[NET]: Nuke SET_MODULE_OWNER macro.
[deliverable/linux.git] / drivers / net / rrunner.c
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3 *
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5 *
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
19 *
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
22 *
23 * PCI DMA mapping code partly based on work by Francois Romieu.
24 */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
44
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
65
66 /*
67 * Implementation notes:
68 *
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
74 * chunk.
75 *
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
79 */
80
81 /*
82 * These are checked at init time to see if they are at least 256KB
83 * and increased to 256KB if they are not. This is done to avoid ending
84 * up with socket buffers smaller than the MTU size,
85 */
86 extern __u32 sysctl_wmem_max;
87 extern __u32 sysctl_rmem_max;
88
89 static int __devinit rr_init_one(struct pci_dev *pdev,
90 const struct pci_device_id *ent)
91 {
92 struct net_device *dev;
93 static int version_disp;
94 u8 pci_latency;
95 struct rr_private *rrpriv;
96 void *tmpptr;
97 dma_addr_t ring_dma;
98 int ret = -ENOMEM;
99
100 dev = alloc_hippi_dev(sizeof(struct rr_private));
101 if (!dev)
102 goto out3;
103
104 ret = pci_enable_device(pdev);
105 if (ret) {
106 ret = -ENODEV;
107 goto out2;
108 }
109
110 rrpriv = netdev_priv(dev);
111
112 SET_NETDEV_DEV(dev, &pdev->dev);
113
114 if (pci_request_regions(pdev, "rrunner")) {
115 ret = -EIO;
116 goto out;
117 }
118
119 pci_set_drvdata(pdev, dev);
120
121 rrpriv->pci_dev = pdev;
122
123 spin_lock_init(&rrpriv->lock);
124
125 dev->irq = pdev->irq;
126 dev->open = &rr_open;
127 dev->hard_start_xmit = &rr_start_xmit;
128 dev->stop = &rr_close;
129 dev->get_stats = &rr_get_stats;
130 dev->do_ioctl = &rr_ioctl;
131
132 dev->base_addr = pci_resource_start(pdev, 0);
133
134 /* display version info if adapter is found */
135 if (!version_disp) {
136 /* set display flag to TRUE so that */
137 /* we only display this string ONCE */
138 version_disp = 1;
139 printk(version);
140 }
141
142 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
143 if (pci_latency <= 0x58){
144 pci_latency = 0x58;
145 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
146 }
147
148 pci_set_master(pdev);
149
150 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
151 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
152 dev->base_addr, dev->irq, pci_latency);
153
154 /*
155 * Remap the regs into kernel space.
156 */
157
158 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
159
160 if (!rrpriv->regs){
161 printk(KERN_ERR "%s: Unable to map I/O register, "
162 "RoadRunner will be disabled.\n", dev->name);
163 ret = -EIO;
164 goto out;
165 }
166
167 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
168 rrpriv->tx_ring = tmpptr;
169 rrpriv->tx_ring_dma = ring_dma;
170
171 if (!tmpptr) {
172 ret = -ENOMEM;
173 goto out;
174 }
175
176 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
177 rrpriv->rx_ring = tmpptr;
178 rrpriv->rx_ring_dma = ring_dma;
179
180 if (!tmpptr) {
181 ret = -ENOMEM;
182 goto out;
183 }
184
185 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
186 rrpriv->evt_ring = tmpptr;
187 rrpriv->evt_ring_dma = ring_dma;
188
189 if (!tmpptr) {
190 ret = -ENOMEM;
191 goto out;
192 }
193
194 /*
195 * Don't access any register before this point!
196 */
197 #ifdef __BIG_ENDIAN
198 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
199 &rrpriv->regs->HostCtrl);
200 #endif
201 /*
202 * Need to add a case for little-endian 64-bit hosts here.
203 */
204
205 rr_init(dev);
206
207 dev->base_addr = 0;
208
209 ret = register_netdev(dev);
210 if (ret)
211 goto out;
212 return 0;
213
214 out:
215 if (rrpriv->rx_ring)
216 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
217 rrpriv->rx_ring_dma);
218 if (rrpriv->tx_ring)
219 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
220 rrpriv->tx_ring_dma);
221 if (rrpriv->regs)
222 iounmap(rrpriv->regs);
223 if (pdev) {
224 pci_release_regions(pdev);
225 pci_set_drvdata(pdev, NULL);
226 }
227 out2:
228 free_netdev(dev);
229 out3:
230 return ret;
231 }
232
233 static void __devexit rr_remove_one (struct pci_dev *pdev)
234 {
235 struct net_device *dev = pci_get_drvdata(pdev);
236
237 if (dev) {
238 struct rr_private *rr = netdev_priv(dev);
239
240 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
241 printk(KERN_ERR "%s: trying to unload running NIC\n",
242 dev->name);
243 writel(HALT_NIC, &rr->regs->HostCtrl);
244 }
245
246 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
247 rr->evt_ring_dma);
248 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
249 rr->rx_ring_dma);
250 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
251 rr->tx_ring_dma);
252 unregister_netdev(dev);
253 iounmap(rr->regs);
254 free_netdev(dev);
255 pci_release_regions(pdev);
256 pci_disable_device(pdev);
257 pci_set_drvdata(pdev, NULL);
258 }
259 }
260
261
262 /*
263 * Commands are considered to be slow, thus there is no reason to
264 * inline this.
265 */
266 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
267 {
268 struct rr_regs __iomem *regs;
269 u32 idx;
270
271 regs = rrpriv->regs;
272 /*
273 * This is temporary - it will go away in the final version.
274 * We probably also want to make this function inline.
275 */
276 if (readl(&regs->HostCtrl) & NIC_HALTED){
277 printk("issuing command for halted NIC, code 0x%x, "
278 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
279 if (readl(&regs->Mode) & FATAL_ERR)
280 printk("error codes Fail1 %02x, Fail2 %02x\n",
281 readl(&regs->Fail1), readl(&regs->Fail2));
282 }
283
284 idx = rrpriv->info->cmd_ctrl.pi;
285
286 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
287 wmb();
288
289 idx = (idx - 1) % CMD_RING_ENTRIES;
290 rrpriv->info->cmd_ctrl.pi = idx;
291 wmb();
292
293 if (readl(&regs->Mode) & FATAL_ERR)
294 printk("error code %02x\n", readl(&regs->Fail1));
295 }
296
297
298 /*
299 * Reset the board in a sensible manner. The NIC is already halted
300 * when we get here and a spin-lock is held.
