forcedeth: correct valid flag
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <linux/slab.h>
83 #include <net/tcp.h>
84
85 #include <asm/system.h>
86 #include <asm/div64.h>
87 #include <asm/irq.h>
88
89 /* local include */
90 #include "s2io.h"
91 #include "s2io-regs.h"
92
93 #define DRV_VERSION "2.0.26.26"
94
95 /* S2io Driver name & version. */
96 static char s2io_driver_name[] = "Neterion";
97 static char s2io_driver_version[] = DRV_VERSION;
98
99 static int rxd_size[2] = {32, 48};
100 static int rxd_count[2] = {127, 85};
101
102 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 {
104 int ret;
105
106 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
107 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108
109 return ret;
110 }
111
112 /*
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
116 */
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124
125 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 {
127 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 }
129
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
137 };
138
139 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
140 {"tmac_frms"},
141 {"tmac_data_octets"},
142 {"tmac_drop_frms"},
143 {"tmac_mcst_frms"},
144 {"tmac_bcst_frms"},
145 {"tmac_pause_ctrl_frms"},
146 {"tmac_ttl_octets"},
147 {"tmac_ucst_frms"},
148 {"tmac_nucst_frms"},
149 {"tmac_any_err_frms"},
150 {"tmac_ttl_less_fb_octets"},
151 {"tmac_vld_ip_octets"},
152 {"tmac_vld_ip"},
153 {"tmac_drop_ip"},
154 {"tmac_icmp"},
155 {"tmac_rst_tcp"},
156 {"tmac_tcp"},
157 {"tmac_udp"},
158 {"rmac_vld_frms"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
161 {"rmac_drop_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
165 {"rmac_out_rng_len_err_frms"},
166 {"rmac_long_frms"},
167 {"rmac_pause_ctrl_frms"},
168 {"rmac_unsup_ctrl_frms"},
169 {"rmac_ttl_octets"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
172 {"rmac_discarded_frms"},
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
175 {"rmac_ttl_frms"},
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
178 {"rmac_frag_frms"},
179 {"rmac_jabber_frms"},
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
186 {"rmac_ip"},
187 {"rmac_ip_octets"},
188 {"rmac_hdr_err_ip"},
189 {"rmac_drop_ip"},
190 {"rmac_icmp"},
191 {"rmac_tcp"},
192 {"rmac_udp"},
193 {"rmac_err_drp_udp"},
194 {"rmac_xgmii_err_sym"},
195 {"rmac_frms_q0"},
196 {"rmac_frms_q1"},
197 {"rmac_frms_q2"},
198 {"rmac_frms_q3"},
199 {"rmac_frms_q4"},
200 {"rmac_frms_q5"},
201 {"rmac_frms_q6"},
202 {"rmac_frms_q7"},
203 {"rmac_full_q0"},
204 {"rmac_full_q1"},
205 {"rmac_full_q2"},
206 {"rmac_full_q3"},
207 {"rmac_full_q4"},
208 {"rmac_full_q5"},
209 {"rmac_full_q6"},
210 {"rmac_full_q7"},
211 {"rmac_pause_cnt"},
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
214 {"rmac_accepted_ip"},
215 {"rmac_err_tcp"},
216 {"rd_req_cnt"},
217 {"new_rd_req_cnt"},
218 {"new_rd_req_rtry_cnt"},
219 {"rd_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
221 {"wr_req_cnt"},
222 {"new_wr_req_cnt"},
223 {"new_wr_req_rtry_cnt"},
224 {"wr_rtry_cnt"},
225 {"wr_disc_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
227 {"txp_wr_cnt"},
228 {"txd_rd_cnt"},
229 {"txd_wr_cnt"},
230 {"rxd_rd_cnt"},
231 {"rxd_wr_cnt"},
232 {"txf_rd_cnt"},
233 {"rxf_wr_cnt"}
234 };
235
236 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
244 {"rmac_vlan_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
247 {"rmac_pf_discard"},
248 {"rmac_da_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
252 {"link_fault_cnt"}
253 };
254
255 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
259 {"parity_err_cnt"},
260 {"serious_err_cnt"},
261 {"soft_reset_cnt"},
262 {"fifo_full_cnt"},
263 {"ring_0_full_cnt"},
264 {"ring_1_full_cnt"},
265 {"ring_2_full_cnt"},
266 {"ring_3_full_cnt"},
267 {"ring_4_full_cnt"},
268 {"ring_5_full_cnt"},
269 {"ring_6_full_cnt"},
270 {"ring_7_full_cnt"},
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
291 {"mem_allocated"},
292 {"mem_freed"},
293 {"link_up_cnt"},
294 {"link_down_cnt"},
295 {"link_up_time"},
296 {"link_down_time"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
311 {"tda_err_cnt"},
312 {"pfc_err_cnt"},
313 {"pcc_err_cnt"},
314 {"tti_err_cnt"},
315 {"tpa_err_cnt"},
316 {"sm_err_cnt"},
317 {"lso_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
322 {"rc_err_cnt"},
323 {"prc_pcix_err_cnt"},
324 {"rpa_err_cnt"},
325 {"rda_err_cnt"},
326 {"rti_err_cnt"},
327 {"mc_err_cnt"}
328 };
329
330 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339
340 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
348
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 {
352 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 }
359
360 /* Add the vlan */
361 static void s2io_vlan_rx_register(struct net_device *dev,
362 struct vlan_group *grp)
363 {
364 int i;
365 struct s2io_nic *nic = netdev_priv(dev);
366 unsigned long flags[MAX_TX_FIFOS];
367 struct config_param *config = &nic->config;
368 struct mac_info *mac_control = &nic->mac_control;
369
370 for (i = 0; i < config->tx_fifo_num; i++) {
371 struct fifo_info *fifo = &mac_control->fifos[i];
372
373 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374 }
375
376 nic->vlgrp = grp;
377
378 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379 struct fifo_info *fifo = &mac_control->fifos[i];
380
381 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382 }
383 }
384
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 {
388 int i;
389 struct s2io_nic *nic = netdev_priv(dev);
390 unsigned long flags[MAX_TX_FIFOS];
391 struct config_param *config = &nic->config;
392 struct mac_info *mac_control = &nic->mac_control;
393
394 for (i = 0; i < config->tx_fifo_num; i++) {
395 struct fifo_info *fifo = &mac_control->fifos[i];
396
397 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398 }
399
400 if (nic->vlgrp)
401 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
403 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404 struct fifo_info *fifo = &mac_control->fifos[i];
405
406 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407 }
408 }
409
410 /*
411 * Constants to be programmed into the Xena's registers, to configure
412 * the XAUI.
413 */
414
415 #define END_SIGN 0x0
416 static const u64 herc_act_dtx_cfg[] = {
417 /* Set address */
418 0x8000051536750000ULL, 0x80000515367500E0ULL,
419 /* Write data */
420 0x8000051536750004ULL, 0x80000515367500E4ULL,
421 /* Set address */
422 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423 /* Write data */
424 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425 /* Set address */
426 0x801205150D440000ULL, 0x801205150D4400E0ULL,
427 /* Write data */
428 0x801205150D440004ULL, 0x801205150D4400E4ULL,
429 /* Set address */
430 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431 /* Write data */
432 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433 /* Done */
434 END_SIGN
435 };
436
437 static const u64 xena_dtx_cfg[] = {
438 /* Set address */
439 0x8000051500000000ULL, 0x80000515000000E0ULL,
440 /* Write data */
441 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442 /* Set address */
443 0x8001051500000000ULL, 0x80010515000000E0ULL,
444 /* Write data */
445 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446 /* Set address */
447 0x8002051500000000ULL, 0x80020515000000E0ULL,
448 /* Write data */
449 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
450 END_SIGN
451 };
452
453 /*
454 * Constants for Fixing the MacAddress problem seen mostly on
455 * Alpha machines.
456 */
457 static const u64 fix_mac[] = {
458 0x0060000000000000ULL, 0x0060600000000000ULL,
459 0x0040600000000000ULL, 0x0000600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0000600000000000ULL,
471 0x0040600000000000ULL, 0x0060600000000000ULL,
472 END_SIGN
473 };
474
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION);
477
478
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
481 S2IO_PARM_INT(rx_ring_num, 1);
482 S2IO_PARM_INT(multiq, 0);
483 S2IO_PARM_INT(rx_ring_mode, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485 S2IO_PARM_INT(rmac_pause_time, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488 S2IO_PARM_INT(shared_splits, 0);
489 S2IO_PARM_INT(tmac_util_period, 5);
490 S2IO_PARM_INT(rmac_util_period, 5);
491 S2IO_PARM_INT(l3l4hdr_size, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable = 1;
500 module_param_named(lro, lro_enable, uint, 0);
501
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
504 */
505 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts, 0);
507
508 S2IO_PARM_INT(napi, 1);
509 S2IO_PARM_INT(ufo, 0);
510 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511
512 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
513 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
514 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
515 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
516 static unsigned int rts_frm_len[MAX_RX_RINGS] =
517 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518
519 module_param_array(tx_fifo_len, uint, NULL, 0);
520 module_param_array(rx_ring_sz, uint, NULL, 0);
521 module_param_array(rts_frm_len, uint, NULL, 0);
522
523 /*
524 * S2IO device table.
525 * This table lists all the devices that this driver supports.
526 */
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
528 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529 PCI_ANY_ID, PCI_ANY_ID},
530 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531 PCI_ANY_ID, PCI_ANY_ID},
532 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
533 PCI_ANY_ID, PCI_ANY_ID},
534 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535 PCI_ANY_ID, PCI_ANY_ID},
536 {0,}
537 };
538
539 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
541 static struct pci_error_handlers s2io_err_handler = {
542 .error_detected = s2io_io_error_detected,
543 .slot_reset = s2io_io_slot_reset,
544 .resume = s2io_io_resume,
545 };
546
547 static struct pci_driver s2io_driver = {
548 .name = "S2IO",
549 .id_table = s2io_tbl,
550 .probe = s2io_init_nic,
551 .remove = __devexit_p(s2io_rem_nic),
552 .err_handler = &s2io_err_handler,
553 };
554
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 {
561 if (!sp->config.multiq) {
562 int i;
563
564 for (i = 0; i < sp->config.tx_fifo_num; i++)
565 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566 }
567 netif_tx_stop_all_queues(sp->dev);
568 }
569
570 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 {
572 if (!sp->config.multiq)
573 sp->mac_control.fifos[fifo_no].queue_state =
574 FIFO_QUEUE_STOP;
575
576 netif_tx_stop_all_queues(sp->dev);
577 }
578
579 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 {
581 if (!sp->config.multiq) {
582 int i;
583
584 for (i = 0; i < sp->config.tx_fifo_num; i++)
585 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586 }
587 netif_tx_start_all_queues(sp->dev);
588 }
589
590 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 {
592 if (!sp->config.multiq)
593 sp->mac_control.fifos[fifo_no].queue_state =
594 FIFO_QUEUE_START;
595
596 netif_tx_start_all_queues(sp->dev);
597 }
598
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 {
601 if (!sp->config.multiq) {
602 int i;
603
604 for (i = 0; i < sp->config.tx_fifo_num; i++)
605 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606 }
607 netif_tx_wake_all_queues(sp->dev);
608 }
609
610 static inline void s2io_wake_tx_queue(
611 struct fifo_info *fifo, int cnt, u8 multiq)
612 {
613
614 if (multiq) {
615 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
617 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
618 if (netif_queue_stopped(fifo->dev)) {
619 fifo->queue_state = FIFO_QUEUE_START;
620 netif_wake_queue(fifo->dev);
621 }
622 }
623 }
624
625 /**
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
630 * Rx descriptors and the statistics block.
631 */
632
633 static int init_shared_mem(struct s2io_nic *nic)
634 {
635 u32 size;
636 void *tmp_v_addr, *tmp_v_addr_next;
637 dma_addr_t tmp_p_addr, tmp_p_addr_next;
638 struct RxD_block *pre_rxd_blk = NULL;
639 int i, j, blk_cnt;
640 int lst_size, lst_per_page;
641 struct net_device *dev = nic->dev;
642 unsigned long tmp;
643 struct buffAdd *ba;
644 struct config_param *config = &nic->config;
645 struct mac_info *mac_control = &nic->mac_control;
646 unsigned long long mem_allocated = 0;
647
648 /* Allocation and initialization of TXDLs in FIFOs */
649 size = 0;
650 for (i = 0; i < config->tx_fifo_num; i++) {
651 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653 size += tx_cfg->fifo_len;
654 }
655 if (size > MAX_AVAILABLE_TXDS) {
656 DBG_PRINT(ERR_DBG,
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size, MAX_AVAILABLE_TXDS);
659 return -EINVAL;
660 }
661
662 size = 0;
663 for (i = 0; i < config->tx_fifo_num; i++) {
664 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666 size = tx_cfg->fifo_len;
667 /*
668 * Legal values are from 2 to 8192
669 */
670 if (size < 2) {
671 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
673 i, size);
674 return -EINVAL;
675 }
676 }
677
678 lst_size = (sizeof(struct TxD) * config->max_txds);
679 lst_per_page = PAGE_SIZE / lst_size;
680
681 for (i = 0; i < config->tx_fifo_num; i++) {
682 struct fifo_info *fifo = &mac_control->fifos[i];
683 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684 int fifo_len = tx_cfg->fifo_len;
685 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
686
687 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688 if (!fifo->list_info) {
689 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690 return -ENOMEM;
691 }
692 mem_allocated += list_holder_size;
693 }
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696 lst_per_page);
697 struct fifo_info *fifo = &mac_control->fifos[i];
698 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700 fifo->tx_curr_put_info.offset = 0;
701 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702 fifo->tx_curr_get_info.offset = 0;
703 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704 fifo->fifo_no = i;
705 fifo->nic = nic;
706 fifo->max_txds = MAX_SKB_FRAGS + 2;
707 fifo->dev = dev;
708
709 for (j = 0; j < page_num; j++) {
710 int k = 0;
711 dma_addr_t tmp_p;
712 void *tmp_v;
713 tmp_v = pci_alloc_consistent(nic->pdev,
714 PAGE_SIZE, &tmp_p);
715 if (!tmp_v) {
716 DBG_PRINT(INFO_DBG,
717 "pci_alloc_consistent failed for TxDL\n");
718 return -ENOMEM;
719 }
720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
723 * to be freed later.
724 */
725 if (!tmp_p) {
726 mac_control->zerodma_virt_addr = tmp_v;
727 DBG_PRINT(INIT_DBG,
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
730 dev->name, tmp_v);
731 tmp_v = pci_alloc_consistent(nic->pdev,
732 PAGE_SIZE, &tmp_p);
733 if (!tmp_v) {
734 DBG_PRINT(INFO_DBG,
735 "pci_alloc_consistent failed for TxDL\n");
736 return -ENOMEM;
737 }
738 mem_allocated += PAGE_SIZE;
739 }
740 while (k < lst_per_page) {
741 int l = (j * lst_per_page) + k;
742 if (l == tx_cfg->fifo_len)
743 break;
744 fifo->list_info[l].list_virt_addr =
745 tmp_v + (k * lst_size);
746 fifo->list_info[l].list_phy_addr =
747 tmp_p + (k * lst_size);
748 k++;
749 }
750 }
751 }
752
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 struct fifo_info *fifo = &mac_control->fifos[i];
755 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757 size = tx_cfg->fifo_len;
758 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759 if (!fifo->ufo_in_band_v)
760 return -ENOMEM;
761 mem_allocated += (size * sizeof(u64));
762 }
763
764 /* Allocation and initialization of RXDs in Rings */
765 size = 0;
766 for (i = 0; i < config->rx_ring_num; i++) {
767 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768 struct ring_info *ring = &mac_control->rings[i];
769
770 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
771 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
773 dev->name, i);
774 return FAILURE;
775 }
776 size += rx_cfg->num_rxd;
777 ring->block_count = rx_cfg->num_rxd /
778 (rxd_count[nic->rxd_mode] + 1);
779 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
780 }
781 if (nic->rxd_mode == RXD_MODE_1)
782 size = (size * (sizeof(struct RxD1)));
783 else
784 size = (size * (sizeof(struct RxD3)));
785
786 for (i = 0; i < config->rx_ring_num; i++) {
787 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788 struct ring_info *ring = &mac_control->rings[i];
789
790 ring->rx_curr_get_info.block_index = 0;
791 ring->rx_curr_get_info.offset = 0;
792 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793 ring->rx_curr_put_info.block_index = 0;
794 ring->rx_curr_put_info.offset = 0;
795 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796 ring->nic = nic;
797 ring->ring_no = i;
798
799 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
800 /* Allocating all the Rx blocks */
801 for (j = 0; j < blk_cnt; j++) {
802 struct rx_block_info *rx_blocks;
803 int l;
804
805 rx_blocks = &ring->rx_blocks[j];
806 size = SIZE_OF_BLOCK; /* size is always page size */
807 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808 &tmp_p_addr);
809 if (tmp_v_addr == NULL) {
810 /*
811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
814 * failure happened.
815 */
816 rx_blocks->block_virt_addr = tmp_v_addr;
817 return -ENOMEM;
818 }
819 mem_allocated += size;
820 memset(tmp_v_addr, 0, size);
821
822 size = sizeof(struct rxd_info) *
823 rxd_count[nic->rxd_mode];
824 rx_blocks->block_virt_addr = tmp_v_addr;
825 rx_blocks->block_dma_addr = tmp_p_addr;
826 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
827 if (!rx_blocks->rxds)
828 return -ENOMEM;
829 mem_allocated += size;
830 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
831 rx_blocks->rxds[l].virt_addr =
832 rx_blocks->block_virt_addr +
833 (rxd_size[nic->rxd_mode] * l);
834 rx_blocks->rxds[l].dma_addr =
835 rx_blocks->block_dma_addr +
836 (rxd_size[nic->rxd_mode] * l);
837 }
838 }
839 /* Interlinking all Rx Blocks */
840 for (j = 0; j < blk_cnt; j++) {
841 int next = (j + 1) % blk_cnt;
842 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
846
847 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
848 pre_rxd_blk->reserved_2_pNext_RxD_block =
849 (unsigned long)tmp_v_addr_next;
850 pre_rxd_blk->pNext_RxD_Blk_physical =
851 (u64)tmp_p_addr_next;
852 }
853 }
854 if (nic->rxd_mode == RXD_MODE_3B) {
855 /*
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
858 */
859 for (i = 0; i < config->rx_ring_num; i++) {
860 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861 struct ring_info *ring = &mac_control->rings[i];
862
863 blk_cnt = rx_cfg->num_rxd /
864 (rxd_count[nic->rxd_mode] + 1);
865 size = sizeof(struct buffAdd *) * blk_cnt;
866 ring->ba = kmalloc(size, GFP_KERNEL);
867 if (!ring->ba)
868 return -ENOMEM;
869 mem_allocated += size;
870 for (j = 0; j < blk_cnt; j++) {
871 int k = 0;
872
873 size = sizeof(struct buffAdd) *
874 (rxd_count[nic->rxd_mode] + 1);
875 ring->ba[j] = kmalloc(size, GFP_KERNEL);
876 if (!ring->ba[j])
877 return -ENOMEM;
878 mem_allocated += size;
879 while (k != rxd_count[nic->rxd_mode]) {
880 ba = &ring->ba[j][k];
881 size = BUF0_LEN + ALIGN_SIZE;
882 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
883 if (!ba->ba_0_org)
884 return -ENOMEM;
885 mem_allocated += size;
886 tmp = (unsigned long)ba->ba_0_org;
887 tmp += ALIGN_SIZE;
888 tmp &= ~((unsigned long)ALIGN_SIZE);
889 ba->ba_0 = (void *)tmp;
890
891 size = BUF1_LEN + ALIGN_SIZE;
892 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
893 if (!ba->ba_1_org)
894 return -ENOMEM;
895 mem_allocated += size;
896 tmp = (unsigned long)ba->ba_1_org;
897 tmp += ALIGN_SIZE;
898 tmp &= ~((unsigned long)ALIGN_SIZE);
899 ba->ba_1 = (void *)tmp;
900 k++;
901 }
902 }
903 }
904 }
905
906 /* Allocation and initialization of Statistics block */
907 size = sizeof(struct stat_block);
908 mac_control->stats_mem =
909 pci_alloc_consistent(nic->pdev, size,
910 &mac_control->stats_mem_phy);
911
912 if (!mac_control->stats_mem) {
913 /*
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
916 * failure happened.
917 */
918 return -ENOMEM;
919 }
920 mem_allocated += size;
921 mac_control->stats_mem_sz = size;
922
923 tmp_v_addr = mac_control->stats_mem;
924 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
925 memset(tmp_v_addr, 0, size);
926 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
927 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
928 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
929 return SUCCESS;
930 }
931
932 /**
933 * free_shared_mem - Free the allocated Memory
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
937 */
938
939 static void free_shared_mem(struct s2io_nic *nic)
940 {
941 int i, j, blk_cnt, size;
942 void *tmp_v_addr;
943 dma_addr_t tmp_p_addr;
944 int lst_size, lst_per_page;
945 struct net_device *dev;
946 int page_num = 0;
947 struct config_param *config;
948 struct mac_info *mac_control;
949 struct stat_block *stats;
950 struct swStat *swstats;
951
952 if (!nic)
953 return;
954
955 dev = nic->dev;
956
957 config = &nic->config;
958 mac_control = &nic->mac_control;
959 stats = mac_control->stats_info;
960 swstats = &stats->sw_stat;
961
962 lst_size = sizeof(struct TxD) * config->max_txds;
963 lst_per_page = PAGE_SIZE / lst_size;
964
965 for (i = 0; i < config->tx_fifo_num; i++) {
966 struct fifo_info *fifo = &mac_control->fifos[i];
967 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
970 for (j = 0; j < page_num; j++) {
971 int mem_blks = (j * lst_per_page);
972 struct list_info_hold *fli;
973
974 if (!fifo->list_info)
975 return;
976
977 fli = &fifo->list_info[mem_blks];
978 if (!fli->list_virt_addr)
979 break;
980 pci_free_consistent(nic->pdev, PAGE_SIZE,
981 fli->list_virt_addr,
982 fli->list_phy_addr);
983 swstats->mem_freed += PAGE_SIZE;
984 }
985 /* If we got a zero DMA address during allocation,
986 * free the page now
987 */
988 if (mac_control->zerodma_virt_addr) {
989 pci_free_consistent(nic->pdev, PAGE_SIZE,
990 mac_control->zerodma_virt_addr,
991 (dma_addr_t)0);
992 DBG_PRINT(INIT_DBG,
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev->name, mac_control->zerodma_virt_addr);
996 swstats->mem_freed += PAGE_SIZE;
997 }
998 kfree(fifo->list_info);
999 swstats->mem_freed += tx_cfg->fifo_len *
1000 sizeof(struct list_info_hold);
1001 }
1002
1003 size = SIZE_OF_BLOCK;
1004 for (i = 0; i < config->rx_ring_num; i++) {
1005 struct ring_info *ring = &mac_control->rings[i];
1006
1007 blk_cnt = ring->block_count;
1008 for (j = 0; j < blk_cnt; j++) {
1009 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1011 if (tmp_v_addr == NULL)
1012 break;
1013 pci_free_consistent(nic->pdev, size,
1014 tmp_v_addr, tmp_p_addr);
1015 swstats->mem_freed += size;
1016 kfree(ring->rx_blocks[j].rxds);
1017 swstats->mem_freed += sizeof(struct rxd_info) *
1018 rxd_count[nic->rxd_mode];
1019 }
1020 }
1021
1022 if (nic->rxd_mode == RXD_MODE_3B) {
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i = 0; i < config->rx_ring_num; i++) {
1025 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026 struct ring_info *ring = &mac_control->rings[i];
1027
1028 blk_cnt = rx_cfg->num_rxd /
1029 (rxd_count[nic->rxd_mode] + 1);
1030 for (j = 0; j < blk_cnt; j++) {
1031 int k = 0;
1032 if (!ring->ba[j])
1033 continue;
1034 while (k != rxd_count[nic->rxd_mode]) {
1035 struct buffAdd *ba = &ring->ba[j][k];
1036 kfree(ba->ba_0_org);
1037 swstats->mem_freed +=
1038 BUF0_LEN + ALIGN_SIZE;
1039 kfree(ba->ba_1_org);
1040 swstats->mem_freed +=
1041 BUF1_LEN + ALIGN_SIZE;
1042 k++;
1043 }
1044 kfree(ring->ba[j]);
1045 swstats->mem_freed += sizeof(struct buffAdd) *
1046 (rxd_count[nic->rxd_mode] + 1);
1047 }
1048 kfree(ring->ba);
1049 swstats->mem_freed += sizeof(struct buffAdd *) *
1050 blk_cnt;
1051 }
1052 }
1053
1054 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1055 struct fifo_info *fifo = &mac_control->fifos[i];
1056 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058 if (fifo->ufo_in_band_v) {
1059 swstats->mem_freed += tx_cfg->fifo_len *
1060 sizeof(u64);
1061 kfree(fifo->ufo_in_band_v);
1062 }
1063 }
1064
1065 if (mac_control->stats_mem) {
1066 swstats->mem_freed += mac_control->stats_mem_sz;
1067 pci_free_consistent(nic->pdev,
1068 mac_control->stats_mem_sz,
1069 mac_control->stats_mem,
1070 mac_control->stats_mem_phy);
1071 }
1072 }
1073
1074 /**
1075 * s2io_verify_pci_mode -
1076 */
1077
1078 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1079 {
1080 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1081 register u64 val64 = 0;
1082 int mode;
1083
1084 val64 = readq(&bar0->pci_mode);
1085 mode = (u8)GET_PCI_MODE(val64);
1086
1087 if (val64 & PCI_MODE_UNKNOWN_MODE)
1088 return -1; /* Unknown PCI mode */
1089 return mode;
1090 }
1091
1092 #define NEC_VENID 0x1033
1093 #define NEC_DEVID 0x0125
1094 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095 {
1096 struct pci_dev *tdev = NULL;
1097 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1099 if (tdev->bus == s2io_pdev->bus->parent) {
1100 pci_dev_put(tdev);
1101 return 1;
1102 }
1103 }
1104 }
1105 return 0;
1106 }
1107
1108 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1109 /**
1110 * s2io_print_pci_mode -
1111 */
1112 static int s2io_print_pci_mode(struct s2io_nic *nic)
1113 {
1114 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1115 register u64 val64 = 0;
1116 int mode;
1117 struct config_param *config = &nic->config;
1118 const char *pcimode;
1119
1120 val64 = readq(&bar0->pci_mode);
1121 mode = (u8)GET_PCI_MODE(val64);
1122
1123 if (val64 & PCI_MODE_UNKNOWN_MODE)
1124 return -1; /* Unknown PCI mode */
1125
1126 config->bus_speed = bus_speed[mode];
1127
1128 if (s2io_on_nec_bridge(nic->pdev)) {
1129 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1130 nic->dev->name);
1131 return mode;
1132 }
1133
1134 switch (mode) {
1135 case PCI_MODE_PCI_33:
1136 pcimode = "33MHz PCI bus";
1137 break;
1138 case PCI_MODE_PCI_66:
1139 pcimode = "66MHz PCI bus";
1140 break;
1141 case PCI_MODE_PCIX_M1_66:
1142 pcimode = "66MHz PCIX(M1) bus";
1143 break;
1144 case PCI_MODE_PCIX_M1_100:
1145 pcimode = "100MHz PCIX(M1) bus";
1146 break;
1147 case PCI_MODE_PCIX_M1_133:
1148 pcimode = "133MHz PCIX(M1) bus";
1149 break;
1150 case PCI_MODE_PCIX_M2_66:
1151 pcimode = "133MHz PCIX(M2) bus";
1152 break;
1153 case PCI_MODE_PCIX_M2_100:
1154 pcimode = "200MHz PCIX(M2) bus";
1155 break;
1156 case PCI_MODE_PCIX_M2_133:
1157 pcimode = "266MHz PCIX(M2) bus";
1158 break;
1159 default:
1160 pcimode = "unsupported bus!";
1161 mode = -1;
1162 }
1163
1164 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
1167 return mode;
1168 }
1169
1170 /**
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1177 * '-1' on failure
1178 */
1179
1180 static int init_tti(struct s2io_nic *nic, int link)
1181 {
1182 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183 register u64 val64 = 0;
1184 int i;
1185 struct config_param *config = &nic->config;
1186
1187 for (i = 0; i < config->tx_fifo_num; i++) {
1188 /*
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1191 * by default.
1192 */
1193 if (nic->device_type == XFRAME_II_DEVICE) {
1194 int count = (nic->config.bus_speed * 125)/2;
1195 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196 } else
1197 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1203 if (i == 0)
1204 if (use_continuous_tx_intrs && (link == LINK_UP))
1205 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1206 writeq(val64, &bar0->tti_data1_mem);
1207
1208 if (nic->config.intr_type == MSI_X) {
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213 } else {
1214 if ((nic->config.tx_steering_type ==
1215 TX_DEFAULT_STEERING) &&
1216 (config->tx_fifo_num > 1) &&
1217 (i >= nic->udp_fifo_idx) &&
1218 (i < (nic->udp_fifo_idx +
1219 nic->total_udp_fifos)))
1220 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1224 else
1225 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1229 }
1230
1231 writeq(val64, &bar0->tti_data2_mem);
1232
1233 val64 = TTI_CMD_MEM_WE |
1234 TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
1236 writeq(val64, &bar0->tti_command_mem);
1237
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1239 TTI_CMD_MEM_STROBE_NEW_CMD,
1240 S2IO_BIT_RESET) != SUCCESS)
1241 return FAILURE;
1242 }
1243
1244 return SUCCESS;
1245 }
1246
1247 /**
1248 * init_nic - Initialization of hardware
1249 * @nic: device private variable
1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1253 * '-1' on failure (endian settings incorrect).
