4897f0449db24bb17eb59d9b6a49aa9fddc50a8f
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <net/tcp.h>
83
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.25"
93
94 /* S2io Driver name & version. */
95 static char s2io_driver_name[] = "Neterion";
96 static char s2io_driver_version[] = DRV_VERSION;
97
98 static int rxd_size[2] = {32, 48};
99 static int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108 return ret;
109 }
110
111 /*
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /* Add the vlan */
360 static void s2io_vlan_rx_register(struct net_device *dev,
361 struct vlan_group *grp)
362 {
363 int i;
364 struct s2io_nic *nic = netdev_priv(dev);
365 unsigned long flags[MAX_TX_FIFOS];
366 struct mac_info *mac_control = &nic->mac_control;
367 struct config_param *config = &nic->config;
368
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
371
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
373 }
374
375 nic->vlgrp = grp;
376
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
379
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
381 }
382 }
383
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
386 {
387 int i;
388 struct s2io_nic *nic = netdev_priv(dev);
389 unsigned long flags[MAX_TX_FIFOS];
390 struct mac_info *mac_control = &nic->mac_control;
391 struct config_param *config = &nic->config;
392
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
395
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
397 }
398
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
401
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
404
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
406 }
407 }
408
409 /*
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
412 */
413
414 #define END_SIGN 0x0
415 static const u64 herc_act_dtx_cfg[] = {
416 /* Set address */
417 0x8000051536750000ULL, 0x80000515367500E0ULL,
418 /* Write data */
419 0x8000051536750004ULL, 0x80000515367500E4ULL,
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
434 };
435
436 static const u64 xena_dtx_cfg[] = {
437 /* Set address */
438 0x8000051500000000ULL, 0x80000515000000E0ULL,
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
446 0x8002051500000000ULL, 0x80020515000000E0ULL,
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
449 END_SIGN
450 };
451
452 /*
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
455 */
456 static const u64 fix_mac[] = {
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
472 };
473
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION);
476
477
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
480 S2IO_PARM_INT(rx_ring_num, 1);
481 S2IO_PARM_INT(multiq, 0);
482 S2IO_PARM_INT(rx_ring_mode, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484 S2IO_PARM_INT(rmac_pause_time, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487 S2IO_PARM_INT(shared_splits, 0);
488 S2IO_PARM_INT(tmac_util_period, 5);
489 S2IO_PARM_INT(rmac_util_period, 5);
490 S2IO_PARM_INT(l3l4hdr_size, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type, 2);
497 /* Large receive offload feature */
498 static unsigned int lro_enable;
499 module_param_named(lro, lro_enable, uint, 0);
500
501 /* Max pkts to be aggregated by LRO at one time. If not specified,
502 * aggregation happens until we hit max IP pkt size(64K)
503 */
504 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
505 S2IO_PARM_INT(indicate_max_pkts, 0);
506
507 S2IO_PARM_INT(napi, 1);
508 S2IO_PARM_INT(ufo, 0);
509 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
510
511 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
512 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
513 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
514 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
515 static unsigned int rts_frm_len[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
517
518 module_param_array(tx_fifo_len, uint, NULL, 0);
519 module_param_array(rx_ring_sz, uint, NULL, 0);
520 module_param_array(rts_frm_len, uint, NULL, 0);
521
522 /*
523 * S2IO device table.
524 * This table lists all the devices that this driver supports.
525 */
526 static struct pci_device_id s2io_tbl[] __devinitdata = {
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
534 PCI_ANY_ID, PCI_ANY_ID},
535 {0,}
536 };
537
538 MODULE_DEVICE_TABLE(pci, s2io_tbl);
539
540 static struct pci_error_handlers s2io_err_handler = {
541 .error_detected = s2io_io_error_detected,
542 .slot_reset = s2io_io_slot_reset,
543 .resume = s2io_io_resume,
544 };
545
546 static struct pci_driver s2io_driver = {
547 .name = "S2IO",
548 .id_table = s2io_tbl,
549 .probe = s2io_init_nic,
550 .remove = __devexit_p(s2io_rem_nic),
551 .err_handler = &s2io_err_handler,
552 };
553
554 /* A simplifier macro used both by init and free shared_mem Fns(). */
555 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
556
557 /* netqueue manipulation helper functions */
558 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
559 {
560 if (!sp->config.multiq) {
561 int i;
562
563 for (i = 0; i < sp->config.tx_fifo_num; i++)
564 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
565 }
566 netif_tx_stop_all_queues(sp->dev);
567 }
568
569 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
570 {
571 if (!sp->config.multiq)
572 sp->mac_control.fifos[fifo_no].queue_state =
573 FIFO_QUEUE_STOP;
574
575 netif_tx_stop_all_queues(sp->dev);
576 }
577
578 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579 {
580 if (!sp->config.multiq) {
581 int i;
582
583 for (i = 0; i < sp->config.tx_fifo_num; i++)
584 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
585 }
586 netif_tx_start_all_queues(sp->dev);
587 }
588
589 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
590 {
591 if (!sp->config.multiq)
592 sp->mac_control.fifos[fifo_no].queue_state =
593 FIFO_QUEUE_START;
594
595 netif_tx_start_all_queues(sp->dev);
596 }
597
598 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
599 {
600 if (!sp->config.multiq) {
601 int i;
602
603 for (i = 0; i < sp->config.tx_fifo_num; i++)
604 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
605 }
606 netif_tx_wake_all_queues(sp->dev);
607 }
608
609 static inline void s2io_wake_tx_queue(
610 struct fifo_info *fifo, int cnt, u8 multiq)
611 {
612
613 if (multiq) {
614 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
615 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
616 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
617 if (netif_queue_stopped(fifo->dev)) {
618 fifo->queue_state = FIFO_QUEUE_START;
619 netif_wake_queue(fifo->dev);
620 }
621 }
622 }
623
624 /**
625 * init_shared_mem - Allocation and Initialization of Memory
626 * @nic: Device private variable.
627 * Description: The function allocates all the memory areas shared
628 * between the NIC and the driver. This includes Tx descriptors,
629 * Rx descriptors and the statistics block.
630 */
631
632 static int init_shared_mem(struct s2io_nic *nic)
633 {
634 u32 size;
635 void *tmp_v_addr, *tmp_v_addr_next;
636 dma_addr_t tmp_p_addr, tmp_p_addr_next;
637 struct RxD_block *pre_rxd_blk = NULL;
638 int i, j, blk_cnt;
639 int lst_size, lst_per_page;
640 struct net_device *dev = nic->dev;
641 unsigned long tmp;
642 struct buffAdd *ba;
643
644 struct mac_info *mac_control;
645 struct config_param *config;
646 unsigned long long mem_allocated = 0;
647
648 mac_control = &nic->mac_control;
649 config = &nic->config;
650
651 /* Allocation and initialization of TXDLs in FIFOs */
652 size = 0;
653 for (i = 0; i < config->tx_fifo_num; i++) {
654 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
655
656 size += tx_cfg->fifo_len;
657 }
658 if (size > MAX_AVAILABLE_TXDS) {
659 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
660 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n",
661 size);
662 return -EINVAL;
663 }
664
665 size = 0;
666 for (i = 0; i < config->tx_fifo_num; i++) {
667 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
668
669 size = tx_cfg->fifo_len;
670 /*
671 * Legal values are from 2 to 8192
672 */
673 if (size < 2) {
674 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
675 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
676 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
677 "are 2 to 8192\n");
678 return -EINVAL;
679 }
680 }
681
682 lst_size = (sizeof(struct TxD) * config->max_txds);
683 lst_per_page = PAGE_SIZE / lst_size;
684
685 for (i = 0; i < config->tx_fifo_num; i++) {
686 struct fifo_info *fifo = &mac_control->fifos[i];
687 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
688 int fifo_len = tx_cfg->fifo_len;
689 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
690
691 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
692 if (!fifo->list_info) {
693 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
694 return -ENOMEM;
695 }
696 mem_allocated += list_holder_size;
697 }
698 for (i = 0; i < config->tx_fifo_num; i++) {
699 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
700 lst_per_page);
701 struct fifo_info *fifo = &mac_control->fifos[i];
702 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703
704 fifo->tx_curr_put_info.offset = 0;
705 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
706 fifo->tx_curr_get_info.offset = 0;
707 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
708 fifo->fifo_no = i;
709 fifo->nic = nic;
710 fifo->max_txds = MAX_SKB_FRAGS + 2;
711 fifo->dev = dev;
712
713 for (j = 0; j < page_num; j++) {
714 int k = 0;
715 dma_addr_t tmp_p;
716 void *tmp_v;
717 tmp_v = pci_alloc_consistent(nic->pdev,
718 PAGE_SIZE, &tmp_p);
719 if (!tmp_v) {
720 DBG_PRINT(INFO_DBG, "pci_alloc_consistent ");
721 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
722 return -ENOMEM;
723 }
724 /* If we got a zero DMA address(can happen on
725 * certain platforms like PPC), reallocate.
726 * Store virtual address of page we don't want,
727 * to be freed later.
728 */
729 if (!tmp_p) {
730 mac_control->zerodma_virt_addr = tmp_v;
731 DBG_PRINT(INIT_DBG,
732 "%s: Zero DMA address for TxDL. ",
733 dev->name);
734 DBG_PRINT(INIT_DBG,
735 "Virtual address %p\n", tmp_v);
736 tmp_v = pci_alloc_consistent(nic->pdev,
737 PAGE_SIZE, &tmp_p);
738 if (!tmp_v) {
739 DBG_PRINT(INFO_DBG,
740 "pci_alloc_consistent ");
741 DBG_PRINT(INFO_DBG,
742 "failed for TxDL\n");
743 return -ENOMEM;
744 }
745 mem_allocated += PAGE_SIZE;
746 }
747 while (k < lst_per_page) {
748 int l = (j * lst_per_page) + k;
749 if (l == tx_cfg->fifo_len)
750 break;
751 fifo->list_info[l].list_virt_addr =
752 tmp_v + (k * lst_size);
753 fifo->list_info[l].list_phy_addr =
754 tmp_p + (k * lst_size);
755 k++;
756 }
757 }
758 }
759
760 for (i = 0; i < config->tx_fifo_num; i++) {
761 struct fifo_info *fifo = &mac_control->fifos[i];
762 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
763
764 size = tx_cfg->fifo_len;
765 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
766 if (!fifo->ufo_in_band_v)
767 return -ENOMEM;
768 mem_allocated += (size * sizeof(u64));
769 }
770
771 /* Allocation and initialization of RXDs in Rings */
772 size = 0;
773 for (i = 0; i < config->rx_ring_num; i++) {
774 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
775 struct ring_info *ring = &mac_control->rings[i];
776
777 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
778 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
779 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", i);
780 DBG_PRINT(ERR_DBG, "RxDs per Block");
781 return FAILURE;
782 }
783 size += rx_cfg->num_rxd;
784 ring->block_count = rx_cfg->num_rxd /
785 (rxd_count[nic->rxd_mode] + 1);
786 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
787 }
788 if (nic->rxd_mode == RXD_MODE_1)
789 size = (size * (sizeof(struct RxD1)));
790 else
791 size = (size * (sizeof(struct RxD3)));
792
793 for (i = 0; i < config->rx_ring_num; i++) {
794 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
795 struct ring_info *ring = &mac_control->rings[i];
796
797 ring->rx_curr_get_info.block_index = 0;
798 ring->rx_curr_get_info.offset = 0;
799 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
800 ring->rx_curr_put_info.block_index = 0;
801 ring->rx_curr_put_info.offset = 0;
802 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
803 ring->nic = nic;
804 ring->ring_no = i;
805 ring->lro = lro_enable;
806
807 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
808 /* Allocating all the Rx blocks */
809 for (j = 0; j < blk_cnt; j++) {
810 struct rx_block_info *rx_blocks;
811 int l;
812
813 rx_blocks = &ring->rx_blocks[j];
814 size = SIZE_OF_BLOCK; /* size is always page size */
815 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
816 &tmp_p_addr);
817 if (tmp_v_addr == NULL) {
818 /*
819 * In case of failure, free_shared_mem()
820 * is called, which should free any
821 * memory that was alloced till the
822 * failure happened.
823 */
824 rx_blocks->block_virt_addr = tmp_v_addr;
825 return -ENOMEM;
826 }
827 mem_allocated += size;
828 memset(tmp_v_addr, 0, size);
829
830 size = sizeof(struct rxd_info) *
831 rxd_count[nic->rxd_mode];
832 rx_blocks->block_virt_addr = tmp_v_addr;
833 rx_blocks->block_dma_addr = tmp_p_addr;
834 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
835 if (!rx_blocks->rxds)
836 return -ENOMEM;
837 mem_allocated += size;
838 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
839 rx_blocks->rxds[l].virt_addr =
840 rx_blocks->block_virt_addr +
841 (rxd_size[nic->rxd_mode] * l);
842 rx_blocks->rxds[l].dma_addr =
843 rx_blocks->block_dma_addr +
844 (rxd_size[nic->rxd_mode] * l);
845 }
846 }
847 /* Interlinking all Rx Blocks */
848 for (j = 0; j < blk_cnt; j++) {
849 int next = (j + 1) % blk_cnt;
850 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
851 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
852 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
853 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
854
855 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
856 pre_rxd_blk->reserved_2_pNext_RxD_block =
857 (unsigned long)tmp_v_addr_next;
858 pre_rxd_blk->pNext_RxD_Blk_physical =
859 (u64)tmp_p_addr_next;
860 }
861 }
862 if (nic->rxd_mode == RXD_MODE_3B) {
863 /*
864 * Allocation of Storages for buffer addresses in 2BUFF mode
865 * and the buffers as well.
866 */
867 for (i = 0; i < config->rx_ring_num; i++) {
868 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
869 struct ring_info *ring = &mac_control->rings[i];
870
871 blk_cnt = rx_cfg->num_rxd /
872 (rxd_count[nic->rxd_mode] + 1);
873 size = sizeof(struct buffAdd *) * blk_cnt;
874 ring->ba = kmalloc(size, GFP_KERNEL);
875 if (!ring->ba)
876 return -ENOMEM;
877 mem_allocated += size;
878 for (j = 0; j < blk_cnt; j++) {
879 int k = 0;
880
881 size = sizeof(struct buffAdd) *
882 (rxd_count[nic->rxd_mode] + 1);
883 ring->ba[j] = kmalloc(size, GFP_KERNEL);
884 if (!ring->ba[j])
885 return -ENOMEM;
886 mem_allocated += size;
887 while (k != rxd_count[nic->rxd_mode]) {
888 ba = &ring->ba[j][k];
889 size = BUF0_LEN + ALIGN_SIZE;
890 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
891 if (!ba->ba_0_org)
892 return -ENOMEM;
893 mem_allocated += size;
894 tmp = (unsigned long)ba->ba_0_org;
895 tmp += ALIGN_SIZE;
896 tmp &= ~((unsigned long)ALIGN_SIZE);
897 ba->ba_0 = (void *)tmp;
898
899 size = BUF1_LEN + ALIGN_SIZE;
900 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
901 if (!ba->ba_1_org)
902 return -ENOMEM;
903 mem_allocated += size;
904 tmp = (unsigned long)ba->ba_1_org;
905 tmp += ALIGN_SIZE;
906 tmp &= ~((unsigned long)ALIGN_SIZE);
907 ba->ba_1 = (void *)tmp;
908 k++;
909 }
910 }
911 }
912 }
913
914 /* Allocation and initialization of Statistics block */
915 size = sizeof(struct stat_block);
916 mac_control->stats_mem =
917 pci_alloc_consistent(nic->pdev, size,
918 &mac_control->stats_mem_phy);
919
920 if (!mac_control->stats_mem) {
921 /*
922 * In case of failure, free_shared_mem() is called, which
923 * should free any memory that was alloced till the
924 * failure happened.
925 */
926 return -ENOMEM;
927 }
928 mem_allocated += size;
929 mac_control->stats_mem_sz = size;
930
931 tmp_v_addr = mac_control->stats_mem;
932 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
933 memset(tmp_v_addr, 0, size);
934 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
935 (unsigned long long)tmp_p_addr);
936 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
937 return SUCCESS;
938 }
939
940 /**
941 * free_shared_mem - Free the allocated Memory
942 * @nic: Device private variable.
943 * Description: This function is to free all memory locations allocated by
944 * the init_shared_mem() function and return it to the kernel.
945 */
946
947 static void free_shared_mem(struct s2io_nic *nic)
948 {
949 int i, j, blk_cnt, size;
950 void *tmp_v_addr;
951 dma_addr_t tmp_p_addr;
952 struct mac_info *mac_control;
953 struct config_param *config;
954 int lst_size, lst_per_page;
955 struct net_device *dev;
956 int page_num = 0;
957
958 if (!nic)
959 return;
960
961 dev = nic->dev;
962
963 mac_control = &nic->mac_control;
964 config = &nic->config;
965
966 lst_size = sizeof(struct TxD) * config->max_txds;
967 lst_per_page = PAGE_SIZE / lst_size;
968
969 for (i = 0; i < config->tx_fifo_num; i++) {
970 struct fifo_info *fifo = &mac_control->fifos[i];
971 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
972
973 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
974 for (j = 0; j < page_num; j++) {
975 int mem_blks = (j * lst_per_page);
976 struct list_info_hold *fli;
977
978 if (!fifo->list_info)
979 return;
980
981 fli = &fifo->list_info[mem_blks];
982 if (!fli->list_virt_addr)
983 break;
984 pci_free_consistent(nic->pdev, PAGE_SIZE,
985 fli->list_virt_addr,
986 fli->list_phy_addr);
987 nic->mac_control.stats_info->sw_stat.mem_freed
988 += PAGE_SIZE;
989 }
990 /* If we got a zero DMA address during allocation,
991 * free the page now
992 */
993 if (mac_control->zerodma_virt_addr) {
994 pci_free_consistent(nic->pdev, PAGE_SIZE,
995 mac_control->zerodma_virt_addr,
996 (dma_addr_t)0);
997 DBG_PRINT(INIT_DBG,
998 "%s: Freeing TxDL with zero DMA addr. ",
999 dev->name);
1000 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1001 mac_control->zerodma_virt_addr);
1002 nic->mac_control.stats_info->sw_stat.mem_freed
1003 += PAGE_SIZE;
1004 }
1005 kfree(fifo->list_info);
1006 nic->mac_control.stats_info->sw_stat.mem_freed +=
1007 nic->config.tx_cfg[i].fifo_len *
1008 sizeof(struct list_info_hold);
1009 }
1010
1011 size = SIZE_OF_BLOCK;
1012 for (i = 0; i < config->rx_ring_num; i++) {
1013 struct ring_info *ring = &mac_control->rings[i];
1014
1015 blk_cnt = ring->block_count;
1016 for (j = 0; j < blk_cnt; j++) {
1017 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1018 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1019 if (tmp_v_addr == NULL)
1020 break;
1021 pci_free_consistent(nic->pdev, size,
1022 tmp_v_addr, tmp_p_addr);
1023 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1024 kfree(ring->rx_blocks[j].rxds);
1025 nic->mac_control.stats_info->sw_stat.mem_freed +=
1026 sizeof(struct rxd_info) * rxd_count[nic->rxd_mode];
1027 }
1028 }
1029
1030 if (nic->rxd_mode == RXD_MODE_3B) {
1031 /* Freeing buffer storage addresses in 2BUFF mode. */
1032 for (i = 0; i < config->rx_ring_num; i++) {
1033 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1034 struct ring_info *ring = &mac_control->rings[i];
1035
1036 blk_cnt = rx_cfg->num_rxd /
1037 (rxd_count[nic->rxd_mode] + 1);
1038 for (j = 0; j < blk_cnt; j++) {
1039 int k = 0;
1040 if (!ring->ba[j])
1041 continue;
1042 while (k != rxd_count[nic->rxd_mode]) {
1043 struct buffAdd *ba = &ring->ba[j][k];
1044 kfree(ba->ba_0_org);
1045 nic->mac_control.stats_info->sw_stat.\
1046 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1047 kfree(ba->ba_1_org);
1048 nic->mac_control.stats_info->sw_stat.\
1049 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1050 k++;
1051 }
1052 kfree(ring->ba[j]);
1053 nic->mac_control.stats_info->sw_stat.mem_freed +=
1054 (sizeof(struct buffAdd) *
1055 (rxd_count[nic->rxd_mode] + 1));
1056 }
1057 kfree(ring->ba);
1058 nic->mac_control.stats_info->sw_stat.mem_freed +=
1059 (sizeof(struct buffAdd *) * blk_cnt);
1060 }
1061 }
1062
1063 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1064 struct fifo_info *fifo = &mac_control->fifos[i];
1065 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1066
1067 if (fifo->ufo_in_band_v) {
1068 nic->mac_control.stats_info->sw_stat.mem_freed
1069 += (tx_cfg->fifo_len * sizeof(u64));
1070 kfree(fifo->ufo_in_band_v);
1071 }
1072 }
1073
1074 if (mac_control->stats_mem) {
1075 nic->mac_control.stats_info->sw_stat.mem_freed +=
1076 mac_control->stats_mem_sz;
1077 pci_free_consistent(nic->pdev,
1078 mac_control->stats_mem_sz,
1079 mac_control->stats_mem,
1080 mac_control->stats_mem_phy);
1081 }
1082 }
1083
1084 /**
1085 * s2io_verify_pci_mode -
1086 */
1087
1088 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1089 {
1090 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1091 register u64 val64 = 0;
1092 int mode;
1093
1094 val64 = readq(&bar0->pci_mode);
1095 mode = (u8)GET_PCI_MODE(val64);
1096
1097 if (val64 & PCI_MODE_UNKNOWN_MODE)
1098 return -1; /* Unknown PCI mode */
1099 return mode;
1100 }
1101
1102 #define NEC_VENID 0x1033
1103 #define NEC_DEVID 0x0125
1104 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1105 {
1106 struct pci_dev *tdev = NULL;
1107 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1108 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1109 if (tdev->bus == s2io_pdev->bus->parent) {
1110 pci_dev_put(tdev);
1111 return 1;
1112 }
1113 }
1114 }
1115 return 0;
1116 }
1117
1118 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1119 /**
1120 * s2io_print_pci_mode -
1121 */
1122 static int s2io_print_pci_mode(struct s2io_nic *nic)
1123 {
1124 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1125 register u64 val64 = 0;
1126 int mode;
1127 struct config_param *config = &nic->config;
1128
1129 val64 = readq(&bar0->pci_mode);
1130 mode = (u8)GET_PCI_MODE(val64);
1131
1132 if (val64 & PCI_MODE_UNKNOWN_MODE)
1133 return -1; /* Unknown PCI mode */
1134
1135 config->bus_speed = bus_speed[mode];
1136
1137 if (s2io_on_nec_bridge(nic->pdev)) {
1138 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1139 nic->dev->name);
1140 return mode;
1141 }
1142
1143 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit ",
1144 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64);
1145
1146 switch (mode) {
1147 case PCI_MODE_PCI_33:
1148 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1149 break;
1150 case PCI_MODE_PCI_66:
1151 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1152 break;
1153 case PCI_MODE_PCIX_M1_66:
1154 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1155 break;
1156 case PCI_MODE_PCIX_M1_100:
1157 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1158 break;
1159 case PCI_MODE_PCIX_M1_133:
1160 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1161 break;
1162 case PCI_MODE_PCIX_M2_66:
1163 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1164 break;
1165 case PCI_MODE_PCIX_M2_100:
1166 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1167 break;
1168 case PCI_MODE_PCIX_M2_133:
1169 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1170 break;
1171 default:
1172 return -1; /* Unsupported bus speed */
1173 }
1174
1175 return mode;
1176 }
1177
1178 /**
1179 * init_tti - Initialization transmit traffic interrupt scheme
1180 * @nic: device private variable
1181 * @link: link status (UP/DOWN) used to enable/disable continuous
1182 * transmit interrupts
1183 * Description: The function configures transmit traffic interrupts
1184 * Return Value: SUCCESS on success and
1185 * '-1' on failure
1186 */
1187
1188 static int init_tti(struct s2io_nic *nic, int link)
1189 {
1190 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1191 register u64 val64 = 0;
1192 int i;
1193 struct config_param *config;
1194
1195 config = &nic->config;
1196
1197 for (i = 0; i < config->tx_fifo_num; i++) {
1198 /*
1199 * TTI Initialization. Default Tx timer gets us about
1200 * 250 interrupts per sec. Continuous interrupts are enabled
1201 * by default.
1202 */
1203 if (nic->device_type == XFRAME_II_DEVICE) {
1204 int count = (nic->config.bus_speed * 125)/2;
1205 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1206 } else
1207 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1208
1209 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1210 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1211 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1212 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1213 if (i == 0)
1214 if (use_continuous_tx_intrs && (link == LINK_UP))
1215 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1216 writeq(val64, &bar0->tti_data1_mem);
1217
1218 if (nic->config.intr_type == MSI_X) {
1219 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1220 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1221 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1222 TTI_DATA2_MEM_TX_UFC_D(0x300);
1223 } else {
1224 if ((nic->config.tx_steering_type ==
1225 TX_DEFAULT_STEERING) &&
1226 (config->tx_fifo_num > 1) &&
1227 (i >= nic->udp_fifo_idx) &&
1228 (i < (nic->udp_fifo_idx +
1229 nic->total_udp_fifos)))
1230 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1231 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1232 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1233 TTI_DATA2_MEM_TX_UFC_D(0x120);
1234 else
1235 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1236 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1237 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1238 TTI_DATA2_MEM_TX_UFC_D(0x80);
1239 }
1240
1241 writeq(val64, &bar0->tti_data2_mem);
1242
1243 val64 = TTI_CMD_MEM_WE |
1244 TTI_CMD_MEM_STROBE_NEW_CMD |
1245 TTI_CMD_MEM_OFFSET(i);
1246 writeq(val64, &bar0->tti_command_mem);
1247
1248 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1249 TTI_CMD_MEM_STROBE_NEW_CMD,
1250 S2IO_BIT_RESET) != SUCCESS)
1251 return FAILURE;
1252 }
1253
1254 return SUCCESS;
1255 }
1256
1257 /**
1258 * init_nic - Initialization of hardware
1259 * @nic: device private variable
1260 * Description: The function sequentially configures every block
1261 * of the H/W from their reset values.
1262 * Return Value: SUCCESS on success and
1263 * '-1' on failure (endian settings incorrect).
1264 */
1265
1266 static int init_nic(struct s2io_nic *nic)
1267 {
1268 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1269 struct net_device *dev = nic->dev;
1270 register u64 val64 = 0;
1271 void __iomem *add;
1272 u32 time;
1273 int i, j;
1274 struct mac_info *mac_control;
1275 struct config_param *config;
1276 int dtx_cnt = 0;
1277 unsigned long long mem_share;
1278 int mem_size;
1279
1280 mac_control = &nic->mac_control;
1281 config = &nic->config;
1282
1283 /* to set the swapper controle on the card */
1284 if (s2io_set_swapper(nic)) {
1285 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1286 return -EIO;
1287 }
1288
1289 /*
1290 * Herc requires EOI to be removed from reset before XGXS, so..
1291 */
1292 if (nic->device_type & XFRAME_II_DEVICE) {
1293 val64 = 0xA500000000ULL;
1294 writeq(val64, &bar0->sw_reset);
1295 msleep(500);
1296 val64 = readq(&bar0->sw_reset);
1297 }
1298
1299 /* Remove XGXS from reset state */
1300 val64 = 0;
1301 writeq(val64, &bar0->sw_reset);
1302 msleep(500);
1303 val64 = readq(&bar0->sw_reset);
1304
1305 /* Ensure that it's safe to access registers by checking
1306 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1307 */
1308 if (nic->device_type == XFRAME_II_DEVICE) {
1309 for (i = 0; i < 50; i++) {
1310 val64 = readq(&bar0->adapter_status);
1311 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1312 break;
1313 msleep(10);
1314 }
1315 if (i == 50)
1316 return -ENODEV;
1317 }
1318
1319 /* Enable Receiving broadcasts */
1320 add = &bar0->mac_cfg;
1321 val64 = readq(&bar0->mac_cfg);
1322 val64 |= MAC_RMAC_BCAST_ENABLE;
1323 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1324 writel((u32)val64, add);
1325 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1326 writel((u32) (val64 >> 32), (add + 4));
1327
1328 /* Read registers in all blocks */
1329 val64 = readq(&bar0->mac_int_mask);
1330 val64 = readq(&bar0->mc_int_mask);
1331 val64 = readq(&bar0->xgxs_int_mask);
1332
1333 /* Set MTU */
1334 val64 = dev->mtu;
1335 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1336
1337 if (nic->device_type & XFRAME_II_DEVICE) {
1338 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1339 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1340 &bar0->dtx_control, UF);
1341 if (dtx_cnt & 0x1)
1342 msleep(1); /* Necessary!! */
1343 dtx_cnt++;
1344 }
1345 } else {
1346 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1347 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1348 &bar0->dtx_control, UF);
1349 val64 = readq(&bar0->dtx_control);
1350 dtx_cnt++;
1351 }
1352 }
1353
1354 /* Tx DMA Initialization */
1355 val64 = 0;
1356 writeq(val64, &bar0->tx_fifo_partition_0);
1357 writeq(val64, &bar0->tx_fifo_partition_1);
1358 writeq(val64, &bar0->tx_fifo_partition_2);
1359 writeq(val64, &bar0->tx_fifo_partition_3);
1360
1361 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1362 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1363
1364 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1365 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1366
1367 if (i == (config->tx_fifo_num - 1)) {
1368 if (i % 2 == 0)
1369 i++;
1370 }
1371
1372 switch (i) {
1373 case 1:
1374 writeq(val64, &bar0->tx_fifo_partition_0);
1375 val64 = 0;
1376 j = 0;
1377 break;
1378 case 3:
1379 writeq(val64, &bar0->tx_fifo_partition_1);
1380 val64 = 0;
1381 j = 0;
1382 break;
1383 case 5:
1384 writeq(val64, &bar0->tx_fifo_partition_2);
1385 val64 = 0;
1386 j = 0;
1387 break;
1388 case 7:
1389 writeq(val64, &bar0->tx_fifo_partition_3);
1390 val64 = 0;
1391 j = 0;
1392 break;
1393 default:
1394 j++;
1395 break;
1396 }
1397 }
1398
1399 /*
1400 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1401 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1402 */
1403 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1404 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1405
1406 val64 = readq(&bar0->tx_fifo_partition_0);
1407 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1408 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1409
1410 /*
1411 * Initialization of Tx_PA_CONFIG register to ignore packet
1412 * integrity checking.
1413 */
1414 val64 = readq(&bar0->tx_pa_cfg);
1415 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1416 TX_PA_CFG_IGNORE_SNAP_OUI |
1417 TX_PA_CFG_IGNORE_LLC_CTRL |
1418 TX_PA_CFG_IGNORE_L2_ERR;
1419 writeq(val64, &bar0->tx_pa_cfg);
1420
1421 /* Rx DMA intialization. */
1422 val64 = 0;
1423 for (i = 0; i < config->rx_ring_num; i++) {
1424 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1425
1426 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1427 }
1428 writeq(val64, &bar0->rx_queue_priority);
1429
1430 /*
1431 * Allocating equal share of memory to all the
1432 * configured Rings.
