else {
3377 /*
3378 * Inbound queues handle unicast frames only.
3379 */
3380 intr_context->handler = qlge_msix_rx_isr;
3381 sprintf(intr_context->name, "%s-rx-%d",
3382 qdev->ndev->name, i);
3383 }
3384 }
3385 } else {
3386 /*
3387 * All rx_rings use the same intr_context since
3388 * there is only one vector.
3389 */
3390 intr_context->intr = 0;
3391 intr_context->qdev = qdev;
3392 /*
3393 * We set up each vectors enable/disable/read bits so
3394 * there's no bit/mask calculations in the critical path.
3395 */
3396 intr_context->intr_en_mask =
3397 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3398 intr_context->intr_dis_mask =
3399 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3400 INTR_EN_TYPE_DISABLE;
3401 intr_context->intr_read_mask =
3402 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3403 /*
3404 * Single interrupt means one handler for all rings.
3405 */
3406 intr_context->handler = qlge_isr;
3407 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3408 /* Set up this vector's bit-mask that indicates
3409 * which queues it services. In this case there is
3410 * a single vector so it will service all RSS and
3411 * TX completion rings.
3412 */
3413 ql_set_irq_mask(qdev, intr_context);
3414 }
3415 /* Tell the TX completion rings which MSIx vector
3416 * they will be using.
3417 */
3418 ql_set_tx_vect(qdev);
3419 }
3420
3421 static void ql_free_irq(struct ql_adapter *qdev)
3422 {
3423 int i;
3424 struct intr_context *intr_context = &qdev->intr_context[0];
3425
3426 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3427 if (intr_context->hooked) {
3428 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3429 free_irq(qdev->msi_x_entry[i].vector,
3430 &qdev->rx_ring[i]);
3431 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3432 "freeing msix interrupt %d.\n", i);
3433 } else {
3434 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3435 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3436 "freeing msi interrupt %d.\n", i);
3437 }
3438 }
3439 }
3440 ql_disable_msix(qdev);
3441 }
3442
3443 static int ql_request_irq(struct ql_adapter *qdev)
3444 {
3445 int i;
3446 int status = 0;
3447 struct pci_dev *pdev = qdev->pdev;
3448 struct intr_context *intr_context = &qdev->intr_context[0];
3449
3450 ql_resolve_queues_to_irqs(qdev);
3451
3452 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3453 atomic_set(&intr_context->irq_cnt, 0);
3454 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3455 status = request_irq(qdev->msi_x_entry[i].vector,
3456 intr_context->handler,
3457 0,
3458 intr_context->name,
3459 &qdev->rx_ring[i]);
3460 if (status) {
3461 netif_err(qdev, ifup, qdev->ndev,
3462 "Failed request for MSIX interrupt %d.\n",
3463 i);
3464 goto err_irq;
3465 } else {
3466 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3467 "Hooked intr %d, queue type %s, with name %s.\n",
3468 i,
3469 qdev->rx_ring[i].type == DEFAULT_Q ?
3470 "DEFAULT_Q" :
3471 qdev->rx_ring[i].type == TX_Q ?
3472 "TX_Q" :
3473 qdev->rx_ring[i].type == RX_Q ?
3474 "RX_Q" : "",
3475 intr_context->name);
3476 }
3477 } else {
3478 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3479 "trying msi or legacy interrupts.\n");
3480 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3481 "%s: irq = %d.\n", __func__, pdev->irq);
3482 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3483 "%s: context->name = %s.\n", __func__,
3484 intr_context->name);
3485 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3486 "%s: dev_id = 0x%p.\n", __func__,
3487 &qdev->rx_ring[0]);
3488 status =
3489 request_irq(pdev->irq, qlge_isr,
3490 test_bit(QL_MSI_ENABLED,
3491 &qdev->
3492 flags) ? 0 : IRQF_SHARED,
3493 intr_context->name, &qdev->rx_ring[0]);
3494 if (status)
3495 goto err_irq;
3496
3497 netif_err(qdev, ifup, qdev->ndev,
3498 "Hooked intr %d, queue type %s, with name %s.\n",
3499 i,
3500 qdev->rx_ring[0].type == DEFAULT_Q ?
3501 "DEFAULT_Q" :
3502 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3503 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3504 intr_context->name);
3505 }
3506 intr_context->hooked = 1;
3507 }
3508 return status;
3509 err_irq:
3510 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3511 ql_free_irq(qdev);
3512 return status;
3513 }
3514
3515 static int ql_start_rss(struct ql_adapter *qdev)
3516 {
3517 u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3518 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
3519 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
3520 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
3521 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
3522 0xbe, 0xac, 0x01, 0xfa};
3523 struct ricb *ricb = &qdev->ricb;
3524 int status = 0;
3525 int i;
3526 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3527
3528 memset((void *)ricb, 0, sizeof(*ricb));
3529
3530 ricb->base_cq = RSS_L4K;
3531 ricb->flags =
3532 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3533 ricb->mask = cpu_to_le16((u16)(0x3ff));
3534
3535 /*
3536 * Fill out the Indirection Table.
3537 */
3538 for (i = 0; i < 1024; i++)
3539 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3540
3541 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3542 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3543
3544 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
3545
3546 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3547 if (status) {
3548 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3549 return status;
3550 }
3551 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3552 "Successfully loaded RICB.\n");
3553 return status;
3554 }
3555
3556 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3557 {
3558 int i, status = 0;
3559
3560 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3561 if (status)
3562 return status;
3563 /* Clear all the entries in the routing table. */
3564 for (i = 0; i < 16; i++) {
3565 status = ql_set_routing_reg(qdev, i, 0, 0);
3566 if (status) {
3567 netif_err(qdev, ifup, qdev->ndev,
3568 "Failed to init routing register for CAM packets.\n");
3569 break;
3570 }
3571 }
3572 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3573 return status;
3574 }
3575
3576 /* Initialize the frame-to-queue routing. */
3577 static int ql_route_initialize(struct ql_adapter *qdev)
3578 {
3579 int status = 0;
3580
3581 /* Clear all the entries in the routing table. */
3582 status = ql_clear_routing_entries(qdev);
3583 if (status)
3584 return status;
3585
3586 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3587 if (status)
3588 return status;
3589
3590 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3591 if (status) {
3592 netif_err(qdev, ifup, qdev->ndev,
3593 "Failed to init routing register for error packets.\n");
3594 goto exit;
3595 }
3596 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3597 if (status) {
3598 netif_err(qdev, ifup, qdev->ndev,
3599 "Failed to init routing register for broadcast packets.\n");
3600 goto exit;
3601 }
3602 /* If we have more than one inbound queue, then turn on RSS in the
3603 * routing block.