1254 */
1255
1256 static int init_nic(struct s2io_nic *nic)
1257 {
1258 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1259 struct net_device *dev = nic->dev;
1260 register u64 val64 = 0;
1261 void __iomem *add;
1262 u32 time;
1263 int i, j;
1264 int dtx_cnt = 0;
1265 unsigned long long mem_share;
1266 int mem_size;
1267 struct config_param *config = &nic->config;
1268 struct mac_info *mac_control = &nic->mac_control;
1269
1270 /* to set the swapper controle on the card */
1271 if (s2io_set_swapper(nic)) {
1272 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1273 return -EIO;
1274 }
1275
1276 /*
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1278 */
1279 if (nic->device_type & XFRAME_II_DEVICE) {
1280 val64 = 0xA500000000ULL;
1281 writeq(val64, &bar0->sw_reset);
1282 msleep(500);
1283 val64 = readq(&bar0->sw_reset);
1284 }
1285
1286 /* Remove XGXS from reset state */
1287 val64 = 0;
1288 writeq(val64, &bar0->sw_reset);
1289 msleep(500);
1290 val64 = readq(&bar0->sw_reset);
1291
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294 */
1295 if (nic->device_type == XFRAME_II_DEVICE) {
1296 for (i = 0; i < 50; i++) {
1297 val64 = readq(&bar0->adapter_status);
1298 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299 break;
1300 msleep(10);
1301 }
1302 if (i == 50)
1303 return -ENODEV;
1304 }
1305
1306 /* Enable Receiving broadcasts */
1307 add = &bar0->mac_cfg;
1308 val64 = readq(&bar0->mac_cfg);
1309 val64 |= MAC_RMAC_BCAST_ENABLE;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1311 writel((u32)val64, add);
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) (val64 >> 32), (add + 4));
1314
1315 /* Read registers in all blocks */
1316 val64 = readq(&bar0->mac_int_mask);
1317 val64 = readq(&bar0->mc_int_mask);
1318 val64 = readq(&bar0->xgxs_int_mask);
1319
1320 /* Set MTU */
1321 val64 = dev->mtu;
1322 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
1324 if (nic->device_type & XFRAME_II_DEVICE) {
1325 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1327 &bar0->dtx_control, UF);
1328 if (dtx_cnt & 0x1)
1329 msleep(1); /* Necessary!! */
1330 dtx_cnt++;
1331 }
1332 } else {
1333 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335 &bar0->dtx_control, UF);
1336 val64 = readq(&bar0->dtx_control);
1337 dtx_cnt++;
1338 }
1339 }
1340
1341 /* Tx DMA Initialization */
1342 val64 = 0;
1343 writeq(val64, &bar0->tx_fifo_partition_0);
1344 writeq(val64, &bar0->tx_fifo_partition_1);
1345 writeq(val64, &bar0->tx_fifo_partition_2);
1346 writeq(val64, &bar0->tx_fifo_partition_3);
1347
1348 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1349 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1353
1354 if (i == (config->tx_fifo_num - 1)) {
1355 if (i % 2 == 0)
1356 i++;
1357 }
1358
1359 switch (i) {
1360 case 1:
1361 writeq(val64, &bar0->tx_fifo_partition_0);
1362 val64 = 0;
1363 j = 0;
1364 break;
1365 case 3:
1366 writeq(val64, &bar0->tx_fifo_partition_1);
1367 val64 = 0;
1368 j = 0;
1369 break;
1370 case 5:
1371 writeq(val64, &bar0->tx_fifo_partition_2);
1372 val64 = 0;
1373 j = 0;
1374 break;
1375 case 7:
1376 writeq(val64, &bar0->tx_fifo_partition_3);
1377 val64 = 0;
1378 j = 0;
1379 break;
1380 default:
1381 j++;
1382 break;
1383 }
1384 }
1385
1386 /*
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389 */
1390 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1391 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1393 val64 = readq(&bar0->tx_fifo_partition_0);
1394 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1395 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1396
1397 /*
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1399 * integrity checking.
1400 */
1401 val64 = readq(&bar0->tx_pa_cfg);
1402 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403 TX_PA_CFG_IGNORE_SNAP_OUI |
1404 TX_PA_CFG_IGNORE_LLC_CTRL |
1405 TX_PA_CFG_IGNORE_L2_ERR;
1406 writeq(val64, &bar0->tx_pa_cfg);
1407
1408 /* Rx DMA intialization. */
1409 val64 = 0;
1410 for (i = 0; i < config->rx_ring_num; i++) {
1411 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1414 }
1415 writeq(val64, &bar0->rx_queue_priority);
1416
1417 /*
1418 * Allocating equal share of memory to all the
1419 * configured Rings.
1420 */
1421 val64 = 0;
1422 if (nic->device_type & XFRAME_II_DEVICE)
1423 mem_size = 32;
1424 else
1425 mem_size = 64;
1426
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 switch (i) {
1429 case 0:
1430 mem_share = (mem_size / config->rx_ring_num +
1431 mem_size % config->rx_ring_num);
1432 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433 continue;
1434 case 1:
1435 mem_share = (mem_size / config->rx_ring_num);
1436 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437 continue;
1438 case 2:
1439 mem_share = (mem_size / config->rx_ring_num);
1440 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441 continue;
1442 case 3:
1443 mem_share = (mem_size / config->rx_ring_num);
1444 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445 continue;
1446 case 4:
1447 mem_share = (mem_size / config->rx_ring_num);
1448 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449 continue;
1450 case 5:
1451 mem_share = (mem_size / config->rx_ring_num);
1452 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453 continue;
1454 case 6:
1455 mem_share = (mem_size / config->rx_ring_num);
1456 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457 continue;
1458 case 7:
1459 mem_share = (mem_size / config->rx_ring_num);
1460 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461 continue;
1462 }
1463 }
1464 writeq(val64, &bar0->rx_queue_cfg);
1465
1466 /*
1467 * Filling Tx round robin registers
1468 * as per the number of FIFOs for equal scheduling priority
1469 */
1470 switch (config->tx_fifo_num) {
1471 case 1:
1472 val64 = 0x0;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 2:
1480 val64 = 0x0001000100010001ULL;
1481 writeq(val64, &bar0->tx_w_round_robin_0);
1482 writeq(val64, &bar0->tx_w_round_robin_1);
1483 writeq(val64, &bar0->tx_w_round_robin_2);
1484 writeq(val64, &bar0->tx_w_round_robin_3);
1485 val64 = 0x0001000100000000ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_4);
1487 break;
1488 case 3:
1489 val64 = 0x0001020001020001ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_0);
1491 val64 = 0x0200010200010200ULL;
1492 writeq(val64, &bar0->tx_w_round_robin_1);
1493 val64 = 0x0102000102000102ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_2);
1495 val64 = 0x0001020001020001ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_3);
1497 val64 = 0x0200010200000000ULL;
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 4:
1501 val64 = 0x0001020300010203ULL;
1502 writeq(val64, &bar0->tx_w_round_robin_0);
1503 writeq(val64, &bar0->tx_w_round_robin_1);
1504 writeq(val64, &bar0->tx_w_round_robin_2);
1505 writeq(val64, &bar0->tx_w_round_robin_3);
1506 val64 = 0x0001020300000000ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 5:
1510 val64 = 0x0001020304000102ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_0);
1512 val64 = 0x0304000102030400ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_1);
1514 val64 = 0x0102030400010203ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_2);
1516 val64 = 0x0400010203040001ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_3);
1518 val64 = 0x0203040000000000ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 6:
1522 val64 = 0x0001020304050001ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_0);
1524 val64 = 0x0203040500010203ULL;
1525 writeq(val64, &bar0->tx_w_round_robin_1);
1526 val64 = 0x0405000102030405ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_2);
1528 val64 = 0x0001020304050001ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_3);
1530 val64 = 0x0203040500000000ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_4);
1532 break;
1533 case 7:
1534 val64 = 0x0001020304050600ULL;
1535 writeq(val64, &bar0->tx_w_round_robin_0);
1536 val64 = 0x0102030405060001ULL;
1537 writeq(val64, &bar0->tx_w_round_robin_1);
1538 val64 = 0x0203040506000102ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_2);
1540 val64 = 0x0304050600010203ULL;
1541 writeq(val64, &bar0->tx_w_round_robin_3);
1542 val64 = 0x0405060000000000ULL;
1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 case 8:
1546 val64 = 0x0001020304050607ULL;
1547 writeq(val64, &bar0->tx_w_round_robin_0);
1548 writeq(val64, &bar0->tx_w_round_robin_1);
1549 writeq(val64, &bar0->tx_w_round_robin_2);
1550 writeq(val64, &bar0->tx_w_round_robin_3);
1551 val64 = 0x0001020300000000ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 }
1555
1556 /* Enable all configured Tx FIFO partitions */
1557 val64 = readq(&bar0->tx_fifo_partition_0);
1558 val64 |= (TX_FIFO_PARTITION_EN);
1559 writeq(val64, &bar0->tx_fifo_partition_0);
1560
1561 /* Filling the Rx round robin registers as per the
1562 * number of Rings and steering based on QoS with
1563 * equal priority.
1564 */
1565 switch (config->rx_ring_num) {
1566 case 1:
1567 val64 = 0x0;
1568 writeq(val64, &bar0->rx_w_round_robin_0);
1569 writeq(val64, &bar0->rx_w_round_robin_1);
1570 writeq(val64, &bar0->rx_w_round_robin_2);
1571 writeq(val64, &bar0->rx_w_round_robin_3);
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574 val64 = 0x8080808080808080ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 2:
1578 val64 = 0x0001000100010001ULL;
1579 writeq(val64, &bar0->rx_w_round_robin_0);
1580 writeq(val64, &bar0->rx_w_round_robin_1);
1581 writeq(val64, &bar0->rx_w_round_robin_2);
1582 writeq(val64, &bar0->rx_w_round_robin_3);
1583 val64 = 0x0001000100000000ULL;
1584 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586 val64 = 0x8080808040404040ULL;
1587 writeq(val64, &bar0->rts_qos_steering);
1588 break;
1589 case 3:
1590 val64 = 0x0001020001020001ULL;
1591 writeq(val64, &bar0->rx_w_round_robin_0);
1592 val64 = 0x0200010200010200ULL;
1593 writeq(val64, &bar0->rx_w_round_robin_1);
1594 val64 = 0x0102000102000102ULL;
1595 writeq(val64, &bar0->rx_w_round_robin_2);
1596 val64 = 0x0001020001020001ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_3);
1598 val64 = 0x0200010200000000ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601 val64 = 0x8080804040402020ULL;
1602 writeq(val64, &bar0->rts_qos_steering);
1603 break;
1604 case 4:
1605 val64 = 0x0001020300010203ULL;
1606 writeq(val64, &bar0->rx_w_round_robin_0);
1607 writeq(val64, &bar0->rx_w_round_robin_1);
1608 writeq(val64, &bar0->rx_w_round_robin_2);
1609 writeq(val64, &bar0->rx_w_round_robin_3);
1610 val64 = 0x0001020300000000ULL;
1611 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613 val64 = 0x8080404020201010ULL;
1614 writeq(val64, &bar0->rts_qos_steering);
1615 break;
1616 case 5:
1617 val64 = 0x0001020304000102ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_0);
1619 val64 = 0x0304000102030400ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_1);
1621 val64 = 0x0102030400010203ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_2);
1623 val64 = 0x0400010203040001ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_3);
1625 val64 = 0x0203040000000000ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628 val64 = 0x8080404020201008ULL;
1629 writeq(val64, &bar0->rts_qos_steering);
1630 break;
1631 case 6:
1632 val64 = 0x0001020304050001ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_0);
1634 val64 = 0x0203040500010203ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_1);
1636 val64 = 0x0405000102030405ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_2);
1638 val64 = 0x0001020304050001ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_3);
1640 val64 = 0x0203040500000000ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643 val64 = 0x8080404020100804ULL;
1644 writeq(val64, &bar0->rts_qos_steering);
1645 break;
1646 case 7:
1647 val64 = 0x0001020304050600ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_0);
1649 val64 = 0x0102030405060001ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_1);
1651 val64 = 0x0203040506000102ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_2);
1653 val64 = 0x0304050600010203ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_3);
1655 val64 = 0x0405060000000000ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658 val64 = 0x8080402010080402ULL;
1659 writeq(val64, &bar0->rts_qos_steering);
1660 break;
1661 case 8:
1662 val64 = 0x0001020304050607ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_0);
1664 writeq(val64, &bar0->rx_w_round_robin_1);
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 writeq(val64, &bar0->rx_w_round_robin_3);
1667 val64 = 0x0001020300000000ULL;
1668 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670 val64 = 0x8040201008040201ULL;
1671 writeq(val64, &bar0->rts_qos_steering);
1672 break;
1673 }
1674
1675 /* UDP Fix */
1676 val64 = 0;
1677 for (i = 0; i < 8; i++)
1678 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
1680 /* Set the default rts frame length for the rings configured */
1681 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682 for (i = 0 ; i < config->rx_ring_num ; i++)
1683 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1687 */
1688 for (i = 0; i < config->rx_ring_num; i++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1694 */
1695 if (rts_frm_len[i] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1697 &bar0->rts_frm_len_n[i]);
1698 }
1699 }
1700
1701 /* Disable differentiated services steering logic */
1702 for (i = 0; i < 64; i++) {
1703 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1704 DBG_PRINT(ERR_DBG,
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1706 dev->name, i);
1707 return -ENODEV;
1708 }
1709 }
1710
1711 /* Program statistics memory */
1712 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1713
1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = STAT_BC(0x320);
1716 writeq(val64, &bar0->stat_byte_cnt);
1717 }
1718
1719 /*
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1722 */
1723 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1725 writeq(val64, &bar0->mac_link_util);
1726
1727 /*
1728 * Initializing the Transmit and Receive Traffic Interrupt
1729 * Scheme.
1730 */
1731
1732 /* Initialize TTI */
1733 if (SUCCESS != init_tti(nic, nic->last_link_state))
1734 return -ENODEV;
1735
1736 /* RTI Initialization */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
1738 /*
1739 * Programmed to generate Apprx 500 Intrs per
1740 * second
1741 */
1742 int count = (nic->config.bus_speed * 125)/4;
1743 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744 } else
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1750
1751 writeq(val64, &bar0->rti_data1_mem);
1752
1753 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic->config.intr_type == MSI_X)
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
1758 else
1759 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
1761 writeq(val64, &bar0->rti_data2_mem);
1762
1763 for (i = 0; i < config->rx_ring_num; i++) {
1764 val64 = RTI_CMD_MEM_WE |
1765 RTI_CMD_MEM_STROBE_NEW_CMD |
1766 RTI_CMD_MEM_OFFSET(i);
1767 writeq(val64, &bar0->rti_command_mem);
1768
1769 /*
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1775 */
1776 time = 0;
1777 while (true) {
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780 break;
1781
1782 if (time > 10) {
1783 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1784 dev->name);
1785 return -ENODEV;
1786 }
1787 time++;
1788 msleep(50);
1789 }
1790 }
1791
1792 /*
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1795 */
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799 /* Disable RMAC PAD STRIPPING */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1808
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1815 else {
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 }
1821
1822 /*
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1825 */
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1830
1831 /*
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1836 */
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
1839 val64 |= (((u64)0xFF00 |
1840 nic->mac_control.mc_pause_threshold_q0q3)
1841 << (i * 2 * 8));
1842 }
1843 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845 val64 = 0;
1846 for (i = 0; i < 4; i++) {
1847 val64 |= (((u64)0xFF00 |
1848 nic->mac_control.mc_pause_threshold_q4q7)
1849 << (i * 2 * 8));
1850 }
1851 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
1853 /*
1854 * TxDMA will stop Read request if the number of read split has
1855 * exceeded the limit pointed by shared_splits
1856 */
1857 val64 = readq(&bar0->pic_control);
1858 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859 writeq(val64, &bar0->pic_control);
1860
1861 if (nic->config.bus_speed == 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863 writeq(0x0, &bar0->read_retry_delay);
1864 writeq(0x0, &bar0->write_retry_delay);
1865 }
1866
1867 /*
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1870 */
1871 if (nic->device_type == XFRAME_II_DEVICE) {
1872 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873 MISC_LINK_STABILITY_PRD(3);
1874 writeq(val64, &bar0->misc_control);
1875 val64 = readq(&bar0->pic_control2);
1876 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1877 writeq(val64, &bar0->pic_control2);
1878 }
1879 if (strstr(nic->product_name, "CX4")) {
1880 val64 = TMAC_AVG_IPG(0x17);
1881 writeq(val64, &bar0->tmac_avg_ipg);
1882 }
1883
1884 return SUCCESS;
1885 }
1886 #define LINK_UP_DOWN_INTERRUPT 1
1887 #define MAC_RMAC_ERR_TIMER 2
1888
1889 static int s2io_link_fault_indication(struct s2io_nic *nic)
1890 {
1891 if (nic->device_type == XFRAME_II_DEVICE)
1892 return LINK_UP_DOWN_INTERRUPT;
1893 else
1894 return MAC_RMAC_ERR_TIMER;
1895 }
1896
1897 /**
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1903 * Return Value:
1904 * NONE.
1905 */
1906 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907 {
1908 u64 temp64;
1909
1910 temp64 = readq(addr);
1911
1912 if (flag == ENABLE_INTRS)
1913 temp64 &= ~((u64)value);
1914 else
1915 temp64 |= ((u64)value);
1916 writeq(temp64, addr);
1917 }
1918
1919 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1920 {
1921 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922 register u64 gen_int_mask = 0;
1923 u64 interruptible;
1924
1925 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1926 if (mask & TX_DMA_INTR) {
1927 gen_int_mask |= TXDMA_INT_M;
1928
1929 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1930 TXDMA_PCC_INT | TXDMA_TTI_INT |
1931 TXDMA_LSO_INT | TXDMA_TPA_INT |
1932 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1933
1934 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1935 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937 &bar0->pfc_err_mask);
1938
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1940 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1942
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1944 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945 PCC_N_SERR | PCC_6_COF_OV_ERR |
1946 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948 PCC_TXB_ECC_SG_ERR,
1949 flag, &bar0->pcc_err_mask);
1950
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1952 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1953
1954 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1955 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957 flag, &bar0->lso_err_mask);
1958
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1960 flag, &bar0->tpa_err_mask);
1961
1962 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1963 }
1964
1965 if (mask & TX_MAC_INTR) {
1966 gen_int_mask |= TXMAC_INT_M;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1968 &bar0->mac_int_mask);
1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1970 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972 flag, &bar0->mac_tmac_err_mask);
1973 }
1974
1975 if (mask & TX_XGXS_INTR) {
1976 gen_int_mask |= TXXGXS_INT_M;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1978 &bar0->xgxs_int_mask);
1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1980 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981 flag, &bar0->xgxs_txgxs_err_mask);
1982 }
1983
1984 if (mask & RX_DMA_INTR) {
1985 gen_int_mask |= RXDMA_INT_M;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1987 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988 flag, &bar0->rxdma_int_mask);
1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1990 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1994 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996 &bar0->prc_pcix_err_mask);
1997 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1998 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999 &bar0->rpa_err_mask);
2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2001 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003 RDA_FRM_ECC_SG_ERR |
2004 RDA_MISC_ERR|RDA_PCIX_ERR,
2005 flag, &bar0->rda_err_mask);
2006 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2007 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008 flag, &bar0->rti_err_mask);
2009 }
2010
2011 if (mask & RX_MAC_INTR) {
2012 gen_int_mask |= RXMAC_INT_M;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2014 &bar0->mac_int_mask);
2015 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017 RMAC_DOUBLE_ECC_ERR);
2018 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020 do_s2io_write_bits(interruptible,
2021 flag, &bar0->mac_rmac_err_mask);
2022 }
2023
2024 if (mask & RX_XGXS_INTR) {
2025 gen_int_mask |= RXXGXS_INT_M;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2027 &bar0->xgxs_int_mask);
2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2029 &bar0->xgxs_rxgxs_err_mask);
2030 }
2031
2032 if (mask & MC_INTR) {
2033 gen_int_mask |= MC_INT_M;
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035 flag, &bar0->mc_int_mask);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
2039 }
2040 nic->general_int_mask = gen_int_mask;
2041
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2044 }
2045
2046 /**
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
2054 * Return Value: NONE.
2055 */
2056
2057 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 {
2059 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2060 register u64 temp64 = 0, intr_mask = 0;
2061
2062 intr_mask = nic->general_int_mask;
2063
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
2066 if (mask & TX_PIC_INTR) {
2067 /* Enable PIC Intrs in the general intr mask register */
2068 intr_mask |= TXPIC_INT_M;
2069 if (flag == ENABLE_INTRS) {
2070 /*
2071 * If Hercules adapter enable GPIO otherwise
2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
2073 * interrupts for now.
2074 * TODO
2075 */
2076 if (s2io_link_fault_indication(nic) ==
2077 LINK_UP_DOWN_INTERRUPT) {
2078 do_s2io_write_bits(PIC_INT_GPIO, flag,
2079 &bar0->pic_int_mask);
2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2081 &bar0->gpio_int_mask);
2082 } else
2083 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2084 } else if (flag == DISABLE_INTRS) {
2085 /*
2086 * Disable PIC Intrs in the general
2087 * intr mask register
2088 */
2089 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2090 }
2091 }
2092
2093 /* Tx traffic interrupts */
2094 if (mask & TX_TRAFFIC_INTR) {
2095 intr_mask |= TXTRAFFIC_INT_M;
2096 if (flag == ENABLE_INTRS) {
2097 /*
2098 * Enable all the Tx side interrupts
2099 * writing 0 Enables all 64 TX interrupt levels
2100 */
2101 writeq(0x0, &bar0->tx_traffic_mask);
2102 } else if (flag == DISABLE_INTRS) {
2103 /*
2104 * Disable Tx Traffic Intrs in the general intr mask
2105 * register.
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2108 }
2109 }
2110
2111 /* Rx traffic interrupts */
2112 if (mask & RX_TRAFFIC_INTR) {
2113 intr_mask |= RXTRAFFIC_INT_M;
2114 if (flag == ENABLE_INTRS) {
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0->rx_traffic_mask);
2117 } else if (flag == DISABLE_INTRS) {
2118 /*
2119 * Disable Rx Traffic Intrs in the general intr mask
2120 * register.
2121 */
2122 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2123 }
2124 }
2125
2126 temp64 = readq(&bar0->general_int_mask);
2127 if (flag == ENABLE_INTRS)
2128 temp64 &= ~((u64)intr_mask);
2129 else
2130 temp64 = DISABLE_ALL_INTRS;
2131 writeq(temp64, &bar0->general_int_mask);
2132
2133 nic->general_int_mask = readq(&bar0->general_int_mask);
2134 }
2135
2136 /**
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2140 */
2141 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2142 {
2143 int ret = 0, herc;
2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145 u64 val64 = readq(&bar0->adapter_status);
2146
2147 herc = (sp->device_type == XFRAME_II_DEVICE);
2148
2149 if (flag == false) {
2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2152 ret = 1;
2153 } else {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155 ret = 1;
2156 }
2157 } else {
2158 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2160 ADAPTER_STATUS_RMAC_PCC_IDLE))
2161 ret = 1;
2162 } else {
2163 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2165 ret = 1;
2166 }
2167 }
2168
2169 return ret;
2170 }
2171 /**
2172 * verify_xena_quiescence - Checks whether the H/W is ready
2173 * Description: Returns whether the H/W is ready to go or not. Depending
2174 * on whether adapter enable bit was written or not the comparison
2175 * differs and the calling function passes the input argument flag to
2176 * indicate this.
2177 * Return: 1 If xena is quiescence
2178 * 0 If Xena is not quiescence
2179 */
2180
2181 static int verify_xena_quiescence(struct s2io_nic *sp)
2182 {
2183 int mode;
2184 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2185 u64 val64 = readq(&bar0->adapter_status);
2186 mode = s2io_verify_pci_mode(sp);
2187
2188 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2189 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2193 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2197 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2201 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2205 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2209 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2213 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2214 return 0;
2215 }
2216 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2217 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2218 return 0;
2219 }
2220
2221 /*
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2224 * not be asserted.
2225 */
2226 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2227 sp->device_type == XFRAME_II_DEVICE &&
2228 mode != PCI_MODE_PCI_33) {
2229 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2230 return 0;
2231 }
2232 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2233 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2234 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2235 return 0;
2236 }
2237 return 1;
2238 }
2239
2240 /**
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
2243 * Description :
2244 * New procedure to clear mac address reading problems on Alpha platforms
2245 *
2246 */
2247
2248 static void fix_mac_address(struct s2io_nic *sp)
2249 {
2250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2251 u64 val64;
2252 int i = 0;
2253
2254 while (fix_mac[i] != END_SIGN) {
2255 writeq(fix_mac[i++], &bar0->gpio_control);
2256 udelay(10);
2257 val64 = readq(&bar0->gpio_control);
2258 }
2259 }
2260
2261 /**
2262 * start_nic - Turns the device on
2263 * @nic : device private variable.
2264 * Description:
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
2270 * Return Value:
2271 * SUCCESS on success and -1 on failure.
2272 */
2273
2274 static int start_nic(struct s2io_nic *nic)
2275 {
2276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2277 struct net_device *dev = nic->dev;
2278 register u64 val64 = 0;
2279 u16 subid, i;
2280 struct config_param *config = &nic->config;
2281 struct mac_info *mac_control = &nic->mac_control;
2282
2283 /* PRC Initialization and configuration */
2284 for (i = 0; i < config->rx_ring_num; i++) {
2285 struct ring_info *ring = &mac_control->rings[i];
2286
2287 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2288 &bar0->prc_rxd0_n[i]);
2289
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2293 else
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2300 }
2301
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2307 }
2308
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
2313 nic->vlan_strip_flag = 0;
2314 }
2315
2316 /*
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2320 */
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2325
2326 msleep(100); /* Delay by around 100 ms. */
2327
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2332
2333 /*
2334 * Verify if the device is ready to be enabled, if so enable
2335 * it.
2336 */
2337 val64 = readq(&bar0->adapter_status);
2338 if (!verify_xena_quiescence(nic)) {
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev->name, (unsigned long long)val64);
2342 return FAILURE;
2343 }
2344
2345 /*
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2351 */
2352
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2357
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359 /*
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2362 */
2363 schedule_work(&nic->set_link_task);
2364 }
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
2374 }
2375
2376 return SUCCESS;
2377 }
2378 /**
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380 */
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382 struct TxD *txdlp, int get_off)
2383 {
2384 struct s2io_nic *nic = fifo_data->nic;
2385 struct sk_buff *skb;
2386 struct TxD *txds;
2387 u16 j, frg_cnt;
2388
2389 txds = txdlp;
2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392 sizeof(u64), PCI_DMA_TODEVICE);
2393 txds++;
2394 }
2395
2396 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2397 if (!skb) {
2398 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2399 return NULL;
2400 }
2401 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2402 skb_headlen(skb), PCI_DMA_TODEVICE);
2403 frg_cnt = skb_shinfo(skb)->nr_frags;
2404 if (frg_cnt) {
2405 txds++;
2406 for (j = 0; j < frg_cnt; j++, txds++) {
2407 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408 if (!txds->Buffer_Pointer)
2409 break;
2410 pci_unmap_page(nic->pdev,
2411 (dma_addr_t)txds->Buffer_Pointer,
2412 frag->size, PCI_DMA_TODEVICE);
2413 }
2414 }
2415 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416 return skb;
2417 }
2418
2419 /**
2420 * free_tx_buffers - Free all queued Tx buffers
2421 * @nic : device private variable.
2422 * Description:
2423 * Free all queued Tx buffers.
2424 * Return Value: void
2425 */
2426
2427 static void free_tx_buffers(struct s2io_nic *nic)
2428 {
2429 struct net_device *dev = nic->dev;
2430 struct sk_buff *skb;
2431 struct TxD *txdp;
2432 int i, j;
2433 int cnt = 0;
2434 struct config_param *config = &nic->config;
2435 struct mac_info *mac_control = &nic->mac_control;
2436 struct stat_block *stats = mac_control->stats_info;
2437 struct swStat *swstats = &stats->sw_stat;
2438
2439 for (i = 0; i < config->tx_fifo_num; i++) {
2440 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441 struct fifo_info *fifo = &mac_control->fifos[i];
2442 unsigned long flags;
2443
2444 spin_lock_irqsave(&fifo->tx_lock, flags);
2445 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2447 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448 if (skb) {
2449 swstats->mem_freed += skb->truesize;
2450 dev_kfree_skb(skb);
2451 cnt++;
2452 }
2453 }
2454 DBG_PRINT(INTR_DBG,
2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
2456 dev->name, cnt, i);
2457 fifo->tx_curr_get_info.offset = 0;
2458 fifo->tx_curr_put_info.offset = 0;
2459 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2460 }
2461 }
2462
2463 /**
2464 * stop_nic - To stop the nic
2465 * @nic ; device private variable.
2466 * Description:
2467 * This function does exactly the opposite of what the start_nic()
2468 * function does. This function is called to stop the device.
2469 * Return Value:
2470 * void.
2471 */
2472
2473 static void stop_nic(struct s2io_nic *nic)
2474 {
2475 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2476 register u64 val64 = 0;
2477 u16 interruptible;
2478
2479 /* Disable all interrupts */
2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482 interruptible |= TX_PIC_INTR;
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492 * fill_rx_buffers - Allocates the Rx side skbs
2493 * @ring_info: per ring structure
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
2497 * Description:
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514 int from_card_up)
2515 {
2516 struct sk_buff *skb;
2517 struct RxD_t *rxdp;
2518 int off, size, block_no, block_no1;
2519 u32 alloc_tab = 0;
2520 u32 alloc_cnt;
2521 u64 tmp;
2522 struct buffAdd *ba;
2523 struct RxD_t *first_rxdp = NULL;
2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525 int rxd_index = 0;
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
2528 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532 block_no1 = ring->rx_curr_get_info.block_index;
2533 while (alloc_tab < alloc_cnt) {
2534 block_no = ring->rx_curr_put_info.block_index;
2535
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
2543
2544 if ((block_no == block_no1) &&
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
2547 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548 ring->dev->name);
2549 goto end;
2550 }
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
2554 ring->block_count)
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2561 ring->dev->name, rxdp);
2562
2563 }
2564
2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2566 ((ring->rxd_mode == RXD_MODE_3B) &&
2567 (rxdp->Control_2 & s2BIT(0)))) {
2568 ring->rx_curr_put_info.offset = off;
2569 goto end;
2570 }
2571 /* calculate size of skb based on ring mode */
2572 size = ring->mtu +
2573 HEADER_ETHERNET_II_802_3_SIZE +
2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575 if (ring->rxd_mode == RXD_MODE_1)
2576 size += NET_IP_ALIGN;
2577 else
2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
2582 if (!skb) {
2583 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584 ring->dev->name);
2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
2589 swstats->mem_alloc_fail_cnt++;
2590
2591 return -ENOMEM ;
2592 }
2593 swstats->mem_allocated += skb->truesize;
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
2596 /* 1 buffer mode - normal operation mode */
2597 rxdp1 = (struct RxD1 *)rxdp;
2598 memset(rxdp, 0, sizeof(struct RxD1));
2599 skb_reserve(skb, NET_IP_ALIGN);
2600 rxdp1->Buffer0_ptr =
2601 pci_map_single(ring->pdev, skb->data,
2602 size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
2604 if (pci_dma_mapping_error(nic->pdev,
2605 rxdp1->Buffer0_ptr))
2606 goto pci_map_failed;
2607
2608 rxdp->Control_2 =
2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610 rxdp->Host_Control = (unsigned long)skb;
2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612 /*
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2616 */
2617
2618 rxdp3 = (struct RxD3 *)rxdp;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
2622 memset(rxdp, 0, sizeof(struct RxD3));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627 ba = &ring->ba[block_no][off];
2628 skb_reserve(skb, BUF0_LEN);
2629 tmp = (u64)(unsigned long)skb->data;
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
2633 skb_reset_tail_pointer(skb);
2634
2635 if (from_card_up) {
2636 rxdp3->Buffer0_ptr =
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN,
2639 PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
2642 goto pci_map_failed;
2643 } else
2644 pci_dma_sync_single_for_device(ring->pdev,
2645 (dma_addr_t)rxdp3->Buffer0_ptr,
2646 BUF0_LEN,
2647 PCI_DMA_FROMDEVICE);
2648
2649 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2650 if (ring->rxd_mode == RXD_MODE_3B) {
2651 /* Two buffer mode */
2652
2653 /*
2654 * Buffer2 will have L3/L4 header plus
2655 * L4 payload
2656 */
2657 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658 skb->data,
2659 ring->mtu + 4,
2660 PCI_DMA_FROMDEVICE);
2661
2662 if (pci_dma_mapping_error(nic->pdev,
2663 rxdp3->Buffer2_ptr))
2664 goto pci_map_failed;
2665
2666 if (from_card_up) {
2667 rxdp3->Buffer1_ptr =
2668 pci_map_single(ring->pdev,
2669 ba->ba_1,
2670 BUF1_LEN,
2671 PCI_DMA_FROMDEVICE);
2672
2673 if (pci_dma_mapping_error(nic->pdev,
2674 rxdp3->Buffer1_ptr)) {
2675 pci_unmap_single(ring->pdev,
2676 (dma_addr_t)(unsigned long)
2677 skb->data,
2678 ring->mtu + 4,
2679 PCI_DMA_FROMDEVICE);
2680 goto pci_map_failed;
2681 }
2682 }
2683 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2685 (ring->mtu + 4);
2686 }
2687 rxdp->Control_2 |= s2BIT(0);
2688 rxdp->Host_Control = (unsigned long) (skb);
2689 }
2690 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691 rxdp->Control_1 |= RXD_OWN_XENA;
2692 off++;
2693 if (off == (ring->rxd_count + 1))
2694 off = 0;
2695 ring->rx_curr_put_info.offset = off;
2696
2697 rxdp->Control_2 |= SET_RXD_MARKER;
2698 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699 if (first_rxdp) {
2700 wmb();
2701 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702 }
2703 first_rxdp = rxdp;
2704 }
2705 ring->rx_bufs_left += 1;
2706 alloc_tab++;
2707 }
2708
2709 end:
2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2713 */
2714 if (first_rxdp) {
2715 wmb();
2716 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717 }
2718
2719 return SUCCESS;
2720
2721 pci_map_failed:
2722 swstats->pci_map_fail_cnt++;
2723 swstats->mem_freed += skb->truesize;
2724 dev_kfree_skb_irq(skb);
2725 return -ENOMEM;
2726 }
2727
2728 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729 {
2730 struct net_device *dev = sp->dev;
2731 int j;
2732 struct sk_buff *skb;
2733 struct RxD_t *rxdp;
2734 struct buffAdd *ba;
2735 struct RxD1 *rxdp1;
2736 struct RxD3 *rxdp3;
2737 struct mac_info *mac_control = &sp->mac_control;
2738 struct stat_block *stats = mac_control->stats_info;
2739 struct swStat *swstats = &stats->sw_stat;
2740
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745 if (!skb)
2746 continue;
2747 if (sp->rxd_mode == RXD_MODE_1) {
2748 rxdp1 = (struct RxD1 *)rxdp;
2749 pci_unmap_single(sp->pdev,
2750 (dma_addr_t)rxdp1->Buffer0_ptr,
2751 dev->mtu +
2752 HEADER_ETHERNET_II_802_3_SIZE +
2753 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754 PCI_DMA_FROMDEVICE);
2755 memset(rxdp, 0, sizeof(struct RxD1));
2756 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757 rxdp3 = (struct RxD3 *)rxdp;
2758 ba = &mac_control->rings[ring_no].ba[blk][j];
2759 pci_unmap_single(sp->pdev,
2760 (dma_addr_t)rxdp3->Buffer0_ptr,
2761 BUF0_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev,
2764 (dma_addr_t)rxdp3->Buffer1_ptr,
2765 BUF1_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev,
2768 (dma_addr_t)rxdp3->Buffer2_ptr,
2769 dev->mtu + 4,
2770 PCI_DMA_FROMDEVICE);
2771 memset(rxdp, 0, sizeof(struct RxD3));
2772 }
2773 swstats->mem_freed += skb->truesize;
2774 dev_kfree_skb(skb);
2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
2776 }
2777 }
2778
2779 /**
2780 * free_rx_buffers - Frees all Rx buffers
2781 * @sp: device private variable.
