s2io: De-typedef driver.
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
69
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.16.1"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
90 {
91 int ret;
92
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96 return ret;
97 }
98
99 /*
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
103 */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC 1
113 #define LOW 2
114 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
115 {
116 struct mac_info *mac_control;
117
118 mac_control = &sp->mac_control;
119 if (rxb_size <= rxd_count[sp->rxd_mode])
120 return PANIC;
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122 return LOW;
123 return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
237 {"rmac_vlan_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
240 {"rmac_pf_discard"},
241 {"rmac_da_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
245 {"link_fault_cnt"},
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
249 {"parity_err_cnt"},
250 {"serious_err_cnt"},
251 {"soft_reset_cnt"},
252 {"fifo_full_cnt"},
253 {"ring_full_cnt"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
288 {
289 struct s2io_nic *nic = dev->priv;
290 unsigned long flags;
291
292 spin_lock_irqsave(&nic->tx_lock, flags);
293 nic->vlgrp = grp;
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300 struct s2io_nic *nic = dev->priv;
301 unsigned long flags;
302
303 spin_lock_irqsave(&nic->tx_lock, flags);
304 if (nic->vlgrp)
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310 * Constants to be programmed into the Xena's registers, to configure
311 * the XAUI.
312 */
313
314 #define END_SIGN 0x0
315 static const u64 herc_act_dtx_cfg[] = {
316 /* Set address */
317 0x8000051536750000ULL, 0x80000515367500E0ULL,
318 /* Write data */
319 0x8000051536750004ULL, 0x80000515367500E4ULL,
320 /* Set address */
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322 /* Write data */
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324 /* Set address */
325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
326 /* Write data */
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
328 /* Set address */
329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330 /* Write data */
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332 /* Done */
333 END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337 /* Set address */
338 0x8000051500000000ULL, 0x80000515000000E0ULL,
339 /* Write data */
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341 /* Set address */
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
343 /* Write data */
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345 /* Set address */
346 0x8002051500000000ULL, 0x80020515000000E0ULL,
347 /* Write data */
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349 END_SIGN
350 };
351
352 /*
353 * Constants for Fixing the MacAddress problem seen mostly on
354 * Alpha machines.
355 */
356 static const u64 fix_mac[] = {
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
371 END_SIGN
372 };
373
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
377
378
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
382
383
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401 * aggregation happens until we hit max IP pkt size(64K)
402 */
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 S2IO_PARM_INT(indicate_max_pkts, 0);
405
406 S2IO_PARM_INT(napi, 1);
407 S2IO_PARM_INT(ufo, 0);
408
409 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
410 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
411 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
412 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
413 static unsigned int rts_frm_len[MAX_RX_RINGS] =
414 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415
416 module_param_array(tx_fifo_len, uint, NULL, 0);
417 module_param_array(rx_ring_sz, uint, NULL, 0);
418 module_param_array(rts_frm_len, uint, NULL, 0);
419
420 /*
421 * S2IO device table.
422 * This table lists all the devices that this driver supports.
423 */
424 static struct pci_device_id s2io_tbl[] __devinitdata = {
425 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
426 PCI_ANY_ID, PCI_ANY_ID},
427 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
428 PCI_ANY_ID, PCI_ANY_ID},
429 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
430 PCI_ANY_ID, PCI_ANY_ID},
431 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
432 PCI_ANY_ID, PCI_ANY_ID},
433 {0,}
434 };
435
436 MODULE_DEVICE_TABLE(pci, s2io_tbl);
437
438 static struct pci_driver s2io_driver = {
439 .name = "S2IO",
440 .id_table = s2io_tbl,
441 .probe = s2io_init_nic,
442 .remove = __devexit_p(s2io_rem_nic),
443 };
444
445 /* A simplifier macro used both by init and free shared_mem Fns(). */
446 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
447
448 /**
449 * init_shared_mem - Allocation and Initialization of Memory
450 * @nic: Device private variable.
451 * Description: The function allocates all the memory areas shared
452 * between the NIC and the driver. This includes Tx descriptors,
453 * Rx descriptors and the statistics block.
454 */
455
456 static int init_shared_mem(struct s2io_nic *nic)
457 {
458 u32 size;
459 void *tmp_v_addr, *tmp_v_addr_next;
460 dma_addr_t tmp_p_addr, tmp_p_addr_next;
461 struct RxD_block *pre_rxd_blk = NULL;
462 int i, j, blk_cnt;
463 int lst_size, lst_per_page;
464 struct net_device *dev = nic->dev;
465 unsigned long tmp;
466 struct buffAdd *ba;
467
468 struct mac_info *mac_control;
469 struct config_param *config;
470
471 mac_control = &nic->mac_control;
472 config = &nic->config;
473
474
475 /* Allocation and initialization of TXDLs in FIOFs */
476 size = 0;
477 for (i = 0; i < config->tx_fifo_num; i++) {
478 size += config->tx_cfg[i].fifo_len;
479 }
480 if (size > MAX_AVAILABLE_TXDS) {
481 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
482 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
483 return -EINVAL;
484 }
485
486 lst_size = (sizeof(struct TxD) * config->max_txds);
487 lst_per_page = PAGE_SIZE / lst_size;
488
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int fifo_len = config->tx_cfg[i].fifo_len;
491 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
492 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
493 GFP_KERNEL);
494 if (!mac_control->fifos[i].list_info) {
495 DBG_PRINT(ERR_DBG,
496 "Malloc failed for list_info\n");
497 return -ENOMEM;
498 }
499 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
500 }
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
503 lst_per_page);
504 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506 config->tx_cfg[i].fifo_len - 1;
507 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509 config->tx_cfg[i].fifo_len - 1;
510 mac_control->fifos[i].fifo_no = i;
511 mac_control->fifos[i].nic = nic;
512 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
513
514 for (j = 0; j < page_num; j++) {
515 int k = 0;
516 dma_addr_t tmp_p;
517 void *tmp_v;
518 tmp_v = pci_alloc_consistent(nic->pdev,
519 PAGE_SIZE, &tmp_p);
520 if (!tmp_v) {
521 DBG_PRINT(ERR_DBG,
522 "pci_alloc_consistent ");
523 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
524 return -ENOMEM;
525 }
526 /* If we got a zero DMA address(can happen on
527 * certain platforms like PPC), reallocate.
528 * Store virtual address of page we don't want,
529 * to be freed later.
530 */
531 if (!tmp_p) {
532 mac_control->zerodma_virt_addr = tmp_v;
533 DBG_PRINT(INIT_DBG,
534 "%s: Zero DMA address for TxDL. ", dev->name);
535 DBG_PRINT(INIT_DBG,
536 "Virtual address %p\n", tmp_v);
537 tmp_v = pci_alloc_consistent(nic->pdev,
538 PAGE_SIZE, &tmp_p);
539 if (!tmp_v) {
540 DBG_PRINT(ERR_DBG,
541 "pci_alloc_consistent ");
542 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
543 return -ENOMEM;
544 }
545 }
546 while (k < lst_per_page) {
547 int l = (j * lst_per_page) + k;
548 if (l == config->tx_cfg[i].fifo_len)
549 break;
550 mac_control->fifos[i].list_info[l].list_virt_addr =
551 tmp_v + (k * lst_size);
552 mac_control->fifos[i].list_info[l].list_phy_addr =
553 tmp_p + (k * lst_size);
554 k++;
555 }
556 }
557 }
558
559 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
560 if (!nic->ufo_in_band_v)
561 return -ENOMEM;
562
563 /* Allocation and initialization of RXDs in Rings */
564 size = 0;
565 for (i = 0; i < config->rx_ring_num; i++) {
566 if (config->rx_cfg[i].num_rxd %
567 (rxd_count[nic->rxd_mode] + 1)) {
568 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
569 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
570 i);
571 DBG_PRINT(ERR_DBG, "RxDs per Block");
572 return FAILURE;
573 }
574 size += config->rx_cfg[i].num_rxd;
575 mac_control->rings[i].block_count =
576 config->rx_cfg[i].num_rxd /
577 (rxd_count[nic->rxd_mode] + 1 );
578 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
579 mac_control->rings[i].block_count;
580 }
581 if (nic->rxd_mode == RXD_MODE_1)
582 size = (size * (sizeof(struct RxD1)));
583 else
584 size = (size * (sizeof(struct RxD3)));
585
586 for (i = 0; i < config->rx_ring_num; i++) {
587 mac_control->rings[i].rx_curr_get_info.block_index = 0;
588 mac_control->rings[i].rx_curr_get_info.offset = 0;
589 mac_control->rings[i].rx_curr_get_info.ring_len =
590 config->rx_cfg[i].num_rxd - 1;
591 mac_control->rings[i].rx_curr_put_info.block_index = 0;
592 mac_control->rings[i].rx_curr_put_info.offset = 0;
593 mac_control->rings[i].rx_curr_put_info.ring_len =
594 config->rx_cfg[i].num_rxd - 1;
595 mac_control->rings[i].nic = nic;
596 mac_control->rings[i].ring_no = i;
597
598 blk_cnt = config->rx_cfg[i].num_rxd /
599 (rxd_count[nic->rxd_mode] + 1);
600 /* Allocating all the Rx blocks */
601 for (j = 0; j < blk_cnt; j++) {
602 struct rx_block_info *rx_blocks;
603 int l;
604
605 rx_blocks = &mac_control->rings[i].rx_blocks[j];
606 size = SIZE_OF_BLOCK; //size is always page size
607 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
608 &tmp_p_addr);
609 if (tmp_v_addr == NULL) {
610 /*
611 * In case of failure, free_shared_mem()
612 * is called, which should free any
613 * memory that was alloced till the
614 * failure happened.
615 */
616 rx_blocks->block_virt_addr = tmp_v_addr;
617 return -ENOMEM;
618 }
619 memset(tmp_v_addr, 0, size);
620 rx_blocks->block_virt_addr = tmp_v_addr;
621 rx_blocks->block_dma_addr = tmp_p_addr;
622 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
623 rxd_count[nic->rxd_mode],
624 GFP_KERNEL);
625 if (!rx_blocks->rxds)
626 return -ENOMEM;
627 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628 rx_blocks->rxds[l].virt_addr =
629 rx_blocks->block_virt_addr +
630 (rxd_size[nic->rxd_mode] * l);
631 rx_blocks->rxds[l].dma_addr =
632 rx_blocks->block_dma_addr +
633 (rxd_size[nic->rxd_mode] * l);
634 }
635 }
636 /* Interlinking all Rx Blocks */
637 for (j = 0; j < blk_cnt; j++) {
638 tmp_v_addr =
639 mac_control->rings[i].rx_blocks[j].block_virt_addr;
640 tmp_v_addr_next =
641 mac_control->rings[i].rx_blocks[(j + 1) %
642 blk_cnt].block_virt_addr;
643 tmp_p_addr =
644 mac_control->rings[i].rx_blocks[j].block_dma_addr;
645 tmp_p_addr_next =
646 mac_control->rings[i].rx_blocks[(j + 1) %
647 blk_cnt].block_dma_addr;
648
649 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
650 pre_rxd_blk->reserved_2_pNext_RxD_block =
651 (unsigned long) tmp_v_addr_next;
652 pre_rxd_blk->pNext_RxD_Blk_physical =
653 (u64) tmp_p_addr_next;
654 }
655 }
656 if (nic->rxd_mode >= RXD_MODE_3A) {
657 /*
658 * Allocation of Storages for buffer addresses in 2BUFF mode
659 * and the buffers as well.
660 */
661 for (i = 0; i < config->rx_ring_num; i++) {
662 blk_cnt = config->rx_cfg[i].num_rxd /
663 (rxd_count[nic->rxd_mode]+ 1);
664 mac_control->rings[i].ba =
665 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
666 GFP_KERNEL);
667 if (!mac_control->rings[i].ba)
668 return -ENOMEM;
669 for (j = 0; j < blk_cnt; j++) {
670 int k = 0;
671 mac_control->rings[i].ba[j] =
672 kmalloc((sizeof(struct buffAdd) *
673 (rxd_count[nic->rxd_mode] + 1)),
674 GFP_KERNEL);
675 if (!mac_control->rings[i].ba[j])
676 return -ENOMEM;
677 while (k != rxd_count[nic->rxd_mode]) {
678 ba = &mac_control->rings[i].ba[j][k];
679
680 ba->ba_0_org = (void *) kmalloc
681 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682 if (!ba->ba_0_org)
683 return -ENOMEM;
684 tmp = (unsigned long)ba->ba_0_org;
685 tmp += ALIGN_SIZE;
686 tmp &= ~((unsigned long) ALIGN_SIZE);
687 ba->ba_0 = (void *) tmp;
688
689 ba->ba_1_org = (void *) kmalloc
690 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691 if (!ba->ba_1_org)
692 return -ENOMEM;
693 tmp = (unsigned long) ba->ba_1_org;
694 tmp += ALIGN_SIZE;
695 tmp &= ~((unsigned long) ALIGN_SIZE);
696 ba->ba_1 = (void *) tmp;
697 k++;
698 }
699 }
700 }
701 }
702
703 /* Allocation and initialization of Statistics block */
704 size = sizeof(struct stat_block);
705 mac_control->stats_mem = pci_alloc_consistent
706 (nic->pdev, size, &mac_control->stats_mem_phy);
707
708 if (!mac_control->stats_mem) {
709 /*
710 * In case of failure, free_shared_mem() is called, which
711 * should free any memory that was alloced till the
712 * failure happened.
713 */
714 return -ENOMEM;
715 }
716 mac_control->stats_mem_sz = size;
717
718 tmp_v_addr = mac_control->stats_mem;
719 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
720 memset(tmp_v_addr, 0, size);
721 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722 (unsigned long long) tmp_p_addr);
723
724 return SUCCESS;
725 }
726
727 /**
728 * free_shared_mem - Free the allocated Memory
729 * @nic: Device private variable.
730 * Description: This function is to free all memory locations allocated by
731 * the init_shared_mem() function and return it to the kernel.
732 */
733
734 static void free_shared_mem(struct s2io_nic *nic)
735 {
736 int i, j, blk_cnt, size;
737 void *tmp_v_addr;
738 dma_addr_t tmp_p_addr;
739 struct mac_info *mac_control;
740 struct config_param *config;
741 int lst_size, lst_per_page;
742 struct net_device *dev = nic->dev;
743
744 if (!nic)
745 return;
746
747 mac_control = &nic->mac_control;
748 config = &nic->config;
749
750 lst_size = (sizeof(struct TxD) * config->max_txds);
751 lst_per_page = PAGE_SIZE / lst_size;
752
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755 lst_per_page);
756 for (j = 0; j < page_num; j++) {
757 int mem_blks = (j * lst_per_page);
758 if (!mac_control->fifos[i].list_info)
759 return;
760 if (!mac_control->fifos[i].list_info[mem_blks].
761 list_virt_addr)
762 break;
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
764 mac_control->fifos[i].
765 list_info[mem_blks].
766 list_virt_addr,
767 mac_control->fifos[i].
768 list_info[mem_blks].