301 */
302 static int rr_reset(struct net_device *dev)
303 {
304 struct rr_private *rrpriv;
305 struct rr_regs __iomem *regs;
306 struct eeprom *hw = NULL;
307 u32 start_pc;
308 int i;
309
310 rrpriv = netdev_priv(dev);
311 regs = rrpriv->regs;
312
313 rr_load_firmware(dev);
314
315 writel(0x01000000, &regs->TX_state);
316 writel(0xff800000, &regs->RX_state);
317 writel(0, &regs->AssistState);
318 writel(CLEAR_INTA, &regs->LocalCtrl);
319 writel(0x01, &regs->BrkPt);
320 writel(0, &regs->Timer);
321 writel(0, &regs->TimerRef);
322 writel(RESET_DMA, &regs->DmaReadState);
323 writel(RESET_DMA, &regs->DmaWriteState);
324 writel(0, &regs->DmaWriteHostHi);
325 writel(0, &regs->DmaWriteHostLo);
326 writel(0, &regs->DmaReadHostHi);
327 writel(0, &regs->DmaReadHostLo);
328 writel(0, &regs->DmaReadLen);
329 writel(0, &regs->DmaWriteLen);
330 writel(0, &regs->DmaWriteLcl);
331 writel(0, &regs->DmaWriteIPchecksum);
332 writel(0, &regs->DmaReadLcl);
333 writel(0, &regs->DmaReadIPchecksum);
334 writel(0, &regs->PciState);
335 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
336 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
337 #elif (BITS_PER_LONG == 64)
338 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
339 #else
340 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
341 #endif
342
343 #if 0
344 /*
345 * Don't worry, this is just black magic.
346 */
347 writel(0xdf000, &regs->RxBase);
348 writel(0xdf000, &regs->RxPrd);
349 writel(0xdf000, &regs->RxCon);
350 writel(0xce000, &regs->TxBase);
351 writel(0xce000, &regs->TxPrd);
352 writel(0xce000, &regs->TxCon);
353 writel(0, &regs->RxIndPro);
354 writel(0, &regs->RxIndCon);
355 writel(0, &regs->RxIndRef);
356 writel(0, &regs->TxIndPro);
357 writel(0, &regs->TxIndCon);
358 writel(0, &regs->TxIndRef);
359 writel(0xcc000, &regs->pad10[0]);
360 writel(0, &regs->DrCmndPro);
361 writel(0, &regs->DrCmndCon);
362 writel(0, &regs->DwCmndPro);
363 writel(0, &regs->DwCmndCon);
364 writel(0, &regs->DwCmndRef);
365 writel(0, &regs->DrDataPro);
366 writel(0, &regs->DrDataCon);
367 writel(0, &regs->DrDataRef);
368 writel(0, &regs->DwDataPro);
369 writel(0, &regs->DwDataCon);
370 writel(0, &regs->DwDataRef);
371 #endif
372
373 writel(0xffffffff, &regs->MbEvent);
374 writel(0, &regs->Event);
375
376 writel(0, &regs->TxPi);
377 writel(0, &regs->IpRxPi);
378
379 writel(0, &regs->EvtCon);
380 writel(0, &regs->EvtPrd);
381
382 rrpriv->info->evt_ctrl.pi = 0;
383
384 for (i = 0; i < CMD_RING_ENTRIES; i++)
385 writel(0, &regs->CmdRing[i]);
386
387 /*
388 * Why 32 ? is this not cache line size dependent?
389 */
390 writel(RBURST_64|WBURST_64, &regs->PciState);
391 wmb();
392
393 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
394
395 #if (DEBUG > 1)
396 printk("%s: Executing firmware at address 0x%06x\n",
397 dev->name, start_pc);
398 #endif
399
400 writel(start_pc + 0x800, &regs->Pc);
401 wmb();
402 udelay(5);
403
404 writel(start_pc, &regs->Pc);
405 wmb();
406
407 return 0;
408 }
409
410
411 /*
412 * Read a string from the EEPROM.
413 */
414 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
415 unsigned long offset,
416 unsigned char *buf,
417 unsigned long length)
418 {
419 struct rr_regs __iomem *regs = rrpriv->regs;
420 u32 misc, io, host, i;
421
422 io = readl(&regs->ExtIo);
423 writel(0, &regs->ExtIo);
424 misc = readl(&regs->LocalCtrl);
425 writel(0, &regs->LocalCtrl);
426 host = readl(&regs->HostCtrl);
427 writel(host | HALT_NIC, &regs->HostCtrl);
428 mb();
429
430 for (i = 0; i < length; i++){
431 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
432 mb();
433 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
434 mb();
435 }
436
437 writel(host, &regs->HostCtrl);
438 writel(misc, &regs->LocalCtrl);
439 writel(io, &regs->ExtIo);
440 mb();
441 return i;
442 }
443
444
445 /*
446 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
447 * it to our CPU byte-order.
448 */
449 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
450 void * offset)
451 {
452 u32 word;
453
454 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
455 (char *)&word, 4) == 4))
456 return be32_to_cpu(word);
457 return 0;
458 }
459
460
461 /*
462 * Write a string to the EEPROM.
463 *
464 * This is only called when the firmware is not running.
465 */
466 static unsigned int write_eeprom(struct rr_private *rrpriv,
467 unsigned long offset,
468 unsigned char *buf,
469 unsigned long length)
470 {
471 struct rr_regs __iomem *regs = rrpriv->regs;
472 u32 misc, io, data, i, j, ready, error = 0;
473
474 io = readl(&regs->ExtIo);
475 writel(0, &regs->ExtIo);
476 misc = readl(&regs->LocalCtrl);
477 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
478 mb();
479
480 for (i = 0; i < length; i++){
481 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
482 mb();
483 data = buf[i] << 24;
484 /*
485 * Only try to write the data if it is not the same
486 * value already.