2782 * Description:
2783 * This function will free all Rx buffers allocated by host.
2784 * Return Value:
2785 * NONE.
2786 */
2787
2788 static void free_rx_buffers(struct s2io_nic *sp)
2789 {
2790 struct net_device *dev = sp->dev;
2791 int i, blk = 0, buf_cnt = 0;
2792 struct config_param *config = &sp->config;
2793 struct mac_info *mac_control = &sp->mac_control;
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
2796 struct ring_info *ring = &mac_control->rings[i];
2797
2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799 free_rxd_blk(sp, i, blk);
2800
2801 ring->rx_curr_put_info.block_index = 0;
2802 ring->rx_curr_get_info.block_index = 0;
2803 ring->rx_curr_put_info.offset = 0;
2804 ring->rx_curr_get_info.offset = 0;
2805 ring->rx_bufs_left = 0;
2806 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2807 dev->name, buf_cnt, i);
2808 }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815 ring->dev->name);
2816 }
2817 return 0;
2818 }
2819
2820 /**
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2831 */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
2837 int pkts_processed = 0;
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
2840 struct s2io_nic *nic = netdev_priv(dev);
2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2842 int budget_org = budget;
2843
2844 if (unlikely(!is_s2io_card_up(nic)))
2845 return 0;
2846
2847 pkts_processed = rx_intr_handler(ring, budget);
2848 s2io_chk_rx_buffers(nic, ring);
2849
2850 if (pkts_processed < budget_org) {
2851 napi_complete(napi);
2852 /*Re Enable MSI-Rx Vector*/
2853 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2854 addr += 7 - ring->ring_no;
2855 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856 writeb(val8, addr);
2857 val8 = readb(addr);
2858 }
2859 return pkts_processed;
2860 }
2861
2862 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863 {
2864 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2865 int pkts_processed = 0;
2866 int ring_pkts_processed, i;
2867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868 int budget_org = budget;
2869 struct config_param *config = &nic->config;
2870 struct mac_info *mac_control = &nic->mac_control;
2871
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
2874
2875 for (i = 0; i < config->rx_ring_num; i++) {
2876 struct ring_info *ring = &mac_control->rings[i];
2877 ring_pkts_processed = rx_intr_handler(ring, budget);
2878 s2io_chk_rx_buffers(nic, ring);
2879 pkts_processed += ring_pkts_processed;
2880 budget -= ring_pkts_processed;
2881 if (budget <= 0)
2882 break;
2883 }
2884 if (pkts_processed < budget_org) {
2885 napi_complete(napi);
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0->rx_traffic_mask);
2888 readl(&bar0->rx_traffic_mask);
2889 }
2890 return pkts_processed;
2891 }
2892
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2894 /**
2895 * s2io_netpoll - netpoll event handler entry point
2896 * @dev : pointer to the device structure.
2897 * Description:
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
2902 */
2903 static void s2io_netpoll(struct net_device *dev)
2904 {
2905 struct s2io_nic *nic = netdev_priv(dev);
2906 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2907 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2908 int i;
2909 struct config_param *config = &nic->config;
2910 struct mac_info *mac_control = &nic->mac_control;
2911
2912 if (pci_channel_offline(nic->pdev))
2913 return;
2914
2915 disable_irq(dev->irq);
2916
2917 writeq(val64, &bar0->rx_traffic_int);
2918 writeq(val64, &bar0->tx_traffic_int);
2919
2920 /* we need to free up the transmitted skbufs or else netpoll will
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2923 */
2924 for (i = 0; i < config->tx_fifo_num; i++)
2925 tx_intr_handler(&mac_control->fifos[i]);
2926
2927 /* check for received packet and indicate up to network */
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2930
2931 rx_intr_handler(ring, 0);
2932 }
2933
2934 for (i = 0; i < config->rx_ring_num; i++) {
2935 struct ring_info *ring = &mac_control->rings[i];
2936
2937 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2938 DBG_PRINT(INFO_DBG,
2939 "%s: Out of memory in Rx Netpoll!!\n",
2940 dev->name);
2941 break;
2942 }
2943 }
2944 enable_irq(dev->irq);
2945 }
2946 #endif
2947
2948 /**
2949 * rx_intr_handler - Rx interrupt handler
2950 * @ring_info: per ring structure.
2951 * @budget: budget for napi processing.
2952 * Description:
2953 * If the interrupt is because of a received frame or if the
2954 * receive ring contains fresh as yet un-processed frames,this function is
2955 * called. It picks out the RxD at which place the last Rx processing had
2956 * stopped and sends the skb to the OSM's Rx handler and then increments
2957 * the offset.
2958 * Return Value:
2959 * No. of napi packets processed.
2960 */
2961 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2962 {
2963 int get_block, put_block;
2964 struct rx_curr_get_info get_info, put_info;
2965 struct RxD_t *rxdp;
2966 struct sk_buff *skb;
2967 int pkt_cnt = 0, napi_pkts = 0;
2968 int i;
2969 struct RxD1 *rxdp1;
2970 struct RxD3 *rxdp3;
2971
2972 get_info = ring_data->rx_curr_get_info;
2973 get_block = get_info.block_index;
2974 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2975 put_block = put_info.block_index;
2976 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2977
2978 while (RXD_IS_UP2DT(rxdp)) {
2979 /*
2980 * If your are next to put index then it's
2981 * FIFO full condition
2982 */
2983 if ((get_block == put_block) &&
2984 (get_info.offset + 1) == put_info.offset) {
2985 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2986 ring_data->dev->name);
2987 break;
2988 }
2989 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2990 if (skb == NULL) {
2991 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2992 ring_data->dev->name);
2993 return 0;
2994 }
2995 if (ring_data->rxd_mode == RXD_MODE_1) {
2996 rxdp1 = (struct RxD1 *)rxdp;
2997 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2998 rxdp1->Buffer0_ptr,
2999 ring_data->mtu +
3000 HEADER_ETHERNET_II_802_3_SIZE +
3001 HEADER_802_2_SIZE +
3002 HEADER_SNAP_SIZE,
3003 PCI_DMA_FROMDEVICE);
3004 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3005 rxdp3 = (struct RxD3 *)rxdp;
3006 pci_dma_sync_single_for_cpu(ring_data->pdev,
3007 (dma_addr_t)rxdp3->Buffer0_ptr,
3008 BUF0_LEN,
3009 PCI_DMA_FROMDEVICE);
3010 pci_unmap_single(ring_data->pdev,
3011 (dma_addr_t)rxdp3->Buffer2_ptr,
3012 ring_data->mtu + 4,
3013 PCI_DMA_FROMDEVICE);
3014 }
3015 prefetch(skb->data);
3016 rx_osm_handler(ring_data, rxdp);
3017 get_info.offset++;
3018 ring_data->rx_curr_get_info.offset = get_info.offset;
3019 rxdp = ring_data->rx_blocks[get_block].
3020 rxds[get_info.offset].virt_addr;
3021 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3022 get_info.offset = 0;
3023 ring_data->rx_curr_get_info.offset = get_info.offset;
3024 get_block++;
3025 if (get_block == ring_data->block_count)
3026 get_block = 0;
3027 ring_data->rx_curr_get_info.block_index = get_block;
3028 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3029 }
3030
3031 if (ring_data->nic->config.napi) {
3032 budget--;
3033 napi_pkts++;
3034 if (!budget)
3035 break;
3036 }
3037 pkt_cnt++;
3038 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3039 break;
3040 }
3041 if (ring_data->lro) {
3042 /* Clear all LRO sessions before exiting */
3043 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3044 struct lro *lro = &ring_data->lro0_n[i];
3045 if (lro->in_use) {
3046 update_L3L4_header(ring_data->nic, lro);
3047 queue_rx_frame(lro->parent, lro->vlan_tag);
3048 clear_lro_session(lro);
3049 }
3050 }
3051 }
3052 return napi_pkts;
3053 }
3054
3055 /**
3056 * tx_intr_handler - Transmit interrupt handler
3057 * @nic : device private variable
3058 * Description:
3059 * If an interrupt was raised to indicate DMA complete of the
3060 * Tx packet, this function is called. It identifies the last TxD
3061 * whose buffer was freed and frees all skbs whose data have already
3062 * DMA'ed into the NICs internal memory.
3063 * Return Value:
3064 * NONE
3065 */
3066
3067 static void tx_intr_handler(struct fifo_info *fifo_data)
3068 {
3069 struct s2io_nic *nic = fifo_data->nic;
3070 struct tx_curr_get_info get_info, put_info;
3071 struct sk_buff *skb = NULL;
3072 struct TxD *txdlp;
3073 int pkt_cnt = 0;
3074 unsigned long flags = 0;
3075 u8 err_mask;
3076 struct stat_block *stats = nic->mac_control.stats_info;
3077 struct swStat *swstats = &stats->sw_stat;
3078
3079 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3080 return;
3081
3082 get_info = fifo_data->tx_curr_get_info;
3083 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3084 txdlp = (struct TxD *)
3085 fifo_data->list_info[get_info.offset].list_virt_addr;
3086 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3087 (get_info.offset != put_info.offset) &&
3088 (txdlp->Host_Control)) {
3089 /* Check for TxD errors */
3090 if (txdlp->Control_1 & TXD_T_CODE) {
3091 unsigned long long err;
3092 err = txdlp->Control_1 & TXD_T_CODE;
3093 if (err & 0x1) {
3094 swstats->parity_err_cnt++;
3095 }
3096
3097 /* update t_code statistics */
3098 err_mask = err >> 48;
3099 switch (err_mask) {
3100 case 2:
3101 swstats->tx_buf_abort_cnt++;
3102 break;
3103
3104 case 3:
3105 swstats->tx_desc_abort_cnt++;
3106 break;
3107
3108 case 7:
3109 swstats->tx_parity_err_cnt++;
3110 break;
3111
3112 case 10:
3113 swstats->tx_link_loss_cnt++;
3114 break;
3115
3116 case 15:
3117 swstats->tx_list_proc_err_cnt++;
3118 break;
3119 }
3120 }
3121
3122 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3123 if (skb == NULL) {
3124 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3125 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3126 __func__);
3127 return;
3128 }
3129 pkt_cnt++;
3130
3131 /* Updating the statistics block */
3132 nic->dev->stats.tx_bytes += skb->len;
3133 swstats->mem_freed += skb->truesize;
3134 dev_kfree_skb_irq(skb);
3135
3136 get_info.offset++;
3137 if (get_info.offset == get_info.fifo_len + 1)
3138 get_info.offset = 0;
3139 txdlp = (struct TxD *)
3140 fifo_data->list_info[get_info.offset].list_virt_addr;
3141 fifo_data->tx_curr_get_info.offset = get_info.offset;
3142 }
3143
3144 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3145
3146 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3147 }
3148
3149 /**
3150 * s2io_mdio_write - Function to write in to MDIO registers
3151 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3152 * @addr : address value
3153 * @value : data value
3154 * @dev : pointer to net_device structure
3155 * Description:
3156 * This function is used to write values to the MDIO registers
3157 * NONE
3158 */
3159 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3160 struct net_device *dev)
3161 {
3162 u64 val64;
3163 struct s2io_nic *sp = netdev_priv(dev);
3164 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3165
3166 /* address transaction */
3167 val64 = MDIO_MMD_INDX_ADDR(addr) |
3168 MDIO_MMD_DEV_ADDR(mmd_type) |
3169 MDIO_MMS_PRT_ADDR(0x0);
3170 writeq(val64, &bar0->mdio_control);
3171 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3172 writeq(val64, &bar0->mdio_control);
3173 udelay(100);
3174
3175 /* Data transaction */
3176 val64 = MDIO_MMD_INDX_ADDR(addr) |
3177 MDIO_MMD_DEV_ADDR(mmd_type) |
3178 MDIO_MMS_PRT_ADDR(0x0) |
3179 MDIO_MDIO_DATA(value) |
3180 MDIO_OP(MDIO_OP_WRITE_TRANS);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3184 udelay(100);
3185
3186 val64 = MDIO_MMD_INDX_ADDR(addr) |
3187 MDIO_MMD_DEV_ADDR(mmd_type) |
3188 MDIO_MMS_PRT_ADDR(0x0) |
3189 MDIO_OP(MDIO_OP_READ_TRANS);
3190 writeq(val64, &bar0->mdio_control);
3191 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3192 writeq(val64, &bar0->mdio_control);
3193 udelay(100);
3194 }
3195
3196 /**
3197 * s2io_mdio_read - Function to write in to MDIO registers
3198 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3199 * @addr : address value
3200 * @dev : pointer to net_device structure
3201 * Description:
3202 * This function is used to read values to the MDIO registers
3203 * NONE
3204 */
3205 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3206 {
3207 u64 val64 = 0x0;
3208 u64 rval64 = 0x0;
3209 struct s2io_nic *sp = netdev_priv(dev);
3210 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3211
3212 /* address transaction */
3213 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3214 | MDIO_MMD_DEV_ADDR(mmd_type)
3215 | MDIO_MMS_PRT_ADDR(0x0));
3216 writeq(val64, &bar0->mdio_control);
3217 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3218 writeq(val64, &bar0->mdio_control);
3219 udelay(100);
3220
3221 /* Data transaction */
3222 val64 = MDIO_MMD_INDX_ADDR(addr) |
3223 MDIO_MMD_DEV_ADDR(mmd_type) |
3224 MDIO_MMS_PRT_ADDR(0x0) |
3225 MDIO_OP(MDIO_OP_READ_TRANS);
3226 writeq(val64, &bar0->mdio_control);
3227 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3228 writeq(val64, &bar0->mdio_control);
3229 udelay(100);
3230
3231 /* Read the value from regs */
3232 rval64 = readq(&bar0->mdio_control);
3233 rval64 = rval64 & 0xFFFF0000;
3234 rval64 = rval64 >> 16;
3235 return rval64;
3236 }
3237
3238 /**
3239 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3240 * @counter : counter value to be updated
3241 * @flag : flag to indicate the status
3242 * @type : counter type
3243 * Description:
3244 * This function is to check the status of the xpak counters value
3245 * NONE
3246 */
3247
3248 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3249 u16 flag, u16 type)
3250 {
3251 u64 mask = 0x3;
3252 u64 val64;
3253 int i;
3254 for (i = 0; i < index; i++)
3255 mask = mask << 0x2;
3256
3257 if (flag > 0) {
3258 *counter = *counter + 1;
3259 val64 = *regs_stat & mask;
3260 val64 = val64 >> (index * 0x2);
3261 val64 = val64 + 1;
3262 if (val64 == 3) {
3263 switch (type) {
3264 case 1:
3265 DBG_PRINT(ERR_DBG,
3266 "Take Xframe NIC out of service.\n");
3267 DBG_PRINT(ERR_DBG,
3268 "Excessive temperatures may result in premature transceiver failure.\n");
3269 break;
3270 case 2:
3271 DBG_PRINT(ERR_DBG,
3272 "Take Xframe NIC out of service.\n");
3273 DBG_PRINT(ERR_DBG,
3274 "Excessive bias currents may indicate imminent laser diode failure.\n");
3275 break;
3276 case 3:
3277 DBG_PRINT(ERR_DBG,
3278 "Take Xframe NIC out of service.\n");
3279 DBG_PRINT(ERR_DBG,
3280 "Excessive laser output power may saturate far-end receiver.\n");
3281 break;
3282 default:
3283 DBG_PRINT(ERR_DBG,
3284 "Incorrect XPAK Alarm type\n");
3285 }
3286 val64 = 0x0;
3287 }
3288 val64 = val64 << (index * 0x2);
3289 *regs_stat = (*regs_stat & (~mask)) | (val64);
3290
3291 } else {
3292 *regs_stat = *regs_stat & (~mask);
3293 }
3294 }
3295
3296 /**
3297 * s2io_updt_xpak_counter - Function to update the xpak counters
3298 * @dev : pointer to net_device struct
3299 * Description:
3300 * This function is to upate the status of the xpak counters value
3301 * NONE
3302 */
3303 static void s2io_updt_xpak_counter(struct net_device *dev)
3304 {
3305 u16 flag = 0x0;
3306 u16 type = 0x0;
3307 u16 val16 = 0x0;
3308 u64 val64 = 0x0;
3309 u64 addr = 0x0;
3310
3311 struct s2io_nic *sp = netdev_priv(dev);
3312 struct stat_block *stats = sp->mac_control.stats_info;
3313 struct xpakStat *xstats = &stats->xpak_stat;
3314
3315 /* Check the communication with the MDIO slave */
3316 addr = MDIO_CTRL1;
3317 val64 = 0x0;
3318 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3319 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3320 DBG_PRINT(ERR_DBG,
3321 "ERR: MDIO slave access failed - Returned %llx\n",
3322 (unsigned long long)val64);
3323 return;
3324 }
3325
3326 /* Check for the expected value of control reg 1 */
3327 if (val64 != MDIO_CTRL1_SPEED10G) {
3328 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3329 "Returned: %llx- Expected: 0x%x\n",
3330 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3331 return;
3332 }
3333
3334 /* Loading the DOM register to MDIO register */
3335 addr = 0xA100;
3336 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3337 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338
3339 /* Reading the Alarm flags */
3340 addr = 0xA070;
3341 val64 = 0x0;
3342 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3343
3344 flag = CHECKBIT(val64, 0x7);
3345 type = 1;
3346 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3347 &xstats->xpak_regs_stat,
3348 0x0, flag, type);
3349
3350 if (CHECKBIT(val64, 0x6))
3351 xstats->alarm_transceiver_temp_low++;
3352
3353 flag = CHECKBIT(val64, 0x3);
3354 type = 2;
3355 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3356 &xstats->xpak_regs_stat,
3357 0x2, flag, type);
3358
3359 if (CHECKBIT(val64, 0x2))
3360 xstats->alarm_laser_bias_current_low++;
3361
3362 flag = CHECKBIT(val64, 0x1);
3363 type = 3;
3364 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3365 &xstats->xpak_regs_stat,
3366 0x4, flag, type);
3367
3368 if (CHECKBIT(val64, 0x0))
3369 xstats->alarm_laser_output_power_low++;
3370
3371 /* Reading the Warning flags */
3372 addr = 0xA074;
3373 val64 = 0x0;
3374 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3375
3376 if (CHECKBIT(val64, 0x7))
3377 xstats->warn_transceiver_temp_high++;
3378
3379 if (CHECKBIT(val64, 0x6))
3380 xstats->warn_transceiver_temp_low++;
3381
3382 if (CHECKBIT(val64, 0x3))
3383 xstats->warn_laser_bias_current_high++;
3384
3385 if (CHECKBIT(val64, 0x2))
3386 xstats->warn_laser_bias_current_low++;
3387
3388 if (CHECKBIT(val64, 0x1))
3389 xstats->warn_laser_output_power_high++;
3390
3391 if (CHECKBIT(val64, 0x0))
3392 xstats->warn_laser_output_power_low++;
3393 }
3394
3395 /**
3396 * wait_for_cmd_complete - waits for a command to complete.
3397 * @sp : private member of the device structure, which is a pointer to the
3398 * s2io_nic structure.
3399 * Description: Function that waits for a command to Write into RMAC
3400 * ADDR DATA registers to be completed and returns either success or
3401 * error depending on whether the command was complete or not.
3402 * Return value:
3403 * SUCCESS on success and FAILURE on failure.
3404 */
3405
3406 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3407 int bit_state)
3408 {
3409 int ret = FAILURE, cnt = 0, delay = 1;
3410 u64 val64;
3411
3412 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3413 return FAILURE;
3414
3415 do {
3416 val64 = readq(addr);
3417 if (bit_state == S2IO_BIT_RESET) {
3418 if (!(val64 & busy_bit)) {
3419 ret = SUCCESS;
3420 break;
3421 }
3422 } else {
3423 if (val64 & busy_bit) {
3424 ret = SUCCESS;
3425 break;
3426 }
3427 }
3428
3429 if (in_interrupt())
3430 mdelay(delay);
3431 else
3432 msleep(delay);
3433
3434 if (++cnt >= 10)
3435 delay = 50;
3436 } while (cnt < 20);
3437 return ret;
3438 }
3439 /*
3440 * check_pci_device_id - Checks if the device id is supported
3441 * @id : device id
3442 * Description: Function to check if the pci device id is supported by driver.
3443 * Return value: Actual device id if supported else PCI_ANY_ID
3444 */
3445 static u16 check_pci_device_id(u16 id)
3446 {
3447 switch (id) {
3448 case PCI_DEVICE_ID_HERC_WIN:
3449 case PCI_DEVICE_ID_HERC_UNI:
3450 return XFRAME_II_DEVICE;
3451 case PCI_DEVICE_ID_S2IO_UNI:
3452 case PCI_DEVICE_ID_S2IO_WIN:
3453 return XFRAME_I_DEVICE;
3454 default:
3455 return PCI_ANY_ID;
3456 }
3457 }
3458
3459 /**
3460 * s2io_reset - Resets the card.
3461 * @sp : private member of the device structure.
3462 * Description: Function to Reset the card. This function then also
3463 * restores the previously saved PCI configuration space registers as
3464 * the card reset also resets the configuration space.
3465 * Return value:
3466 * void.
3467 */
3468
3469 static void s2io_reset(struct s2io_nic *sp)
3470 {
3471 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3472 u64 val64;
3473 u16 subid, pci_cmd;
3474 int i;
3475 u16 val16;
3476 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3477 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3478 struct stat_block *stats;
3479 struct swStat *swstats;
3480
3481 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3482 __func__, pci_name(sp->pdev));
3483
3484 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3485 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3486
3487 val64 = SW_RESET_ALL;
3488 writeq(val64, &bar0->sw_reset);
3489 if (strstr(sp->product_name, "CX4"))
3490 msleep(750);
3491 msleep(250);
3492 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3493
3494 /* Restore the PCI state saved during initialization. */
3495 pci_restore_state(sp->pdev);
3496 pci_save_state(sp->pdev);
3497 pci_read_config_word(sp->pdev, 0x2, &val16);
3498 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3499 break;
3500 msleep(200);
3501 }
3502
3503 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3504 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3505
3506 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3507
3508 s2io_init_pci(sp);
3509
3510 /* Set swapper to enable I/O register access */
3511 s2io_set_swapper(sp);
3512
3513 /* restore mac_addr entries */
3514 do_s2io_restore_unicast_mc(sp);
3515
3516 /* Restore the MSIX table entries from local variables */
3517 restore_xmsi_data(sp);
3518
3519 /* Clear certain PCI/PCI-X fields after reset */
3520 if (sp->device_type == XFRAME_II_DEVICE) {
3521 /* Clear "detected parity error" bit */
3522 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3523
3524 /* Clearing PCIX Ecc status register */
3525 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3526
3527 /* Clearing PCI_STATUS error reflected here */
3528 writeq(s2BIT(62), &bar0->txpic_int_reg);
3529 }
3530
3531 /* Reset device statistics maintained by OS */
3532 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3533
3534 stats = sp->mac_control.stats_info;
3535 swstats = &stats->sw_stat;
3536
3537 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3538 up_cnt = swstats->link_up_cnt;
3539 down_cnt = swstats->link_down_cnt;
3540 up_time = swstats->link_up_time;
3541 down_time = swstats->link_down_time;
3542 reset_cnt = swstats->soft_reset_cnt;
3543 mem_alloc_cnt = swstats->mem_allocated;
3544 mem_free_cnt = swstats->mem_freed;
3545 watchdog_cnt = swstats->watchdog_timer_cnt;
3546
3547 memset(stats, 0, sizeof(struct stat_block));
3548
3549 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3550 swstats->link_up_cnt = up_cnt;
3551 swstats->link_down_cnt = down_cnt;
3552 swstats->link_up_time = up_time;
3553 swstats->link_down_time = down_time;
3554 swstats->soft_reset_cnt = reset_cnt;
3555 swstats->mem_allocated = mem_alloc_cnt;
3556 swstats->mem_freed = mem_free_cnt;
3557 swstats->watchdog_timer_cnt = watchdog_cnt;
3558
3559 /* SXE-002: Configure link and activity LED to turn it off */
3560 subid = sp->pdev->subsystem_device;
3561 if (((subid & 0xFF) >= 0x07) &&
3562 (sp->device_type == XFRAME_I_DEVICE)) {
3563 val64 = readq(&bar0->gpio_control);
3564 val64 |= 0x0000800000000000ULL;
3565 writeq(val64, &bar0->gpio_control);
3566 val64 = 0x0411040400000000ULL;
3567 writeq(val64, (void __iomem *)bar0 + 0x2700);
3568 }
3569
3570 /*
3571 * Clear spurious ECC interrupts that would have occured on
3572 * XFRAME II cards after reset.
3573 */
3574 if (sp->device_type == XFRAME_II_DEVICE) {
3575 val64 = readq(&bar0->pcc_err_reg);
3576 writeq(val64, &bar0->pcc_err_reg);
3577 }
3578
3579 sp->device_enabled_once = false;
3580 }
3581
3582 /**
3583 * s2io_set_swapper - to set the swapper controle on the card
3584 * @sp : private member of the device structure,
3585 * pointer to the s2io_nic structure.
3586 * Description: Function to set the swapper control on the card
3587 * correctly depending on the 'endianness' of the system.
3588 * Return value:
3589 * SUCCESS on success and FAILURE on failure.
3590 */
3591
3592 static int s2io_set_swapper(struct s2io_nic *sp)
3593 {
3594 struct net_device *dev = sp->dev;
3595 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3596 u64 val64, valt, valr;
3597
3598 /*
3599 * Set proper endian settings and verify the same by reading
3600 * the PIF Feed-back register.
3601 */
3602
3603 val64 = readq(&bar0->pif_rd_swapper_fb);
3604 if (val64 != 0x0123456789ABCDEFULL) {
3605 int i = 0;
3606 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3607 0x8100008181000081ULL, /* FE=1, SE=0 */
3608 0x4200004242000042ULL, /* FE=0, SE=1 */
3609 0}; /* FE=0, SE=0 */
3610
3611 while (i < 4) {
3612 writeq(value[i], &bar0->swapper_ctrl);
3613 val64 = readq(&bar0->pif_rd_swapper_fb);
3614 if (val64 == 0x0123456789ABCDEFULL)
3615 break;
3616 i++;
3617 }
3618 if (i == 4) {
3619 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3620 "feedback read %llx\n",
3621 dev->name, (unsigned long long)val64);
3622 return FAILURE;
3623 }
3624 valr = value[i];
3625 } else {
3626 valr = readq(&bar0->swapper_ctrl);
3627 }
3628
3629 valt = 0x0123456789ABCDEFULL;
3630 writeq(valt, &bar0->xmsi_address);
3631 val64 = readq(&bar0->xmsi_address);
3632
3633 if (val64 != valt) {
3634 int i = 0;
3635 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3636 0x0081810000818100ULL, /* FE=1, SE=0 */
3637 0x0042420000424200ULL, /* FE=0, SE=1 */
3638 0}; /* FE=0, SE=0 */
3639
3640 while (i < 4) {
3641 writeq((value[i] | valr), &bar0->swapper_ctrl);
3642 writeq(valt, &bar0->xmsi_address);
3643 val64 = readq(&bar0->xmsi_address);
3644 if (val64 == valt)
3645 break;
3646 i++;
3647 }
3648 if (i == 4) {
3649 unsigned long long x = val64;
3650 DBG_PRINT(ERR_DBG,
3651 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3652 return FAILURE;
3653 }
3654 }
3655 val64 = readq(&bar0->swapper_ctrl);
3656 val64 &= 0xFFFF000000000000ULL;
3657
3658 #ifdef __BIG_ENDIAN
3659 /*
3660 * The device by default set to a big endian format, so a
3661 * big endian driver need not set anything.