3604 */
3605 if (qdev->rss_ring_count > 1) {
3606 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3607 RT_IDX_RSS_MATCH, 1);
3608 if (status) {
3609 netif_err(qdev, ifup, qdev->ndev,
3610 "Failed to init routing register for MATCH RSS packets.\n");
3611 goto exit;
3612 }
3613 }
3614
3615 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3616 RT_IDX_CAM_HIT, 1);
3617 if (status)
3618 netif_err(qdev, ifup, qdev->ndev,
3619 "Failed to init routing register for CAM packets.\n");
3620 exit:
3621 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3622 return status;
3623 }
3624
3625 int ql_cam_route_initialize(struct ql_adapter *qdev)
3626 {
3627 int status, set;
3628
3629 /* If check if the link is up and use to
3630 * determine if we are setting or clearing
3631 * the MAC address in the CAM.
3632 */
3633 set = ql_read32(qdev, STS);
3634 set &= qdev->port_link_up;
3635 status = ql_set_mac_addr(qdev, set);
3636 if (status) {
3637 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3638 return status;
3639 }
3640
3641 status = ql_route_initialize(qdev);
3642 if (status)
3643 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3644
3645 return status;
3646 }
3647
3648 static int ql_adapter_initialize(struct ql_adapter *qdev)
3649 {
3650 u32 value, mask;
3651 int i;
3652 int status = 0;
3653
3654 /*
3655 * Set up the System register to halt on errors.
3656 */
3657 value = SYS_EFE | SYS_FAE;
3658 mask = value << 16;
3659 ql_write32(qdev, SYS, mask | value);
3660
3661 /* Set the default queue, and VLAN behavior. */
3662 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3663 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3664 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3665
3666 /* Set the MPI interrupt to enabled. */
3667 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3668
3669 /* Enable the function, set pagesize, enable error checking. */
3670 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3671 FSC_EC | FSC_VM_PAGE_4K;
3672 value |= SPLT_SETTING;
3673
3674 /* Set/clear header splitting. */
3675 mask = FSC_VM_PAGESIZE_MASK |
3676 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3677 ql_write32(qdev, FSC, mask | value);
3678
3679 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3680
3681 /* Set RX packet routing to use port/pci function on which the
3682 * packet arrived on in addition to usual frame routing.
3683 * This is helpful on bonding where both interfaces can have
3684 * the same MAC address.
3685 */
3686 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3687 /* Reroute all packets to our Interface.
3688 * They may have been routed to MPI firmware
3689 * due to WOL.
3690 */
3691 value = ql_read32(qdev, MGMT_RCV_CFG);
3692 value &= ~MGMT_RCV_CFG_RM;
3693 mask = 0xffff0000;
3694
3695 /* Sticky reg needs clearing due to WOL. */
3696 ql_write32(qdev, MGMT_RCV_CFG, mask);
3697 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3698
3699 /* Default WOL is enable on Mezz cards */
3700 if (qdev->pdev->subsystem_device == 0x0068 ||
3701 qdev->pdev->subsystem_device == 0x0180)
3702 qdev->wol = WAKE_MAGIC;
3703
3704 /* Start up the rx queues. */
3705 for (i = 0; i < qdev->rx_ring_count; i++) {
3706 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3707 if (status) {
3708 netif_err(qdev, ifup, qdev->ndev,
3709 "Failed to start rx ring[%d].\n", i);
3710 return status;
3711 }
3712 }
3713
3714 /* If there is more than one inbound completion queue
3715 * then download a RICB to configure RSS.
3716 */
3717 if (qdev->rss_ring_count > 1) {
3718 status = ql_start_rss(qdev);
3719 if (status) {
3720 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3721 return status;
3722 }
3723 }
3724
3725 /* Start up the tx queues. */
3726 for (i = 0; i < qdev->tx_ring_count; i++) {
3727 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3728 if (status) {
3729 netif_err(qdev, ifup, qdev->ndev,
3730 "Failed to start tx ring[%d].\n", i);
3731 return status;
3732 }
3733 }
3734
3735 /* Initialize the port and set the max framesize. */
3736 status = qdev->nic_ops->port_initialize(qdev);
3737 if (status)
3738 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3739
3740 /* Set up the MAC address and frame routing filter. */
3741 status = ql_cam_route_initialize(qdev);
3742 if (status) {
3743 netif_err(qdev, ifup, qdev->ndev,
3744 "Failed to init CAM/Routing tables.\n");
3745 return status;
3746 }
3747
3748 /* Start NAPI for the RSS queues. */
3749 for (i = 0; i < qdev->rss_ring_count; i++) {
3750 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3751 "Enabling NAPI for rx_ring[%d].\n", i);
3752 napi_enable(&qdev->rx_ring[i].napi);
3753 }
3754
3755 return status;
3756 }
3757
3758 /* Issue soft reset to chip. */
3759 static int ql_adapter_reset(struct ql_adapter *qdev)
3760 {
3761 u32 value;
3762 int status = 0;
3763 unsigned long end_jiffies;
3764
3765 /* Clear all the entries in the routing table. */
3766 status = ql_clear_routing_entries(qdev);
3767 if (status) {
3768 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3769 return status;
3770 }
3771
3772 end_jiffies = jiffies +
3773 max((unsigned long)1, usecs_to_jiffies(30));
3774
3775 /* Stop management traffic. */
3776 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3777
3778 /* Wait for the NIC and MGMNT FIFOs to empty. */
3779 ql_wait_fifo_empty(qdev);
3780
3781 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3782
3783 do {
3784 value = ql_read32(qdev, RST_FO);
3785 if ((value & RST_FO_FR) == 0)
3786 break;
3787 cpu_relax();
3788 } while (time_before(jiffies, end_jiffies));
3789
3790 if (value & RST_FO_FR) {
3791 netif_err(qdev, ifdown, qdev->ndev,
3792 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3793 status = -ETIMEDOUT;
3794 }
3795
3796 /* Resume management traffic. */
3797 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3798 return status;
3799 }
3800
3801 static void ql_display_dev_info(struct net_device *ndev)
3802 {
3803 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3804
3805 netif_info(qdev, probe, qdev->ndev,
3806 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3807 "XG Roll = %d, XG Rev = %d.\n",
3808 qdev->func,
3809 qdev->port,
3810 qdev->chip_rev_id & 0x0000000f,
3811 qdev->chip_rev_id >> 4 & 0x0000000f,
3812 qdev->chip_rev_id >> 8 & 0x0000000f,
3813 qdev->chip_rev_id >> 12 & 0x0000000f);
3814 netif_info(qdev, probe, qdev->ndev,
3815 "MAC address %pM\n", ndev->dev_addr);
3816 }
3817
3818 int ql_wol(struct ql_adapter *qdev)
3819 {
3820 int status = 0;
3821 u32 wol = MB_WOL_DISABLE;
3822
3823 /* The CAM is still intact after a reset, but if we
3824 * are doing WOL, then we may need to program the
3825 * routing regs. We would also need to issue the mailbox
3826 * commands to instruct the MPI what to do per the ethtool
3827 * settings.