487 */
488 if ((readl(&regs->WinData) & 0xff000000) != data){
489 writel(data, &regs->WinData);
490 ready = 0;
491 j = 0;
492 mb();
493 while(!ready){
494 udelay(20);
495 if ((readl(&regs->WinData) & 0xff000000) ==
496 data)
497 ready = 1;
498 mb();
499 if (j++ > 5000){
500 printk("data mismatch: %08x, "
501 "WinData %08x\n", data,
502 readl(&regs->WinData));
503 ready = 1;
504 error = 1;
505 }
506 }
507 }
508 }
509
510 writel(misc, &regs->LocalCtrl);
511 writel(io, &regs->ExtIo);
512 mb();
513
514 return error;
515 }
516
517
518 static int __devinit rr_init(struct net_device *dev)
519 {
520 struct rr_private *rrpriv;
521 struct rr_regs __iomem *regs;
522 struct eeprom *hw = NULL;
523 u32 sram_size, rev;
524 int i;
525
526 rrpriv = netdev_priv(dev);
527 regs = rrpriv->regs;
528
529 rev = readl(&regs->FwRev);
530 rrpriv->fw_rev = rev;
531 if (rev > 0x00020024)
532 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
533 ((rev >> 8) & 0xff), (rev & 0xff));
534 else if (rev >= 0x00020000) {
535 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
536 "later is recommended)\n", (rev >> 16),
537 ((rev >> 8) & 0xff), (rev & 0xff));
538 }else{
539 printk(" Firmware revision too old: %i.%i.%i, please "
540 "upgrade to 2.0.37 or later.\n",
541 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
542 }
543
544 #if (DEBUG > 2)
545 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
546 #endif
547
548 /*
549 * Read the hardware address from the eeprom. The HW address
550 * is not really necessary for HIPPI but awfully convenient.
551 * The pointer arithmetic to put it in dev_addr is ugly, but
552 * Donald Becker does it this way for the GigE version of this
553 * card and it's shorter and more portable than any
554 * other method I've seen. -VAL
555 */
556
557 *(u16 *)(dev->dev_addr) =
558 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
559 *(u32 *)(dev->dev_addr+2) =
560 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
561
562 printk(" MAC: ");
563
564 for (i = 0; i < 5; i++)
565 printk("%2.2x:", dev->dev_addr[i]);
566 printk("%2.2x\n", dev->dev_addr[i]);
567
568 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
569 printk(" SRAM size 0x%06x\n", sram_size);
570
571 if (sysctl_rmem_max < 262144){
572 printk(" Receive socket buffer limit too low (%i), "
573 "setting to 262144\n", sysctl_rmem_max);
574 sysctl_rmem_max = 262144;
575 }
576
577 if (sysctl_wmem_max < 262144){
578 printk(" Transmit socket buffer limit too low (%i), "
579 "setting to 262144\n", sysctl_wmem_max);
580 sysctl_wmem_max = 262144;
581 }
582
583 return 0;
584 }
585
586
587 static int rr_init1(struct net_device *dev)
588 {
589 struct rr_private *rrpriv;
590 struct rr_regs __iomem *regs;
591 unsigned long myjif, flags;
592 struct cmd cmd;
593 u32 hostctrl;
594 int ecode = 0;
595 short i;
596
597 rrpriv = netdev_priv(dev);
598 regs = rrpriv->regs;
599
600 spin_lock_irqsave(&rrpriv->lock, flags);
601
602 hostctrl = readl(&regs->HostCtrl);
603 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
604 wmb();
605
606 if (hostctrl & PARITY_ERR){
607 printk("%s: Parity error halting NIC - this is serious!\n",
608 dev->name);
609 spin_unlock_irqrestore(&rrpriv->lock, flags);
610 ecode = -EFAULT;
611 goto error;
612 }
613
614 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
615 set_infoaddr(regs, rrpriv->info_dma);
616
617 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
618 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
619 rrpriv->info->evt_ctrl.mode = 0;
620 rrpriv->info->evt_ctrl.pi = 0;
621 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
622
623 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
624 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
625 rrpriv->info->cmd_ctrl.mode = 0;
626 rrpriv->info->cmd_ctrl.pi = 15;
627
628 for (i = 0; i < CMD_RING_ENTRIES; i++) {
629 writel(0, &regs->CmdRing[i]);
630 }
631
632 for (i = 0; i < TX_RING_ENTRIES; i++) {
633 rrpriv->tx_ring[i].size = 0;
634 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
635 rrpriv->tx_skbuff[i] = NULL;
636 }
637 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
638 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
639 rrpriv->info->tx_ctrl.mode = 0;
640 rrpriv->info->tx_ctrl.pi = 0;
641 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
642
643 /*
644 * Set dirty_tx before we start receiving interrupts, otherwise
645 * the interrupt handler might think it is supposed to process
646 * tx ints before we are up and running, which may cause a null
647 * pointer access in the int handler.
648 */
649 rrpriv->tx_full = 0;
650 rrpriv->cur_rx = 0;
651 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
652
653 rr_reset(dev);
654
655 /* Tuning values */
656 writel(0x5000, &regs->ConRetry);
657 writel(0x100, &regs->ConRetryTmr);
658 writel(0x500000, &regs->ConTmout);
659 writel(0x60, &regs->IntrTmr);
660 writel(0x500000, &regs->TxDataMvTimeout);
661 writel(0x200000, &regs->RxDataMvTimeout);
662 writel(0x80, &regs->WriteDmaThresh);
663 writel(0x80, &regs->ReadDmaThresh);
664
665 rrpriv->fw_running = 0;
666 wmb();
667
668 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
669 writel(hostctrl, &regs->HostCtrl);
670 wmb();
671
672 spin_unlock_irqrestore(&rrpriv->lock, flags);
673
674 for (i = 0; i < RX_RING_ENTRIES; i++) {
675 struct sk_buff *skb;
676 dma_addr_t addr;
677
678 rrpriv->rx_ring[i].mode = 0;
679 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
680 if (!skb) {
681 printk(KERN_WARNING "%s: Unable to allocate memory "
682 "for receive ring - halting NIC\n", dev->name);
683 ecode = -ENOMEM;
684 goto error;
685 }
686 rrpriv->rx_skbuff[i] = skb;
687 addr = pci_map_single(rrpriv->pci_dev, skb->data,
688 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
689 /*
690 * Sanity test to see if we conflict with the DMA
691 * limitations of the Roadrunner.
692 */
693 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
694 printk("skb alloc error\n");
695
696 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
697 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
698 }
699
700 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
701 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
702 rrpriv->rx_ctrl[4].mode = 8;
703 rrpriv->rx_ctrl[4].pi = 0;
704 wmb();
705 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
706
707 udelay(1000);
708
709 /*
710 * Now start the FirmWare.