1433 */
1434 val64 = 0;
1435 if (nic->device_type & XFRAME_II_DEVICE)
1436 mem_size = 32;
1437 else
1438 mem_size = 64;
1439
1440 for (i = 0; i < config->rx_ring_num; i++) {
1441 switch (i) {
1442 case 0:
1443 mem_share = (mem_size / config->rx_ring_num +
1444 mem_size % config->rx_ring_num);
1445 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1446 continue;
1447 case 1:
1448 mem_share = (mem_size / config->rx_ring_num);
1449 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1450 continue;
1451 case 2:
1452 mem_share = (mem_size / config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1454 continue;
1455 case 3:
1456 mem_share = (mem_size / config->rx_ring_num);
1457 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1458 continue;
1459 case 4:
1460 mem_share = (mem_size / config->rx_ring_num);
1461 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1462 continue;
1463 case 5:
1464 mem_share = (mem_size / config->rx_ring_num);
1465 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1466 continue;
1467 case 6:
1468 mem_share = (mem_size / config->rx_ring_num);
1469 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1470 continue;
1471 case 7:
1472 mem_share = (mem_size / config->rx_ring_num);
1473 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1474 continue;
1475 }
1476 }
1477 writeq(val64, &bar0->rx_queue_cfg);
1478
1479 /*
1480 * Filling Tx round robin registers
1481 * as per the number of FIFOs for equal scheduling priority
1482 */
1483 switch (config->tx_fifo_num) {
1484 case 1:
1485 val64 = 0x0;
1486 writeq(val64, &bar0->tx_w_round_robin_0);
1487 writeq(val64, &bar0->tx_w_round_robin_1);
1488 writeq(val64, &bar0->tx_w_round_robin_2);
1489 writeq(val64, &bar0->tx_w_round_robin_3);
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 case 2:
1493 val64 = 0x0001000100010001ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 val64 = 0x0001000100000000ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 case 3:
1502 val64 = 0x0001020001020001ULL;
1503 writeq(val64, &bar0->tx_w_round_robin_0);
1504 val64 = 0x0200010200010200ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_1);
1506 val64 = 0x0102000102000102ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_2);
1508 val64 = 0x0001020001020001ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_3);
1510 val64 = 0x0200010200000000ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_4);
1512 break;
1513 case 4:
1514 val64 = 0x0001020300010203ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_0);
1516 writeq(val64, &bar0->tx_w_round_robin_1);
1517 writeq(val64, &bar0->tx_w_round_robin_2);
1518 writeq(val64, &bar0->tx_w_round_robin_3);
1519 val64 = 0x0001020300000000ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_4);
1521 break;
1522 case 5:
1523 val64 = 0x0001020304000102ULL;
1524 writeq(val64, &bar0->tx_w_round_robin_0);
1525 val64 = 0x0304000102030400ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_1);
1527 val64 = 0x0102030400010203ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_2);
1529 val64 = 0x0400010203040001ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_3);
1531 val64 = 0x0203040000000000ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_4);
1533 break;
1534 case 6:
1535 val64 = 0x0001020304050001ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_0);
1537 val64 = 0x0203040500010203ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_1);
1539 val64 = 0x0405000102030405ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_2);
1541 val64 = 0x0001020304050001ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_3);
1543 val64 = 0x0203040500000000ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1545 break;
1546 case 7:
1547 val64 = 0x0001020304050600ULL;
1548 writeq(val64, &bar0->tx_w_round_robin_0);
1549 val64 = 0x0102030405060001ULL;
1550 writeq(val64, &bar0->tx_w_round_robin_1);
1551 val64 = 0x0203040506000102ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_2);
1553 val64 = 0x0304050600010203ULL;
1554 writeq(val64, &bar0->tx_w_round_robin_3);
1555 val64 = 0x0405060000000000ULL;
1556 writeq(val64, &bar0->tx_w_round_robin_4);
1557 break;
1558 case 8:
1559 val64 = 0x0001020304050607ULL;
1560 writeq(val64, &bar0->tx_w_round_robin_0);
1561 writeq(val64, &bar0->tx_w_round_robin_1);
1562 writeq(val64, &bar0->tx_w_round_robin_2);
1563 writeq(val64, &bar0->tx_w_round_robin_3);
1564 val64 = 0x0001020300000000ULL;
1565 writeq(val64, &bar0->tx_w_round_robin_4);
1566 break;
1567 }
1568
1569 /* Enable all configured Tx FIFO partitions */
1570 val64 = readq(&bar0->tx_fifo_partition_0);
1571 val64 |= (TX_FIFO_PARTITION_EN);
1572 writeq(val64, &bar0->tx_fifo_partition_0);
1573
1574 /* Filling the Rx round robin registers as per the
1575 * number of Rings and steering based on QoS with
1576 * equal priority.
1577 */
1578 switch (config->rx_ring_num) {
1579 case 1:
1580 val64 = 0x0;
1581 writeq(val64, &bar0->rx_w_round_robin_0);
1582 writeq(val64, &bar0->rx_w_round_robin_1);
1583 writeq(val64, &bar0->rx_w_round_robin_2);
1584 writeq(val64, &bar0->rx_w_round_robin_3);
1585 writeq(val64, &bar0->rx_w_round_robin_4);
1586
1587 val64 = 0x8080808080808080ULL;
1588 writeq(val64, &bar0->rts_qos_steering);
1589 break;
1590 case 2:
1591 val64 = 0x0001000100010001ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_0);
1593 writeq(val64, &bar0->rx_w_round_robin_1);
1594 writeq(val64, &bar0->rx_w_round_robin_2);
1595 writeq(val64, &bar0->rx_w_round_robin_3);
1596 val64 = 0x0001000100000000ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_4);
1598
1599 val64 = 0x8080808040404040ULL;
1600 writeq(val64, &bar0->rts_qos_steering);
1601 break;
1602 case 3:
1603 val64 = 0x0001020001020001ULL;
1604 writeq(val64, &bar0->rx_w_round_robin_0);
1605 val64 = 0x0200010200010200ULL;
1606 writeq(val64, &bar0->rx_w_round_robin_1);
1607 val64 = 0x0102000102000102ULL;
1608 writeq(val64, &bar0->rx_w_round_robin_2);
1609 val64 = 0x0001020001020001ULL;
1610 writeq(val64, &bar0->rx_w_round_robin_3);
1611 val64 = 0x0200010200000000ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_4);
1613
1614 val64 = 0x8080804040402020ULL;
1615 writeq(val64, &bar0->rts_qos_steering);
1616 break;
1617 case 4:
1618 val64 = 0x0001020300010203ULL;
1619 writeq(val64, &bar0->rx_w_round_robin_0);
1620 writeq(val64, &bar0->rx_w_round_robin_1);
1621 writeq(val64, &bar0->rx_w_round_robin_2);
1622 writeq(val64, &bar0->rx_w_round_robin_3);
1623 val64 = 0x0001020300000000ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_4);
1625
1626 val64 = 0x8080404020201010ULL;
1627 writeq(val64, &bar0->rts_qos_steering);
1628 break;
1629 case 5:
1630 val64 = 0x0001020304000102ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_0);
1632 val64 = 0x0304000102030400ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_1);
1634 val64 = 0x0102030400010203ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_2);
1636 val64 = 0x0400010203040001ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_3);
1638 val64 = 0x0203040000000000ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_4);
1640
1641 val64 = 0x8080404020201008ULL;
1642 writeq(val64, &bar0->rts_qos_steering);
1643 break;
1644 case 6:
1645 val64 = 0x0001020304050001ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_0);
1647 val64 = 0x0203040500010203ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_1);
1649 val64 = 0x0405000102030405ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_2);
1651 val64 = 0x0001020304050001ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_3);
1653 val64 = 0x0203040500000000ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_4);
1655
1656 val64 = 0x8080404020100804ULL;
1657 writeq(val64, &bar0->rts_qos_steering);
1658 break;
1659 case 7:
1660 val64 = 0x0001020304050600ULL;
1661 writeq(val64, &bar0->rx_w_round_robin_0);
1662 val64 = 0x0102030405060001ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_1);
1664 val64 = 0x0203040506000102ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 val64 = 0x0304050600010203ULL;
1667 writeq(val64, &bar0->rx_w_round_robin_3);
1668 val64 = 0x0405060000000000ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671 val64 = 0x8080402010080402ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 case 8:
1675 val64 = 0x0001020304050607ULL;
1676 writeq(val64, &bar0->rx_w_round_robin_0);
1677 writeq(val64, &bar0->rx_w_round_robin_1);
1678 writeq(val64, &bar0->rx_w_round_robin_2);
1679 writeq(val64, &bar0->rx_w_round_robin_3);
1680 val64 = 0x0001020300000000ULL;
1681 writeq(val64, &bar0->rx_w_round_robin_4);
1682
1683 val64 = 0x8040201008040201ULL;
1684 writeq(val64, &bar0->rts_qos_steering);
1685 break;
1686 }
1687
1688 /* UDP Fix */
1689 val64 = 0;
1690 for (i = 0; i < 8; i++)
1691 writeq(val64, &bar0->rts_frm_len_n[i]);
1692
1693 /* Set the default rts frame length for the rings configured */
1694 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1695 for (i = 0 ; i < config->rx_ring_num ; i++)
1696 writeq(val64, &bar0->rts_frm_len_n[i]);
1697
1698 /* Set the frame length for the configured rings
1699 * desired by the user
1700 */
1701 for (i = 0; i < config->rx_ring_num; i++) {
1702 /* If rts_frm_len[i] == 0 then it is assumed that user not
1703 * specified frame length steering.
1704 * If the user provides the frame length then program
1705 * the rts_frm_len register for those values or else
1706 * leave it as it is.
1707 */
1708 if (rts_frm_len[i] != 0) {
1709 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1710 &bar0->rts_frm_len_n[i]);
1711 }
1712 }
1713
1714 /* Disable differentiated services steering logic */
1715 for (i = 0; i < 64; i++) {
1716 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1717 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1718 dev->name);
1719 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1720 return -ENODEV;
1721 }
1722 }
1723
1724 /* Program statistics memory */
1725 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1726
1727 if (nic->device_type == XFRAME_II_DEVICE) {
1728 val64 = STAT_BC(0x320);
1729 writeq(val64, &bar0->stat_byte_cnt);
1730 }
1731
1732 /*
1733 * Initializing the sampling rate for the device to calculate the
1734 * bandwidth utilization.
1735 */
1736 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1737 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1738 writeq(val64, &bar0->mac_link_util);
1739
1740 /*
1741 * Initializing the Transmit and Receive Traffic Interrupt
1742 * Scheme.
1743 */
1744
1745 /* Initialize TTI */
1746 if (SUCCESS != init_tti(nic, nic->last_link_state))
1747 return -ENODEV;
1748
1749 /* RTI Initialization */
1750 if (nic->device_type == XFRAME_II_DEVICE) {
1751 /*
1752 * Programmed to generate Apprx 500 Intrs per
1753 * second
1754 */
1755 int count = (nic->config.bus_speed * 125)/4;
1756 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1757 } else
1758 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1759 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1760 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1761 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1762 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1763
1764 writeq(val64, &bar0->rti_data1_mem);
1765
1766 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1767 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1768 if (nic->config.intr_type == MSI_X)
1769 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1770 RTI_DATA2_MEM_RX_UFC_D(0x40));
1771 else
1772 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1773 RTI_DATA2_MEM_RX_UFC_D(0x80));
1774 writeq(val64, &bar0->rti_data2_mem);
1775
1776 for (i = 0; i < config->rx_ring_num; i++) {
1777 val64 = RTI_CMD_MEM_WE |
1778 RTI_CMD_MEM_STROBE_NEW_CMD |
1779 RTI_CMD_MEM_OFFSET(i);
1780 writeq(val64, &bar0->rti_command_mem);
1781
1782 /*
1783 * Once the operation completes, the Strobe bit of the
1784 * command register will be reset. We poll for this
1785 * particular condition. We wait for a maximum of 500ms
1786 * for the operation to complete, if it's not complete
1787 * by then we return error.
1788 */
1789 time = 0;
1790 while (true) {
1791 val64 = readq(&bar0->rti_command_mem);
1792 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1793 break;
1794
1795 if (time > 10) {
1796 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1797 dev->name);
1798 return -ENODEV;
1799 }
1800 time++;
1801 msleep(50);
1802 }
1803 }
1804
1805 /*
1806 * Initializing proper values as Pause threshold into all
1807 * the 8 Queues on Rx side.
1808 */
1809 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1810 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1811
1812 /* Disable RMAC PAD STRIPPING */
1813 add = &bar0->mac_cfg;
1814 val64 = readq(&bar0->mac_cfg);
1815 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 val64 = readq(&bar0->mac_cfg);
1821
1822 /* Enable FCS stripping by adapter */
1823 add = &bar0->mac_cfg;
1824 val64 = readq(&bar0->mac_cfg);
1825 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1826 if (nic->device_type == XFRAME_II_DEVICE)
1827 writeq(val64, &bar0->mac_cfg);
1828 else {
1829 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1830 writel((u32) (val64), add);
1831 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1832 writel((u32) (val64 >> 32), (add + 4));
1833 }
1834
1835 /*
1836 * Set the time value to be inserted in the pause frame
1837 * generated by xena.
1838 */
1839 val64 = readq(&bar0->rmac_pause_cfg);
1840 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1841 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1842 writeq(val64, &bar0->rmac_pause_cfg);
1843
1844 /*
1845 * Set the Threshold Limit for Generating the pause frame
1846 * If the amount of data in any Queue exceeds ratio of
1847 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1848 * pause frame is generated
1849 */
1850 val64 = 0;
1851 for (i = 0; i < 4; i++) {
1852 val64 |= (((u64)0xFF00 |
1853 nic->mac_control.mc_pause_threshold_q0q3)
1854 << (i * 2 * 8));
1855 }
1856 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1857
1858 val64 = 0;
1859 for (i = 0; i < 4; i++) {
1860 val64 |= (((u64)0xFF00 |
1861 nic->mac_control.mc_pause_threshold_q4q7)
1862 << (i * 2 * 8));
1863 }
1864 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1865
1866 /*
1867 * TxDMA will stop Read request if the number of read split has
1868 * exceeded the limit pointed by shared_splits
1869 */
1870 val64 = readq(&bar0->pic_control);
1871 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1872 writeq(val64, &bar0->pic_control);
1873
1874 if (nic->config.bus_speed == 266) {
1875 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1876 writeq(0x0, &bar0->read_retry_delay);
1877 writeq(0x0, &bar0->write_retry_delay);
1878 }
1879
1880 /*
1881 * Programming the Herc to split every write transaction
1882 * that does not start on an ADB to reduce disconnects.
1883 */
1884 if (nic->device_type == XFRAME_II_DEVICE) {
1885 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1886 MISC_LINK_STABILITY_PRD(3);
1887 writeq(val64, &bar0->misc_control);
1888 val64 = readq(&bar0->pic_control2);
1889 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1890 writeq(val64, &bar0->pic_control2);
1891 }
1892 if (strstr(nic->product_name, "CX4")) {
1893 val64 = TMAC_AVG_IPG(0x17);
1894 writeq(val64, &bar0->tmac_avg_ipg);
1895 }
1896
1897 return SUCCESS;
1898 }
1899 #define LINK_UP_DOWN_INTERRUPT 1
1900 #define MAC_RMAC_ERR_TIMER 2
1901
1902 static int s2io_link_fault_indication(struct s2io_nic *nic)
1903 {
1904 if (nic->device_type == XFRAME_II_DEVICE)
1905 return LINK_UP_DOWN_INTERRUPT;
1906 else
1907 return MAC_RMAC_ERR_TIMER;
1908 }
1909
1910 /**
1911 * do_s2io_write_bits - update alarm bits in alarm register
1912 * @value: alarm bits
1913 * @flag: interrupt status
1914 * @addr: address value
1915 * Description: update alarm bits in alarm register
1916 * Return Value:
1917 * NONE.
1918 */
1919 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1920 {
1921 u64 temp64;
1922
1923 temp64 = readq(addr);
1924
1925 if (flag == ENABLE_INTRS)
1926 temp64 &= ~((u64)value);
1927 else
1928 temp64 |= ((u64)value);
1929 writeq(temp64, addr);
1930 }
1931
1932 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1933 {
1934 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1935 register u64 gen_int_mask = 0;
1936 u64 interruptible;
1937
1938 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1939 if (mask & TX_DMA_INTR) {
1940 gen_int_mask |= TXDMA_INT_M;
1941
1942 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1943 TXDMA_PCC_INT | TXDMA_TTI_INT |
1944 TXDMA_LSO_INT | TXDMA_TPA_INT |
1945 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1946
1947 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1948 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1949 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1950 &bar0->pfc_err_mask);
1951
1952 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1953 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1954 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1955
1956 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1957 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1958 PCC_N_SERR | PCC_6_COF_OV_ERR |
1959 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1960 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1961 PCC_TXB_ECC_SG_ERR,
1962 flag, &bar0->pcc_err_mask);
1963
1964 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1965 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1966
1967 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1968 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1969 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1970 flag, &bar0->lso_err_mask);
1971
1972 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1973 flag, &bar0->tpa_err_mask);
1974
1975 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1976 }
1977
1978 if (mask & TX_MAC_INTR) {
1979 gen_int_mask |= TXMAC_INT_M;
1980 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1981 &bar0->mac_int_mask);
1982 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1983 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1984 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1985 flag, &bar0->mac_tmac_err_mask);
1986 }
1987
1988 if (mask & TX_XGXS_INTR) {
1989 gen_int_mask |= TXXGXS_INT_M;
1990 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1991 &bar0->xgxs_int_mask);
1992 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1993 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1994 flag, &bar0->xgxs_txgxs_err_mask);
1995 }
1996
1997 if (mask & RX_DMA_INTR) {
1998 gen_int_mask |= RXDMA_INT_M;
1999 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2000 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2001 flag, &bar0->rxdma_int_mask);
2002 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2003 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2004 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2005 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2006 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2007 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2008 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2009 &bar0->prc_pcix_err_mask);
2010 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2011 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2012 &bar0->rpa_err_mask);
2013 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2014 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2015 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2016 RDA_FRM_ECC_SG_ERR |
2017 RDA_MISC_ERR|RDA_PCIX_ERR,
2018 flag, &bar0->rda_err_mask);
2019 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2020 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2021 flag, &bar0->rti_err_mask);
2022 }
2023
2024 if (mask & RX_MAC_INTR) {
2025 gen_int_mask |= RXMAC_INT_M;
2026 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2027 &bar0->mac_int_mask);
2028 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2029 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2030 RMAC_DOUBLE_ECC_ERR);
2031 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2032 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2033 do_s2io_write_bits(interruptible,
2034 flag, &bar0->mac_rmac_err_mask);
2035 }
2036
2037 if (mask & RX_XGXS_INTR) {
2038 gen_int_mask |= RXXGXS_INT_M;
2039 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2040 &bar0->xgxs_int_mask);
2041 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2042 &bar0->xgxs_rxgxs_err_mask);
2043 }
2044
2045 if (mask & MC_INTR) {
2046 gen_int_mask |= MC_INT_M;
2047 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2048 flag, &bar0->mc_int_mask);
2049 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2050 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2051 &bar0->mc_err_mask);
2052 }
2053 nic->general_int_mask = gen_int_mask;
2054
2055 /* Remove this line when alarm interrupts are enabled */
2056 nic->general_int_mask = 0;
2057 }
2058
2059 /**
2060 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2061 * @nic: device private variable,
2062 * @mask: A mask indicating which Intr block must be modified and,
2063 * @flag: A flag indicating whether to enable or disable the Intrs.
2064 * Description: This function will either disable or enable the interrupts
2065 * depending on the flag argument. The mask argument can be used to
2066 * enable/disable any Intr block.
2067 * Return Value: NONE.
2068 */
2069
2070 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2071 {
2072 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2073 register u64 temp64 = 0, intr_mask = 0;
2074
2075 intr_mask = nic->general_int_mask;
2076
2077 /* Top level interrupt classification */
2078 /* PIC Interrupts */
2079 if (mask & TX_PIC_INTR) {
2080 /* Enable PIC Intrs in the general intr mask register */
2081 intr_mask |= TXPIC_INT_M;
2082 if (flag == ENABLE_INTRS) {
2083 /*
2084 * If Hercules adapter enable GPIO otherwise
2085 * disable all PCIX, Flash, MDIO, IIC and GPIO
2086 * interrupts for now.
2087 * TODO
2088 */
2089 if (s2io_link_fault_indication(nic) ==
2090 LINK_UP_DOWN_INTERRUPT) {
2091 do_s2io_write_bits(PIC_INT_GPIO, flag,
2092 &bar0->pic_int_mask);
2093 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2094 &bar0->gpio_int_mask);
2095 } else
2096 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2097 } else if (flag == DISABLE_INTRS) {
2098 /*
2099 * Disable PIC Intrs in the general
2100 * intr mask register
2101 */
2102 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2103 }
2104 }
2105
2106 /* Tx traffic interrupts */
2107 if (mask & TX_TRAFFIC_INTR) {
2108 intr_mask |= TXTRAFFIC_INT_M;
2109 if (flag == ENABLE_INTRS) {
2110 /*
2111 * Enable all the Tx side interrupts
2112 * writing 0 Enables all 64 TX interrupt levels
2113 */
2114 writeq(0x0, &bar0->tx_traffic_mask);
2115 } else if (flag == DISABLE_INTRS) {
2116 /*
2117 * Disable Tx Traffic Intrs in the general intr mask
2118 * register.
2119 */
2120 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2121 }
2122 }
2123
2124 /* Rx traffic interrupts */
2125 if (mask & RX_TRAFFIC_INTR) {
2126 intr_mask |= RXTRAFFIC_INT_M;
2127 if (flag == ENABLE_INTRS) {
2128 /* writing 0 Enables all 8 RX interrupt levels */
2129 writeq(0x0, &bar0->rx_traffic_mask);
2130 } else if (flag == DISABLE_INTRS) {
2131 /*
2132 * Disable Rx Traffic Intrs in the general intr mask
2133 * register.
2134 */
2135 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2136 }
2137 }
2138
2139 temp64 = readq(&bar0->general_int_mask);
2140 if (flag == ENABLE_INTRS)
2141 temp64 &= ~((u64)intr_mask);
2142 else
2143 temp64 = DISABLE_ALL_INTRS;
2144 writeq(temp64, &bar0->general_int_mask);
2145
2146 nic->general_int_mask = readq(&bar0->general_int_mask);
2147 }
2148
2149 /**
2150 * verify_pcc_quiescent- Checks for PCC quiescent state
2151 * Return: 1 If PCC is quiescence
2152 * 0 If PCC is not quiescence
2153 */
2154 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2155 {
2156 int ret = 0, herc;
2157 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2158 u64 val64 = readq(&bar0->adapter_status);
2159
2160 herc = (sp->device_type == XFRAME_II_DEVICE);
2161
2162 if (flag == false) {
2163 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2164 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2165 ret = 1;
2166 } else {
2167 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2168 ret = 1;
2169 }
2170 } else {
2171 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2172 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2173 ADAPTER_STATUS_RMAC_PCC_IDLE))
2174 ret = 1;
2175 } else {
2176 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2177 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2178 ret = 1;
2179 }
2180 }
2181
2182 return ret;
2183 }
2184 /**
2185 * verify_xena_quiescence - Checks whether the H/W is ready
2186 * Description: Returns whether the H/W is ready to go or not. Depending
2187 * on whether adapter enable bit was written or not the comparison
2188 * differs and the calling function passes the input argument flag to
2189 * indicate this.
2190 * Return: 1 If xena is quiescence
2191 * 0 If Xena is not quiescence
2192 */
2193
2194 static int verify_xena_quiescence(struct s2io_nic *sp)
2195 {
2196 int mode;
2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 u64 val64 = readq(&bar0->adapter_status);
2199 mode = s2io_verify_pci_mode(sp);
2200
2201 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2206 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2210 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2214 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2215 return 0;
2216 }
2217 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2218 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2219 return 0;
2220 }
2221 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2222 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2223 return 0;
2224 }
2225 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2226 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2227 return 0;
2228 }
2229 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2230 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2231 return 0;
2232 }
2233
2234 /*
2235 * In PCI 33 mode, the P_PLL is not used, and therefore,
2236 * the the P_PLL_LOCK bit in the adapter_status register will
2237 * not be asserted.
2238 */
2239 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2240 sp->device_type == XFRAME_II_DEVICE &&
2241 mode != PCI_MODE_PCI_33) {
2242 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2243 return 0;
2244 }
2245 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2246 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2247 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2248 return 0;
2249 }
2250 return 1;
2251 }
2252
2253 /**
2254 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2255 * @sp: Pointer to device specifc structure
2256 * Description :
2257 * New procedure to clear mac address reading problems on Alpha platforms
2258 *
2259 */
2260
2261 static void fix_mac_address(struct s2io_nic *sp)
2262 {
2263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2264 u64 val64;
2265 int i = 0;
2266
2267 while (fix_mac[i] != END_SIGN) {
2268 writeq(fix_mac[i++], &bar0->gpio_control);
2269 udelay(10);
2270 val64 = readq(&bar0->gpio_control);
2271 }
2272 }
2273
2274 /**
2275 * start_nic - Turns the device on
2276 * @nic : device private variable.
2277 * Description:
2278 * This function actually turns the device on. Before this function is
2279 * called,all Registers are configured from their reset states
2280 * and shared memory is allocated but the NIC is still quiescent. On
2281 * calling this function, the device interrupts are cleared and the NIC is
2282 * literally switched on by writing into the adapter control register.
2283 * Return Value:
2284 * SUCCESS on success and -1 on failure.
2285 */
2286
2287 static int start_nic(struct s2io_nic *nic)
2288 {
2289 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2290 struct net_device *dev = nic->dev;
2291 register u64 val64 = 0;
2292 u16 subid, i;
2293 struct mac_info *mac_control;
2294 struct config_param *config;
2295
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2298
2299 /* PRC Initialization and configuration */
2300 for (i = 0; i < config->rx_ring_num; i++) {
2301 struct ring_info *ring = &mac_control->rings[i];
2302
2303 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2304 &bar0->prc_rxd0_n[i]);
2305
2306 val64 = readq(&bar0->prc_ctrl_n[i]);
2307 if (nic->rxd_mode == RXD_MODE_1)
2308 val64 |= PRC_CTRL_RC_ENABLED;
2309 else
2310 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2311 if (nic->device_type == XFRAME_II_DEVICE)
2312 val64 |= PRC_CTRL_GROUP_READS;
2313 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2314 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2315 writeq(val64, &bar0->prc_ctrl_n[i]);
2316 }
2317
2318 if (nic->rxd_mode == RXD_MODE_3B) {
2319 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2320 val64 = readq(&bar0->rx_pa_cfg);
2321 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2322 writeq(val64, &bar0->rx_pa_cfg);
2323 }
2324
2325 if (vlan_tag_strip == 0) {
2326 val64 = readq(&bar0->rx_pa_cfg);
2327 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2328 writeq(val64, &bar0->rx_pa_cfg);
2329 nic->vlan_strip_flag = 0;
2330 }
2331
2332 /*
2333 * Enabling MC-RLDRAM. After enabling the device, we timeout
2334 * for around 100ms, which is approximately the time required
2335 * for the device to be ready for operation.
2336 */
2337 val64 = readq(&bar0->mc_rldram_mrs);
2338 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2339 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2340 val64 = readq(&bar0->mc_rldram_mrs);
2341
2342 msleep(100); /* Delay by around 100 ms. */
2343
2344 /* Enabling ECC Protection. */
2345 val64 = readq(&bar0->adapter_control);
2346 val64 &= ~ADAPTER_ECC_EN;
2347 writeq(val64, &bar0->adapter_control);
2348
2349 /*
2350 * Verify if the device is ready to be enabled, if so enable
2351 * it.
2352 */
2353 val64 = readq(&bar0->adapter_status);
2354 if (!verify_xena_quiescence(nic)) {
2355 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2356 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2357 (unsigned long long)val64);
2358 return FAILURE;
2359 }
2360
2361 /*
2362 * With some switches, link might be already up at this point.
2363 * Because of this weird behavior, when we enable laser,
2364 * we may not get link. We need to handle this. We cannot
2365 * figure out which switch is misbehaving. So we are forced to
2366 * make a global change.
2367 */
2368
2369 /* Enabling Laser. */
2370 val64 = readq(&bar0->adapter_control);
2371 val64 |= ADAPTER_EOI_TX_ON;
2372 writeq(val64, &bar0->adapter_control);
2373
2374 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2375 /*
2376 * Dont see link state interrupts initally on some switches,
2377 * so directly scheduling the link state task here.
2378 */
2379 schedule_work(&nic->set_link_task);
2380 }
2381 /* SXE-002: Initialize link and activity LED */
2382 subid = nic->pdev->subsystem_device;
2383 if (((subid & 0xFF) >= 0x07) &&
2384 (nic->device_type == XFRAME_I_DEVICE)) {
2385 val64 = readq(&bar0->gpio_control);
2386 val64 |= 0x0000800000000000ULL;
2387 writeq(val64, &bar0->gpio_control);
2388 val64 = 0x0411040400000000ULL;
2389 writeq(val64, (void __iomem *)bar0 + 0x2700);
2390 }
2391
2392 return SUCCESS;
2393 }
2394 /**
2395 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2396 */
2397 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2398 struct TxD *txdlp, int get_off)
2399 {
2400 struct s2io_nic *nic = fifo_data->nic;
2401 struct sk_buff *skb;
2402 struct TxD *txds;
2403 u16 j, frg_cnt;
2404
2405 txds = txdlp;
2406 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2407 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2408 sizeof(u64), PCI_DMA_TODEVICE);
2409 txds++;
2410 }
2411
2412 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2413 if (!skb) {
2414 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2415 return NULL;
2416 }
2417 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2418 skb->len - skb->data_len, PCI_DMA_TODEVICE);
2419 frg_cnt = skb_shinfo(skb)->nr_frags;
2420 if (frg_cnt) {
2421 txds++;
2422 for (j = 0; j < frg_cnt; j++, txds++) {
2423 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2424 if (!txds->Buffer_Pointer)
2425 break;
2426 pci_unmap_page(nic->pdev,
2427 (dma_addr_t)txds->Buffer_Pointer,
2428 frag->size, PCI_DMA_TODEVICE);
2429 }
2430 }
2431 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2432 return skb;
2433 }
2434
2435 /**
2436 * free_tx_buffers - Free all queued Tx buffers
2437 * @nic : device private variable.
2438 * Description:
2439 * Free all queued Tx buffers.
2440 * Return Value: void
2441 */
2442
2443 static void free_tx_buffers(struct s2io_nic *nic)
2444 {
2445 struct net_device *dev = nic->dev;
2446 struct sk_buff *skb;
2447 struct TxD *txdp;
2448 int i, j;
2449 struct mac_info *mac_control;
2450 struct config_param *config;
2451 int cnt = 0;
2452
2453 mac_control = &nic->mac_control;
2454 config = &nic->config;
2455
2456 for (i = 0; i < config->tx_fifo_num; i++) {
2457 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2458 struct fifo_info *fifo = &mac_control->fifos[i];
2459 unsigned long flags;
2460
2461 spin_lock_irqsave(&fifo->tx_lock, flags);
2462 for (j = 0; j < tx_cfg->fifo_len; j++) {
2463 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2464 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2465 if (skb) {
2466 nic->mac_control.stats_info->sw_stat.mem_freed
2467 += skb->truesize;
2468 dev_kfree_skb(skb);
2469 cnt++;
2470 }
2471 }
2472 DBG_PRINT(INTR_DBG,
2473 "%s:forcibly freeing %d skbs on FIFO%d\n",
2474 dev->name, cnt, i);
2475 fifo->tx_curr_get_info.offset = 0;
2476 fifo->tx_curr_put_info.offset = 0;
2477 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2478 }
2479 }
2480
2481 /**
2482 * stop_nic - To stop the nic
2483 * @nic ; device private variable.
2484 * Description:
2485 * This function does exactly the opposite of what the start_nic()
2486 * function does. This function is called to stop the device.
2487 * Return Value:
2488 * void.
2489 */
2490
2491 static void stop_nic(struct s2io_nic *nic)
2492 {
2493 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2494 register u64 val64 = 0;
2495 u16 interruptible;
2496 struct mac_info *mac_control;
2497 struct config_param *config;
2498
2499 mac_control = &nic->mac_control;
2500 config = &nic->config;
2501
2502 /* Disable all interrupts */
2503 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2504 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2505 interruptible |= TX_PIC_INTR;
2506 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2507
2508 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2509 val64 = readq(&bar0->adapter_control);
2510 val64 &= ~(ADAPTER_CNTL_EN);
2511 writeq(val64, &bar0->adapter_control);
2512 }
2513
2514 /**
2515 * fill_rx_buffers - Allocates the Rx side skbs
2516 * @ring_info: per ring structure
2517 * @from_card_up: If this is true, we will map the buffer to get
2518 * the dma address for buf0 and buf1 to give it to the card.