3828 */
3829
3830 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3831 WAKE_MCAST | WAKE_BCAST)) {
3832 netif_err(qdev, ifdown, qdev->ndev,
3833 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3834 qdev->wol);
3835 return -EINVAL;
3836 }
3837
3838 if (qdev->wol & WAKE_MAGIC) {
3839 status = ql_mb_wol_set_magic(qdev, 1);
3840 if (status) {
3841 netif_err(qdev, ifdown, qdev->ndev,
3842 "Failed to set magic packet on %s.\n",
3843 qdev->ndev->name);
3844 return status;
3845 } else
3846 netif_info(qdev, drv, qdev->ndev,
3847 "Enabled magic packet successfully on %s.\n",
3848 qdev->ndev->name);
3849
3850 wol |= MB_WOL_MAGIC_PKT;
3851 }
3852
3853 if (qdev->wol) {
3854 wol |= MB_WOL_MODE_ON;
3855 status = ql_mb_wol_mode(qdev, wol);
3856 netif_err(qdev, drv, qdev->ndev,
3857 "WOL %s (wol code 0x%x) on %s\n",
3858 (status == 0) ? "Sucessfully set" : "Failed",
3859 wol, qdev->ndev->name);
3860 }
3861
3862 return status;
3863 }
3864
3865 static int ql_adapter_down(struct ql_adapter *qdev)
3866 {
3867 int i, status = 0;
3868
3869 ql_link_off(qdev);
3870
3871 /* Don't kill the reset worker thread if we
3872 * are in the process of recovery.
3873 */
3874 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3875 cancel_delayed_work_sync(&qdev->asic_reset_work);
3876 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3877 cancel_delayed_work_sync(&qdev->mpi_work);
3878 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3879 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3880 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3881
3882 for (i = 0; i < qdev->rss_ring_count; i++)
3883 napi_disable(&qdev->rx_ring[i].napi);
3884
3885 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3886
3887 ql_disable_interrupts(qdev);
3888
3889 ql_tx_ring_clean(qdev);
3890
3891 /* Call netif_napi_del() from common point.
3892 */
3893 for (i = 0; i < qdev->rss_ring_count; i++)
3894 netif_napi_del(&qdev->rx_ring[i].napi);
3895
3896 ql_free_rx_buffers(qdev);
3897
3898 status = ql_adapter_reset(qdev);
3899 if (status)
3900 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3901 qdev->func);
3902 return status;
3903 }
3904
3905 static int ql_adapter_up(struct ql_adapter *qdev)
3906 {
3907 int err = 0;
3908
3909 err = ql_adapter_initialize(qdev);
3910 if (err) {
3911 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3912 goto err_init;
3913 }
3914 set_bit(QL_ADAPTER_UP, &qdev->flags);
3915 ql_alloc_rx_buffers(qdev);
3916 /* If the port is initialized and the
3917 * link is up the turn on the carrier.
3918 */
3919 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3920 (ql_read32(qdev, STS) & qdev->port_link_up))
3921 ql_link_on(qdev);
3922 ql_enable_interrupts(qdev);
3923 ql_enable_all_completion_interrupts(qdev);
3924 netif_tx_start_all_queues(qdev->ndev);
3925
3926 return 0;
3927 err_init:
3928 ql_adapter_reset(qdev);
3929 return err;
3930 }
3931
3932 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3933 {
3934 ql_free_mem_resources(qdev);
3935 ql_free_irq(qdev);
3936 }
3937
3938 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3939 {
3940 int status = 0;
3941
3942 if (ql_alloc_mem_resources(qdev)) {
3943 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
3944 return -ENOMEM;
3945 }
3946 status = ql_request_irq(qdev);
3947 return status;
3948 }
3949
3950 static int qlge_close(struct net_device *ndev)
3951 {
3952 struct ql_adapter *qdev = netdev_priv(ndev);
3953
3954 /* If we hit pci_channel_io_perm_failure
3955 * failure condition, then we already
3956 * brought the adapter down.
3957 */
3958 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
3959 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
3960 clear_bit(QL_EEH_FATAL, &qdev->flags);
3961 return 0;
3962 }
3963
3964 /*
3965 * Wait for device to recover from a reset.
3966 * (Rarely happens, but possible.)