769 list_phy_addr);
770 }
771 /* If we got a zero DMA address during allocation,
772 * free the page now
773 */
774 if (mac_control->zerodma_virt_addr) {
775 pci_free_consistent(nic->pdev, PAGE_SIZE,
776 mac_control->zerodma_virt_addr,
777 (dma_addr_t)0);
778 DBG_PRINT(INIT_DBG,
779 "%s: Freeing TxDL with zero DMA addr. ",
780 dev->name);
781 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782 mac_control->zerodma_virt_addr);
783 }
784 kfree(mac_control->fifos[i].list_info);
785 }
786
787 size = SIZE_OF_BLOCK;
788 for (i = 0; i < config->rx_ring_num; i++) {
789 blk_cnt = mac_control->rings[i].block_count;
790 for (j = 0; j < blk_cnt; j++) {
791 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792 block_virt_addr;
793 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794 block_dma_addr;
795 if (tmp_v_addr == NULL)
796 break;
797 pci_free_consistent(nic->pdev, size,
798 tmp_v_addr, tmp_p_addr);
799 kfree(mac_control->rings[i].rx_blocks[j].rxds);
800 }
801 }
802
803 if (nic->rxd_mode >= RXD_MODE_3A) {
804 /* Freeing buffer storage addresses in 2BUFF mode. */
805 for (i = 0; i < config->rx_ring_num; i++) {
806 blk_cnt = config->rx_cfg[i].num_rxd /
807 (rxd_count[nic->rxd_mode] + 1);
808 for (j = 0; j < blk_cnt; j++) {
809 int k = 0;
810 if (!mac_control->rings[i].ba[j])
811 continue;
812 while (k != rxd_count[nic->rxd_mode]) {
813 struct buffAdd *ba =
814 &mac_control->rings[i].ba[j][k];
815 kfree(ba->ba_0_org);
816 kfree(ba->ba_1_org);
817 k++;
818 }
819 kfree(mac_control->rings[i].ba[j]);
820 }
821 kfree(mac_control->rings[i].ba);
822 }
823 }
824
825 if (mac_control->stats_mem) {
826 pci_free_consistent(nic->pdev,
827 mac_control->stats_mem_sz,
828 mac_control->stats_mem,
829 mac_control->stats_mem_phy);
830 }
831 if (nic->ufo_in_band_v)
832 kfree(nic->ufo_in_band_v);
833 }
834
835 /**
836 * s2io_verify_pci_mode -
837 */
838
839 static int s2io_verify_pci_mode(struct s2io_nic *nic)
840 {
841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
842 register u64 val64 = 0;
843 int mode;
844
845 val64 = readq(&bar0->pci_mode);
846 mode = (u8)GET_PCI_MODE(val64);
847
848 if ( val64 & PCI_MODE_UNKNOWN_MODE)
849 return -1; /* Unknown PCI mode */
850 return mode;
851 }
852
853 #define NEC_VENID 0x1033
854 #define NEC_DEVID 0x0125
855 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
856 {
857 struct pci_dev *tdev = NULL;
858 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
860 if (tdev->bus == s2io_pdev->bus->parent)
861 pci_dev_put(tdev);
862 return 1;
863 }
864 }
865 return 0;
866 }
867
868 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
869 /**
870 * s2io_print_pci_mode -
871 */
872 static int s2io_print_pci_mode(struct s2io_nic *nic)
873 {
874 struct XENA_dev_config __iomem *bar0 = nic->bar0;
875 register u64 val64 = 0;
876 int mode;
877 struct config_param *config = &nic->config;
878
879 val64 = readq(&bar0->pci_mode);
880 mode = (u8)GET_PCI_MODE(val64);
881
882 if ( val64 & PCI_MODE_UNKNOWN_MODE)
883 return -1; /* Unknown PCI mode */
884
885 config->bus_speed = bus_speed[mode];
886
887 if (s2io_on_nec_bridge(nic->pdev)) {
888 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
889 nic->dev->name);
890 return mode;
891 }
892
893 if (val64 & PCI_MODE_32_BITS) {
894 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
895 } else {
896 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
897 }
898
899 switch(mode) {
900 case PCI_MODE_PCI_33:
901 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
902 break;
903 case PCI_MODE_PCI_66:
904 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
905 break;
906 case PCI_MODE_PCIX_M1_66:
907 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
908 break;
909 case PCI_MODE_PCIX_M1_100:
910 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
911 break;
912 case PCI_MODE_PCIX_M1_133:
913 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
914 break;
915 case PCI_MODE_PCIX_M2_66:
916 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
917 break;
918 case PCI_MODE_PCIX_M2_100:
919 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
920 break;
921 case PCI_MODE_PCIX_M2_133:
922 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
923 break;
924 default:
925 return -1; /* Unsupported bus speed */
926 }
927
928 return mode;
929 }
930
931 /**
932 * init_nic - Initialization of hardware
933 * @nic: device peivate variable
934 * Description: The function sequentially configures every block
935 * of the H/W from their reset values.
936 * Return Value: SUCCESS on success and
937 * '-1' on failure (endian settings incorrect).
938 */
939
940 static int init_nic(struct s2io_nic *nic)
941 {
942 struct XENA_dev_config __iomem *bar0 = nic->bar0;
943 struct net_device *dev = nic->dev;
944 register u64 val64 = 0;
945 void __iomem *add;
946 u32 time;
947 int i, j;
948 struct mac_info *mac_control;
949 struct config_param *config;
950 int dtx_cnt = 0;
951 unsigned long long mem_share;
952 int mem_size;
953
954 mac_control = &nic->mac_control;
955 config = &nic->config;
956
957 /* to set the swapper controle on the card */
958 if(s2io_set_swapper(nic)) {
959 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
960 return -1;
961 }
962
963 /*
964 * Herc requires EOI to be removed from reset before XGXS, so..
965 */
966 if (nic->device_type & XFRAME_II_DEVICE) {
967 val64 = 0xA500000000ULL;
968 writeq(val64, &bar0->sw_reset);
969 msleep(500);
970 val64 = readq(&bar0->sw_reset);
971 }
972
973 /* Remove XGXS from reset state */
974 val64 = 0;
975 writeq(val64, &bar0->sw_reset);
976 msleep(500);
977 val64 = readq(&bar0->sw_reset);
978
979 /* Enable Receiving broadcasts */
980 add = &bar0->mac_cfg;
981 val64 = readq(&bar0->mac_cfg);
982 val64 |= MAC_RMAC_BCAST_ENABLE;
983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984 writel((u32) val64, add);
985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986 writel((u32) (val64 >> 32), (add + 4));
987
988 /* Read registers in all blocks */
989 val64 = readq(&bar0->mac_int_mask);
990 val64 = readq(&bar0->mc_int_mask);
991 val64 = readq(&bar0->xgxs_int_mask);
992
993 /* Set MTU */
994 val64 = dev->mtu;
995 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996
997 if (nic->device_type & XFRAME_II_DEVICE) {
998 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
999 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1000 &bar0->dtx_control, UF);
1001 if (dtx_cnt & 0x1)
1002 msleep(1); /* Necessary!! */
1003 dtx_cnt++;
1004 }
1005 } else {
1006 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008 &bar0->dtx_control, UF);
1009 val64 = readq(&bar0->dtx_control);
1010 dtx_cnt++;
1011 }
1012 }
1013
1014 /* Tx DMA Initialization */
1015 val64 = 0;
1016 writeq(val64, &bar0->tx_fifo_partition_0);
1017 writeq(val64, &bar0->tx_fifo_partition_1);
1018 writeq(val64, &bar0->tx_fifo_partition_2);
1019 writeq(val64, &bar0->tx_fifo_partition_3);
1020
1021
1022 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1023 val64 |=
1024 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025 13) | vBIT(config->tx_cfg[i].fifo_priority,
1026 ((i * 32) + 5), 3);
1027
1028 if (i == (config->tx_fifo_num - 1)) {
1029 if (i % 2 == 0)
1030 i++;
1031 }
1032
1033 switch (i) {
1034 case 1:
1035 writeq(val64, &bar0->tx_fifo_partition_0);
1036 val64 = 0;
1037 break;
1038 case 3:
1039 writeq(val64, &bar0->tx_fifo_partition_1);
1040 val64 = 0;
1041 break;
1042 case 5:
1043 writeq(val64, &bar0->tx_fifo_partition_2);
1044 val64 = 0;
1045 break;
1046 case 7:
1047 writeq(val64, &bar0->tx_fifo_partition_3);
1048 break;
1049 }
1050 }
1051
1052 /*
1053 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055 */
1056 if ((nic->device_type == XFRAME_I_DEVICE) &&
1057 (get_xena_rev_id(nic->pdev) < 4))
1058 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059
1060 val64 = readq(&bar0->tx_fifo_partition_0);
1061 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1063
1064 /*
1065 * Initialization of Tx_PA_CONFIG register to ignore packet
1066 * integrity checking.
1067 */
1068 val64 = readq(&bar0->tx_pa_cfg);
1069 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071 writeq(val64, &bar0->tx_pa_cfg);
1072
1073 /* Rx DMA intialization. */
1074 val64 = 0;
1075 for (i = 0; i < config->rx_ring_num; i++) {
1076 val64 |=
1077 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1078 3);
1079 }
1080 writeq(val64, &bar0->rx_queue_priority);
1081
1082 /*
1083 * Allocating equal share of memory to all the
1084 * configured Rings.
1085 */
1086 val64 = 0;
1087 if (nic->device_type & XFRAME_II_DEVICE)
1088 mem_size = 32;
1089 else
1090 mem_size = 64;
1091
1092 for (i = 0; i < config->rx_ring_num; i++) {
1093 switch (i) {
1094 case 0:
1095 mem_share = (mem_size / config->rx_ring_num +
1096 mem_size % config->rx_ring_num);
1097 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1098 continue;
1099 case 1:
1100 mem_share = (mem_size / config->rx_ring_num);
1101 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1102 continue;
1103 case 2:
1104 mem_share = (mem_size / config->rx_ring_num);
1105 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1106 continue;
1107 case 3:
1108 mem_share = (mem_size / config->rx_ring_num);
1109 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1110 continue;
1111 case 4:
1112 mem_share = (mem_size / config->rx_ring_num);
1113 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1114 continue;
1115 case 5:
1116 mem_share = (mem_size / config->rx_ring_num);
1117 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1118 continue;
1119 case 6:
1120 mem_share = (mem_size / config->rx_ring_num);
1121 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1122 continue;
1123 case 7:
1124 mem_share = (mem_size / config->rx_ring_num);
1125 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1126 continue;
1127 }
1128 }
1129 writeq(val64, &bar0->rx_queue_cfg);
1130
1131 /*
1132 * Filling Tx round robin registers
1133 * as per the number of FIFOs
1134 */
1135 switch (config->tx_fifo_num) {
1136 case 1:
1137 val64 = 0x0000000000000000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_0);
1139 writeq(val64, &bar0->tx_w_round_robin_1);
1140 writeq(val64, &bar0->tx_w_round_robin_2);
1141 writeq(val64, &bar0->tx_w_round_robin_3);
1142 writeq(val64, &bar0->tx_w_round_robin_4);
1143 break;
1144 case 2:
1145 val64 = 0x0000010000010000ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_0);
1147 val64 = 0x0100000100000100ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_1);
1149 val64 = 0x0001000001000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_2);
1151 val64 = 0x0000010000010000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_3);
1153 val64 = 0x0100000000000000ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_4);
1155 break;
1156 case 3:
1157 val64 = 0x0001000102000001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_0);
1159 val64 = 0x0001020000010001ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_1);
1161 val64 = 0x0200000100010200ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_2);
1163 val64 = 0x0001000102000001ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_3);
1165 val64 = 0x0001020000000000ULL;
1166 writeq(val64, &bar0->tx_w_round_robin_4);
1167 break;
1168 case 4:
1169 val64 = 0x0001020300010200ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_0);
1171 val64 = 0x0100000102030001ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_1);
1173 val64 = 0x0200010000010203ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_2);
1175 val64 = 0x0001020001000001ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_3);
1177 val64 = 0x0203000100000000ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_4);
1179 break;
1180 case 5:
1181 val64 = 0x0001000203000102ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_0);
1183 val64 = 0x0001020001030004ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_1);
1185 val64 = 0x0001000203000102ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_2);
1187 val64 = 0x0001020001030004ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_3);
1189 val64 = 0x0001000000000000ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_4);
1191 break;
1192 case 6:
1193 val64 = 0x0001020304000102ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_0);
1195 val64 = 0x0304050001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_1);
1197 val64 = 0x0203000100000102ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_2);
1199 val64 = 0x0304000102030405ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_3);
1201 val64 = 0x0001000200000000ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_4);
1203 break;
1204 case 7:
1205 val64 = 0x0001020001020300ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_0);
1207 val64 = 0x0102030400010203ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_1);
1209 val64 = 0x0405060001020001ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_2);
1211 val64 = 0x0304050000010200ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_3);
1213 val64 = 0x0102030000000000ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_4);
1215 break;
1216 case 8:
1217 val64 = 0x0001020300040105ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_0);
1219 val64 = 0x0200030106000204ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 val64 = 0x0103000502010007ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_2);
1223 val64 = 0x0304010002060500ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_3);
1225 val64 = 0x0103020400000000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 }
1229
1230 /* Enable all configured Tx FIFO partitions */
1231 val64 = readq(&bar0->tx_fifo_partition_0);
1232 val64 |= (TX_FIFO_PARTITION_EN);
1233 writeq(val64, &bar0->tx_fifo_partition_0);
1234
1235 /* Filling the Rx round robin registers as per the
1236 * number of Rings and steering based on QoS.
1237 */
1238 switch (config->rx_ring_num) {
1239 case 1:
1240 val64 = 0x8080808080808080ULL;
1241 writeq(val64, &bar0->rts_qos_steering);
1242 break;
1243 case 2:
1244 val64 = 0x0000010000010000ULL;
1245 writeq(val64, &bar0->rx_w_round_robin_0);
1246 val64 = 0x0100000100000100ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_1);
1248 val64 = 0x0001000001000001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_2);
1250 val64 = 0x0000010000010000ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_3);
1252 val64 = 0x0100000000000000ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_4);
1254
1255 val64 = 0x8080808040404040ULL;
1256 writeq(val64, &bar0->rts_qos_steering);
1257 break;
1258 case 3:
1259 val64 = 0x0001000102000001ULL;
1260 writeq(val64, &bar0->rx_w_round_robin_0);
1261 val64 = 0x0001020000010001ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_1);
1263 val64 = 0x0200000100010200ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_2);
1265 val64 = 0x0001000102000001ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_3);
1267 val64 = 0x0001020000000000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_4);
1269
1270 val64 = 0x8080804040402020ULL;
1271 writeq(val64, &bar0->rts_qos_steering);
1272 break;
1273 case 4:
1274 val64 = 0x0001020300010200ULL;
1275 writeq(val64, &bar0->rx_w_round_robin_0);
1276 val64 = 0x0100000102030001ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_1);
1278 val64 = 0x0200010000010203ULL;
1279 writeq(val64, &bar0->rx_w_round_robin_2);
1280 val64 = 0x0001020001000001ULL;
1281 writeq(val64, &bar0->rx_w_round_robin_3);
1282 val64 = 0x0203000100000000ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_4);
1284
1285 val64 = 0x8080404020201010ULL;
1286 writeq(val64, &bar0->rts_qos_steering);
1287 break;
1288 case 5:
1289 val64 = 0x0001000203000102ULL;
1290 writeq(val64, &bar0->rx_w_round_robin_0);
1291 val64 = 0x0001020001030004ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_1);
1293 val64 = 0x0001000203000102ULL;
1294 writeq(val64, &bar0->rx_w_round_robin_2);
1295 val64 = 0x0001020001030004ULL;
1296 writeq(val64, &bar0->rx_w_round_robin_3);
1297 val64 = 0x0001000000000000ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_4);
1299
1300 val64 = 0x8080404020201008ULL;
1301 writeq(val64, &bar0->rts_qos_steering);
1302 break;
1303 case 6:
1304 val64 = 0x0001020304000102ULL;
1305 writeq(val64, &bar0->rx_w_round_robin_0);
1306 val64 = 0x0304050001020001ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_1);
1308 val64 = 0x0203000100000102ULL;
1309 writeq(val64, &bar0->rx_w_round_robin_2);
1310 val64 = 0x0304000102030405ULL;
1311 writeq(val64, &bar0->rx_w_round_robin_3);
1312 val64 = 0x0001000200000000ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_4);
1314
1315 val64 = 0x8080404020100804ULL;
1316 writeq(val64, &bar0->rts_qos_steering);
1317 break;
1318 case 7:
1319 val64 = 0x0001020001020300ULL;
1320 writeq(val64, &bar0->rx_w_round_robin_0);
1321 val64 = 0x0102030400010203ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_1);
1323 val64 = 0x0405060001020001ULL;
1324 writeq(val64, &bar0->rx_w_round_robin_2);
1325 val64 = 0x0304050000010200ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_3);
1327 val64 = 0x0102030000000000ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_4);
1329
1330 val64 = 0x8080402010080402ULL;
1331 writeq(val64, &bar0->rts_qos_steering);
1332 break;
1333 case 8:
1334 val64 = 0x0001020300040105ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_0);
1336 val64 = 0x0200030106000204ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_1);
1338 val64 = 0x0103000502010007ULL;
1339 writeq(val64, &bar0->rx_w_round_robin_2);
1340 val64 = 0x0304010002060500ULL;
1341 writeq(val64, &bar0->rx_w_round_robin_3);
1342 val64 = 0x0103020400000000ULL;
1343 writeq(val64, &bar0->rx_w_round_robin_4);
1344
1345 val64 = 0x8040201008040201ULL;
1346 writeq(val64, &bar0->rts_qos_steering);
1347 break;
1348 }
1349
1350 /* UDP Fix */
1351 val64 = 0;
1352 for (i = 0; i < 8; i++)
1353 writeq(val64, &bar0->rts_frm_len_n[i]);
1354
1355 /* Set the default rts frame length for the rings configured */
1356 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357 for (i = 0 ; i < config->rx_ring_num ; i++)
1358 writeq(val64, &bar0->rts_frm_len_n[i]);
1359
1360 /* Set the frame length for the configured rings
1361 * desired by the user
1362 */
1363 for (i = 0; i < config->rx_ring_num; i++) {
1364 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365 * specified frame length steering.
1366 * If the user provides the frame length then program
1367 * the rts_frm_len register for those values or else
1368 * leave it as it is.
1369 */
1370 if (rts_frm_len[i] != 0) {
1371 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372 &bar0->rts_frm_len_n[i]);
1373 }
1374 }
1375
1376 /* Program statistics memory */
1377 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1378
1379 if (nic->device_type == XFRAME_II_DEVICE) {
1380 val64 = STAT_BC(0x320);
1381 writeq(val64, &bar0->stat_byte_cnt);
1382 }
1383
1384 /*
1385 * Initializing the sampling rate for the device to calculate the
1386 * bandwidth utilization.