2519 * Else we will sync the already mapped buffer to give it to the card.
2520 * Description:
2521 * The function allocates Rx side skbs and puts the physical
2522 * address of these buffers into the RxD buffer pointers, so that the NIC
2523 * can DMA the received frame into these locations.
2524 * The NIC supports 3 receive modes, viz
2525 * 1. single buffer,
2526 * 2. three buffer and
2527 * 3. Five buffer modes.
2528 * Each mode defines how many fragments the received frame will be split
2529 * up into by the NIC. The frame is split into L3 header, L4 Header,
2530 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2531 * is split into 3 fragments. As of now only single buffer mode is
2532 * supported.
2533 * Return Value:
2534 * SUCCESS on success or an appropriate -ve value on failure.
2535 */
2536 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2537 int from_card_up)
2538 {
2539 struct sk_buff *skb;
2540 struct RxD_t *rxdp;
2541 int off, size, block_no, block_no1;
2542 u32 alloc_tab = 0;
2543 u32 alloc_cnt;
2544 u64 tmp;
2545 struct buffAdd *ba;
2546 struct RxD_t *first_rxdp = NULL;
2547 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2548 int rxd_index = 0;
2549 struct RxD1 *rxdp1;
2550 struct RxD3 *rxdp3;
2551 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2552
2553 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2554
2555 block_no1 = ring->rx_curr_get_info.block_index;
2556 while (alloc_tab < alloc_cnt) {
2557 block_no = ring->rx_curr_put_info.block_index;
2558
2559 off = ring->rx_curr_put_info.offset;
2560
2561 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2562
2563 rxd_index = off + 1;
2564 if (block_no)
2565 rxd_index += (block_no * ring->rxd_count);
2566
2567 if ((block_no == block_no1) &&
2568 (off == ring->rx_curr_get_info.offset) &&
2569 (rxdp->Host_Control)) {
2570 DBG_PRINT(INTR_DBG, "%s: Get and Put", ring->dev->name);
2571 DBG_PRINT(INTR_DBG, " info equated\n");
2572 goto end;
2573 }
2574 if (off && (off == ring->rxd_count)) {
2575 ring->rx_curr_put_info.block_index++;
2576 if (ring->rx_curr_put_info.block_index ==
2577 ring->block_count)
2578 ring->rx_curr_put_info.block_index = 0;
2579 block_no = ring->rx_curr_put_info.block_index;
2580 off = 0;
2581 ring->rx_curr_put_info.offset = off;
2582 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2583 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2584 ring->dev->name, rxdp);
2585
2586 }
2587
2588 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2589 ((ring->rxd_mode == RXD_MODE_3B) &&
2590 (rxdp->Control_2 & s2BIT(0)))) {
2591 ring->rx_curr_put_info.offset = off;
2592 goto end;
2593 }
2594 /* calculate size of skb based on ring mode */
2595 size = ring->mtu +
2596 HEADER_ETHERNET_II_802_3_SIZE +
2597 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2598 if (ring->rxd_mode == RXD_MODE_1)
2599 size += NET_IP_ALIGN;
2600 else
2601 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2602
2603 /* allocate skb */
2604 skb = dev_alloc_skb(size);
2605 if (!skb) {
2606 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2607 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2608 if (first_rxdp) {
2609 wmb();
2610 first_rxdp->Control_1 |= RXD_OWN_XENA;
2611 }
2612 stats->mem_alloc_fail_cnt++;
2613
2614 return -ENOMEM ;
2615 }
2616 stats->mem_allocated += skb->truesize;
2617
2618 if (ring->rxd_mode == RXD_MODE_1) {
2619 /* 1 buffer mode - normal operation mode */
2620 rxdp1 = (struct RxD1 *)rxdp;
2621 memset(rxdp, 0, sizeof(struct RxD1));
2622 skb_reserve(skb, NET_IP_ALIGN);
2623 rxdp1->Buffer0_ptr =
2624 pci_map_single(ring->pdev, skb->data,
2625 size - NET_IP_ALIGN,
2626 PCI_DMA_FROMDEVICE);
2627 if (pci_dma_mapping_error(nic->pdev,
2628 rxdp1->Buffer0_ptr))
2629 goto pci_map_failed;
2630
2631 rxdp->Control_2 =
2632 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2633 rxdp->Host_Control = (unsigned long)skb;
2634 } else if (ring->rxd_mode == RXD_MODE_3B) {
2635 /*
2636 * 2 buffer mode -
2637 * 2 buffer mode provides 128
2638 * byte aligned receive buffers.
2639 */
2640
2641 rxdp3 = (struct RxD3 *)rxdp;
2642 /* save buffer pointers to avoid frequent dma mapping */
2643 Buffer0_ptr = rxdp3->Buffer0_ptr;
2644 Buffer1_ptr = rxdp3->Buffer1_ptr;
2645 memset(rxdp, 0, sizeof(struct RxD3));
2646 /* restore the buffer pointers for dma sync*/
2647 rxdp3->Buffer0_ptr = Buffer0_ptr;
2648 rxdp3->Buffer1_ptr = Buffer1_ptr;
2649
2650 ba = &ring->ba[block_no][off];
2651 skb_reserve(skb, BUF0_LEN);
2652 tmp = (u64)(unsigned long)skb->data;
2653 tmp += ALIGN_SIZE;
2654 tmp &= ~ALIGN_SIZE;
2655 skb->data = (void *) (unsigned long)tmp;
2656 skb_reset_tail_pointer(skb);
2657
2658 if (from_card_up) {
2659 rxdp3->Buffer0_ptr =
2660 pci_map_single(ring->pdev, ba->ba_0,
2661 BUF0_LEN,
2662 PCI_DMA_FROMDEVICE);
2663 if (pci_dma_mapping_error(nic->pdev,
2664 rxdp3->Buffer0_ptr))
2665 goto pci_map_failed;
2666 } else
2667 pci_dma_sync_single_for_device(ring->pdev,
2668 (dma_addr_t)rxdp3->Buffer0_ptr,
2669 BUF0_LEN,
2670 PCI_DMA_FROMDEVICE);
2671
2672 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2673 if (ring->rxd_mode == RXD_MODE_3B) {
2674 /* Two buffer mode */
2675
2676 /*
2677 * Buffer2 will have L3/L4 header plus
2678 * L4 payload
2679 */
2680 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2681 skb->data,
2682 ring->mtu + 4,
2683 PCI_DMA_FROMDEVICE);
2684
2685 if (pci_dma_mapping_error(nic->pdev,
2686 rxdp3->Buffer2_ptr))
2687 goto pci_map_failed;
2688
2689 if (from_card_up) {
2690 rxdp3->Buffer1_ptr =
2691 pci_map_single(ring->pdev,
2692 ba->ba_1,
2693 BUF1_LEN,
2694 PCI_DMA_FROMDEVICE);
2695
2696 if (pci_dma_mapping_error(nic->pdev,
2697 rxdp3->Buffer1_ptr)) {
2698 pci_unmap_single(ring->pdev,
2699 (dma_addr_t)(unsigned long)
2700 skb->data,
2701 ring->mtu + 4,
2702 PCI_DMA_FROMDEVICE);
2703 goto pci_map_failed;
2704 }
2705 }
2706 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2707 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2708 (ring->mtu + 4);
2709 }
2710 rxdp->Control_2 |= s2BIT(0);
2711 rxdp->Host_Control = (unsigned long) (skb);
2712 }
2713 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2714 rxdp->Control_1 |= RXD_OWN_XENA;
2715 off++;
2716 if (off == (ring->rxd_count + 1))
2717 off = 0;
2718 ring->rx_curr_put_info.offset = off;
2719
2720 rxdp->Control_2 |= SET_RXD_MARKER;
2721 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2722 if (first_rxdp) {
2723 wmb();
2724 first_rxdp->Control_1 |= RXD_OWN_XENA;
2725 }
2726 first_rxdp = rxdp;
2727 }
2728 ring->rx_bufs_left += 1;
2729 alloc_tab++;
2730 }
2731
2732 end:
2733 /* Transfer ownership of first descriptor to adapter just before
2734 * exiting. Before that, use memory barrier so that ownership
2735 * and other fields are seen by adapter correctly.
2736 */
2737 if (first_rxdp) {
2738 wmb();
2739 first_rxdp->Control_1 |= RXD_OWN_XENA;
2740 }
2741
2742 return SUCCESS;
2743
2744 pci_map_failed:
2745 stats->pci_map_fail_cnt++;
2746 stats->mem_freed += skb->truesize;
2747 dev_kfree_skb_irq(skb);
2748 return -ENOMEM;
2749 }
2750
2751 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2752 {
2753 struct net_device *dev = sp->dev;
2754 int j;
2755 struct sk_buff *skb;
2756 struct RxD_t *rxdp;
2757 struct mac_info *mac_control;
2758 struct buffAdd *ba;
2759 struct RxD1 *rxdp1;
2760 struct RxD3 *rxdp3;
2761
2762 mac_control = &sp->mac_control;
2763 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2764 rxdp = mac_control->rings[ring_no].
2765 rx_blocks[blk].rxds[j].virt_addr;
2766 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2767 if (!skb)
2768 continue;
2769 if (sp->rxd_mode == RXD_MODE_1) {
2770 rxdp1 = (struct RxD1 *)rxdp;
2771 pci_unmap_single(sp->pdev,
2772 (dma_addr_t)rxdp1->Buffer0_ptr,
2773 dev->mtu +
2774 HEADER_ETHERNET_II_802_3_SIZE +
2775 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2776 PCI_DMA_FROMDEVICE);
2777 memset(rxdp, 0, sizeof(struct RxD1));
2778 } else if (sp->rxd_mode == RXD_MODE_3B) {
2779 rxdp3 = (struct RxD3 *)rxdp;
2780 ba = &mac_control->rings[ring_no].ba[blk][j];
2781 pci_unmap_single(sp->pdev,
2782 (dma_addr_t)rxdp3->Buffer0_ptr,
2783 BUF0_LEN,
2784 PCI_DMA_FROMDEVICE);
2785 pci_unmap_single(sp->pdev,
2786 (dma_addr_t)rxdp3->Buffer1_ptr,
2787 BUF1_LEN,
2788 PCI_DMA_FROMDEVICE);
2789 pci_unmap_single(sp->pdev,
2790 (dma_addr_t)rxdp3->Buffer2_ptr,
2791 dev->mtu + 4,
2792 PCI_DMA_FROMDEVICE);
2793 memset(rxdp, 0, sizeof(struct RxD3));
2794 }
2795 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2796 dev_kfree_skb(skb);
2797 mac_control->rings[ring_no].rx_bufs_left -= 1;
2798 }
2799 }
2800
2801 /**
2802 * free_rx_buffers - Frees all Rx buffers
2803 * @sp: device private variable.
2804 * Description:
2805 * This function will free all Rx buffers allocated by host.
2806 * Return Value:
2807 * NONE.
2808 */
2809
2810 static void free_rx_buffers(struct s2io_nic *sp)
2811 {
2812 struct net_device *dev = sp->dev;
2813 int i, blk = 0, buf_cnt = 0;
2814 struct mac_info *mac_control;
2815 struct config_param *config;
2816
2817 mac_control = &sp->mac_control;
2818 config = &sp->config;
2819
2820 for (i = 0; i < config->rx_ring_num; i++) {
2821 struct ring_info *ring = &mac_control->rings[i];
2822
2823 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2824 free_rxd_blk(sp, i, blk);
2825
2826 ring->rx_curr_put_info.block_index = 0;
2827 ring->rx_curr_get_info.block_index = 0;
2828 ring->rx_curr_put_info.offset = 0;
2829 ring->rx_curr_get_info.offset = 0;
2830 ring->rx_bufs_left = 0;
2831 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2832 dev->name, buf_cnt, i);
2833 }
2834 }
2835
2836 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2837 {
2838 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2839 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2840 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2841 }
2842 return 0;
2843 }
2844
2845 /**
2846 * s2io_poll - Rx interrupt handler for NAPI support
2847 * @napi : pointer to the napi structure.
2848 * @budget : The number of packets that were budgeted to be processed
2849 * during one pass through the 'Poll" function.
2850 * Description:
2851 * Comes into picture only if NAPI support has been incorporated. It does
2852 * the same thing that rx_intr_handler does, but not in a interrupt context
2853 * also It will process only a given number of packets.
2854 * Return value:
2855 * 0 on success and 1 if there are No Rx packets to be processed.
2856 */
2857
2858 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2859 {
2860 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2861 struct net_device *dev = ring->dev;
2862 struct config_param *config;
2863 struct mac_info *mac_control;
2864 int pkts_processed = 0;
2865 u8 __iomem *addr = NULL;
2866 u8 val8 = 0;
2867 struct s2io_nic *nic = netdev_priv(dev);
2868 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2869 int budget_org = budget;
2870
2871 config = &nic->config;
2872 mac_control = &nic->mac_control;
2873
2874 if (unlikely(!is_s2io_card_up(nic)))
2875 return 0;
2876
2877 pkts_processed = rx_intr_handler(ring, budget);
2878 s2io_chk_rx_buffers(nic, ring);
2879
2880 if (pkts_processed < budget_org) {
2881 napi_complete(napi);
2882 /*Re Enable MSI-Rx Vector*/
2883 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2884 addr += 7 - ring->ring_no;
2885 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2886 writeb(val8, addr);
2887 val8 = readb(addr);
2888 }
2889 return pkts_processed;
2890 }
2891
2892 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2893 {
2894 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2895 struct config_param *config;
2896 struct mac_info *mac_control;
2897 int pkts_processed = 0;
2898 int ring_pkts_processed, i;
2899 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2900 int budget_org = budget;
2901
2902 config = &nic->config;
2903 mac_control = &nic->mac_control;
2904
2905 if (unlikely(!is_s2io_card_up(nic)))
2906 return 0;
2907
2908 for (i = 0; i < config->rx_ring_num; i++) {
2909 struct ring_info *ring = &mac_control->rings[i];
2910 ring_pkts_processed = rx_intr_handler(ring, budget);
2911 s2io_chk_rx_buffers(nic, ring);
2912 pkts_processed += ring_pkts_processed;
2913 budget -= ring_pkts_processed;
2914 if (budget <= 0)
2915 break;
2916 }
2917 if (pkts_processed < budget_org) {
2918 napi_complete(napi);
2919 /* Re enable the Rx interrupts for the ring */
2920 writeq(0, &bar0->rx_traffic_mask);
2921 readl(&bar0->rx_traffic_mask);
2922 }
2923 return pkts_processed;
2924 }
2925
2926 #ifdef CONFIG_NET_POLL_CONTROLLER
2927 /**
2928 * s2io_netpoll - netpoll event handler entry point
2929 * @dev : pointer to the device structure.
2930 * Description:
2931 * This function will be called by upper layer to check for events on the
2932 * interface in situations where interrupts are disabled. It is used for
2933 * specific in-kernel networking tasks, such as remote consoles and kernel
2934 * debugging over the network (example netdump in RedHat).
2935 */
2936 static void s2io_netpoll(struct net_device *dev)
2937 {
2938 struct s2io_nic *nic = netdev_priv(dev);
2939 struct mac_info *mac_control;
2940 struct config_param *config;
2941 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2942 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2943 int i;
2944
2945 if (pci_channel_offline(nic->pdev))
2946 return;
2947
2948 disable_irq(dev->irq);
2949
2950 mac_control = &nic->mac_control;
2951 config = &nic->config;
2952
2953 writeq(val64, &bar0->rx_traffic_int);
2954 writeq(val64, &bar0->tx_traffic_int);
2955
2956 /* we need to free up the transmitted skbufs or else netpoll will
2957 * run out of skbs and will fail and eventually netpoll application such
2958 * as netdump will fail.
2959 */
2960 for (i = 0; i < config->tx_fifo_num; i++)
2961 tx_intr_handler(&mac_control->fifos[i]);
2962
2963 /* check for received packet and indicate up to network */
2964 for (i = 0; i < config->rx_ring_num; i++) {
2965 struct ring_info *ring = &mac_control->rings[i];
2966
2967 rx_intr_handler(ring, 0);
2968 }
2969
2970 for (i = 0; i < config->rx_ring_num; i++) {
2971 struct ring_info *ring = &mac_control->rings[i];
2972
2973 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2974 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2975 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2976 break;
2977 }
2978 }
2979 enable_irq(dev->irq);
2980 return;
2981 }
2982 #endif
2983
2984 /**
2985 * rx_intr_handler - Rx interrupt handler
2986 * @ring_info: per ring structure.
2987 * @budget: budget for napi processing.
2988 * Description:
2989 * If the interrupt is because of a received frame or if the
2990 * receive ring contains fresh as yet un-processed frames,this function is
2991 * called. It picks out the RxD at which place the last Rx processing had
2992 * stopped and sends the skb to the OSM's Rx handler and then increments
2993 * the offset.
2994 * Return Value:
2995 * No. of napi packets processed.
2996 */
2997 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2998 {
2999 int get_block, put_block;
3000 struct rx_curr_get_info get_info, put_info;
3001 struct RxD_t *rxdp;
3002 struct sk_buff *skb;
3003 int pkt_cnt = 0, napi_pkts = 0;
3004 int i;
3005 struct RxD1 *rxdp1;
3006 struct RxD3 *rxdp3;
3007
3008 get_info = ring_data->rx_curr_get_info;
3009 get_block = get_info.block_index;
3010 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
3011 put_block = put_info.block_index;
3012 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
3013
3014 while (RXD_IS_UP2DT(rxdp)) {
3015 /*
3016 * If your are next to put index then it's
3017 * FIFO full condition
3018 */
3019 if ((get_block == put_block) &&
3020 (get_info.offset + 1) == put_info.offset) {
3021 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
3022 ring_data->dev->name);
3023 break;
3024 }
3025 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
3026 if (skb == NULL) {
3027 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3028 ring_data->dev->name);
3029 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3030 return 0;
3031 }
3032 if (ring_data->rxd_mode == RXD_MODE_1) {
3033 rxdp1 = (struct RxD1 *)rxdp;
3034 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3035 rxdp1->Buffer0_ptr,
3036 ring_data->mtu +
3037 HEADER_ETHERNET_II_802_3_SIZE +
3038 HEADER_802_2_SIZE +
3039 HEADER_SNAP_SIZE,
3040 PCI_DMA_FROMDEVICE);
3041 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3042 rxdp3 = (struct RxD3 *)rxdp;
3043 pci_dma_sync_single_for_cpu(ring_data->pdev,
3044 (dma_addr_t)rxdp3->Buffer0_ptr,
3045 BUF0_LEN,
3046 PCI_DMA_FROMDEVICE);
3047 pci_unmap_single(ring_data->pdev,
3048 (dma_addr_t)rxdp3->Buffer2_ptr,
3049 ring_data->mtu + 4,
3050 PCI_DMA_FROMDEVICE);
3051 }
3052 prefetch(skb->data);
3053 rx_osm_handler(ring_data, rxdp);
3054 get_info.offset++;
3055 ring_data->rx_curr_get_info.offset = get_info.offset;
3056 rxdp = ring_data->rx_blocks[get_block].
3057 rxds[get_info.offset].virt_addr;
3058 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3059 get_info.offset = 0;
3060 ring_data->rx_curr_get_info.offset = get_info.offset;
3061 get_block++;
3062 if (get_block == ring_data->block_count)
3063 get_block = 0;
3064 ring_data->rx_curr_get_info.block_index = get_block;
3065 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3066 }
3067
3068 if (ring_data->nic->config.napi) {
3069 budget--;
3070 napi_pkts++;
3071 if (!budget)
3072 break;
3073 }
3074 pkt_cnt++;
3075 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3076 break;
3077 }
3078 if (ring_data->lro) {
3079 /* Clear all LRO sessions before exiting */
3080 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3081 struct lro *lro = &ring_data->lro0_n[i];
3082 if (lro->in_use) {
3083 update_L3L4_header(ring_data->nic, lro);
3084 queue_rx_frame(lro->parent, lro->vlan_tag);
3085 clear_lro_session(lro);
3086 }
3087 }
3088 }
3089 return napi_pkts;
3090 }
3091
3092 /**
3093 * tx_intr_handler - Transmit interrupt handler
3094 * @nic : device private variable
3095 * Description:
3096 * If an interrupt was raised to indicate DMA complete of the
3097 * Tx packet, this function is called. It identifies the last TxD
3098 * whose buffer was freed and frees all skbs whose data have already
3099 * DMA'ed into the NICs internal memory.
3100 * Return Value:
3101 * NONE
3102 */
3103
3104 static void tx_intr_handler(struct fifo_info *fifo_data)
3105 {
3106 struct s2io_nic *nic = fifo_data->nic;
3107 struct tx_curr_get_info get_info, put_info;
3108 struct sk_buff *skb = NULL;
3109 struct TxD *txdlp;
3110 int pkt_cnt = 0;
3111 unsigned long flags = 0;
3112 u8 err_mask;
3113
3114 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3115 return;
3116
3117 get_info = fifo_data->tx_curr_get_info;
3118 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3119 txdlp = (struct TxD *)
3120 fifo_data->list_info[get_info.offset].list_virt_addr;
3121 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3122 (get_info.offset != put_info.offset) &&
3123 (txdlp->Host_Control)) {
3124 /* Check for TxD errors */
3125 if (txdlp->Control_1 & TXD_T_CODE) {
3126 unsigned long long err;
3127 err = txdlp->Control_1 & TXD_T_CODE;
3128 if (err & 0x1) {
3129 nic->mac_control.stats_info->sw_stat.
3130 parity_err_cnt++;
3131 }
3132
3133 /* update t_code statistics */
3134 err_mask = err >> 48;
3135 switch (err_mask) {
3136 case 2:
3137 nic->mac_control.stats_info->sw_stat.
3138 tx_buf_abort_cnt++;
3139 break;
3140
3141 case 3:
3142 nic->mac_control.stats_info->sw_stat.
3143 tx_desc_abort_cnt++;
3144 break;
3145
3146 case 7:
3147 nic->mac_control.stats_info->sw_stat.
3148 tx_parity_err_cnt++;
3149 break;
3150
3151 case 10:
3152 nic->mac_control.stats_info->sw_stat.
3153 tx_link_loss_cnt++;
3154 break;
3155
3156 case 15:
3157 nic->mac_control.stats_info->sw_stat.
3158 tx_list_proc_err_cnt++;
3159 break;
3160 }
3161 }
3162
3163 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3164 if (skb == NULL) {
3165 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3166 DBG_PRINT(ERR_DBG, "%s: Null skb ", __func__);
3167 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3168 return;
3169 }
3170 pkt_cnt++;
3171
3172 /* Updating the statistics block */
3173 nic->dev->stats.tx_bytes += skb->len;
3174 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3175 dev_kfree_skb_irq(skb);
3176
3177 get_info.offset++;
3178 if (get_info.offset == get_info.fifo_len + 1)
3179 get_info.offset = 0;
3180 txdlp = (struct TxD *)
3181 fifo_data->list_info[get_info.offset].list_virt_addr;
3182 fifo_data->tx_curr_get_info.offset = get_info.offset;
3183 }
3184
3185 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3186
3187 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3188 }
3189
3190 /**
3191 * s2io_mdio_write - Function to write in to MDIO registers
3192 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3193 * @addr : address value
3194 * @value : data value
3195 * @dev : pointer to net_device structure
3196 * Description:
3197 * This function is used to write values to the MDIO registers
3198 * NONE
3199 */
3200 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3201 struct net_device *dev)
3202 {
3203 u64 val64;
3204 struct s2io_nic *sp = netdev_priv(dev);
3205 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3206
3207 /* address transaction */
3208 val64 = MDIO_MMD_INDX_ADDR(addr) |
3209 MDIO_MMD_DEV_ADDR(mmd_type) |
3210 MDIO_MMS_PRT_ADDR(0x0);
3211 writeq(val64, &bar0->mdio_control);
3212 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64, &bar0->mdio_control);
3214 udelay(100);
3215
3216 /* Data transaction */
3217 val64 = MDIO_MMD_INDX_ADDR(addr) |
3218 MDIO_MMD_DEV_ADDR(mmd_type) |
3219 MDIO_MMS_PRT_ADDR(0x0) |
3220 MDIO_MDIO_DATA(value) |
3221 MDIO_OP(MDIO_OP_WRITE_TRANS);
3222 writeq(val64, &bar0->mdio_control);
3223 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3224 writeq(val64, &bar0->mdio_control);
3225 udelay(100);
3226
3227 val64 = MDIO_MMD_INDX_ADDR(addr) |
3228 MDIO_MMD_DEV_ADDR(mmd_type) |
3229 MDIO_MMS_PRT_ADDR(0x0) |
3230 MDIO_OP(MDIO_OP_READ_TRANS);
3231 writeq(val64, &bar0->mdio_control);
3232 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233 writeq(val64, &bar0->mdio_control);
3234 udelay(100);
3235 }
3236
3237 /**
3238 * s2io_mdio_read - Function to write in to MDIO registers
3239 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3240 * @addr : address value
3241 * @dev : pointer to net_device structure
3242 * Description:
3243 * This function is used to read values to the MDIO registers
3244 * NONE
3245 */
3246 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3247 {
3248 u64 val64 = 0x0;
3249 u64 rval64 = 0x0;
3250 struct s2io_nic *sp = netdev_priv(dev);
3251 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3252
3253 /* address transaction */
3254 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3255 | MDIO_MMD_DEV_ADDR(mmd_type)
3256 | MDIO_MMS_PRT_ADDR(0x0));
3257 writeq(val64, &bar0->mdio_control);
3258 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3259 writeq(val64, &bar0->mdio_control);
3260 udelay(100);
3261
3262 /* Data transaction */
3263 val64 = MDIO_MMD_INDX_ADDR(addr) |
3264 MDIO_MMD_DEV_ADDR(mmd_type) |
3265 MDIO_MMS_PRT_ADDR(0x0) |
3266 MDIO_OP(MDIO_OP_READ_TRANS);
3267 writeq(val64, &bar0->mdio_control);
3268 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3269 writeq(val64, &bar0->mdio_control);
3270 udelay(100);
3271
3272 /* Read the value from regs */
3273 rval64 = readq(&bar0->mdio_control);
3274 rval64 = rval64 & 0xFFFF0000;
3275 rval64 = rval64 >> 16;
3276 return rval64;
3277 }
3278
3279 /**
3280 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3281 * @counter : couter value to be updated
3282 * @flag : flag to indicate the status
3283 * @type : counter type
3284 * Description:
3285 * This function is to check the status of the xpak counters value
3286 * NONE
3287 */
3288
3289 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3290 u16 flag, u16 type)
3291 {
3292 u64 mask = 0x3;
3293 u64 val64;
3294 int i;
3295 for (i = 0; i < index; i++)
3296 mask = mask << 0x2;
3297
3298 if (flag > 0) {
3299 *counter = *counter + 1;
3300 val64 = *regs_stat & mask;
3301 val64 = val64 >> (index * 0x2);
3302 val64 = val64 + 1;
3303 if (val64 == 3) {
3304 switch (type) {
3305 case 1:
3306 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3307 "service. Excessive temperatures may "
3308 "result in premature transceiver "
3309 "failure \n");
3310 break;
3311 case 2:
3312 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3313 "service Excessive bias currents may "
3314 "indicate imminent laser diode "
3315 "failure \n");
3316 break;
3317 case 3:
3318 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3319 "service Excessive laser output "
3320 "power may saturate far-end "
3321 "receiver\n");
3322 break;
3323 default:
3324 DBG_PRINT(ERR_DBG,
3325 "Incorrect XPAK Alarm type\n");
3326 }
3327 val64 = 0x0;
3328 }
3329 val64 = val64 << (index * 0x2);
3330 *regs_stat = (*regs_stat & (~mask)) | (val64);
3331
3332 } else {
3333 *regs_stat = *regs_stat & (~mask);
3334 }
3335 }
3336
3337 /**
3338 * s2io_updt_xpak_counter - Function to update the xpak counters
3339 * @dev : pointer to net_device struct
3340 * Description:
3341 * This function is to upate the status of the xpak counters value
3342 * NONE
3343 */
3344 static void s2io_updt_xpak_counter(struct net_device *dev)
3345 {
3346 u16 flag = 0x0;
3347 u16 type = 0x0;
3348 u16 val16 = 0x0;
3349 u64 val64 = 0x0;
3350 u64 addr = 0x0;
3351
3352 struct s2io_nic *sp = netdev_priv(dev);
3353 struct stat_block *stat_info = sp->mac_control.stats_info;
3354
3355 /* Check the communication with the MDIO slave */
3356 addr = MDIO_CTRL1;
3357 val64 = 0x0;
3358 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3359 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3360 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3361 "Returned %llx\n", (unsigned long long)val64);
3362 return;
3363 }
3364
3365 /* Check for the expected value of control reg 1 */
3366 if (val64 != MDIO_CTRL1_SPEED10G) {
3367 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3368 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3369 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3370 return;
3371 }
3372
3373 /* Loading the DOM register to MDIO register */
3374 addr = 0xA100;
3375 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3376 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3377
3378 /* Reading the Alarm flags */
3379 addr = 0xA070;
3380 val64 = 0x0;
3381 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3382
3383 flag = CHECKBIT(val64, 0x7);
3384 type = 1;
3385 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3386 &stat_info->xpak_stat.xpak_regs_stat,
3387 0x0, flag, type);
3388
3389 if (CHECKBIT(val64, 0x6))
3390 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3391
3392 flag = CHECKBIT(val64, 0x3);
3393 type = 2;
3394 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3395 &stat_info->xpak_stat.xpak_regs_stat,
3396 0x2, flag, type);
3397
3398 if (CHECKBIT(val64, 0x2))
3399 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3400
3401 flag = CHECKBIT(val64, 0x1);
3402 type = 3;
3403 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3404 &stat_info->xpak_stat.xpak_regs_stat,
3405 0x4, flag, type);
3406
3407 if (CHECKBIT(val64, 0x0))
3408 stat_info->xpak_stat.alarm_laser_output_power_low++;
3409
3410 /* Reading the Warning flags */
3411 addr = 0xA074;
3412 val64 = 0x0;
3413 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3414
3415 if (CHECKBIT(val64, 0x7))
3416 stat_info->xpak_stat.warn_transceiver_temp_high++;
3417
3418 if (CHECKBIT(val64, 0x6))
3419 stat_info->xpak_stat.warn_transceiver_temp_low++;
3420
3421 if (CHECKBIT(val64, 0x3))
3422 stat_info->xpak_stat.warn_laser_bias_current_high++;
3423
3424 if (CHECKBIT(val64, 0x2))
3425 stat_info->xpak_stat.warn_laser_bias_current_low++;
3426
3427 if (CHECKBIT(val64, 0x1))
3428 stat_info->xpak_stat.warn_laser_output_power_high++;
3429
3430 if (CHECKBIT(val64, 0x0))
3431 stat_info->xpak_stat.warn_laser_output_power_low++;
3432 }
3433
3434 /**
3435 * wait_for_cmd_complete - waits for a command to complete.
3436 * @sp : private member of the device structure, which is a pointer to the
3437 * s2io_nic structure.
3438 * Description: Function that waits for a command to Write into RMAC
3439 * ADDR DATA registers to be completed and returns either success or
3440 * error depending on whether the command was complete or not.
3441 * Return value:
3442 * SUCCESS on success and FAILURE on failure.
3443 */
3444
3445 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3446 int bit_state)
3447 {
3448 int ret = FAILURE, cnt = 0, delay = 1;
3449 u64 val64;
3450
3451 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3452 return FAILURE;
3453
3454 do {
3455 val64 = readq(addr);
3456 if (bit_state == S2IO_BIT_RESET) {
3457 if (!(val64 & busy_bit)) {
3458 ret = SUCCESS;
3459 break;
3460 }
3461 } else {
3462 if (!(val64 & busy_bit)) {
3463 ret = SUCCESS;
3464 break;
3465 }
3466 }
3467
3468 if (in_interrupt())
3469 mdelay(delay);
3470 else
3471 msleep(delay);
3472
3473 if (++cnt >= 10)
3474 delay = 50;
3475 } while (cnt < 20);
3476 return ret;
3477 }
3478 /*
3479 * check_pci_device_id - Checks if the device id is supported
3480 * @id : device id
3481 * Description: Function to check if the pci device id is supported by driver.