3662 */
3663 val64 |= (SWAPPER_CTRL_TXP_FE |
3664 SWAPPER_CTRL_TXP_SE |
3665 SWAPPER_CTRL_TXD_R_FE |
3666 SWAPPER_CTRL_TXD_W_FE |
3667 SWAPPER_CTRL_TXF_R_FE |
3668 SWAPPER_CTRL_RXD_R_FE |
3669 SWAPPER_CTRL_RXD_W_FE |
3670 SWAPPER_CTRL_RXF_W_FE |
3671 SWAPPER_CTRL_XMSI_FE |
3672 SWAPPER_CTRL_STATS_FE |
3673 SWAPPER_CTRL_STATS_SE);
3674 if (sp->config.intr_type == INTA)
3675 val64 |= SWAPPER_CTRL_XMSI_SE;
3676 writeq(val64, &bar0->swapper_ctrl);
3677 #else
3678 /*
3679 * Initially we enable all bits to make it accessible by the
3680 * driver, then we selectively enable only those bits that
3681 * we want to set.
3682 */
3683 val64 |= (SWAPPER_CTRL_TXP_FE |
3684 SWAPPER_CTRL_TXP_SE |
3685 SWAPPER_CTRL_TXD_R_FE |
3686 SWAPPER_CTRL_TXD_R_SE |
3687 SWAPPER_CTRL_TXD_W_FE |
3688 SWAPPER_CTRL_TXD_W_SE |
3689 SWAPPER_CTRL_TXF_R_FE |
3690 SWAPPER_CTRL_RXD_R_FE |
3691 SWAPPER_CTRL_RXD_R_SE |
3692 SWAPPER_CTRL_RXD_W_FE |
3693 SWAPPER_CTRL_RXD_W_SE |
3694 SWAPPER_CTRL_RXF_W_FE |
3695 SWAPPER_CTRL_XMSI_FE |
3696 SWAPPER_CTRL_STATS_FE |
3697 SWAPPER_CTRL_STATS_SE);
3698 if (sp->config.intr_type == INTA)
3699 val64 |= SWAPPER_CTRL_XMSI_SE;
3700 writeq(val64, &bar0->swapper_ctrl);
3701 #endif
3702 val64 = readq(&bar0->swapper_ctrl);
3703
3704 /*
3705 * Verifying if endian settings are accurate by reading a
3706 * feedback register.
3707 */
3708 val64 = readq(&bar0->pif_rd_swapper_fb);
3709 if (val64 != 0x0123456789ABCDEFULL) {
3710 /* Endian settings are incorrect, calls for another dekko. */
3711 DBG_PRINT(ERR_DBG,
3712 "%s: Endian settings are wrong, feedback read %llx\n",
3713 dev->name, (unsigned long long)val64);
3714 return FAILURE;
3715 }
3716
3717 return SUCCESS;
3718 }
3719
3720 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3721 {
3722 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3723 u64 val64;
3724 int ret = 0, cnt = 0;
3725
3726 do {
3727 val64 = readq(&bar0->xmsi_access);
3728 if (!(val64 & s2BIT(15)))
3729 break;
3730 mdelay(1);
3731 cnt++;
3732 } while (cnt < 5);
3733 if (cnt == 5) {
3734 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3735 ret = 1;
3736 }
3737
3738 return ret;
3739 }
3740
3741 static void restore_xmsi_data(struct s2io_nic *nic)
3742 {
3743 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3744 u64 val64;
3745 int i, msix_index;
3746
3747 if (nic->device_type == XFRAME_I_DEVICE)
3748 return;
3749
3750 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3751 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3752 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3753 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3754 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3755 writeq(val64, &bar0->xmsi_access);
3756 if (wait_for_msix_trans(nic, msix_index)) {
3757 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3758 __func__, msix_index);
3759 continue;
3760 }
3761 }
3762 }
3763
3764 static void store_xmsi_data(struct s2io_nic *nic)
3765 {
3766 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3767 u64 val64, addr, data;
3768 int i, msix_index;
3769
3770 if (nic->device_type == XFRAME_I_DEVICE)
3771 return;
3772
3773 /* Store and display */
3774 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3775 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3776 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3777 writeq(val64, &bar0->xmsi_access);
3778 if (wait_for_msix_trans(nic, msix_index)) {
3779 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3780 __func__, msix_index);
3781 continue;
3782 }
3783 addr = readq(&bar0->xmsi_address);
3784 data = readq(&bar0->xmsi_data);
3785 if (addr && data) {
3786 nic->msix_info[i].addr = addr;
3787 nic->msix_info[i].data = data;
3788 }
3789 }
3790 }
3791
3792 static int s2io_enable_msi_x(struct s2io_nic *nic)
3793 {
3794 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3795 u64 rx_mat;
3796 u16 msi_control; /* Temp variable */
3797 int ret, i, j, msix_indx = 1;
3798 int size;
3799 struct stat_block *stats = nic->mac_control.stats_info;
3800 struct swStat *swstats = &stats->sw_stat;
3801
3802 size = nic->num_entries * sizeof(struct msix_entry);
3803 nic->entries = kzalloc(size, GFP_KERNEL);
3804 if (!nic->entries) {
3805 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3806 __func__);
3807 swstats->mem_alloc_fail_cnt++;
3808 return -ENOMEM;
3809 }
3810 swstats->mem_allocated += size;
3811
3812 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3813 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3814 if (!nic->s2io_entries) {
3815 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3816 __func__);
3817 swstats->mem_alloc_fail_cnt++;
3818 kfree(nic->entries);
3819 swstats->mem_freed
3820 += (nic->num_entries * sizeof(struct msix_entry));
3821 return -ENOMEM;
3822 }
3823 swstats->mem_allocated += size;
3824
3825 nic->entries[0].entry = 0;
3826 nic->s2io_entries[0].entry = 0;
3827 nic->s2io_entries[0].in_use = MSIX_FLG;
3828 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3829 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3830
3831 for (i = 1; i < nic->num_entries; i++) {
3832 nic->entries[i].entry = ((i - 1) * 8) + 1;
3833 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3834 nic->s2io_entries[i].arg = NULL;
3835 nic->s2io_entries[i].in_use = 0;
3836 }
3837
3838 rx_mat = readq(&bar0->rx_mat);
3839 for (j = 0; j < nic->config.rx_ring_num; j++) {
3840 rx_mat |= RX_MAT_SET(j, msix_indx);
3841 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3842 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3843 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3844 msix_indx += 8;
3845 }
3846 writeq(rx_mat, &bar0->rx_mat);
3847 readq(&bar0->rx_mat);
3848
3849 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3850 /* We fail init if error or we get less vectors than min required */
3851 if (ret) {
3852 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3853 kfree(nic->entries);
3854 swstats->mem_freed += nic->num_entries *
3855 sizeof(struct msix_entry);
3856 kfree(nic->s2io_entries);
3857 swstats->mem_freed += nic->num_entries *
3858 sizeof(struct s2io_msix_entry);
3859 nic->entries = NULL;
3860 nic->s2io_entries = NULL;
3861 return -ENOMEM;
3862 }
3863
3864 /*
3865 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3866 * in the herc NIC. (Temp change, needs to be removed later)
3867 */
3868 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3869 msi_control |= 0x1; /* Enable MSI */
3870 pci_write_config_word(nic->pdev, 0x42, msi_control);
3871
3872 return 0;
3873 }
3874
3875 /* Handle software interrupt used during MSI(X) test */
3876 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3877 {
3878 struct s2io_nic *sp = dev_id;
3879
3880 sp->msi_detected = 1;
3881 wake_up(&sp->msi_wait);
3882
3883 return IRQ_HANDLED;
3884 }
3885
3886 /* Test interrupt path by forcing a a software IRQ */
3887 static int s2io_test_msi(struct s2io_nic *sp)
3888 {
3889 struct pci_dev *pdev = sp->pdev;
3890 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3891 int err;
3892 u64 val64, saved64;
3893
3894 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3895 sp->name, sp);
3896 if (err) {
3897 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3898 sp->dev->name, pci_name(pdev), pdev->irq);
3899 return err;
3900 }
3901
3902 init_waitqueue_head(&sp->msi_wait);
3903 sp->msi_detected = 0;
3904
3905 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3906 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3907 val64 |= SCHED_INT_CTRL_TIMER_EN;
3908 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3909 writeq(val64, &bar0->scheduled_int_ctrl);
3910
3911 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3912
3913 if (!sp->msi_detected) {
3914 /* MSI(X) test failed, go back to INTx mode */
3915 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3916 "using MSI(X) during test\n",
3917 sp->dev->name, pci_name(pdev));
3918
3919 err = -EOPNOTSUPP;
3920 }
3921
3922 free_irq(sp->entries[1].vector, sp);
3923
3924 writeq(saved64, &bar0->scheduled_int_ctrl);
3925
3926 return err;
3927 }
3928
3929 static void remove_msix_isr(struct s2io_nic *sp)
3930 {
3931 int i;
3932 u16 msi_control;
3933
3934 for (i = 0; i < sp->num_entries; i++) {
3935 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3936 int vector = sp->entries[i].vector;
3937 void *arg = sp->s2io_entries[i].arg;
3938 free_irq(vector, arg);
3939 }
3940 }
3941
3942 kfree(sp->entries);
3943 kfree(sp->s2io_entries);
3944 sp->entries = NULL;
3945 sp->s2io_entries = NULL;
3946
3947 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3948 msi_control &= 0xFFFE; /* Disable MSI */
3949 pci_write_config_word(sp->pdev, 0x42, msi_control);
3950
3951 pci_disable_msix(sp->pdev);
3952 }
3953
3954 static void remove_inta_isr(struct s2io_nic *sp)
3955 {
3956 struct net_device *dev = sp->dev;
3957
3958 free_irq(sp->pdev->irq, dev);
3959 }
3960
3961 /* ********************************************************* *
3962 * Functions defined below concern the OS part of the driver *
3963 * ********************************************************* */
3964
3965 /**
3966 * s2io_open - open entry point of the driver
3967 * @dev : pointer to the device structure.
3968 * Description:
3969 * This function is the open entry point of the driver. It mainly calls a
3970 * function to allocate Rx buffers and inserts them into the buffer
3971 * descriptors and then enables the Rx part of the NIC.
3972 * Return value:
3973 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3974 * file on failure.
3975 */
3976
3977 static int s2io_open(struct net_device *dev)
3978 {
3979 struct s2io_nic *sp = netdev_priv(dev);
3980 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3981 int err = 0;
3982
3983 /*
3984 * Make sure you have link off by default every time
3985 * Nic is initialized
3986 */
3987 netif_carrier_off(dev);
3988 sp->last_link_state = 0;
3989
3990 /* Initialize H/W and enable interrupts */
3991 err = s2io_card_up(sp);
3992 if (err) {
3993 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3994 dev->name);
3995 goto hw_init_failed;
3996 }
3997
3998 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3999 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4000 s2io_card_down(sp);
4001 err = -ENODEV;
4002 goto hw_init_failed;
4003 }
4004 s2io_start_all_tx_queue(sp);
4005 return 0;
4006
4007 hw_init_failed:
4008 if (sp->config.intr_type == MSI_X) {
4009 if (sp->entries) {
4010 kfree(sp->entries);
4011 swstats->mem_freed += sp->num_entries *
4012 sizeof(struct msix_entry);
4013 }
4014 if (sp->s2io_entries) {
4015 kfree(sp->s2io_entries);
4016 swstats->mem_freed += sp->num_entries *
4017 sizeof(struct s2io_msix_entry);
4018 }
4019 }
4020 return err;
4021 }
4022
4023 /**
4024 * s2io_close -close entry point of the driver
4025 * @dev : device pointer.
4026 * Description:
4027 * This is the stop entry point of the driver. It needs to undo exactly
4028 * whatever was done by the open entry point,thus it's usually referred to
4029 * as the close function.Among other things this function mainly stops the
4030 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4031 * Return value:
4032 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4033 * file on failure.
4034 */
4035
4036 static int s2io_close(struct net_device *dev)
4037 {
4038 struct s2io_nic *sp = netdev_priv(dev);
4039 struct config_param *config = &sp->config;
4040 u64 tmp64;
4041 int offset;
4042
4043 /* Return if the device is already closed *
4044 * Can happen when s2io_card_up failed in change_mtu *
4045 */
4046 if (!is_s2io_card_up(sp))
4047 return 0;
4048
4049 s2io_stop_all_tx_queue(sp);
4050 /* delete all populated mac entries */
4051 for (offset = 1; offset < config->max_mc_addr; offset++) {
4052 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4053 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4054 do_s2io_delete_unicast_mc(sp, tmp64);
4055 }
4056
4057 s2io_card_down(sp);
4058
4059 return 0;
4060 }
4061
4062 /**
4063 * s2io_xmit - Tx entry point of te driver
4064 * @skb : the socket buffer containing the Tx data.
4065 * @dev : device pointer.
4066 * Description :
4067 * This function is the Tx entry point of the driver. S2IO NIC supports
4068 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4069 * NOTE: when device cant queue the pkt,just the trans_start variable will
4070 * not be upadted.
4071 * Return value:
4072 * 0 on success & 1 on failure.
4073 */
4074
4075 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4076 {
4077 struct s2io_nic *sp = netdev_priv(dev);
4078 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4079 register u64 val64;
4080 struct TxD *txdp;
4081 struct TxFIFO_element __iomem *tx_fifo;
4082 unsigned long flags = 0;
4083 u16 vlan_tag = 0;
4084 struct fifo_info *fifo = NULL;
4085 int do_spin_lock = 1;
4086 int offload_type;
4087 int enable_per_list_interrupt = 0;
4088 struct config_param *config = &sp->config;
4089 struct mac_info *mac_control = &sp->mac_control;
4090 struct stat_block *stats = mac_control->stats_info;
4091 struct swStat *swstats = &stats->sw_stat;
4092
4093 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4094
4095 if (unlikely(skb->len <= 0)) {
4096 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4097 dev_kfree_skb_any(skb);
4098 return NETDEV_TX_OK;
4099 }
4100
4101 if (!is_s2io_card_up(sp)) {
4102 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4103 dev->name);
4104 dev_kfree_skb(skb);
4105 return NETDEV_TX_OK;
4106 }
4107
4108 queue = 0;
4109 if (sp->vlgrp && vlan_tx_tag_present(skb))
4110 vlan_tag = vlan_tx_tag_get(skb);
4111 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4112 if (skb->protocol == htons(ETH_P_IP)) {
4113 struct iphdr *ip;
4114 struct tcphdr *th;
4115 ip = ip_hdr(skb);
4116
4117 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4118 th = (struct tcphdr *)(((unsigned char *)ip) +
4119 ip->ihl*4);
4120
4121 if (ip->protocol == IPPROTO_TCP) {
4122 queue_len = sp->total_tcp_fifos;
4123 queue = (ntohs(th->source) +
4124 ntohs(th->dest)) &
4125 sp->fifo_selector[queue_len - 1];
4126 if (queue >= queue_len)
4127 queue = queue_len - 1;
4128 } else if (ip->protocol == IPPROTO_UDP) {
4129 queue_len = sp->total_udp_fifos;
4130 queue = (ntohs(th->source) +
4131 ntohs(th->dest)) &
4132 sp->fifo_selector[queue_len - 1];
4133 if (queue >= queue_len)
4134 queue = queue_len - 1;
4135 queue += sp->udp_fifo_idx;
4136 if (skb->len > 1024)
4137 enable_per_list_interrupt = 1;
4138 do_spin_lock = 0;
4139 }
4140 }
4141 }
4142 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4143 /* get fifo number based on skb->priority value */
4144 queue = config->fifo_mapping
4145 [skb->priority & (MAX_TX_FIFOS - 1)];
4146 fifo = &mac_control->fifos[queue];
4147
4148 if (do_spin_lock)
4149 spin_lock_irqsave(&fifo->tx_lock, flags);
4150 else {
4151 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4152 return NETDEV_TX_LOCKED;
4153 }
4154
4155 if (sp->config.multiq) {
4156 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4157 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4158 return NETDEV_TX_BUSY;
4159 }
4160 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4161 if (netif_queue_stopped(dev)) {
4162 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4163 return NETDEV_TX_BUSY;
4164 }
4165 }
4166
4167 put_off = (u16)fifo->tx_curr_put_info.offset;
4168 get_off = (u16)fifo->tx_curr_get_info.offset;
4169 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4170
4171 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4172 /* Avoid "put" pointer going beyond "get" pointer */
4173 if (txdp->Host_Control ||
4174 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4175 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4176 s2io_stop_tx_queue(sp, fifo->fifo_no);
4177 dev_kfree_skb(skb);
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_OK;
4180 }
4181
4182 offload_type = s2io_offload_type(skb);
4183 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4184 txdp->Control_1 |= TXD_TCP_LSO_EN;
4185 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4186 }
4187 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4188 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4189 TXD_TX_CKO_TCP_EN |
4190 TXD_TX_CKO_UDP_EN);
4191 }
4192 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4193 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4194 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4195 if (enable_per_list_interrupt)
4196 if (put_off & (queue_len >> 5))
4197 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4198 if (vlan_tag) {
4199 txdp->Control_2 |= TXD_VLAN_ENABLE;
4200 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4201 }
4202
4203 frg_len = skb_headlen(skb);
4204 if (offload_type == SKB_GSO_UDP) {
4205 int ufo_size;
4206
4207 ufo_size = s2io_udp_mss(skb);
4208 ufo_size &= ~7;
4209 txdp->Control_1 |= TXD_UFO_EN;
4210 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4211 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4212 #ifdef __BIG_ENDIAN
4213 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4214 fifo->ufo_in_band_v[put_off] =
4215 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4216 #else
4217 fifo->ufo_in_band_v[put_off] =
4218 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4219 #endif
4220 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4221 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4222 fifo->ufo_in_band_v,
4223 sizeof(u64),
4224 PCI_DMA_TODEVICE);
4225 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4226 goto pci_map_failed;
4227 txdp++;
4228 }
4229
4230 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4231 frg_len, PCI_DMA_TODEVICE);
4232 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4233 goto pci_map_failed;
4234
4235 txdp->Host_Control = (unsigned long)skb;
4236 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4237 if (offload_type == SKB_GSO_UDP)
4238 txdp->Control_1 |= TXD_UFO_EN;
4239
4240 frg_cnt = skb_shinfo(skb)->nr_frags;
4241 /* For fragmented SKB. */
4242 for (i = 0; i < frg_cnt; i++) {
4243 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4244 /* A '0' length fragment will be ignored */
4245 if (!frag->size)
4246 continue;
4247 txdp++;
4248 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4249 frag->page_offset,
4250 frag->size,
4251 PCI_DMA_TODEVICE);
4252 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4253 if (offload_type == SKB_GSO_UDP)
4254 txdp->Control_1 |= TXD_UFO_EN;
4255 }
4256 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4257
4258 if (offload_type == SKB_GSO_UDP)
4259 frg_cnt++; /* as Txd0 was used for inband header */
4260
4261 tx_fifo = mac_control->tx_FIFO_start[queue];
4262 val64 = fifo->list_info[put_off].list_phy_addr;
4263 writeq(val64, &tx_fifo->TxDL_Pointer);
4264
4265 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4266 TX_FIFO_LAST_LIST);
4267 if (offload_type)
4268 val64 |= TX_FIFO_SPECIAL_FUNC;
4269
4270 writeq(val64, &tx_fifo->List_Control);
4271
4272 mmiowb();
4273
4274 put_off++;
4275 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4276 put_off = 0;
4277 fifo->tx_curr_put_info.offset = put_off;
4278
4279 /* Avoid "put" pointer going beyond "get" pointer */
4280 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4281 swstats->fifo_full_cnt++;
4282 DBG_PRINT(TX_DBG,
4283 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4284 put_off, get_off);
4285 s2io_stop_tx_queue(sp, fifo->fifo_no);
4286 }
4287 swstats->mem_allocated += skb->truesize;
4288 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4289
4290 if (sp->config.intr_type == MSI_X)
4291 tx_intr_handler(fifo);
4292
4293 return NETDEV_TX_OK;
4294
4295 pci_map_failed:
4296 swstats->pci_map_fail_cnt++;
4297 s2io_stop_tx_queue(sp, fifo->fifo_no);
4298 swstats->mem_freed += skb->truesize;
4299 dev_kfree_skb(skb);
4300 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4301 return NETDEV_TX_OK;
4302 }
4303
4304 static void
4305 s2io_alarm_handle(unsigned long data)
4306 {
4307 struct s2io_nic *sp = (struct s2io_nic *)data;
4308 struct net_device *dev = sp->dev;
4309
4310 s2io_handle_errors(dev);
4311 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4312 }
4313
4314 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4315 {
4316 struct ring_info *ring = (struct ring_info *)dev_id;
4317 struct s2io_nic *sp = ring->nic;
4318 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4319
4320 if (unlikely(!is_s2io_card_up(sp)))
4321 return IRQ_HANDLED;
4322
4323 if (sp->config.napi) {
4324 u8 __iomem *addr = NULL;
4325 u8 val8 = 0;
4326
4327 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4328 addr += (7 - ring->ring_no);
4329 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4330 writeb(val8, addr);
4331 val8 = readb(addr);
4332 napi_schedule(&ring->napi);
4333 } else {
4334 rx_intr_handler(ring, 0);
4335 s2io_chk_rx_buffers(sp, ring);
4336 }
4337
4338 return IRQ_HANDLED;
4339 }
4340
4341 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4342 {
4343 int i;
4344 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4345 struct s2io_nic *sp = fifos->nic;
4346 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4347 struct config_param *config = &sp->config;
4348 u64 reason;
4349
4350 if (unlikely(!is_s2io_card_up(sp)))
4351 return IRQ_NONE;
4352
4353 reason = readq(&bar0->general_int_status);
4354 if (unlikely(reason == S2IO_MINUS_ONE))
4355 /* Nothing much can be done. Get out */
4356 return IRQ_HANDLED;
4357
4358 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4359 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4360
4361 if (reason & GEN_INTR_TXPIC)
4362 s2io_txpic_intr_handle(sp);
4363
4364 if (reason & GEN_INTR_TXTRAFFIC)
4365 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4366
4367 for (i = 0; i < config->tx_fifo_num; i++)
4368 tx_intr_handler(&fifos[i]);
4369
4370 writeq(sp->general_int_mask, &bar0->general_int_mask);
4371 readl(&bar0->general_int_status);
4372 return IRQ_HANDLED;
4373 }
4374 /* The interrupt was not raised by us */
4375 return IRQ_NONE;
4376 }
4377
4378 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4379 {
4380 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4381 u64 val64;
4382
4383 val64 = readq(&bar0->pic_int_status);
4384 if (val64 & PIC_INT_GPIO) {
4385 val64 = readq(&bar0->gpio_int_reg);
4386 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4387 (val64 & GPIO_INT_REG_LINK_UP)) {
4388 /*
4389 * This is unstable state so clear both up/down
4390 * interrupt and adapter to re-evaluate the link state.
4391 */
4392 val64 |= GPIO_INT_REG_LINK_DOWN;
4393 val64 |= GPIO_INT_REG_LINK_UP;
4394 writeq(val64, &bar0->gpio_int_reg);
4395 val64 = readq(&bar0->gpio_int_mask);
4396 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4397 GPIO_INT_MASK_LINK_DOWN);
4398 writeq(val64, &bar0->gpio_int_mask);
4399 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4400 val64 = readq(&bar0->adapter_status);
4401 /* Enable Adapter */
4402 val64 = readq(&bar0->adapter_control);
4403 val64 |= ADAPTER_CNTL_EN;
4404 writeq(val64, &bar0->adapter_control);
4405 val64 |= ADAPTER_LED_ON;
4406 writeq(val64, &bar0->adapter_control);
4407 if (!sp->device_enabled_once)
4408 sp->device_enabled_once = 1;
4409
4410 s2io_link(sp, LINK_UP);
4411 /*
4412 * unmask link down interrupt and mask link-up
4413 * intr
4414 */
4415 val64 = readq(&bar0->gpio_int_mask);
4416 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4417 val64 |= GPIO_INT_MASK_LINK_UP;
4418 writeq(val64, &bar0->gpio_int_mask);
4419
4420 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4421 val64 = readq(&bar0->adapter_status);
4422 s2io_link(sp, LINK_DOWN);
4423 /* Link is down so unmaks link up interrupt */
4424 val64 = readq(&bar0->gpio_int_mask);
4425 val64 &= ~GPIO_INT_MASK_LINK_UP;
4426 val64 |= GPIO_INT_MASK_LINK_DOWN;
4427 writeq(val64, &bar0->gpio_int_mask);
4428
4429 /* turn off LED */
4430 val64 = readq(&bar0->adapter_control);
4431 val64 = val64 & (~ADAPTER_LED_ON);
4432 writeq(val64, &bar0->adapter_control);
4433 }
4434 }
4435 val64 = readq(&bar0->gpio_int_mask);
4436 }
4437
4438 /**
4439 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4440 * @value: alarm bits
4441 * @addr: address value
4442 * @cnt: counter variable
4443 * Description: Check for alarm and increment the counter
4444 * Return Value:
4445 * 1 - if alarm bit set
4446 * 0 - if alarm bit is not set
4447 */
4448 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4449 unsigned long long *cnt)
4450 {
4451 u64 val64;
4452 val64 = readq(addr);
4453 if (val64 & value) {
4454 writeq(val64, addr);
4455 (*cnt)++;
4456 return 1;
4457 }
4458 return 0;
4459
4460 }
4461
4462 /**
4463 * s2io_handle_errors - Xframe error indication handler
4464 * @nic: device private variable
4465 * Description: Handle alarms such as loss of link, single or
4466 * double ECC errors, critical and serious errors.
4467 * Return Value:
4468 * NONE
4469 */
4470 static void s2io_handle_errors(void *dev_id)
4471 {
4472 struct net_device *dev = (struct net_device *)dev_id;
4473 struct s2io_nic *sp = netdev_priv(dev);
4474 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4475 u64 temp64 = 0, val64 = 0;
4476 int i = 0;
4477
4478 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4479 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4480
4481 if (!is_s2io_card_up(sp))
4482 return;
4483
4484 if (pci_channel_offline(sp->pdev))
4485 return;
4486
4487 memset(&sw_stat->ring_full_cnt, 0,
4488 sizeof(sw_stat->ring_full_cnt));
4489
4490 /* Handling the XPAK counters update */
4491 if (stats->xpak_timer_count < 72000) {
4492 /* waiting for an hour */
4493 stats->xpak_timer_count++;
4494 } else {
4495 s2io_updt_xpak_counter(dev);
4496 /* reset the count to zero */
4497 stats->xpak_timer_count = 0;
4498 }
4499
4500 /* Handling link status change error Intr */
4501 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4502 val64 = readq(&bar0->mac_rmac_err_reg);
4503 writeq(val64, &bar0->mac_rmac_err_reg);
4504 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4505 schedule_work(&sp->set_link_task);
4506 }
4507
4508 /* In case of a serious error, the device will be Reset. */
4509 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4510 &sw_stat->serious_err_cnt))
4511 goto reset;
4512
4513 /* Check for data parity error */
4514 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4515 &sw_stat->parity_err_cnt))
4516 goto reset;
4517
4518 /* Check for ring full counter */
4519 if (sp->device_type == XFRAME_II_DEVICE) {
4520 val64 = readq(&bar0->ring_bump_counter1);
4521 for (i = 0; i < 4; i++) {
4522 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4523 temp64 >>= 64 - ((i+1)*16);
4524 sw_stat->ring_full_cnt[i] += temp64;
4525 }
4526
4527 val64 = readq(&bar0->ring_bump_counter2);
4528 for (i = 0; i < 4; i++) {
4529 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4530 temp64 >>= 64 - ((i+1)*16);
4531 sw_stat->ring_full_cnt[i+4] += temp64;
4532 }
4533 }
4534
4535 val64 = readq(&bar0->txdma_int_status);
4536 /*check for pfc_err*/
4537 if (val64 & TXDMA_PFC_INT) {
4538 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4539 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4540 PFC_PCIX_ERR,
4541 &bar0->pfc_err_reg,
4542 &sw_stat->pfc_err_cnt))
4543 goto reset;
4544 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4545 &bar0->pfc_err_reg,
4546 &sw_stat->pfc_err_cnt);
4547 }
4548
4549 /*check for tda_err*/
4550 if (val64 & TXDMA_TDA_INT) {
4551 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4552 TDA_SM0_ERR_ALARM |
4553 TDA_SM1_ERR_ALARM,
4554 &bar0->tda_err_reg,
4555 &sw_stat->tda_err_cnt))
4556 goto reset;
4557 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4558 &bar0->tda_err_reg,
4559 &sw_stat->tda_err_cnt);
4560 }
4561 /*check for pcc_err*/
4562 if (val64 & TXDMA_PCC_INT) {
4563 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4564 PCC_N_SERR | PCC_6_COF_OV_ERR |
4565 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4566 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4567 PCC_TXB_ECC_DB_ERR,
4568 &bar0->pcc_err_reg,
4569 &sw_stat->pcc_err_cnt))
4570 goto reset;
4571 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4572 &bar0->pcc_err_reg,
4573 &sw_stat->pcc_err_cnt);
4574 }
4575
4576 /*check for tti_err*/
4577 if (val64 & TXDMA_TTI_INT) {
4578 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4579 &bar0->tti_err_reg,
4580 &sw_stat->tti_err_cnt))
4581 goto reset;
4582 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4583 &bar0->tti_err_reg,
4584 &sw_stat->tti_err_cnt);
4585 }
4586
4587 /*check for lso_err*/
4588 if (val64 & TXDMA_LSO_INT) {
4589 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4590 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4591 &bar0->lso_err_reg,
4592 &sw_stat->lso_err_cnt))
4593 goto reset;
4594 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4595 &bar0->lso_err_reg,
4596 &sw_stat->lso_err_cnt);
4597 }
4598
4599 /*check for tpa_err*/
4600 if (val64 & TXDMA_TPA_INT) {
4601 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4602 &bar0->tpa_err_reg,
4603 &sw_stat->tpa_err_cnt))
4604 goto reset;
4605 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4606 &bar0->tpa_err_reg,
4607 &sw_stat->tpa_err_cnt);
4608 }
4609
4610 /*check for sm_err*/
4611 if (val64 & TXDMA_SM_INT) {
4612 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4613 &bar0->sm_err_reg,
4614 &sw_stat->sm_err_cnt))
4615 goto reset;
4616 }
4617
4618 val64 = readq(&bar0->mac_int_status);
4619 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621 &bar0->mac_tmac_err_reg,
4622 &sw_stat->mac_tmac_err_cnt))
4623 goto reset;
4624 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4625 TMAC_DESC_ECC_SG_ERR |
4626 TMAC_DESC_ECC_DB_ERR,
4627 &bar0->mac_tmac_err_reg,
4628 &sw_stat->mac_tmac_err_cnt);
4629 }
4630
4631 val64 = readq(&bar0->xgxs_int_status);
4632 if (val64 & XGXS_INT_STATUS_TXGXS) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634 &bar0->xgxs_txgxs_err_reg,
4635 &sw_stat->xgxs_txgxs_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638 &bar0->xgxs_txgxs_err_reg,
4639 &sw_stat->xgxs_txgxs_err_cnt);
4640 }
4641
4642 val64 = readq(&bar0->rxdma_int_status);
4643 if (val64 & RXDMA_INT_RC_INT_M) {
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4645 RC_FTC_ECC_DB_ERR |
4646 RC_PRCn_SM_ERR_ALARM |
4647 RC_FTC_SM_ERR_ALARM,
4648 &bar0->rc_err_reg,
4649 &sw_stat->rc_err_cnt))
4650 goto reset;
4651 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4652 RC_FTC_ECC_SG_ERR |
4653 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4654 &sw_stat->rc_err_cnt);
4655 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4656 PRC_PCI_AB_WR_Rn |
4657 PRC_PCI_AB_F_WR_Rn,
4658 &bar0->prc_pcix_err_reg,
4659 &sw_stat->prc_pcix_err_cnt))
4660 goto reset;
4661 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4662 PRC_PCI_DP_WR_Rn |
4663 PRC_PCI_DP_F_WR_Rn,
4664 &bar0->prc_pcix_err_reg,
4665 &sw_stat->prc_pcix_err_cnt);
4666 }
4667
4668 if (val64 & RXDMA_INT_RPA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4670 &bar0->rpa_err_reg,
4671 &sw_stat->rpa_err_cnt))
4672 goto reset;
4673 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4674 &bar0->rpa_err_reg,
4675 &sw_stat->rpa_err_cnt);
4676 }
4677
4678 if (val64 & RXDMA_INT_RDA_INT_M) {
4679 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4680 RDA_FRM_ECC_DB_N_AERR |
4681 RDA_SM1_ERR_ALARM |
4682 RDA_SM0_ERR_ALARM |
4683 RDA_RXD_ECC_DB_SERR,
4684 &bar0->rda_err_reg,
4685 &sw_stat->rda_err_cnt))
4686 goto reset;
4687 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4688 RDA_FRM_ECC_SG_ERR |
4689 RDA_MISC_ERR |
4690 RDA_PCIX_ERR,
4691 &bar0->rda_err_reg,
4692 &sw_stat->rda_err_cnt);
4693 }
4694
4695 if (val64 & RXDMA_INT_RTI_INT_M) {
4696 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4697 &bar0->rti_err_reg,
4698 &sw_stat->rti_err_cnt))
4699 goto reset;
4700 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4701 &bar0->rti_err_reg,
4702 &sw_stat->rti_err_cnt);
4703 }
4704
4705 val64 = readq(&bar0->mac_int_status);
4706 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4707 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4708 &bar0->mac_rmac_err_reg,
4709 &sw_stat->mac_rmac_err_cnt))
4710 goto reset;
4711 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4712 RMAC_SINGLE_ECC_ERR |
4713 RMAC_DOUBLE_ECC_ERR,
4714 &bar0->mac_rmac_err_reg,
4715 &sw_stat->mac_rmac_err_cnt);
4716 }
4717
4718 val64 = readq(&bar0->xgxs_int_status);
4719 if (val64 & XGXS_INT_STATUS_RXGXS) {
4720 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4721 &bar0->xgxs_rxgxs_err_reg,
4722 &sw_stat->xgxs_rxgxs_err_cnt))
4723 goto reset;
4724 }
4725
4726 val64 = readq(&bar0->mc_int_status);
4727 if (val64 & MC_INT_STATUS_MC_INT) {
4728 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4729 &bar0->mc_err_reg,
4730 &sw_stat->mc_err_cnt))
4731 goto reset;
4732
4733 /* Handling Ecc errors */
4734 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4735 writeq(val64, &bar0->mc_err_reg);
4736 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4737 sw_stat->double_ecc_errs++;
4738 if (sp->device_type != XFRAME_II_DEVICE) {
4739 /*
4740 * Reset XframeI only if critical error
4741 */
4742 if (val64 &
4743 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4744 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4745 goto reset;
4746 }
4747 } else
4748 sw_stat->single_ecc_errs++;
4749 }
4750 }
4751 return;
4752
4753 reset:
4754 s2io_stop_all_tx_queue(sp);
4755 schedule_work(&sp->rst_timer_task);
4756 sw_stat->soft_reset_cnt++;
4757 }
4758
4759 /**
4760 * s2io_isr - ISR handler of the device .