3967 */
3968 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3969 msleep(1);
3970 ql_adapter_down(qdev);
3971 ql_release_adapter_resources(qdev);
3972 return 0;
3973 }
3974
3975 static int ql_configure_rings(struct ql_adapter *qdev)
3976 {
3977 int i;
3978 struct rx_ring *rx_ring;
3979 struct tx_ring *tx_ring;
3980 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
3981 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
3982 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
3983
3984 qdev->lbq_buf_order = get_order(lbq_buf_len);
3985
3986 /* In a perfect world we have one RSS ring for each CPU
3987 * and each has it's own vector. To do that we ask for
3988 * cpu_cnt vectors. ql_enable_msix() will adjust the
3989 * vector count to what we actually get. We then
3990 * allocate an RSS ring for each.
3991 * Essentially, we are doing min(cpu_count, msix_vector_count).
3992 */
3993 qdev->intr_count = cpu_cnt;
3994 ql_enable_msix(qdev);
3995 /* Adjust the RSS ring count to the actual vector count. */
3996 qdev->rss_ring_count = qdev->intr_count;
3997 qdev->tx_ring_count = cpu_cnt;
3998 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
3999
4000 for (i = 0; i < qdev->tx_ring_count; i++) {
4001 tx_ring = &qdev->tx_ring[i];
4002 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4003 tx_ring->qdev = qdev;
4004 tx_ring->wq_id = i;
4005 tx_ring->wq_len = qdev->tx_ring_size;
4006 tx_ring->wq_size =
4007 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4008
4009 /*
4010 * The completion queue ID for the tx rings start
4011 * immediately after the rss rings.
4012 */
4013 tx_ring->cq_id = qdev->rss_ring_count + i;
4014 }
4015
4016 for (i = 0; i < qdev->rx_ring_count; i++) {
4017 rx_ring = &qdev->rx_ring[i];
4018 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4019 rx_ring->qdev = qdev;
4020 rx_ring->cq_id = i;
4021 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4022 if (i < qdev->rss_ring_count) {
4023 /*
4024 * Inbound (RSS) queues.
4025 */
4026 rx_ring->cq_len = qdev->rx_ring_size;
4027 rx_ring->cq_size =
4028 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4029 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4030 rx_ring->lbq_size =
4031 rx_ring->lbq_len * sizeof(__le64);
4032 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4033 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
4034 "lbq_buf_size %d, order = %d\n",
4035 rx_ring->lbq_buf_size,
4036 qdev->lbq_buf_order);
4037 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4038 rx_ring->sbq_size =
4039 rx_ring->sbq_len * sizeof(__le64);
4040 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4041 rx_ring->type = RX_Q;
4042 } else {
4043 /*
4044 * Outbound queue handles outbound completions only.
4045 */
4046 /* outbound cq is same size as tx_ring it services. */
4047 rx_ring->cq_len = qdev->tx_ring_size;
4048 rx_ring->cq_size =
4049 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4050 rx_ring->lbq_len = 0;
4051 rx_ring->lbq_size = 0;
4052 rx_ring->lbq_buf_size = 0;
4053 rx_ring->sbq_len = 0;
4054 rx_ring->sbq_size = 0;
4055 rx_ring->sbq_buf_size = 0;
4056 rx_ring->type = TX_Q;
4057 }
4058 }
4059 return 0;
4060 }
4061
4062 static int qlge_open(struct net_device *ndev)
4063 {
4064 int err = 0;
4065 struct ql_adapter *qdev = netdev_priv(ndev);
4066
4067 err = ql_adapter_reset(qdev);
4068 if (err)
4069 return err;
4070
4071 err = ql_configure_rings(qdev);
4072 if (err)
4073 return err;
4074
4075 err = ql_get_adapter_resources(qdev);
4076 if (err)
4077 goto error_up;
4078
4079 err = ql_adapter_up(qdev);
4080 if (err)
4081 goto error_up;
4082
4083 return err;
4084
4085 error_up:
4086 ql_release_adapter_resources(qdev);
4087 return err;
4088 }
4089
4090 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4091 {
4092 struct rx_ring *rx_ring;
4093 int i, status;
4094 u32 lbq_buf_len;
4095
4096 /* Wait for an oustanding reset to complete. */
4097 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4098 int i = 3;
4099 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4100 netif_err(qdev, ifup, qdev->ndev,
4101 "Waiting for adapter UP...\n");
4102 ssleep(1);
4103 }
4104
4105 if (!i) {
4106 netif_err(qdev, ifup, qdev->ndev,
4107 "Timed out waiting for adapter UP\n");
4108 return -ETIMEDOUT;
4109 }
4110 }
4111
4112 status = ql_adapter_down(qdev);
4113 if (status)
4114 goto error;
4115
4116 /* Get the new rx buffer size. */
4117 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4118 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4119 qdev->lbq_buf_order = get_order(lbq_buf_len);
4120
4121 for (i = 0; i < qdev->rss_ring_count; i++) {
4122 rx_ring = &qdev->rx_ring[i];
4123 /* Set the new size. */
4124 rx_ring->lbq_buf_size = lbq_buf_len;
4125 }
4126
4127 status = ql_adapter_up(qdev);
4128 if (status)
4129 goto error;
4130
4131 return status;
4132 error:
4133 netif_alert(qdev, ifup, qdev->ndev,
4134 "Driver up/down cycle failed, closing device.\n");
4135 set_bit(QL_ADAPTER_UP, &qdev->flags);
4136 dev_close(qdev->ndev);
4137 return status;
4138 }
4139
4140 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4141 {
4142 struct ql_adapter *qdev = netdev_priv(ndev);
4143 int status;
4144
4145 if (ndev->mtu == 1500 && new_mtu == 9000) {
4146 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4147 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4148 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4149 } else
4150 return -EINVAL;
4151
4152 queue_delayed_work(qdev->workqueue,
4153 &qdev->mpi_port_cfg_work, 3*HZ);
4154
4155 ndev->mtu = new_mtu;
4156
4157 if (!netif_running(qdev->ndev)) {
4158 return 0;
4159 }
4160
4161 status = ql_change_rx_buffers(qdev);
4162 if (status) {
4163 netif_err(qdev, ifup, qdev->ndev,
4164 "Changing MTU failed.\n");
4165 }
4166
4167 return status;
4168 }
4169
4170 static struct net_device_stats *qlge_get_stats(struct net_device
4171 *ndev)
4172 {
4173 struct ql_adapter *qdev = netdev_priv(ndev);
4174 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4175 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4176 unsigned long pkts, mcast, dropped, errors, bytes;