1387 */
1388 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390 writeq(val64, &bar0->mac_link_util);
1391
1392
1393 /*
1394 * Initializing the Transmit and Receive Traffic Interrupt
1395 * Scheme.
1396 */
1397 /*
1398 * TTI Initialization. Default Tx timer gets us about
1399 * 250 interrupts per sec. Continuous interrupts are enabled
1400 * by default.
1401 */
1402 if (nic->device_type == XFRAME_II_DEVICE) {
1403 int count = (nic->config.bus_speed * 125)/2;
1404 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1405 } else {
1406
1407 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408 }
1409 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1410 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1411 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1412 if (use_continuous_tx_intrs)
1413 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1414 writeq(val64, &bar0->tti_data1_mem);
1415
1416 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1418 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1419 writeq(val64, &bar0->tti_data2_mem);
1420
1421 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422 writeq(val64, &bar0->tti_command_mem);
1423
1424 /*
1425 * Once the operation completes, the Strobe bit of the command
1426 * register will be reset. We poll for this particular condition
1427 * We wait for a maximum of 500ms for the operation to complete,
1428 * if it's not complete by then we return error.
1429 */
1430 time = 0;
1431 while (TRUE) {
1432 val64 = readq(&bar0->tti_command_mem);
1433 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1434 break;
1435 }
1436 if (time > 10) {
1437 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1438 dev->name);
1439 return -1;
1440 }
1441 msleep(50);
1442 time++;
1443 }
1444
1445 if (nic->config.bimodal) {
1446 int k = 0;
1447 for (k = 0; k < config->rx_ring_num; k++) {
1448 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450 writeq(val64, &bar0->tti_command_mem);
1451
1452 /*
1453 * Once the operation completes, the Strobe bit of the command
1454 * register will be reset. We poll for this particular condition
1455 * We wait for a maximum of 500ms for the operation to complete,
1456 * if it's not complete by then we return error.
1457 */
1458 time = 0;
1459 while (TRUE) {
1460 val64 = readq(&bar0->tti_command_mem);
1461 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1462 break;
1463 }
1464 if (time > 10) {
1465 DBG_PRINT(ERR_DBG,
1466 "%s: TTI init Failed\n",
1467 dev->name);
1468 return -1;
1469 }
1470 time++;
1471 msleep(50);
1472 }
1473 }
1474 } else {
1475
1476 /* RTI Initialization */
1477 if (nic->device_type == XFRAME_II_DEVICE) {
1478 /*
1479 * Programmed to generate Apprx 500 Intrs per
1480 * second
1481 */
1482 int count = (nic->config.bus_speed * 125)/4;
1483 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1484 } else {
1485 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486 }
1487 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1490
1491 writeq(val64, &bar0->rti_data1_mem);
1492
1493 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1494 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495 if (nic->intr_type == MSI_X)
1496 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498 else
1499 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500 RTI_DATA2_MEM_RX_UFC_D(0x80));
1501 writeq(val64, &bar0->rti_data2_mem);
1502
1503 for (i = 0; i < config->rx_ring_num; i++) {
1504 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505 | RTI_CMD_MEM_OFFSET(i);
1506 writeq(val64, &bar0->rti_command_mem);
1507
1508 /*
1509 * Once the operation completes, the Strobe bit of the
1510 * command register will be reset. We poll for this
1511 * particular condition. We wait for a maximum of 500ms
1512 * for the operation to complete, if it's not complete
1513 * by then we return error.
1514 */
1515 time = 0;
1516 while (TRUE) {
1517 val64 = readq(&bar0->rti_command_mem);
1518 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1519 break;
1520 }
1521 if (time > 10) {
1522 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1523 dev->name);
1524 return -1;
1525 }
1526 time++;
1527 msleep(50);
1528 }
1529 }
1530 }
1531
1532 /*
1533 * Initializing proper values as Pause threshold into all
1534 * the 8 Queues on Rx side.
1535 */
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538
1539 /* Disable RMAC PAD STRIPPING */
1540 add = &bar0->mac_cfg;
1541 val64 = readq(&bar0->mac_cfg);
1542 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544 writel((u32) (val64), add);
1545 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546 writel((u32) (val64 >> 32), (add + 4));
1547 val64 = readq(&bar0->mac_cfg);
1548
1549 /* Enable FCS stripping by adapter */
1550 add = &bar0->mac_cfg;
1551 val64 = readq(&bar0->mac_cfg);
1552 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553 if (nic->device_type == XFRAME_II_DEVICE)
1554 writeq(val64, &bar0->mac_cfg);
1555 else {
1556 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557 writel((u32) (val64), add);
1558 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559 writel((u32) (val64 >> 32), (add + 4));
1560 }
1561
1562 /*
1563 * Set the time value to be inserted in the pause frame
1564 * generated by xena.
1565 */
1566 val64 = readq(&bar0->rmac_pause_cfg);
1567 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569 writeq(val64, &bar0->rmac_pause_cfg);
1570
1571 /*
1572 * Set the Threshold Limit for Generating the pause frame
1573 * If the amount of data in any Queue exceeds ratio of
1574 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575 * pause frame is generated
1576 */
1577 val64 = 0;
1578 for (i = 0; i < 4; i++) {
1579 val64 |=
1580 (((u64) 0xFF00 | nic->mac_control.
1581 mc_pause_threshold_q0q3)
1582 << (i * 2 * 8));
1583 }
1584 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585
1586 val64 = 0;
1587 for (i = 0; i < 4; i++) {
1588 val64 |=
1589 (((u64) 0xFF00 | nic->mac_control.
1590 mc_pause_threshold_q4q7)
1591 << (i * 2 * 8));
1592 }
1593 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1594
1595 /*
1596 * TxDMA will stop Read request if the number of read split has
1597 * exceeded the limit pointed by shared_splits
1598 */
1599 val64 = readq(&bar0->pic_control);
1600 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601 writeq(val64, &bar0->pic_control);
1602
1603 if (nic->config.bus_speed == 266) {
1604 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605 writeq(0x0, &bar0->read_retry_delay);
1606 writeq(0x0, &bar0->write_retry_delay);
1607 }
1608
1609 /*
1610 * Programming the Herc to split every write transaction
1611 * that does not start on an ADB to reduce disconnects.
1612 */
1613 if (nic->device_type == XFRAME_II_DEVICE) {
1614 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1615 MISC_LINK_STABILITY_PRD(3);
1616 writeq(val64, &bar0->misc_control);
1617 val64 = readq(&bar0->pic_control2);
1618 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1619 writeq(val64, &bar0->pic_control2);
1620 }
1621 if (strstr(nic->product_name, "CX4")) {
1622 val64 = TMAC_AVG_IPG(0x17);
1623 writeq(val64, &bar0->tmac_avg_ipg);
1624 }
1625
1626 return SUCCESS;
1627 }
1628 #define LINK_UP_DOWN_INTERRUPT 1
1629 #define MAC_RMAC_ERR_TIMER 2
1630
1631 static int s2io_link_fault_indication(struct s2io_nic *nic)
1632 {
1633 if (nic->intr_type != INTA)
1634 return MAC_RMAC_ERR_TIMER;
1635 if (nic->device_type == XFRAME_II_DEVICE)
1636 return LINK_UP_DOWN_INTERRUPT;
1637 else
1638 return MAC_RMAC_ERR_TIMER;
1639 }
1640
1641 /**
1642 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1643 * @nic: device private variable,
1644 * @mask: A mask indicating which Intr block must be modified and,
1645 * @flag: A flag indicating whether to enable or disable the Intrs.
1646 * Description: This function will either disable or enable the interrupts
1647 * depending on the flag argument. The mask argument can be used to
1648 * enable/disable any Intr block.
1649 * Return Value: NONE.
1650 */
1651
1652 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653 {
1654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1655 register u64 val64 = 0, temp64 = 0;
1656
1657 /* Top level interrupt classification */
1658 /* PIC Interrupts */
1659 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1660 /* Enable PIC Intrs in the general intr mask register */
1661 val64 = TXPIC_INT_M;
1662 if (flag == ENABLE_INTRS) {
1663 temp64 = readq(&bar0->general_int_mask);
1664 temp64 &= ~((u64) val64);
1665 writeq(temp64, &bar0->general_int_mask);
1666 /*
1667 * If Hercules adapter enable GPIO otherwise
1668 * disable all PCIX, Flash, MDIO, IIC and GPIO
1669 * interrupts for now.
1670 * TODO
1671 */
1672 if (s2io_link_fault_indication(nic) ==
1673 LINK_UP_DOWN_INTERRUPT ) {
1674 temp64 = readq(&bar0->pic_int_mask);
1675 temp64 &= ~((u64) PIC_INT_GPIO);
1676 writeq(temp64, &bar0->pic_int_mask);
1677 temp64 = readq(&bar0->gpio_int_mask);
1678 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1679 writeq(temp64, &bar0->gpio_int_mask);
1680 } else {
1681 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1682 }
1683 /*
1684 * No MSI Support is available presently, so TTI and
1685 * RTI interrupts are also disabled.
1686 */
1687 } else if (flag == DISABLE_INTRS) {
1688 /*
1689 * Disable PIC Intrs in the general
1690 * intr mask register
1691 */
1692 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1693 temp64 = readq(&bar0->general_int_mask);
1694 val64 |= temp64;
1695 writeq(val64, &bar0->general_int_mask);
1696 }
1697 }
1698
1699 /* MAC Interrupts */
1700 /* Enabling/Disabling MAC interrupts */
1701 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1702 val64 = TXMAC_INT_M | RXMAC_INT_M;
1703 if (flag == ENABLE_INTRS) {
1704 temp64 = readq(&bar0->general_int_mask);
1705 temp64 &= ~((u64) val64);
1706 writeq(temp64, &bar0->general_int_mask);
1707 /*
1708 * All MAC block error interrupts are disabled for now
1709 * TODO
1710 */
1711 } else if (flag == DISABLE_INTRS) {
1712 /*
1713 * Disable MAC Intrs in the general intr mask register
1714 */
1715 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1716 writeq(DISABLE_ALL_INTRS,
1717 &bar0->mac_rmac_err_mask);
1718
1719 temp64 = readq(&bar0->general_int_mask);
1720 val64 |= temp64;
1721 writeq(val64, &bar0->general_int_mask);
1722 }
1723 }
1724
1725 /* Tx traffic interrupts */
1726 if (mask & TX_TRAFFIC_INTR) {
1727 val64 = TXTRAFFIC_INT_M;
1728 if (flag == ENABLE_INTRS) {
1729 temp64 = readq(&bar0->general_int_mask);
1730 temp64 &= ~((u64) val64);
1731 writeq(temp64, &bar0->general_int_mask);
1732 /*
1733 * Enable all the Tx side interrupts
1734 * writing 0 Enables all 64 TX interrupt levels
1735 */
1736 writeq(0x0, &bar0->tx_traffic_mask);
1737 } else if (flag == DISABLE_INTRS) {
1738 /*
1739 * Disable Tx Traffic Intrs in the general intr mask
1740 * register.
1741 */
1742 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1743 temp64 = readq(&bar0->general_int_mask);
1744 val64 |= temp64;
1745 writeq(val64, &bar0->general_int_mask);
1746 }
1747 }
1748
1749 /* Rx traffic interrupts */
1750 if (mask & RX_TRAFFIC_INTR) {
1751 val64 = RXTRAFFIC_INT_M;
1752 if (flag == ENABLE_INTRS) {
1753 temp64 = readq(&bar0->general_int_mask);
1754 temp64 &= ~((u64) val64);
1755 writeq(temp64, &bar0->general_int_mask);
1756 /* writing 0 Enables all 8 RX interrupt levels */
1757 writeq(0x0, &bar0->rx_traffic_mask);
1758 } else if (flag == DISABLE_INTRS) {
1759 /*
1760 * Disable Rx Traffic Intrs in the general intr mask
1761 * register.
1762 */
1763 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1764 temp64 = readq(&bar0->general_int_mask);
1765 val64 |= temp64;
1766 writeq(val64, &bar0->general_int_mask);
1767 }
1768 }
1769 }
1770
1771 /**
1772 * verify_pcc_quiescent- Checks for PCC quiescent state
1773 * Return: 1 If PCC is quiescence
1774 * 0 If PCC is not quiescence
1775 */
1776 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1777 {
1778 int ret = 0, herc;
1779 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1780 u64 val64 = readq(&bar0->adapter_status);
1781
1782 herc = (sp->device_type == XFRAME_II_DEVICE);
1783
1784 if (flag == FALSE) {
1785 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1786 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1787 ret = 1;
1788 } else {
1789 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1790 ret = 1;
1791 }
1792 } else {
1793 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1794 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1795 ADAPTER_STATUS_RMAC_PCC_IDLE))
1796 ret = 1;
1797 } else {
1798 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1799 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1800 ret = 1;
1801 }
1802 }
1803
1804 return ret;
1805 }
1806 /**
1807 * verify_xena_quiescence - Checks whether the H/W is ready
1808 * Description: Returns whether the H/W is ready to go or not. Depending
1809 * on whether adapter enable bit was written or not the comparison
1810 * differs and the calling function passes the input argument flag to
1811 * indicate this.
1812 * Return: 1 If xena is quiescence
1813 * 0 If Xena is not quiescence
1814 */
1815
1816 static int verify_xena_quiescence(struct s2io_nic *sp)
1817 {
1818 int mode;
1819 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1820 u64 val64 = readq(&bar0->adapter_status);
1821 mode = s2io_verify_pci_mode(sp);
1822
1823 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1824 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1825 return 0;
1826 }
1827 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1828 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1829 return 0;
1830 }
1831 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1832 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1833 return 0;
1834 }
1835 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1836 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1837 return 0;
1838 }
1839 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1840 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1841 return 0;
1842 }
1843 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1844 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1845 return 0;
1846 }
1847 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1848 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1849 return 0;
1850 }
1851 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1852 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1853 return 0;
1854 }
1855
1856 /*
1857 * In PCI 33 mode, the P_PLL is not used, and therefore,
1858 * the the P_PLL_LOCK bit in the adapter_status register will
1859 * not be asserted.
1860 */
1861 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1862 sp->device_type == XFRAME_II_DEVICE && mode !=
1863 PCI_MODE_PCI_33) {
1864 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1865 return 0;
1866 }
1867 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1868 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1869 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1870 return 0;
1871 }
1872 return 1;
1873 }
1874
1875 /**
1876 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1877 * @sp: Pointer to device specifc structure
1878 * Description :
1879 * New procedure to clear mac address reading problems on Alpha platforms
1880 *
1881 */
1882
1883 static void fix_mac_address(struct s2io_nic * sp)
1884 {
1885 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1886 u64 val64;
1887 int i = 0;
1888
1889 while (fix_mac[i] != END_SIGN) {
1890 writeq(fix_mac[i++], &bar0->gpio_control);
1891 udelay(10);
1892 val64 = readq(&bar0->gpio_control);
1893 }
1894 }
1895
1896 /**
1897 * start_nic - Turns the device on
1898 * @nic : device private variable.
1899 * Description:
1900 * This function actually turns the device on. Before this function is
1901 * called,all Registers are configured from their reset states
1902 * and shared memory is allocated but the NIC is still quiescent. On
1903 * calling this function, the device interrupts are cleared and the NIC is
1904 * literally switched on by writing into the adapter control register.
1905 * Return Value:
1906 * SUCCESS on success and -1 on failure.
1907 */
1908
1909 static int start_nic(struct s2io_nic *nic)
1910 {
1911 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1912 struct net_device *dev = nic->dev;
1913 register u64 val64 = 0;
1914 u16 subid, i;
1915 struct mac_info *mac_control;
1916 struct config_param *config;
1917
1918 mac_control = &nic->mac_control;
1919 config = &nic->config;
1920
1921 /* PRC Initialization and configuration */
1922 for (i = 0; i < config->rx_ring_num; i++) {
1923 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1924 &bar0->prc_rxd0_n[i]);
1925
1926 val64 = readq(&bar0->prc_ctrl_n[i]);
1927 if (nic->config.bimodal)
1928 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1929 if (nic->rxd_mode == RXD_MODE_1)
1930 val64 |= PRC_CTRL_RC_ENABLED;
1931 else
1932 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1933 if (nic->device_type == XFRAME_II_DEVICE)
1934 val64 |= PRC_CTRL_GROUP_READS;
1935 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1936 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1937 writeq(val64, &bar0->prc_ctrl_n[i]);
1938 }
1939
1940 if (nic->rxd_mode == RXD_MODE_3B) {
1941 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1942 val64 = readq(&bar0->rx_pa_cfg);
1943 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1944 writeq(val64, &bar0->rx_pa_cfg);
1945 }
1946
1947 /*
1948 * Enabling MC-RLDRAM. After enabling the device, we timeout
1949 * for around 100ms, which is approximately the time required
1950 * for the device to be ready for operation.