4761 * @irq: the irq of the device.
4762 * @dev_id: a void pointer to the dev structure of the NIC.
4763 * Description: This function is the ISR handler of the device. It
4764 * identifies the reason for the interrupt and calls the relevant
4765 * service routines. As a contongency measure, this ISR allocates the
4766 * recv buffers, if their numbers are below the panic value which is
4767 * presently set to 25% of the original number of rcv buffers allocated.
4768 * Return value:
4769 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4770 * IRQ_NONE: will be returned if interrupt is not from our device
4771 */
4772 static irqreturn_t s2io_isr(int irq, void *dev_id)
4773 {
4774 struct net_device *dev = (struct net_device *)dev_id;
4775 struct s2io_nic *sp = netdev_priv(dev);
4776 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4777 int i;
4778 u64 reason = 0;
4779 struct mac_info *mac_control;
4780 struct config_param *config;
4781
4782 /* Pretend we handled any irq's from a disconnected card */
4783 if (pci_channel_offline(sp->pdev))
4784 return IRQ_NONE;
4785
4786 if (!is_s2io_card_up(sp))
4787 return IRQ_NONE;
4788
4789 config = &sp->config;
4790 mac_control = &sp->mac_control;
4791
4792 /*
4793 * Identify the cause for interrupt and call the appropriate
4794 * interrupt handler. Causes for the interrupt could be;
4795 * 1. Rx of packet.
4796 * 2. Tx complete.
4797 * 3. Link down.
4798 */
4799 reason = readq(&bar0->general_int_status);
4800
4801 if (unlikely(reason == S2IO_MINUS_ONE))
4802 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4803
4804 if (reason &
4805 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4806 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4807
4808 if (config->napi) {
4809 if (reason & GEN_INTR_RXTRAFFIC) {
4810 napi_schedule(&sp->napi);
4811 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4812 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4813 readl(&bar0->rx_traffic_int);
4814 }
4815 } else {
4816 /*
4817 * rx_traffic_int reg is an R1 register, writing all 1's
4818 * will ensure that the actual interrupt causing bit
4819 * get's cleared and hence a read can be avoided.
4820 */
4821 if (reason & GEN_INTR_RXTRAFFIC)
4822 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4823
4824 for (i = 0; i < config->rx_ring_num; i++) {
4825 struct ring_info *ring = &mac_control->rings[i];
4826
4827 rx_intr_handler(ring, 0);
4828 }
4829 }
4830
4831 /*
4832 * tx_traffic_int reg is an R1 register, writing all 1's
4833 * will ensure that the actual interrupt causing bit get's
4834 * cleared and hence a read can be avoided.
4835 */
4836 if (reason & GEN_INTR_TXTRAFFIC)
4837 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4838
4839 for (i = 0; i < config->tx_fifo_num; i++)
4840 tx_intr_handler(&mac_control->fifos[i]);
4841
4842 if (reason & GEN_INTR_TXPIC)
4843 s2io_txpic_intr_handle(sp);
4844
4845 /*
4846 * Reallocate the buffers from the interrupt handler itself.
4847 */
4848 if (!config->napi) {
4849 for (i = 0; i < config->rx_ring_num; i++) {
4850 struct ring_info *ring = &mac_control->rings[i];
4851
4852 s2io_chk_rx_buffers(sp, ring);
4853 }
4854 }
4855 writeq(sp->general_int_mask, &bar0->general_int_mask);
4856 readl(&bar0->general_int_status);
4857
4858 return IRQ_HANDLED;
4859
4860 } else if (!reason) {
4861 /* The interrupt was not raised by us */
4862 return IRQ_NONE;
4863 }
4864
4865 return IRQ_HANDLED;
4866 }
4867
4868 /**
4869 * s2io_updt_stats -
4870 */
4871 static void s2io_updt_stats(struct s2io_nic *sp)
4872 {
4873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4874 u64 val64;
4875 int cnt = 0;
4876
4877 if (is_s2io_card_up(sp)) {
4878 /* Apprx 30us on a 133 MHz bus */
4879 val64 = SET_UPDT_CLICKS(10) |
4880 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4881 writeq(val64, &bar0->stat_cfg);
4882 do {
4883 udelay(100);
4884 val64 = readq(&bar0->stat_cfg);
4885 if (!(val64 & s2BIT(0)))
4886 break;
4887 cnt++;
4888 if (cnt == 5)
4889 break; /* Updt failed */
4890 } while (1);
4891 }
4892 }
4893
4894 /**
4895 * s2io_get_stats - Updates the device statistics structure.
4896 * @dev : pointer to the device structure.
4897 * Description:
4898 * This function updates the device statistics structure in the s2io_nic
4899 * structure and returns a pointer to the same.
4900 * Return value:
4901 * pointer to the updated net_device_stats structure.
4902 */
4903
4904 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4905 {
4906 struct s2io_nic *sp = netdev_priv(dev);
4907 struct config_param *config = &sp->config;
4908 struct mac_info *mac_control = &sp->mac_control;
4909 struct stat_block *stats = mac_control->stats_info;
4910 int i;
4911
4912 /* Configure Stats for immediate updt */
4913 s2io_updt_stats(sp);
4914
4915 /* Using sp->stats as a staging area, because reset (due to mtu
4916 change, for example) will clear some hardware counters */
4917 dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
4918 sp->stats.tx_packets;
4919 sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4920
4921 dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
4922 sp->stats.tx_errors;
4923 sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4924
4925 dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
4926 sp->stats.rx_errors;
4927 sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4928
4929 dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
4930 sp->stats.multicast;
4931 sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4932
4933 dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
4934 sp->stats.rx_length_errors;
4935 sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
4936
4937 /* collect per-ring rx_packets and rx_bytes */
4938 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4939 for (i = 0; i < config->rx_ring_num; i++) {
4940 struct ring_info *ring = &mac_control->rings[i];
4941
4942 dev->stats.rx_packets += ring->rx_packets;
4943 dev->stats.rx_bytes += ring->rx_bytes;
4944 }
4945
4946 return &dev->stats;
4947 }
4948
4949 /**
4950 * s2io_set_multicast - entry point for multicast address enable/disable.
4951 * @dev : pointer to the device structure
4952 * Description:
4953 * This function is a driver entry point which gets called by the kernel
4954 * whenever multicast addresses must be enabled/disabled. This also gets
4955 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4956 * determine, if multicast address must be enabled or if promiscuous mode
4957 * is to be disabled etc.
4958 * Return value:
4959 * void.
4960 */
4961
4962 static void s2io_set_multicast(struct net_device *dev)
4963 {
4964 int i, j, prev_cnt;
4965 struct netdev_hw_addr *ha;
4966 struct s2io_nic *sp = netdev_priv(dev);
4967 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4968 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4969 0xfeffffffffffULL;
4970 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4971 void __iomem *add;
4972 struct config_param *config = &sp->config;
4973
4974 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4975 /* Enable all Multicast addresses */
4976 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4977 &bar0->rmac_addr_data0_mem);
4978 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4979 &bar0->rmac_addr_data1_mem);
4980 val64 = RMAC_ADDR_CMD_MEM_WE |
4981 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4982 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4983 writeq(val64, &bar0->rmac_addr_cmd_mem);
4984 /* Wait till command completes */
4985 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4986 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4987 S2IO_BIT_RESET);
4988
4989 sp->m_cast_flg = 1;
4990 sp->all_multi_pos = config->max_mc_addr - 1;
4991 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4992 /* Disable all Multicast addresses */
4993 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4994 &bar0->rmac_addr_data0_mem);
4995 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4996 &bar0->rmac_addr_data1_mem);
4997 val64 = RMAC_ADDR_CMD_MEM_WE |
4998 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4999 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5000 writeq(val64, &bar0->rmac_addr_cmd_mem);
5001 /* Wait till command completes */
5002 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5003 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5004 S2IO_BIT_RESET);
5005
5006 sp->m_cast_flg = 0;
5007 sp->all_multi_pos = 0;
5008 }
5009
5010 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5011 /* Put the NIC into promiscuous mode */
5012 add = &bar0->mac_cfg;
5013 val64 = readq(&bar0->mac_cfg);
5014 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5015
5016 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017 writel((u32)val64, add);
5018 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019 writel((u32) (val64 >> 32), (add + 4));
5020
5021 if (vlan_tag_strip != 1) {
5022 val64 = readq(&bar0->rx_pa_cfg);
5023 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5024 writeq(val64, &bar0->rx_pa_cfg);
5025 sp->vlan_strip_flag = 0;
5026 }
5027
5028 val64 = readq(&bar0->mac_cfg);
5029 sp->promisc_flg = 1;
5030 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5031 dev->name);
5032 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5033 /* Remove the NIC from promiscuous mode */
5034 add = &bar0->mac_cfg;
5035 val64 = readq(&bar0->mac_cfg);
5036 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5037
5038 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5039 writel((u32)val64, add);
5040 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5041 writel((u32) (val64 >> 32), (add + 4));
5042
5043 if (vlan_tag_strip != 0) {
5044 val64 = readq(&bar0->rx_pa_cfg);
5045 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5046 writeq(val64, &bar0->rx_pa_cfg);
5047 sp->vlan_strip_flag = 1;
5048 }
5049
5050 val64 = readq(&bar0->mac_cfg);
5051 sp->promisc_flg = 0;
5052 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5053 }
5054
5055 /* Update individual M_CAST address list */
5056 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5057 if (netdev_mc_count(dev) >
5058 (config->max_mc_addr - config->max_mac_addr)) {
5059 DBG_PRINT(ERR_DBG,
5060 "%s: No more Rx filters can be added - "
5061 "please enable ALL_MULTI instead\n",
5062 dev->name);
5063 return;
5064 }
5065
5066 prev_cnt = sp->mc_addr_count;
5067 sp->mc_addr_count = netdev_mc_count(dev);
5068
5069 /* Clear out the previous list of Mc in the H/W. */
5070 for (i = 0; i < prev_cnt; i++) {
5071 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5072 &bar0->rmac_addr_data0_mem);
5073 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5074 &bar0->rmac_addr_data1_mem);
5075 val64 = RMAC_ADDR_CMD_MEM_WE |
5076 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5077 RMAC_ADDR_CMD_MEM_OFFSET
5078 (config->mc_start_offset + i);
5079 writeq(val64, &bar0->rmac_addr_cmd_mem);
5080
5081 /* Wait for command completes */
5082 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5083 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5084 S2IO_BIT_RESET)) {
5085 DBG_PRINT(ERR_DBG,
5086 "%s: Adding Multicasts failed\n",
5087 dev->name);
5088 return;
5089 }
5090 }
5091
5092 /* Create the new Rx filter list and update the same in H/W. */
5093 i = 0;
5094 netdev_for_each_mc_addr(ha, dev) {
5095 memcpy(sp->usr_addrs[i].addr, ha->addr,
5096 ETH_ALEN);
5097 mac_addr = 0;
5098 for (j = 0; j < ETH_ALEN; j++) {
5099 mac_addr |= ha->addr[j];
5100 mac_addr <<= 8;
5101 }
5102 mac_addr >>= 8;
5103 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5104 &bar0->rmac_addr_data0_mem);
5105 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106 &bar0->rmac_addr_data1_mem);
5107 val64 = RMAC_ADDR_CMD_MEM_WE |
5108 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109 RMAC_ADDR_CMD_MEM_OFFSET
5110 (i + config->mc_start_offset);
5111 writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113 /* Wait for command completes */
5114 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5115 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116 S2IO_BIT_RESET)) {
5117 DBG_PRINT(ERR_DBG,
5118 "%s: Adding Multicasts failed\n",
5119 dev->name);
5120 return;
5121 }
5122 i++;
5123 }
5124 }
5125 }
5126
5127 /* read from CAM unicast & multicast addresses and store it in
5128 * def_mac_addr structure
5129 */
5130 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5131 {
5132 int offset;
5133 u64 mac_addr = 0x0;
5134 struct config_param *config = &sp->config;
5135
5136 /* store unicast & multicast mac addresses */
5137 for (offset = 0; offset < config->max_mc_addr; offset++) {
5138 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5139 /* if read fails disable the entry */
5140 if (mac_addr == FAILURE)
5141 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5142 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5143 }
5144 }
5145
5146 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5147 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5148 {
5149 int offset;
5150 struct config_param *config = &sp->config;
5151 /* restore unicast mac address */
5152 for (offset = 0; offset < config->max_mac_addr; offset++)
5153 do_s2io_prog_unicast(sp->dev,
5154 sp->def_mac_addr[offset].mac_addr);
5155
5156 /* restore multicast mac address */
5157 for (offset = config->mc_start_offset;
5158 offset < config->max_mc_addr; offset++)
5159 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5160 }
5161
5162 /* add a multicast MAC address to CAM */
5163 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5164 {
5165 int i;
5166 u64 mac_addr = 0;
5167 struct config_param *config = &sp->config;
5168
5169 for (i = 0; i < ETH_ALEN; i++) {
5170 mac_addr <<= 8;
5171 mac_addr |= addr[i];
5172 }
5173 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5174 return SUCCESS;
5175
5176 /* check if the multicast mac already preset in CAM */
5177 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5178 u64 tmp64;
5179 tmp64 = do_s2io_read_unicast_mc(sp, i);
5180 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5181 break;
5182
5183 if (tmp64 == mac_addr)
5184 return SUCCESS;
5185 }
5186 if (i == config->max_mc_addr) {
5187 DBG_PRINT(ERR_DBG,
5188 "CAM full no space left for multicast MAC\n");
5189 return FAILURE;
5190 }
5191 /* Update the internal structure with this new mac address */
5192 do_s2io_copy_mac_addr(sp, i, mac_addr);
5193
5194 return do_s2io_add_mac(sp, mac_addr, i);
5195 }
5196
5197 /* add MAC address to CAM */
5198 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5199 {
5200 u64 val64;
5201 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5202
5203 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5204 &bar0->rmac_addr_data0_mem);
5205
5206 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5207 RMAC_ADDR_CMD_MEM_OFFSET(off);
5208 writeq(val64, &bar0->rmac_addr_cmd_mem);
5209
5210 /* Wait till command completes */
5211 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5212 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5213 S2IO_BIT_RESET)) {
5214 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5215 return FAILURE;
5216 }
5217 return SUCCESS;
5218 }
5219 /* deletes a specified unicast/multicast mac entry from CAM */
5220 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5221 {
5222 int offset;
5223 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5224 struct config_param *config = &sp->config;
5225
5226 for (offset = 1;
5227 offset < config->max_mc_addr; offset++) {
5228 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5229 if (tmp64 == addr) {
5230 /* disable the entry by writing 0xffffffffffffULL */
5231 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5232 return FAILURE;
5233 /* store the new mac list from CAM */
5234 do_s2io_store_unicast_mc(sp);
5235 return SUCCESS;
5236 }
5237 }
5238 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5239 (unsigned long long)addr);
5240 return FAILURE;
5241 }
5242
5243 /* read mac entries from CAM */
5244 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5245 {
5246 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5247 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5248
5249 /* read mac addr */
5250 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5251 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5252 writeq(val64, &bar0->rmac_addr_cmd_mem);
5253
5254 /* Wait till command completes */
5255 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5256 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5257 S2IO_BIT_RESET)) {
5258 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5259 return FAILURE;
5260 }
5261 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5262
5263 return tmp64 >> 16;
5264 }
5265
5266 /**
5267 * s2io_set_mac_addr driver entry point
5268 */
5269
5270 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5271 {
5272 struct sockaddr *addr = p;
5273
5274 if (!is_valid_ether_addr(addr->sa_data))
5275 return -EINVAL;
5276
5277 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5278
5279 /* store the MAC address in CAM */
5280 return do_s2io_prog_unicast(dev, dev->dev_addr);
5281 }
5282 /**
5283 * do_s2io_prog_unicast - Programs the Xframe mac address
5284 * @dev : pointer to the device structure.
5285 * @addr: a uchar pointer to the new mac address which is to be set.
5286 * Description : This procedure will program the Xframe to receive
5287 * frames with new Mac Address
5288 * Return value: SUCCESS on success and an appropriate (-)ve integer
5289 * as defined in errno.h file on failure.
5290 */
5291
5292 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5293 {
5294 struct s2io_nic *sp = netdev_priv(dev);
5295 register u64 mac_addr = 0, perm_addr = 0;
5296 int i;
5297 u64 tmp64;
5298 struct config_param *config = &sp->config;
5299
5300 /*
5301 * Set the new MAC address as the new unicast filter and reflect this
5302 * change on the device address registered with the OS. It will be
5303 * at offset 0.
5304 */
5305 for (i = 0; i < ETH_ALEN; i++) {
5306 mac_addr <<= 8;
5307 mac_addr |= addr[i];
5308 perm_addr <<= 8;
5309 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5310 }
5311
5312 /* check if the dev_addr is different than perm_addr */
5313 if (mac_addr == perm_addr)
5314 return SUCCESS;
5315
5316 /* check if the mac already preset in CAM */
5317 for (i = 1; i < config->max_mac_addr; i++) {
5318 tmp64 = do_s2io_read_unicast_mc(sp, i);
5319 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5320 break;
5321
5322 if (tmp64 == mac_addr) {
5323 DBG_PRINT(INFO_DBG,
5324 "MAC addr:0x%llx already present in CAM\n",
5325 (unsigned long long)mac_addr);
5326 return SUCCESS;
5327 }
5328 }
5329 if (i == config->max_mac_addr) {
5330 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5331 return FAILURE;
5332 }
5333 /* Update the internal structure with this new mac address */
5334 do_s2io_copy_mac_addr(sp, i, mac_addr);
5335
5336 return do_s2io_add_mac(sp, mac_addr, i);
5337 }
5338
5339 /**
5340 * s2io_ethtool_sset - Sets different link parameters.
5341 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5342 * @info: pointer to the structure with parameters given by ethtool to set
5343 * link information.
5344 * Description:
5345 * The function sets different link parameters provided by the user onto
5346 * the NIC.
5347 * Return value:
5348 * 0 on success.
5349 */
5350
5351 static int s2io_ethtool_sset(struct net_device *dev,
5352 struct ethtool_cmd *info)
5353 {
5354 struct s2io_nic *sp = netdev_priv(dev);
5355 if ((info->autoneg == AUTONEG_ENABLE) ||
5356 (info->speed != SPEED_10000) ||
5357 (info->duplex != DUPLEX_FULL))
5358 return -EINVAL;
5359 else {
5360 s2io_close(sp->dev);
5361 s2io_open(sp->dev);
5362 }
5363
5364 return 0;
5365 }
5366
5367 /**
5368 * s2io_ethtol_gset - Return link specific information.
5369 * @sp : private member of the device structure, pointer to the
5370 * s2io_nic structure.
5371 * @info : pointer to the structure with parameters given by ethtool
5372 * to return link information.
5373 * Description:
5374 * Returns link specific information like speed, duplex etc.. to ethtool.
5375 * Return value :
5376 * return 0 on success.
5377 */
5378
5379 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5380 {
5381 struct s2io_nic *sp = netdev_priv(dev);
5382 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5383 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5384 info->port = PORT_FIBRE;
5385
5386 /* info->transceiver */
5387 info->transceiver = XCVR_EXTERNAL;
5388
5389 if (netif_carrier_ok(sp->dev)) {
5390 info->speed = 10000;
5391 info->duplex = DUPLEX_FULL;
5392 } else {
5393 info->speed = -1;
5394 info->duplex = -1;
5395 }
5396
5397 info->autoneg = AUTONEG_DISABLE;
5398 return 0;
5399 }
5400
5401 /**
5402 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5403 * @sp : private member of the device structure, which is a pointer to the
5404 * s2io_nic structure.
5405 * @info : pointer to the structure with parameters given by ethtool to
5406 * return driver information.
5407 * Description:
5408 * Returns driver specefic information like name, version etc.. to ethtool.
5409 * Return value:
5410 * void
5411 */
5412
5413 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5414 struct ethtool_drvinfo *info)
5415 {
5416 struct s2io_nic *sp = netdev_priv(dev);
5417
5418 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5419 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5420 strncpy(info->fw_version, "", sizeof(info->fw_version));
5421 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5422 info->regdump_len = XENA_REG_SPACE;
5423 info->eedump_len = XENA_EEPROM_SPACE;
5424 }
5425
5426 /**
5427 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5428 * @sp: private member of the device structure, which is a pointer to the
5429 * s2io_nic structure.
5430 * @regs : pointer to the structure with parameters given by ethtool for
5431 * dumping the registers.
5432 * @reg_space: The input argumnet into which all the registers are dumped.
5433 * Description:
5434 * Dumps the entire register space of xFrame NIC into the user given
5435 * buffer area.
5436 * Return value :
5437 * void .
5438 */
5439
5440 static void s2io_ethtool_gregs(struct net_device *dev,
5441 struct ethtool_regs *regs, void *space)
5442 {
5443 int i;
5444 u64 reg;
5445 u8 *reg_space = (u8 *)space;
5446 struct s2io_nic *sp = netdev_priv(dev);
5447
5448 regs->len = XENA_REG_SPACE;
5449 regs->version = sp->pdev->subsystem_device;
5450
5451 for (i = 0; i < regs->len; i += 8) {
5452 reg = readq(sp->bar0 + i);
5453 memcpy((reg_space + i), &reg, 8);
5454 }
5455 }
5456
5457 /**
5458 * s2io_phy_id - timer function that alternates adapter LED.
5459 * @data : address of the private member of the device structure, which
5460 * is a pointer to the s2io_nic structure, provided as an u32.
5461 * Description: This is actually the timer function that alternates the
5462 * adapter LED bit of the adapter control bit to set/reset every time on
5463 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5464 * once every second.
5465 */
5466 static void s2io_phy_id(unsigned long data)
5467 {
5468 struct s2io_nic *sp = (struct s2io_nic *)data;
5469 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5470 u64 val64 = 0;
5471 u16 subid;
5472
5473 subid = sp->pdev->subsystem_device;
5474 if ((sp->device_type == XFRAME_II_DEVICE) ||
5475 ((subid & 0xFF) >= 0x07)) {
5476 val64 = readq(&bar0->gpio_control);
5477 val64 ^= GPIO_CTRL_GPIO_0;
5478 writeq(val64, &bar0->gpio_control);
5479 } else {
5480 val64 = readq(&bar0->adapter_control);
5481 val64 ^= ADAPTER_LED_ON;
5482 writeq(val64, &bar0->adapter_control);
5483 }
5484
5485 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5486 }
5487
5488 /**
5489 * s2io_ethtool_idnic - To physically identify the nic on the system.
5490 * @sp : private member of the device structure, which is a pointer to the
5491 * s2io_nic structure.
5492 * @id : pointer to the structure with identification parameters given by
5493 * ethtool.
5494 * Description: Used to physically identify the NIC on the system.
5495 * The Link LED will blink for a time specified by the user for
5496 * identification.
5497 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5498 * identification is possible only if it's link is up.
5499 * Return value:
5500 * int , returns 0 on success
5501 */
5502
5503 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5504 {
5505 u64 val64 = 0, last_gpio_ctrl_val;
5506 struct s2io_nic *sp = netdev_priv(dev);
5507 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5508 u16 subid;
5509
5510 subid = sp->pdev->subsystem_device;
5511 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5512 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5513 val64 = readq(&bar0->adapter_control);
5514 if (!(val64 & ADAPTER_CNTL_EN)) {
5515 pr_err("Adapter Link down, cannot blink LED\n");
5516 return -EFAULT;
5517 }
5518 }
5519 if (sp->id_timer.function == NULL) {
5520 init_timer(&sp->id_timer);
5521 sp->id_timer.function = s2io_phy_id;
5522 sp->id_timer.data = (unsigned long)sp;
5523 }
5524 mod_timer(&sp->id_timer, jiffies);
5525 if (data)
5526 msleep_interruptible(data * HZ);
5527 else
5528 msleep_interruptible(MAX_FLICKER_TIME);
5529 del_timer_sync(&sp->id_timer);
5530
5531 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5532 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5533 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5534 }
5535
5536 return 0;
5537 }
5538
5539 static void s2io_ethtool_gringparam(struct net_device *dev,
5540 struct ethtool_ringparam *ering)
5541 {
5542 struct s2io_nic *sp = netdev_priv(dev);
5543 int i, tx_desc_count = 0, rx_desc_count = 0;
5544
5545 if (sp->rxd_mode == RXD_MODE_1)
5546 ering->rx_max_pending = MAX_RX_DESC_1;
5547 else if (sp->rxd_mode == RXD_MODE_3B)
5548 ering->rx_max_pending = MAX_RX_DESC_2;
5549
5550 ering->tx_max_pending = MAX_TX_DESC;
5551 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5552 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5553
5554 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5555 ering->tx_pending = tx_desc_count;
5556 rx_desc_count = 0;
5557 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5558 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5559
5560 ering->rx_pending = rx_desc_count;
5561
5562 ering->rx_mini_max_pending = 0;
5563 ering->rx_mini_pending = 0;
5564 if (sp->rxd_mode == RXD_MODE_1)
5565 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5566 else if (sp->rxd_mode == RXD_MODE_3B)
5567 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5568 ering->rx_jumbo_pending = rx_desc_count;
5569 }
5570
5571 /**
5572 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5573 * @sp : private member of the device structure, which is a pointer to the
5574 * s2io_nic structure.
5575 * @ep : pointer to the structure with pause parameters given by ethtool.
5576 * Description:
5577 * Returns the Pause frame generation and reception capability of the NIC.
5578 * Return value:
5579 * void
5580 */
5581 static void s2io_ethtool_getpause_data(struct net_device *dev,
5582 struct ethtool_pauseparam *ep)
5583 {
5584 u64 val64;
5585 struct s2io_nic *sp = netdev_priv(dev);
5586 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5587
5588 val64 = readq(&bar0->rmac_pause_cfg);
5589 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5590 ep->tx_pause = true;
5591 if (val64 & RMAC_PAUSE_RX_ENABLE)
5592 ep->rx_pause = true;
5593 ep->autoneg = false;
5594 }
5595
5596 /**
5597 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5598 * @sp : private member of the device structure, which is a pointer to the
5599 * s2io_nic structure.
5600 * @ep : pointer to the structure with pause parameters given by ethtool.
5601 * Description:
5602 * It can be used to set or reset Pause frame generation or reception
5603 * support of the NIC.
5604 * Return value:
5605 * int, returns 0 on Success
5606 */
5607
5608 static int s2io_ethtool_setpause_data(struct net_device *dev,
5609 struct ethtool_pauseparam *ep)
5610 {
5611 u64 val64;
5612 struct s2io_nic *sp = netdev_priv(dev);
5613 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5614
5615 val64 = readq(&bar0->rmac_pause_cfg);
5616 if (ep->tx_pause)
5617 val64 |= RMAC_PAUSE_GEN_ENABLE;
5618 else
5619 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5620 if (ep->rx_pause)
5621 val64 |= RMAC_PAUSE_RX_ENABLE;
5622 else
5623 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5624 writeq(val64, &bar0->rmac_pause_cfg);
5625 return 0;
5626 }
5627
5628 /**
5629 * read_eeprom - reads 4 bytes of data from user given offset.
5630 * @sp : private member of the device structure, which is a pointer to the
5631 * s2io_nic structure.
5632 * @off : offset at which the data must be written
5633 * @data : Its an output parameter where the data read at the given
5634 * offset is stored.
5635 * Description:
5636 * Will read 4 bytes of data from the user given offset and return the
5637 * read data.
5638 * NOTE: Will allow to read only part of the EEPROM visible through the
5639 * I2C bus.