711 */
712 cmd.code = C_START_FW;
713 cmd.ring = 0;
714 cmd.index = 0;
715
716 rr_issue_cmd(rrpriv, &cmd);
717
718 /*
719 * Give the FirmWare time to chew on the `get running' command.
720 */
721 myjif = jiffies + 5 * HZ;
722 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
723 cpu_relax();
724
725 netif_start_queue(dev);
726
727 return ecode;
728
729 error:
730 /*
731 * We might have gotten here because we are out of memory,
732 * make sure we release everything we allocated before failing
733 */
734 for (i = 0; i < RX_RING_ENTRIES; i++) {
735 struct sk_buff *skb = rrpriv->rx_skbuff[i];
736
737 if (skb) {
738 pci_unmap_single(rrpriv->pci_dev,
739 rrpriv->rx_ring[i].addr.addrlo,
740 dev->mtu + HIPPI_HLEN,
741 PCI_DMA_FROMDEVICE);
742 rrpriv->rx_ring[i].size = 0;
743 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
744 dev_kfree_skb(skb);
745 rrpriv->rx_skbuff[i] = NULL;
746 }
747 }
748 return ecode;
749 }
750
751
752 /*
753 * All events are considered to be slow (RX/TX ints do not generate
754 * events) and are handled here, outside the main interrupt handler,
755 * to reduce the size of the handler.
756 */
757 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
758 {
759 struct rr_private *rrpriv;
760 struct rr_regs __iomem *regs;
761 u32 tmp;
762
763 rrpriv = netdev_priv(dev);
764 regs = rrpriv->regs;
765
766 while (prodidx != eidx){
767 switch (rrpriv->evt_ring[eidx].code){
768 case E_NIC_UP:
769 tmp = readl(&regs->FwRev);
770 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
771 "up and running\n", dev->name,
772 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
773 rrpriv->fw_running = 1;
774 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
775 wmb();
776 break;
777 case E_LINK_ON:
778 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
779 break;
780 case E_LINK_OFF:
781 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
782 break;
783 case E_RX_IDLE:
784 printk(KERN_WARNING "%s: RX data not moving\n",
785 dev->name);
786 goto drop;
787 case E_WATCHDOG:
788 printk(KERN_INFO "%s: The watchdog is here to see "
789 "us\n", dev->name);
790 break;
791 case E_INTERN_ERR:
792 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
793 dev->name);
794 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
795 &regs->HostCtrl);
796 wmb();
797 break;
798 case E_HOST_ERR:
799 printk(KERN_ERR "%s: Host software error\n",
800 dev->name);
801 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
802 &regs->HostCtrl);
803 wmb();
804 break;
805 /*
806 * TX events.
807 */
808 case E_CON_REJ:
809 printk(KERN_WARNING "%s: Connection rejected\n",
810 dev->name);
811 rrpriv->stats.tx_aborted_errors++;
812 break;
813 case E_CON_TMOUT:
814 printk(KERN_WARNING "%s: Connection timeout\n",
815 dev->name);
816 break;
817 case E_DISC_ERR:
818 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
819 dev->name);
820 rrpriv->stats.tx_aborted_errors++;
821 break;
822 case E_INT_PRTY:
823 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
824 dev->name);
825 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826 &regs->HostCtrl);
827 wmb();
828 break;
829 case E_TX_IDLE:
830 printk(KERN_WARNING "%s: Transmitter idle\n",
831 dev->name);
832 break;
833 case E_TX_LINK_DROP:
834 printk(KERN_WARNING "%s: Link lost during transmit\n",
835 dev->name);
836 rrpriv->stats.tx_aborted_errors++;
837 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
838 &regs->HostCtrl);
839 wmb();
840 break;
841 case E_TX_INV_RNG:
842 printk(KERN_ERR "%s: Invalid send ring block\n",
843 dev->name);
844 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
845 &regs->HostCtrl);
846 wmb();
847 break;
848 case E_TX_INV_BUF:
849 printk(KERN_ERR "%s: Invalid send buffer address\n",
850 dev->name);
851 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
852 &regs->HostCtrl);
853 wmb();
854 break;
855 case E_TX_INV_DSC:
856 printk(KERN_ERR "%s: Invalid descriptor address\n",
857 dev->name);
858 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
859 &regs->HostCtrl);
860 wmb();
861 break;
862 /*
863 * RX events.
864 */
865 case E_RX_RNG_OUT:
866 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
867 break;
868
869 case E_RX_PAR_ERR:
870 printk(KERN_WARNING "%s: Receive parity error\n",
871 dev->name);
872 goto drop;
873 case E_RX_LLRC_ERR:
874 printk(KERN_WARNING "%s: Receive LLRC error\n",
875 dev->name);
876 goto drop;
877 case E_PKT_LN_ERR:
878 printk(KERN_WARNING "%s: Receive packet length "
879 "error\n", dev->name);
880 goto drop;
881 case E_DTA_CKSM_ERR:
882 printk(KERN_WARNING "%s: Data checksum error\n",
883 dev->name);
884 goto drop;
885 case E_SHT_BST:
886 printk(KERN_WARNING "%s: Unexpected short burst "
887 "error\n", dev->name);
888 goto drop;
889 case E_STATE_ERR:
890 printk(KERN_WARNING "%s: Recv. state transition"
891 " error\n", dev->name);
892 goto drop;
893 case E_UNEXP_DATA:
894 printk(KERN_WARNING "%s: Unexpected data error\n",
895 dev->name);
896 goto drop;
897 case E_LST_LNK_ERR:
898 printk(KERN_WARNING "%s: Link lost error\n",
899 dev->name);
900 goto drop;
901 case E_FRM_ERR:
902 printk(KERN_WARNING "%s: Framming Error\n",
903 dev->name);
904 goto drop;
905 case E_FLG_SYN_ERR:
906 printk(KERN_WARNING "%s: Flag sync. lost during"
907 "packet\n", dev->name);
908 goto drop;
909 case E_RX_INV_BUF:
910 printk(KERN_ERR "%s: Invalid receive buffer "
911 "address\n", dev->name);
912 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
913 &regs->HostCtrl);
914 wmb();
915 break;
916 case E_RX_INV_DSC:
917 printk(KERN_ERR "%s: Invalid receive descriptor "
918 "address\n", dev->name);
919 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
920 &regs->HostCtrl);
921 wmb();
922 break;
923 case E_RNG_BLK:
924 printk(KERN_ERR "%s: Invalid ring block\n",
925 dev->name);
926 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
927 &regs->HostCtrl);
928 wmb();
929 break;
930 drop:
931 /* Label packet to be dropped.