4177 int i;
4178
4179 /* Get RX stats. */
4180 pkts = mcast = dropped = errors = bytes = 0;
4181 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4182 pkts += rx_ring->rx_packets;
4183 bytes += rx_ring->rx_bytes;
4184 dropped += rx_ring->rx_dropped;
4185 errors += rx_ring->rx_errors;
4186 mcast += rx_ring->rx_multicast;
4187 }
4188 ndev->stats.rx_packets = pkts;
4189 ndev->stats.rx_bytes = bytes;
4190 ndev->stats.rx_dropped = dropped;
4191 ndev->stats.rx_errors = errors;
4192 ndev->stats.multicast = mcast;
4193
4194 /* Get TX stats. */
4195 pkts = errors = bytes = 0;
4196 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4197 pkts += tx_ring->tx_packets;
4198 bytes += tx_ring->tx_bytes;
4199 errors += tx_ring->tx_errors;
4200 }
4201 ndev->stats.tx_packets = pkts;
4202 ndev->stats.tx_bytes = bytes;
4203 ndev->stats.tx_errors = errors;
4204 return &ndev->stats;
4205 }
4206
4207 static void qlge_set_multicast_list(struct net_device *ndev)
4208 {
4209 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
4210 struct dev_mc_list *mc_ptr;
4211 int i, status;
4212
4213 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4214 if (status)
4215 return;
4216 /*
4217 * Set or clear promiscuous mode if a
4218 * transition is taking place.
4219 */
4220 if (ndev->flags & IFF_PROMISC) {
4221 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4222 if (ql_set_routing_reg
4223 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4224 netif_err(qdev, hw, qdev->ndev,
4225 "Failed to set promiscous mode.\n");
4226 } else {
4227 set_bit(QL_PROMISCUOUS, &qdev->flags);
4228 }
4229 }
4230 } else {
4231 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4232 if (ql_set_routing_reg
4233 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4234 netif_err(qdev, hw, qdev->ndev,
4235 "Failed to clear promiscous mode.\n");
4236 } else {
4237 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4238 }
4239 }
4240 }
4241
4242 /*
4243 * Set or clear all multicast mode if a
4244 * transition is taking place.
4245 */
4246 if ((ndev->flags & IFF_ALLMULTI) ||
4247 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4248 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4249 if (ql_set_routing_reg
4250 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4251 netif_err(qdev, hw, qdev->ndev,
4252 "Failed to set all-multi mode.\n");
4253 } else {
4254 set_bit(QL_ALLMULTI, &qdev->flags);
4255 }
4256 }
4257 } else {
4258 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4259 if (ql_set_routing_reg
4260 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4261 netif_err(qdev, hw, qdev->ndev,
4262 "Failed to clear all-multi mode.\n");
4263 } else {
4264 clear_bit(QL_ALLMULTI, &qdev->flags);
4265 }
4266 }
4267 }
4268
4269 if (!netdev_mc_empty(ndev)) {
4270 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4271 if (status)
4272 goto exit;
4273 i = 0;
4274 netdev_for_each_mc_addr(mc_ptr, ndev) {
4275 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
4276 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4277 netif_err(qdev, hw, qdev->ndev,
4278 "Failed to loadmulticast address.\n");
4279 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4280 goto exit;
4281 }
4282 i++;
4283 }
4284 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4285 if (ql_set_routing_reg
4286 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4287 netif_err(qdev, hw, qdev->ndev,
4288 "Failed to set multicast match mode.\n");
4289 } else {
4290 set_bit(QL_ALLMULTI, &qdev->flags);
4291 }
4292 }
4293 exit:
4294 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4295 }
4296
4297 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4298 {
4299 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
4300 struct sockaddr *addr = p;
4301 int status;
4302
4303 if (!is_valid_ether_addr(addr->sa_data))
4304 return -EADDRNOTAVAIL;
4305 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4306 /* Update local copy of current mac address. */
4307 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4308
4309 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4310 if (status)
4311 return status;
4312 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4313 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4314 if (status)
4315 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4316 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4317 return status;
4318 }
4319
4320 static void qlge_tx_timeout(struct net_device *ndev)
4321 {
4322 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
4323 ql_queue_asic_error(qdev);
4324 }
4325
4326 static void ql_asic_reset_work(struct work_struct *work)
4327 {
4328 struct ql_adapter *qdev =
4329 container_of(work, struct ql_adapter, asic_reset_work.work);
4330 int status;
4331 rtnl_lock();
4332 status = ql_adapter_down(qdev);
4333 if (status)
4334 goto error;
4335
4336 status = ql_adapter_up(qdev);
4337 if (status)
4338 goto error;
4339
4340 /* Restore rx mode. */
4341 clear_bit(QL_ALLMULTI, &qdev->flags);
4342 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4343 qlge_set_multicast_list(qdev->ndev);
4344
4345 rtnl_unlock();
4346 return;
4347 error:
4348 netif_alert(qdev, ifup, qdev->ndev,
4349 "Driver up/down cycle failed, closing device\n");
4350
4351 set_bit(QL_ADAPTER_UP, &qdev->flags);
4352 dev_close(qdev->ndev);
4353 rtnl_unlock();
4354 }
4355
4356 static struct nic_operations qla8012_nic_ops = {
4357 .get_flash = ql_get_8012_flash_params,
4358 .port_initialize = ql_8012_port_initialize,
4359 };
4360
4361 static struct nic_operations qla8000_nic_ops = {
4362 .get_flash = ql_get_8000_flash_params,
4363 .port_initialize = ql_8000_port_initialize,
4364 };
4365
4366 /* Find the pcie function number for the other NIC
4367 * on this chip. Since both NIC functions share a
4368 * common firmware we have the lowest enabled function
4369 * do any common work. Examples would be resetting
4370 * after a fatal firmware error, or doing a firmware
4371 * coredump.