5640 * Return value:
5641 * -1 on failure and 0 on success.
5642 */
5643
5644 #define S2IO_DEV_ID 5
5645 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5646 {
5647 int ret = -1;
5648 u32 exit_cnt = 0;
5649 u64 val64;
5650 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5651
5652 if (sp->device_type == XFRAME_I_DEVICE) {
5653 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5654 I2C_CONTROL_ADDR(off) |
5655 I2C_CONTROL_BYTE_CNT(0x3) |
5656 I2C_CONTROL_READ |
5657 I2C_CONTROL_CNTL_START;
5658 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5659
5660 while (exit_cnt < 5) {
5661 val64 = readq(&bar0->i2c_control);
5662 if (I2C_CONTROL_CNTL_END(val64)) {
5663 *data = I2C_CONTROL_GET_DATA(val64);
5664 ret = 0;
5665 break;
5666 }
5667 msleep(50);
5668 exit_cnt++;
5669 }
5670 }
5671
5672 if (sp->device_type == XFRAME_II_DEVICE) {
5673 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5674 SPI_CONTROL_BYTECNT(0x3) |
5675 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5676 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5677 val64 |= SPI_CONTROL_REQ;
5678 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5679 while (exit_cnt < 5) {
5680 val64 = readq(&bar0->spi_control);
5681 if (val64 & SPI_CONTROL_NACK) {
5682 ret = 1;
5683 break;
5684 } else if (val64 & SPI_CONTROL_DONE) {
5685 *data = readq(&bar0->spi_data);
5686 *data &= 0xffffff;
5687 ret = 0;
5688 break;
5689 }
5690 msleep(50);
5691 exit_cnt++;
5692 }
5693 }
5694 return ret;
5695 }
5696
5697 /**
5698 * write_eeprom - actually writes the relevant part of the data value.
5699 * @sp : private member of the device structure, which is a pointer to the
5700 * s2io_nic structure.
5701 * @off : offset at which the data must be written
5702 * @data : The data that is to be written
5703 * @cnt : Number of bytes of the data that are actually to be written into
5704 * the Eeprom. (max of 3)
5705 * Description:
5706 * Actually writes the relevant part of the data value into the Eeprom
5707 * through the I2C bus.
5708 * Return value:
5709 * 0 on success, -1 on failure.
5710 */
5711
5712 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5713 {
5714 int exit_cnt = 0, ret = -1;
5715 u64 val64;
5716 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5717
5718 if (sp->device_type == XFRAME_I_DEVICE) {
5719 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5720 I2C_CONTROL_ADDR(off) |
5721 I2C_CONTROL_BYTE_CNT(cnt) |
5722 I2C_CONTROL_SET_DATA((u32)data) |
5723 I2C_CONTROL_CNTL_START;
5724 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5725
5726 while (exit_cnt < 5) {
5727 val64 = readq(&bar0->i2c_control);
5728 if (I2C_CONTROL_CNTL_END(val64)) {
5729 if (!(val64 & I2C_CONTROL_NACK))
5730 ret = 0;
5731 break;
5732 }
5733 msleep(50);
5734 exit_cnt++;
5735 }
5736 }
5737
5738 if (sp->device_type == XFRAME_II_DEVICE) {
5739 int write_cnt = (cnt == 8) ? 0 : cnt;
5740 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5741
5742 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5743 SPI_CONTROL_BYTECNT(write_cnt) |
5744 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5745 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5746 val64 |= SPI_CONTROL_REQ;
5747 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5748 while (exit_cnt < 5) {
5749 val64 = readq(&bar0->spi_control);
5750 if (val64 & SPI_CONTROL_NACK) {
5751 ret = 1;
5752 break;
5753 } else if (val64 & SPI_CONTROL_DONE) {
5754 ret = 0;
5755 break;
5756 }
5757 msleep(50);
5758 exit_cnt++;
5759 }
5760 }
5761 return ret;
5762 }
5763 static void s2io_vpd_read(struct s2io_nic *nic)
5764 {
5765 u8 *vpd_data;
5766 u8 data;
5767 int i = 0, cnt, fail = 0;
5768 int vpd_addr = 0x80;
5769 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5770
5771 if (nic->device_type == XFRAME_II_DEVICE) {
5772 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5773 vpd_addr = 0x80;
5774 } else {
5775 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5776 vpd_addr = 0x50;
5777 }
5778 strcpy(nic->serial_num, "NOT AVAILABLE");
5779
5780 vpd_data = kmalloc(256, GFP_KERNEL);
5781 if (!vpd_data) {
5782 swstats->mem_alloc_fail_cnt++;
5783 return;
5784 }
5785 swstats->mem_allocated += 256;
5786
5787 for (i = 0; i < 256; i += 4) {
5788 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5789 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5790 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5791 for (cnt = 0; cnt < 5; cnt++) {
5792 msleep(2);
5793 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5794 if (data == 0x80)
5795 break;
5796 }
5797 if (cnt >= 5) {
5798 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5799 fail = 1;
5800 break;
5801 }
5802 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5803 (u32 *)&vpd_data[i]);
5804 }
5805
5806 if (!fail) {
5807 /* read serial number of adapter */
5808 for (cnt = 0; cnt < 256; cnt++) {
5809 if ((vpd_data[cnt] == 'S') &&
5810 (vpd_data[cnt+1] == 'N') &&
5811 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5812 memset(nic->serial_num, 0, VPD_STRING_LEN);
5813 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5814 vpd_data[cnt+2]);
5815 break;
5816 }
5817 }
5818 }
5819
5820 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
5821 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5822 kfree(vpd_data);
5823 swstats->mem_freed += 256;
5824 }
5825
5826 /**
5827 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5828 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5829 * @eeprom : pointer to the user level structure provided by ethtool,
5830 * containing all relevant information.
5831 * @data_buf : user defined value to be written into Eeprom.
5832 * Description: Reads the values stored in the Eeprom at given offset
5833 * for a given length. Stores these values int the input argument data
5834 * buffer 'data_buf' and returns these to the caller (ethtool.)
5835 * Return value:
5836 * int 0 on success
5837 */
5838
5839 static int s2io_ethtool_geeprom(struct net_device *dev,
5840 struct ethtool_eeprom *eeprom, u8 * data_buf)
5841 {
5842 u32 i, valid;
5843 u64 data;
5844 struct s2io_nic *sp = netdev_priv(dev);
5845
5846 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5847
5848 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5849 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5850
5851 for (i = 0; i < eeprom->len; i += 4) {
5852 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5853 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5854 return -EFAULT;
5855 }
5856 valid = INV(data);
5857 memcpy((data_buf + i), &valid, 4);
5858 }
5859 return 0;
5860 }
5861
5862 /**
5863 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5864 * @sp : private member of the device structure, which is a pointer to the
5865 * s2io_nic structure.
5866 * @eeprom : pointer to the user level structure provided by ethtool,
5867 * containing all relevant information.
5868 * @data_buf ; user defined value to be written into Eeprom.
5869 * Description:
5870 * Tries to write the user provided value in the Eeprom, at the offset
5871 * given by the user.
5872 * Return value:
5873 * 0 on success, -EFAULT on failure.
5874 */
5875
5876 static int s2io_ethtool_seeprom(struct net_device *dev,
5877 struct ethtool_eeprom *eeprom,
5878 u8 *data_buf)
5879 {
5880 int len = eeprom->len, cnt = 0;
5881 u64 valid = 0, data;
5882 struct s2io_nic *sp = netdev_priv(dev);
5883
5884 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5885 DBG_PRINT(ERR_DBG,
5886 "ETHTOOL_WRITE_EEPROM Err: "
5887 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5888 (sp->pdev->vendor | (sp->pdev->device << 16)),
5889 eeprom->magic);
5890 return -EFAULT;
5891 }
5892
5893 while (len) {
5894 data = (u32)data_buf[cnt] & 0x000000FF;
5895 if (data)
5896 valid = (u32)(data << 24);
5897 else
5898 valid = data;
5899
5900 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5901 DBG_PRINT(ERR_DBG,
5902 "ETHTOOL_WRITE_EEPROM Err: "
5903 "Cannot write into the specified offset\n");
5904 return -EFAULT;
5905 }
5906 cnt++;
5907 len--;
5908 }
5909
5910 return 0;
5911 }
5912
5913 /**
5914 * s2io_register_test - reads and writes into all clock domains.
5915 * @sp : private member of the device structure, which is a pointer to the
5916 * s2io_nic structure.
5917 * @data : variable that returns the result of each of the test conducted b
5918 * by the driver.
5919 * Description:
5920 * Read and write into all clock domains. The NIC has 3 clock domains,
5921 * see that registers in all the three regions are accessible.
5922 * Return value:
5923 * 0 on success.
5924 */
5925
5926 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5927 {
5928 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5929 u64 val64 = 0, exp_val;
5930 int fail = 0;
5931
5932 val64 = readq(&bar0->pif_rd_swapper_fb);
5933 if (val64 != 0x123456789abcdefULL) {
5934 fail = 1;
5935 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5936 }
5937
5938 val64 = readq(&bar0->rmac_pause_cfg);
5939 if (val64 != 0xc000ffff00000000ULL) {
5940 fail = 1;
5941 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5942 }
5943
5944 val64 = readq(&bar0->rx_queue_cfg);
5945 if (sp->device_type == XFRAME_II_DEVICE)
5946 exp_val = 0x0404040404040404ULL;
5947 else
5948 exp_val = 0x0808080808080808ULL;
5949 if (val64 != exp_val) {
5950 fail = 1;
5951 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5952 }
5953
5954 val64 = readq(&bar0->xgxs_efifo_cfg);
5955 if (val64 != 0x000000001923141EULL) {
5956 fail = 1;
5957 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5958 }
5959
5960 val64 = 0x5A5A5A5A5A5A5A5AULL;
5961 writeq(val64, &bar0->xmsi_data);
5962 val64 = readq(&bar0->xmsi_data);
5963 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5964 fail = 1;
5965 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5966 }
5967
5968 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5969 writeq(val64, &bar0->xmsi_data);
5970 val64 = readq(&bar0->xmsi_data);
5971 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5972 fail = 1;
5973 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5974 }
5975
5976 *data = fail;
5977 return fail;
5978 }
5979
5980 /**
5981 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5982 * @sp : private member of the device structure, which is a pointer to the
5983 * s2io_nic structure.
5984 * @data:variable that returns the result of each of the test conducted by
5985 * the driver.
5986 * Description:
5987 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5988 * register.
5989 * Return value:
5990 * 0 on success.
5991 */
5992
5993 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5994 {
5995 int fail = 0;
5996 u64 ret_data, org_4F0, org_7F0;
5997 u8 saved_4F0 = 0, saved_7F0 = 0;
5998 struct net_device *dev = sp->dev;
5999
6000 /* Test Write Error at offset 0 */
6001 /* Note that SPI interface allows write access to all areas
6002 * of EEPROM. Hence doing all negative testing only for Xframe I.
6003 */
6004 if (sp->device_type == XFRAME_I_DEVICE)
6005 if (!write_eeprom(sp, 0, 0, 3))
6006 fail = 1;
6007
6008 /* Save current values at offsets 0x4F0 and 0x7F0 */
6009 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6010 saved_4F0 = 1;
6011 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6012 saved_7F0 = 1;
6013
6014 /* Test Write at offset 4f0 */
6015 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6016 fail = 1;
6017 if (read_eeprom(sp, 0x4F0, &ret_data))
6018 fail = 1;
6019
6020 if (ret_data != 0x012345) {
6021 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6022 "Data written %llx Data read %llx\n",
6023 dev->name, (unsigned long long)0x12345,
6024 (unsigned long long)ret_data);
6025 fail = 1;
6026 }
6027
6028 /* Reset the EEPROM data go FFFF */
6029 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6030
6031 /* Test Write Request Error at offset 0x7c */
6032 if (sp->device_type == XFRAME_I_DEVICE)
6033 if (!write_eeprom(sp, 0x07C, 0, 3))
6034 fail = 1;
6035
6036 /* Test Write Request at offset 0x7f0 */
6037 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6038 fail = 1;
6039 if (read_eeprom(sp, 0x7F0, &ret_data))
6040 fail = 1;
6041
6042 if (ret_data != 0x012345) {
6043 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6044 "Data written %llx Data read %llx\n",
6045 dev->name, (unsigned long long)0x12345,
6046 (unsigned long long)ret_data);
6047 fail = 1;
6048 }
6049
6050 /* Reset the EEPROM data go FFFF */
6051 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6052
6053 if (sp->device_type == XFRAME_I_DEVICE) {
6054 /* Test Write Error at offset 0x80 */
6055 if (!write_eeprom(sp, 0x080, 0, 3))
6056 fail = 1;
6057
6058 /* Test Write Error at offset 0xfc */
6059 if (!write_eeprom(sp, 0x0FC, 0, 3))
6060 fail = 1;
6061
6062 /* Test Write Error at offset 0x100 */
6063 if (!write_eeprom(sp, 0x100, 0, 3))
6064 fail = 1;
6065
6066 /* Test Write Error at offset 4ec */
6067 if (!write_eeprom(sp, 0x4EC, 0, 3))
6068 fail = 1;
6069 }
6070
6071 /* Restore values at offsets 0x4F0 and 0x7F0 */
6072 if (saved_4F0)
6073 write_eeprom(sp, 0x4F0, org_4F0, 3);
6074 if (saved_7F0)
6075 write_eeprom(sp, 0x7F0, org_7F0, 3);
6076
6077 *data = fail;
6078 return fail;
6079 }
6080
6081 /**
6082 * s2io_bist_test - invokes the MemBist test of the card .
6083 * @sp : private member of the device structure, which is a pointer to the
6084 * s2io_nic structure.
6085 * @data:variable that returns the result of each of the test conducted by
6086 * the driver.
6087 * Description:
6088 * This invokes the MemBist test of the card. We give around
6089 * 2 secs time for the Test to complete. If it's still not complete
6090 * within this peiod, we consider that the test failed.
6091 * Return value:
6092 * 0 on success and -1 on failure.
6093 */
6094
6095 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6096 {
6097 u8 bist = 0;
6098 int cnt = 0, ret = -1;
6099
6100 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6101 bist |= PCI_BIST_START;
6102 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6103
6104 while (cnt < 20) {
6105 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6106 if (!(bist & PCI_BIST_START)) {
6107 *data = (bist & PCI_BIST_CODE_MASK);
6108 ret = 0;
6109 break;
6110 }
6111 msleep(100);
6112 cnt++;
6113 }
6114
6115 return ret;
6116 }
6117
6118 /**
6119 * s2io-link_test - verifies the link state of the nic
6120 * @sp ; private member of the device structure, which is a pointer to the
6121 * s2io_nic structure.
6122 * @data: variable that returns the result of each of the test conducted by
6123 * the driver.
6124 * Description:
6125 * The function verifies the link state of the NIC and updates the input
6126 * argument 'data' appropriately.
6127 * Return value:
6128 * 0 on success.
6129 */
6130
6131 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6132 {
6133 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6134 u64 val64;
6135
6136 val64 = readq(&bar0->adapter_status);
6137 if (!(LINK_IS_UP(val64)))
6138 *data = 1;
6139 else
6140 *data = 0;
6141
6142 return *data;
6143 }
6144
6145 /**
6146 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6147 * @sp - private member of the device structure, which is a pointer to the
6148 * s2io_nic structure.
6149 * @data - variable that returns the result of each of the test
6150 * conducted by the driver.
6151 * Description:
6152 * This is one of the offline test that tests the read and write
6153 * access to the RldRam chip on the NIC.
6154 * Return value:
6155 * 0 on success.
6156 */
6157
6158 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6159 {
6160 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6161 u64 val64;
6162 int cnt, iteration = 0, test_fail = 0;
6163
6164 val64 = readq(&bar0->adapter_control);
6165 val64 &= ~ADAPTER_ECC_EN;
6166 writeq(val64, &bar0->adapter_control);
6167
6168 val64 = readq(&bar0->mc_rldram_test_ctrl);
6169 val64 |= MC_RLDRAM_TEST_MODE;
6170 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6171
6172 val64 = readq(&bar0->mc_rldram_mrs);
6173 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6174 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6175
6176 val64 |= MC_RLDRAM_MRS_ENABLE;
6177 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6178
6179 while (iteration < 2) {
6180 val64 = 0x55555555aaaa0000ULL;
6181 if (iteration == 1)
6182 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6183 writeq(val64, &bar0->mc_rldram_test_d0);
6184
6185 val64 = 0xaaaa5a5555550000ULL;
6186 if (iteration == 1)
6187 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6188 writeq(val64, &bar0->mc_rldram_test_d1);
6189
6190 val64 = 0x55aaaaaaaa5a0000ULL;
6191 if (iteration == 1)
6192 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6193 writeq(val64, &bar0->mc_rldram_test_d2);
6194
6195 val64 = (u64) (0x0000003ffffe0100ULL);
6196 writeq(val64, &bar0->mc_rldram_test_add);
6197
6198 val64 = MC_RLDRAM_TEST_MODE |
6199 MC_RLDRAM_TEST_WRITE |
6200 MC_RLDRAM_TEST_GO;
6201 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6202
6203 for (cnt = 0; cnt < 5; cnt++) {
6204 val64 = readq(&bar0->mc_rldram_test_ctrl);
6205 if (val64 & MC_RLDRAM_TEST_DONE)
6206 break;
6207 msleep(200);
6208 }
6209
6210 if (cnt == 5)
6211 break;
6212
6213 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6214 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6215
6216 for (cnt = 0; cnt < 5; cnt++) {
6217 val64 = readq(&bar0->mc_rldram_test_ctrl);
6218 if (val64 & MC_RLDRAM_TEST_DONE)
6219 break;
6220 msleep(500);
6221 }
6222
6223 if (cnt == 5)
6224 break;
6225
6226 val64 = readq(&bar0->mc_rldram_test_ctrl);
6227 if (!(val64 & MC_RLDRAM_TEST_PASS))
6228 test_fail = 1;
6229
6230 iteration++;
6231 }
6232
6233 *data = test_fail;
6234
6235 /* Bring the adapter out of test mode */
6236 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6237
6238 return test_fail;
6239 }
6240
6241 /**
6242 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6243 * @sp : private member of the device structure, which is a pointer to the
6244 * s2io_nic structure.
6245 * @ethtest : pointer to a ethtool command specific structure that will be
6246 * returned to the user.
6247 * @data : variable that returns the result of each of the test
6248 * conducted by the driver.
6249 * Description:
6250 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6251 * the health of the card.
6252 * Return value:
6253 * void
6254 */
6255
6256 static void s2io_ethtool_test(struct net_device *dev,
6257 struct ethtool_test *ethtest,
6258 uint64_t *data)
6259 {
6260 struct s2io_nic *sp = netdev_priv(dev);
6261 int orig_state = netif_running(sp->dev);
6262
6263 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6264 /* Offline Tests. */
6265 if (orig_state)
6266 s2io_close(sp->dev);
6267
6268 if (s2io_register_test(sp, &data[0]))
6269 ethtest->flags |= ETH_TEST_FL_FAILED;
6270
6271 s2io_reset(sp);
6272
6273 if (s2io_rldram_test(sp, &data[3]))
6274 ethtest->flags |= ETH_TEST_FL_FAILED;
6275
6276 s2io_reset(sp);
6277
6278 if (s2io_eeprom_test(sp, &data[1]))
6279 ethtest->flags |= ETH_TEST_FL_FAILED;
6280
6281 if (s2io_bist_test(sp, &data[4]))
6282 ethtest->flags |= ETH_TEST_FL_FAILED;
6283
6284 if (orig_state)
6285 s2io_open(sp->dev);
6286
6287 data[2] = 0;
6288 } else {
6289 /* Online Tests. */
6290 if (!orig_state) {
6291 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6292 dev->name);
6293 data[0] = -1;
6294 data[1] = -1;
6295 data[2] = -1;
6296 data[3] = -1;
6297 data[4] = -1;
6298 }
6299
6300 if (s2io_link_test(sp, &data[2]))
6301 ethtest->flags |= ETH_TEST_FL_FAILED;
6302
6303 data[0] = 0;
6304 data[1] = 0;
6305 data[3] = 0;
6306 data[4] = 0;
6307 }
6308 }
6309
6310 static void s2io_get_ethtool_stats(struct net_device *dev,
6311 struct ethtool_stats *estats,
6312 u64 *tmp_stats)
6313 {
6314 int i = 0, k;
6315 struct s2io_nic *sp = netdev_priv(dev);
6316 struct stat_block *stats = sp->mac_control.stats_info;
6317 struct swStat *swstats = &stats->sw_stat;
6318 struct xpakStat *xstats = &stats->xpak_stat;
6319
6320 s2io_updt_stats(sp);
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6323 le32_to_cpu(stats->tmac_frms);
6324 tmp_stats[i++] =
6325 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6326 le32_to_cpu(stats->tmac_data_octets);
6327 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6330 le32_to_cpu(stats->tmac_mcst_frms);
6331 tmp_stats[i++] =
6332 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6333 le32_to_cpu(stats->tmac_bcst_frms);
6334 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6335 tmp_stats[i++] =
6336 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6337 le32_to_cpu(stats->tmac_ttl_octets);
6338 tmp_stats[i++] =
6339 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6340 le32_to_cpu(stats->tmac_ucst_frms);
6341 tmp_stats[i++] =
6342 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6343 le32_to_cpu(stats->tmac_nucst_frms);
6344 tmp_stats[i++] =
6345 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6346 le32_to_cpu(stats->tmac_any_err_frms);
6347 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6348 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6349 tmp_stats[i++] =
6350 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6351 le32_to_cpu(stats->tmac_vld_ip);
6352 tmp_stats[i++] =
6353 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6354 le32_to_cpu(stats->tmac_drop_ip);
6355 tmp_stats[i++] =
6356 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6357 le32_to_cpu(stats->tmac_icmp);
6358 tmp_stats[i++] =
6359 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6360 le32_to_cpu(stats->tmac_rst_tcp);
6361 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6362 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6363 le32_to_cpu(stats->tmac_udp);
6364 tmp_stats[i++] =
6365 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6366 le32_to_cpu(stats->rmac_vld_frms);
6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6369 le32_to_cpu(stats->rmac_data_octets);
6370 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6371 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6372 tmp_stats[i++] =
6373 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6374 le32_to_cpu(stats->rmac_vld_mcst_frms);
6375 tmp_stats[i++] =
6376 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6377 le32_to_cpu(stats->rmac_vld_bcst_frms);
6378 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6379 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6380 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6381 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6383 tmp_stats[i++] =
6384 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6385 le32_to_cpu(stats->rmac_ttl_octets);
6386 tmp_stats[i++] =
6387 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6388 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6389 tmp_stats[i++] =
6390 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6391 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6392 tmp_stats[i++] =
6393 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6394 le32_to_cpu(stats->rmac_discarded_frms);
6395 tmp_stats[i++] =
6396 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6397 << 32 | le32_to_cpu(stats->rmac_drop_events);
6398 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6399 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6400 tmp_stats[i++] =
6401 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6402 le32_to_cpu(stats->rmac_usized_frms);
6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6405 le32_to_cpu(stats->rmac_osized_frms);
6406 tmp_stats[i++] =
6407 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6408 le32_to_cpu(stats->rmac_frag_frms);
6409 tmp_stats[i++] =
6410 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6411 le32_to_cpu(stats->rmac_jabber_frms);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6420 le32_to_cpu(stats->rmac_ip);
6421 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6422 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6425 le32_to_cpu(stats->rmac_drop_ip);
6426 tmp_stats[i++] =
6427 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6428 le32_to_cpu(stats->rmac_icmp);
6429 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6430 tmp_stats[i++] =
6431 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6432 le32_to_cpu(stats->rmac_udp);
6433 tmp_stats[i++] =
6434 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6435 le32_to_cpu(stats->rmac_err_drp_udp);
6436 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6437 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6438 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6439 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6440 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6445 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6446 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6447 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6448 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6449 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6450 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6451 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6452 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6453 tmp_stats[i++] =
6454 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6455 le32_to_cpu(stats->rmac_pause_cnt);
6456 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6457 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6458 tmp_stats[i++] =
6459 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6460 le32_to_cpu(stats->rmac_accepted_ip);
6461 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6462 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6474 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6475 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6476 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6477 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6478 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6479 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6480
6481 /* Enhanced statistics exist only for Hercules */
6482 if (sp->device_type == XFRAME_II_DEVICE) {
6483 tmp_stats[i++] =
6484 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6485 tmp_stats[i++] =
6486 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6487 tmp_stats[i++] =
6488 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6489 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6490 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6491 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6492 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6493 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6494 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6495 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6496 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6497 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6498 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6499 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6500 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6501 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6502 }
6503
6504 tmp_stats[i++] = 0;
6505 tmp_stats[i++] = swstats->single_ecc_errs;
6506 tmp_stats[i++] = swstats->double_ecc_errs;
6507 tmp_stats[i++] = swstats->parity_err_cnt;
6508 tmp_stats[i++] = swstats->serious_err_cnt;
6509 tmp_stats[i++] = swstats->soft_reset_cnt;
6510 tmp_stats[i++] = swstats->fifo_full_cnt;
6511 for (k = 0; k < MAX_RX_RINGS; k++)
6512 tmp_stats[i++] = swstats->ring_full_cnt[k];
6513 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6514 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6515 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6516 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6517 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6518 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6519 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6520 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6521 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6522 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6523 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6524 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6525 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6526 tmp_stats[i++] = swstats->sending_both;
6527 tmp_stats[i++] = swstats->outof_sequence_pkts;
6528 tmp_stats[i++] = swstats->flush_max_pkts;
6529 if (swstats->num_aggregations) {
6530 u64 tmp = swstats->sum_avg_pkts_aggregated;
6531 int count = 0;
6532 /*
6533 * Since 64-bit divide does not work on all platforms,
6534 * do repeated subtraction.
6535 */
6536 while (tmp >= swstats->num_aggregations) {
6537 tmp -= swstats->num_aggregations;
6538 count++;
6539 }
6540 tmp_stats[i++] = count;
6541 } else
6542 tmp_stats[i++] = 0;
6543 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6544 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6545 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6546 tmp_stats[i++] = swstats->mem_allocated;
6547 tmp_stats[i++] = swstats->mem_freed;
6548 tmp_stats[i++] = swstats->link_up_cnt;
6549 tmp_stats[i++] = swstats->link_down_cnt;
6550 tmp_stats[i++] = swstats->link_up_time;
6551 tmp_stats[i++] = swstats->link_down_time;
6552
6553 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6554 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6555 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6556 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6557 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6558
6559 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6560 tmp_stats[i++] = swstats->rx_abort_cnt;
6561 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6562 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6563 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6564 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6565 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6566 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6567 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6568 tmp_stats[i++] = swstats->tda_err_cnt;
6569 tmp_stats[i++] = swstats->pfc_err_cnt;
6570 tmp_stats[i++] = swstats->pcc_err_cnt;
6571 tmp_stats[i++] = swstats->tti_err_cnt;
6572 tmp_stats[i++] = swstats->tpa_err_cnt;
6573 tmp_stats[i++] = swstats->sm_err_cnt;
6574 tmp_stats[i++] = swstats->lso_err_cnt;
6575 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6576 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6577 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6578 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6579 tmp_stats[i++] = swstats->rc_err_cnt;
6580 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6581 tmp_stats[i++] = swstats->rpa_err_cnt;
6582 tmp_stats[i++] = swstats->rda_err_cnt;
6583 tmp_stats[i++] = swstats->rti_err_cnt;
6584 tmp_stats[i++] = swstats->mc_err_cnt;
6585 }
6586
6587 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6588 {
6589 return XENA_REG_SPACE;
6590 }
6591
6592
6593 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6594 {
6595 struct s2io_nic *sp = netdev_priv(dev);
6596
6597 return sp->rx_csum;
6598 }
6599
6600 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6601 {
6602 struct s2io_nic *sp = netdev_priv(dev);
6603
6604 if (data)
6605 sp->rx_csum = 1;
6606 else
6607 sp->rx_csum = 0;
6608
6609 return 0;
6610 }
6611
6612 static int s2io_get_eeprom_len(struct net_device *dev)
6613 {
6614 return XENA_EEPROM_SPACE;
6615 }
6616
6617 static int s2io_get_sset_count(struct net_device *dev, int sset)
6618 {
6619 struct s2io_nic *sp = netdev_priv(dev);
6620
6621 switch (sset) {
6622 case ETH_SS_TEST:
6623 return S2IO_TEST_LEN;
6624 case ETH_SS_STATS:
6625 switch (sp->device_type) {
6626 case XFRAME_I_DEVICE:
6627 return XFRAME_I_STAT_LEN;
6628 case XFRAME_II_DEVICE:
6629 return XFRAME_II_STAT_LEN;
6630 default:
6631 return 0;
6632 }
6633 default:
6634 return -EOPNOTSUPP;
6635 }
6636 }
6637
6638 static void s2io_ethtool_get_strings(struct net_device *dev,
6639 u32 stringset, u8 *data)
6640 {
6641 int stat_size = 0;
6642 struct s2io_nic *sp = netdev_priv(dev);
6643
6644 switch (stringset) {
6645 case ETH_SS_TEST:
6646 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6647 break;
6648 case ETH_SS_STATS:
6649 stat_size = sizeof(ethtool_xena_stats_keys);
6650 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6651 if (sp->device_type == XFRAME_II_DEVICE) {
6652 memcpy(data + stat_size,
6653 &ethtool_enhanced_stats_keys,
6654 sizeof(ethtool_enhanced_stats_keys));
6655 stat_size += sizeof(ethtool_enhanced_stats_keys);
6656 }
6657
6658 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6659 sizeof(ethtool_driver_stats_keys));
6660 }
6661 }
6662
6663 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6664 {
6665 if (data)
6666 dev->features |= NETIF_F_IP_CSUM;
6667 else
6668 dev->features &= ~NETIF_F_IP_CSUM;
6669
6670 return 0;
6671 }
6672
6673 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6674 {
6675 return (dev->features & NETIF_F_TSO) != 0;
6676 }
6677
6678 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6679 {
6680 if (data)
6681 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6682 else
6683 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6684
6685 return 0;
6686 }
6687
6688 static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6689 {
6690 struct s2io_nic *sp = netdev_priv(dev);
6691 int rc = 0;
6692 int changed = 0;
6693
6694 if (data & ~ETH_FLAG_LRO)
6695 return -EINVAL;
6696
6697 if (data & ETH_FLAG_LRO) {
6698 if (lro_enable) {
6699 if (!(dev->features & NETIF_F_LRO)) {
6700 dev->features |= NETIF_F_LRO;
6701 changed = 1;
6702 }
6703 } else
6704 rc = -EINVAL;
6705 } else if (dev->features & NETIF_F_LRO) {
6706 dev->features &= ~NETIF_F_LRO;
6707 changed = 1;
6708 }
6709
6710 if (changed && netif_running(dev)) {
6711 s2io_stop_all_tx_queue(sp);
6712 s2io_card_down(sp);
6713 sp->lro = !!(dev->features & NETIF_F_LRO);
6714 rc = s2io_card_up(sp);
6715 if (rc)
6716 s2io_reset(sp);
6717 else
6718 s2io_start_all_tx_queue(sp);
6719 }
6720
6721 return rc;
6722 }
6723
6724 static const struct ethtool_ops netdev_ethtool_ops = {
6725 .get_settings = s2io_ethtool_gset,
6726 .set_settings = s2io_ethtool_sset,
6727 .get_drvinfo = s2io_ethtool_gdrvinfo,
6728 .get_regs_len = s2io_ethtool_get_regs_len,
6729 .get_regs = s2io_ethtool_gregs,
6730 .get_link = ethtool_op_get_link,
6731 .get_eeprom_len = s2io_get_eeprom_len,
6732 .get_eeprom = s2io_ethtool_geeprom,
6733 .set_eeprom = s2io_ethtool_seeprom,
6734 .get_ringparam = s2io_ethtool_gringparam,
6735 .get_pauseparam = s2io_ethtool_getpause_data,
6736 .set_pauseparam = s2io_ethtool_setpause_data,
6737 .get_rx_csum = s2io_ethtool_get_rx_csum,
6738 .set_rx_csum = s2io_ethtool_set_rx_csum,
6739 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6740 .set_flags = s2io_ethtool_set_flags,
6741 .get_flags = ethtool_op_get_flags,
6742 .set_sg = ethtool_op_set_sg,
6743 .get_tso = s2io_ethtool_op_get_tso,
6744 .set_tso = s2io_ethtool_op_set_tso,
6745 .set_ufo = ethtool_op_set_ufo,
6746 .self_test = s2io_ethtool_test,
6747 .get_strings = s2io_ethtool_get_strings,
6748 .phys_id = s2io_ethtool_idnic,
6749 .get_ethtool_stats = s2io_get_ethtool_stats,
6750 .get_sset_count = s2io_get_sset_count,
6751 };
6752
6753 /**
6754 * s2io_ioctl - Entry point for the Ioctl
6755 * @dev : Device pointer.