1951 */
1952 val64 = readq(&bar0->mc_rldram_mrs);
1953 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1954 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1955 val64 = readq(&bar0->mc_rldram_mrs);
1956
1957 msleep(100); /* Delay by around 100 ms. */
1958
1959 /* Enabling ECC Protection. */
1960 val64 = readq(&bar0->adapter_control);
1961 val64 &= ~ADAPTER_ECC_EN;
1962 writeq(val64, &bar0->adapter_control);
1963
1964 /*
1965 * Clearing any possible Link state change interrupts that
1966 * could have popped up just before Enabling the card.
1967 */
1968 val64 = readq(&bar0->mac_rmac_err_reg);
1969 if (val64)
1970 writeq(val64, &bar0->mac_rmac_err_reg);
1971
1972 /*
1973 * Verify if the device is ready to be enabled, if so enable
1974 * it.
1975 */
1976 val64 = readq(&bar0->adapter_status);
1977 if (!verify_xena_quiescence(nic)) {
1978 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1979 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1980 (unsigned long long) val64);
1981 return FAILURE;
1982 }
1983
1984 /*
1985 * With some switches, link might be already up at this point.
1986 * Because of this weird behavior, when we enable laser,
1987 * we may not get link. We need to handle this. We cannot
1988 * figure out which switch is misbehaving. So we are forced to
1989 * make a global change.
1990 */
1991
1992 /* Enabling Laser. */
1993 val64 = readq(&bar0->adapter_control);
1994 val64 |= ADAPTER_EOI_TX_ON;
1995 writeq(val64, &bar0->adapter_control);
1996
1997 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
1998 /*
1999 * Dont see link state interrupts initally on some switches,
2000 * so directly scheduling the link state task here.
2001 */
2002 schedule_work(&nic->set_link_task);
2003 }
2004 /* SXE-002: Initialize link and activity LED */
2005 subid = nic->pdev->subsystem_device;
2006 if (((subid & 0xFF) >= 0x07) &&
2007 (nic->device_type == XFRAME_I_DEVICE)) {
2008 val64 = readq(&bar0->gpio_control);
2009 val64 |= 0x0000800000000000ULL;
2010 writeq(val64, &bar0->gpio_control);
2011 val64 = 0x0411040400000000ULL;
2012 writeq(val64, (void __iomem *)bar0 + 0x2700);
2013 }
2014
2015 return SUCCESS;
2016 }
2017 /**
2018 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2019 */
2020 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2021 TxD *txdlp, int get_off)
2022 {
2023 struct s2io_nic *nic = fifo_data->nic;
2024 struct sk_buff *skb;
2025 struct TxD *txds;
2026 u16 j, frg_cnt;
2027
2028 txds = txdlp;
2029 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2030 pci_unmap_single(nic->pdev, (dma_addr_t)
2031 txds->Buffer_Pointer, sizeof(u64),
2032 PCI_DMA_TODEVICE);
2033 txds++;
2034 }
2035
2036 skb = (struct sk_buff *) ((unsigned long)
2037 txds->Host_Control);
2038 if (!skb) {
2039 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2040 return NULL;
2041 }
2042 pci_unmap_single(nic->pdev, (dma_addr_t)
2043 txds->Buffer_Pointer,
2044 skb->len - skb->data_len,
2045 PCI_DMA_TODEVICE);
2046 frg_cnt = skb_shinfo(skb)->nr_frags;
2047 if (frg_cnt) {
2048 txds++;
2049 for (j = 0; j < frg_cnt; j++, txds++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2051 if (!txds->Buffer_Pointer)
2052 break;
2053 pci_unmap_page(nic->pdev, (dma_addr_t)
2054 txds->Buffer_Pointer,
2055 frag->size, PCI_DMA_TODEVICE);
2056 }
2057 }
2058 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2059 return(skb);
2060 }
2061
2062 /**
2063 * free_tx_buffers - Free all queued Tx buffers
2064 * @nic : device private variable.
2065 * Description:
2066 * Free all queued Tx buffers.
2067 * Return Value: void
2068 */
2069
2070 static void free_tx_buffers(struct s2io_nic *nic)
2071 {
2072 struct net_device *dev = nic->dev;
2073 struct sk_buff *skb;
2074 struct TxD *txdp;
2075 int i, j;
2076 struct mac_info *mac_control;
2077 struct config_param *config;
2078 int cnt = 0;
2079
2080 mac_control = &nic->mac_control;
2081 config = &nic->config;
2082
2083 for (i = 0; i < config->tx_fifo_num; i++) {
2084 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2085 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2086 list_virt_addr;
2087 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2088 if (skb) {
2089 dev_kfree_skb(skb);
2090 cnt++;
2091 }
2092 }
2093 DBG_PRINT(INTR_DBG,
2094 "%s:forcibly freeing %d skbs on FIFO%d\n",
2095 dev->name, cnt, i);
2096 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2097 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2098 }
2099 }
2100
2101 /**
2102 * stop_nic - To stop the nic
2103 * @nic ; device private variable.
2104 * Description:
2105 * This function does exactly the opposite of what the start_nic()
2106 * function does. This function is called to stop the device.
2107 * Return Value:
2108 * void.
2109 */
2110
2111 static void stop_nic(struct s2io_nic *nic)
2112 {
2113 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2114 register u64 val64 = 0;
2115 u16 interruptible;
2116 struct mac_info *mac_control;
2117 struct config_param *config;
2118
2119 mac_control = &nic->mac_control;
2120 config = &nic->config;
2121
2122 /* Disable all interrupts */
2123 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2124 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2125 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2126 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2127
2128 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2129 val64 = readq(&bar0->adapter_control);
2130 val64 &= ~(ADAPTER_CNTL_EN);
2131 writeq(val64, &bar0->adapter_control);
2132 }
2133
2134 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2135 sk_buff *skb)
2136 {
2137 struct net_device *dev = nic->dev;
2138 struct sk_buff *frag_list;
2139 void *tmp;
2140
2141 /* Buffer-1 receives L3/L4 headers */
2142 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2143 (nic->pdev, skb->data, l3l4hdr_size + 4,
2144 PCI_DMA_FROMDEVICE);
2145
2146 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2147 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2148 if (skb_shinfo(skb)->frag_list == NULL) {
2149 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2150 return -ENOMEM ;
2151 }
2152 frag_list = skb_shinfo(skb)->frag_list;
2153 skb->truesize += frag_list->truesize;
2154 frag_list->next = NULL;
2155 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2156 frag_list->data = tmp;
2157 frag_list->tail = tmp;
2158
2159 /* Buffer-2 receives L4 data payload */
2160 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2161 frag_list->data, dev->mtu,
2162 PCI_DMA_FROMDEVICE);
2163 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2164 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2165
2166 return SUCCESS;
2167 }
2168
2169 /**
2170 * fill_rx_buffers - Allocates the Rx side skbs
2171 * @nic: device private variable
2172 * @ring_no: ring number
2173 * Description:
2174 * The function allocates Rx side skbs and puts the physical
2175 * address of these buffers into the RxD buffer pointers, so that the NIC
2176 * can DMA the received frame into these locations.
2177 * The NIC supports 3 receive modes, viz
2178 * 1. single buffer,
2179 * 2. three buffer and
2180 * 3. Five buffer modes.
2181 * Each mode defines how many fragments the received frame will be split
2182 * up into by the NIC. The frame is split into L3 header, L4 Header,
2183 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2184 * is split into 3 fragments. As of now only single buffer mode is
2185 * supported.
2186 * Return Value:
2187 * SUCCESS on success or an appropriate -ve value on failure.
2188 */
2189
2190 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2191 {
2192 struct net_device *dev = nic->dev;
2193 struct sk_buff *skb;
2194 struct RxD_t *rxdp;
2195 int off, off1, size, block_no, block_no1;
2196 u32 alloc_tab = 0;
2197 u32 alloc_cnt;
2198 struct mac_info *mac_control;
2199 struct config_param *config;
2200 u64 tmp;
2201 struct buffAdd *ba;
2202 unsigned long flags;
2203 struct RxD_t *first_rxdp = NULL;
2204
2205 mac_control = &nic->mac_control;
2206 config = &nic->config;
2207 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2208 atomic_read(&nic->rx_bufs_left[ring_no]);
2209
2210 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2211 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2212 while (alloc_tab < alloc_cnt) {
2213 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2214 block_index;
2215 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2216
2217 rxdp = mac_control->rings[ring_no].
2218 rx_blocks[block_no].rxds[off].virt_addr;
2219
2220 if ((block_no == block_no1) && (off == off1) &&
2221 (rxdp->Host_Control)) {
2222 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2223 dev->name);
2224 DBG_PRINT(INTR_DBG, " info equated\n");
2225 goto end;
2226 }
2227 if (off && (off == rxd_count[nic->rxd_mode])) {
2228 mac_control->rings[ring_no].rx_curr_put_info.
2229 block_index++;
2230 if (mac_control->rings[ring_no].rx_curr_put_info.
2231 block_index == mac_control->rings[ring_no].
2232 block_count)
2233 mac_control->rings[ring_no].rx_curr_put_info.
2234 block_index = 0;
2235 block_no = mac_control->rings[ring_no].
2236 rx_curr_put_info.block_index;
2237 if (off == rxd_count[nic->rxd_mode])
2238 off = 0;
2239 mac_control->rings[ring_no].rx_curr_put_info.
2240 offset = off;
2241 rxdp = mac_control->rings[ring_no].
2242 rx_blocks[block_no].block_virt_addr;
2243 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2244 dev->name, rxdp);
2245 }
2246 if(!napi) {
2247 spin_lock_irqsave(&nic->put_lock, flags);
2248 mac_control->rings[ring_no].put_pos =
2249 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2250 spin_unlock_irqrestore(&nic->put_lock, flags);
2251 } else {
2252 mac_control->rings[ring_no].put_pos =
2253 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2254 }
2255 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2256 ((nic->rxd_mode >= RXD_MODE_3A) &&
2257 (rxdp->Control_2 & BIT(0)))) {
2258 mac_control->rings[ring_no].rx_curr_put_info.
2259 offset = off;
2260 goto end;
2261 }
2262 /* calculate size of skb based on ring mode */
2263 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2264 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2265 if (nic->rxd_mode == RXD_MODE_1)
2266 size += NET_IP_ALIGN;
2267 else if (nic->rxd_mode == RXD_MODE_3B)
2268 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2269 else
2270 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2271
2272 /* allocate skb */
2273 skb = dev_alloc_skb(size);
2274 if(!skb) {
2275 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2276 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2277 if (first_rxdp) {
2278 wmb();
2279 first_rxdp->Control_1 |= RXD_OWN_XENA;
2280 }
2281 return -ENOMEM ;
2282 }
2283 if (nic->rxd_mode == RXD_MODE_1) {
2284 /* 1 buffer mode - normal operation mode */
2285 memset(rxdp, 0, sizeof(struct RxD1));
2286 skb_reserve(skb, NET_IP_ALIGN);
2287 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2288 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2289 PCI_DMA_FROMDEVICE);
2290 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2291
2292 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2293 /*
2294 * 2 or 3 buffer mode -
2295 * Both 2 buffer mode and 3 buffer mode provides 128
2296 * byte aligned receive buffers.
2297 *
2298 * 3 buffer mode provides header separation where in
2299 * skb->data will have L3/L4 headers where as
2300 * skb_shinfo(skb)->frag_list will have the L4 data
2301 * payload
2302 */
2303
2304 memset(rxdp, 0, sizeof(struct RxD3));
2305 ba = &mac_control->rings[ring_no].ba[block_no][off];
2306 skb_reserve(skb, BUF0_LEN);
2307 tmp = (u64)(unsigned long) skb->data;
2308 tmp += ALIGN_SIZE;
2309 tmp &= ~ALIGN_SIZE;
2310 skb->data = (void *) (unsigned long)tmp;
2311 skb->tail = (void *) (unsigned long)tmp;
2312
2313 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2314 ((struct RxD3*)rxdp)->Buffer0_ptr =
2315 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2316 PCI_DMA_FROMDEVICE);
2317 else
2318 pci_dma_sync_single_for_device(nic->pdev,
2319 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2320 BUF0_LEN, PCI_DMA_FROMDEVICE);
2321 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2322 if (nic->rxd_mode == RXD_MODE_3B) {
2323 /* Two buffer mode */
2324
2325 /*
2326 * Buffer2 will have L3/L4 header plus
2327 * L4 payload
2328 */
2329 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2330 (nic->pdev, skb->data, dev->mtu + 4,
2331 PCI_DMA_FROMDEVICE);
2332
2333 /* Buffer-1 will be dummy buffer. Not used */
2334 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2335 ((struct RxD3*)rxdp)->Buffer1_ptr =
2336 pci_map_single(nic->pdev,
2337 ba->ba_1, BUF1_LEN,
2338 PCI_DMA_FROMDEVICE);
2339 }
2340 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2341 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2342 (dev->mtu + 4);
2343 } else {
2344 /* 3 buffer mode */
2345 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2346 dev_kfree_skb_irq(skb);
2347 if (first_rxdp) {
2348 wmb();
2349 first_rxdp->Control_1 |=
2350 RXD_OWN_XENA;
2351 }
2352 return -ENOMEM ;
2353 }
2354 }
2355 rxdp->Control_2 |= BIT(0);
2356 }
2357 rxdp->Host_Control = (unsigned long) (skb);
2358 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2359 rxdp->Control_1 |= RXD_OWN_XENA;
2360 off++;
2361 if (off == (rxd_count[nic->rxd_mode] + 1))
2362 off = 0;
2363 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2364
2365 rxdp->Control_2 |= SET_RXD_MARKER;
2366 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2367 if (first_rxdp) {
2368 wmb();
2369 first_rxdp->Control_1 |= RXD_OWN_XENA;
2370 }
2371 first_rxdp = rxdp;
2372 }
2373 atomic_inc(&nic->rx_bufs_left[ring_no]);
2374 alloc_tab++;
2375 }
2376
2377 end:
2378 /* Transfer ownership of first descriptor to adapter just before
2379 * exiting. Before that, use memory barrier so that ownership
2380 * and other fields are seen by adapter correctly.
2381 */
2382 if (first_rxdp) {
2383 wmb();
2384 first_rxdp->Control_1 |= RXD_OWN_XENA;
2385 }
2386
2387 return SUCCESS;
2388 }
2389
2390 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2391 {
2392 struct net_device *dev = sp->dev;
2393 int j;
2394 struct sk_buff *skb;
2395 struct RxD_t *rxdp;
2396 struct mac_info *mac_control;
2397 struct buffAdd *ba;
2398
2399 mac_control = &sp->mac_control;
2400 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2401 rxdp = mac_control->rings[ring_no].
2402 rx_blocks[blk].rxds[j].virt_addr;
2403 skb = (struct sk_buff *)
2404 ((unsigned long) rxdp->Host_Control);
2405 if (!skb) {
2406 continue;
2407 }
2408 if (sp->rxd_mode == RXD_MODE_1) {
2409 pci_unmap_single(sp->pdev, (dma_addr_t)
2410 ((struct RxD1*)rxdp)->Buffer0_ptr,
2411 dev->mtu +
2412 HEADER_ETHERNET_II_802_3_SIZE
2413 + HEADER_802_2_SIZE +
2414 HEADER_SNAP_SIZE,
2415 PCI_DMA_FROMDEVICE);
2416 memset(rxdp, 0, sizeof(struct RxD1));
2417 } else if(sp->rxd_mode == RXD_MODE_3B) {
2418 ba = &mac_control->rings[ring_no].
2419 ba[blk][j];
2420 pci_unmap_single(sp->pdev, (dma_addr_t)
2421 ((struct RxD3*)rxdp)->Buffer0_ptr,
2422 BUF0_LEN,
2423 PCI_DMA_FROMDEVICE);
2424 pci_unmap_single(sp->pdev, (dma_addr_t)
2425 ((struct RxD3*)rxdp)->Buffer1_ptr,
2426 BUF1_LEN,
2427 PCI_DMA_FROMDEVICE);
2428 pci_unmap_single(sp->pdev, (dma_addr_t)
2429 ((struct RxD3*)rxdp)->Buffer2_ptr,
2430 dev->mtu + 4,
2431 PCI_DMA_FROMDEVICE);
2432 memset(rxdp, 0, sizeof(struct RxD3));
2433 } else {
2434 pci_unmap_single(sp->pdev, (dma_addr_t)
2435 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2436 PCI_DMA_FROMDEVICE);
2437 pci_unmap_single(sp->pdev, (dma_addr_t)
2438 ((struct RxD3*)rxdp)->Buffer1_ptr,
2439 l3l4hdr_size + 4,
2440 PCI_DMA_FROMDEVICE);
2441 pci_unmap_single(sp->pdev, (dma_addr_t)
2442 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2443 PCI_DMA_FROMDEVICE);
2444 memset(rxdp, 0, sizeof(struct RxD3));
2445 }
2446 dev_kfree_skb(skb);
2447 atomic_dec(&sp->rx_bufs_left[ring_no]);
2448 }
2449 }
2450
2451 /**
2452 * free_rx_buffers - Frees all Rx buffers
2453 * @sp: device private variable.