3482 * Return value: Actual device id if supported else PCI_ANY_ID
3483 */
3484 static u16 check_pci_device_id(u16 id)
3485 {
3486 switch (id) {
3487 case PCI_DEVICE_ID_HERC_WIN:
3488 case PCI_DEVICE_ID_HERC_UNI:
3489 return XFRAME_II_DEVICE;
3490 case PCI_DEVICE_ID_S2IO_UNI:
3491 case PCI_DEVICE_ID_S2IO_WIN:
3492 return XFRAME_I_DEVICE;
3493 default:
3494 return PCI_ANY_ID;
3495 }
3496 }
3497
3498 /**
3499 * s2io_reset - Resets the card.
3500 * @sp : private member of the device structure.
3501 * Description: Function to Reset the card. This function then also
3502 * restores the previously saved PCI configuration space registers as
3503 * the card reset also resets the configuration space.
3504 * Return value:
3505 * void.
3506 */
3507
3508 static void s2io_reset(struct s2io_nic *sp)
3509 {
3510 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3511 u64 val64;
3512 u16 subid, pci_cmd;
3513 int i;
3514 u16 val16;
3515 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3516 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3517
3518 DBG_PRINT(INIT_DBG, "%s - Resetting XFrame card %s\n",
3519 __func__, sp->dev->name);
3520
3521 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3522 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3523
3524 val64 = SW_RESET_ALL;
3525 writeq(val64, &bar0->sw_reset);
3526 if (strstr(sp->product_name, "CX4"))
3527 msleep(750);
3528 msleep(250);
3529 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3530
3531 /* Restore the PCI state saved during initialization. */
3532 pci_restore_state(sp->pdev);
3533 pci_read_config_word(sp->pdev, 0x2, &val16);
3534 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3535 break;
3536 msleep(200);
3537 }
3538
3539 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3540 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3541
3542 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3543
3544 s2io_init_pci(sp);
3545
3546 /* Set swapper to enable I/O register access */
3547 s2io_set_swapper(sp);
3548
3549 /* restore mac_addr entries */
3550 do_s2io_restore_unicast_mc(sp);
3551
3552 /* Restore the MSIX table entries from local variables */
3553 restore_xmsi_data(sp);
3554
3555 /* Clear certain PCI/PCI-X fields after reset */
3556 if (sp->device_type == XFRAME_II_DEVICE) {
3557 /* Clear "detected parity error" bit */
3558 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3559
3560 /* Clearing PCIX Ecc status register */
3561 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3562
3563 /* Clearing PCI_STATUS error reflected here */
3564 writeq(s2BIT(62), &bar0->txpic_int_reg);
3565 }
3566
3567 /* Reset device statistics maintained by OS */
3568 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3569
3570 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3571 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3572 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3573 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3574 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3575 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3576 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3577 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3578 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3579 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3580 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3581 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3582 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3583 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3584 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3585 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3586 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3587 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3588 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3589
3590 /* SXE-002: Configure link and activity LED to turn it off */
3591 subid = sp->pdev->subsystem_device;
3592 if (((subid & 0xFF) >= 0x07) &&
3593 (sp->device_type == XFRAME_I_DEVICE)) {
3594 val64 = readq(&bar0->gpio_control);
3595 val64 |= 0x0000800000000000ULL;
3596 writeq(val64, &bar0->gpio_control);
3597 val64 = 0x0411040400000000ULL;
3598 writeq(val64, (void __iomem *)bar0 + 0x2700);
3599 }
3600
3601 /*
3602 * Clear spurious ECC interrupts that would have occured on
3603 * XFRAME II cards after reset.
3604 */
3605 if (sp->device_type == XFRAME_II_DEVICE) {
3606 val64 = readq(&bar0->pcc_err_reg);
3607 writeq(val64, &bar0->pcc_err_reg);
3608 }
3609
3610 sp->device_enabled_once = false;
3611 }
3612
3613 /**
3614 * s2io_set_swapper - to set the swapper controle on the card
3615 * @sp : private member of the device structure,
3616 * pointer to the s2io_nic structure.
3617 * Description: Function to set the swapper control on the card
3618 * correctly depending on the 'endianness' of the system.
3619 * Return value:
3620 * SUCCESS on success and FAILURE on failure.
3621 */
3622
3623 static int s2io_set_swapper(struct s2io_nic *sp)
3624 {
3625 struct net_device *dev = sp->dev;
3626 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3627 u64 val64, valt, valr;
3628
3629 /*
3630 * Set proper endian settings and verify the same by reading
3631 * the PIF Feed-back register.
3632 */
3633
3634 val64 = readq(&bar0->pif_rd_swapper_fb);
3635 if (val64 != 0x0123456789ABCDEFULL) {
3636 int i = 0;
3637 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3638 0x8100008181000081ULL, /* FE=1, SE=0 */
3639 0x4200004242000042ULL, /* FE=0, SE=1 */
3640 0}; /* FE=0, SE=0 */
3641
3642 while (i < 4) {
3643 writeq(value[i], &bar0->swapper_ctrl);
3644 val64 = readq(&bar0->pif_rd_swapper_fb);
3645 if (val64 == 0x0123456789ABCDEFULL)
3646 break;
3647 i++;
3648 }
3649 if (i == 4) {
3650 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3651 dev->name);
3652 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3653 (unsigned long long)val64);
3654 return FAILURE;
3655 }
3656 valr = value[i];
3657 } else {
3658 valr = readq(&bar0->swapper_ctrl);
3659 }
3660
3661 valt = 0x0123456789ABCDEFULL;
3662 writeq(valt, &bar0->xmsi_address);
3663 val64 = readq(&bar0->xmsi_address);
3664
3665 if (val64 != valt) {
3666 int i = 0;
3667 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3668 0x0081810000818100ULL, /* FE=1, SE=0 */
3669 0x0042420000424200ULL, /* FE=0, SE=1 */
3670 0}; /* FE=0, SE=0 */
3671
3672 while (i < 4) {
3673 writeq((value[i] | valr), &bar0->swapper_ctrl);
3674 writeq(valt, &bar0->xmsi_address);
3675 val64 = readq(&bar0->xmsi_address);
3676 if (val64 == valt)
3677 break;
3678 i++;
3679 }
3680 if (i == 4) {
3681 unsigned long long x = val64;
3682 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3683 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3684 return FAILURE;
3685 }
3686 }
3687 val64 = readq(&bar0->swapper_ctrl);
3688 val64 &= 0xFFFF000000000000ULL;
3689
3690 #ifdef __BIG_ENDIAN
3691 /*
3692 * The device by default set to a big endian format, so a
3693 * big endian driver need not set anything.
3694 */
3695 val64 |= (SWAPPER_CTRL_TXP_FE |
3696 SWAPPER_CTRL_TXP_SE |
3697 SWAPPER_CTRL_TXD_R_FE |
3698 SWAPPER_CTRL_TXD_W_FE |
3699 SWAPPER_CTRL_TXF_R_FE |
3700 SWAPPER_CTRL_RXD_R_FE |
3701 SWAPPER_CTRL_RXD_W_FE |
3702 SWAPPER_CTRL_RXF_W_FE |
3703 SWAPPER_CTRL_XMSI_FE |
3704 SWAPPER_CTRL_STATS_FE |
3705 SWAPPER_CTRL_STATS_SE);
3706 if (sp->config.intr_type == INTA)
3707 val64 |= SWAPPER_CTRL_XMSI_SE;
3708 writeq(val64, &bar0->swapper_ctrl);
3709 #else
3710 /*
3711 * Initially we enable all bits to make it accessible by the
3712 * driver, then we selectively enable only those bits that
3713 * we want to set.
3714 */
3715 val64 |= (SWAPPER_CTRL_TXP_FE |
3716 SWAPPER_CTRL_TXP_SE |
3717 SWAPPER_CTRL_TXD_R_FE |
3718 SWAPPER_CTRL_TXD_R_SE |
3719 SWAPPER_CTRL_TXD_W_FE |
3720 SWAPPER_CTRL_TXD_W_SE |
3721 SWAPPER_CTRL_TXF_R_FE |
3722 SWAPPER_CTRL_RXD_R_FE |
3723 SWAPPER_CTRL_RXD_R_SE |
3724 SWAPPER_CTRL_RXD_W_FE |
3725 SWAPPER_CTRL_RXD_W_SE |
3726 SWAPPER_CTRL_RXF_W_FE |
3727 SWAPPER_CTRL_XMSI_FE |
3728 SWAPPER_CTRL_STATS_FE |
3729 SWAPPER_CTRL_STATS_SE);
3730 if (sp->config.intr_type == INTA)
3731 val64 |= SWAPPER_CTRL_XMSI_SE;
3732 writeq(val64, &bar0->swapper_ctrl);
3733 #endif
3734 val64 = readq(&bar0->swapper_ctrl);
3735
3736 /*
3737 * Verifying if endian settings are accurate by reading a
3738 * feedback register.
3739 */
3740 val64 = readq(&bar0->pif_rd_swapper_fb);
3741 if (val64 != 0x0123456789ABCDEFULL) {
3742 /* Endian settings are incorrect, calls for another dekko. */
3743 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3744 dev->name);
3745 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3746 (unsigned long long)val64);
3747 return FAILURE;
3748 }
3749
3750 return SUCCESS;
3751 }
3752
3753 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3754 {
3755 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3756 u64 val64;
3757 int ret = 0, cnt = 0;
3758
3759 do {
3760 val64 = readq(&bar0->xmsi_access);
3761 if (!(val64 & s2BIT(15)))
3762 break;
3763 mdelay(1);
3764 cnt++;
3765 } while (cnt < 5);
3766 if (cnt == 5) {
3767 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3768 ret = 1;
3769 }
3770
3771 return ret;
3772 }
3773
3774 static void restore_xmsi_data(struct s2io_nic *nic)
3775 {
3776 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3777 u64 val64;
3778 int i, msix_index;
3779
3780 if (nic->device_type == XFRAME_I_DEVICE)
3781 return;
3782
3783 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3784 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3785 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3786 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3787 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3788 writeq(val64, &bar0->xmsi_access);
3789 if (wait_for_msix_trans(nic, msix_index)) {
3790 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3791 continue;
3792 }
3793 }
3794 }
3795
3796 static void store_xmsi_data(struct s2io_nic *nic)
3797 {
3798 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3799 u64 val64, addr, data;
3800 int i, msix_index;
3801
3802 if (nic->device_type == XFRAME_I_DEVICE)
3803 return;
3804
3805 /* Store and display */
3806 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3807 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3808 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3809 writeq(val64, &bar0->xmsi_access);
3810 if (wait_for_msix_trans(nic, msix_index)) {
3811 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3812 continue;
3813 }
3814 addr = readq(&bar0->xmsi_address);
3815 data = readq(&bar0->xmsi_data);
3816 if (addr && data) {
3817 nic->msix_info[i].addr = addr;
3818 nic->msix_info[i].data = data;
3819 }
3820 }
3821 }
3822
3823 static int s2io_enable_msi_x(struct s2io_nic *nic)
3824 {
3825 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3826 u64 rx_mat;
3827 u16 msi_control; /* Temp variable */
3828 int ret, i, j, msix_indx = 1;
3829 int size;
3830
3831 size = nic->num_entries * sizeof(struct msix_entry);
3832 nic->entries = kzalloc(size, GFP_KERNEL);
3833 if (!nic->entries) {
3834 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3835 __func__);
3836 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3837 return -ENOMEM;
3838 }
3839 nic->mac_control.stats_info->sw_stat.mem_allocated += size;
3840
3841 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3842 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3843 if (!nic->s2io_entries) {
3844 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3845 __func__);
3846 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3847 kfree(nic->entries);
3848 nic->mac_control.stats_info->sw_stat.mem_freed
3849 += (nic->num_entries * sizeof(struct msix_entry));
3850 return -ENOMEM;
3851 }
3852 nic->mac_control.stats_info->sw_stat.mem_allocated += size;
3853
3854 nic->entries[0].entry = 0;
3855 nic->s2io_entries[0].entry = 0;
3856 nic->s2io_entries[0].in_use = MSIX_FLG;
3857 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3858 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3859
3860 for (i = 1; i < nic->num_entries; i++) {
3861 nic->entries[i].entry = ((i - 1) * 8) + 1;
3862 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3863 nic->s2io_entries[i].arg = NULL;
3864 nic->s2io_entries[i].in_use = 0;
3865 }
3866
3867 rx_mat = readq(&bar0->rx_mat);
3868 for (j = 0; j < nic->config.rx_ring_num; j++) {
3869 rx_mat |= RX_MAT_SET(j, msix_indx);
3870 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3871 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3872 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3873 msix_indx += 8;
3874 }
3875 writeq(rx_mat, &bar0->rx_mat);
3876 readq(&bar0->rx_mat);
3877
3878 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3879 /* We fail init if error or we get less vectors than min required */
3880 if (ret) {
3881 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3882 kfree(nic->entries);
3883 nic->mac_control.stats_info->sw_stat.mem_freed
3884 += (nic->num_entries * sizeof(struct msix_entry));
3885 kfree(nic->s2io_entries);
3886 nic->mac_control.stats_info->sw_stat.mem_freed
3887 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3888 nic->entries = NULL;
3889 nic->s2io_entries = NULL;
3890 return -ENOMEM;
3891 }
3892
3893 /*
3894 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3895 * in the herc NIC. (Temp change, needs to be removed later)
3896 */
3897 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3898 msi_control |= 0x1; /* Enable MSI */
3899 pci_write_config_word(nic->pdev, 0x42, msi_control);
3900
3901 return 0;
3902 }
3903
3904 /* Handle software interrupt used during MSI(X) test */
3905 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3906 {
3907 struct s2io_nic *sp = dev_id;
3908
3909 sp->msi_detected = 1;
3910 wake_up(&sp->msi_wait);
3911
3912 return IRQ_HANDLED;
3913 }
3914
3915 /* Test interrupt path by forcing a a software IRQ */
3916 static int s2io_test_msi(struct s2io_nic *sp)
3917 {
3918 struct pci_dev *pdev = sp->pdev;
3919 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3920 int err;
3921 u64 val64, saved64;
3922
3923 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3924 sp->name, sp);
3925 if (err) {
3926 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3927 sp->dev->name, pci_name(pdev), pdev->irq);
3928 return err;
3929 }
3930
3931 init_waitqueue_head(&sp->msi_wait);
3932 sp->msi_detected = 0;
3933
3934 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3935 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3936 val64 |= SCHED_INT_CTRL_TIMER_EN;
3937 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3938 writeq(val64, &bar0->scheduled_int_ctrl);
3939
3940 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3941
3942 if (!sp->msi_detected) {
3943 /* MSI(X) test failed, go back to INTx mode */
3944 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3945 "using MSI(X) during test\n", sp->dev->name,
3946 pci_name(pdev));
3947
3948 err = -EOPNOTSUPP;
3949 }
3950
3951 free_irq(sp->entries[1].vector, sp);
3952
3953 writeq(saved64, &bar0->scheduled_int_ctrl);
3954
3955 return err;
3956 }
3957
3958 static void remove_msix_isr(struct s2io_nic *sp)
3959 {
3960 int i;
3961 u16 msi_control;
3962
3963 for (i = 0; i < sp->num_entries; i++) {
3964 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3965 int vector = sp->entries[i].vector;
3966 void *arg = sp->s2io_entries[i].arg;
3967 free_irq(vector, arg);
3968 }
3969 }
3970
3971 kfree(sp->entries);
3972 kfree(sp->s2io_entries);
3973 sp->entries = NULL;
3974 sp->s2io_entries = NULL;
3975
3976 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3977 msi_control &= 0xFFFE; /* Disable MSI */
3978 pci_write_config_word(sp->pdev, 0x42, msi_control);
3979
3980 pci_disable_msix(sp->pdev);
3981 }
3982
3983 static void remove_inta_isr(struct s2io_nic *sp)
3984 {
3985 struct net_device *dev = sp->dev;
3986
3987 free_irq(sp->pdev->irq, dev);
3988 }
3989
3990 /* ********************************************************* *
3991 * Functions defined below concern the OS part of the driver *
3992 * ********************************************************* */
3993
3994 /**
3995 * s2io_open - open entry point of the driver
3996 * @dev : pointer to the device structure.
3997 * Description:
3998 * This function is the open entry point of the driver. It mainly calls a
3999 * function to allocate Rx buffers and inserts them into the buffer
4000 * descriptors and then enables the Rx part of the NIC.
4001 * Return value:
4002 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4003 * file on failure.
4004 */
4005
4006 static int s2io_open(struct net_device *dev)
4007 {
4008 struct s2io_nic *sp = netdev_priv(dev);
4009 int err = 0;
4010
4011 /*
4012 * Make sure you have link off by default every time
4013 * Nic is initialized
4014 */
4015 netif_carrier_off(dev);
4016 sp->last_link_state = 0;
4017
4018 /* Initialize H/W and enable interrupts */
4019 err = s2io_card_up(sp);
4020 if (err) {
4021 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4022 dev->name);
4023 goto hw_init_failed;
4024 }
4025
4026 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4027 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4028 s2io_card_down(sp);
4029 err = -ENODEV;
4030 goto hw_init_failed;
4031 }
4032 s2io_start_all_tx_queue(sp);
4033 return 0;
4034
4035 hw_init_failed:
4036 if (sp->config.intr_type == MSI_X) {
4037 if (sp->entries) {
4038 kfree(sp->entries);
4039 sp->mac_control.stats_info->sw_stat.mem_freed
4040 += (sp->num_entries * sizeof(struct msix_entry));
4041 }
4042 if (sp->s2io_entries) {
4043 kfree(sp->s2io_entries);
4044 sp->mac_control.stats_info->sw_stat.mem_freed
4045 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4046 }
4047 }
4048 return err;
4049 }
4050
4051 /**
4052 * s2io_close -close entry point of the driver
4053 * @dev : device pointer.
4054 * Description:
4055 * This is the stop entry point of the driver. It needs to undo exactly
4056 * whatever was done by the open entry point,thus it's usually referred to
4057 * as the close function.Among other things this function mainly stops the
4058 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4059 * Return value:
4060 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4061 * file on failure.
4062 */
4063
4064 static int s2io_close(struct net_device *dev)
4065 {
4066 struct s2io_nic *sp = netdev_priv(dev);
4067 struct config_param *config = &sp->config;
4068 u64 tmp64;
4069 int offset;
4070
4071 /* Return if the device is already closed *
4072 * Can happen when s2io_card_up failed in change_mtu *
4073 */
4074 if (!is_s2io_card_up(sp))
4075 return 0;
4076
4077 s2io_stop_all_tx_queue(sp);
4078 /* delete all populated mac entries */
4079 for (offset = 1; offset < config->max_mc_addr; offset++) {
4080 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4081 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4082 do_s2io_delete_unicast_mc(sp, tmp64);
4083 }
4084
4085 s2io_card_down(sp);
4086
4087 return 0;
4088 }
4089
4090 /**
4091 * s2io_xmit - Tx entry point of te driver
4092 * @skb : the socket buffer containing the Tx data.
4093 * @dev : device pointer.
4094 * Description :
4095 * This function is the Tx entry point of the driver. S2IO NIC supports
4096 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4097 * NOTE: when device cant queue the pkt,just the trans_start variable will
4098 * not be upadted.
4099 * Return value:
4100 * 0 on success & 1 on failure.
4101 */
4102
4103 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4104 {
4105 struct s2io_nic *sp = netdev_priv(dev);
4106 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4107 register u64 val64;
4108 struct TxD *txdp;
4109 struct TxFIFO_element __iomem *tx_fifo;
4110 unsigned long flags = 0;
4111 u16 vlan_tag = 0;
4112 struct fifo_info *fifo = NULL;
4113 struct mac_info *mac_control;
4114 struct config_param *config;
4115 int do_spin_lock = 1;
4116 int offload_type;
4117 int enable_per_list_interrupt = 0;
4118 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4119
4120 mac_control = &sp->mac_control;
4121 config = &sp->config;
4122
4123 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4124
4125 if (unlikely(skb->len <= 0)) {
4126 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4127 dev_kfree_skb_any(skb);
4128 return NETDEV_TX_OK;
4129 }
4130
4131 if (!is_s2io_card_up(sp)) {
4132 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4133 dev->name);
4134 dev_kfree_skb(skb);
4135 return NETDEV_TX_OK;
4136 }
4137
4138 queue = 0;
4139 if (sp->vlgrp && vlan_tx_tag_present(skb))
4140 vlan_tag = vlan_tx_tag_get(skb);
4141 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4142 if (skb->protocol == htons(ETH_P_IP)) {
4143 struct iphdr *ip;
4144 struct tcphdr *th;
4145 ip = ip_hdr(skb);
4146
4147 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4148 th = (struct tcphdr *)(((unsigned char *)ip) +
4149 ip->ihl*4);
4150
4151 if (ip->protocol == IPPROTO_TCP) {
4152 queue_len = sp->total_tcp_fifos;
4153 queue = (ntohs(th->source) +
4154 ntohs(th->dest)) &
4155 sp->fifo_selector[queue_len - 1];
4156 if (queue >= queue_len)
4157 queue = queue_len - 1;
4158 } else if (ip->protocol == IPPROTO_UDP) {
4159 queue_len = sp->total_udp_fifos;
4160 queue = (ntohs(th->source) +
4161 ntohs(th->dest)) &
4162 sp->fifo_selector[queue_len - 1];
4163 if (queue >= queue_len)
4164 queue = queue_len - 1;
4165 queue += sp->udp_fifo_idx;
4166 if (skb->len > 1024)
4167 enable_per_list_interrupt = 1;
4168 do_spin_lock = 0;
4169 }
4170 }
4171 }
4172 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4173 /* get fifo number based on skb->priority value */
4174 queue = config->fifo_mapping
4175 [skb->priority & (MAX_TX_FIFOS - 1)];
4176 fifo = &mac_control->fifos[queue];
4177
4178 if (do_spin_lock)
4179 spin_lock_irqsave(&fifo->tx_lock, flags);
4180 else {
4181 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4182 return NETDEV_TX_LOCKED;
4183 }
4184
4185 if (sp->config.multiq) {
4186 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4187 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4188 return NETDEV_TX_BUSY;
4189 }
4190 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4191 if (netif_queue_stopped(dev)) {
4192 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4193 return NETDEV_TX_BUSY;
4194 }
4195 }
4196
4197 put_off = (u16)fifo->tx_curr_put_info.offset;
4198 get_off = (u16)fifo->tx_curr_get_info.offset;
4199 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4200
4201 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4202 /* Avoid "put" pointer going beyond "get" pointer */
4203 if (txdp->Host_Control ||
4204 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4205 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4206 s2io_stop_tx_queue(sp, fifo->fifo_no);
4207 dev_kfree_skb(skb);
4208 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4209 return NETDEV_TX_OK;
4210 }
4211
4212 offload_type = s2io_offload_type(skb);
4213 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4214 txdp->Control_1 |= TXD_TCP_LSO_EN;
4215 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4216 }
4217 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4218 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4219 TXD_TX_CKO_TCP_EN |
4220 TXD_TX_CKO_UDP_EN);
4221 }
4222 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4223 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4224 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4225 if (enable_per_list_interrupt)
4226 if (put_off & (queue_len >> 5))
4227 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4228 if (vlan_tag) {
4229 txdp->Control_2 |= TXD_VLAN_ENABLE;
4230 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4231 }
4232
4233 frg_len = skb->len - skb->data_len;
4234 if (offload_type == SKB_GSO_UDP) {
4235 int ufo_size;
4236
4237 ufo_size = s2io_udp_mss(skb);
4238 ufo_size &= ~7;
4239 txdp->Control_1 |= TXD_UFO_EN;
4240 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4241 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4242 #ifdef __BIG_ENDIAN
4243 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4244 fifo->ufo_in_band_v[put_off] =
4245 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4246 #else
4247 fifo->ufo_in_band_v[put_off] =
4248 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4249 #endif
4250 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4251 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4252 fifo->ufo_in_band_v,
4253 sizeof(u64),
4254 PCI_DMA_TODEVICE);
4255 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4256 goto pci_map_failed;
4257 txdp++;
4258 }
4259
4260 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4261 frg_len, PCI_DMA_TODEVICE);
4262 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4263 goto pci_map_failed;
4264
4265 txdp->Host_Control = (unsigned long)skb;
4266 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4267 if (offload_type == SKB_GSO_UDP)
4268 txdp->Control_1 |= TXD_UFO_EN;
4269
4270 frg_cnt = skb_shinfo(skb)->nr_frags;
4271 /* For fragmented SKB. */
4272 for (i = 0; i < frg_cnt; i++) {
4273 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4274 /* A '0' length fragment will be ignored */
4275 if (!frag->size)
4276 continue;
4277 txdp++;
4278 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4279 frag->page_offset,
4280 frag->size,
4281 PCI_DMA_TODEVICE);
4282 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4283 if (offload_type == SKB_GSO_UDP)
4284 txdp->Control_1 |= TXD_UFO_EN;
4285 }
4286 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4287
4288 if (offload_type == SKB_GSO_UDP)
4289 frg_cnt++; /* as Txd0 was used for inband header */
4290
4291 tx_fifo = mac_control->tx_FIFO_start[queue];
4292 val64 = fifo->list_info[put_off].list_phy_addr;
4293 writeq(val64, &tx_fifo->TxDL_Pointer);
4294
4295 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4296 TX_FIFO_LAST_LIST);
4297 if (offload_type)
4298 val64 |= TX_FIFO_SPECIAL_FUNC;
4299
4300 writeq(val64, &tx_fifo->List_Control);
4301
4302 mmiowb();
4303
4304 put_off++;
4305 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4306 put_off = 0;
4307 fifo->tx_curr_put_info.offset = put_off;
4308
4309 /* Avoid "put" pointer going beyond "get" pointer */
4310 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4311 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4312 DBG_PRINT(TX_DBG,
4313 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4314 put_off, get_off);
4315 s2io_stop_tx_queue(sp, fifo->fifo_no);
4316 }
4317 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4318 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4319
4320 if (sp->config.intr_type == MSI_X)
4321 tx_intr_handler(fifo);
4322
4323 return NETDEV_TX_OK;
4324 pci_map_failed:
4325 stats->pci_map_fail_cnt++;
4326 s2io_stop_tx_queue(sp, fifo->fifo_no);
4327 stats->mem_freed += skb->truesize;
4328 dev_kfree_skb(skb);
4329 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4330 return NETDEV_TX_OK;
4331 }
4332
4333 static void
4334 s2io_alarm_handle(unsigned long data)
4335 {
4336 struct s2io_nic *sp = (struct s2io_nic *)data;
4337 struct net_device *dev = sp->dev;
4338
4339 s2io_handle_errors(dev);
4340 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4341 }
4342
4343 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4344 {
4345 struct ring_info *ring = (struct ring_info *)dev_id;
4346 struct s2io_nic *sp = ring->nic;
4347 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4348
4349 if (unlikely(!is_s2io_card_up(sp)))
4350 return IRQ_HANDLED;
4351
4352 if (sp->config.napi) {
4353 u8 __iomem *addr = NULL;
4354 u8 val8 = 0;
4355
4356 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4357 addr += (7 - ring->ring_no);
4358 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4359 writeb(val8, addr);
4360 val8 = readb(addr);
4361 napi_schedule(&ring->napi);
4362 } else {
4363 rx_intr_handler(ring, 0);
4364 s2io_chk_rx_buffers(sp, ring);
4365 }
4366
4367 return IRQ_HANDLED;
4368 }
4369
4370 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4371 {
4372 int i;
4373 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4374 struct s2io_nic *sp = fifos->nic;
4375 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4376 struct config_param *config = &sp->config;
4377 u64 reason;
4378
4379 if (unlikely(!is_s2io_card_up(sp)))
4380 return IRQ_NONE;
4381
4382 reason = readq(&bar0->general_int_status);
4383 if (unlikely(reason == S2IO_MINUS_ONE))
4384 /* Nothing much can be done. Get out */
4385 return IRQ_HANDLED;
4386
4387 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4388 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4389
4390 if (reason & GEN_INTR_TXPIC)
4391 s2io_txpic_intr_handle(sp);
4392
4393 if (reason & GEN_INTR_TXTRAFFIC)
4394 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4395
4396 for (i = 0; i < config->tx_fifo_num; i++)
4397 tx_intr_handler(&fifos[i]);
4398
4399 writeq(sp->general_int_mask, &bar0->general_int_mask);
4400 readl(&bar0->general_int_status);
4401 return IRQ_HANDLED;
4402 }
4403 /* The interrupt was not raised by us */
4404 return IRQ_NONE;
4405 }
4406
4407 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4408 {
4409 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4410 u64 val64;
4411
4412 val64 = readq(&bar0->pic_int_status);
4413 if (val64 & PIC_INT_GPIO) {
4414 val64 = readq(&bar0->gpio_int_reg);
4415 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4416 (val64 & GPIO_INT_REG_LINK_UP)) {
4417 /*
4418 * This is unstable state so clear both up/down
4419 * interrupt and adapter to re-evaluate the link state.
4420 */
4421 val64 |= GPIO_INT_REG_LINK_DOWN;
4422 val64 |= GPIO_INT_REG_LINK_UP;
4423 writeq(val64, &bar0->gpio_int_reg);
4424 val64 = readq(&bar0->gpio_int_mask);
4425 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4426 GPIO_INT_MASK_LINK_DOWN);
4427 writeq(val64, &bar0->gpio_int_mask);
4428 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4429 val64 = readq(&bar0->adapter_status);
4430 /* Enable Adapter */
4431 val64 = readq(&bar0->adapter_control);
4432 val64 |= ADAPTER_CNTL_EN;
4433 writeq(val64, &bar0->adapter_control);
4434 val64 |= ADAPTER_LED_ON;
4435 writeq(val64, &bar0->adapter_control);
4436 if (!sp->device_enabled_once)
4437 sp->device_enabled_once = 1;
4438
4439 s2io_link(sp, LINK_UP);
4440 /*
4441 * unmask link down interrupt and mask link-up
4442 * intr
4443 */
4444 val64 = readq(&bar0->gpio_int_mask);
4445 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4446 val64 |= GPIO_INT_MASK_LINK_UP;
4447 writeq(val64, &bar0->gpio_int_mask);
4448
4449 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4450 val64 = readq(&bar0->adapter_status);
4451 s2io_link(sp, LINK_DOWN);
4452 /* Link is down so unmaks link up interrupt */
4453 val64 = readq(&bar0->gpio_int_mask);
4454 val64 &= ~GPIO_INT_MASK_LINK_UP;
4455 val64 |= GPIO_INT_MASK_LINK_DOWN;
4456 writeq(val64, &bar0->gpio_int_mask);
4457
4458 /* turn off LED */
4459 val64 = readq(&bar0->adapter_control);
4460 val64 = val64 & (~ADAPTER_LED_ON);
4461 writeq(val64, &bar0->adapter_control);
4462 }
4463 }
4464 val64 = readq(&bar0->gpio_int_mask);
4465 }
4466
4467 /**
4468 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4469 * @value: alarm bits
4470 * @addr: address value
4471 * @cnt: counter variable
4472 * Description: Check for alarm and increment the counter
4473 * Return Value:
4474 * 1 - if alarm bit set
4475 * 0 - if alarm bit is not set
4476 */
4477 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4478 unsigned long long *cnt)
4479 {
4480 u64 val64;
4481 val64 = readq(addr);
4482 if (val64 & value) {
4483 writeq(val64, addr);
4484 (*cnt)++;
4485 return 1;
4486 }
4487 return 0;
4488
4489 }
4490
4491 /**
4492 * s2io_handle_errors - Xframe error indication handler
4493 * @nic: device private variable
4494 * Description: Handle alarms such as loss of link, single or
4495 * double ECC errors, critical and serious errors.