6756 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6757 * a proprietary structure used to pass information to the driver.
6758 * @cmd : This is used to distinguish between the different commands that
6759 * can be passed to the IOCTL functions.
6760 * Description:
6761 * Currently there are no special functionality supported in IOCTL, hence
6762 * function always return EOPNOTSUPPORTED
6763 */
6764
6765 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6766 {
6767 return -EOPNOTSUPP;
6768 }
6769
6770 /**
6771 * s2io_change_mtu - entry point to change MTU size for the device.
6772 * @dev : device pointer.
6773 * @new_mtu : the new MTU size for the device.
6774 * Description: A driver entry point to change MTU size for the device.
6775 * Before changing the MTU the device must be stopped.
6776 * Return value:
6777 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6778 * file on failure.
6779 */
6780
6781 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6782 {
6783 struct s2io_nic *sp = netdev_priv(dev);
6784 int ret = 0;
6785
6786 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6787 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6788 return -EPERM;
6789 }
6790
6791 dev->mtu = new_mtu;
6792 if (netif_running(dev)) {
6793 s2io_stop_all_tx_queue(sp);
6794 s2io_card_down(sp);
6795 ret = s2io_card_up(sp);
6796 if (ret) {
6797 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6798 __func__);
6799 return ret;
6800 }
6801 s2io_wake_all_tx_queue(sp);
6802 } else { /* Device is down */
6803 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6804 u64 val64 = new_mtu;
6805
6806 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6807 }
6808
6809 return ret;
6810 }
6811
6812 /**
6813 * s2io_set_link - Set the LInk status
6814 * @data: long pointer to device private structue
6815 * Description: Sets the link status for the adapter
6816 */
6817
6818 static void s2io_set_link(struct work_struct *work)
6819 {
6820 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6821 set_link_task);
6822 struct net_device *dev = nic->dev;
6823 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6824 register u64 val64;
6825 u16 subid;
6826
6827 rtnl_lock();
6828
6829 if (!netif_running(dev))
6830 goto out_unlock;
6831
6832 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6833 /* The card is being reset, no point doing anything */
6834 goto out_unlock;
6835 }
6836
6837 subid = nic->pdev->subsystem_device;
6838 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6839 /*
6840 * Allow a small delay for the NICs self initiated
6841 * cleanup to complete.
6842 */
6843 msleep(100);
6844 }
6845
6846 val64 = readq(&bar0->adapter_status);
6847 if (LINK_IS_UP(val64)) {
6848 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6849 if (verify_xena_quiescence(nic)) {
6850 val64 = readq(&bar0->adapter_control);
6851 val64 |= ADAPTER_CNTL_EN;
6852 writeq(val64, &bar0->adapter_control);
6853 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6854 nic->device_type, subid)) {
6855 val64 = readq(&bar0->gpio_control);
6856 val64 |= GPIO_CTRL_GPIO_0;
6857 writeq(val64, &bar0->gpio_control);
6858 val64 = readq(&bar0->gpio_control);
6859 } else {
6860 val64 |= ADAPTER_LED_ON;
6861 writeq(val64, &bar0->adapter_control);
6862 }
6863 nic->device_enabled_once = true;
6864 } else {
6865 DBG_PRINT(ERR_DBG,
6866 "%s: Error: device is not Quiescent\n",
6867 dev->name);
6868 s2io_stop_all_tx_queue(nic);
6869 }
6870 }
6871 val64 = readq(&bar0->adapter_control);
6872 val64 |= ADAPTER_LED_ON;
6873 writeq(val64, &bar0->adapter_control);
6874 s2io_link(nic, LINK_UP);
6875 } else {
6876 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6877 subid)) {
6878 val64 = readq(&bar0->gpio_control);
6879 val64 &= ~GPIO_CTRL_GPIO_0;
6880 writeq(val64, &bar0->gpio_control);
6881 val64 = readq(&bar0->gpio_control);
6882 }
6883 /* turn off LED */
6884 val64 = readq(&bar0->adapter_control);
6885 val64 = val64 & (~ADAPTER_LED_ON);
6886 writeq(val64, &bar0->adapter_control);
6887 s2io_link(nic, LINK_DOWN);
6888 }
6889 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6890
6891 out_unlock:
6892 rtnl_unlock();
6893 }
6894
6895 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6896 struct buffAdd *ba,
6897 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6898 u64 *temp2, int size)
6899 {
6900 struct net_device *dev = sp->dev;
6901 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6902
6903 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6904 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6905 /* allocate skb */
6906 if (*skb) {
6907 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6908 /*
6909 * As Rx frame are not going to be processed,
6910 * using same mapped address for the Rxd
6911 * buffer pointer
6912 */
6913 rxdp1->Buffer0_ptr = *temp0;
6914 } else {
6915 *skb = dev_alloc_skb(size);
6916 if (!(*skb)) {
6917 DBG_PRINT(INFO_DBG,
6918 "%s: Out of memory to allocate %s\n",
6919 dev->name, "1 buf mode SKBs");
6920 stats->mem_alloc_fail_cnt++;
6921 return -ENOMEM ;
6922 }
6923 stats->mem_allocated += (*skb)->truesize;
6924 /* storing the mapped addr in a temp variable
6925 * such it will be used for next rxd whose
6926 * Host Control is NULL
6927 */
6928 rxdp1->Buffer0_ptr = *temp0 =
6929 pci_map_single(sp->pdev, (*skb)->data,
6930 size - NET_IP_ALIGN,
6931 PCI_DMA_FROMDEVICE);
6932 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6933 goto memalloc_failed;
6934 rxdp->Host_Control = (unsigned long) (*skb);
6935 }
6936 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6937 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6938 /* Two buffer Mode */
6939 if (*skb) {
6940 rxdp3->Buffer2_ptr = *temp2;
6941 rxdp3->Buffer0_ptr = *temp0;
6942 rxdp3->Buffer1_ptr = *temp1;
6943 } else {
6944 *skb = dev_alloc_skb(size);
6945 if (!(*skb)) {
6946 DBG_PRINT(INFO_DBG,
6947 "%s: Out of memory to allocate %s\n",
6948 dev->name,
6949 "2 buf mode SKBs");
6950 stats->mem_alloc_fail_cnt++;
6951 return -ENOMEM;
6952 }
6953 stats->mem_allocated += (*skb)->truesize;
6954 rxdp3->Buffer2_ptr = *temp2 =
6955 pci_map_single(sp->pdev, (*skb)->data,
6956 dev->mtu + 4,
6957 PCI_DMA_FROMDEVICE);
6958 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6959 goto memalloc_failed;
6960 rxdp3->Buffer0_ptr = *temp0 =
6961 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6962 PCI_DMA_FROMDEVICE);
6963 if (pci_dma_mapping_error(sp->pdev,
6964 rxdp3->Buffer0_ptr)) {
6965 pci_unmap_single(sp->pdev,
6966 (dma_addr_t)rxdp3->Buffer2_ptr,
6967 dev->mtu + 4,
6968 PCI_DMA_FROMDEVICE);
6969 goto memalloc_failed;
6970 }
6971 rxdp->Host_Control = (unsigned long) (*skb);
6972
6973 /* Buffer-1 will be dummy buffer not used */
6974 rxdp3->Buffer1_ptr = *temp1 =
6975 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6976 PCI_DMA_FROMDEVICE);
6977 if (pci_dma_mapping_error(sp->pdev,
6978 rxdp3->Buffer1_ptr)) {
6979 pci_unmap_single(sp->pdev,
6980 (dma_addr_t)rxdp3->Buffer0_ptr,
6981 BUF0_LEN, PCI_DMA_FROMDEVICE);
6982 pci_unmap_single(sp->pdev,
6983 (dma_addr_t)rxdp3->Buffer2_ptr,
6984 dev->mtu + 4,
6985 PCI_DMA_FROMDEVICE);
6986 goto memalloc_failed;
6987 }
6988 }
6989 }
6990 return 0;
6991
6992 memalloc_failed:
6993 stats->pci_map_fail_cnt++;
6994 stats->mem_freed += (*skb)->truesize;
6995 dev_kfree_skb(*skb);
6996 return -ENOMEM;
6997 }
6998
6999 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7000 int size)
7001 {
7002 struct net_device *dev = sp->dev;
7003 if (sp->rxd_mode == RXD_MODE_1) {
7004 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7005 } else if (sp->rxd_mode == RXD_MODE_3B) {
7006 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7007 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7008 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7009 }
7010 }
7011
7012 static int rxd_owner_bit_reset(struct s2io_nic *sp)
7013 {
7014 int i, j, k, blk_cnt = 0, size;
7015 struct config_param *config = &sp->config;
7016 struct mac_info *mac_control = &sp->mac_control;
7017 struct net_device *dev = sp->dev;
7018 struct RxD_t *rxdp = NULL;
7019 struct sk_buff *skb = NULL;
7020 struct buffAdd *ba = NULL;
7021 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7022
7023 /* Calculate the size based on ring mode */
7024 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7025 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7026 if (sp->rxd_mode == RXD_MODE_1)
7027 size += NET_IP_ALIGN;
7028 else if (sp->rxd_mode == RXD_MODE_3B)
7029 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7030
7031 for (i = 0; i < config->rx_ring_num; i++) {
7032 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7033 struct ring_info *ring = &mac_control->rings[i];
7034
7035 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7036
7037 for (j = 0; j < blk_cnt; j++) {
7038 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7039 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7040 if (sp->rxd_mode == RXD_MODE_3B)
7041 ba = &ring->ba[j][k];
7042 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7043 (u64 *)&temp0_64,
7044 (u64 *)&temp1_64,
7045 (u64 *)&temp2_64,
7046 size) == -ENOMEM) {
7047 return 0;
7048 }
7049
7050 set_rxd_buffer_size(sp, rxdp, size);
7051 wmb();
7052 /* flip the Ownership bit to Hardware */
7053 rxdp->Control_1 |= RXD_OWN_XENA;
7054 }
7055 }
7056 }
7057 return 0;
7058
7059 }
7060
7061 static int s2io_add_isr(struct s2io_nic *sp)
7062 {
7063 int ret = 0;
7064 struct net_device *dev = sp->dev;
7065 int err = 0;
7066
7067 if (sp->config.intr_type == MSI_X)
7068 ret = s2io_enable_msi_x(sp);
7069 if (ret) {
7070 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7071 sp->config.intr_type = INTA;
7072 }
7073
7074 /*
7075 * Store the values of the MSIX table in
7076 * the struct s2io_nic structure
7077 */
7078 store_xmsi_data(sp);
7079
7080 /* After proper initialization of H/W, register ISR */
7081 if (sp->config.intr_type == MSI_X) {
7082 int i, msix_rx_cnt = 0;
7083
7084 for (i = 0; i < sp->num_entries; i++) {
7085 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7086 if (sp->s2io_entries[i].type ==
7087 MSIX_RING_TYPE) {
7088 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7089 dev->name, i);
7090 err = request_irq(sp->entries[i].vector,
7091 s2io_msix_ring_handle,
7092 0,
7093 sp->desc[i],
7094 sp->s2io_entries[i].arg);
7095 } else if (sp->s2io_entries[i].type ==
7096 MSIX_ALARM_TYPE) {
7097 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7098 dev->name, i);
7099 err = request_irq(sp->entries[i].vector,
7100 s2io_msix_fifo_handle,
7101 0,
7102 sp->desc[i],
7103 sp->s2io_entries[i].arg);
7104
7105 }
7106 /* if either data or addr is zero print it. */
7107 if (!(sp->msix_info[i].addr &&
7108 sp->msix_info[i].data)) {
7109 DBG_PRINT(ERR_DBG,
7110 "%s @Addr:0x%llx Data:0x%llx\n",
7111 sp->desc[i],
7112 (unsigned long long)
7113 sp->msix_info[i].addr,
7114 (unsigned long long)
7115 ntohl(sp->msix_info[i].data));
7116 } else
7117 msix_rx_cnt++;
7118 if (err) {
7119 remove_msix_isr(sp);
7120
7121 DBG_PRINT(ERR_DBG,
7122 "%s:MSI-X-%d registration "
7123 "failed\n", dev->name, i);
7124
7125 DBG_PRINT(ERR_DBG,
7126 "%s: Defaulting to INTA\n",
7127 dev->name);
7128 sp->config.intr_type = INTA;
7129 break;
7130 }
7131 sp->s2io_entries[i].in_use =
7132 MSIX_REGISTERED_SUCCESS;
7133 }
7134 }
7135 if (!err) {
7136 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7137 DBG_PRINT(INFO_DBG,
7138 "MSI-X-TX entries enabled through alarm vector\n");
7139 }
7140 }
7141 if (sp->config.intr_type == INTA) {
7142 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7143 sp->name, dev);
7144 if (err) {
7145 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7146 dev->name);
7147 return -1;
7148 }
7149 }
7150 return 0;
7151 }
7152
7153 static void s2io_rem_isr(struct s2io_nic *sp)
7154 {
7155 if (sp->config.intr_type == MSI_X)
7156 remove_msix_isr(sp);
7157 else
7158 remove_inta_isr(sp);
7159 }
7160
7161 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7162 {
7163 int cnt = 0;
7164 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7165 register u64 val64 = 0;
7166 struct config_param *config;
7167 config = &sp->config;
7168
7169 if (!is_s2io_card_up(sp))
7170 return;
7171
7172 del_timer_sync(&sp->alarm_timer);
7173 /* If s2io_set_link task is executing, wait till it completes. */
7174 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7175 msleep(50);
7176 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7177
7178 /* Disable napi */
7179 if (sp->config.napi) {
7180 int off = 0;
7181 if (config->intr_type == MSI_X) {
7182 for (; off < sp->config.rx_ring_num; off++)
7183 napi_disable(&sp->mac_control.rings[off].napi);
7184 }
7185 else
7186 napi_disable(&sp->napi);
7187 }
7188
7189 /* disable Tx and Rx traffic on the NIC */
7190 if (do_io)
7191 stop_nic(sp);
7192
7193 s2io_rem_isr(sp);
7194
7195 /* stop the tx queue, indicate link down */
7196 s2io_link(sp, LINK_DOWN);
7197
7198 /* Check if the device is Quiescent and then Reset the NIC */
7199 while (do_io) {
7200 /* As per the HW requirement we need to replenish the
7201 * receive buffer to avoid the ring bump. Since there is
7202 * no intention of processing the Rx frame at this pointwe are
7203 * just settting the ownership bit of rxd in Each Rx
7204 * ring to HW and set the appropriate buffer size
7205 * based on the ring mode
7206 */
7207 rxd_owner_bit_reset(sp);
7208
7209 val64 = readq(&bar0->adapter_status);
7210 if (verify_xena_quiescence(sp)) {
7211 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7212 break;
7213 }
7214
7215 msleep(50);
7216 cnt++;
7217 if (cnt == 10) {
7218 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7219 "adapter status reads 0x%llx\n",
7220 (unsigned long long)val64);
7221 break;
7222 }
7223 }
7224 if (do_io)
7225 s2io_reset(sp);
7226
7227 /* Free all Tx buffers */
7228 free_tx_buffers(sp);
7229
7230 /* Free all Rx buffers */
7231 free_rx_buffers(sp);
7232
7233 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7234 }
7235
7236 static void s2io_card_down(struct s2io_nic *sp)
7237 {
7238 do_s2io_card_down(sp, 1);
7239 }
7240
7241 static int s2io_card_up(struct s2io_nic *sp)
7242 {
7243 int i, ret = 0;
7244 struct config_param *config;
7245 struct mac_info *mac_control;
7246 struct net_device *dev = (struct net_device *)sp->dev;
7247 u16 interruptible;
7248
7249 /* Initialize the H/W I/O registers */
7250 ret = init_nic(sp);
7251 if (ret != 0) {
7252 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7253 dev->name);
7254 if (ret != -EIO)
7255 s2io_reset(sp);
7256 return ret;
7257 }
7258
7259 /*
7260 * Initializing the Rx buffers. For now we are considering only 1
7261 * Rx ring and initializing buffers into 30 Rx blocks
7262 */
7263 config = &sp->config;
7264 mac_control = &sp->mac_control;
7265
7266 for (i = 0; i < config->rx_ring_num; i++) {
7267 struct ring_info *ring = &mac_control->rings[i];
7268
7269 ring->mtu = dev->mtu;
7270 ring->lro = sp->lro;
7271 ret = fill_rx_buffers(sp, ring, 1);
7272 if (ret) {
7273 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7274 dev->name);
7275 s2io_reset(sp);
7276 free_rx_buffers(sp);
7277 return -ENOMEM;
7278 }
7279 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7280 ring->rx_bufs_left);
7281 }
7282
7283 /* Initialise napi */
7284 if (config->napi) {
7285 if (config->intr_type == MSI_X) {
7286 for (i = 0; i < sp->config.rx_ring_num; i++)
7287 napi_enable(&sp->mac_control.rings[i].napi);
7288 } else {
7289 napi_enable(&sp->napi);
7290 }
7291 }
7292
7293 /* Maintain the state prior to the open */
7294 if (sp->promisc_flg)
7295 sp->promisc_flg = 0;
7296 if (sp->m_cast_flg) {
7297 sp->m_cast_flg = 0;
7298 sp->all_multi_pos = 0;
7299 }
7300
7301 /* Setting its receive mode */
7302 s2io_set_multicast(dev);
7303
7304 if (sp->lro) {
7305 /* Initialize max aggregatable pkts per session based on MTU */
7306 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7307 /* Check if we can use (if specified) user provided value */
7308 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7309 sp->lro_max_aggr_per_sess = lro_max_pkts;
7310 }
7311
7312 /* Enable Rx Traffic and interrupts on the NIC */
7313 if (start_nic(sp)) {
7314 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7315 s2io_reset(sp);
7316 free_rx_buffers(sp);
7317 return -ENODEV;
7318 }
7319
7320 /* Add interrupt service routine */
7321 if (s2io_add_isr(sp) != 0) {
7322 if (sp->config.intr_type == MSI_X)
7323 s2io_rem_isr(sp);
7324 s2io_reset(sp);
7325 free_rx_buffers(sp);
7326 return -ENODEV;
7327 }
7328
7329 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7330
7331 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7332
7333 /* Enable select interrupts */
7334 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7335 if (sp->config.intr_type != INTA) {
7336 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7337 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7338 } else {
7339 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7340 interruptible |= TX_PIC_INTR;
7341 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7342 }
7343
7344 return 0;
7345 }
7346
7347 /**
7348 * s2io_restart_nic - Resets the NIC.
7349 * @data : long pointer to the device private structure
7350 * Description:
7351 * This function is scheduled to be run by the s2io_tx_watchdog
7352 * function after 0.5 secs to reset the NIC. The idea is to reduce
7353 * the run time of the watch dog routine which is run holding a
7354 * spin lock.
7355 */
7356
7357 static void s2io_restart_nic(struct work_struct *work)
7358 {
7359 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7360 struct net_device *dev = sp->dev;
7361
7362 rtnl_lock();
7363
7364 if (!netif_running(dev))
7365 goto out_unlock;
7366
7367 s2io_card_down(sp);
7368 if (s2io_card_up(sp)) {
7369 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7370 }
7371 s2io_wake_all_tx_queue(sp);
7372 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7373 out_unlock:
7374 rtnl_unlock();
7375 }
7376
7377 /**
7378 * s2io_tx_watchdog - Watchdog for transmit side.
7379 * @dev : Pointer to net device structure
7380 * Description:
7381 * This function is triggered if the Tx Queue is stopped
7382 * for a pre-defined amount of time when the Interface is still up.
7383 * If the Interface is jammed in such a situation, the hardware is
7384 * reset (by s2io_close) and restarted again (by s2io_open) to
7385 * overcome any problem that might have been caused in the hardware.
7386 * Return value:
7387 * void
7388 */
7389
7390 static void s2io_tx_watchdog(struct net_device *dev)
7391 {
7392 struct s2io_nic *sp = netdev_priv(dev);
7393 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7394
7395 if (netif_carrier_ok(dev)) {
7396 swstats->watchdog_timer_cnt++;
7397 schedule_work(&sp->rst_timer_task);
7398 swstats->soft_reset_cnt++;
7399 }
7400 }
7401
7402 /**
7403 * rx_osm_handler - To perform some OS related operations on SKB.
7404 * @sp: private member of the device structure,pointer to s2io_nic structure.
7405 * @skb : the socket buffer pointer.
7406 * @len : length of the packet
7407 * @cksum : FCS checksum of the frame.
7408 * @ring_no : the ring from which this RxD was extracted.
7409 * Description:
7410 * This function is called by the Rx interrupt serivce routine to perform
7411 * some OS related operations on the SKB before passing it to the upper
7412 * layers. It mainly checks if the checksum is OK, if so adds it to the
7413 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7414 * to the upper layer. If the checksum is wrong, it increments the Rx
7415 * packet error count, frees the SKB and returns error.
7416 * Return value:
7417 * SUCCESS on success and -1 on failure.
7418 */
7419 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7420 {
7421 struct s2io_nic *sp = ring_data->nic;
7422 struct net_device *dev = (struct net_device *)ring_data->dev;
7423 struct sk_buff *skb = (struct sk_buff *)
7424 ((unsigned long)rxdp->Host_Control);
7425 int ring_no = ring_data->ring_no;
7426 u16 l3_csum, l4_csum;
7427 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7428 struct lro *uninitialized_var(lro);
7429 u8 err_mask;
7430 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7431
7432 skb->dev = dev;
7433
7434 if (err) {
7435 /* Check for parity error */
7436 if (err & 0x1)
7437 swstats->parity_err_cnt++;
7438
7439 err_mask = err >> 48;
7440 switch (err_mask) {
7441 case 1:
7442 swstats->rx_parity_err_cnt++;
7443 break;
7444
7445 case 2:
7446 swstats->rx_abort_cnt++;
7447 break;
7448
7449 case 3:
7450 swstats->rx_parity_abort_cnt++;
7451 break;
7452
7453 case 4:
7454 swstats->rx_rda_fail_cnt++;
7455 break;
7456
7457 case 5:
7458 swstats->rx_unkn_prot_cnt++;
7459 break;
7460
7461 case 6:
7462 swstats->rx_fcs_err_cnt++;
7463 break;
7464
7465 case 7:
7466 swstats->rx_buf_size_err_cnt++;
7467 break;
7468
7469 case 8:
7470 swstats->rx_rxd_corrupt_cnt++;
7471 break;
7472
7473 case 15:
7474 swstats->rx_unkn_err_cnt++;
7475 break;
7476 }
7477 /*
7478 * Drop the packet if bad transfer code. Exception being
7479 * 0x5, which could be due to unsupported IPv6 extension header.
7480 * In this case, we let stack handle the packet.
7481 * Note that in this case, since checksum will be incorrect,
7482 * stack will validate the same.
7483 */
7484 if (err_mask != 0x5) {
7485 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7486 dev->name, err_mask);
7487 dev->stats.rx_crc_errors++;
7488 swstats->mem_freed
7489 += skb->truesize;
7490 dev_kfree_skb(skb);
7491 ring_data->rx_bufs_left -= 1;
7492 rxdp->Host_Control = 0;
7493 return 0;
7494 }
7495 }
7496
7497 /* Updating statistics */
7498 ring_data->rx_packets++;
7499 rxdp->Host_Control = 0;
7500 if (sp->rxd_mode == RXD_MODE_1) {
7501 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7502
7503 ring_data->rx_bytes += len;
7504 skb_put(skb, len);
7505
7506 } else if (sp->rxd_mode == RXD_MODE_3B) {
7507 int get_block = ring_data->rx_curr_get_info.block_index;
7508 int get_off = ring_data->rx_curr_get_info.offset;
7509 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7510 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7511 unsigned char *buff = skb_push(skb, buf0_len);
7512
7513 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7514 ring_data->rx_bytes += buf0_len + buf2_len;
7515 memcpy(buff, ba->ba_0, buf0_len);
7516 skb_put(skb, buf2_len);
7517 }
7518
7519 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7520 ((!ring_data->lro) ||
7521 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7522 (sp->rx_csum)) {
7523 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7524 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7525 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7526 /*
7527 * NIC verifies if the Checksum of the received
7528 * frame is Ok or not and accordingly returns
7529 * a flag in the RxD.
7530 */
7531 skb->ip_summed = CHECKSUM_UNNECESSARY;
7532 if (ring_data->lro) {
7533 u32 tcp_len;
7534 u8 *tcp;
7535 int ret = 0;
7536
7537 ret = s2io_club_tcp_session(ring_data,
7538 skb->data, &tcp,
7539 &tcp_len, &lro,
7540 rxdp, sp);
7541 switch (ret) {
7542 case 3: /* Begin anew */
7543 lro->parent = skb;
7544 goto aggregate;
7545 case 1: /* Aggregate */
7546 lro_append_pkt(sp, lro, skb, tcp_len);
7547 goto aggregate;
7548 case 4: /* Flush session */
7549 lro_append_pkt(sp, lro, skb, tcp_len);
7550 queue_rx_frame(lro->parent,
7551 lro->vlan_tag);
7552 clear_lro_session(lro);
7553 swstats->flush_max_pkts++;
7554 goto aggregate;
7555 case 2: /* Flush both */
7556 lro->parent->data_len = lro->frags_len;
7557 swstats->sending_both++;
7558 queue_rx_frame(lro->parent,
7559 lro->vlan_tag);
7560 clear_lro_session(lro);
7561 goto send_up;
7562 case 0: /* sessions exceeded */
7563 case -1: /* non-TCP or not L2 aggregatable */
7564 case 5: /*
7565 * First pkt in session not
7566 * L3/L4 aggregatable
7567 */
7568 break;
7569 default:
7570 DBG_PRINT(ERR_DBG,
7571 "%s: Samadhana!!\n",
7572 __func__);
7573 BUG();
7574 }
7575 }
7576 } else {
7577 /*
7578 * Packet with erroneous checksum, let the
7579 * upper layers deal with it.
7580 */
7581 skb->ip_summed = CHECKSUM_NONE;
7582 }
7583 } else
7584 skb->ip_summed = CHECKSUM_NONE;
7585
7586 swstats->mem_freed += skb->truesize;
7587 send_up:
7588 skb_record_rx_queue(skb, ring_no);
7589 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7590 aggregate:
7591 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7592 return SUCCESS;
7593 }
7594
7595 /**
7596 * s2io_link - stops/starts the Tx queue.
7597 * @sp : private member of the device structure, which is a pointer to the
7598 * s2io_nic structure.
7599 * @link : inidicates whether link is UP/DOWN.
7600 * Description:
7601 * This function stops/starts the Tx queue depending on whether the link
7602 * status of the NIC is is down or up. This is called by the Alarm
7603 * interrupt handler whenever a link change interrupt comes up.
7604 * Return value:
7605 * void.
7606 */
7607
7608 static void s2io_link(struct s2io_nic *sp, int link)
7609 {
7610 struct net_device *dev = (struct net_device *)sp->dev;
7611 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7612
7613 if (link != sp->last_link_state) {
7614 init_tti(sp, link);
7615 if (link == LINK_DOWN) {
7616 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7617 s2io_stop_all_tx_queue(sp);
7618 netif_carrier_off(dev);
7619 if (swstats->link_up_cnt)
7620 swstats->link_up_time =
7621 jiffies - sp->start_time;
7622 swstats->link_down_cnt++;
7623 } else {
7624 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7625 if (swstats->link_down_cnt)
7626 swstats->link_down_time =
7627 jiffies - sp->start_time;
7628 swstats->link_up_cnt++;
7629 netif_carrier_on(dev);
7630 s2io_wake_all_tx_queue(sp);
7631 }
7632 }
7633 sp->last_link_state = link;
7634 sp->start_time = jiffies;
7635 }
7636
7637 /**
7638 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7639 * @sp : private member of the device structure, which is a pointer to the
7640 * s2io_nic structure.
7641 * Description:
7642 * This function initializes a few of the PCI and PCI-X configuration registers
7643 * with recommended values.
7644 * Return value:
7645 * void
7646 */
7647
7648 static void s2io_init_pci(struct s2io_nic *sp)
7649 {
7650 u16 pci_cmd = 0, pcix_cmd = 0;
7651
7652 /* Enable Data Parity Error Recovery in PCI-X command register. */
7653 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7654 &(pcix_cmd));
7655 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7656 (pcix_cmd | 1));
7657 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7658 &(pcix_cmd));
7659
7660 /* Set the PErr Response bit in PCI command register. */
7661 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7662 pci_write_config_word(sp->pdev, PCI_COMMAND,
7663 (pci_cmd | PCI_COMMAND_PARITY));
7664 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7665 }
7666
7667 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7668 u8 *dev_multiq)
7669 {
7670 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7671 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7672 "(%d) not supported\n", tx_fifo_num);
7673
7674 if (tx_fifo_num < 1)
7675 tx_fifo_num = 1;
7676 else
7677 tx_fifo_num = MAX_TX_FIFOS;
7678
7679 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7680 }
7681
7682 if (multiq)
7683 *dev_multiq = multiq;
7684
7685 if (tx_steering_type && (1 == tx_fifo_num)) {
7686 if (tx_steering_type != TX_DEFAULT_STEERING)
7687 DBG_PRINT(ERR_DBG,
7688 "Tx steering is not supported with "
7689 "one fifo. Disabling Tx steering.\n");
7690 tx_steering_type = NO_STEERING;
7691 }
7692
7693 if ((tx_steering_type < NO_STEERING) ||
7694 (tx_steering_type > TX_DEFAULT_STEERING)) {
7695 DBG_PRINT(ERR_DBG,
7696 "Requested transmit steering not supported\n");
7697 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7698 tx_steering_type = NO_STEERING;
7699 }
7700
7701 if (rx_ring_num > MAX_RX_RINGS) {
7702 DBG_PRINT(ERR_DBG,
7703 "Requested number of rx rings not supported\n");
7704 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7705 MAX_RX_RINGS);
7706 rx_ring_num = MAX_RX_RINGS;
7707 }
7708
7709 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7710 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7711 "Defaulting to INTA\n");
7712 *dev_intr_type = INTA;
7713 }
7714
7715 if ((*dev_intr_type == MSI_X) &&
7716 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7717 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7718 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7719 "Defaulting to INTA\n");
7720 *dev_intr_type = INTA;
7721 }
7722
7723 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7724 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7725 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7726 rx_ring_mode = 1;
7727 }
7728 return SUCCESS;
7729 }
7730
7731 /**
7732 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7733 * or Traffic class respectively.