2454 * Description:
2455 * This function will free all Rx buffers allocated by host.
2456 * Return Value:
2457 * NONE.
2458 */
2459
2460 static void free_rx_buffers(struct s2io_nic *sp)
2461 {
2462 struct net_device *dev = sp->dev;
2463 int i, blk = 0, buf_cnt = 0;
2464 struct mac_info *mac_control;
2465 struct config_param *config;
2466
2467 mac_control = &sp->mac_control;
2468 config = &sp->config;
2469
2470 for (i = 0; i < config->rx_ring_num; i++) {
2471 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2472 free_rxd_blk(sp,i,blk);
2473
2474 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2475 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2476 mac_control->rings[i].rx_curr_put_info.offset = 0;
2477 mac_control->rings[i].rx_curr_get_info.offset = 0;
2478 atomic_set(&sp->rx_bufs_left[i], 0);
2479 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2480 dev->name, buf_cnt, i);
2481 }
2482 }
2483
2484 /**
2485 * s2io_poll - Rx interrupt handler for NAPI support
2486 * @dev : pointer to the device structure.
2487 * @budget : The number of packets that were budgeted to be processed
2488 * during one pass through the 'Poll" function.
2489 * Description:
2490 * Comes into picture only if NAPI support has been incorporated. It does
2491 * the same thing that rx_intr_handler does, but not in a interrupt context
2492 * also It will process only a given number of packets.
2493 * Return value:
2494 * 0 on success and 1 if there are No Rx packets to be processed.
2495 */
2496
2497 static int s2io_poll(struct net_device *dev, int *budget)
2498 {
2499 struct s2io_nic *nic = dev->priv;
2500 int pkt_cnt = 0, org_pkts_to_process;
2501 struct mac_info *mac_control;
2502 struct config_param *config;
2503 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2504 int i;
2505
2506 atomic_inc(&nic->isr_cnt);
2507 mac_control = &nic->mac_control;
2508 config = &nic->config;
2509
2510 nic->pkts_to_process = *budget;
2511 if (nic->pkts_to_process > dev->quota)
2512 nic->pkts_to_process = dev->quota;
2513 org_pkts_to_process = nic->pkts_to_process;
2514
2515 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2516 readl(&bar0->rx_traffic_int);
2517
2518 for (i = 0; i < config->rx_ring_num; i++) {
2519 rx_intr_handler(&mac_control->rings[i]);
2520 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2521 if (!nic->pkts_to_process) {
2522 /* Quota for the current iteration has been met */
2523 goto no_rx;
2524 }
2525 }
2526 if (!pkt_cnt)
2527 pkt_cnt = 1;
2528
2529 dev->quota -= pkt_cnt;
2530 *budget -= pkt_cnt;
2531 netif_rx_complete(dev);
2532
2533 for (i = 0; i < config->rx_ring_num; i++) {
2534 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2535 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2536 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2537 break;
2538 }
2539 }
2540 /* Re enable the Rx interrupts. */
2541 writeq(0x0, &bar0->rx_traffic_mask);
2542 readl(&bar0->rx_traffic_mask);
2543 atomic_dec(&nic->isr_cnt);
2544 return 0;
2545
2546 no_rx:
2547 dev->quota -= pkt_cnt;
2548 *budget -= pkt_cnt;
2549
2550 for (i = 0; i < config->rx_ring_num; i++) {
2551 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2552 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2553 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2554 break;
2555 }
2556 }
2557 atomic_dec(&nic->isr_cnt);
2558 return 1;
2559 }
2560
2561 #ifdef CONFIG_NET_POLL_CONTROLLER
2562 /**
2563 * s2io_netpoll - netpoll event handler entry point
2564 * @dev : pointer to the device structure.
2565 * Description:
2566 * This function will be called by upper layer to check for events on the
2567 * interface in situations where interrupts are disabled. It is used for
2568 * specific in-kernel networking tasks, such as remote consoles and kernel
2569 * debugging over the network (example netdump in RedHat).
2570 */
2571 static void s2io_netpoll(struct net_device *dev)
2572 {
2573 struct s2io_nic *nic = dev->priv;
2574 struct mac_info *mac_control;
2575 struct config_param *config;
2576 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2577 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2578 int i;
2579
2580 disable_irq(dev->irq);
2581
2582 atomic_inc(&nic->isr_cnt);
2583 mac_control = &nic->mac_control;
2584 config = &nic->config;
2585
2586 writeq(val64, &bar0->rx_traffic_int);
2587 writeq(val64, &bar0->tx_traffic_int);
2588
2589 /* we need to free up the transmitted skbufs or else netpoll will
2590 * run out of skbs and will fail and eventually netpoll application such
2591 * as netdump will fail.
2592 */
2593 for (i = 0; i < config->tx_fifo_num; i++)
2594 tx_intr_handler(&mac_control->fifos[i]);
2595
2596 /* check for received packet and indicate up to network */
2597 for (i = 0; i < config->rx_ring_num; i++)
2598 rx_intr_handler(&mac_control->rings[i]);
2599
2600 for (i = 0; i < config->rx_ring_num; i++) {
2601 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2602 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2603 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2604 break;
2605 }
2606 }
2607 atomic_dec(&nic->isr_cnt);
2608 enable_irq(dev->irq);
2609 return;
2610 }
2611 #endif
2612
2613 /**
2614 * rx_intr_handler - Rx interrupt handler
2615 * @nic: device private variable.
2616 * Description:
2617 * If the interrupt is because of a received frame or if the
2618 * receive ring contains fresh as yet un-processed frames,this function is
2619 * called. It picks out the RxD at which place the last Rx processing had
2620 * stopped and sends the skb to the OSM's Rx handler and then increments
2621 * the offset.
2622 * Return Value:
2623 * NONE.
2624 */
2625 static void rx_intr_handler(struct ring_info *ring_data)
2626 {
2627 struct s2io_nic *nic = ring_data->nic;
2628 struct net_device *dev = (struct net_device *) nic->dev;
2629 int get_block, put_block, put_offset;
2630 struct rx_curr_get_info get_info, put_info;
2631 struct RxD_t *rxdp;
2632 struct sk_buff *skb;
2633 int pkt_cnt = 0;
2634 int i;
2635
2636 spin_lock(&nic->rx_lock);
2637 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2638 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2639 __FUNCTION__, dev->name);
2640 spin_unlock(&nic->rx_lock);
2641 return;
2642 }
2643
2644 get_info = ring_data->rx_curr_get_info;
2645 get_block = get_info.block_index;
2646 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2647 put_block = put_info.block_index;
2648 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2649 if (!napi) {
2650 spin_lock(&nic->put_lock);
2651 put_offset = ring_data->put_pos;
2652 spin_unlock(&nic->put_lock);
2653 } else
2654 put_offset = ring_data->put_pos;
2655
2656 while (RXD_IS_UP2DT(rxdp)) {
2657 /*
2658 * If your are next to put index then it's
2659 * FIFO full condition
2660 */
2661 if ((get_block == put_block) &&
2662 (get_info.offset + 1) == put_info.offset) {
2663 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2664 break;
2665 }
2666 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2667 if (skb == NULL) {
2668 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2669 dev->name);
2670 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2671 spin_unlock(&nic->rx_lock);
2672 return;
2673 }
2674 if (nic->rxd_mode == RXD_MODE_1) {
2675 pci_unmap_single(nic->pdev, (dma_addr_t)
2676 ((struct RxD1*)rxdp)->Buffer0_ptr,
2677 dev->mtu +
2678 HEADER_ETHERNET_II_802_3_SIZE +
2679 HEADER_802_2_SIZE +
2680 HEADER_SNAP_SIZE,
2681 PCI_DMA_FROMDEVICE);
2682 } else if (nic->rxd_mode == RXD_MODE_3B) {
2683 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2684 ((struct RxD3*)rxdp)->Buffer0_ptr,
2685 BUF0_LEN, PCI_DMA_FROMDEVICE);
2686 pci_unmap_single(nic->pdev, (dma_addr_t)
2687 ((struct RxD3*)rxdp)->Buffer2_ptr,
2688 dev->mtu + 4,
2689 PCI_DMA_FROMDEVICE);
2690 } else {
2691 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2692 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2693 PCI_DMA_FROMDEVICE);
2694 pci_unmap_single(nic->pdev, (dma_addr_t)
2695 ((struct RxD3*)rxdp)->Buffer1_ptr,
2696 l3l4hdr_size + 4,
2697 PCI_DMA_FROMDEVICE);
2698 pci_unmap_single(nic->pdev, (dma_addr_t)
2699 ((struct RxD3*)rxdp)->Buffer2_ptr,
2700 dev->mtu, PCI_DMA_FROMDEVICE);
2701 }
2702 prefetch(skb->data);
2703 rx_osm_handler(ring_data, rxdp);
2704 get_info.offset++;
2705 ring_data->rx_curr_get_info.offset = get_info.offset;
2706 rxdp = ring_data->rx_blocks[get_block].
2707 rxds[get_info.offset].virt_addr;
2708 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2709 get_info.offset = 0;
2710 ring_data->rx_curr_get_info.offset = get_info.offset;
2711 get_block++;
2712 if (get_block == ring_data->block_count)
2713 get_block = 0;
2714 ring_data->rx_curr_get_info.block_index = get_block;
2715 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2716 }
2717
2718 nic->pkts_to_process -= 1;
2719 if ((napi) && (!nic->pkts_to_process))
2720 break;
2721 pkt_cnt++;
2722 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2723 break;
2724 }
2725 if (nic->lro) {
2726 /* Clear all LRO sessions before exiting */
2727 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2728 struct lro *lro = &nic->lro0_n[i];
2729 if (lro->in_use) {
2730 update_L3L4_header(nic, lro);
2731 queue_rx_frame(lro->parent);
2732 clear_lro_session(lro);
2733 }
2734 }
2735 }
2736
2737 spin_unlock(&nic->rx_lock);
2738 }
2739
2740 /**
2741 * tx_intr_handler - Transmit interrupt handler
2742 * @nic : device private variable
2743 * Description:
2744 * If an interrupt was raised to indicate DMA complete of the
2745 * Tx packet, this function is called. It identifies the last TxD
2746 * whose buffer was freed and frees all skbs whose data have already
2747 * DMA'ed into the NICs internal memory.
2748 * Return Value:
2749 * NONE
2750 */
2751
2752 static void tx_intr_handler(struct fifo_info *fifo_data)
2753 {
2754 struct s2io_nic *nic = fifo_data->nic;
2755 struct net_device *dev = (struct net_device *) nic->dev;
2756 struct tx_curr_get_info get_info, put_info;
2757 struct sk_buff *skb;
2758 struct TxD *txdlp;
2759
2760 get_info = fifo_data->tx_curr_get_info;
2761 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2762 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2763 list_virt_addr;
2764 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2765 (get_info.offset != put_info.offset) &&
2766 (txdlp->Host_Control)) {
2767 /* Check for TxD errors */
2768 if (txdlp->Control_1 & TXD_T_CODE) {
2769 unsigned long long err;
2770 err = txdlp->Control_1 & TXD_T_CODE;
2771 if (err & 0x1) {
2772 nic->mac_control.stats_info->sw_stat.
2773 parity_err_cnt++;
2774 }
2775 if ((err >> 48) == 0xA) {
2776 DBG_PRINT(TX_DBG, "TxD returned due \
2777 to loss of link\n");
2778 }
2779 else {
2780 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2781 }
2782 }
2783
2784 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2785 if (skb == NULL) {
2786 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2787 __FUNCTION__);
2788 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2789 return;
2790 }
2791
2792 /* Updating the statistics block */
2793 nic->stats.tx_bytes += skb->len;
2794 dev_kfree_skb_irq(skb);
2795
2796 get_info.offset++;
2797 if (get_info.offset == get_info.fifo_len + 1)
2798 get_info.offset = 0;
2799 txdlp = (struct TxD *) fifo_data->list_info
2800 [get_info.offset].list_virt_addr;
2801 fifo_data->tx_curr_get_info.offset =
2802 get_info.offset;
2803 }
2804
2805 spin_lock(&nic->tx_lock);
2806 if (netif_queue_stopped(dev))
2807 netif_wake_queue(dev);
2808 spin_unlock(&nic->tx_lock);
2809 }
2810
2811 /**
2812 * s2io_mdio_write - Function to write in to MDIO registers
2813 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2814 * @addr : address value
2815 * @value : data value
2816 * @dev : pointer to net_device structure
2817 * Description:
2818 * This function is used to write values to the MDIO registers
2819 * NONE
2820 */
2821 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2822 {
2823 u64 val64 = 0x0;
2824 struct s2io_nic *sp = dev->priv;
2825 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2826
2827 //address transaction
2828 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2829 | MDIO_MMD_DEV_ADDR(mmd_type)
2830 | MDIO_MMS_PRT_ADDR(0x0);
2831 writeq(val64, &bar0->mdio_control);
2832 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2833 writeq(val64, &bar0->mdio_control);
2834 udelay(100);
2835
2836 //Data transaction
2837 val64 = 0x0;
2838 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2839 | MDIO_MMD_DEV_ADDR(mmd_type)
2840 | MDIO_MMS_PRT_ADDR(0x0)
2841 | MDIO_MDIO_DATA(value)
2842 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2843 writeq(val64, &bar0->mdio_control);
2844 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2845 writeq(val64, &bar0->mdio_control);
2846 udelay(100);
2847
2848 val64 = 0x0;
2849 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2850 | MDIO_MMD_DEV_ADDR(mmd_type)
2851 | MDIO_MMS_PRT_ADDR(0x0)
2852 | MDIO_OP(MDIO_OP_READ_TRANS);
2853 writeq(val64, &bar0->mdio_control);
2854 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2855 writeq(val64, &bar0->mdio_control);
2856 udelay(100);
2857
2858 }
2859
2860 /**
2861 * s2io_mdio_read - Function to write in to MDIO registers
2862 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2863 * @addr : address value
2864 * @dev : pointer to net_device structure
2865 * Description:
2866 * This function is used to read values to the MDIO registers
2867 * NONE
2868 */
2869 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2870 {
2871 u64 val64 = 0x0;
2872 u64 rval64 = 0x0;
2873 struct s2io_nic *sp = dev->priv;
2874 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2875
2876 /* address transaction */
2877 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2878 | MDIO_MMD_DEV_ADDR(mmd_type)
2879 | MDIO_MMS_PRT_ADDR(0x0);
2880 writeq(val64, &bar0->mdio_control);
2881 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2882 writeq(val64, &bar0->mdio_control);
2883 udelay(100);
2884
2885 /* Data transaction */
2886 val64 = 0x0;
2887 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2888 | MDIO_MMD_DEV_ADDR(mmd_type)
2889 | MDIO_MMS_PRT_ADDR(0x0)
2890 | MDIO_OP(MDIO_OP_READ_TRANS);
2891 writeq(val64, &bar0->mdio_control);
2892 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2893 writeq(val64, &bar0->mdio_control);
2894 udelay(100);
2895
2896 /* Read the value from regs */
2897 rval64 = readq(&bar0->mdio_control);
2898 rval64 = rval64 & 0xFFFF0000;
2899 rval64 = rval64 >> 16;
2900 return rval64;
2901 }
2902 /**
2903 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2904 * @counter : couter value to be updated
2905 * @flag : flag to indicate the status
2906 * @type : counter type
2907 * Description:
2908 * This function is to check the status of the xpak counters value
2909 * NONE
2910 */
2911
2912 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2913 {
2914 u64 mask = 0x3;
2915 u64 val64;
2916 int i;
2917 for(i = 0; i <index; i++)
2918 mask = mask << 0x2;
2919
2920 if(flag > 0)
2921 {
2922 *counter = *counter + 1;
2923 val64 = *regs_stat & mask;
2924 val64 = val64 >> (index * 0x2);
2925 val64 = val64 + 1;
2926 if(val64 == 3)
2927 {
2928 switch(type)
2929 {
2930 case 1:
2931 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2932 "service. Excessive temperatures may "
2933 "result in premature transceiver "
2934 "failure \n");
2935 break;
2936 case 2:
2937 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2938 "service Excessive bias currents may "
2939 "indicate imminent laser diode "
2940 "failure \n");
2941 break;
2942 case 3:
2943 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2944 "service Excessive laser output "
2945 "power may saturate far-end "
2946 "receiver\n");
2947 break;
2948 default:
2949 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2950 "type \n");
2951 }
2952 val64 = 0x0;
2953 }
2954 val64 = val64 << (index * 0x2);
2955 *regs_stat = (*regs_stat & (~mask)) | (val64);
2956
2957 } else {
2958 *regs_stat = *regs_stat & (~mask);
2959 }
2960 }
2961
2962 /**
2963 * s2io_updt_xpak_counter - Function to update the xpak counters
2964 * @dev : pointer to net_device struct
2965 * Description:
2966 * This function is to upate the status of the xpak counters value
2967 * NONE
2968 */
2969 static void s2io_updt_xpak_counter(struct net_device *dev)
2970 {
2971 u16 flag = 0x0;
2972 u16 type = 0x0;
2973 u16 val16 = 0x0;
2974 u64 val64 = 0x0;
2975 u64 addr = 0x0;
2976
2977 struct s2io_nic *sp = dev->priv;
2978 struct stat_block *stat_info = sp->mac_control.stats_info;
2979
2980 /* Check the communication with the MDIO slave */
2981 addr = 0x0000;
2982 val64 = 0x0;
2983 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2984 if((val64 == 0xFFFF) || (val64 == 0x0000))
2985 {
2986 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2987 "Returned %llx\n", (unsigned long long)val64);
2988 return;
2989 }
2990
2991 /* Check for the expecte value of 2040 at PMA address 0x0000 */
2992 if(val64 != 0x2040)
2993 {
2994 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
2995 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
2996 (unsigned long long)val64);
2997 return;
2998 }
2999
3000 /* Loading the DOM register to MDIO register */
3001 addr = 0xA100;
3002 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3003 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3004
3005 /* Reading the Alarm flags */
3006 addr = 0xA070;
3007 val64 = 0x0;
3008 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3009
3010 flag = CHECKBIT(val64, 0x7);
3011 type = 1;
3012 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3013 &stat_info->xpak_stat.xpak_regs_stat,
3014 0x0, flag, type);
3015
3016 if(CHECKBIT(val64, 0x6))
3017 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3018
3019 flag = CHECKBIT(val64, 0x3);
3020 type = 2;
3021 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3022 &stat_info->xpak_stat.xpak_regs_stat,
3023 0x2, flag, type);
3024
3025 if(CHECKBIT(val64, 0x2))
3026 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3027
3028 flag = CHECKBIT(val64, 0x1);
3029 type = 3;
3030 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3031 &stat_info->xpak_stat.xpak_regs_stat,
3032 0x4, flag, type);
3033
3034 if(CHECKBIT(val64, 0x0))
3035 stat_info->xpak_stat.alarm_laser_output_power_low++;
3036
3037 /* Reading the Warning flags */
3038 addr = 0xA074;
3039 val64 = 0x0;
3040 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3041
3042 if(CHECKBIT(val64, 0x7))
3043 stat_info->xpak_stat.warn_transceiver_temp_high++;
3044
3045 if(CHECKBIT(val64, 0x6))
3046 stat_info->xpak_stat.warn_transceiver_temp_low++;
3047
3048 if(CHECKBIT(val64, 0x3))
3049 stat_info->xpak_stat.warn_laser_bias_current_high++;
3050
3051 if(CHECKBIT(val64, 0x2))
3052 stat_info->xpak_stat.warn_laser_bias_current_low++;
3053
3054 if(CHECKBIT(val64, 0x1))
3055 stat_info->xpak_stat.warn_laser_output_power_high++;
3056
3057 if(CHECKBIT(val64, 0x0))
3058 stat_info->xpak_stat.warn_laser_output_power_low++;
3059 }
3060
3061 /**
3062 * alarm_intr_handler - Alarm Interrrupt handler
3063 * @nic: device private variable
3064 * Description: If the interrupt was neither because of Rx packet or Tx
3065 * complete, this function is called. If the interrupt was to indicate
3066 * a loss of link, the OSM link status handler is invoked for any other
3067 * alarm interrupt the block that raised the interrupt is displayed
3068 * and a H/W reset is issued.