4496 * Return Value:
4497 * NONE
4498 */
4499 static void s2io_handle_errors(void *dev_id)
4500 {
4501 struct net_device *dev = (struct net_device *)dev_id;
4502 struct s2io_nic *sp = netdev_priv(dev);
4503 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4504 u64 temp64 = 0, val64 = 0;
4505 int i = 0;
4506
4507 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4508 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4509
4510 if (!is_s2io_card_up(sp))
4511 return;
4512
4513 if (pci_channel_offline(sp->pdev))
4514 return;
4515
4516 memset(&sw_stat->ring_full_cnt, 0,
4517 sizeof(sw_stat->ring_full_cnt));
4518
4519 /* Handling the XPAK counters update */
4520 if (stats->xpak_timer_count < 72000) {
4521 /* waiting for an hour */
4522 stats->xpak_timer_count++;
4523 } else {
4524 s2io_updt_xpak_counter(dev);
4525 /* reset the count to zero */
4526 stats->xpak_timer_count = 0;
4527 }
4528
4529 /* Handling link status change error Intr */
4530 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4531 val64 = readq(&bar0->mac_rmac_err_reg);
4532 writeq(val64, &bar0->mac_rmac_err_reg);
4533 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4534 schedule_work(&sp->set_link_task);
4535 }
4536
4537 /* In case of a serious error, the device will be Reset. */
4538 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4539 &sw_stat->serious_err_cnt))
4540 goto reset;
4541
4542 /* Check for data parity error */
4543 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4544 &sw_stat->parity_err_cnt))
4545 goto reset;
4546
4547 /* Check for ring full counter */
4548 if (sp->device_type == XFRAME_II_DEVICE) {
4549 val64 = readq(&bar0->ring_bump_counter1);
4550 for (i = 0; i < 4; i++) {
4551 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4552 temp64 >>= 64 - ((i+1)*16);
4553 sw_stat->ring_full_cnt[i] += temp64;
4554 }
4555
4556 val64 = readq(&bar0->ring_bump_counter2);
4557 for (i = 0; i < 4; i++) {
4558 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4559 temp64 >>= 64 - ((i+1)*16);
4560 sw_stat->ring_full_cnt[i+4] += temp64;
4561 }
4562 }
4563
4564 val64 = readq(&bar0->txdma_int_status);
4565 /*check for pfc_err*/
4566 if (val64 & TXDMA_PFC_INT) {
4567 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4568 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4569 PFC_PCIX_ERR,
4570 &bar0->pfc_err_reg,
4571 &sw_stat->pfc_err_cnt))
4572 goto reset;
4573 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4574 &bar0->pfc_err_reg,
4575 &sw_stat->pfc_err_cnt);
4576 }
4577
4578 /*check for tda_err*/
4579 if (val64 & TXDMA_TDA_INT) {
4580 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4581 TDA_SM0_ERR_ALARM |
4582 TDA_SM1_ERR_ALARM,
4583 &bar0->tda_err_reg,
4584 &sw_stat->tda_err_cnt))
4585 goto reset;
4586 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4587 &bar0->tda_err_reg,
4588 &sw_stat->tda_err_cnt);
4589 }
4590 /*check for pcc_err*/
4591 if (val64 & TXDMA_PCC_INT) {
4592 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4593 PCC_N_SERR | PCC_6_COF_OV_ERR |
4594 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4595 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4596 PCC_TXB_ECC_DB_ERR,
4597 &bar0->pcc_err_reg,
4598 &sw_stat->pcc_err_cnt))
4599 goto reset;
4600 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4601 &bar0->pcc_err_reg,
4602 &sw_stat->pcc_err_cnt);
4603 }
4604
4605 /*check for tti_err*/
4606 if (val64 & TXDMA_TTI_INT) {
4607 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4608 &bar0->tti_err_reg,
4609 &sw_stat->tti_err_cnt))
4610 goto reset;
4611 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4612 &bar0->tti_err_reg,
4613 &sw_stat->tti_err_cnt);
4614 }
4615
4616 /*check for lso_err*/
4617 if (val64 & TXDMA_LSO_INT) {
4618 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4619 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4620 &bar0->lso_err_reg,
4621 &sw_stat->lso_err_cnt))
4622 goto reset;
4623 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4624 &bar0->lso_err_reg,
4625 &sw_stat->lso_err_cnt);
4626 }
4627
4628 /*check for tpa_err*/
4629 if (val64 & TXDMA_TPA_INT) {
4630 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4631 &bar0->tpa_err_reg,
4632 &sw_stat->tpa_err_cnt))
4633 goto reset;
4634 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4635 &bar0->tpa_err_reg,
4636 &sw_stat->tpa_err_cnt);
4637 }
4638
4639 /*check for sm_err*/
4640 if (val64 & TXDMA_SM_INT) {
4641 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4642 &bar0->sm_err_reg,
4643 &sw_stat->sm_err_cnt))
4644 goto reset;
4645 }
4646
4647 val64 = readq(&bar0->mac_int_status);
4648 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4649 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4650 &bar0->mac_tmac_err_reg,
4651 &sw_stat->mac_tmac_err_cnt))
4652 goto reset;
4653 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4654 TMAC_DESC_ECC_SG_ERR |
4655 TMAC_DESC_ECC_DB_ERR,
4656 &bar0->mac_tmac_err_reg,
4657 &sw_stat->mac_tmac_err_cnt);
4658 }
4659
4660 val64 = readq(&bar0->xgxs_int_status);
4661 if (val64 & XGXS_INT_STATUS_TXGXS) {
4662 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4663 &bar0->xgxs_txgxs_err_reg,
4664 &sw_stat->xgxs_txgxs_err_cnt))
4665 goto reset;
4666 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4667 &bar0->xgxs_txgxs_err_reg,
4668 &sw_stat->xgxs_txgxs_err_cnt);
4669 }
4670
4671 val64 = readq(&bar0->rxdma_int_status);
4672 if (val64 & RXDMA_INT_RC_INT_M) {
4673 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4674 RC_FTC_ECC_DB_ERR |
4675 RC_PRCn_SM_ERR_ALARM |
4676 RC_FTC_SM_ERR_ALARM,
4677 &bar0->rc_err_reg,
4678 &sw_stat->rc_err_cnt))
4679 goto reset;
4680 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4681 RC_FTC_ECC_SG_ERR |
4682 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4683 &sw_stat->rc_err_cnt);
4684 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4685 PRC_PCI_AB_WR_Rn |
4686 PRC_PCI_AB_F_WR_Rn,
4687 &bar0->prc_pcix_err_reg,
4688 &sw_stat->prc_pcix_err_cnt))
4689 goto reset;
4690 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4691 PRC_PCI_DP_WR_Rn |
4692 PRC_PCI_DP_F_WR_Rn,
4693 &bar0->prc_pcix_err_reg,
4694 &sw_stat->prc_pcix_err_cnt);
4695 }
4696
4697 if (val64 & RXDMA_INT_RPA_INT_M) {
4698 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4699 &bar0->rpa_err_reg,
4700 &sw_stat->rpa_err_cnt))
4701 goto reset;
4702 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4703 &bar0->rpa_err_reg,
4704 &sw_stat->rpa_err_cnt);
4705 }
4706
4707 if (val64 & RXDMA_INT_RDA_INT_M) {
4708 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4709 RDA_FRM_ECC_DB_N_AERR |
4710 RDA_SM1_ERR_ALARM |
4711 RDA_SM0_ERR_ALARM |
4712 RDA_RXD_ECC_DB_SERR,
4713 &bar0->rda_err_reg,
4714 &sw_stat->rda_err_cnt))
4715 goto reset;
4716 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4717 RDA_FRM_ECC_SG_ERR |
4718 RDA_MISC_ERR |
4719 RDA_PCIX_ERR,
4720 &bar0->rda_err_reg,
4721 &sw_stat->rda_err_cnt);
4722 }
4723
4724 if (val64 & RXDMA_INT_RTI_INT_M) {
4725 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4726 &bar0->rti_err_reg,
4727 &sw_stat->rti_err_cnt))
4728 goto reset;
4729 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4730 &bar0->rti_err_reg,
4731 &sw_stat->rti_err_cnt);
4732 }
4733
4734 val64 = readq(&bar0->mac_int_status);
4735 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4736 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4737 &bar0->mac_rmac_err_reg,
4738 &sw_stat->mac_rmac_err_cnt))
4739 goto reset;
4740 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4741 RMAC_SINGLE_ECC_ERR |
4742 RMAC_DOUBLE_ECC_ERR,
4743 &bar0->mac_rmac_err_reg,
4744 &sw_stat->mac_rmac_err_cnt);
4745 }
4746
4747 val64 = readq(&bar0->xgxs_int_status);
4748 if (val64 & XGXS_INT_STATUS_RXGXS) {
4749 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4750 &bar0->xgxs_rxgxs_err_reg,
4751 &sw_stat->xgxs_rxgxs_err_cnt))
4752 goto reset;
4753 }
4754
4755 val64 = readq(&bar0->mc_int_status);
4756 if (val64 & MC_INT_STATUS_MC_INT) {
4757 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4758 &bar0->mc_err_reg,
4759 &sw_stat->mc_err_cnt))
4760 goto reset;
4761
4762 /* Handling Ecc errors */
4763 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4764 writeq(val64, &bar0->mc_err_reg);
4765 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4766 sw_stat->double_ecc_errs++;
4767 if (sp->device_type != XFRAME_II_DEVICE) {
4768 /*
4769 * Reset XframeI only if critical error
4770 */
4771 if (val64 &
4772 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4773 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4774 goto reset;
4775 }
4776 } else
4777 sw_stat->single_ecc_errs++;
4778 }
4779 }
4780 return;
4781
4782 reset:
4783 s2io_stop_all_tx_queue(sp);
4784 schedule_work(&sp->rst_timer_task);
4785 sw_stat->soft_reset_cnt++;
4786 return;
4787 }
4788
4789 /**
4790 * s2io_isr - ISR handler of the device .
4791 * @irq: the irq of the device.
4792 * @dev_id: a void pointer to the dev structure of the NIC.
4793 * Description: This function is the ISR handler of the device. It
4794 * identifies the reason for the interrupt and calls the relevant
4795 * service routines. As a contongency measure, this ISR allocates the
4796 * recv buffers, if their numbers are below the panic value which is
4797 * presently set to 25% of the original number of rcv buffers allocated.
4798 * Return value:
4799 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4800 * IRQ_NONE: will be returned if interrupt is not from our device
4801 */
4802 static irqreturn_t s2io_isr(int irq, void *dev_id)
4803 {
4804 struct net_device *dev = (struct net_device *)dev_id;
4805 struct s2io_nic *sp = netdev_priv(dev);
4806 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4807 int i;
4808 u64 reason = 0;
4809 struct mac_info *mac_control;
4810 struct config_param *config;
4811
4812 /* Pretend we handled any irq's from a disconnected card */
4813 if (pci_channel_offline(sp->pdev))
4814 return IRQ_NONE;
4815
4816 if (!is_s2io_card_up(sp))
4817 return IRQ_NONE;
4818
4819 mac_control = &sp->mac_control;
4820 config = &sp->config;
4821
4822 /*
4823 * Identify the cause for interrupt and call the appropriate
4824 * interrupt handler. Causes for the interrupt could be;
4825 * 1. Rx of packet.
4826 * 2. Tx complete.
4827 * 3. Link down.
4828 */
4829 reason = readq(&bar0->general_int_status);
4830
4831 if (unlikely(reason == S2IO_MINUS_ONE))
4832 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4833
4834 if (reason &
4835 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4836 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4837
4838 if (config->napi) {
4839 if (reason & GEN_INTR_RXTRAFFIC) {
4840 napi_schedule(&sp->napi);
4841 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4842 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4843 readl(&bar0->rx_traffic_int);
4844 }
4845 } else {
4846 /*
4847 * rx_traffic_int reg is an R1 register, writing all 1's
4848 * will ensure that the actual interrupt causing bit
4849 * get's cleared and hence a read can be avoided.
4850 */
4851 if (reason & GEN_INTR_RXTRAFFIC)
4852 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4853
4854 for (i = 0; i < config->rx_ring_num; i++) {
4855 struct ring_info *ring = &mac_control->rings[i];
4856
4857 rx_intr_handler(ring, 0);
4858 }
4859 }
4860
4861 /*
4862 * tx_traffic_int reg is an R1 register, writing all 1's
4863 * will ensure that the actual interrupt causing bit get's
4864 * cleared and hence a read can be avoided.
4865 */
4866 if (reason & GEN_INTR_TXTRAFFIC)
4867 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4868
4869 for (i = 0; i < config->tx_fifo_num; i++)
4870 tx_intr_handler(&mac_control->fifos[i]);
4871
4872 if (reason & GEN_INTR_TXPIC)
4873 s2io_txpic_intr_handle(sp);
4874
4875 /*
4876 * Reallocate the buffers from the interrupt handler itself.
4877 */
4878 if (!config->napi) {
4879 for (i = 0; i < config->rx_ring_num; i++) {
4880 struct ring_info *ring = &mac_control->rings[i];
4881
4882 s2io_chk_rx_buffers(sp, ring);
4883 }
4884 }
4885 writeq(sp->general_int_mask, &bar0->general_int_mask);
4886 readl(&bar0->general_int_status);
4887
4888 return IRQ_HANDLED;
4889
4890 } else if (!reason) {
4891 /* The interrupt was not raised by us */
4892 return IRQ_NONE;
4893 }
4894
4895 return IRQ_HANDLED;
4896 }
4897
4898 /**
4899 * s2io_updt_stats -
4900 */
4901 static void s2io_updt_stats(struct s2io_nic *sp)
4902 {
4903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4904 u64 val64;
4905 int cnt = 0;
4906
4907 if (is_s2io_card_up(sp)) {
4908 /* Apprx 30us on a 133 MHz bus */
4909 val64 = SET_UPDT_CLICKS(10) |
4910 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4911 writeq(val64, &bar0->stat_cfg);
4912 do {
4913 udelay(100);
4914 val64 = readq(&bar0->stat_cfg);
4915 if (!(val64 & s2BIT(0)))
4916 break;
4917 cnt++;
4918 if (cnt == 5)
4919 break; /* Updt failed */
4920 } while (1);
4921 }
4922 }
4923
4924 /**
4925 * s2io_get_stats - Updates the device statistics structure.
4926 * @dev : pointer to the device structure.
4927 * Description:
4928 * This function updates the device statistics structure in the s2io_nic
4929 * structure and returns a pointer to the same.
4930 * Return value:
4931 * pointer to the updated net_device_stats structure.
4932 */
4933
4934 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4935 {
4936 struct s2io_nic *sp = netdev_priv(dev);
4937 struct mac_info *mac_control;
4938 struct config_param *config;
4939 int i;
4940
4941
4942 mac_control = &sp->mac_control;
4943 config = &sp->config;
4944
4945 /* Configure Stats for immediate updt */
4946 s2io_updt_stats(sp);
4947
4948 /* Using sp->stats as a staging area, because reset (due to mtu
4949 change, for example) will clear some hardware counters */
4950 dev->stats.tx_packets +=
4951 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4952 sp->stats.tx_packets;
4953 sp->stats.tx_packets =
4954 le32_to_cpu(mac_control->stats_info->tmac_frms);
4955 dev->stats.tx_errors +=
4956 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4957 sp->stats.tx_errors;
4958 sp->stats.tx_errors =
4959 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4960 dev->stats.rx_errors +=
4961 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4962 sp->stats.rx_errors;
4963 sp->stats.rx_errors =
4964 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4965 dev->stats.multicast =
4966 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4967 sp->stats.multicast;
4968 sp->stats.multicast =
4969 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4970 dev->stats.rx_length_errors =
4971 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4972 sp->stats.rx_length_errors;
4973 sp->stats.rx_length_errors =
4974 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4975
4976 /* collect per-ring rx_packets and rx_bytes */
4977 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4978 for (i = 0; i < config->rx_ring_num; i++) {
4979 struct ring_info *ring = &mac_control->rings[i];
4980
4981 dev->stats.rx_packets += ring->rx_packets;
4982 dev->stats.rx_bytes += ring->rx_bytes;
4983 }
4984
4985 return &dev->stats;
4986 }
4987
4988 /**
4989 * s2io_set_multicast - entry point for multicast address enable/disable.
4990 * @dev : pointer to the device structure
4991 * Description:
4992 * This function is a driver entry point which gets called by the kernel
4993 * whenever multicast addresses must be enabled/disabled. This also gets
4994 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4995 * determine, if multicast address must be enabled or if promiscuous mode
4996 * is to be disabled etc.
4997 * Return value:
4998 * void.
4999 */
5000
5001 static void s2io_set_multicast(struct net_device *dev)
5002 {
5003 int i, j, prev_cnt;
5004 struct dev_mc_list *mclist;
5005 struct s2io_nic *sp = netdev_priv(dev);
5006 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5007 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5008 0xfeffffffffffULL;
5009 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5010 void __iomem *add;
5011 struct config_param *config = &sp->config;
5012
5013 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5014 /* Enable all Multicast addresses */
5015 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5016 &bar0->rmac_addr_data0_mem);
5017 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5018 &bar0->rmac_addr_data1_mem);
5019 val64 = RMAC_ADDR_CMD_MEM_WE |
5020 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5021 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5022 writeq(val64, &bar0->rmac_addr_cmd_mem);
5023 /* Wait till command completes */
5024 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5025 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5026 S2IO_BIT_RESET);
5027
5028 sp->m_cast_flg = 1;
5029 sp->all_multi_pos = config->max_mc_addr - 1;
5030 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5031 /* Disable all Multicast addresses */
5032 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5033 &bar0->rmac_addr_data0_mem);
5034 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5035 &bar0->rmac_addr_data1_mem);
5036 val64 = RMAC_ADDR_CMD_MEM_WE |
5037 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5038 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5039 writeq(val64, &bar0->rmac_addr_cmd_mem);
5040 /* Wait till command completes */
5041 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5042 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5043 S2IO_BIT_RESET);
5044
5045 sp->m_cast_flg = 0;
5046 sp->all_multi_pos = 0;
5047 }
5048
5049 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5050 /* Put the NIC into promiscuous mode */
5051 add = &bar0->mac_cfg;
5052 val64 = readq(&bar0->mac_cfg);
5053 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5054
5055 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5056 writel((u32)val64, add);
5057 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5058 writel((u32) (val64 >> 32), (add + 4));
5059
5060 if (vlan_tag_strip != 1) {
5061 val64 = readq(&bar0->rx_pa_cfg);
5062 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5063 writeq(val64, &bar0->rx_pa_cfg);
5064 sp->vlan_strip_flag = 0;
5065 }
5066
5067 val64 = readq(&bar0->mac_cfg);
5068 sp->promisc_flg = 1;
5069 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5070 dev->name);
5071 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5072 /* Remove the NIC from promiscuous mode */
5073 add = &bar0->mac_cfg;
5074 val64 = readq(&bar0->mac_cfg);
5075 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5076
5077 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5078 writel((u32)val64, add);
5079 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5080 writel((u32) (val64 >> 32), (add + 4));
5081
5082 if (vlan_tag_strip != 0) {
5083 val64 = readq(&bar0->rx_pa_cfg);
5084 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5085 writeq(val64, &bar0->rx_pa_cfg);
5086 sp->vlan_strip_flag = 1;
5087 }
5088
5089 val64 = readq(&bar0->mac_cfg);
5090 sp->promisc_flg = 0;
5091 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5092 dev->name);
5093 }
5094
5095 /* Update individual M_CAST address list */
5096 if ((!sp->m_cast_flg) && dev->mc_count) {
5097 if (dev->mc_count >
5098 (config->max_mc_addr - config->max_mac_addr)) {
5099 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5100 dev->name);
5101 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5102 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5103 return;
5104 }
5105
5106 prev_cnt = sp->mc_addr_count;
5107 sp->mc_addr_count = dev->mc_count;
5108
5109 /* Clear out the previous list of Mc in the H/W. */
5110 for (i = 0; i < prev_cnt; i++) {
5111 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5112 &bar0->rmac_addr_data0_mem);
5113 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5114 &bar0->rmac_addr_data1_mem);
5115 val64 = RMAC_ADDR_CMD_MEM_WE |
5116 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5117 RMAC_ADDR_CMD_MEM_OFFSET
5118 (config->mc_start_offset + i);
5119 writeq(val64, &bar0->rmac_addr_cmd_mem);
5120
5121 /* Wait for command completes */
5122 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5123 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5124 S2IO_BIT_RESET)) {
5125 DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name);
5126 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5127 return;
5128 }
5129 }
5130
5131 /* Create the new Rx filter list and update the same in H/W. */
5132 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5133 i++, mclist = mclist->next) {
5134 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5135 ETH_ALEN);
5136 mac_addr = 0;
5137 for (j = 0; j < ETH_ALEN; j++) {
5138 mac_addr |= mclist->dmi_addr[j];
5139 mac_addr <<= 8;
5140 }
5141 mac_addr >>= 8;
5142 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5143 &bar0->rmac_addr_data0_mem);
5144 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5145 &bar0->rmac_addr_data1_mem);
5146 val64 = RMAC_ADDR_CMD_MEM_WE |
5147 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5148 RMAC_ADDR_CMD_MEM_OFFSET
5149 (i + config->mc_start_offset);
5150 writeq(val64, &bar0->rmac_addr_cmd_mem);
5151
5152 /* Wait for command completes */
5153 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5154 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5155 S2IO_BIT_RESET)) {
5156 DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name);
5157 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5158 return;
5159 }
5160 }
5161 }
5162 }
5163
5164 /* read from CAM unicast & multicast addresses and store it in
5165 * def_mac_addr structure
5166 */
5167 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5168 {
5169 int offset;
5170 u64 mac_addr = 0x0;
5171 struct config_param *config = &sp->config;
5172
5173 /* store unicast & multicast mac addresses */
5174 for (offset = 0; offset < config->max_mc_addr; offset++) {
5175 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5176 /* if read fails disable the entry */
5177 if (mac_addr == FAILURE)
5178 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5179 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5180 }
5181 }
5182
5183 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5184 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5185 {
5186 int offset;
5187 struct config_param *config = &sp->config;
5188 /* restore unicast mac address */
5189 for (offset = 0; offset < config->max_mac_addr; offset++)
5190 do_s2io_prog_unicast(sp->dev,
5191 sp->def_mac_addr[offset].mac_addr);
5192
5193 /* restore multicast mac address */
5194 for (offset = config->mc_start_offset;
5195 offset < config->max_mc_addr; offset++)
5196 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5197 }
5198
5199 /* add a multicast MAC address to CAM */
5200 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5201 {
5202 int i;
5203 u64 mac_addr = 0;
5204 struct config_param *config = &sp->config;
5205
5206 for (i = 0; i < ETH_ALEN; i++) {
5207 mac_addr <<= 8;
5208 mac_addr |= addr[i];
5209 }
5210 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5211 return SUCCESS;
5212
5213 /* check if the multicast mac already preset in CAM */
5214 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5215 u64 tmp64;
5216 tmp64 = do_s2io_read_unicast_mc(sp, i);
5217 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5218 break;
5219
5220 if (tmp64 == mac_addr)
5221 return SUCCESS;
5222 }
5223 if (i == config->max_mc_addr) {
5224 DBG_PRINT(ERR_DBG,
5225 "CAM full no space left for multicast MAC\n");
5226 return FAILURE;
5227 }
5228 /* Update the internal structure with this new mac address */
5229 do_s2io_copy_mac_addr(sp, i, mac_addr);
5230
5231 return do_s2io_add_mac(sp, mac_addr, i);
5232 }
5233
5234 /* add MAC address to CAM */
5235 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5236 {
5237 u64 val64;
5238 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5239
5240 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5241 &bar0->rmac_addr_data0_mem);
5242
5243 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5244 RMAC_ADDR_CMD_MEM_OFFSET(off);
5245 writeq(val64, &bar0->rmac_addr_cmd_mem);
5246
5247 /* Wait till command completes */
5248 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5249 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5250 S2IO_BIT_RESET)) {
5251 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5252 return FAILURE;
5253 }
5254 return SUCCESS;
5255 }
5256 /* deletes a specified unicast/multicast mac entry from CAM */
5257 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5258 {
5259 int offset;
5260 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5261 struct config_param *config = &sp->config;
5262
5263 for (offset = 1;
5264 offset < config->max_mc_addr; offset++) {
5265 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5266 if (tmp64 == addr) {
5267 /* disable the entry by writing 0xffffffffffffULL */
5268 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5269 return FAILURE;
5270 /* store the new mac list from CAM */
5271 do_s2io_store_unicast_mc(sp);
5272 return SUCCESS;
5273 }
5274 }
5275 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5276 (unsigned long long)addr);
5277 return FAILURE;
5278 }
5279
5280 /* read mac entries from CAM */
5281 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5282 {
5283 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5284 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5285
5286 /* read mac addr */
5287 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5288 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5289 writeq(val64, &bar0->rmac_addr_cmd_mem);
5290
5291 /* Wait till command completes */
5292 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5293 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5294 S2IO_BIT_RESET)) {
5295 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5296 return FAILURE;
5297 }
5298 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5299
5300 return tmp64 >> 16;
5301 }
5302
5303 /**
5304 * s2io_set_mac_addr driver entry point
5305 */
5306
5307 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5308 {
5309 struct sockaddr *addr = p;
5310
5311 if (!is_valid_ether_addr(addr->sa_data))
5312 return -EINVAL;
5313
5314 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5315
5316 /* store the MAC address in CAM */
5317 return do_s2io_prog_unicast(dev, dev->dev_addr);
5318 }
5319 /**
5320 * do_s2io_prog_unicast - Programs the Xframe mac address
5321 * @dev : pointer to the device structure.
5322 * @addr: a uchar pointer to the new mac address which is to be set.
5323 * Description : This procedure will program the Xframe to receive
5324 * frames with new Mac Address
5325 * Return value: SUCCESS on success and an appropriate (-)ve integer
5326 * as defined in errno.h file on failure.
5327 */
5328
5329 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5330 {
5331 struct s2io_nic *sp = netdev_priv(dev);
5332 register u64 mac_addr = 0, perm_addr = 0;
5333 int i;
5334 u64 tmp64;
5335 struct config_param *config = &sp->config;
5336
5337 /*
5338 * Set the new MAC address as the new unicast filter and reflect this
5339 * change on the device address registered with the OS. It will be
5340 * at offset 0.
5341 */
5342 for (i = 0; i < ETH_ALEN; i++) {
5343 mac_addr <<= 8;
5344 mac_addr |= addr[i];
5345 perm_addr <<= 8;
5346 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5347 }
5348
5349 /* check if the dev_addr is different than perm_addr */
5350 if (mac_addr == perm_addr)
5351 return SUCCESS;
5352
5353 /* check if the mac already preset in CAM */
5354 for (i = 1; i < config->max_mac_addr; i++) {
5355 tmp64 = do_s2io_read_unicast_mc(sp, i);
5356 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5357 break;
5358
5359 if (tmp64 == mac_addr) {
5360 DBG_PRINT(INFO_DBG,
5361 "MAC addr:0x%llx already present in CAM\n",
5362 (unsigned long long)mac_addr);
5363 return SUCCESS;
5364 }
5365 }
5366 if (i == config->max_mac_addr) {
5367 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5368 return FAILURE;
5369 }
5370 /* Update the internal structure with this new mac address */
5371 do_s2io_copy_mac_addr(sp, i, mac_addr);
5372
5373 return do_s2io_add_mac(sp, mac_addr, i);
5374 }
5375
5376 /**
5377 * s2io_ethtool_sset - Sets different link parameters.
5378 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5379 * @info: pointer to the structure with parameters given by ethtool to set
5380 * link information.
5381 * Description:
5382 * The function sets different link parameters provided by the user onto
5383 * the NIC.
5384 * Return value:
5385 * 0 on success.
5386 */
5387
5388 static int s2io_ethtool_sset(struct net_device *dev,
5389 struct ethtool_cmd *info)
5390 {
5391 struct s2io_nic *sp = netdev_priv(dev);
5392 if ((info->autoneg == AUTONEG_ENABLE) ||
5393 (info->speed != SPEED_10000) ||
5394 (info->duplex != DUPLEX_FULL))
5395 return -EINVAL;
5396 else {
5397 s2io_close(sp->dev);
5398 s2io_open(sp->dev);
5399 }
5400
5401 return 0;
5402 }
5403
5404 /**
5405 * s2io_ethtol_gset - Return link specific information.
5406 * @sp : private member of the device structure, pointer to the
5407 * s2io_nic structure.
5408 * @info : pointer to the structure with parameters given by ethtool
5409 * to return link information.
5410 * Description:
5411 * Returns link specific information like speed, duplex etc.. to ethtool.
5412 * Return value :
5413 * return 0 on success.
5414 */
5415
5416 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5417 {
5418 struct s2io_nic *sp = netdev_priv(dev);
5419 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5420 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5421 info->port = PORT_FIBRE;
5422
5423 /* info->transceiver */
5424 info->transceiver = XCVR_EXTERNAL;
5425
5426 if (netif_carrier_ok(sp->dev)) {
5427 info->speed = 10000;
5428 info->duplex = DUPLEX_FULL;
5429 } else {
5430 info->speed = -1;
5431 info->duplex = -1;
5432 }
5433
5434 info->autoneg = AUTONEG_DISABLE;
5435 return 0;
5436 }
5437
5438 /**
5439 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5440 * @sp : private member of the device structure, which is a pointer to the
5441 * s2io_nic structure.
5442 * @info : pointer to the structure with parameters given by ethtool to
5443 * return driver information.
5444 * Description:
5445 * Returns driver specefic information like name, version etc.. to ethtool.
5446 * Return value:
5447 * void
5448 */
5449
5450 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5451 struct ethtool_drvinfo *info)
5452 {
5453 struct s2io_nic *sp = netdev_priv(dev);
5454
5455 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5456 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5457 strncpy(info->fw_version, "", sizeof(info->fw_version));
5458 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5459 info->regdump_len = XENA_REG_SPACE;
5460 info->eedump_len = XENA_EEPROM_SPACE;
5461 }
5462
5463 /**
5464 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5465 * @sp: private member of the device structure, which is a pointer to the
5466 * s2io_nic structure.
5467 * @regs : pointer to the structure with parameters given by ethtool for
5468 * dumping the registers.
5469 * @reg_space: The input argumnet into which all the registers are dumped.
5470 * Description:
5471 * Dumps the entire register space of xFrame NIC into the user given
5472 * buffer area.
5473 * Return value :
5474 * void .
5475 */
5476
5477 static void s2io_ethtool_gregs(struct net_device *dev,
5478 struct ethtool_regs *regs, void *space)
5479 {
5480 int i;
5481 u64 reg;
5482 u8 *reg_space = (u8 *)space;
5483 struct s2io_nic *sp = netdev_priv(dev);
5484
5485 regs->len = XENA_REG_SPACE;
5486 regs->version = sp->pdev->subsystem_device;
5487
5488 for (i = 0; i < regs->len; i += 8) {
5489 reg = readq(sp->bar0 + i);
5490 memcpy((reg_space + i), &reg, 8);
5491 }
5492 }
5493
5494 /**
5495 * s2io_phy_id - timer function that alternates adapter LED.
5496 * @data : address of the private member of the device structure, which
5497 * is a pointer to the s2io_nic structure, provided as an u32.
5498 * Description: This is actually the timer function that alternates the
5499 * adapter LED bit of the adapter control bit to set/reset every time on
5500 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5501 * once every second.
5502 */
5503 static void s2io_phy_id(unsigned long data)
5504 {
5505 struct s2io_nic *sp = (struct s2io_nic *)data;
5506 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5507 u64 val64 = 0;
5508 u16 subid;
5509
5510 subid = sp->pdev->subsystem_device;
5511 if ((sp->device_type == XFRAME_II_DEVICE) ||
5512 ((subid & 0xFF) >= 0x07)) {
5513 val64 = readq(&bar0->gpio_control);
5514 val64 ^= GPIO_CTRL_GPIO_0;
5515 writeq(val64, &bar0->gpio_control);
5516 } else {
5517 val64 = readq(&bar0->adapter_control);
5518 val64 ^= ADAPTER_LED_ON;
5519 writeq(val64, &bar0->adapter_control);
5520 }
5521
5522 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5523 }
5524
5525 /**
5526 * s2io_ethtool_idnic - To physically identify the nic on the system.