4372 */
4373 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4374 {
4375 int status = 0;
4376 u32 temp;
4377 u32 nic_func1, nic_func2;
4378
4379 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4380 &temp);
4381 if (status)
4382 return status;
4383
4384 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4385 MPI_TEST_NIC_FUNC_MASK);
4386 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4387 MPI_TEST_NIC_FUNC_MASK);
4388
4389 if (qdev->func == nic_func1)
4390 qdev->alt_func = nic_func2;
4391 else if (qdev->func == nic_func2)
4392 qdev->alt_func = nic_func1;
4393 else
4394 status = -EIO;
4395
4396 return status;
4397 }
4398
4399 static int ql_get_board_info(struct ql_adapter *qdev)
4400 {
4401 int status;
4402 qdev->func =
4403 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4404 if (qdev->func > 3)
4405 return -EIO;
4406
4407 status = ql_get_alt_pcie_func(qdev);
4408 if (status)
4409 return status;
4410
4411 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4412 if (qdev->port) {
4413 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4414 qdev->port_link_up = STS_PL1;
4415 qdev->port_init = STS_PI1;
4416 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4417 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4418 } else {
4419 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4420 qdev->port_link_up = STS_PL0;
4421 qdev->port_init = STS_PI0;
4422 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4423 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4424 }
4425 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4426 qdev->device_id = qdev->pdev->device;
4427 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4428 qdev->nic_ops = &qla8012_nic_ops;
4429 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4430 qdev->nic_ops = &qla8000_nic_ops;
4431 return status;
4432 }
4433
4434 static void ql_release_all(struct pci_dev *pdev)
4435 {
4436 struct net_device *ndev = pci_get_drvdata(pdev);
4437 struct ql_adapter *qdev = netdev_priv(ndev);
4438
4439 if (qdev->workqueue) {
4440 destroy_workqueue(qdev->workqueue);
4441 qdev->workqueue = NULL;
4442 }
4443
4444 if (qdev->reg_base)
4445 iounmap(qdev->reg_base);
4446 if (qdev->doorbell_area)
4447 iounmap(qdev->doorbell_area);
4448 vfree(qdev->mpi_coredump);
4449 pci_release_regions(pdev);
4450 pci_set_drvdata(pdev, NULL);
4451 }
4452
4453 static int __devinit ql_init_device(struct pci_dev *pdev,
4454 struct net_device *ndev, int cards_found)
4455 {
4456 struct ql_adapter *qdev = netdev_priv(ndev);
4457 int err = 0;
4458
4459 memset((void *)qdev, 0, sizeof(*qdev));
4460 err = pci_enable_device(pdev);
4461 if (err) {
4462 dev_err(&pdev->dev, "PCI device enable failed.\n");
4463 return err;
4464 }
4465
4466 qdev->ndev = ndev;
4467 qdev->pdev = pdev;
4468 pci_set_drvdata(pdev, ndev);
4469
4470 /* Set PCIe read request size */
4471 err = pcie_set_readrq(pdev, 4096);
4472 if (err) {
4473 dev_err(&pdev->dev, "Set readrq failed.\n");
4474 goto err_out1;
4475 }
4476
4477 err = pci_request_regions(pdev, DRV_NAME);
4478 if (err) {
4479 dev_err(&pdev->dev, "PCI region request failed.\n");
4480 return err;
4481 }
4482
4483 pci_set_master(pdev);
4484 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4485 set_bit(QL_DMA64, &qdev->flags);
4486 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4487 } else {
4488 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4489 if (!err)
4490 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4491 }
4492
4493 if (err) {
4494 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4495 goto err_out2;
4496 }
4497
4498 /* Set PCIe reset type for EEH to fundamental. */
4499 pdev->needs_freset = 1;
4500 pci_save_state(pdev);
4501 qdev->reg_base =
4502 ioremap_nocache(pci_resource_start(pdev, 1),
4503 pci_resource_len(pdev, 1));
4504 if (!qdev->reg_base) {
4505 dev_err(&pdev->dev, "Register mapping failed.\n");
4506 err = -ENOMEM;
4507 goto err_out2;
4508 }
4509
4510 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4511 qdev->doorbell_area =
4512 ioremap_nocache(pci_resource_start(pdev, 3),
4513 pci_resource_len(pdev, 3));
4514 if (!qdev->doorbell_area) {
4515 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4516 err = -ENOMEM;
4517 goto err_out2;
4518 }
4519
4520 err = ql_get_board_info(qdev);
4521 if (err) {
4522 dev_err(&pdev->dev, "Register access failed.\n");
4523 err = -EIO;
4524 goto err_out2;
4525 }
4526 qdev->msg_enable = netif_msg_init(debug, default_msg);
4527 spin_lock_init(&qdev->hw_lock);
4528 spin_lock_init(&qdev->stats_lock);
4529
4530 if (qlge_mpi_coredump) {
4531 qdev->mpi_coredump =
4532 vmalloc(sizeof(struct ql_mpi_coredump));
4533 if (qdev->mpi_coredump == NULL) {
4534 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4535 err = -ENOMEM;
4536 goto err_out2;
4537 }
4538 if (qlge_force_coredump)
4539 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4540 }
4541 /* make sure the EEPROM is good */
4542 err = qdev->nic_ops->get_flash(qdev);
4543 if (err) {
4544 dev_err(&pdev->dev, "Invalid FLASH.\n");
4545 goto err_out2;
4546 }
4547
4548 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4549 /* Keep local copy of current mac address. */
4550 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4551
4552 /* Set up the default ring sizes. */
4553 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4554 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4555
4556 /* Set up the coalescing parameters. */
4557 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4558 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4559 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4560 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4561
4562 /*
4563 * Set up the operating parameters.