3069 * Return Value:
3070 * NONE
3071 */
3072
3073 static void alarm_intr_handler(struct s2io_nic *nic)
3074 {
3075 struct net_device *dev = (struct net_device *) nic->dev;
3076 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3077 register u64 val64 = 0, err_reg = 0;
3078 u64 cnt;
3079 int i;
3080 if (atomic_read(&nic->card_state) == CARD_DOWN)
3081 return;
3082 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3083 /* Handling the XPAK counters update */
3084 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3085 /* waiting for an hour */
3086 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3087 } else {
3088 s2io_updt_xpak_counter(dev);
3089 /* reset the count to zero */
3090 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3091 }
3092
3093 /* Handling link status change error Intr */
3094 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3095 err_reg = readq(&bar0->mac_rmac_err_reg);
3096 writeq(err_reg, &bar0->mac_rmac_err_reg);
3097 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3098 schedule_work(&nic->set_link_task);
3099 }
3100 }
3101
3102 /* Handling Ecc errors */
3103 val64 = readq(&bar0->mc_err_reg);
3104 writeq(val64, &bar0->mc_err_reg);
3105 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3106 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3107 nic->mac_control.stats_info->sw_stat.
3108 double_ecc_errs++;
3109 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3110 dev->name);
3111 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3112 if (nic->device_type != XFRAME_II_DEVICE) {
3113 /* Reset XframeI only if critical error */
3114 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3115 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3116 netif_stop_queue(dev);
3117 schedule_work(&nic->rst_timer_task);
3118 nic->mac_control.stats_info->sw_stat.
3119 soft_reset_cnt++;
3120 }
3121 }
3122 } else {
3123 nic->mac_control.stats_info->sw_stat.
3124 single_ecc_errs++;
3125 }
3126 }
3127
3128 /* In case of a serious error, the device will be Reset. */
3129 val64 = readq(&bar0->serr_source);
3130 if (val64 & SERR_SOURCE_ANY) {
3131 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3132 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3133 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3134 (unsigned long long)val64);
3135 netif_stop_queue(dev);
3136 schedule_work(&nic->rst_timer_task);
3137 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3138 }
3139
3140 /*
3141 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3142 * Error occurs, the adapter will be recycled by disabling the
3143 * adapter enable bit and enabling it again after the device
3144 * becomes Quiescent.
3145 */
3146 val64 = readq(&bar0->pcc_err_reg);
3147 writeq(val64, &bar0->pcc_err_reg);
3148 if (val64 & PCC_FB_ECC_DB_ERR) {
3149 u64 ac = readq(&bar0->adapter_control);
3150 ac &= ~(ADAPTER_CNTL_EN);
3151 writeq(ac, &bar0->adapter_control);
3152 ac = readq(&bar0->adapter_control);
3153 schedule_work(&nic->set_link_task);
3154 }
3155 /* Check for data parity error */
3156 val64 = readq(&bar0->pic_int_status);
3157 if (val64 & PIC_INT_GPIO) {
3158 val64 = readq(&bar0->gpio_int_reg);
3159 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3160 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3161 schedule_work(&nic->rst_timer_task);
3162 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3163 }
3164 }
3165
3166 /* Check for ring full counter */
3167 if (nic->device_type & XFRAME_II_DEVICE) {
3168 val64 = readq(&bar0->ring_bump_counter1);
3169 for (i=0; i<4; i++) {
3170 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3171 cnt >>= 64 - ((i+1)*16);
3172 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3173 += cnt;
3174 }
3175
3176 val64 = readq(&bar0->ring_bump_counter2);
3177 for (i=0; i<4; i++) {
3178 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3179 cnt >>= 64 - ((i+1)*16);
3180 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3181 += cnt;
3182 }
3183 }
3184
3185 /* Other type of interrupts are not being handled now, TODO */
3186 }
3187
3188 /**
3189 * wait_for_cmd_complete - waits for a command to complete.
3190 * @sp : private member of the device structure, which is a pointer to the
3191 * s2io_nic structure.
3192 * Description: Function that waits for a command to Write into RMAC
3193 * ADDR DATA registers to be completed and returns either success or
3194 * error depending on whether the command was complete or not.
3195 * Return value:
3196 * SUCCESS on success and FAILURE on failure.
3197 */
3198
3199 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3200 {
3201 int ret = FAILURE, cnt = 0;
3202 u64 val64;
3203
3204 while (TRUE) {
3205 val64 = readq(addr);
3206 if (!(val64 & busy_bit)) {
3207 ret = SUCCESS;
3208 break;
3209 }
3210
3211 if(in_interrupt())
3212 mdelay(50);
3213 else
3214 msleep(50);
3215
3216 if (cnt++ > 10)
3217 break;
3218 }
3219 return ret;
3220 }
3221 /*
3222 * check_pci_device_id - Checks if the device id is supported
3223 * @id : device id
3224 * Description: Function to check if the pci device id is supported by driver.
3225 * Return value: Actual device id if supported else PCI_ANY_ID
3226 */
3227 static u16 check_pci_device_id(u16 id)
3228 {
3229 switch (id) {
3230 case PCI_DEVICE_ID_HERC_WIN:
3231 case PCI_DEVICE_ID_HERC_UNI:
3232 return XFRAME_II_DEVICE;
3233 case PCI_DEVICE_ID_S2IO_UNI:
3234 case PCI_DEVICE_ID_S2IO_WIN:
3235 return XFRAME_I_DEVICE;
3236 default:
3237 return PCI_ANY_ID;
3238 }
3239 }
3240
3241 /**
3242 * s2io_reset - Resets the card.
3243 * @sp : private member of the device structure.
3244 * Description: Function to Reset the card. This function then also
3245 * restores the previously saved PCI configuration space registers as
3246 * the card reset also resets the configuration space.
3247 * Return value:
3248 * void.
3249 */
3250
3251 static void s2io_reset(struct s2io_nic * sp)
3252 {
3253 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3254 u64 val64;
3255 u16 subid, pci_cmd;
3256 int i;
3257 u16 val16;
3258 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3259 __FUNCTION__, sp->dev->name);
3260
3261 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3262 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3263
3264 if (sp->device_type == XFRAME_II_DEVICE) {
3265 int ret;
3266 ret = pci_set_power_state(sp->pdev, 3);
3267 if (!ret)
3268 ret = pci_set_power_state(sp->pdev, 0);
3269 else {
3270 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3271 __FUNCTION__);
3272 goto old_way;
3273 }
3274 msleep(20);
3275 goto new_way;
3276 }
3277 old_way:
3278 val64 = SW_RESET_ALL;
3279 writeq(val64, &bar0->sw_reset);
3280 new_way:
3281 if (strstr(sp->product_name, "CX4")) {
3282 msleep(750);
3283 }
3284 msleep(250);
3285 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3286
3287 /* Restore the PCI state saved during initialization. */
3288 pci_restore_state(sp->pdev);
3289 pci_read_config_word(sp->pdev, 0x2, &val16);
3290 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3291 break;
3292 msleep(200);
3293 }
3294
3295 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3296 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3297 }
3298
3299 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3300
3301 s2io_init_pci(sp);
3302
3303 /* Set swapper to enable I/O register access */
3304 s2io_set_swapper(sp);
3305
3306 /* Restore the MSIX table entries from local variables */
3307 restore_xmsi_data(sp);
3308
3309 /* Clear certain PCI/PCI-X fields after reset */
3310 if (sp->device_type == XFRAME_II_DEVICE) {
3311 /* Clear "detected parity error" bit */
3312 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3313
3314 /* Clearing PCIX Ecc status register */
3315 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3316
3317 /* Clearing PCI_STATUS error reflected here */
3318 writeq(BIT(62), &bar0->txpic_int_reg);
3319 }
3320
3321 /* Reset device statistics maintained by OS */
3322 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3323
3324 /* SXE-002: Configure link and activity LED to turn it off */
3325 subid = sp->pdev->subsystem_device;
3326 if (((subid & 0xFF) >= 0x07) &&
3327 (sp->device_type == XFRAME_I_DEVICE)) {
3328 val64 = readq(&bar0->gpio_control);
3329 val64 |= 0x0000800000000000ULL;
3330 writeq(val64, &bar0->gpio_control);
3331 val64 = 0x0411040400000000ULL;
3332 writeq(val64, (void __iomem *)bar0 + 0x2700);
3333 }
3334
3335 /*
3336 * Clear spurious ECC interrupts that would have occured on
3337 * XFRAME II cards after reset.
3338 */
3339 if (sp->device_type == XFRAME_II_DEVICE) {
3340 val64 = readq(&bar0->pcc_err_reg);
3341 writeq(val64, &bar0->pcc_err_reg);
3342 }
3343
3344 sp->device_enabled_once = FALSE;
3345 }
3346
3347 /**
3348 * s2io_set_swapper - to set the swapper controle on the card
3349 * @sp : private member of the device structure,
3350 * pointer to the s2io_nic structure.
3351 * Description: Function to set the swapper control on the card
3352 * correctly depending on the 'endianness' of the system.
3353 * Return value:
3354 * SUCCESS on success and FAILURE on failure.
3355 */
3356
3357 static int s2io_set_swapper(struct s2io_nic * sp)
3358 {
3359 struct net_device *dev = sp->dev;
3360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3361 u64 val64, valt, valr;
3362
3363 /*
3364 * Set proper endian settings and verify the same by reading
3365 * the PIF Feed-back register.
3366 */
3367
3368 val64 = readq(&bar0->pif_rd_swapper_fb);
3369 if (val64 != 0x0123456789ABCDEFULL) {
3370 int i = 0;
3371 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3372 0x8100008181000081ULL, /* FE=1, SE=0 */
3373 0x4200004242000042ULL, /* FE=0, SE=1 */
3374 0}; /* FE=0, SE=0 */
3375
3376 while(i<4) {
3377 writeq(value[i], &bar0->swapper_ctrl);
3378 val64 = readq(&bar0->pif_rd_swapper_fb);
3379 if (val64 == 0x0123456789ABCDEFULL)
3380 break;
3381 i++;
3382 }
3383 if (i == 4) {
3384 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3385 dev->name);
3386 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3387 (unsigned long long) val64);
3388 return FAILURE;
3389 }
3390 valr = value[i];
3391 } else {
3392 valr = readq(&bar0->swapper_ctrl);
3393 }
3394
3395 valt = 0x0123456789ABCDEFULL;
3396 writeq(valt, &bar0->xmsi_address);
3397 val64 = readq(&bar0->xmsi_address);
3398
3399 if(val64 != valt) {
3400 int i = 0;
3401 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3402 0x0081810000818100ULL, /* FE=1, SE=0 */
3403 0x0042420000424200ULL, /* FE=0, SE=1 */
3404 0}; /* FE=0, SE=0 */
3405
3406 while(i<4) {
3407 writeq((value[i] | valr), &bar0->swapper_ctrl);
3408 writeq(valt, &bar0->xmsi_address);
3409 val64 = readq(&bar0->xmsi_address);
3410 if(val64 == valt)
3411 break;
3412 i++;
3413 }
3414 if(i == 4) {
3415 unsigned long long x = val64;
3416 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3417 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3418 return FAILURE;
3419 }
3420 }
3421 val64 = readq(&bar0->swapper_ctrl);
3422 val64 &= 0xFFFF000000000000ULL;
3423
3424 #ifdef __BIG_ENDIAN
3425 /*
3426 * The device by default set to a big endian format, so a
3427 * big endian driver need not set anything.
3428 */
3429 val64 |= (SWAPPER_CTRL_TXP_FE |
3430 SWAPPER_CTRL_TXP_SE |
3431 SWAPPER_CTRL_TXD_R_FE |
3432 SWAPPER_CTRL_TXD_W_FE |
3433 SWAPPER_CTRL_TXF_R_FE |
3434 SWAPPER_CTRL_RXD_R_FE |
3435 SWAPPER_CTRL_RXD_W_FE |
3436 SWAPPER_CTRL_RXF_W_FE |
3437 SWAPPER_CTRL_XMSI_FE |
3438 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3439 if (sp->intr_type == INTA)
3440 val64 |= SWAPPER_CTRL_XMSI_SE;
3441 writeq(val64, &bar0->swapper_ctrl);
3442 #else
3443 /*
3444 * Initially we enable all bits to make it accessible by the
3445 * driver, then we selectively enable only those bits that
3446 * we want to set.
3447 */
3448 val64 |= (SWAPPER_CTRL_TXP_FE |
3449 SWAPPER_CTRL_TXP_SE |
3450 SWAPPER_CTRL_TXD_R_FE |
3451 SWAPPER_CTRL_TXD_R_SE |
3452 SWAPPER_CTRL_TXD_W_FE |
3453 SWAPPER_CTRL_TXD_W_SE |
3454 SWAPPER_CTRL_TXF_R_FE |
3455 SWAPPER_CTRL_RXD_R_FE |
3456 SWAPPER_CTRL_RXD_R_SE |
3457 SWAPPER_CTRL_RXD_W_FE |
3458 SWAPPER_CTRL_RXD_W_SE |
3459 SWAPPER_CTRL_RXF_W_FE |
3460 SWAPPER_CTRL_XMSI_FE |
3461 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3462 if (sp->intr_type == INTA)
3463 val64 |= SWAPPER_CTRL_XMSI_SE;
3464 writeq(val64, &bar0->swapper_ctrl);
3465 #endif
3466 val64 = readq(&bar0->swapper_ctrl);
3467
3468 /*
3469 * Verifying if endian settings are accurate by reading a
3470 * feedback register.