932 * Actual dropping occurs in rx
933 * handling.
934 *
935 * The index of packet we get to drop is
936 * the index of the packet following
937 * the bad packet. -kbf
938 */
939 {
940 u16 index = rrpriv->evt_ring[eidx].index;
941 index = (index + (RX_RING_ENTRIES - 1)) %
942 RX_RING_ENTRIES;
943 rrpriv->rx_ring[index].mode |=
944 (PACKET_BAD | PACKET_END);
945 }
946 break;
947 default:
948 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
949 dev->name, rrpriv->evt_ring[eidx].code);
950 }
951 eidx = (eidx + 1) % EVT_RING_ENTRIES;
952 }
953
954 rrpriv->info->evt_ctrl.pi = eidx;
955 wmb();
956 return eidx;
957 }
958
959
960 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
961 {
962 struct rr_private *rrpriv = netdev_priv(dev);
963 struct rr_regs __iomem *regs = rrpriv->regs;
964
965 do {
966 struct rx_desc *desc;
967 u32 pkt_len;
968
969 desc = &(rrpriv->rx_ring[index]);
970 pkt_len = desc->size;
971 #if (DEBUG > 2)
972 printk("index %i, rxlimit %i\n", index, rxlimit);
973 printk("len %x, mode %x\n", pkt_len, desc->mode);
974 #endif
975 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
976 rrpriv->stats.rx_dropped++;
977 goto defer;
978 }
979
980 if (pkt_len > 0){
981 struct sk_buff *skb, *rx_skb;
982
983 rx_skb = rrpriv->rx_skbuff[index];
984
985 if (pkt_len < PKT_COPY_THRESHOLD) {
986 skb = alloc_skb(pkt_len, GFP_ATOMIC);
987 if (skb == NULL){
988 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
989 rrpriv->stats.rx_dropped++;
990 goto defer;
991 } else {
992 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
993 desc->addr.addrlo,
994 pkt_len,
995 PCI_DMA_FROMDEVICE);
996
997 memcpy(skb_put(skb, pkt_len),
998 rx_skb->data, pkt_len);
999
1000 pci_dma_sync_single_for_device(rrpriv->pci_dev,
1001 desc->addr.addrlo,
1002 pkt_len,
1003 PCI_DMA_FROMDEVICE);
1004 }
1005 }else{
1006 struct sk_buff *newskb;
1007
1008 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
1009 GFP_ATOMIC);
1010 if (newskb){
1011 dma_addr_t addr;
1012
1013 pci_unmap_single(rrpriv->pci_dev,
1014 desc->addr.addrlo, dev->mtu +
1015 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1016 skb = rx_skb;
1017 skb_put(skb, pkt_len);
1018 rrpriv->rx_skbuff[index] = newskb;
1019 addr = pci_map_single(rrpriv->pci_dev,
1020 newskb->data,
1021 dev->mtu + HIPPI_HLEN,
1022 PCI_DMA_FROMDEVICE);
1023 set_rraddr(&desc->addr, addr);
1024 } else {
1025 printk("%s: Out of memory, deferring "
1026 "packet\n", dev->name);
1027 rrpriv->stats.rx_dropped++;
1028 goto defer;
1029 }
1030 }
1031 skb->protocol = hippi_type_trans(skb, dev);
1032
1033 netif_rx(skb); /* send it up */
1034
1035 dev->last_rx = jiffies;
1036 rrpriv->stats.rx_packets++;
1037 rrpriv->stats.rx_bytes += pkt_len;
1038 }
1039 defer:
1040 desc->mode = 0;
1041 desc->size = dev->mtu + HIPPI_HLEN;
1042
1043 if ((index & 7) == 7)
1044 writel(index, &regs->IpRxPi);
1045
1046 index = (index + 1) % RX_RING_ENTRIES;
1047 } while(index != rxlimit);
1048
1049 rrpriv->cur_rx = index;
1050 wmb();
1051 }
1052
1053
1054 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1055 {
1056 struct rr_private *rrpriv;
1057 struct rr_regs __iomem *regs;
1058 struct net_device *dev = (struct net_device *)dev_id;
1059 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1060
1061 rrpriv = netdev_priv(dev);
1062 regs = rrpriv->regs;
1063
1064 if (!(readl(&regs->HostCtrl) & RR_INT))
1065 return IRQ_NONE;
1066
1067 spin_lock(&rrpriv->lock);
1068
1069 prodidx = readl(&regs->EvtPrd);
1070 txcsmr = (prodidx >> 8) & 0xff;
1071 rxlimit = (prodidx >> 16) & 0xff;
1072 prodidx &= 0xff;
1073
1074 #if (DEBUG > 2)
1075 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1076 prodidx, rrpriv->info->evt_ctrl.pi);
1077 #endif
1078 /*
1079 * Order here is important. We must handle events
1080 * before doing anything else in order to catch
1081 * such things as LLRC errors, etc -kbf
1082 */
1083
1084 eidx = rrpriv->info->evt_ctrl.pi;
1085 if (prodidx != eidx)
1086 eidx = rr_handle_event(dev, prodidx, eidx);
1087
1088 rxindex = rrpriv->cur_rx;
1089 if (rxindex != rxlimit)
1090 rx_int(dev, rxlimit, rxindex);
1091
1092 txcon = rrpriv->dirty_tx;
1093 if (txcsmr != txcon) {
1094 do {
1095 /* Due to occational firmware TX producer/consumer out
1096 * of sync. error need to check entry in ring -kbf
1097 */
1098 if(rrpriv->tx_skbuff[txcon]){
1099 struct tx_desc *desc;
1100 struct sk_buff *skb;
1101
1102 desc = &(rrpriv->tx_ring[txcon]);
1103 skb = rrpriv->tx_skbuff[txcon];
1104
1105 rrpriv->stats.tx_packets++;
1106 rrpriv->stats.tx_bytes += skb->len;
1107
1108 pci_unmap_single(rrpriv->pci_dev,
1109 desc->addr.addrlo, skb->len,
1110 PCI_DMA_TODEVICE);
1111 dev_kfree_skb_irq(skb);
1112
1113 rrpriv->tx_skbuff[txcon] = NULL;
1114 desc->size = 0;
1115 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1116 desc->mode = 0;
1117 }
1118 txcon = (txcon + 1) % TX_RING_ENTRIES;
1119 } while (txcsmr != txcon);
1120 wmb();
1121
1122 rrpriv->dirty_tx = txcon;
1123 if (rrpriv->tx_full && rr_if_busy(dev) &&
1124 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1125 != rrpriv->dirty_tx)){
1126 rrpriv->tx_full = 0;
1127 netif_wake_queue(dev);
1128 }
1129 }
1130
1131 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1132 writel(eidx, &regs->EvtCon);
1133 wmb();
1134
1135 spin_unlock(&rrpriv->lock);
1136 return IRQ_HANDLED;
1137 }
1138
1139 static inline void rr_raz_tx(struct rr_private *rrpriv,
1140 struct net_device *dev)
1141 {
1142 int i;
1143
1144 for (i = 0; i < TX_RING_ENTRIES; i++) {
1145 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1146
1147 if (skb) {
1148 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1149
1150 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1151 skb->len, PCI_DMA_TODEVICE);
1152 desc->size = 0;
1153 set_rraddr(&desc->addr, 0);
1154 dev_kfree_skb(skb);
1155 rrpriv->tx_skbuff[i] = NULL;
1156 }
1157 }
1158 }
1159
1160
1161 static inline void rr_raz_rx(struct rr_private *rrpriv,
1162 struct net_device *dev)
1163 {
1164 int i;
1165
1166 for (i = 0; i < RX_RING_ENTRIES; i++) {