5527 * @sp : private member of the device structure, which is a pointer to the
5528 * s2io_nic structure.
5529 * @id : pointer to the structure with identification parameters given by
5530 * ethtool.
5531 * Description: Used to physically identify the NIC on the system.
5532 * The Link LED will blink for a time specified by the user for
5533 * identification.
5534 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5535 * identification is possible only if it's link is up.
5536 * Return value:
5537 * int , returns 0 on success
5538 */
5539
5540 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5541 {
5542 u64 val64 = 0, last_gpio_ctrl_val;
5543 struct s2io_nic *sp = netdev_priv(dev);
5544 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5545 u16 subid;
5546
5547 subid = sp->pdev->subsystem_device;
5548 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5549 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5550 val64 = readq(&bar0->adapter_control);
5551 if (!(val64 & ADAPTER_CNTL_EN)) {
5552 pr_err("Adapter Link down, cannot blink LED\n");
5553 return -EFAULT;
5554 }
5555 }
5556 if (sp->id_timer.function == NULL) {
5557 init_timer(&sp->id_timer);
5558 sp->id_timer.function = s2io_phy_id;
5559 sp->id_timer.data = (unsigned long)sp;
5560 }
5561 mod_timer(&sp->id_timer, jiffies);
5562 if (data)
5563 msleep_interruptible(data * HZ);
5564 else
5565 msleep_interruptible(MAX_FLICKER_TIME);
5566 del_timer_sync(&sp->id_timer);
5567
5568 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5569 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5570 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5571 }
5572
5573 return 0;
5574 }
5575
5576 static void s2io_ethtool_gringparam(struct net_device *dev,
5577 struct ethtool_ringparam *ering)
5578 {
5579 struct s2io_nic *sp = netdev_priv(dev);
5580 int i, tx_desc_count = 0, rx_desc_count = 0;
5581
5582 if (sp->rxd_mode == RXD_MODE_1)
5583 ering->rx_max_pending = MAX_RX_DESC_1;
5584 else if (sp->rxd_mode == RXD_MODE_3B)
5585 ering->rx_max_pending = MAX_RX_DESC_2;
5586
5587 ering->tx_max_pending = MAX_TX_DESC;
5588 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5589 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5590
5591 DBG_PRINT(INFO_DBG, "\nmax txds : %d\n", sp->config.max_txds);
5592 ering->tx_pending = tx_desc_count;
5593 rx_desc_count = 0;
5594 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5595 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5596
5597 ering->rx_pending = rx_desc_count;
5598
5599 ering->rx_mini_max_pending = 0;
5600 ering->rx_mini_pending = 0;
5601 if (sp->rxd_mode == RXD_MODE_1)
5602 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5603 else if (sp->rxd_mode == RXD_MODE_3B)
5604 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5605 ering->rx_jumbo_pending = rx_desc_count;
5606 }
5607
5608 /**
5609 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5610 * @sp : private member of the device structure, which is a pointer to the
5611 * s2io_nic structure.
5612 * @ep : pointer to the structure with pause parameters given by ethtool.
5613 * Description:
5614 * Returns the Pause frame generation and reception capability of the NIC.
5615 * Return value:
5616 * void
5617 */
5618 static void s2io_ethtool_getpause_data(struct net_device *dev,
5619 struct ethtool_pauseparam *ep)
5620 {
5621 u64 val64;
5622 struct s2io_nic *sp = netdev_priv(dev);
5623 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5624
5625 val64 = readq(&bar0->rmac_pause_cfg);
5626 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5627 ep->tx_pause = true;
5628 if (val64 & RMAC_PAUSE_RX_ENABLE)
5629 ep->rx_pause = true;
5630 ep->autoneg = false;
5631 }
5632
5633 /**
5634 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5635 * @sp : private member of the device structure, which is a pointer to the
5636 * s2io_nic structure.
5637 * @ep : pointer to the structure with pause parameters given by ethtool.
5638 * Description:
5639 * It can be used to set or reset Pause frame generation or reception
5640 * support of the NIC.
5641 * Return value:
5642 * int, returns 0 on Success
5643 */
5644
5645 static int s2io_ethtool_setpause_data(struct net_device *dev,
5646 struct ethtool_pauseparam *ep)
5647 {
5648 u64 val64;
5649 struct s2io_nic *sp = netdev_priv(dev);
5650 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5651
5652 val64 = readq(&bar0->rmac_pause_cfg);
5653 if (ep->tx_pause)
5654 val64 |= RMAC_PAUSE_GEN_ENABLE;
5655 else
5656 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5657 if (ep->rx_pause)
5658 val64 |= RMAC_PAUSE_RX_ENABLE;
5659 else
5660 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5661 writeq(val64, &bar0->rmac_pause_cfg);
5662 return 0;
5663 }
5664
5665 /**
5666 * read_eeprom - reads 4 bytes of data from user given offset.
5667 * @sp : private member of the device structure, which is a pointer to the
5668 * s2io_nic structure.
5669 * @off : offset at which the data must be written
5670 * @data : Its an output parameter where the data read at the given
5671 * offset is stored.
5672 * Description:
5673 * Will read 4 bytes of data from the user given offset and return the
5674 * read data.
5675 * NOTE: Will allow to read only part of the EEPROM visible through the
5676 * I2C bus.
5677 * Return value:
5678 * -1 on failure and 0 on success.
5679 */
5680
5681 #define S2IO_DEV_ID 5
5682 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5683 {
5684 int ret = -1;
5685 u32 exit_cnt = 0;
5686 u64 val64;
5687 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5688
5689 if (sp->device_type == XFRAME_I_DEVICE) {
5690 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5691 I2C_CONTROL_ADDR(off) |
5692 I2C_CONTROL_BYTE_CNT(0x3) |
5693 I2C_CONTROL_READ |
5694 I2C_CONTROL_CNTL_START;
5695 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5696
5697 while (exit_cnt < 5) {
5698 val64 = readq(&bar0->i2c_control);
5699 if (I2C_CONTROL_CNTL_END(val64)) {
5700 *data = I2C_CONTROL_GET_DATA(val64);
5701 ret = 0;
5702 break;
5703 }
5704 msleep(50);
5705 exit_cnt++;
5706 }
5707 }
5708
5709 if (sp->device_type == XFRAME_II_DEVICE) {
5710 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5711 SPI_CONTROL_BYTECNT(0x3) |
5712 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5713 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5714 val64 |= SPI_CONTROL_REQ;
5715 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5716 while (exit_cnt < 5) {
5717 val64 = readq(&bar0->spi_control);
5718 if (val64 & SPI_CONTROL_NACK) {
5719 ret = 1;
5720 break;
5721 } else if (val64 & SPI_CONTROL_DONE) {
5722 *data = readq(&bar0->spi_data);
5723 *data &= 0xffffff;
5724 ret = 0;
5725 break;
5726 }
5727 msleep(50);
5728 exit_cnt++;
5729 }
5730 }
5731 return ret;
5732 }
5733
5734 /**
5735 * write_eeprom - actually writes the relevant part of the data value.
5736 * @sp : private member of the device structure, which is a pointer to the
5737 * s2io_nic structure.
5738 * @off : offset at which the data must be written
5739 * @data : The data that is to be written
5740 * @cnt : Number of bytes of the data that are actually to be written into
5741 * the Eeprom. (max of 3)
5742 * Description:
5743 * Actually writes the relevant part of the data value into the Eeprom
5744 * through the I2C bus.
5745 * Return value:
5746 * 0 on success, -1 on failure.
5747 */
5748
5749 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5750 {
5751 int exit_cnt = 0, ret = -1;
5752 u64 val64;
5753 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5754
5755 if (sp->device_type == XFRAME_I_DEVICE) {
5756 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5757 I2C_CONTROL_ADDR(off) |
5758 I2C_CONTROL_BYTE_CNT(cnt) |
5759 I2C_CONTROL_SET_DATA((u32)data) |
5760 I2C_CONTROL_CNTL_START;
5761 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5762
5763 while (exit_cnt < 5) {
5764 val64 = readq(&bar0->i2c_control);
5765 if (I2C_CONTROL_CNTL_END(val64)) {
5766 if (!(val64 & I2C_CONTROL_NACK))
5767 ret = 0;
5768 break;
5769 }
5770 msleep(50);
5771 exit_cnt++;
5772 }
5773 }
5774
5775 if (sp->device_type == XFRAME_II_DEVICE) {
5776 int write_cnt = (cnt == 8) ? 0 : cnt;
5777 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5778
5779 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5780 SPI_CONTROL_BYTECNT(write_cnt) |
5781 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5782 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5783 val64 |= SPI_CONTROL_REQ;
5784 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5785 while (exit_cnt < 5) {
5786 val64 = readq(&bar0->spi_control);
5787 if (val64 & SPI_CONTROL_NACK) {
5788 ret = 1;
5789 break;
5790 } else if (val64 & SPI_CONTROL_DONE) {
5791 ret = 0;
5792 break;
5793 }
5794 msleep(50);
5795 exit_cnt++;
5796 }
5797 }
5798 return ret;
5799 }
5800 static void s2io_vpd_read(struct s2io_nic *nic)
5801 {
5802 u8 *vpd_data;
5803 u8 data;
5804 int i = 0, cnt, fail = 0;
5805 int vpd_addr = 0x80;
5806
5807 if (nic->device_type == XFRAME_II_DEVICE) {
5808 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5809 vpd_addr = 0x80;
5810 } else {
5811 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5812 vpd_addr = 0x50;
5813 }
5814 strcpy(nic->serial_num, "NOT AVAILABLE");
5815
5816 vpd_data = kmalloc(256, GFP_KERNEL);
5817 if (!vpd_data) {
5818 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5819 return;
5820 }
5821 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5822
5823 for (i = 0; i < 256; i += 4) {
5824 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5825 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5826 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5827 for (cnt = 0; cnt < 5; cnt++) {
5828 msleep(2);
5829 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5830 if (data == 0x80)
5831 break;
5832 }
5833 if (cnt >= 5) {
5834 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5835 fail = 1;
5836 break;
5837 }
5838 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5839 (u32 *)&vpd_data[i]);
5840 }
5841
5842 if (!fail) {
5843 /* read serial number of adapter */
5844 for (cnt = 0; cnt < 256; cnt++) {
5845 if ((vpd_data[cnt] == 'S') &&
5846 (vpd_data[cnt+1] == 'N') &&
5847 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5848 memset(nic->serial_num, 0, VPD_STRING_LEN);
5849 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5850 vpd_data[cnt+2]);
5851 break;
5852 }
5853 }
5854 }
5855
5856 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5857 memset(nic->product_name, 0, vpd_data[1]);
5858 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5859 }
5860 kfree(vpd_data);
5861 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5862 }
5863
5864 /**
5865 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5866 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5867 * @eeprom : pointer to the user level structure provided by ethtool,
5868 * containing all relevant information.
5869 * @data_buf : user defined value to be written into Eeprom.
5870 * Description: Reads the values stored in the Eeprom at given offset
5871 * for a given length. Stores these values int the input argument data
5872 * buffer 'data_buf' and returns these to the caller (ethtool.)
5873 * Return value:
5874 * int 0 on success
5875 */
5876
5877 static int s2io_ethtool_geeprom(struct net_device *dev,
5878 struct ethtool_eeprom *eeprom, u8 * data_buf)
5879 {
5880 u32 i, valid;
5881 u64 data;
5882 struct s2io_nic *sp = netdev_priv(dev);
5883
5884 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5885
5886 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5887 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5888
5889 for (i = 0; i < eeprom->len; i += 4) {
5890 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5891 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5892 return -EFAULT;
5893 }
5894 valid = INV(data);
5895 memcpy((data_buf + i), &valid, 4);
5896 }
5897 return 0;
5898 }
5899
5900 /**
5901 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5902 * @sp : private member of the device structure, which is a pointer to the
5903 * s2io_nic structure.
5904 * @eeprom : pointer to the user level structure provided by ethtool,
5905 * containing all relevant information.
5906 * @data_buf ; user defined value to be written into Eeprom.
5907 * Description:
5908 * Tries to write the user provided value in the Eeprom, at the offset
5909 * given by the user.
5910 * Return value:
5911 * 0 on success, -EFAULT on failure.
5912 */
5913
5914 static int s2io_ethtool_seeprom(struct net_device *dev,
5915 struct ethtool_eeprom *eeprom,
5916 u8 *data_buf)
5917 {
5918 int len = eeprom->len, cnt = 0;
5919 u64 valid = 0, data;
5920 struct s2io_nic *sp = netdev_priv(dev);
5921
5922 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5923 DBG_PRINT(ERR_DBG,
5924 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5925 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", eeprom->magic);
5926 return -EFAULT;
5927 }
5928
5929 while (len) {
5930 data = (u32)data_buf[cnt] & 0x000000FF;
5931 if (data)
5932 valid = (u32)(data << 24);
5933 else
5934 valid = data;
5935
5936 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5937 DBG_PRINT(ERR_DBG,
5938 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5939 DBG_PRINT(ERR_DBG,
5940 "write into the specified offset\n");
5941 return -EFAULT;
5942 }
5943 cnt++;
5944 len--;
5945 }
5946
5947 return 0;
5948 }
5949
5950 /**
5951 * s2io_register_test - reads and writes into all clock domains.
5952 * @sp : private member of the device structure, which is a pointer to the
5953 * s2io_nic structure.
5954 * @data : variable that returns the result of each of the test conducted b
5955 * by the driver.
5956 * Description:
5957 * Read and write into all clock domains. The NIC has 3 clock domains,
5958 * see that registers in all the three regions are accessible.
5959 * Return value:
5960 * 0 on success.
5961 */
5962
5963 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5964 {
5965 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5966 u64 val64 = 0, exp_val;
5967 int fail = 0;
5968
5969 val64 = readq(&bar0->pif_rd_swapper_fb);
5970 if (val64 != 0x123456789abcdefULL) {
5971 fail = 1;
5972 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5973 }
5974
5975 val64 = readq(&bar0->rmac_pause_cfg);
5976 if (val64 != 0xc000ffff00000000ULL) {
5977 fail = 1;
5978 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5979 }
5980
5981 val64 = readq(&bar0->rx_queue_cfg);
5982 if (sp->device_type == XFRAME_II_DEVICE)
5983 exp_val = 0x0404040404040404ULL;
5984 else
5985 exp_val = 0x0808080808080808ULL;
5986 if (val64 != exp_val) {
5987 fail = 1;
5988 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5989 }
5990
5991 val64 = readq(&bar0->xgxs_efifo_cfg);
5992 if (val64 != 0x000000001923141EULL) {
5993 fail = 1;
5994 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5995 }
5996
5997 val64 = 0x5A5A5A5A5A5A5A5AULL;
5998 writeq(val64, &bar0->xmsi_data);
5999 val64 = readq(&bar0->xmsi_data);
6000 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
6001 fail = 1;
6002 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
6003 }
6004
6005 val64 = 0xA5A5A5A5A5A5A5A5ULL;
6006 writeq(val64, &bar0->xmsi_data);
6007 val64 = readq(&bar0->xmsi_data);
6008 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6009 fail = 1;
6010 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
6011 }
6012
6013 *data = fail;
6014 return fail;
6015 }
6016
6017 /**
6018 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6019 * @sp : private member of the device structure, which is a pointer to the
6020 * s2io_nic structure.
6021 * @data:variable that returns the result of each of the test conducted by
6022 * the driver.
6023 * Description:
6024 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6025 * register.
6026 * Return value:
6027 * 0 on success.
6028 */
6029
6030 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6031 {
6032 int fail = 0;
6033 u64 ret_data, org_4F0, org_7F0;
6034 u8 saved_4F0 = 0, saved_7F0 = 0;
6035 struct net_device *dev = sp->dev;
6036
6037 /* Test Write Error at offset 0 */
6038 /* Note that SPI interface allows write access to all areas
6039 * of EEPROM. Hence doing all negative testing only for Xframe I.
6040 */
6041 if (sp->device_type == XFRAME_I_DEVICE)
6042 if (!write_eeprom(sp, 0, 0, 3))
6043 fail = 1;
6044
6045 /* Save current values at offsets 0x4F0 and 0x7F0 */
6046 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6047 saved_4F0 = 1;
6048 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6049 saved_7F0 = 1;
6050
6051 /* Test Write at offset 4f0 */
6052 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6053 fail = 1;
6054 if (read_eeprom(sp, 0x4F0, &ret_data))
6055 fail = 1;
6056
6057 if (ret_data != 0x012345) {
6058 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6059 "Data written %llx Data read %llx\n",
6060 dev->name, (unsigned long long)0x12345,
6061 (unsigned long long)ret_data);
6062 fail = 1;
6063 }
6064
6065 /* Reset the EEPROM data go FFFF */
6066 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6067
6068 /* Test Write Request Error at offset 0x7c */
6069 if (sp->device_type == XFRAME_I_DEVICE)
6070 if (!write_eeprom(sp, 0x07C, 0, 3))
6071 fail = 1;
6072
6073 /* Test Write Request at offset 0x7f0 */
6074 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6075 fail = 1;
6076 if (read_eeprom(sp, 0x7F0, &ret_data))
6077 fail = 1;
6078
6079 if (ret_data != 0x012345) {
6080 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6081 "Data written %llx Data read %llx\n",
6082 dev->name, (unsigned long long)0x12345,
6083 (unsigned long long)ret_data);
6084 fail = 1;
6085 }
6086
6087 /* Reset the EEPROM data go FFFF */
6088 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6089
6090 if (sp->device_type == XFRAME_I_DEVICE) {
6091 /* Test Write Error at offset 0x80 */
6092 if (!write_eeprom(sp, 0x080, 0, 3))
6093 fail = 1;
6094
6095 /* Test Write Error at offset 0xfc */
6096 if (!write_eeprom(sp, 0x0FC, 0, 3))
6097 fail = 1;
6098
6099 /* Test Write Error at offset 0x100 */
6100 if (!write_eeprom(sp, 0x100, 0, 3))
6101 fail = 1;
6102
6103 /* Test Write Error at offset 4ec */
6104 if (!write_eeprom(sp, 0x4EC, 0, 3))
6105 fail = 1;
6106 }
6107
6108 /* Restore values at offsets 0x4F0 and 0x7F0 */
6109 if (saved_4F0)
6110 write_eeprom(sp, 0x4F0, org_4F0, 3);
6111 if (saved_7F0)
6112 write_eeprom(sp, 0x7F0, org_7F0, 3);
6113
6114 *data = fail;
6115 return fail;
6116 }
6117
6118 /**
6119 * s2io_bist_test - invokes the MemBist test of the card .
6120 * @sp : private member of the device structure, which is a pointer to the
6121 * s2io_nic structure.
6122 * @data:variable that returns the result of each of the test conducted by
6123 * the driver.
6124 * Description:
6125 * This invokes the MemBist test of the card. We give around
6126 * 2 secs time for the Test to complete. If it's still not complete
6127 * within this peiod, we consider that the test failed.
6128 * Return value:
6129 * 0 on success and -1 on failure.
6130 */
6131
6132 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6133 {
6134 u8 bist = 0;
6135 int cnt = 0, ret = -1;
6136
6137 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6138 bist |= PCI_BIST_START;
6139 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6140
6141 while (cnt < 20) {
6142 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6143 if (!(bist & PCI_BIST_START)) {
6144 *data = (bist & PCI_BIST_CODE_MASK);
6145 ret = 0;
6146 break;
6147 }
6148 msleep(100);
6149 cnt++;
6150 }
6151
6152 return ret;
6153 }
6154
6155 /**
6156 * s2io-link_test - verifies the link state of the nic
6157 * @sp ; private member of the device structure, which is a pointer to the
6158 * s2io_nic structure.
6159 * @data: variable that returns the result of each of the test conducted by
6160 * the driver.
6161 * Description:
6162 * The function verifies the link state of the NIC and updates the input
6163 * argument 'data' appropriately.
6164 * Return value:
6165 * 0 on success.
6166 */
6167
6168 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6169 {
6170 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6171 u64 val64;
6172
6173 val64 = readq(&bar0->adapter_status);
6174 if (!(LINK_IS_UP(val64)))
6175 *data = 1;
6176 else
6177 *data = 0;
6178
6179 return *data;
6180 }
6181
6182 /**
6183 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6184 * @sp - private member of the device structure, which is a pointer to the
6185 * s2io_nic structure.
6186 * @data - variable that returns the result of each of the test
6187 * conducted by the driver.
6188 * Description:
6189 * This is one of the offline test that tests the read and write
6190 * access to the RldRam chip on the NIC.
6191 * Return value:
6192 * 0 on success.
6193 */
6194
6195 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6196 {
6197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6198 u64 val64;
6199 int cnt, iteration = 0, test_fail = 0;
6200
6201 val64 = readq(&bar0->adapter_control);
6202 val64 &= ~ADAPTER_ECC_EN;
6203 writeq(val64, &bar0->adapter_control);
6204
6205 val64 = readq(&bar0->mc_rldram_test_ctrl);
6206 val64 |= MC_RLDRAM_TEST_MODE;
6207 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6208
6209 val64 = readq(&bar0->mc_rldram_mrs);
6210 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6211 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6212
6213 val64 |= MC_RLDRAM_MRS_ENABLE;
6214 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6215
6216 while (iteration < 2) {
6217 val64 = 0x55555555aaaa0000ULL;
6218 if (iteration == 1)
6219 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6220 writeq(val64, &bar0->mc_rldram_test_d0);
6221
6222 val64 = 0xaaaa5a5555550000ULL;
6223 if (iteration == 1)
6224 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6225 writeq(val64, &bar0->mc_rldram_test_d1);
6226
6227 val64 = 0x55aaaaaaaa5a0000ULL;
6228 if (iteration == 1)
6229 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6230 writeq(val64, &bar0->mc_rldram_test_d2);
6231
6232 val64 = (u64) (0x0000003ffffe0100ULL);
6233 writeq(val64, &bar0->mc_rldram_test_add);
6234
6235 val64 = MC_RLDRAM_TEST_MODE |
6236 MC_RLDRAM_TEST_WRITE |
6237 MC_RLDRAM_TEST_GO;
6238 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6239
6240 for (cnt = 0; cnt < 5; cnt++) {
6241 val64 = readq(&bar0->mc_rldram_test_ctrl);
6242 if (val64 & MC_RLDRAM_TEST_DONE)
6243 break;
6244 msleep(200);
6245 }
6246
6247 if (cnt == 5)
6248 break;
6249
6250 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6251 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6252
6253 for (cnt = 0; cnt < 5; cnt++) {
6254 val64 = readq(&bar0->mc_rldram_test_ctrl);
6255 if (val64 & MC_RLDRAM_TEST_DONE)
6256 break;
6257 msleep(500);
6258 }
6259
6260 if (cnt == 5)
6261 break;
6262
6263 val64 = readq(&bar0->mc_rldram_test_ctrl);
6264 if (!(val64 & MC_RLDRAM_TEST_PASS))
6265 test_fail = 1;
6266
6267 iteration++;
6268 }
6269
6270 *data = test_fail;
6271
6272 /* Bring the adapter out of test mode */
6273 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6274
6275 return test_fail;
6276 }
6277
6278 /**
6279 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6280 * @sp : private member of the device structure, which is a pointer to the
6281 * s2io_nic structure.
6282 * @ethtest : pointer to a ethtool command specific structure that will be
6283 * returned to the user.
6284 * @data : variable that returns the result of each of the test
6285 * conducted by the driver.
6286 * Description:
6287 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6288 * the health of the card.
6289 * Return value:
6290 * void
6291 */
6292
6293 static void s2io_ethtool_test(struct net_device *dev,
6294 struct ethtool_test *ethtest,
6295 uint64_t *data)
6296 {
6297 struct s2io_nic *sp = netdev_priv(dev);
6298 int orig_state = netif_running(sp->dev);
6299
6300 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6301 /* Offline Tests. */
6302 if (orig_state)
6303 s2io_close(sp->dev);
6304
6305 if (s2io_register_test(sp, &data[0]))
6306 ethtest->flags |= ETH_TEST_FL_FAILED;
6307
6308 s2io_reset(sp);
6309
6310 if (s2io_rldram_test(sp, &data[3]))
6311 ethtest->flags |= ETH_TEST_FL_FAILED;
6312
6313 s2io_reset(sp);
6314
6315 if (s2io_eeprom_test(sp, &data[1]))
6316 ethtest->flags |= ETH_TEST_FL_FAILED;
6317
6318 if (s2io_bist_test(sp, &data[4]))
6319 ethtest->flags |= ETH_TEST_FL_FAILED;
6320
6321 if (orig_state)
6322 s2io_open(sp->dev);
6323
6324 data[2] = 0;
6325 } else {
6326 /* Online Tests. */
6327 if (!orig_state) {
6328 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6329 dev->name);
6330 data[0] = -1;
6331 data[1] = -1;
6332 data[2] = -1;
6333 data[3] = -1;
6334 data[4] = -1;
6335 }
6336
6337 if (s2io_link_test(sp, &data[2]))
6338 ethtest->flags |= ETH_TEST_FL_FAILED;
6339
6340 data[0] = 0;
6341 data[1] = 0;
6342 data[3] = 0;
6343 data[4] = 0;
6344 }
6345 }
6346
6347 static void s2io_get_ethtool_stats(struct net_device *dev,
6348 struct ethtool_stats *estats,
6349 u64 *tmp_stats)
6350 {
6351 int i = 0, k;
6352 struct s2io_nic *sp = netdev_priv(dev);
6353 struct stat_block *stat_info = sp->mac_control.stats_info;
6354
6355 s2io_updt_stats(sp);
6356 tmp_stats[i++] =
6357 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6358 le32_to_cpu(stat_info->tmac_frms);
6359 tmp_stats[i++] =
6360 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6361 le32_to_cpu(stat_info->tmac_data_octets);
6362 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6363 tmp_stats[i++] =
6364 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6365 le32_to_cpu(stat_info->tmac_mcst_frms);
6366 tmp_stats[i++] =
6367 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6368 le32_to_cpu(stat_info->tmac_bcst_frms);
6369 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6372 le32_to_cpu(stat_info->tmac_ttl_octets);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6375 le32_to_cpu(stat_info->tmac_ucst_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6378 le32_to_cpu(stat_info->tmac_nucst_frms);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6381 le32_to_cpu(stat_info->tmac_any_err_frms);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6384 tmp_stats[i++] =
6385 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6386 le32_to_cpu(stat_info->tmac_vld_ip);
6387 tmp_stats[i++] =
6388 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6389 le32_to_cpu(stat_info->tmac_drop_ip);
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6392 le32_to_cpu(stat_info->tmac_icmp);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6395 le32_to_cpu(stat_info->tmac_rst_tcp);
6396 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6397 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6398 le32_to_cpu(stat_info->tmac_udp);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6401 le32_to_cpu(stat_info->rmac_vld_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_data_octets);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6407 tmp_stats[i++] =
6408 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6409 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6410 tmp_stats[i++] =
6411 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6412 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6413 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6414 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6415 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6416 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6417 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6420 le32_to_cpu(stat_info->rmac_ttl_octets);
6421 tmp_stats[i++] =
6422 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow) << 32
6423 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6424 tmp_stats[i++] =
6425 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6426 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6427 tmp_stats[i++] =
6428 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6429 le32_to_cpu(stat_info->rmac_discarded_frms);
6430 tmp_stats[i++] =
6431 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6432 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6435 tmp_stats[i++] =
6436 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6437 le32_to_cpu(stat_info->rmac_usized_frms);
6438 tmp_stats[i++] =
6439 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6440 le32_to_cpu(stat_info->rmac_osized_frms);
6441 tmp_stats[i++] =
6442 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6443 le32_to_cpu(stat_info->rmac_frag_frms);
6444 tmp_stats[i++] =
6445 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6446 le32_to_cpu(stat_info->rmac_jabber_frms);
6447 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6448 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6449 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6450 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6451 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6452 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6453 tmp_stats[i++] =
6454 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6455 le32_to_cpu(stat_info->rmac_ip);
6456 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6458 tmp_stats[i++] =
6459 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6460 le32_to_cpu(stat_info->rmac_drop_ip);
6461 tmp_stats[i++] =
6462 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6463 le32_to_cpu(stat_info->rmac_icmp);
6464 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6465 tmp_stats[i++] =
6466 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6467 le32_to_cpu(stat_info->rmac_udp);
6468 tmp_stats[i++] =
6469 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6470 le32_to_cpu(stat_info->rmac_err_drp_udp);
6471 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6472 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6479 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6480 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6481 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6482 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6483 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6484 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6485 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6486 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6487 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6488 tmp_stats[i++] =
6489 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6490 le32_to_cpu(stat_info->rmac_pause_cnt);
6491 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6492 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6493 tmp_stats[i++] =
6494 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6495 le32_to_cpu(stat_info->rmac_accepted_ip);
6496 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6497 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6498 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6499 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6500 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6501 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6502 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6507 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6508 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6509 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6510 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6511 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6512 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6513 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6514 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6515
6516 /* Enhanced statistics exist only for Hercules */
6517 if (sp->device_type == XFRAME_II_DEVICE) {
6518 tmp_stats[i++] =
6519 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6520 tmp_stats[i++] =
6521 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6522 tmp_stats[i++] =
6523 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6524 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6525 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6526 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6527 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6528 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6529 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6530 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6531 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6532 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6533 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6534 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6535 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6536 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6537 }
6538
6539 tmp_stats[i++] = 0;
6540 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6541 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6542 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6546 for (k = 0; k < MAX_RX_RINGS; k++)
6547 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6548 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6549 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6550 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6551 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6552 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6553 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6554 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6555 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6556 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6557 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6558 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6559 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6560 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6562 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6563 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6564 if (stat_info->sw_stat.num_aggregations) {
6565 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6566 int count = 0;
6567 /*
6568 * Since 64-bit divide does not work on all platforms,
6569 * do repeated subtraction.