3471 */
3472 val64 = readq(&bar0->pif_rd_swapper_fb);
3473 if (val64 != 0x0123456789ABCDEFULL) {
3474 /* Endian settings are incorrect, calls for another dekko. */
3475 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3476 dev->name);
3477 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3478 (unsigned long long) val64);
3479 return FAILURE;
3480 }
3481
3482 return SUCCESS;
3483 }
3484
3485 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3486 {
3487 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3488 u64 val64;
3489 int ret = 0, cnt = 0;
3490
3491 do {
3492 val64 = readq(&bar0->xmsi_access);
3493 if (!(val64 & BIT(15)))
3494 break;
3495 mdelay(1);
3496 cnt++;
3497 } while(cnt < 5);
3498 if (cnt == 5) {
3499 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3500 ret = 1;
3501 }
3502
3503 return ret;
3504 }
3505
3506 static void restore_xmsi_data(struct s2io_nic *nic)
3507 {
3508 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3509 u64 val64;
3510 int i;
3511
3512 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3513 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3514 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3515 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3516 writeq(val64, &bar0->xmsi_access);
3517 if (wait_for_msix_trans(nic, i)) {
3518 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3519 continue;
3520 }
3521 }
3522 }
3523
3524 static void store_xmsi_data(struct s2io_nic *nic)
3525 {
3526 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3527 u64 val64, addr, data;
3528 int i;
3529
3530 /* Store and display */
3531 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3532 val64 = (BIT(15) | vBIT(i, 26, 6));
3533 writeq(val64, &bar0->xmsi_access);
3534 if (wait_for_msix_trans(nic, i)) {
3535 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3536 continue;
3537 }
3538 addr = readq(&bar0->xmsi_address);
3539 data = readq(&bar0->xmsi_data);
3540 if (addr && data) {
3541 nic->msix_info[i].addr = addr;
3542 nic->msix_info[i].data = data;
3543 }
3544 }
3545 }
3546
3547 int s2io_enable_msi(struct s2io_nic *nic)
3548 {
3549 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3550 u16 msi_ctrl, msg_val;
3551 struct config_param *config = &nic->config;
3552 struct net_device *dev = nic->dev;
3553 u64 val64, tx_mat, rx_mat;
3554 int i, err;
3555
3556 val64 = readq(&bar0->pic_control);
3557 val64 &= ~BIT(1);
3558 writeq(val64, &bar0->pic_control);
3559
3560 err = pci_enable_msi(nic->pdev);
3561 if (err) {
3562 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3563 nic->dev->name);
3564 return err;
3565 }
3566
3567 /*
3568 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3569 * for interrupt handling.
3570 */
3571 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3572 msg_val ^= 0x1;
3573 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3574 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3575
3576 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3577 msi_ctrl |= 0x10;
3578 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3579
3580 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3581 tx_mat = readq(&bar0->tx_mat0_n[0]);
3582 for (i=0; i<config->tx_fifo_num; i++) {
3583 tx_mat |= TX_MAT_SET(i, 1);
3584 }
3585 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3586
3587 rx_mat = readq(&bar0->rx_mat);
3588 for (i=0; i<config->rx_ring_num; i++) {
3589 rx_mat |= RX_MAT_SET(i, 1);
3590 }
3591 writeq(rx_mat, &bar0->rx_mat);
3592
3593 dev->irq = nic->pdev->irq;
3594 return 0;
3595 }
3596
3597 static int s2io_enable_msi_x(struct s2io_nic *nic)
3598 {
3599 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3600 u64 tx_mat, rx_mat;
3601 u16 msi_control; /* Temp variable */
3602 int ret, i, j, msix_indx = 1;
3603
3604 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3605 GFP_KERNEL);
3606 if (nic->entries == NULL) {
3607 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3608 return -ENOMEM;
3609 }
3610 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3611
3612 nic->s2io_entries =
3613 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3614 GFP_KERNEL);
3615 if (nic->s2io_entries == NULL) {
3616 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3617 kfree(nic->entries);
3618 return -ENOMEM;
3619 }
3620 memset(nic->s2io_entries, 0,
3621 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3622
3623 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3624 nic->entries[i].entry = i;
3625 nic->s2io_entries[i].entry = i;
3626 nic->s2io_entries[i].arg = NULL;
3627 nic->s2io_entries[i].in_use = 0;
3628 }
3629
3630 tx_mat = readq(&bar0->tx_mat0_n[0]);
3631 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3632 tx_mat |= TX_MAT_SET(i, msix_indx);
3633 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3634 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3635 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3636 }
3637 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3638
3639 if (!nic->config.bimodal) {
3640 rx_mat = readq(&bar0->rx_mat);
3641 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3642 rx_mat |= RX_MAT_SET(j, msix_indx);
3643 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3644 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3645 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3646 }
3647 writeq(rx_mat, &bar0->rx_mat);
3648 } else {
3649 tx_mat = readq(&bar0->tx_mat0_n[7]);
3650 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3651 tx_mat |= TX_MAT_SET(i, msix_indx);
3652 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3653 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3654 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3655 }
3656 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3657 }
3658
3659 nic->avail_msix_vectors = 0;
3660 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3661 /* We fail init if error or we get less vectors than min required */
3662 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3663 nic->avail_msix_vectors = ret;
3664 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3665 }
3666 if (ret) {
3667 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3668 kfree(nic->entries);
3669 kfree(nic->s2io_entries);
3670 nic->entries = NULL;
3671 nic->s2io_entries = NULL;
3672 nic->avail_msix_vectors = 0;
3673 return -ENOMEM;
3674 }
3675 if (!nic->avail_msix_vectors)
3676 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3677
3678 /*
3679 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3680 * in the herc NIC. (Temp change, needs to be removed later)
3681 */
3682 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3683 msi_control |= 0x1; /* Enable MSI */
3684 pci_write_config_word(nic->pdev, 0x42, msi_control);
3685
3686 return 0;
3687 }
3688
3689 /* ********************************************************* *
3690 * Functions defined below concern the OS part of the driver *
3691 * ********************************************************* */
3692
3693 /**
3694 * s2io_open - open entry point of the driver
3695 * @dev : pointer to the device structure.
3696 * Description:
3697 * This function is the open entry point of the driver. It mainly calls a
3698 * function to allocate Rx buffers and inserts them into the buffer
3699 * descriptors and then enables the Rx part of the NIC.
3700 * Return value:
3701 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3702 * file on failure.
3703 */
3704
3705 static int s2io_open(struct net_device *dev)
3706 {
3707 struct s2io_nic *sp = dev->priv;
3708 int err = 0;
3709
3710 /*
3711 * Make sure you have link off by default every time
3712 * Nic is initialized
3713 */
3714 netif_carrier_off(dev);
3715 sp->last_link_state = 0;
3716
3717 /* Initialize H/W and enable interrupts */
3718 err = s2io_card_up(sp);
3719 if (err) {
3720 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3721 dev->name);
3722 goto hw_init_failed;
3723 }
3724
3725 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3726 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3727 s2io_card_down(sp);
3728 err = -ENODEV;
3729 goto hw_init_failed;
3730 }
3731
3732 netif_start_queue(dev);
3733 return 0;
3734
3735 hw_init_failed:
3736 if (sp->intr_type == MSI_X) {
3737 if (sp->entries)
3738 kfree(sp->entries);
3739 if (sp->s2io_entries)
3740 kfree(sp->s2io_entries);
3741 }
3742 return err;
3743 }
3744
3745 /**
3746 * s2io_close -close entry point of the driver
3747 * @dev : device pointer.
3748 * Description:
3749 * This is the stop entry point of the driver. It needs to undo exactly
3750 * whatever was done by the open entry point,thus it's usually referred to
3751 * as the close function.Among other things this function mainly stops the
3752 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3753 * Return value:
3754 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3755 * file on failure.
3756 */
3757
3758 static int s2io_close(struct net_device *dev)
3759 {
3760 struct s2io_nic *sp = dev->priv;
3761
3762 flush_scheduled_work();
3763 netif_stop_queue(dev);
3764 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3765 s2io_card_down(sp);
3766
3767 sp->device_close_flag = TRUE; /* Device is shut down. */
3768 return 0;
3769 }
3770
3771 /**
3772 * s2io_xmit - Tx entry point of te driver
3773 * @skb : the socket buffer containing the Tx data.
3774 * @dev : device pointer.
3775 * Description :
3776 * This function is the Tx entry point of the driver. S2IO NIC supports
3777 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3778 * NOTE: when device cant queue the pkt,just the trans_start variable will
3779 * not be upadted.
3780 * Return value:
3781 * 0 on success & 1 on failure.
3782 */
3783
3784 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3785 {
3786 struct s2io_nic *sp = dev->priv;
3787 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3788 register u64 val64;
3789 struct TxD *txdp;
3790 struct TxFIFO_element __iomem *tx_fifo;
3791 unsigned long flags;
3792 u16 vlan_tag = 0;
3793 int vlan_priority = 0;
3794 struct mac_info *mac_control;
3795 struct config_param *config;
3796 int offload_type;
3797
3798 mac_control = &sp->mac_control;
3799 config = &sp->config;
3800
3801 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3802 spin_lock_irqsave(&sp->tx_lock, flags);
3803 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3804 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3805 dev->name);
3806 spin_unlock_irqrestore(&sp->tx_lock, flags);
3807 dev_kfree_skb(skb);
3808 return 0;
3809 }
3810
3811 queue = 0;
3812
3813 /* Get Fifo number to Transmit based on vlan priority */
3814 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3815 vlan_tag = vlan_tx_tag_get(skb);
3816 vlan_priority = vlan_tag >> 13;
3817 queue = config->fifo_mapping[vlan_priority];
3818 }
3819
3820 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3821 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3822 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3823 list_virt_addr;
3824
3825 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3826 /* Avoid "put" pointer going beyond "get" pointer */
3827 if (txdp->Host_Control ||
3828 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3829 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3830 netif_stop_queue(dev);
3831 dev_kfree_skb(skb);
3832 spin_unlock_irqrestore(&sp->tx_lock, flags);
3833 return 0;
3834 }
3835
3836 /* A buffer with no data will be dropped */
3837 if (!skb->len) {
3838 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3839 dev_kfree_skb(skb);
3840 spin_unlock_irqrestore(&sp->tx_lock, flags);
3841 return 0;
3842 }
3843
3844 offload_type = s2io_offload_type(skb);
3845 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3846 txdp->Control_1 |= TXD_TCP_LSO_EN;
3847 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3848 }
3849 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3850 txdp->Control_2 |=
3851 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3852 TXD_TX_CKO_UDP_EN);
3853 }
3854 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3855 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3856 txdp->Control_2 |= config->tx_intr_type;
3857
3858 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3859 txdp->Control_2 |= TXD_VLAN_ENABLE;
3860 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3861 }
3862
3863 frg_len = skb->len - skb->data_len;
3864 if (offload_type == SKB_GSO_UDP) {
3865 int ufo_size;
3866
3867 ufo_size = s2io_udp_mss(skb);
3868 ufo_size &= ~7;
3869 txdp->Control_1 |= TXD_UFO_EN;
3870 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3871 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3872 #ifdef __BIG_ENDIAN
3873 sp->ufo_in_band_v[put_off] =
3874 (u64)skb_shinfo(skb)->ip6_frag_id;
3875 #else
3876 sp->ufo_in_band_v[put_off] =
3877 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3878 #endif
3879 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3880 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3881 sp->ufo_in_band_v,
3882 sizeof(u64), PCI_DMA_TODEVICE);
3883 txdp++;
3884 }
3885
3886 txdp->Buffer_Pointer = pci_map_single
3887 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3888 txdp->Host_Control = (unsigned long) skb;
3889 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3890 if (offload_type == SKB_GSO_UDP)
3891 txdp->Control_1 |= TXD_UFO_EN;
3892
3893 frg_cnt = skb_shinfo(skb)->nr_frags;
3894 /* For fragmented SKB. */
3895 for (i = 0; i < frg_cnt; i++) {
3896 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3897 /* A '0' length fragment will be ignored */
3898 if (!frag->size)
3899 continue;
3900 txdp++;
3901 txdp->Buffer_Pointer = (u64) pci_map_page
3902 (sp->pdev, frag->page, frag->page_offset,
3903 frag->size, PCI_DMA_TODEVICE);
3904 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3905 if (offload_type == SKB_GSO_UDP)
3906 txdp->Control_1 |= TXD_UFO_EN;
3907 }
3908 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3909
3910 if (offload_type == SKB_GSO_UDP)
3911 frg_cnt++; /* as Txd0 was used for inband header */
3912
3913 tx_fifo = mac_control->tx_FIFO_start[queue];
3914 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3915 writeq(val64, &tx_fifo->TxDL_Pointer);
3916
3917 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3918 TX_FIFO_LAST_LIST);
3919 if (offload_type)
3920 val64 |= TX_FIFO_SPECIAL_FUNC;
3921
3922 writeq(val64, &tx_fifo->List_Control);
3923
3924 mmiowb();
3925
3926 put_off++;
3927 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3928 put_off = 0;
3929 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3930
3931 /* Avoid "put" pointer going beyond "get" pointer */
3932 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3933 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3934 DBG_PRINT(TX_DBG,
3935 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3936 put_off, get_off);
3937 netif_stop_queue(dev);
3938 }
3939
3940 dev->trans_start = jiffies;
3941 spin_unlock_irqrestore(&sp->tx_lock, flags);
3942
3943 return 0;
3944 }
3945
3946 static void
3947 s2io_alarm_handle(unsigned long data)
3948 {
3949 struct s2io_nic *sp = (struct s2io_nic *)data;
3950
3951 alarm_intr_handler(sp);
3952 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3953 }
3954
3955 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
3956 {
3957 int rxb_size, level;
3958
3959 if (!sp->lro) {
3960 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3961 level = rx_buffer_level(sp, rxb_size, rng_n);
3962
3963 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3964 int ret;
3965 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3966 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3967 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3968 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3969 __FUNCTION__);
3970 clear_bit(0, (&sp->tasklet_status));
3971 return -1;
3972 }
3973 clear_bit(0, (&sp->tasklet_status));
3974 } else if (level == LOW)
3975 tasklet_schedule(&sp->task);
3976
3977 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3978 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3979 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3980 }
3981 return 0;
3982 }
3983
3984 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
3985 {
3986 struct net_device *dev = (struct net_device *) dev_id;
3987 struct s2io_nic *sp = dev->priv;
3988 int i;
3989 struct mac_info *mac_control;
3990 struct config_param *config;
3991
3992 atomic_inc(&sp->isr_cnt);
3993 mac_control = &sp->mac_control;
3994 config = &sp->config;
3995 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3996
3997 /* If Intr is because of Rx Traffic */
3998 for (i = 0; i < config->rx_ring_num; i++)
3999 rx_intr_handler(&mac_control->rings[i]);
4000
4001 /* If Intr is because of Tx Traffic */
4002 for (i = 0; i < config->tx_fifo_num; i++)
4003 tx_intr_handler(&mac_control->fifos[i]);
4004
4005 /*
4006 * If the Rx buffer count is below the panic threshold then
4007 * reallocate the buffers from the interrupt handler itself,
4008 * else schedule a tasklet to reallocate the buffers.
4009 */
4010 for (i = 0; i < config->rx_ring_num; i++)
4011 s2io_chk_rx_buffers(sp, i);
4012
4013 atomic_dec(&sp->isr_cnt);
4014 return IRQ_HANDLED;
4015 }
4016
4017 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4018 {
4019 struct ring_info *ring = (struct ring_info *)dev_id;
4020 struct s2io_nic *sp = ring->nic;
4021
4022 atomic_inc(&sp->isr_cnt);
4023
4024 rx_intr_handler(ring);
4025 s2io_chk_rx_buffers(sp, ring->ring_no);
4026
4027 atomic_dec(&sp->isr_cnt);
4028 return IRQ_HANDLED;
4029 }
4030
4031 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4032 {
4033 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4034 struct s2io_nic *sp = fifo->nic;
4035
4036 atomic_inc(&sp->isr_cnt);
4037 tx_intr_handler(fifo);
4038 atomic_dec(&sp->isr_cnt);
4039 return IRQ_HANDLED;
4040 }
4041 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4042 {
4043 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4044 u64 val64;
4045
4046 val64 = readq(&bar0->pic_int_status);
4047 if (val64 & PIC_INT_GPIO) {
4048 val64 = readq(&bar0->gpio_int_reg);
4049 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4050 (val64 & GPIO_INT_REG_LINK_UP)) {
4051 /*
4052 * This is unstable state so clear both up/down
4053 * interrupt and adapter to re-evaluate the link state.