1167 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1168
1169 if (skb) {
1170 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1171
1172 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1173 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1174 desc->size = 0;
1175 set_rraddr(&desc->addr, 0);
1176 dev_kfree_skb(skb);
1177 rrpriv->rx_skbuff[i] = NULL;
1178 }
1179 }
1180 }
1181
1182 static void rr_timer(unsigned long data)
1183 {
1184 struct net_device *dev = (struct net_device *)data;
1185 struct rr_private *rrpriv = netdev_priv(dev);
1186 struct rr_regs __iomem *regs = rrpriv->regs;
1187 unsigned long flags;
1188
1189 if (readl(&regs->HostCtrl) & NIC_HALTED){
1190 printk("%s: Restarting nic\n", dev->name);
1191 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1192 memset(rrpriv->info, 0, sizeof(struct rr_info));
1193 wmb();
1194
1195 rr_raz_tx(rrpriv, dev);
1196 rr_raz_rx(rrpriv, dev);
1197
1198 if (rr_init1(dev)) {
1199 spin_lock_irqsave(&rrpriv->lock, flags);
1200 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1201 &regs->HostCtrl);
1202 spin_unlock_irqrestore(&rrpriv->lock, flags);
1203 }
1204 }
1205 rrpriv->timer.expires = RUN_AT(5*HZ);
1206 add_timer(&rrpriv->timer);
1207 }
1208
1209
1210 static int rr_open(struct net_device *dev)
1211 {
1212 struct rr_private *rrpriv = netdev_priv(dev);
1213 struct pci_dev *pdev = rrpriv->pci_dev;
1214 struct rr_regs __iomem *regs;
1215 int ecode = 0;
1216 unsigned long flags;
1217 dma_addr_t dma_addr;
1218
1219 regs = rrpriv->regs;
1220
1221 if (rrpriv->fw_rev < 0x00020000) {
1222 printk(KERN_WARNING "%s: trying to configure device with "
1223 "obsolete firmware\n", dev->name);
1224 ecode = -EBUSY;
1225 goto error;
1226 }
1227
1228 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1229 256 * sizeof(struct ring_ctrl),
1230 &dma_addr);
1231 if (!rrpriv->rx_ctrl) {
1232 ecode = -ENOMEM;
1233 goto error;
1234 }
1235 rrpriv->rx_ctrl_dma = dma_addr;
1236 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1237
1238 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1239 &dma_addr);
1240 if (!rrpriv->info) {
1241 ecode = -ENOMEM;
1242 goto error;
1243 }
1244 rrpriv->info_dma = dma_addr;
1245 memset(rrpriv->info, 0, sizeof(struct rr_info));
1246 wmb();
1247
1248 spin_lock_irqsave(&rrpriv->lock, flags);
1249 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1250 readl(&regs->HostCtrl);
1251 spin_unlock_irqrestore(&rrpriv->lock, flags);
1252
1253 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1254 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1255 dev->name, dev->irq);
1256 ecode = -EAGAIN;
1257 goto error;
1258 }
1259
1260 if ((ecode = rr_init1(dev)))
1261 goto error;
1262
1263 /* Set the timer to switch to check for link beat and perhaps switch
1264 to an alternate media type. */
1265 init_timer(&rrpriv->timer);
1266 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1267 rrpriv->timer.data = (unsigned long)dev;
1268 rrpriv->timer.function = &rr_timer; /* timer handler */
1269 add_timer(&rrpriv->timer);
1270
1271 netif_start_queue(dev);
1272
1273 return ecode;
1274
1275 error:
1276 spin_lock_irqsave(&rrpriv->lock, flags);
1277 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1278 spin_unlock_irqrestore(&rrpriv->lock, flags);
1279
1280 if (rrpriv->info) {
1281 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1282 rrpriv->info_dma);
1283 rrpriv->info = NULL;
1284 }
1285 if (rrpriv->rx_ctrl) {
1286 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1287 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1288 rrpriv->rx_ctrl = NULL;
1289 }
1290
1291 netif_stop_queue(dev);
1292
1293 return ecode;
1294 }
1295
1296
1297 static void rr_dump(struct net_device *dev)
1298 {
1299 struct rr_private *rrpriv;
1300 struct rr_regs __iomem *regs;
1301 u32 index, cons;
1302 short i;
1303 int len;
1304
1305 rrpriv = netdev_priv(dev);
1306 regs = rrpriv->regs;
1307
1308 printk("%s: dumping NIC TX rings\n", dev->name);
1309
1310 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1311 readl(&regs->RxPrd), readl(&regs->TxPrd),
1312 readl(&regs->EvtPrd), readl(&regs->TxPi),
1313 rrpriv->info->tx_ctrl.pi);
1314
1315 printk("Error code 0x%x\n", readl(&regs->Fail1));
1316
1317 index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1318 cons = rrpriv->dirty_tx;
1319 printk("TX ring index %i, TX consumer %i\n",
1320 index, cons);
1321
1322 if (rrpriv->tx_skbuff[index]){
1323 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1324 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1325 for (i = 0; i < len; i++){
1326 if (!(i & 7))
1327 printk("\n");
1328 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1329 }
1330 printk("\n");
1331 }
1332
1333 if (rrpriv->tx_skbuff[cons]){
1334 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1335 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1336 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1337 rrpriv->tx_ring[cons].mode,
1338 rrpriv->tx_ring[cons].size,
1339 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1340 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1341 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1342 for (i = 0; i < len; i++){
1343 if (!(i & 7))
1344 printk("\n");
1345 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1346 }
1347 printk("\n");
1348 }
1349
1350 printk("dumping TX ring info:\n");
1351 for (i = 0; i < TX_RING_ENTRIES; i++)
1352 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1353 rrpriv->tx_ring[i].mode,
1354 rrpriv->tx_ring[i].size,
1355 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1356
1357 }
1358
1359
1360 static int rr_close(struct net_device *dev)
1361 {
1362 struct rr_private *rrpriv;
1363 struct rr_regs __iomem *regs;
1364 unsigned long flags;
1365 u32 tmp;
1366 short i;
1367
1368 netif_stop_queue(dev);
1369
1370 rrpriv = netdev_priv(dev);
1371 regs = rrpriv->regs;
1372
1373 /*
1374 * Lock to make sure we are not cleaning up while another CPU
1375 * is handling interrupts.