6570 */
6571 while (tmp >= stat_info->sw_stat.num_aggregations) {
6572 tmp -= stat_info->sw_stat.num_aggregations;
6573 count++;
6574 }
6575 tmp_stats[i++] = count;
6576 } else
6577 tmp_stats[i++] = 0;
6578 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6579 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6580 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6581 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6582 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6583 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6584 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6585 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6586 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6587
6588 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6589 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6590 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6591 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6592 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6593
6594 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6595 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6596 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6597 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6598 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6599 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6600 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6601 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6602 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6603 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6604 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6605 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6606 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6607 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6608 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6609 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6610 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6611 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6612 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6613 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6614 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6615 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6616 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6617 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6618 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6619 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6620 }
6621
6622 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6623 {
6624 return XENA_REG_SPACE;
6625 }
6626
6627
6628 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6629 {
6630 struct s2io_nic *sp = netdev_priv(dev);
6631
6632 return sp->rx_csum;
6633 }
6634
6635 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6636 {
6637 struct s2io_nic *sp = netdev_priv(dev);
6638
6639 if (data)
6640 sp->rx_csum = 1;
6641 else
6642 sp->rx_csum = 0;
6643
6644 return 0;
6645 }
6646
6647 static int s2io_get_eeprom_len(struct net_device *dev)
6648 {
6649 return XENA_EEPROM_SPACE;
6650 }
6651
6652 static int s2io_get_sset_count(struct net_device *dev, int sset)
6653 {
6654 struct s2io_nic *sp = netdev_priv(dev);
6655
6656 switch (sset) {
6657 case ETH_SS_TEST:
6658 return S2IO_TEST_LEN;
6659 case ETH_SS_STATS:
6660 switch (sp->device_type) {
6661 case XFRAME_I_DEVICE:
6662 return XFRAME_I_STAT_LEN;
6663 case XFRAME_II_DEVICE:
6664 return XFRAME_II_STAT_LEN;
6665 default:
6666 return 0;
6667 }
6668 default:
6669 return -EOPNOTSUPP;
6670 }
6671 }
6672
6673 static void s2io_ethtool_get_strings(struct net_device *dev,
6674 u32 stringset, u8 *data)
6675 {
6676 int stat_size = 0;
6677 struct s2io_nic *sp = netdev_priv(dev);
6678
6679 switch (stringset) {
6680 case ETH_SS_TEST:
6681 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6682 break;
6683 case ETH_SS_STATS:
6684 stat_size = sizeof(ethtool_xena_stats_keys);
6685 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6686 if (sp->device_type == XFRAME_II_DEVICE) {
6687 memcpy(data + stat_size,
6688 &ethtool_enhanced_stats_keys,
6689 sizeof(ethtool_enhanced_stats_keys));
6690 stat_size += sizeof(ethtool_enhanced_stats_keys);
6691 }
6692
6693 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6694 sizeof(ethtool_driver_stats_keys));
6695 }
6696 }
6697
6698 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6699 {
6700 if (data)
6701 dev->features |= NETIF_F_IP_CSUM;
6702 else
6703 dev->features &= ~NETIF_F_IP_CSUM;
6704
6705 return 0;
6706 }
6707
6708 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6709 {
6710 return (dev->features & NETIF_F_TSO) != 0;
6711 }
6712 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6713 {
6714 if (data)
6715 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6716 else
6717 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6718
6719 return 0;
6720 }
6721
6722 static const struct ethtool_ops netdev_ethtool_ops = {
6723 .get_settings = s2io_ethtool_gset,
6724 .set_settings = s2io_ethtool_sset,
6725 .get_drvinfo = s2io_ethtool_gdrvinfo,
6726 .get_regs_len = s2io_ethtool_get_regs_len,
6727 .get_regs = s2io_ethtool_gregs,
6728 .get_link = ethtool_op_get_link,
6729 .get_eeprom_len = s2io_get_eeprom_len,
6730 .get_eeprom = s2io_ethtool_geeprom,
6731 .set_eeprom = s2io_ethtool_seeprom,
6732 .get_ringparam = s2io_ethtool_gringparam,
6733 .get_pauseparam = s2io_ethtool_getpause_data,
6734 .set_pauseparam = s2io_ethtool_setpause_data,
6735 .get_rx_csum = s2io_ethtool_get_rx_csum,
6736 .set_rx_csum = s2io_ethtool_set_rx_csum,
6737 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6738 .set_sg = ethtool_op_set_sg,
6739 .get_tso = s2io_ethtool_op_get_tso,
6740 .set_tso = s2io_ethtool_op_set_tso,
6741 .set_ufo = ethtool_op_set_ufo,
6742 .self_test = s2io_ethtool_test,
6743 .get_strings = s2io_ethtool_get_strings,
6744 .phys_id = s2io_ethtool_idnic,
6745 .get_ethtool_stats = s2io_get_ethtool_stats,
6746 .get_sset_count = s2io_get_sset_count,
6747 };
6748
6749 /**
6750 * s2io_ioctl - Entry point for the Ioctl
6751 * @dev : Device pointer.
6752 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6753 * a proprietary structure used to pass information to the driver.
6754 * @cmd : This is used to distinguish between the different commands that
6755 * can be passed to the IOCTL functions.
6756 * Description:
6757 * Currently there are no special functionality supported in IOCTL, hence
6758 * function always return EOPNOTSUPPORTED
6759 */
6760
6761 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6762 {
6763 return -EOPNOTSUPP;
6764 }
6765
6766 /**
6767 * s2io_change_mtu - entry point to change MTU size for the device.
6768 * @dev : device pointer.
6769 * @new_mtu : the new MTU size for the device.
6770 * Description: A driver entry point to change MTU size for the device.
6771 * Before changing the MTU the device must be stopped.
6772 * Return value:
6773 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6774 * file on failure.
6775 */
6776
6777 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6778 {
6779 struct s2io_nic *sp = netdev_priv(dev);
6780 int ret = 0;
6781
6782 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6783 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6784 return -EPERM;
6785 }
6786
6787 dev->mtu = new_mtu;
6788 if (netif_running(dev)) {
6789 s2io_stop_all_tx_queue(sp);
6790 s2io_card_down(sp);
6791 ret = s2io_card_up(sp);
6792 if (ret) {
6793 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6794 __func__);
6795 return ret;
6796 }
6797 s2io_wake_all_tx_queue(sp);
6798 } else { /* Device is down */
6799 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6800 u64 val64 = new_mtu;
6801
6802 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6803 }
6804
6805 return ret;
6806 }
6807
6808 /**
6809 * s2io_set_link - Set the LInk status
6810 * @data: long pointer to device private structue
6811 * Description: Sets the link status for the adapter
6812 */
6813
6814 static void s2io_set_link(struct work_struct *work)
6815 {
6816 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6817 set_link_task);
6818 struct net_device *dev = nic->dev;
6819 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6820 register u64 val64;
6821 u16 subid;
6822
6823 rtnl_lock();
6824
6825 if (!netif_running(dev))
6826 goto out_unlock;
6827
6828 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6829 /* The card is being reset, no point doing anything */
6830 goto out_unlock;
6831 }
6832
6833 subid = nic->pdev->subsystem_device;
6834 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6835 /*
6836 * Allow a small delay for the NICs self initiated
6837 * cleanup to complete.
6838 */
6839 msleep(100);
6840 }
6841
6842 val64 = readq(&bar0->adapter_status);
6843 if (LINK_IS_UP(val64)) {
6844 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6845 if (verify_xena_quiescence(nic)) {
6846 val64 = readq(&bar0->adapter_control);
6847 val64 |= ADAPTER_CNTL_EN;
6848 writeq(val64, &bar0->adapter_control);
6849 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6850 nic->device_type, subid)) {
6851 val64 = readq(&bar0->gpio_control);
6852 val64 |= GPIO_CTRL_GPIO_0;
6853 writeq(val64, &bar0->gpio_control);
6854 val64 = readq(&bar0->gpio_control);
6855 } else {
6856 val64 |= ADAPTER_LED_ON;
6857 writeq(val64, &bar0->adapter_control);
6858 }
6859 nic->device_enabled_once = true;
6860 } else {
6861 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6862 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6863 s2io_stop_all_tx_queue(nic);
6864 }
6865 }
6866 val64 = readq(&bar0->adapter_control);
6867 val64 |= ADAPTER_LED_ON;
6868 writeq(val64, &bar0->adapter_control);
6869 s2io_link(nic, LINK_UP);
6870 } else {
6871 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6872 subid)) {
6873 val64 = readq(&bar0->gpio_control);
6874 val64 &= ~GPIO_CTRL_GPIO_0;
6875 writeq(val64, &bar0->gpio_control);
6876 val64 = readq(&bar0->gpio_control);
6877 }
6878 /* turn off LED */
6879 val64 = readq(&bar0->adapter_control);
6880 val64 = val64 & (~ADAPTER_LED_ON);
6881 writeq(val64, &bar0->adapter_control);
6882 s2io_link(nic, LINK_DOWN);
6883 }
6884 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6885
6886 out_unlock:
6887 rtnl_unlock();
6888 }
6889
6890 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6891 struct buffAdd *ba,
6892 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6893 u64 *temp2, int size)
6894 {
6895 struct net_device *dev = sp->dev;
6896 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6897
6898 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6899 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6900 /* allocate skb */
6901 if (*skb) {
6902 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6903 /*
6904 * As Rx frame are not going to be processed,
6905 * using same mapped address for the Rxd
6906 * buffer pointer
6907 */
6908 rxdp1->Buffer0_ptr = *temp0;
6909 } else {
6910 *skb = dev_alloc_skb(size);
6911 if (!(*skb)) {
6912 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6913 DBG_PRINT(INFO_DBG, "memory to allocate ");
6914 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6915 sp->mac_control.stats_info->sw_stat.
6916 mem_alloc_fail_cnt++;
6917 return -ENOMEM ;
6918 }
6919 sp->mac_control.stats_info->sw_stat.mem_allocated
6920 += (*skb)->truesize;
6921 /* storing the mapped addr in a temp variable
6922 * such it will be used for next rxd whose
6923 * Host Control is NULL
6924 */
6925 rxdp1->Buffer0_ptr = *temp0 =
6926 pci_map_single(sp->pdev, (*skb)->data,
6927 size - NET_IP_ALIGN,
6928 PCI_DMA_FROMDEVICE);
6929 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6930 goto memalloc_failed;
6931 rxdp->Host_Control = (unsigned long) (*skb);
6932 }
6933 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6934 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6935 /* Two buffer Mode */
6936 if (*skb) {
6937 rxdp3->Buffer2_ptr = *temp2;
6938 rxdp3->Buffer0_ptr = *temp0;
6939 rxdp3->Buffer1_ptr = *temp1;
6940 } else {
6941 *skb = dev_alloc_skb(size);
6942 if (!(*skb)) {
6943 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6944 DBG_PRINT(INFO_DBG, "memory to allocate ");
6945 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6946 sp->mac_control.stats_info->sw_stat.
6947 mem_alloc_fail_cnt++;
6948 return -ENOMEM;
6949 }
6950 sp->mac_control.stats_info->sw_stat.mem_allocated
6951 += (*skb)->truesize;
6952 rxdp3->Buffer2_ptr = *temp2 =
6953 pci_map_single(sp->pdev, (*skb)->data,
6954 dev->mtu + 4,
6955 PCI_DMA_FROMDEVICE);
6956 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6957 goto memalloc_failed;
6958 rxdp3->Buffer0_ptr = *temp0 =
6959 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6960 PCI_DMA_FROMDEVICE);
6961 if (pci_dma_mapping_error(sp->pdev,
6962 rxdp3->Buffer0_ptr)) {
6963 pci_unmap_single(sp->pdev,
6964 (dma_addr_t)rxdp3->Buffer2_ptr,
6965 dev->mtu + 4,
6966 PCI_DMA_FROMDEVICE);
6967 goto memalloc_failed;
6968 }
6969 rxdp->Host_Control = (unsigned long) (*skb);
6970
6971 /* Buffer-1 will be dummy buffer not used */
6972 rxdp3->Buffer1_ptr = *temp1 =
6973 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6974 PCI_DMA_FROMDEVICE);
6975 if (pci_dma_mapping_error(sp->pdev,
6976 rxdp3->Buffer1_ptr)) {
6977 pci_unmap_single(sp->pdev,
6978 (dma_addr_t)rxdp3->Buffer0_ptr,
6979 BUF0_LEN, PCI_DMA_FROMDEVICE);
6980 pci_unmap_single(sp->pdev,
6981 (dma_addr_t)rxdp3->Buffer2_ptr,
6982 dev->mtu + 4,
6983 PCI_DMA_FROMDEVICE);
6984 goto memalloc_failed;
6985 }
6986 }
6987 }
6988 return 0;
6989
6990 memalloc_failed:
6991 stats->pci_map_fail_cnt++;
6992 stats->mem_freed += (*skb)->truesize;
6993 dev_kfree_skb(*skb);
6994 return -ENOMEM;
6995 }
6996
6997 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6998 int size)
6999 {
7000 struct net_device *dev = sp->dev;
7001 if (sp->rxd_mode == RXD_MODE_1) {
7002 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7003 } else if (sp->rxd_mode == RXD_MODE_3B) {
7004 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7005 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7006 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7007 }
7008 }
7009
7010 static int rxd_owner_bit_reset(struct s2io_nic *sp)
7011 {
7012 int i, j, k, blk_cnt = 0, size;
7013 struct mac_info *mac_control = &sp->mac_control;
7014 struct config_param *config = &sp->config;
7015 struct net_device *dev = sp->dev;
7016 struct RxD_t *rxdp = NULL;
7017 struct sk_buff *skb = NULL;
7018 struct buffAdd *ba = NULL;
7019 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7020
7021 /* Calculate the size based on ring mode */
7022 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7023 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7024 if (sp->rxd_mode == RXD_MODE_1)
7025 size += NET_IP_ALIGN;
7026 else if (sp->rxd_mode == RXD_MODE_3B)
7027 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7028
7029 for (i = 0; i < config->rx_ring_num; i++) {
7030 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7031 struct ring_info *ring = &mac_control->rings[i];
7032
7033 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7034
7035 for (j = 0; j < blk_cnt; j++) {
7036 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7037 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7038 if (sp->rxd_mode == RXD_MODE_3B)
7039 ba = &ring->ba[j][k];
7040 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7041 (u64 *)&temp0_64,
7042 (u64 *)&temp1_64,
7043 (u64 *)&temp2_64,
7044 size) == -ENOMEM) {
7045 return 0;
7046 }
7047
7048 set_rxd_buffer_size(sp, rxdp, size);
7049 wmb();
7050 /* flip the Ownership bit to Hardware */
7051 rxdp->Control_1 |= RXD_OWN_XENA;
7052 }
7053 }
7054 }
7055 return 0;
7056
7057 }
7058
7059 static int s2io_add_isr(struct s2io_nic *sp)
7060 {
7061 int ret = 0;
7062 struct net_device *dev = sp->dev;
7063 int err = 0;
7064
7065 if (sp->config.intr_type == MSI_X)
7066 ret = s2io_enable_msi_x(sp);
7067 if (ret) {
7068 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7069 sp->config.intr_type = INTA;
7070 }
7071
7072 /*
7073 * Store the values of the MSIX table in
7074 * the struct s2io_nic structure
7075 */
7076 store_xmsi_data(sp);
7077
7078 /* After proper initialization of H/W, register ISR */
7079 if (sp->config.intr_type == MSI_X) {
7080 int i, msix_rx_cnt = 0;
7081
7082 for (i = 0; i < sp->num_entries; i++) {
7083 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7084 if (sp->s2io_entries[i].type ==
7085 MSIX_RING_TYPE) {
7086 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7087 dev->name, i);
7088 err = request_irq(sp->entries[i].vector,
7089 s2io_msix_ring_handle,
7090 0,
7091 sp->desc[i],
7092 sp->s2io_entries[i].arg);
7093 } else if (sp->s2io_entries[i].type ==
7094 MSIX_ALARM_TYPE) {
7095 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7096 dev->name, i);
7097 err = request_irq(sp->entries[i].vector,
7098 s2io_msix_fifo_handle,
7099 0,
7100 sp->desc[i],
7101 sp->s2io_entries[i].arg);
7102
7103 }
7104 /* if either data or addr is zero print it. */
7105 if (!(sp->msix_info[i].addr &&
7106 sp->msix_info[i].data)) {
7107 DBG_PRINT(ERR_DBG,
7108 "%s @Addr:0x%llx Data:0x%llx\n",
7109 sp->desc[i],
7110 (unsigned long long)
7111 sp->msix_info[i].addr,
7112 (unsigned long long)
7113 ntohl(sp->msix_info[i].data));
7114 } else
7115 msix_rx_cnt++;
7116 if (err) {
7117 remove_msix_isr(sp);
7118
7119 DBG_PRINT(ERR_DBG,
7120 "%s:MSI-X-%d registration "
7121 "failed\n", dev->name, i);
7122
7123 DBG_PRINT(ERR_DBG,
7124 "%s: Defaulting to INTA\n",
7125 dev->name);
7126 sp->config.intr_type = INTA;
7127 break;
7128 }
7129 sp->s2io_entries[i].in_use =
7130 MSIX_REGISTERED_SUCCESS;
7131 }
7132 }
7133 if (!err) {
7134 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7135 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7136 " through alarm vector\n");
7137 }
7138 }
7139 if (sp->config.intr_type == INTA) {
7140 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7141 sp->name, dev);
7142 if (err) {
7143 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7144 dev->name);
7145 return -1;
7146 }
7147 }
7148 return 0;
7149 }
7150
7151 static void s2io_rem_isr(struct s2io_nic *sp)
7152 {
7153 if (sp->config.intr_type == MSI_X)
7154 remove_msix_isr(sp);
7155 else
7156 remove_inta_isr(sp);
7157 }
7158
7159 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7160 {
7161 int cnt = 0;
7162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7163 register u64 val64 = 0;
7164 struct config_param *config;
7165 config = &sp->config;
7166
7167 if (!is_s2io_card_up(sp))
7168 return;
7169
7170 del_timer_sync(&sp->alarm_timer);
7171 /* If s2io_set_link task is executing, wait till it completes. */
7172 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7173 msleep(50);
7174 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7175
7176 /* Disable napi */
7177 if (sp->config.napi) {
7178 int off = 0;
7179 if (config->intr_type == MSI_X) {
7180 for (; off < sp->config.rx_ring_num; off++)
7181 napi_disable(&sp->mac_control.rings[off].napi);
7182 }
7183 else
7184 napi_disable(&sp->napi);
7185 }
7186
7187 /* disable Tx and Rx traffic on the NIC */
7188 if (do_io)
7189 stop_nic(sp);
7190
7191 s2io_rem_isr(sp);
7192
7193 /* stop the tx queue, indicate link down */
7194 s2io_link(sp, LINK_DOWN);
7195
7196 /* Check if the device is Quiescent and then Reset the NIC */
7197 while (do_io) {
7198 /* As per the HW requirement we need to replenish the
7199 * receive buffer to avoid the ring bump. Since there is
7200 * no intention of processing the Rx frame at this pointwe are
7201 * just settting the ownership bit of rxd in Each Rx
7202 * ring to HW and set the appropriate buffer size
7203 * based on the ring mode
7204 */
7205 rxd_owner_bit_reset(sp);
7206
7207 val64 = readq(&bar0->adapter_status);
7208 if (verify_xena_quiescence(sp)) {
7209 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7210 break;
7211 }
7212
7213 msleep(50);
7214 cnt++;
7215 if (cnt == 10) {
7216 DBG_PRINT(ERR_DBG, "s2io_close:Device not Quiescent ");
7217 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7218 (unsigned long long)val64);
7219 break;
7220 }
7221 }
7222 if (do_io)
7223 s2io_reset(sp);
7224
7225 /* Free all Tx buffers */
7226 free_tx_buffers(sp);
7227
7228 /* Free all Rx buffers */
7229 free_rx_buffers(sp);
7230
7231 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7232 }
7233
7234 static void s2io_card_down(struct s2io_nic *sp)
7235 {
7236 do_s2io_card_down(sp, 1);
7237 }
7238
7239 static int s2io_card_up(struct s2io_nic *sp)
7240 {
7241 int i, ret = 0;
7242 struct mac_info *mac_control;
7243 struct config_param *config;
7244 struct net_device *dev = (struct net_device *)sp->dev;
7245 u16 interruptible;
7246
7247 /* Initialize the H/W I/O registers */
7248 ret = init_nic(sp);
7249 if (ret != 0) {
7250 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7251 dev->name);
7252 if (ret != -EIO)
7253 s2io_reset(sp);
7254 return ret;
7255 }
7256
7257 /*
7258 * Initializing the Rx buffers. For now we are considering only 1
7259 * Rx ring and initializing buffers into 30 Rx blocks
7260 */
7261 mac_control = &sp->mac_control;
7262 config = &sp->config;
7263
7264 for (i = 0; i < config->rx_ring_num; i++) {
7265 struct ring_info *ring = &mac_control->rings[i];
7266
7267 ring->mtu = dev->mtu;
7268 ret = fill_rx_buffers(sp, ring, 1);
7269 if (ret) {
7270 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7271 dev->name);
7272 s2io_reset(sp);
7273 free_rx_buffers(sp);
7274 return -ENOMEM;
7275 }
7276 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7277 ring->rx_bufs_left);
7278 }
7279
7280 /* Initialise napi */
7281 if (config->napi) {
7282 if (config->intr_type == MSI_X) {
7283 for (i = 0; i < sp->config.rx_ring_num; i++)
7284 napi_enable(&sp->mac_control.rings[i].napi);
7285 } else {
7286 napi_enable(&sp->napi);
7287 }
7288 }
7289
7290 /* Maintain the state prior to the open */
7291 if (sp->promisc_flg)
7292 sp->promisc_flg = 0;
7293 if (sp->m_cast_flg) {
7294 sp->m_cast_flg = 0;
7295 sp->all_multi_pos = 0;
7296 }
7297
7298 /* Setting its receive mode */
7299 s2io_set_multicast(dev);
7300
7301 if (sp->lro) {
7302 /* Initialize max aggregatable pkts per session based on MTU */
7303 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7304 /* Check if we can use (if specified) user provided value */
7305 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7306 sp->lro_max_aggr_per_sess = lro_max_pkts;
7307 }
7308
7309 /* Enable Rx Traffic and interrupts on the NIC */
7310 if (start_nic(sp)) {
7311 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7312 s2io_reset(sp);
7313 free_rx_buffers(sp);
7314 return -ENODEV;
7315 }
7316
7317 /* Add interrupt service routine */
7318 if (s2io_add_isr(sp) != 0) {
7319 if (sp->config.intr_type == MSI_X)
7320 s2io_rem_isr(sp);
7321 s2io_reset(sp);
7322 free_rx_buffers(sp);
7323 return -ENODEV;
7324 }
7325
7326 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7327
7328 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7329
7330 /* Enable select interrupts */
7331 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7332 if (sp->config.intr_type != INTA) {
7333 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7334 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7335 } else {
7336 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7337 interruptible |= TX_PIC_INTR;
7338 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7339 }
7340
7341 return 0;
7342 }
7343
7344 /**
7345 * s2io_restart_nic - Resets the NIC.
7346 * @data : long pointer to the device private structure
7347 * Description:
7348 * This function is scheduled to be run by the s2io_tx_watchdog
7349 * function after 0.5 secs to reset the NIC. The idea is to reduce
7350 * the run time of the watch dog routine which is run holding a
7351 * spin lock.
7352 */
7353
7354 static void s2io_restart_nic(struct work_struct *work)
7355 {
7356 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7357 struct net_device *dev = sp->dev;
7358
7359 rtnl_lock();
7360
7361 if (!netif_running(dev))
7362 goto out_unlock;
7363
7364 s2io_card_down(sp);
7365 if (s2io_card_up(sp)) {
7366 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7367 }
7368 s2io_wake_all_tx_queue(sp);
7369 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7370 out_unlock:
7371 rtnl_unlock();
7372 }
7373
7374 /**
7375 * s2io_tx_watchdog - Watchdog for transmit side.
7376 * @dev : Pointer to net device structure
7377 * Description:
7378 * This function is triggered if the Tx Queue is stopped
7379 * for a pre-defined amount of time when the Interface is still up.
7380 * If the Interface is jammed in such a situation, the hardware is
7381 * reset (by s2io_close) and restarted again (by s2io_open) to
7382 * overcome any problem that might have been caused in the hardware.
7383 * Return value:
7384 * void
7385 */
7386
7387 static void s2io_tx_watchdog(struct net_device *dev)
7388 {
7389 struct s2io_nic *sp = netdev_priv(dev);
7390
7391 if (netif_carrier_ok(dev)) {
7392 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7393 schedule_work(&sp->rst_timer_task);
7394 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7395 }
7396 }
7397
7398 /**
7399 * rx_osm_handler - To perform some OS related operations on SKB.
7400 * @sp: private member of the device structure,pointer to s2io_nic structure.
7401 * @skb : the socket buffer pointer.
7402 * @len : length of the packet
7403 * @cksum : FCS checksum of the frame.
7404 * @ring_no : the ring from which this RxD was extracted.
7405 * Description:
7406 * This function is called by the Rx interrupt serivce routine to perform
7407 * some OS related operations on the SKB before passing it to the upper
7408 * layers. It mainly checks if the checksum is OK, if so adds it to the
7409 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7410 * to the upper layer. If the checksum is wrong, it increments the Rx
7411 * packet error count, frees the SKB and returns error.
7412 * Return value:
7413 * SUCCESS on success and -1 on failure.
7414 */
7415 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7416 {
7417 struct s2io_nic *sp = ring_data->nic;
7418 struct net_device *dev = (struct net_device *)ring_data->dev;
7419 struct sk_buff *skb = (struct sk_buff *)
7420 ((unsigned long)rxdp->Host_Control);
7421 int ring_no = ring_data->ring_no;
7422 u16 l3_csum, l4_csum;
7423 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7424 struct lro *uninitialized_var(lro);
7425 u8 err_mask;
7426
7427 skb->dev = dev;
7428
7429 if (err) {
7430 /* Check for parity error */
7431 if (err & 0x1)
7432 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7433
7434 err_mask = err >> 48;
7435 switch (err_mask) {
7436 case 1:
7437 sp->mac_control.stats_info->sw_stat.rx_parity_err_cnt++;
7438 break;
7439
7440 case 2:
7441 sp->mac_control.stats_info->sw_stat.rx_abort_cnt++;
7442 break;
7443
7444 case 3:
7445 sp->mac_control.stats_info->sw_stat.rx_parity_abort_cnt++;
7446 break;
7447
7448 case 4:
7449 sp->mac_control.stats_info->sw_stat.rx_rda_fail_cnt++;
7450 break;
7451
7452 case 5:
7453 sp->mac_control.stats_info->sw_stat.rx_unkn_prot_cnt++;
7454 break;
7455
7456 case 6:
7457 sp->mac_control.stats_info->sw_stat.rx_fcs_err_cnt++;
7458 break;
7459
7460 case 7:
7461 sp->mac_control.stats_info->sw_stat.rx_buf_size_err_cnt++;
7462 break;
7463
7464 case 8:
7465 sp->mac_control.stats_info->sw_stat.rx_rxd_corrupt_cnt++;
7466 break;
7467
7468 case 15:
7469 sp->mac_control.stats_info->sw_stat.rx_unkn_err_cnt++;
7470 break;
7471 }
7472 /*
7473 * Drop the packet if bad transfer code. Exception being
7474 * 0x5, which could be due to unsupported IPv6 extension header.
7475 * In this case, we let stack handle the packet.
7476 * Note that in this case, since checksum will be incorrect,
7477 * stack will validate the same.
7478 */
7479 if (err_mask != 0x5) {
7480 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7481 dev->name, err_mask);
7482 dev->stats.rx_crc_errors++;
7483 sp->mac_control.stats_info->sw_stat.mem_freed
7484 += skb->truesize;
7485 dev_kfree_skb(skb);
7486 ring_data->rx_bufs_left -= 1;
7487 rxdp->Host_Control = 0;
7488 return 0;
7489 }
7490 }
7491
7492 /* Updating statistics */
7493 ring_data->rx_packets++;
7494 rxdp->Host_Control = 0;
7495 if (sp->rxd_mode == RXD_MODE_1) {
7496 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7497
7498 ring_data->rx_bytes += len;
7499 skb_put(skb, len);
7500
7501 } else if (sp->rxd_mode == RXD_MODE_3B) {
7502 int get_block = ring_data->rx_curr_get_info.block_index;
7503 int get_off = ring_data->rx_curr_get_info.offset;
7504 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7505 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7506 unsigned char *buff = skb_push(skb, buf0_len);
7507
7508 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7509 ring_data->rx_bytes += buf0_len + buf2_len;
7510 memcpy(buff, ba->ba_0, buf0_len);
7511 skb_put(skb, buf2_len);
7512 }
7513
7514 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7515 ((!ring_data->lro) ||
7516 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7517 (sp->rx_csum)) {
7518 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7519 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7520 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7521 /*
7522 * NIC verifies if the Checksum of the received
7523 * frame is Ok or not and accordingly returns
7524 * a flag in the RxD.
7525 */
7526 skb->ip_summed = CHECKSUM_UNNECESSARY;
7527 if (ring_data->lro) {
7528 u32 tcp_len;
7529 u8 *tcp;
7530 int ret = 0;
7531
7532 ret = s2io_club_tcp_session(ring_data,
7533 skb->data, &tcp,
7534 &tcp_len, &lro,
7535 rxdp, sp);
7536 switch (ret) {
7537 case 3: /* Begin anew */
7538 lro->parent = skb;
7539 goto aggregate;
7540 case 1: /* Aggregate */
7541 lro_append_pkt(sp, lro, skb, tcp_len);
7542 goto aggregate;
7543 case 4: /* Flush session */
7544 lro_append_pkt(sp, lro, skb, tcp_len);
7545 queue_rx_frame(lro->parent,
7546 lro->vlan_tag);
7547 clear_lro_session(lro);
7548 sp->mac_control.stats_info->
7549 sw_stat.flush_max_pkts++;
7550 goto aggregate;
7551 case 2: /* Flush both */
7552 lro->parent->data_len = lro->frags_len;
7553 sp->mac_control.stats_info->
7554 sw_stat.sending_both++;
7555 queue_rx_frame(lro->parent,
7556 lro->vlan_tag);
7557 clear_lro_session(lro);
7558 goto send_up;
7559 case 0: /* sessions exceeded */
7560 case -1: /* non-TCP or not L2 aggregatable */
7561 case 5: /*
7562 * First pkt in session not
7563 * L3/L4 aggregatable
7564 */
7565 break;
7566 default:
7567 DBG_PRINT(ERR_DBG,
7568 "%s: Samadhana!!\n",
7569 __func__);
7570 BUG();
7571 }
7572 }
7573 } else {
7574 /*
7575 * Packet with erroneous checksum, let the
7576 * upper layers deal with it.
7577 */
7578 skb->ip_summed = CHECKSUM_NONE;
7579 }
7580 } else
7581 skb->ip_summed = CHECKSUM_NONE;
7582
7583 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7584 send_up:
7585 skb_record_rx_queue(skb, ring_no);
7586 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7587 aggregate:
7588 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7589 return SUCCESS;
7590 }
7591
7592 /**
7593 * s2io_link - stops/starts the Tx queue.
7594 * @sp : private member of the device structure, which is a pointer to the
7595 * s2io_nic structure.
7596 * @link : inidicates whether link is UP/DOWN.
7597 * Description:
7598 * This function stops/starts the Tx queue depending on whether the link
7599 * status of the NIC is is down or up. This is called by the Alarm
7600 * interrupt handler whenever a link change interrupt comes up.
7601 * Return value:
7602 * void.
7603 */
7604
7605 static void s2io_link(struct s2io_nic *sp, int link)
7606 {
7607 struct net_device *dev = (struct net_device *)sp->dev;
7608
7609 if (link != sp->last_link_state) {
7610 init_tti(sp, link);
7611 if (link == LINK_DOWN) {
7612 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7613 s2io_stop_all_tx_queue(sp);
7614 netif_carrier_off(dev);
7615 if (sp->mac_control.stats_info->sw_stat.link_up_cnt)
7616 sp->mac_control.stats_info->sw_stat.
7617 link_up_time = jiffies - sp->start_time;
7618 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7619 } else {
7620 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7621 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7622 sp->mac_control.stats_info->
7623 sw_stat.link_down_time =
7624 jiffies - sp->start_time;
7625 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7626 netif_carrier_on(dev);
7627 s2io_wake_all_tx_queue(sp);
7628 }
7629 }
7630 sp->last_link_state = link;
7631 sp->start_time = jiffies;
7632 }
7633
7634 /**
7635 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7636 * @sp : private member of the device structure, which is a pointer to the
7637 * s2io_nic structure.
7638 * Description:
7639 * This function initializes a few of the PCI and PCI-X configuration registers
7640 * with recommended values.
7641 * Return value:
7642 * void
7643 */
7644
7645 static void s2io_init_pci(struct s2io_nic *sp)
7646 {
7647 u16 pci_cmd = 0, pcix_cmd = 0;
7648
7649 /* Enable Data Parity Error Recovery in PCI-X command register. */
7650 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7651 &(pcix_cmd));
7652 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7653 (pcix_cmd | 1));
7654 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7655 &(pcix_cmd));
7656
7657 /* Set the PErr Response bit in PCI command register. */
7658 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7659 pci_write_config_word(sp->pdev, PCI_COMMAND,
7660 (pci_cmd | PCI_COMMAND_PARITY));
7661 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7662 }
7663
7664 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7665 u8 *dev_multiq)
7666 {
7667 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7668 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7669 "(%d) not supported\n", tx_fifo_num);
7670
7671 if (tx_fifo_num < 1)
7672 tx_fifo_num = 1;
7673 else
7674 tx_fifo_num = MAX_TX_FIFOS;
7675
7676 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7677 DBG_PRINT(ERR_DBG, "tx fifos\n");
7678 }
7679
7680 if (multiq)
7681 *dev_multiq = multiq;
7682
7683 if (tx_steering_type && (1 == tx_fifo_num)) {
7684 if (tx_steering_type != TX_DEFAULT_STEERING)
7685 DBG_PRINT(ERR_DBG,
7686 "s2io: Tx steering is not supported with "
7687 "one fifo. Disabling Tx steering.\n");
7688 tx_steering_type = NO_STEERING;
7689 }
7690
7691 if ((tx_steering_type < NO_STEERING) ||
7692 (tx_steering_type > TX_DEFAULT_STEERING)) {
7693 DBG_PRINT(ERR_DBG,
7694 "s2io: Requested transmit steering not supported\n");
7695 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7696 tx_steering_type = NO_STEERING;
7697 }
7698
7699 if (rx_ring_num > MAX_RX_RINGS) {
7700 DBG_PRINT(ERR_DBG,
7701 "s2io: Requested number of rx rings not supported\n");
7702 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7703 MAX_RX_RINGS);
7704 rx_ring_num = MAX_RX_RINGS;
7705 }
7706
7707 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7708 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7709 "Defaulting to INTA\n");
7710 *dev_intr_type = INTA;
7711 }
7712
7713 if ((*dev_intr_type == MSI_X) &&
7714 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7715 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7716 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7717 "Defaulting to INTA\n");
7718 *dev_intr_type = INTA;
7719 }
7720
7721 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7722 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7723 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7724 rx_ring_mode = 1;
7725 }
7726 return SUCCESS;
7727 }
7728
7729 /**
7730 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7731 * or Traffic class respectively.