4564 */
4565 qdev->rx_csum = 1;
4566 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4567 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4568 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4569 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4570 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4571 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4572 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4573 init_completion(&qdev->ide_completion);
4574
4575 if (!cards_found) {
4576 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4577 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4578 DRV_NAME, DRV_VERSION);
4579 }
4580 return 0;
4581 err_out2:
4582 ql_release_all(pdev);
4583 err_out1:
4584 pci_disable_device(pdev);
4585 return err;
4586 }
4587
4588 static const struct net_device_ops qlge_netdev_ops = {
4589 .ndo_open = qlge_open,
4590 .ndo_stop = qlge_close,
4591 .ndo_start_xmit = qlge_send,
4592 .ndo_change_mtu = qlge_change_mtu,
4593 .ndo_get_stats = qlge_get_stats,
4594 .ndo_set_multicast_list = qlge_set_multicast_list,
4595 .ndo_set_mac_address = qlge_set_mac_address,
4596 .ndo_validate_addr = eth_validate_addr,
4597 .ndo_tx_timeout = qlge_tx_timeout,
4598 .ndo_vlan_rx_register = qlge_vlan_rx_register,
4599 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4600 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4601 };
4602
4603 static void ql_timer(unsigned long data)
4604 {
4605 struct ql_adapter *qdev = (struct ql_adapter *)data;
4606 u32 var = 0;
4607
4608 var = ql_read32(qdev, STS);
4609 if (pci_channel_offline(qdev->pdev)) {
4610 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4611 return;
4612 }
4613
4614 qdev->timer.expires = jiffies + (5*HZ);
4615 add_timer(&qdev->timer);
4616 }
4617
4618 static int __devinit qlge_probe(struct pci_dev *pdev,
4619 const struct pci_device_id *pci_entry)
4620 {
4621 struct net_device *ndev = NULL;
4622 struct ql_adapter *qdev = NULL;
4623 static int cards_found = 0;
4624 int err = 0;
4625
4626 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4627 min(MAX_CPUS, (int)num_online_cpus()));
4628 if (!ndev)
4629 return -ENOMEM;
4630
4631 err = ql_init_device(pdev, ndev, cards_found);
4632 if (err < 0) {
4633 free_netdev(ndev);
4634 return err;
4635 }
4636
4637 qdev = netdev_priv(ndev);
4638 SET_NETDEV_DEV(ndev, &pdev->dev);
4639 ndev->features = (0
4640 | NETIF_F_IP_CSUM
4641 | NETIF_F_SG
4642 | NETIF_F_TSO
4643 | NETIF_F_TSO6
4644 | NETIF_F_TSO_ECN
4645 | NETIF_F_HW_VLAN_TX
4646 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
4647 ndev->features |= NETIF_F_GRO;
4648
4649 if (test_bit(QL_DMA64, &qdev->flags))
4650 ndev->features |= NETIF_F_HIGHDMA;
4651
4652 /*
4653 * Set up net_device structure.
4654 */
4655 ndev->tx_queue_len = qdev->tx_ring_size;
4656 ndev->irq = pdev->irq;
4657
4658 ndev->netdev_ops = &qlge_netdev_ops;
4659 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4660 ndev->watchdog_timeo = 10 * HZ;
4661
4662 err = register_netdev(ndev);
4663 if (err) {
4664 dev_err(&pdev->dev, "net device registration failed.\n");
4665 ql_release_all(pdev);
4666 pci_disable_device(pdev);
4667 return err;
4668 }
4669 /* Start up the timer to trigger EEH if
4670 * the bus goes dead
4671 */
4672 init_timer_deferrable(&qdev->timer);
4673 qdev->timer.data = (unsigned long)qdev;
4674 qdev->timer.function = ql_timer;
4675 qdev->timer.expires = jiffies + (5*HZ);
4676 add_timer(&qdev->timer);
4677 ql_link_off(qdev);
4678 ql_display_dev_info(ndev);
4679 atomic_set(&qdev->lb_count, 0);
4680 cards_found++;
4681 return 0;
4682 }
4683
4684 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4685 {
4686 return qlge_send(skb, ndev);
4687 }
4688
4689 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4690 {
4691 return ql_clean_inbound_rx_ring(rx_ring, budget);
4692 }
4693
4694 static void __devexit qlge_remove(struct pci_dev *pdev)
4695 {
4696 struct net_device *ndev = pci_get_drvdata(pdev);
4697 struct ql_adapter *qdev = netdev_priv(ndev);
4698 del_timer_sync(&qdev->timer);
4699 unregister_netdev(ndev);
4700 ql_release_all(pdev);
4701 pci_disable_device(pdev);
4702 free_netdev(ndev);
4703 }
4704
4705 /* Clean up resources without touching hardware. */
4706 static void ql_eeh_close(struct net_device *ndev)
4707 {
4708 int i;
4709 struct ql_adapter *qdev = netdev_priv(ndev);
4710
4711 if (netif_carrier_ok(ndev)) {
4712 netif_carrier_off(ndev);
4713 netif_stop_queue(ndev);
4714 }
4715
4716 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
4717 cancel_delayed_work_sync(&qdev->asic_reset_work);
4718 cancel_delayed_work_sync(&qdev->mpi_reset_work);
4719 cancel_delayed_work_sync(&qdev->mpi_work);
4720 cancel_delayed_work_sync(&qdev->mpi_idc_work);
4721 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
4722 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
4723
4724 for (i = 0; i < qdev->rss_ring_count; i++)
4725 netif_napi_del(&qdev->rx_ring[i].napi);
4726
4727 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4728 ql_tx_ring_clean(qdev);
4729 ql_free_rx_buffers(qdev);
4730 ql_release_adapter_resources(qdev);
4731 }
4732
4733 /*
4734 * This callback is called by the PCI subsystem whenever
4735 * a PCI bus error is detected.