1376 */
1377 spin_lock_irqsave(&rrpriv->lock, flags);
1378
1379 tmp = readl(&regs->HostCtrl);
1380 if (tmp & NIC_HALTED){
1381 printk("%s: NIC already halted\n", dev->name);
1382 rr_dump(dev);
1383 }else{
1384 tmp |= HALT_NIC | RR_CLEAR_INT;
1385 writel(tmp, &regs->HostCtrl);
1386 readl(&regs->HostCtrl);
1387 }
1388
1389 rrpriv->fw_running = 0;
1390
1391 del_timer_sync(&rrpriv->timer);
1392
1393 writel(0, &regs->TxPi);
1394 writel(0, &regs->IpRxPi);
1395
1396 writel(0, &regs->EvtCon);
1397 writel(0, &regs->EvtPrd);
1398
1399 for (i = 0; i < CMD_RING_ENTRIES; i++)
1400 writel(0, &regs->CmdRing[i]);
1401
1402 rrpriv->info->tx_ctrl.entries = 0;
1403 rrpriv->info->cmd_ctrl.pi = 0;
1404 rrpriv->info->evt_ctrl.pi = 0;
1405 rrpriv->rx_ctrl[4].entries = 0;
1406
1407 rr_raz_tx(rrpriv, dev);
1408 rr_raz_rx(rrpriv, dev);
1409
1410 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1411 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1412 rrpriv->rx_ctrl = NULL;
1413
1414 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1415 rrpriv->info, rrpriv->info_dma);
1416 rrpriv->info = NULL;
1417
1418 free_irq(dev->irq, dev);
1419 spin_unlock_irqrestore(&rrpriv->lock, flags);
1420
1421 return 0;
1422 }
1423
1424
1425 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1426 {
1427 struct rr_private *rrpriv = netdev_priv(dev);
1428 struct rr_regs __iomem *regs = rrpriv->regs;
1429 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1430 struct ring_ctrl *txctrl;
1431 unsigned long flags;
1432 u32 index, len = skb->len;
1433 u32 *ifield;
1434 struct sk_buff *new_skb;
1435
1436 if (readl(&regs->Mode) & FATAL_ERR)
1437 printk("error codes Fail1 %02x, Fail2 %02x\n",
1438 readl(&regs->Fail1), readl(&regs->Fail2));
1439
1440 /*
1441 * We probably need to deal with tbusy here to prevent overruns.
1442 */
1443
1444 if (skb_headroom(skb) < 8){
1445 printk("incoming skb too small - reallocating\n");
1446 if (!(new_skb = dev_alloc_skb(len + 8))) {
1447 dev_kfree_skb(skb);
1448 netif_wake_queue(dev);
1449 return -EBUSY;
1450 }
1451 skb_reserve(new_skb, 8);
1452 skb_put(new_skb, len);
1453 skb_copy_from_linear_data(skb, new_skb->data, len);
1454 dev_kfree_skb(skb);
1455 skb = new_skb;
1456 }
1457
1458 ifield = (u32 *)skb_push(skb, 8);
1459
1460 ifield[0] = 0;
1461 ifield[1] = hcb->ifield;
1462
1463 /*
1464 * We don't need the lock before we are actually going to start
1465 * fiddling with the control blocks.
1466 */
1467 spin_lock_irqsave(&rrpriv->lock, flags);
1468
1469 txctrl = &rrpriv->info->tx_ctrl;
1470
1471 index = txctrl->pi;
1472
1473 rrpriv->tx_skbuff[index] = skb;
1474 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1475 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1476 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1477 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1478 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1479 wmb();
1480 writel(txctrl->pi, &regs->TxPi);
1481
1482 if (txctrl->pi == rrpriv->dirty_tx){
1483 rrpriv->tx_full = 1;
1484 netif_stop_queue(dev);
1485 }
1486
1487 spin_unlock_irqrestore(&rrpriv->lock, flags);
1488
1489 dev->trans_start = jiffies;
1490 return 0;
1491 }
1492
1493
1494 static struct net_device_stats *rr_get_stats(struct net_device *dev)
1495 {
1496 struct rr_private *rrpriv;
1497
1498 rrpriv = netdev_priv(dev);
1499
1500 return(&rrpriv->stats);
1501 }
1502
1503
1504 /*
1505 * Read the firmware out of the EEPROM and put it into the SRAM
1506 * (or from user space - later)
1507 *
1508 * This operation requires the NIC to be halted and is performed with
1509 * interrupts disabled and with the spinlock hold.