7732 * @nic: device private variable
7733 * Description: The function configures the receive steering to
7734 * desired receive ring.
7735 * Return Value: SUCCESS on success and
7736 * '-1' on failure (endian settings incorrect).
7737 */
7738 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7739 {
7740 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7741 register u64 val64 = 0;
7742
7743 if (ds_codepoint > 63)
7744 return FAILURE;
7745
7746 val64 = RTS_DS_MEM_DATA(ring);
7747 writeq(val64, &bar0->rts_ds_mem_data);
7748
7749 val64 = RTS_DS_MEM_CTRL_WE |
7750 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7751 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7752
7753 writeq(val64, &bar0->rts_ds_mem_ctrl);
7754
7755 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7756 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7757 S2IO_BIT_RESET);
7758 }
7759
7760 static const struct net_device_ops s2io_netdev_ops = {
7761 .ndo_open = s2io_open,
7762 .ndo_stop = s2io_close,
7763 .ndo_get_stats = s2io_get_stats,
7764 .ndo_start_xmit = s2io_xmit,
7765 .ndo_validate_addr = eth_validate_addr,
7766 .ndo_set_multicast_list = s2io_set_multicast,
7767 .ndo_do_ioctl = s2io_ioctl,
7768 .ndo_set_mac_address = s2io_set_mac_addr,
7769 .ndo_change_mtu = s2io_change_mtu,
7770 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7771 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7772 .ndo_tx_timeout = s2io_tx_watchdog,
7773 #ifdef CONFIG_NET_POLL_CONTROLLER
7774 .ndo_poll_controller = s2io_netpoll,
7775 #endif
7776 };
7777
7778 /**
7779 * s2io_init_nic - Initialization of the adapter .
7780 * @pdev : structure containing the PCI related information of the device.
7781 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7782 * Description:
7783 * The function initializes an adapter identified by the pci_dec structure.
7784 * All OS related initialization including memory and device structure and
7785 * initlaization of the device private variable is done. Also the swapper
7786 * control register is initialized to enable read and write into the I/O
7787 * registers of the device.
7788 * Return value:
7789 * returns 0 on success and negative on failure.
7790 */
7791
7792 static int __devinit
7793 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7794 {
7795 struct s2io_nic *sp;
7796 struct net_device *dev;
7797 int i, j, ret;
7798 int dma_flag = false;
7799 u32 mac_up, mac_down;
7800 u64 val64 = 0, tmp64 = 0;
7801 struct XENA_dev_config __iomem *bar0 = NULL;
7802 u16 subid;
7803 struct mac_info *mac_control;
7804 struct config_param *config;
7805 int mode;
7806 u8 dev_intr_type = intr_type;
7807 u8 dev_multiq = 0;
7808
7809 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7810 if (ret)
7811 return ret;
7812
7813 ret = pci_enable_device(pdev);
7814 if (ret) {
7815 DBG_PRINT(ERR_DBG,
7816 "s2io_init_nic: pci_enable_device failed\n");
7817 return ret;
7818 }
7819
7820 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7821 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7822 dma_flag = true;
7823 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7824 DBG_PRINT(ERR_DBG,
7825 "Unable to obtain 64bit DMA "
7826 "for consistent allocations\n");
7827 pci_disable_device(pdev);
7828 return -ENOMEM;
7829 }
7830 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7831 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7832 } else {
7833 pci_disable_device(pdev);
7834 return -ENOMEM;
7835 }
7836 ret = pci_request_regions(pdev, s2io_driver_name);
7837 if (ret) {
7838 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n",
7839 __func__, ret);
7840 pci_disable_device(pdev);
7841 return -ENODEV;
7842 }
7843 if (dev_multiq)
7844 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7845 else
7846 dev = alloc_etherdev(sizeof(struct s2io_nic));
7847 if (dev == NULL) {
7848 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7849 pci_disable_device(pdev);
7850 pci_release_regions(pdev);
7851 return -ENODEV;
7852 }
7853
7854 pci_set_master(pdev);
7855 pci_set_drvdata(pdev, dev);
7856 SET_NETDEV_DEV(dev, &pdev->dev);
7857
7858 /* Private member variable initialized to s2io NIC structure */
7859 sp = netdev_priv(dev);
7860 memset(sp, 0, sizeof(struct s2io_nic));
7861 sp->dev = dev;
7862 sp->pdev = pdev;
7863 sp->high_dma_flag = dma_flag;
7864 sp->device_enabled_once = false;
7865 if (rx_ring_mode == 1)
7866 sp->rxd_mode = RXD_MODE_1;
7867 if (rx_ring_mode == 2)
7868 sp->rxd_mode = RXD_MODE_3B;
7869
7870 sp->config.intr_type = dev_intr_type;
7871
7872 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7873 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7874 sp->device_type = XFRAME_II_DEVICE;
7875 else
7876 sp->device_type = XFRAME_I_DEVICE;
7877
7878 sp->lro = lro_enable;
7879
7880 /* Initialize some PCI/PCI-X fields of the NIC. */
7881 s2io_init_pci(sp);
7882
7883 /*
7884 * Setting the device configuration parameters.
7885 * Most of these parameters can be specified by the user during
7886 * module insertion as they are module loadable parameters. If
7887 * these parameters are not not specified during load time, they
7888 * are initialized with default values.
7889 */
7890 mac_control = &sp->mac_control;
7891 config = &sp->config;
7892
7893 config->napi = napi;
7894 config->tx_steering_type = tx_steering_type;
7895
7896 /* Tx side parameters. */
7897 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7898 config->tx_fifo_num = MAX_TX_FIFOS;
7899 else
7900 config->tx_fifo_num = tx_fifo_num;
7901
7902 /* Initialize the fifos used for tx steering */
7903 if (config->tx_fifo_num < 5) {
7904 if (config->tx_fifo_num == 1)
7905 sp->total_tcp_fifos = 1;
7906 else
7907 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7908 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7909 sp->total_udp_fifos = 1;
7910 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7911 } else {
7912 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7913 FIFO_OTHER_MAX_NUM);
7914 sp->udp_fifo_idx = sp->total_tcp_fifos;
7915 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7916 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7917 }
7918
7919 config->multiq = dev_multiq;
7920 for (i = 0; i < config->tx_fifo_num; i++) {
7921 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7922
7923 tx_cfg->fifo_len = tx_fifo_len[i];
7924 tx_cfg->fifo_priority = i;
7925 }
7926
7927 /* mapping the QoS priority to the configured fifos */
7928 for (i = 0; i < MAX_TX_FIFOS; i++)
7929 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7930
7931 /* map the hashing selector table to the configured fifos */
7932 for (i = 0; i < config->tx_fifo_num; i++)
7933 sp->fifo_selector[i] = fifo_selector[i];
7934
7935
7936 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7937 for (i = 0; i < config->tx_fifo_num; i++) {
7938 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7939
7940 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7941 if (tx_cfg->fifo_len < 65) {
7942 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7943 break;
7944 }
7945 }
7946 /* + 2 because one Txd for skb->data and one Txd for UFO */
7947 config->max_txds = MAX_SKB_FRAGS + 2;
7948
7949 /* Rx side parameters. */
7950 config->rx_ring_num = rx_ring_num;
7951 for (i = 0; i < config->rx_ring_num; i++) {
7952 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7953 struct ring_info *ring = &mac_control->rings[i];
7954
7955 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7956 rx_cfg->ring_priority = i;
7957 ring->rx_bufs_left = 0;
7958 ring->rxd_mode = sp->rxd_mode;
7959 ring->rxd_count = rxd_count[sp->rxd_mode];
7960 ring->pdev = sp->pdev;
7961 ring->dev = sp->dev;
7962 }
7963
7964 for (i = 0; i < rx_ring_num; i++) {
7965 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7966
7967 rx_cfg->ring_org = RING_ORG_BUFF1;
7968 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7969 }
7970
7971 /* Setting Mac Control parameters */
7972 mac_control->rmac_pause_time = rmac_pause_time;
7973 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7974 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7975
7976
7977 /* initialize the shared memory used by the NIC and the host */
7978 if (init_shared_mem(sp)) {
7979 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7980 ret = -ENOMEM;
7981 goto mem_alloc_failed;
7982 }
7983
7984 sp->bar0 = pci_ioremap_bar(pdev, 0);
7985 if (!sp->bar0) {
7986 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7987 dev->name);
7988 ret = -ENOMEM;
7989 goto bar0_remap_failed;
7990 }
7991
7992 sp->bar1 = pci_ioremap_bar(pdev, 2);
7993 if (!sp->bar1) {
7994 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7995 dev->name);
7996 ret = -ENOMEM;
7997 goto bar1_remap_failed;
7998 }
7999
8000 dev->irq = pdev->irq;
8001 dev->base_addr = (unsigned long)sp->bar0;
8002
8003 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8004 for (j = 0; j < MAX_TX_FIFOS; j++) {
8005 mac_control->tx_FIFO_start[j] =
8006 (struct TxFIFO_element __iomem *)
8007 (sp->bar1 + (j * 0x00020000));
8008 }
8009
8010 /* Driver entry points */
8011 dev->netdev_ops = &s2io_netdev_ops;
8012 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8013 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8014
8015 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8016 if (sp->high_dma_flag == true)
8017 dev->features |= NETIF_F_HIGHDMA;
8018 dev->features |= NETIF_F_TSO;
8019 dev->features |= NETIF_F_TSO6;
8020 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
8021 dev->features |= NETIF_F_UFO;
8022 dev->features |= NETIF_F_HW_CSUM;
8023 }
8024 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8025 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8026 INIT_WORK(&sp->set_link_task, s2io_set_link);
8027
8028 pci_save_state(sp->pdev);
8029
8030 /* Setting swapper control on the NIC, for proper reset operation */
8031 if (s2io_set_swapper(sp)) {
8032 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8033 dev->name);
8034 ret = -EAGAIN;
8035 goto set_swap_failed;
8036 }
8037
8038 /* Verify if the Herc works on the slot its placed into */
8039 if (sp->device_type & XFRAME_II_DEVICE) {
8040 mode = s2io_verify_pci_mode(sp);
8041 if (mode < 0) {
8042 DBG_PRINT(ERR_DBG, "%s: ", __func__);
8043 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8044 ret = -EBADSLT;
8045 goto set_swap_failed;
8046 }
8047 }
8048
8049 if (sp->config.intr_type == MSI_X) {
8050 sp->num_entries = config->rx_ring_num + 1;
8051 ret = s2io_enable_msi_x(sp);
8052
8053 if (!ret) {
8054 ret = s2io_test_msi(sp);
8055 /* rollback MSI-X, will re-enable during add_isr() */
8056 remove_msix_isr(sp);
8057 }
8058 if (ret) {
8059
8060 DBG_PRINT(ERR_DBG,
8061 "s2io: MSI-X requested but failed to enable\n");
8062 sp->config.intr_type = INTA;
8063 }
8064 }
8065
8066 if (config->intr_type == MSI_X) {
8067 for (i = 0; i < config->rx_ring_num ; i++) {
8068 struct ring_info *ring = &mac_control->rings[i];
8069
8070 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8071 }
8072 } else {
8073 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8074 }
8075
8076 /* Not needed for Herc */
8077 if (sp->device_type & XFRAME_I_DEVICE) {
8078 /*
8079 * Fix for all "FFs" MAC address problems observed on
8080 * Alpha platforms
8081 */
8082 fix_mac_address(sp);
8083 s2io_reset(sp);
8084 }
8085
8086 /*
8087 * MAC address initialization.
8088 * For now only one mac address will be read and used.
8089 */
8090 bar0 = sp->bar0;
8091 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8092 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8093 writeq(val64, &bar0->rmac_addr_cmd_mem);
8094 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8095 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8096 S2IO_BIT_RESET);
8097 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8098 mac_down = (u32)tmp64;
8099 mac_up = (u32) (tmp64 >> 32);
8100
8101 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8102 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8103 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8104 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8105 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8106 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8107
8108 /* Set the factory defined MAC address initially */
8109 dev->addr_len = ETH_ALEN;
8110 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8111 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8112
8113 /* initialize number of multicast & unicast MAC entries variables */
8114 if (sp->device_type == XFRAME_I_DEVICE) {
8115 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8116 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8117 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8118 } else if (sp->device_type == XFRAME_II_DEVICE) {
8119 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8120 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8121 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8122 }
8123
8124 /* store mac addresses from CAM to s2io_nic structure */
8125 do_s2io_store_unicast_mc(sp);
8126
8127 /* Configure MSIX vector for number of rings configured plus one */
8128 if ((sp->device_type == XFRAME_II_DEVICE) &&
8129 (config->intr_type == MSI_X))
8130 sp->num_entries = config->rx_ring_num + 1;
8131
8132 /* Store the values of the MSIX table in the s2io_nic structure */
8133 store_xmsi_data(sp);
8134 /* reset Nic and bring it to known state */
8135 s2io_reset(sp);
8136
8137 /*
8138 * Initialize link state flags
8139 * and the card state parameter
8140 */
8141 sp->state = 0;
8142
8143 /* Initialize spinlocks */
8144 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8145 struct fifo_info *fifo = &mac_control->fifos[i];
8146
8147 spin_lock_init(&fifo->tx_lock);
8148 }
8149
8150 /*
8151 * SXE-002: Configure link and activity LED to init state
8152 * on driver load.
8153 */
8154 subid = sp->pdev->subsystem_device;
8155 if ((subid & 0xFF) >= 0x07) {
8156 val64 = readq(&bar0->gpio_control);
8157 val64 |= 0x0000800000000000ULL;
8158 writeq(val64, &bar0->gpio_control);
8159 val64 = 0x0411040400000000ULL;
8160 writeq(val64, (void __iomem *)bar0 + 0x2700);
8161 val64 = readq(&bar0->gpio_control);
8162 }
8163
8164 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8165
8166 if (register_netdev(dev)) {
8167 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8168 ret = -ENODEV;
8169 goto register_failed;
8170 }
8171 s2io_vpd_read(sp);
8172 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8173 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8174 sp->product_name, pdev->revision);
8175 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8176 s2io_driver_version);
8177 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8178 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8179 if (sp->device_type & XFRAME_II_DEVICE) {
8180 mode = s2io_print_pci_mode(sp);
8181 if (mode < 0) {
8182 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8183 ret = -EBADSLT;
8184 unregister_netdev(dev);
8185 goto set_swap_failed;
8186 }
8187 }
8188 switch (sp->rxd_mode) {
8189 case RXD_MODE_1:
8190 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8191 dev->name);
8192 break;
8193 case RXD_MODE_3B:
8194 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8195 dev->name);
8196 break;
8197 }
8198
8199 switch (sp->config.napi) {
8200 case 0:
8201 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8202 break;
8203 case 1:
8204 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8205 break;
8206 }
8207
8208 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8209 sp->config.tx_fifo_num);
8210
8211 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8212 sp->config.rx_ring_num);
8213
8214 switch (sp->config.intr_type) {
8215 case INTA:
8216 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8217 break;
8218 case MSI_X:
8219 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8220 break;
8221 }
8222 if (sp->config.multiq) {
8223 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8224 struct fifo_info *fifo = &mac_control->fifos[i];
8225
8226 fifo->multiq = config->multiq;
8227 }
8228 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8229 dev->name);
8230 } else
8231 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8232 dev->name);
8233
8234 switch (sp->config.tx_steering_type) {
8235 case NO_STEERING:
8236 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8237 dev->name);
8238 break;
8239 case TX_PRIORITY_STEERING:
8240 DBG_PRINT(ERR_DBG,
8241 "%s: Priority steering enabled for transmit\n",
8242 dev->name);
8243 break;
8244 case TX_DEFAULT_STEERING:
8245 DBG_PRINT(ERR_DBG,
8246 "%s: Default steering enabled for transmit\n",
8247 dev->name);
8248 }
8249
8250 if (sp->lro)
8251 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8252 dev->name);
8253 if (ufo)
8254 DBG_PRINT(ERR_DBG,
8255 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8256 dev->name);
8257 /* Initialize device name */
8258 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8259
8260 if (vlan_tag_strip)
8261 sp->vlan_strip_flag = 1;
8262 else
8263 sp->vlan_strip_flag = 0;
8264
8265 /*
8266 * Make Link state as off at this point, when the Link change
8267 * interrupt comes the state will be automatically changed to
8268 * the right state.
8269 */
8270 netif_carrier_off(dev);
8271
8272 return 0;
8273
8274 register_failed:
8275 set_swap_failed:
8276 iounmap(sp->bar1);
8277 bar1_remap_failed:
8278 iounmap(sp->bar0);
8279 bar0_remap_failed:
8280 mem_alloc_failed:
8281 free_shared_mem(sp);
8282 pci_disable_device(pdev);
8283 pci_release_regions(pdev);
8284 pci_set_drvdata(pdev, NULL);
8285 free_netdev(dev);
8286
8287 return ret;
8288 }
8289
8290 /**
8291 * s2io_rem_nic - Free the PCI device
8292 * @pdev: structure containing the PCI related information of the device.
8293 * Description: This function is called by the Pci subsystem to release a
8294 * PCI device and free up all resource held up by the device. This could
8295 * be in response to a Hot plug event or when the driver is to be removed
8296 * from memory.
8297 */
8298
8299 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8300 {
8301 struct net_device *dev =
8302 (struct net_device *)pci_get_drvdata(pdev);
8303 struct s2io_nic *sp;
8304
8305 if (dev == NULL) {
8306 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8307 return;
8308 }
8309
8310 flush_scheduled_work();
8311
8312 sp = netdev_priv(dev);
8313 unregister_netdev(dev);
8314
8315 free_shared_mem(sp);
8316 iounmap(sp->bar0);
8317 iounmap(sp->bar1);
8318 pci_release_regions(pdev);
8319 pci_set_drvdata(pdev, NULL);
8320 free_netdev(dev);
8321 pci_disable_device(pdev);
8322 }
8323
8324 /**
8325 * s2io_starter - Entry point for the driver
8326 * Description: This function is the entry point for the driver. It verifies
8327 * the module loadable parameters and initializes PCI configuration space.
8328 */
8329
8330 static int __init s2io_starter(void)
8331 {
8332 return pci_register_driver(&s2io_driver);
8333 }
8334
8335 /**
8336 * s2io_closer - Cleanup routine for the driver
8337 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8338 */
8339
8340 static __exit void s2io_closer(void)
8341 {
8342 pci_unregister_driver(&s2io_driver);
8343 DBG_PRINT(INIT_DBG, "cleanup done\n");
8344 }
8345
8346 module_init(s2io_starter);
8347 module_exit(s2io_closer);
8348
8349 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8350 struct tcphdr **tcp, struct RxD_t *rxdp,
8351 struct s2io_nic *sp)
8352 {
8353 int ip_off;
8354 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8355
8356 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8357 DBG_PRINT(INIT_DBG,
8358 "%s: Non-TCP frames not supported for LRO\n",
8359 __func__);
8360 return -1;
8361 }
8362
8363 /* Checking for DIX type or DIX type with VLAN */
8364 if ((l2_type == 0) || (l2_type == 4)) {
8365 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8366 /*
8367 * If vlan stripping is disabled and the frame is VLAN tagged,
8368 * shift the offset by the VLAN header size bytes.
8369 */
8370 if ((!sp->vlan_strip_flag) &&
8371 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8372 ip_off += HEADER_VLAN_SIZE;
8373 } else {
8374 /* LLC, SNAP etc are considered non-mergeable */
8375 return -1;
8376 }
8377
8378 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8379 ip_len = (u8)((*ip)->ihl);
8380 ip_len <<= 2;
8381 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8382
8383 return 0;
8384 }
8385
8386 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8387 struct tcphdr *tcp)
8388 {
8389 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8390 if ((lro->iph->saddr != ip->saddr) ||
8391 (lro->iph->daddr != ip->daddr) ||
8392 (lro->tcph->source != tcp->source) ||
8393 (lro->tcph->dest != tcp->dest))
8394 return -1;
8395 return 0;
8396 }
8397
8398 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8399 {
8400 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8401 }
8402
8403 static void initiate_new_session(struct lro *lro, u8 *l2h,
8404 struct iphdr *ip, struct tcphdr *tcp,
8405 u32 tcp_pyld_len, u16 vlan_tag)
8406 {
8407 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8408 lro->l2h = l2h;
8409 lro->iph = ip;
8410 lro->tcph = tcp;
8411 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8412 lro->tcp_ack = tcp->ack_seq;
8413 lro->sg_num = 1;
8414 lro->total_len = ntohs(ip->tot_len);
8415 lro->frags_len = 0;
8416 lro->vlan_tag = vlan_tag;
8417 /*
8418 * Check if we saw TCP timestamp.
8419 * Other consistency checks have already been done.
8420 */
8421 if (tcp->doff == 8) {
8422 __be32 *ptr;
8423 ptr = (__be32 *)(tcp+1);
8424 lro->saw_ts = 1;
8425 lro->cur_tsval = ntohl(*(ptr+1));
8426 lro->cur_tsecr = *(ptr+2);
8427 }
8428 lro->in_use = 1;
8429 }
8430
8431 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8432 {
8433 struct iphdr *ip = lro->iph;
8434 struct tcphdr *tcp = lro->tcph;
8435 __sum16 nchk;
8436 struct stat_block *statinfo = sp->mac_control.stats_info;
8437 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8438
8439 /* Update L3 header */
8440 ip->tot_len = htons(lro->total_len);
8441 ip->check = 0;
8442 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8443 ip->check = nchk;
8444
8445 /* Update L4 header */
8446 tcp->ack_seq = lro->tcp_ack;
8447 tcp->window = lro->window;
8448
8449 /* Update tsecr field if this session has timestamps enabled */
8450 if (lro->saw_ts) {
8451 __be32 *ptr = (__be32 *)(tcp + 1);
8452 *(ptr+2) = lro->cur_tsecr;
8453 }
8454
8455 /* Update counters required for calculation of
8456 * average no. of packets aggregated.
8457 */
8458 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8459 statinfo->sw_stat.num_aggregations++;
8460 }
8461
8462 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8463 struct tcphdr *tcp, u32 l4_pyld)
8464 {
8465 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8466 lro->total_len += l4_pyld;
8467 lro->frags_len += l4_pyld;
8468 lro->tcp_next_seq += l4_pyld;
8469 lro->sg_num++;
8470
8471 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8472 lro->tcp_ack = tcp->ack_seq;
8473 lro->window = tcp->window;
8474
8475 if (lro->saw_ts) {
8476 __be32 *ptr;
8477 /* Update tsecr and tsval from this packet */
8478 ptr = (__be32 *)(tcp+1);
8479 lro->cur_tsval = ntohl(*(ptr+1));
8480 lro->cur_tsecr = *(ptr + 2);
8481 }
8482 }
8483
8484 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8485 struct tcphdr *tcp, u32 tcp_pyld_len)
8486 {
8487 u8 *ptr;
8488
8489 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8490
8491 if (!tcp_pyld_len) {
8492 /* Runt frame or a pure ack */
8493 return -1;
8494 }
8495
8496 if (ip->ihl != 5) /* IP has options */
8497 return -1;
8498
8499 /* If we see CE codepoint in IP header, packet is not mergeable */
8500 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8501 return -1;
8502
8503 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8504 if (tcp->urg || tcp->psh || tcp->rst ||
8505 tcp->syn || tcp->fin ||
8506 tcp->ece || tcp->cwr || !tcp->ack) {
8507 /*
8508 * Currently recognize only the ack control word and
8509 * any other control field being set would result in
8510 * flushing the LRO session
8511 */
8512 return -1;
8513 }
8514
8515 /*
8516 * Allow only one TCP timestamp option. Don't aggregate if
8517 * any other options are detected.
8518 */
8519 if (tcp->doff != 5 && tcp->doff != 8)
8520 return -1;
8521
8522 if (tcp->doff == 8) {
8523 ptr = (u8 *)(tcp + 1);
8524 while (*ptr == TCPOPT_NOP)
8525 ptr++;
8526 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8527 return -1;
8528
8529 /* Ensure timestamp value increases monotonically */
8530 if (l_lro)
8531 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8532 return -1;
8533
8534 /* timestamp echo reply should be non-zero */
8535 if (*((__be32 *)(ptr+6)) == 0)
8536 return -1;
8537 }
8538
8539 return 0;
8540 }
8541
8542 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8543 u8 **tcp, u32 *tcp_len, struct lro **lro,
8544 struct RxD_t *rxdp, struct s2io_nic *sp)
8545 {
8546 struct iphdr *ip;
8547 struct tcphdr *tcph;
8548 int ret = 0, i;
8549 u16 vlan_tag = 0;
8550
8551 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8552 rxdp, sp);
8553 if (ret)
8554 return ret;
8555
8556 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8557
8558 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8559 tcph = (struct tcphdr *)*tcp;
8560 *tcp_len = get_l4_pyld_length(ip, tcph);
8561 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8562 struct lro *l_lro = &ring_data->lro0_n[i];
8563 if (l_lro->in_use) {
8564 if (check_for_socket_match(l_lro, ip, tcph))
8565 continue;
8566 /* Sock pair matched */
8567 *lro = l_lro;
8568
8569 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8570 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8571 "0x%x, actual 0x%x\n", __func__,
8572 (*lro)->tcp_next_seq,
8573 ntohl(tcph->seq));
8574
8575 sp->mac_control.stats_info->
8576 sw_stat.outof_sequence_pkts++;
8577 ret = 2;
8578 break;
8579 }
8580
8581 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8582 *tcp_len))
8583 ret = 1; /* Aggregate */
8584 else
8585 ret = 2; /* Flush both */
8586 break;
8587 }
8588 }
8589
8590 if (ret == 0) {
8591 /* Before searching for available LRO objects,
8592 * check if the pkt is L3/L4 aggregatable. If not
8593 * don't create new LRO session. Just send this
8594 * packet up.
8595 */
8596 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8597 return 5;
8598
8599 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8600 struct lro *l_lro = &ring_data->lro0_n[i];
8601 if (!(l_lro->in_use)) {
8602 *lro = l_lro;
8603 ret = 3; /* Begin anew */
8604 break;
8605 }
8606 }
8607 }
8608
8609 if (ret == 0) { /* sessions exceeded */
8610 DBG_PRINT(INFO_DBG, "%s:All LRO sessions already in use\n",
8611 __func__);
8612 *lro = NULL;
8613 return ret;
8614 }
8615
8616 switch (ret) {
8617 case 3:
8618 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8619 vlan_tag);
8620 break;
8621 case 2:
8622 update_L3L4_header(sp, *lro);
8623 break;
8624 case 1:
8625 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8626 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8627 update_L3L4_header(sp, *lro);
8628 ret = 4; /* Flush the LRO */
8629 }
8630 break;
8631 default:
8632 DBG_PRINT(ERR_DBG, "%s:Dont know, can't say!!\n", __func__);
8633 break;
8634 }
8635
8636 return ret;
8637 }
8638
8639 static void clear_lro_session(struct lro *lro)
8640 {
8641 static u16 lro_struct_size = sizeof(struct lro);
8642
8643 memset(lro, 0, lro_struct_size);
8644 }
8645
8646 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8647 {
8648 struct net_device *dev = skb->dev;
8649 struct s2io_nic *sp = netdev_priv(dev);
8650
8651 skb->protocol = eth_type_trans(skb, dev);
8652 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8653 /* Queueing the vlan frame to the upper layer */
8654 if (sp->config.napi)
8655 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8656 else
8657 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8658 } else {
8659 if (sp->config.napi)
8660 netif_receive_skb(skb);
8661 else
8662 netif_rx(skb);
8663 }
8664 }
8665
8666 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8667 struct sk_buff *skb, u32 tcp_len)
8668 {
8669 struct sk_buff *first = lro->parent;
8670
8671 first->len += tcp_len;
8672 first->data_len = lro->frags_len;
8673 skb_pull(skb, (skb->len - tcp_len));
8674 if (skb_shinfo(first)->frag_list)
8675 lro->last_frag->next = skb;
8676 else
8677 skb_shinfo(first)->frag_list = skb;
8678 first->truesize += skb->truesize;
8679 lro->last_frag = skb;
8680 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8681 return;
8682 }
8683
8684 /**
8685 * s2io_io_error_detected - called when PCI error is detected
8686 * @pdev: Pointer to PCI device
8687 * @state: The current pci connection state
8688 *
8689 * This function is called after a PCI bus error affecting
8690 * this device has been detected.
8691 */
8692 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8693 pci_channel_state_t state)
8694 {
8695 struct net_device *netdev = pci_get_drvdata(pdev);
8696 struct s2io_nic *sp = netdev_priv(netdev);
8697
8698 netif_device_detach(netdev);
8699
8700 if (state == pci_channel_io_perm_failure)
8701 return PCI_ERS_RESULT_DISCONNECT;
8702
8703 if (netif_running(netdev)) {
8704 /* Bring down the card, while avoiding PCI I/O */
8705 do_s2io_card_down(sp, 0);
8706 }
8707 pci_disable_device(pdev);
8708
8709 return PCI_ERS_RESULT_NEED_RESET;
8710 }
8711
8712 /**
8713 * s2io_io_slot_reset - called after the pci bus has been reset.
8714 * @pdev: Pointer to PCI device
8715 *
8716 * Restart the card from scratch, as if from a cold-boot.
8717 * At this point, the card has exprienced a hard reset,
8718 * followed by fixups by BIOS, and has its config space
8719 * set up identically to what it was at cold boot.
8720 */
8721 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8722 {
8723 struct net_device *netdev = pci_get_drvdata(pdev);
8724 struct s2io_nic *sp = netdev_priv(netdev);
8725
8726 if (pci_enable_device(pdev)) {
8727 pr_err("Cannot re-enable PCI device after reset.\n");
8728 return PCI_ERS_RESULT_DISCONNECT;
8729 }
8730
8731 pci_set_master(pdev);
8732 s2io_reset(sp);
8733
8734 return PCI_ERS_RESULT_RECOVERED;
8735 }
8736
8737 /**
8738 * s2io_io_resume - called when traffic can start flowing again.
8739 * @pdev: Pointer to PCI device
8740 *
8741 * This callback is called when the error recovery driver tells
8742 * us that its OK to resume normal operation.
8743 */
8744 static void s2io_io_resume(struct pci_dev *pdev)
8745 {
8746 struct net_device *netdev = pci_get_drvdata(pdev);
8747 struct s2io_nic *sp = netdev_priv(netdev);
8748
8749 if (netif_running(netdev)) {
8750 if (s2io_card_up(sp)) {
8751 pr_err("Can't bring device back up after reset.\n");
8752 return;
8753 }
8754
8755 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8756 s2io_card_down(sp);
8757 pr_err("Can't restore mac addr after reset.\n");
8758 return;
8759 }
8760 }
8761
8762 netif_device_attach(netdev);
8763 netif_tx_wake_all_queues(netdev);
8764 }
This page took 0.32913 seconds and 4 git commands to generate.