4736 */
4737 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4738 enum pci_channel_state state)
4739 {
4740 struct net_device *ndev = pci_get_drvdata(pdev);
4741 struct ql_adapter *qdev = netdev_priv(ndev);
4742
4743 switch (state) {
4744 case pci_channel_io_normal:
4745 return PCI_ERS_RESULT_CAN_RECOVER;
4746 case pci_channel_io_frozen:
4747 netif_device_detach(ndev);
4748 if (netif_running(ndev))
4749 ql_eeh_close(ndev);
4750 pci_disable_device(pdev);
4751 return PCI_ERS_RESULT_NEED_RESET;
4752 case pci_channel_io_perm_failure:
4753 dev_err(&pdev->dev,
4754 "%s: pci_channel_io_perm_failure.\n", __func__);
4755 ql_eeh_close(ndev);
4756 set_bit(QL_EEH_FATAL, &qdev->flags);
4757 return PCI_ERS_RESULT_DISCONNECT;
4758 }
4759
4760 /* Request a slot reset. */
4761 return PCI_ERS_RESULT_NEED_RESET;
4762 }
4763
4764 /*
4765 * This callback is called after the PCI buss has been reset.
4766 * Basically, this tries to restart the card from scratch.
4767 * This is a shortened version of the device probe/discovery code,
4768 * it resembles the first-half of the () routine.
4769 */
4770 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4771 {
4772 struct net_device *ndev = pci_get_drvdata(pdev);
4773 struct ql_adapter *qdev = netdev_priv(ndev);
4774
4775 pdev->error_state = pci_channel_io_normal;
4776
4777 pci_restore_state(pdev);
4778 if (pci_enable_device(pdev)) {
4779 netif_err(qdev, ifup, qdev->ndev,
4780 "Cannot re-enable PCI device after reset.\n");
4781 return PCI_ERS_RESULT_DISCONNECT;
4782 }
4783 pci_set_master(pdev);
4784
4785 if (ql_adapter_reset(qdev)) {
4786 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4787 set_bit(QL_EEH_FATAL, &qdev->flags);
4788 return PCI_ERS_RESULT_DISCONNECT;
4789 }
4790
4791 return PCI_ERS_RESULT_RECOVERED;
4792 }
4793
4794 static void qlge_io_resume(struct pci_dev *pdev)
4795 {
4796 struct net_device *ndev = pci_get_drvdata(pdev);
4797 struct ql_adapter *qdev = netdev_priv(ndev);
4798 int err = 0;
4799
4800 if (netif_running(ndev)) {
4801 err = qlge_open(ndev);
4802 if (err) {
4803 netif_err(qdev, ifup, qdev->ndev,
4804 "Device initialization failed after reset.\n");
4805 return;
4806 }
4807 } else {
4808 netif_err(qdev, ifup, qdev->ndev,
4809 "Device was not running prior to EEH.\n");
4810 }
4811 qdev->timer.expires = jiffies + (5*HZ);
4812 add_timer(&qdev->timer);
4813 netif_device_attach(ndev);
4814 }
4815
4816 static struct pci_error_handlers qlge_err_handler = {
4817 .error_detected = qlge_io_error_detected,
4818 .slot_reset = qlge_io_slot_reset,
4819 .resume = qlge_io_resume,
4820 };
4821
4822 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4823 {
4824 struct net_device *ndev = pci_get_drvdata(pdev);
4825 struct ql_adapter *qdev = netdev_priv(ndev);
4826 int err;
4827
4828 netif_device_detach(ndev);
4829 del_timer_sync(&qdev->timer);
4830
4831 if (netif_running(ndev)) {
4832 err = ql_adapter_down(qdev);
4833 if (!err)
4834 return err;
4835 }
4836
4837 ql_wol(qdev);
4838 err = pci_save_state(pdev);
4839 if (err)
4840 return err;
4841
4842 pci_disable_device(pdev);
4843
4844 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4845
4846 return 0;
4847 }
4848
4849 #ifdef CONFIG_PM
4850 static int qlge_resume(struct pci_dev *pdev)
4851 {
4852 struct net_device *ndev = pci_get_drvdata(pdev);
4853 struct ql_adapter *qdev = netdev_priv(ndev);
4854 int err;
4855
4856 pci_set_power_state(pdev, PCI_D0);
4857 pci_restore_state(pdev);
4858 err = pci_enable_device(pdev);
4859 if (err) {
4860 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4861 return err;
4862 }
4863 pci_set_master(pdev);
4864
4865 pci_enable_wake(pdev, PCI_D3hot, 0);
4866 pci_enable_wake(pdev, PCI_D3cold, 0);
4867
4868 if (netif_running(ndev)) {
4869 err = ql_adapter_up(qdev);
4870 if (err)
4871 return err;
4872 }
4873
4874 qdev->timer.expires = jiffies + (5*HZ);
4875 add_timer(&qdev->timer);
4876 netif_device_attach(ndev);
4877
4878 return 0;
4879 }
4880 #endif /* CONFIG_PM */
4881
4882 static void qlge_shutdown(struct pci_dev *pdev)
4883 {
4884 qlge_suspend(pdev, PMSG_SUSPEND);
4885 }
4886
4887 static struct pci_driver qlge_driver = {
4888 .name = DRV_NAME,
4889 .id_table = qlge_pci_tbl,
4890 .probe = qlge_probe,
4891 .remove = __devexit_p(qlge_remove),
4892 #ifdef CONFIG_PM
4893 .suspend = qlge_suspend,
4894 .resume = qlge_resume,
4895 #endif
4896 .shutdown = qlge_shutdown,
4897 .err_handler = &qlge_err_handler
4898 };
4899
4900 static int __init qlge_init_module(void)
4901 {
4902 return pci_register_driver(&qlge_driver);
4903 }
4904
4905 static void __exit qlge_exit(void)
4906 {
4907 pci_unregister_driver(&qlge_driver);
4908 }
4909
4910 module_init(qlge_init_module);
4911 module_exit(qlge_exit);
This page took 0.193987 seconds and 5 git commands to generate.