7734 * @nic: device private variable
7735 * Description: The function configures the receive steering to
7736 * desired receive ring.
7737 * Return Value: SUCCESS on success and
7738 * '-1' on failure (endian settings incorrect).
7739 */
7740 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7741 {
7742 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7743 register u64 val64 = 0;
7744
7745 if (ds_codepoint > 63)
7746 return FAILURE;
7747
7748 val64 = RTS_DS_MEM_DATA(ring);
7749 writeq(val64, &bar0->rts_ds_mem_data);
7750
7751 val64 = RTS_DS_MEM_CTRL_WE |
7752 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7753 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7754
7755 writeq(val64, &bar0->rts_ds_mem_ctrl);
7756
7757 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7758 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7759 S2IO_BIT_RESET);
7760 }
7761
7762 static const struct net_device_ops s2io_netdev_ops = {
7763 .ndo_open = s2io_open,
7764 .ndo_stop = s2io_close,
7765 .ndo_get_stats = s2io_get_stats,
7766 .ndo_start_xmit = s2io_xmit,
7767 .ndo_validate_addr = eth_validate_addr,
7768 .ndo_set_multicast_list = s2io_set_multicast,
7769 .ndo_do_ioctl = s2io_ioctl,
7770 .ndo_set_mac_address = s2io_set_mac_addr,
7771 .ndo_change_mtu = s2io_change_mtu,
7772 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7773 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7774 .ndo_tx_timeout = s2io_tx_watchdog,
7775 #ifdef CONFIG_NET_POLL_CONTROLLER
7776 .ndo_poll_controller = s2io_netpoll,
7777 #endif
7778 };
7779
7780 /**
7781 * s2io_init_nic - Initialization of the adapter .
7782 * @pdev : structure containing the PCI related information of the device.
7783 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7784 * Description:
7785 * The function initializes an adapter identified by the pci_dec structure.
7786 * All OS related initialization including memory and device structure and
7787 * initlaization of the device private variable is done. Also the swapper
7788 * control register is initialized to enable read and write into the I/O
7789 * registers of the device.
7790 * Return value:
7791 * returns 0 on success and negative on failure.
7792 */
7793
7794 static int __devinit
7795 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7796 {
7797 struct s2io_nic *sp;
7798 struct net_device *dev;
7799 int i, j, ret;
7800 int dma_flag = false;
7801 u32 mac_up, mac_down;
7802 u64 val64 = 0, tmp64 = 0;
7803 struct XENA_dev_config __iomem *bar0 = NULL;
7804 u16 subid;
7805 struct config_param *config;
7806 struct mac_info *mac_control;
7807 int mode;
7808 u8 dev_intr_type = intr_type;
7809 u8 dev_multiq = 0;
7810
7811 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7812 if (ret)
7813 return ret;
7814
7815 ret = pci_enable_device(pdev);
7816 if (ret) {
7817 DBG_PRINT(ERR_DBG,
7818 "%s: pci_enable_device failed\n", __func__);
7819 return ret;
7820 }
7821
7822 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7823 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7824 dma_flag = true;
7825 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7826 DBG_PRINT(ERR_DBG,
7827 "Unable to obtain 64bit DMA "
7828 "for consistent allocations\n");
7829 pci_disable_device(pdev);
7830 return -ENOMEM;
7831 }
7832 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7833 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7834 } else {
7835 pci_disable_device(pdev);
7836 return -ENOMEM;
7837 }
7838 ret = pci_request_regions(pdev, s2io_driver_name);
7839 if (ret) {
7840 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7841 __func__, ret);
7842 pci_disable_device(pdev);
7843 return -ENODEV;
7844 }
7845 if (dev_multiq)
7846 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7847 else
7848 dev = alloc_etherdev(sizeof(struct s2io_nic));
7849 if (dev == NULL) {
7850 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7851 pci_disable_device(pdev);
7852 pci_release_regions(pdev);
7853 return -ENODEV;
7854 }
7855
7856 pci_set_master(pdev);
7857 pci_set_drvdata(pdev, dev);
7858 SET_NETDEV_DEV(dev, &pdev->dev);
7859
7860 /* Private member variable initialized to s2io NIC structure */
7861 sp = netdev_priv(dev);
7862 memset(sp, 0, sizeof(struct s2io_nic));
7863 sp->dev = dev;
7864 sp->pdev = pdev;
7865 sp->high_dma_flag = dma_flag;
7866 sp->device_enabled_once = false;
7867 if (rx_ring_mode == 1)
7868 sp->rxd_mode = RXD_MODE_1;
7869 if (rx_ring_mode == 2)
7870 sp->rxd_mode = RXD_MODE_3B;
7871
7872 sp->config.intr_type = dev_intr_type;
7873
7874 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7875 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7876 sp->device_type = XFRAME_II_DEVICE;
7877 else
7878 sp->device_type = XFRAME_I_DEVICE;
7879
7880 sp->lro = lro_enable;
7881
7882 /* Initialize some PCI/PCI-X fields of the NIC. */
7883 s2io_init_pci(sp);
7884
7885 /*
7886 * Setting the device configuration parameters.
7887 * Most of these parameters can be specified by the user during
7888 * module insertion as they are module loadable parameters. If
7889 * these parameters are not not specified during load time, they
7890 * are initialized with default values.
7891 */
7892 config = &sp->config;
7893 mac_control = &sp->mac_control;
7894
7895 config->napi = napi;
7896 config->tx_steering_type = tx_steering_type;
7897
7898 /* Tx side parameters. */
7899 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7900 config->tx_fifo_num = MAX_TX_FIFOS;
7901 else
7902 config->tx_fifo_num = tx_fifo_num;
7903
7904 /* Initialize the fifos used for tx steering */
7905 if (config->tx_fifo_num < 5) {
7906 if (config->tx_fifo_num == 1)
7907 sp->total_tcp_fifos = 1;
7908 else
7909 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7910 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7911 sp->total_udp_fifos = 1;
7912 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7913 } else {
7914 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7915 FIFO_OTHER_MAX_NUM);
7916 sp->udp_fifo_idx = sp->total_tcp_fifos;
7917 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7918 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7919 }
7920
7921 config->multiq = dev_multiq;
7922 for (i = 0; i < config->tx_fifo_num; i++) {
7923 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7924
7925 tx_cfg->fifo_len = tx_fifo_len[i];
7926 tx_cfg->fifo_priority = i;
7927 }
7928
7929 /* mapping the QoS priority to the configured fifos */
7930 for (i = 0; i < MAX_TX_FIFOS; i++)
7931 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7932
7933 /* map the hashing selector table to the configured fifos */
7934 for (i = 0; i < config->tx_fifo_num; i++)
7935 sp->fifo_selector[i] = fifo_selector[i];
7936
7937
7938 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7939 for (i = 0; i < config->tx_fifo_num; i++) {
7940 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7941
7942 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7943 if (tx_cfg->fifo_len < 65) {
7944 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7945 break;
7946 }
7947 }
7948 /* + 2 because one Txd for skb->data and one Txd for UFO */
7949 config->max_txds = MAX_SKB_FRAGS + 2;
7950
7951 /* Rx side parameters. */
7952 config->rx_ring_num = rx_ring_num;
7953 for (i = 0; i < config->rx_ring_num; i++) {
7954 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7955 struct ring_info *ring = &mac_control->rings[i];
7956
7957 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7958 rx_cfg->ring_priority = i;
7959 ring->rx_bufs_left = 0;
7960 ring->rxd_mode = sp->rxd_mode;
7961 ring->rxd_count = rxd_count[sp->rxd_mode];
7962 ring->pdev = sp->pdev;
7963 ring->dev = sp->dev;
7964 }
7965
7966 for (i = 0; i < rx_ring_num; i++) {
7967 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7968
7969 rx_cfg->ring_org = RING_ORG_BUFF1;
7970 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7971 }
7972
7973 /* Setting Mac Control parameters */
7974 mac_control->rmac_pause_time = rmac_pause_time;
7975 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7976 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7977
7978
7979 /* initialize the shared memory used by the NIC and the host */
7980 if (init_shared_mem(sp)) {
7981 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7982 ret = -ENOMEM;
7983 goto mem_alloc_failed;
7984 }
7985
7986 sp->bar0 = pci_ioremap_bar(pdev, 0);
7987 if (!sp->bar0) {
7988 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7989 dev->name);
7990 ret = -ENOMEM;
7991 goto bar0_remap_failed;
7992 }
7993
7994 sp->bar1 = pci_ioremap_bar(pdev, 2);
7995 if (!sp->bar1) {
7996 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7997 dev->name);
7998 ret = -ENOMEM;
7999 goto bar1_remap_failed;
8000 }
8001
8002 dev->irq = pdev->irq;
8003 dev->base_addr = (unsigned long)sp->bar0;
8004
8005 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8006 for (j = 0; j < MAX_TX_FIFOS; j++) {
8007 mac_control->tx_FIFO_start[j] =
8008 (struct TxFIFO_element __iomem *)
8009 (sp->bar1 + (j * 0x00020000));
8010 }
8011
8012 /* Driver entry points */
8013 dev->netdev_ops = &s2io_netdev_ops;
8014 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8015 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8016 if (lro_enable)
8017 dev->features |= NETIF_F_LRO;
8018 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8019 if (sp->high_dma_flag == true)
8020 dev->features |= NETIF_F_HIGHDMA;
8021 dev->features |= NETIF_F_TSO;
8022 dev->features |= NETIF_F_TSO6;
8023 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
8024 dev->features |= NETIF_F_UFO;
8025 dev->features |= NETIF_F_HW_CSUM;
8026 }
8027 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8028 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8029 INIT_WORK(&sp->set_link_task, s2io_set_link);
8030
8031 pci_save_state(sp->pdev);
8032
8033 /* Setting swapper control on the NIC, for proper reset operation */
8034 if (s2io_set_swapper(sp)) {
8035 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8036 dev->name);
8037 ret = -EAGAIN;
8038 goto set_swap_failed;
8039 }
8040
8041 /* Verify if the Herc works on the slot its placed into */
8042 if (sp->device_type & XFRAME_II_DEVICE) {
8043 mode = s2io_verify_pci_mode(sp);
8044 if (mode < 0) {
8045 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8046 __func__);
8047 ret = -EBADSLT;
8048 goto set_swap_failed;
8049 }
8050 }
8051
8052 if (sp->config.intr_type == MSI_X) {
8053 sp->num_entries = config->rx_ring_num + 1;
8054 ret = s2io_enable_msi_x(sp);
8055
8056 if (!ret) {
8057 ret = s2io_test_msi(sp);
8058 /* rollback MSI-X, will re-enable during add_isr() */
8059 remove_msix_isr(sp);
8060 }
8061 if (ret) {
8062
8063 DBG_PRINT(ERR_DBG,
8064 "MSI-X requested but failed to enable\n");
8065 sp->config.intr_type = INTA;
8066 }
8067 }
8068
8069 if (config->intr_type == MSI_X) {
8070 for (i = 0; i < config->rx_ring_num ; i++) {
8071 struct ring_info *ring = &mac_control->rings[i];
8072
8073 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8074 }
8075 } else {
8076 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8077 }
8078
8079 /* Not needed for Herc */
8080 if (sp->device_type & XFRAME_I_DEVICE) {
8081 /*
8082 * Fix for all "FFs" MAC address problems observed on
8083 * Alpha platforms
8084 */
8085 fix_mac_address(sp);
8086 s2io_reset(sp);
8087 }
8088
8089 /*
8090 * MAC address initialization.
8091 * For now only one mac address will be read and used.
8092 */
8093 bar0 = sp->bar0;
8094 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8095 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8096 writeq(val64, &bar0->rmac_addr_cmd_mem);
8097 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8098 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8099 S2IO_BIT_RESET);
8100 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8101 mac_down = (u32)tmp64;
8102 mac_up = (u32) (tmp64 >> 32);
8103
8104 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8105 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8106 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8107 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8108 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8109 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8110
8111 /* Set the factory defined MAC address initially */
8112 dev->addr_len = ETH_ALEN;
8113 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8114 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8115
8116 /* initialize number of multicast & unicast MAC entries variables */
8117 if (sp->device_type == XFRAME_I_DEVICE) {
8118 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8119 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8120 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8121 } else if (sp->device_type == XFRAME_II_DEVICE) {
8122 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8123 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8124 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8125 }
8126
8127 /* store mac addresses from CAM to s2io_nic structure */
8128 do_s2io_store_unicast_mc(sp);
8129
8130 /* Configure MSIX vector for number of rings configured plus one */
8131 if ((sp->device_type == XFRAME_II_DEVICE) &&
8132 (config->intr_type == MSI_X))
8133 sp->num_entries = config->rx_ring_num + 1;
8134
8135 /* Store the values of the MSIX table in the s2io_nic structure */
8136 store_xmsi_data(sp);
8137 /* reset Nic and bring it to known state */
8138 s2io_reset(sp);
8139
8140 /*
8141 * Initialize link state flags
8142 * and the card state parameter
8143 */
8144 sp->state = 0;
8145
8146 /* Initialize spinlocks */
8147 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8148 struct fifo_info *fifo = &mac_control->fifos[i];
8149
8150 spin_lock_init(&fifo->tx_lock);
8151 }
8152
8153 /*
8154 * SXE-002: Configure link and activity LED to init state
8155 * on driver load.
8156 */
8157 subid = sp->pdev->subsystem_device;
8158 if ((subid & 0xFF) >= 0x07) {
8159 val64 = readq(&bar0->gpio_control);
8160 val64 |= 0x0000800000000000ULL;
8161 writeq(val64, &bar0->gpio_control);
8162 val64 = 0x0411040400000000ULL;
8163 writeq(val64, (void __iomem *)bar0 + 0x2700);
8164 val64 = readq(&bar0->gpio_control);
8165 }
8166
8167 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8168
8169 if (register_netdev(dev)) {
8170 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8171 ret = -ENODEV;
8172 goto register_failed;
8173 }
8174 s2io_vpd_read(sp);
8175 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8176 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8177 sp->product_name, pdev->revision);
8178 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8179 s2io_driver_version);
8180 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8181 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8182 if (sp->device_type & XFRAME_II_DEVICE) {
8183 mode = s2io_print_pci_mode(sp);
8184 if (mode < 0) {
8185 ret = -EBADSLT;
8186 unregister_netdev(dev);
8187 goto set_swap_failed;
8188 }
8189 }
8190 switch (sp->rxd_mode) {
8191 case RXD_MODE_1:
8192 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8193 dev->name);
8194 break;
8195 case RXD_MODE_3B:
8196 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8197 dev->name);
8198 break;
8199 }
8200
8201 switch (sp->config.napi) {
8202 case 0:
8203 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8204 break;
8205 case 1:
8206 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8207 break;
8208 }
8209
8210 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8211 sp->config.tx_fifo_num);
8212
8213 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8214 sp->config.rx_ring_num);
8215
8216 switch (sp->config.intr_type) {
8217 case INTA:
8218 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8219 break;
8220 case MSI_X:
8221 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8222 break;
8223 }
8224 if (sp->config.multiq) {
8225 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8226 struct fifo_info *fifo = &mac_control->fifos[i];
8227
8228 fifo->multiq = config->multiq;
8229 }
8230 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8231 dev->name);
8232 } else
8233 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8234 dev->name);
8235
8236 switch (sp->config.tx_steering_type) {
8237 case NO_STEERING:
8238 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8239 dev->name);
8240 break;
8241 case TX_PRIORITY_STEERING:
8242 DBG_PRINT(ERR_DBG,
8243 "%s: Priority steering enabled for transmit\n",
8244 dev->name);
8245 break;
8246 case TX_DEFAULT_STEERING:
8247 DBG_PRINT(ERR_DBG,
8248 "%s: Default steering enabled for transmit\n",
8249 dev->name);
8250 }
8251
8252 if (sp->lro)
8253 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8254 dev->name);
8255 if (ufo)
8256 DBG_PRINT(ERR_DBG,
8257 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8258 dev->name);
8259 /* Initialize device name */
8260 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8261
8262 if (vlan_tag_strip)
8263 sp->vlan_strip_flag = 1;
8264 else
8265 sp->vlan_strip_flag = 0;
8266
8267 /*
8268 * Make Link state as off at this point, when the Link change
8269 * interrupt comes the state will be automatically changed to
8270 * the right state.
8271 */
8272 netif_carrier_off(dev);
8273
8274 return 0;
8275
8276 register_failed:
8277 set_swap_failed:
8278 iounmap(sp->bar1);
8279 bar1_remap_failed:
8280 iounmap(sp->bar0);
8281 bar0_remap_failed:
8282 mem_alloc_failed:
8283 free_shared_mem(sp);
8284 pci_disable_device(pdev);
8285 pci_release_regions(pdev);
8286 pci_set_drvdata(pdev, NULL);
8287 free_netdev(dev);
8288
8289 return ret;
8290 }
8291
8292 /**
8293 * s2io_rem_nic - Free the PCI device
8294 * @pdev: structure containing the PCI related information of the device.
8295 * Description: This function is called by the Pci subsystem to release a
8296 * PCI device and free up all resource held up by the device. This could
8297 * be in response to a Hot plug event or when the driver is to be removed
8298 * from memory.
8299 */
8300
8301 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8302 {
8303 struct net_device *dev =
8304 (struct net_device *)pci_get_drvdata(pdev);
8305 struct s2io_nic *sp;
8306
8307 if (dev == NULL) {
8308 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8309 return;
8310 }
8311
8312 flush_scheduled_work();
8313
8314 sp = netdev_priv(dev);
8315 unregister_netdev(dev);
8316
8317 free_shared_mem(sp);
8318 iounmap(sp->bar0);
8319 iounmap(sp->bar1);
8320 pci_release_regions(pdev);
8321 pci_set_drvdata(pdev, NULL);
8322 free_netdev(dev);
8323 pci_disable_device(pdev);
8324 }
8325
8326 /**
8327 * s2io_starter - Entry point for the driver
8328 * Description: This function is the entry point for the driver. It verifies
8329 * the module loadable parameters and initializes PCI configuration space.
8330 */
8331
8332 static int __init s2io_starter(void)
8333 {
8334 return pci_register_driver(&s2io_driver);
8335 }
8336
8337 /**
8338 * s2io_closer - Cleanup routine for the driver
8339 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8340 */
8341
8342 static __exit void s2io_closer(void)
8343 {
8344 pci_unregister_driver(&s2io_driver);
8345 DBG_PRINT(INIT_DBG, "cleanup done\n");
8346 }
8347
8348 module_init(s2io_starter);
8349 module_exit(s2io_closer);
8350
8351 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8352 struct tcphdr **tcp, struct RxD_t *rxdp,
8353 struct s2io_nic *sp)
8354 {
8355 int ip_off;
8356 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8357
8358 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8359 DBG_PRINT(INIT_DBG,
8360 "%s: Non-TCP frames not supported for LRO\n",
8361 __func__);
8362 return -1;
8363 }
8364
8365 /* Checking for DIX type or DIX type with VLAN */
8366 if ((l2_type == 0) || (l2_type == 4)) {
8367 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8368 /*
8369 * If vlan stripping is disabled and the frame is VLAN tagged,
8370 * shift the offset by the VLAN header size bytes.
8371 */
8372 if ((!sp->vlan_strip_flag) &&
8373 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8374 ip_off += HEADER_VLAN_SIZE;
8375 } else {
8376 /* LLC, SNAP etc are considered non-mergeable */
8377 return -1;
8378 }
8379
8380 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8381 ip_len = (u8)((*ip)->ihl);
8382 ip_len <<= 2;
8383 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8384
8385 return 0;
8386 }
8387
8388 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8389 struct tcphdr *tcp)
8390 {
8391 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8392 if ((lro->iph->saddr != ip->saddr) ||
8393 (lro->iph->daddr != ip->daddr) ||
8394 (lro->tcph->source != tcp->source) ||
8395 (lro->tcph->dest != tcp->dest))
8396 return -1;
8397 return 0;
8398 }
8399
8400 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8401 {
8402 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8403 }
8404
8405 static void initiate_new_session(struct lro *lro, u8 *l2h,
8406 struct iphdr *ip, struct tcphdr *tcp,
8407 u32 tcp_pyld_len, u16 vlan_tag)
8408 {
8409 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8410 lro->l2h = l2h;
8411 lro->iph = ip;
8412 lro->tcph = tcp;
8413 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8414 lro->tcp_ack = tcp->ack_seq;
8415 lro->sg_num = 1;
8416 lro->total_len = ntohs(ip->tot_len);
8417 lro->frags_len = 0;
8418 lro->vlan_tag = vlan_tag;
8419 /*
8420 * Check if we saw TCP timestamp.
8421 * Other consistency checks have already been done.
8422 */
8423 if (tcp->doff == 8) {
8424 __be32 *ptr;
8425 ptr = (__be32 *)(tcp+1);
8426 lro->saw_ts = 1;
8427 lro->cur_tsval = ntohl(*(ptr+1));
8428 lro->cur_tsecr = *(ptr+2);
8429 }
8430 lro->in_use = 1;
8431 }
8432
8433 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8434 {
8435 struct iphdr *ip = lro->iph;
8436 struct tcphdr *tcp = lro->tcph;
8437 __sum16 nchk;
8438 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8439
8440 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8441
8442 /* Update L3 header */
8443 ip->tot_len = htons(lro->total_len);
8444 ip->check = 0;
8445 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8446 ip->check = nchk;
8447
8448 /* Update L4 header */
8449 tcp->ack_seq = lro->tcp_ack;
8450 tcp->window = lro->window;
8451
8452 /* Update tsecr field if this session has timestamps enabled */
8453 if (lro->saw_ts) {
8454 __be32 *ptr = (__be32 *)(tcp + 1);
8455 *(ptr+2) = lro->cur_tsecr;
8456 }
8457
8458 /* Update counters required for calculation of
8459 * average no. of packets aggregated.
8460 */
8461 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8462 swstats->num_aggregations++;
8463 }
8464
8465 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8466 struct tcphdr *tcp, u32 l4_pyld)
8467 {
8468 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8469 lro->total_len += l4_pyld;
8470 lro->frags_len += l4_pyld;
8471 lro->tcp_next_seq += l4_pyld;
8472 lro->sg_num++;
8473
8474 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8475 lro->tcp_ack = tcp->ack_seq;
8476 lro->window = tcp->window;
8477
8478 if (lro->saw_ts) {
8479 __be32 *ptr;
8480 /* Update tsecr and tsval from this packet */
8481 ptr = (__be32 *)(tcp+1);
8482 lro->cur_tsval = ntohl(*(ptr+1));
8483 lro->cur_tsecr = *(ptr + 2);
8484 }
8485 }
8486
8487 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8488 struct tcphdr *tcp, u32 tcp_pyld_len)
8489 {
8490 u8 *ptr;
8491
8492 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8493
8494 if (!tcp_pyld_len) {
8495 /* Runt frame or a pure ack */
8496 return -1;
8497 }
8498
8499 if (ip->ihl != 5) /* IP has options */
8500 return -1;
8501
8502 /* If we see CE codepoint in IP header, packet is not mergeable */
8503 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8504 return -1;
8505
8506 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8507 if (tcp->urg || tcp->psh || tcp->rst ||
8508 tcp->syn || tcp->fin ||
8509 tcp->ece || tcp->cwr || !tcp->ack) {
8510 /*
8511 * Currently recognize only the ack control word and
8512 * any other control field being set would result in
8513 * flushing the LRO session
8514 */
8515 return -1;
8516 }
8517
8518 /*
8519 * Allow only one TCP timestamp option. Don't aggregate if
8520 * any other options are detected.
8521 */
8522 if (tcp->doff != 5 && tcp->doff != 8)
8523 return -1;
8524
8525 if (tcp->doff == 8) {
8526 ptr = (u8 *)(tcp + 1);
8527 while (*ptr == TCPOPT_NOP)
8528 ptr++;
8529 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8530 return -1;
8531
8532 /* Ensure timestamp value increases monotonically */
8533 if (l_lro)
8534 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8535 return -1;
8536
8537 /* timestamp echo reply should be non-zero */
8538 if (*((__be32 *)(ptr+6)) == 0)
8539 return -1;
8540 }
8541
8542 return 0;
8543 }
8544
8545 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8546 u8 **tcp, u32 *tcp_len, struct lro **lro,
8547 struct RxD_t *rxdp, struct s2io_nic *sp)
8548 {
8549 struct iphdr *ip;
8550 struct tcphdr *tcph;
8551 int ret = 0, i;
8552 u16 vlan_tag = 0;
8553 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8554
8555 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8556 rxdp, sp);
8557 if (ret)
8558 return ret;
8559
8560 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8561
8562 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8563 tcph = (struct tcphdr *)*tcp;
8564 *tcp_len = get_l4_pyld_length(ip, tcph);
8565 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8566 struct lro *l_lro = &ring_data->lro0_n[i];
8567 if (l_lro->in_use) {
8568 if (check_for_socket_match(l_lro, ip, tcph))
8569 continue;
8570 /* Sock pair matched */
8571 *lro = l_lro;
8572
8573 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8574 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8575 "expected 0x%x, actual 0x%x\n",
8576 __func__,
8577 (*lro)->tcp_next_seq,
8578 ntohl(tcph->seq));
8579
8580 swstats->outof_sequence_pkts++;
8581 ret = 2;
8582 break;
8583 }
8584
8585 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8586 *tcp_len))
8587 ret = 1; /* Aggregate */
8588 else
8589 ret = 2; /* Flush both */
8590 break;
8591 }
8592 }
8593
8594 if (ret == 0) {
8595 /* Before searching for available LRO objects,
8596 * check if the pkt is L3/L4 aggregatable. If not
8597 * don't create new LRO session. Just send this
8598 * packet up.
8599 */
8600 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8601 return 5;
8602
8603 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8604 struct lro *l_lro = &ring_data->lro0_n[i];
8605 if (!(l_lro->in_use)) {
8606 *lro = l_lro;
8607 ret = 3; /* Begin anew */
8608 break;
8609 }
8610 }
8611 }
8612
8613 if (ret == 0) { /* sessions exceeded */
8614 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8615 __func__);
8616 *lro = NULL;
8617 return ret;
8618 }
8619
8620 switch (ret) {
8621 case 3:
8622 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8623 vlan_tag);
8624 break;
8625 case 2:
8626 update_L3L4_header(sp, *lro);
8627 break;
8628 case 1:
8629 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8630 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8631 update_L3L4_header(sp, *lro);
8632 ret = 4; /* Flush the LRO */
8633 }
8634 break;
8635 default:
8636 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8637 break;
8638 }
8639
8640 return ret;
8641 }
8642
8643 static void clear_lro_session(struct lro *lro)
8644 {
8645 static u16 lro_struct_size = sizeof(struct lro);
8646
8647 memset(lro, 0, lro_struct_size);
8648 }
8649
8650 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8651 {
8652 struct net_device *dev = skb->dev;
8653 struct s2io_nic *sp = netdev_priv(dev);
8654
8655 skb->protocol = eth_type_trans(skb, dev);
8656 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8657 /* Queueing the vlan frame to the upper layer */
8658 if (sp->config.napi)
8659 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8660 else
8661 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8662 } else {
8663 if (sp->config.napi)
8664 netif_receive_skb(skb);
8665 else
8666 netif_rx(skb);
8667 }
8668 }
8669
8670 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8671 struct sk_buff *skb, u32 tcp_len)
8672 {
8673 struct sk_buff *first = lro->parent;
8674 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8675
8676 first->len += tcp_len;
8677 first->data_len = lro->frags_len;
8678 skb_pull(skb, (skb->len - tcp_len));
8679 if (skb_shinfo(first)->frag_list)
8680 lro->last_frag->next = skb;
8681 else
8682 skb_shinfo(first)->frag_list = skb;
8683 first->truesize += skb->truesize;
8684 lro->last_frag = skb;
8685 swstats->clubbed_frms_cnt++;
8686 }
8687
8688 /**
8689 * s2io_io_error_detected - called when PCI error is detected
8690 * @pdev: Pointer to PCI device
8691 * @state: The current pci connection state
8692 *
8693 * This function is called after a PCI bus error affecting
8694 * this device has been detected.
8695 */
8696 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8697 pci_channel_state_t state)
8698 {
8699 struct net_device *netdev = pci_get_drvdata(pdev);
8700 struct s2io_nic *sp = netdev_priv(netdev);
8701
8702 netif_device_detach(netdev);
8703
8704 if (state == pci_channel_io_perm_failure)
8705 return PCI_ERS_RESULT_DISCONNECT;
8706
8707 if (netif_running(netdev)) {
8708 /* Bring down the card, while avoiding PCI I/O */
8709 do_s2io_card_down(sp, 0);
8710 }
8711 pci_disable_device(pdev);
8712
8713 return PCI_ERS_RESULT_NEED_RESET;
8714 }
8715
8716 /**
8717 * s2io_io_slot_reset - called after the pci bus has been reset.
8718 * @pdev: Pointer to PCI device
8719 *
8720 * Restart the card from scratch, as if from a cold-boot.
8721 * At this point, the card has exprienced a hard reset,
8722 * followed by fixups by BIOS, and has its config space
8723 * set up identically to what it was at cold boot.
8724 */
8725 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8726 {
8727 struct net_device *netdev = pci_get_drvdata(pdev);
8728 struct s2io_nic *sp = netdev_priv(netdev);
8729
8730 if (pci_enable_device(pdev)) {
8731 pr_err("Cannot re-enable PCI device after reset.\n");
8732 return PCI_ERS_RESULT_DISCONNECT;
8733 }
8734
8735 pci_set_master(pdev);
8736 s2io_reset(sp);
8737
8738 return PCI_ERS_RESULT_RECOVERED;
8739 }
8740
8741 /**
8742 * s2io_io_resume - called when traffic can start flowing again.
8743 * @pdev: Pointer to PCI device
8744 *
8745 * This callback is called when the error recovery driver tells
8746 * us that its OK to resume normal operation.
8747 */
8748 static void s2io_io_resume(struct pci_dev *pdev)
8749 {
8750 struct net_device *netdev = pci_get_drvdata(pdev);
8751 struct s2io_nic *sp = netdev_priv(netdev);
8752
8753 if (netif_running(netdev)) {
8754 if (s2io_card_up(sp)) {
8755 pr_err("Can't bring device back up after reset.\n");
8756 return;
8757 }
8758
8759 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8760 s2io_card_down(sp);
8761 pr_err("Can't restore mac addr after reset.\n");
8762 return;
8763 }
8764 }
8765
8766 netif_device_attach(netdev);
8767 netif_tx_wake_all_queues(netdev);
8768 }
This page took 0.211728 seconds and 5 git commands to generate.