1510 */
1511 static int rr_load_firmware(struct net_device *dev)
1512 {
1513 struct rr_private *rrpriv;
1514 struct rr_regs __iomem *regs;
1515 unsigned long eptr, segptr;
1516 int i, j;
1517 u32 localctrl, sptr, len, tmp;
1518 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1519 struct eeprom *hw = NULL;
1520
1521 rrpriv = netdev_priv(dev);
1522 regs = rrpriv->regs;
1523
1524 if (dev->flags & IFF_UP)
1525 return -EBUSY;
1526
1527 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1528 printk("%s: Trying to load firmware to a running NIC.\n",
1529 dev->name);
1530 return -EBUSY;
1531 }
1532
1533 localctrl = readl(&regs->LocalCtrl);
1534 writel(0, &regs->LocalCtrl);
1535
1536 writel(0, &regs->EvtPrd);
1537 writel(0, &regs->RxPrd);
1538 writel(0, &regs->TxPrd);
1539
1540 /*
1541 * First wipe the entire SRAM, otherwise we might run into all
1542 * kinds of trouble ... sigh, this took almost all afternoon
1543 * to track down ;-(
1544 */
1545 io = readl(&regs->ExtIo);
1546 writel(0, &regs->ExtIo);
1547 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1548
1549 for (i = 200; i < sram_size / 4; i++){
1550 writel(i * 4, &regs->WinBase);
1551 mb();
1552 writel(0, &regs->WinData);
1553 mb();
1554 }
1555 writel(io, &regs->ExtIo);
1556 mb();
1557
1558 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1559 &hw->rncd_info.AddrRunCodeSegs);
1560 eptr = ((eptr & 0x1fffff) >> 3);
1561
1562 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1563 p2len = (p2len << 2);
1564 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1565 p2size = ((p2size & 0x1fffff) >> 3);
1566
1567 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1568 printk("%s: eptr is invalid\n", dev->name);
1569 goto out;
1570 }
1571
1572 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1573
1574 if (revision != 1){
1575 printk("%s: invalid firmware format (%i)\n",
1576 dev->name, revision);
1577 goto out;
1578 }
1579
1580 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1581 eptr +=4;
1582 #if (DEBUG > 1)
1583 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1584 #endif
1585
1586 for (i = 0; i < nr_seg; i++){
1587 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1588 eptr += 4;
1589 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1590 eptr += 4;
1591 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1592 segptr = ((segptr & 0x1fffff) >> 3);
1593 eptr += 4;
1594 #if (DEBUG > 1)
1595 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1596 dev->name, i, sptr, len, segptr);
1597 #endif
1598 for (j = 0; j < len; j++){
1599 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1600 writel(sptr, &regs->WinBase);
1601 mb();
1602 writel(tmp, &regs->WinData);
1603 mb();
1604 segptr += 4;
1605 sptr += 4;
1606 }
1607 }
1608
1609 out:
1610 writel(localctrl, &regs->LocalCtrl);
1611 mb();
1612 return 0;
1613 }
1614
1615
1616 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1617 {
1618 struct rr_private *rrpriv;
1619 unsigned char *image, *oldimage;
1620 unsigned long flags;
1621 unsigned int i;
1622 int error = -EOPNOTSUPP;
1623
1624 rrpriv = netdev_priv(dev);
1625
1626 switch(cmd){
1627 case SIOCRRGFW:
1628 if (!capable(CAP_SYS_RAWIO)){
1629 return -EPERM;
1630 }
1631
1632 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1633 if (!image){
1634 printk(KERN_ERR "%s: Unable to allocate memory "
1635 "for EEPROM image\n", dev->name);
1636 return -ENOMEM;
1637 }
1638
1639
1640 if (rrpriv->fw_running){
1641 printk("%s: Firmware already running\n", dev->name);
1642 error = -EPERM;
1643 goto gf_out;
1644 }
1645
1646 spin_lock_irqsave(&rrpriv->lock, flags);
1647 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1648 spin_unlock_irqrestore(&rrpriv->lock, flags);
1649 if (i != EEPROM_BYTES){
1650 printk(KERN_ERR "%s: Error reading EEPROM\n",
1651 dev->name);
1652 error = -EFAULT;
1653 goto gf_out;
1654 }
1655 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1656 if (error)
1657 error = -EFAULT;
1658 gf_out:
1659 kfree(image);
1660 return error;
1661
1662 case SIOCRRPFW:
1663 if (!capable(CAP_SYS_RAWIO)){
1664 return -EPERM;
1665 }
1666
1667 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1668 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1669 if (!image || !oldimage) {
1670 printk(KERN_ERR "%s: Unable to allocate memory "
1671 "for EEPROM image\n", dev->name);
1672 error = -ENOMEM;
1673 goto wf_out;
1674 }
1675
1676 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1677 if (error) {
1678 error = -EFAULT;
1679 goto wf_out;
1680 }
1681
1682 if (rrpriv->fw_running){
1683 printk("%s: Firmware already running\n", dev->name);
1684 error = -EPERM;
1685 goto wf_out;
1686 }
1687
1688 printk("%s: Updating EEPROM firmware\n", dev->name);
1689
1690 spin_lock_irqsave(&rrpriv->lock, flags);
1691 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1692 if (error)
1693 printk(KERN_ERR "%s: Error writing EEPROM\n",
1694 dev->name);
1695
1696 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1697 spin_unlock_irqrestore(&rrpriv->lock, flags);
1698
1699 if (i != EEPROM_BYTES)
1700 printk(KERN_ERR "%s: Error reading back EEPROM "
1701 "image\n", dev->name);
1702
1703 error = memcmp(image, oldimage, EEPROM_BYTES);
1704 if (error){
1705 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1706 dev->name);
1707 error = -EFAULT;
1708 }
1709 wf_out:
1710 kfree(oldimage);
1711 kfree(image);
1712 return error;
1713
1714 case SIOCRRID:
1715 return put_user(0x52523032, (int __user *)rq->ifr_data);
1716 default:
1717 return error;
1718 }
1719 }
1720
1721 static struct pci_device_id rr_pci_tbl[] = {
1722 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1723 PCI_ANY_ID, PCI_ANY_ID, },
1724 { 0,}
1725 };
1726 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1727
1728 static struct pci_driver rr_driver = {
1729 .name = "rrunner",
1730 .id_table = rr_pci_tbl,
1731 .probe = rr_init_one,
1732 .remove = __devexit_p(rr_remove_one),
1733 };
1734
1735 static int __init rr_init_module(void)
1736 {
1737 return pci_register_driver(&rr_driver);
1738 }
1739
1740 static void __exit rr_cleanup_module(void)
1741 {
1742 pci_unregister_driver(&rr_driver);
1743 }
1744
1745 module_init(rr_init_module);
1746 module_exit(rr_cleanup_module);
1747
1748 /*
1749 * Local variables:
1750 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1751 * End:
1752 */
This page took 0.068074 seconds and 6 git commands to generate.