4054 */
4055 val64 |= GPIO_INT_REG_LINK_DOWN;
4056 val64 |= GPIO_INT_REG_LINK_UP;
4057 writeq(val64, &bar0->gpio_int_reg);
4058 val64 = readq(&bar0->gpio_int_mask);
4059 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4060 GPIO_INT_MASK_LINK_DOWN);
4061 writeq(val64, &bar0->gpio_int_mask);
4062 }
4063 else if (val64 & GPIO_INT_REG_LINK_UP) {
4064 val64 = readq(&bar0->adapter_status);
4065 /* Enable Adapter */
4066 val64 = readq(&bar0->adapter_control);
4067 val64 |= ADAPTER_CNTL_EN;
4068 writeq(val64, &bar0->adapter_control);
4069 val64 |= ADAPTER_LED_ON;
4070 writeq(val64, &bar0->adapter_control);
4071 if (!sp->device_enabled_once)
4072 sp->device_enabled_once = 1;
4073
4074 s2io_link(sp, LINK_UP);
4075 /*
4076 * unmask link down interrupt and mask link-up
4077 * intr
4078 */
4079 val64 = readq(&bar0->gpio_int_mask);
4080 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4081 val64 |= GPIO_INT_MASK_LINK_UP;
4082 writeq(val64, &bar0->gpio_int_mask);
4083
4084 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4085 val64 = readq(&bar0->adapter_status);
4086 s2io_link(sp, LINK_DOWN);
4087 /* Link is down so unmaks link up interrupt */
4088 val64 = readq(&bar0->gpio_int_mask);
4089 val64 &= ~GPIO_INT_MASK_LINK_UP;
4090 val64 |= GPIO_INT_MASK_LINK_DOWN;
4091 writeq(val64, &bar0->gpio_int_mask);
4092 }
4093 }
4094 val64 = readq(&bar0->gpio_int_mask);
4095 }
4096
4097 /**
4098 * s2io_isr - ISR handler of the device .
4099 * @irq: the irq of the device.
4100 * @dev_id: a void pointer to the dev structure of the NIC.
4101 * Description: This function is the ISR handler of the device. It
4102 * identifies the reason for the interrupt and calls the relevant
4103 * service routines. As a contongency measure, this ISR allocates the
4104 * recv buffers, if their numbers are below the panic value which is
4105 * presently set to 25% of the original number of rcv buffers allocated.
4106 * Return value:
4107 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4108 * IRQ_NONE: will be returned if interrupt is not from our device
4109 */
4110 static irqreturn_t s2io_isr(int irq, void *dev_id)
4111 {
4112 struct net_device *dev = (struct net_device *) dev_id;
4113 struct s2io_nic *sp = dev->priv;
4114 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4115 int i;
4116 u64 reason = 0;
4117 struct mac_info *mac_control;
4118 struct config_param *config;
4119
4120 atomic_inc(&sp->isr_cnt);
4121 mac_control = &sp->mac_control;
4122 config = &sp->config;
4123
4124 /*
4125 * Identify the cause for interrupt and call the appropriate
4126 * interrupt handler. Causes for the interrupt could be;
4127 * 1. Rx of packet.
4128 * 2. Tx complete.
4129 * 3. Link down.
4130 * 4. Error in any functional blocks of the NIC.
4131 */
4132 reason = readq(&bar0->general_int_status);
4133
4134 if (!reason) {
4135 /* The interrupt was not raised by us. */
4136 atomic_dec(&sp->isr_cnt);
4137 return IRQ_NONE;
4138 }
4139 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4140 /* Disable device and get out */
4141 atomic_dec(&sp->isr_cnt);
4142 return IRQ_NONE;
4143 }
4144
4145 if (napi) {
4146 if (reason & GEN_INTR_RXTRAFFIC) {
4147 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4148 __netif_rx_schedule(dev);
4149 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4150 }
4151 else
4152 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4153 }
4154 } else {
4155 /*
4156 * Rx handler is called by default, without checking for the
4157 * cause of interrupt.
4158 * rx_traffic_int reg is an R1 register, writing all 1's
4159 * will ensure that the actual interrupt causing bit get's
4160 * cleared and hence a read can be avoided.
4161 */
4162 if (reason & GEN_INTR_RXTRAFFIC)
4163 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4164
4165 for (i = 0; i < config->rx_ring_num; i++) {
4166 rx_intr_handler(&mac_control->rings[i]);
4167 }
4168 }
4169
4170 /*
4171 * tx_traffic_int reg is an R1 register, writing all 1's
4172 * will ensure that the actual interrupt causing bit get's
4173 * cleared and hence a read can be avoided.
4174 */
4175 if (reason & GEN_INTR_TXTRAFFIC)
4176 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4177
4178 for (i = 0; i < config->tx_fifo_num; i++)
4179 tx_intr_handler(&mac_control->fifos[i]);
4180
4181 if (reason & GEN_INTR_TXPIC)
4182 s2io_txpic_intr_handle(sp);
4183 /*
4184 * If the Rx buffer count is below the panic threshold then
4185 * reallocate the buffers from the interrupt handler itself,
4186 * else schedule a tasklet to reallocate the buffers.
4187 */
4188 if (!napi) {
4189 for (i = 0; i < config->rx_ring_num; i++)
4190 s2io_chk_rx_buffers(sp, i);
4191 }
4192
4193 writeq(0, &bar0->general_int_mask);
4194 readl(&bar0->general_int_status);
4195
4196 atomic_dec(&sp->isr_cnt);
4197 return IRQ_HANDLED;
4198 }
4199
4200 /**
4201 * s2io_updt_stats -
4202 */
4203 static void s2io_updt_stats(struct s2io_nic *sp)
4204 {
4205 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4206 u64 val64;
4207 int cnt = 0;
4208
4209 if (atomic_read(&sp->card_state) == CARD_UP) {
4210 /* Apprx 30us on a 133 MHz bus */
4211 val64 = SET_UPDT_CLICKS(10) |
4212 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4213 writeq(val64, &bar0->stat_cfg);
4214 do {
4215 udelay(100);
4216 val64 = readq(&bar0->stat_cfg);
4217 if (!(val64 & BIT(0)))
4218 break;
4219 cnt++;
4220 if (cnt == 5)
4221 break; /* Updt failed */
4222 } while(1);
4223 } else {
4224 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
4225 }
4226 }
4227
4228 /**
4229 * s2io_get_stats - Updates the device statistics structure.
4230 * @dev : pointer to the device structure.
4231 * Description:
4232 * This function updates the device statistics structure in the s2io_nic
4233 * structure and returns a pointer to the same.
4234 * Return value:
4235 * pointer to the updated net_device_stats structure.
4236 */
4237
4238 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4239 {
4240 struct s2io_nic *sp = dev->priv;
4241 struct mac_info *mac_control;
4242 struct config_param *config;
4243
4244
4245 mac_control = &sp->mac_control;
4246 config = &sp->config;
4247
4248 /* Configure Stats for immediate updt */
4249 s2io_updt_stats(sp);
4250
4251 sp->stats.tx_packets =
4252 le32_to_cpu(mac_control->stats_info->tmac_frms);
4253 sp->stats.tx_errors =
4254 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4255 sp->stats.rx_errors =
4256 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4257 sp->stats.multicast =
4258 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4259 sp->stats.rx_length_errors =
4260 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4261
4262 return (&sp->stats);
4263 }
4264
4265 /**
4266 * s2io_set_multicast - entry point for multicast address enable/disable.
4267 * @dev : pointer to the device structure
4268 * Description:
4269 * This function is a driver entry point which gets called by the kernel
4270 * whenever multicast addresses must be enabled/disabled. This also gets
4271 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4272 * determine, if multicast address must be enabled or if promiscuous mode
4273 * is to be disabled etc.
4274 * Return value:
4275 * void.
4276 */
4277
4278 static void s2io_set_multicast(struct net_device *dev)
4279 {
4280 int i, j, prev_cnt;
4281 struct dev_mc_list *mclist;
4282 struct s2io_nic *sp = dev->priv;
4283 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4284 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4285 0xfeffffffffffULL;
4286 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4287 void __iomem *add;
4288
4289 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4290 /* Enable all Multicast addresses */
4291 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4292 &bar0->rmac_addr_data0_mem);
4293 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4294 &bar0->rmac_addr_data1_mem);
4295 val64 = RMAC_ADDR_CMD_MEM_WE |
4296 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4297 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4298 writeq(val64, &bar0->rmac_addr_cmd_mem);
4299 /* Wait till command completes */
4300 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4301 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4302
4303 sp->m_cast_flg = 1;
4304 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4305 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4306 /* Disable all Multicast addresses */
4307 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4308 &bar0->rmac_addr_data0_mem);
4309 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4310 &bar0->rmac_addr_data1_mem);
4311 val64 = RMAC_ADDR_CMD_MEM_WE |
4312 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4313 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4314 writeq(val64, &bar0->rmac_addr_cmd_mem);
4315 /* Wait till command completes */
4316 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4317 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4318
4319 sp->m_cast_flg = 0;
4320 sp->all_multi_pos = 0;
4321 }
4322
4323 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4324 /* Put the NIC into promiscuous mode */
4325 add = &bar0->mac_cfg;
4326 val64 = readq(&bar0->mac_cfg);
4327 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4328
4329 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4330 writel((u32) val64, add);
4331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4332 writel((u32) (val64 >> 32), (add + 4));
4333
4334 val64 = readq(&bar0->mac_cfg);
4335 sp->promisc_flg = 1;
4336 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4337 dev->name);
4338 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4339 /* Remove the NIC from promiscuous mode */
4340 add = &bar0->mac_cfg;
4341 val64 = readq(&bar0->mac_cfg);
4342 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4343
4344 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4345 writel((u32) val64, add);
4346 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4347 writel((u32) (val64 >> 32), (add + 4));
4348
4349 val64 = readq(&bar0->mac_cfg);
4350 sp->promisc_flg = 0;
4351 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4352 dev->name);
4353 }
4354
4355 /* Update individual M_CAST address list */
4356 if ((!sp->m_cast_flg) && dev->mc_count) {
4357 if (dev->mc_count >
4358 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4359 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4360 dev->name);
4361 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4362 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4363 return;
4364 }
4365
4366 prev_cnt = sp->mc_addr_count;
4367 sp->mc_addr_count = dev->mc_count;
4368
4369 /* Clear out the previous list of Mc in the H/W. */
4370 for (i = 0; i < prev_cnt; i++) {
4371 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4372 &bar0->rmac_addr_data0_mem);
4373 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4374 &bar0->rmac_addr_data1_mem);
4375 val64 = RMAC_ADDR_CMD_MEM_WE |
4376 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4377 RMAC_ADDR_CMD_MEM_OFFSET
4378 (MAC_MC_ADDR_START_OFFSET + i);
4379 writeq(val64, &bar0->rmac_addr_cmd_mem);
4380
4381 /* Wait for command completes */
4382 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4383 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4384 DBG_PRINT(ERR_DBG, "%s: Adding ",
4385 dev->name);
4386 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4387 return;
4388 }
4389 }
4390
4391 /* Create the new Rx filter list and update the same in H/W. */
4392 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4393 i++, mclist = mclist->next) {
4394 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4395 ETH_ALEN);
4396 mac_addr = 0;
4397 for (j = 0; j < ETH_ALEN; j++) {
4398 mac_addr |= mclist->dmi_addr[j];
4399 mac_addr <<= 8;
4400 }
4401 mac_addr >>= 8;
4402 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4403 &bar0->rmac_addr_data0_mem);
4404 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4405 &bar0->rmac_addr_data1_mem);
4406 val64 = RMAC_ADDR_CMD_MEM_WE |
4407 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4408 RMAC_ADDR_CMD_MEM_OFFSET
4409 (i + MAC_MC_ADDR_START_OFFSET);
4410 writeq(val64, &bar0->rmac_addr_cmd_mem);
4411
4412 /* Wait for command completes */
4413 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4414 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4415 DBG_PRINT(ERR_DBG, "%s: Adding ",
4416 dev->name);
4417 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4418 return;
4419 }
4420 }
4421 }
4422 }
4423
4424 /**
4425 * s2io_set_mac_addr - Programs the Xframe mac address
4426 * @dev : pointer to the device structure.
4427 * @addr: a uchar pointer to the new mac address which is to be set.
4428 * Description : This procedure will program the Xframe to receive
4429 * frames with new Mac Address
4430 * Return value: SUCCESS on success and an appropriate (-)ve integer
4431 * as defined in errno.h file on failure.
4432 */
4433
4434 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4435 {
4436 struct s2io_nic *sp = dev->priv;
4437 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4438 register u64 val64, mac_addr = 0;
4439 int i;
4440
4441 /*
4442 * Set the new MAC address as the new unicast filter and reflect this
4443 * change on the device address registered with the OS. It will be
4444 * at offset 0.
4445 */
4446 for (i = 0; i < ETH_ALEN; i++) {
4447 mac_addr <<= 8;
4448 mac_addr |= addr[i];
4449 }
4450
4451 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4452 &bar0->rmac_addr_data0_mem);
4453
4454 val64 =
4455 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4456 RMAC_ADDR_CMD_MEM_OFFSET(0);
4457 writeq(val64, &bar0->rmac_addr_cmd_mem);
4458 /* Wait till command completes */
4459 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4460 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4461 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4462 return FAILURE;
4463 }
4464
4465 return SUCCESS;
4466 }
4467
4468 /**
4469 * s2io_ethtool_sset - Sets different link parameters.
4470 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4471 * @info: pointer to the structure with parameters given by ethtool to set
4472 * link information.
4473 * Description:
4474 * The function sets different link parameters provided by the user onto
4475 * the NIC.
4476 * Return value:
4477 * 0 on success.
4478 */
4479
4480 static int s2io_ethtool_sset(struct net_device *dev,
4481 struct ethtool_cmd *info)
4482 {
4483 struct s2io_nic *sp = dev->priv;
4484 if ((info->autoneg == AUTONEG_ENABLE) ||
4485 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4486 return -EINVAL;
4487 else {
4488 s2io_close(sp->dev);
4489 s2io_open(sp->dev);
4490 }
4491
4492 return 0;
4493 }
4494
4495 /**
4496 * s2io_ethtol_gset - Return link specific information.
4497 * @sp : private member of the device structure, pointer to the
4498 * s2io_nic structure.
4499 * @info : pointer to the structure with parameters given by ethtool
4500 * to return link information.
4501 * Description:
4502 * Returns link specific information like speed, duplex etc.. to ethtool.
4503 * Return value :
4504 * return 0 on success.
4505 */
4506
4507 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4508 {
4509 struct s2io_nic *sp = dev->priv;
4510 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4511 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4512 info->port = PORT_FIBRE;
4513 /* info->transceiver?? TODO */
4514
4515 if (netif_carrier_ok(sp->dev)) {
4516 info->speed = 10000;
4517 info->duplex = DUPLEX_FULL;
4518 } else {
4519 info->speed = -1;
4520 info->duplex = -1;
4521 }
4522
4523 info->autoneg = AUTONEG_DISABLE;
4524 return 0;
4525 }
4526
4527 /**
4528 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4529 * @sp : private member of the device structure, which is a pointer to the
4530 * s2io_nic structure.
4531 * @info : pointer to the structure with parameters given by ethtool to
4532 * return driver information.
4533 * Description:
4534 * Returns driver specefic information like name, version etc.. to ethtool.
4535 * Return value:
4536 * void
4537 */
4538
4539 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4540 struct ethtool_drvinfo *info)
4541 {
4542 struct s2io_nic *sp = dev->priv;
4543
4544 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4545 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4546 strncpy(info->fw_version, "", sizeof(info->fw_version));
4547 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4548 info->regdump_len = XENA_REG_SPACE;
4549 info->eedump_len = XENA_EEPROM_SPACE;
4550 info->testinfo_len = S2IO_TEST_LEN;
4551 info->n_stats = S2IO_STAT_LEN;
4552 }
4553
4554 /**
4555 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4556 * @sp: private member of the device structure, which is a pointer to the
4557 * s2io_nic structure.
4558 * @regs : pointer to the structure with parameters given by ethtool for
4559 * dumping the registers.
4560 * @reg_space: The input argumnet into which all the registers are dumped.
4561 * Description:
4562 * Dumps the entire register space of xFrame NIC into the user given
4563 * buffer area.
4564 * Return value :
4565 * void .
4566 */
4567
4568 static void s2io_ethtool_gregs(struct net_device *dev,
4569 struct ethtool_regs *regs, void *space)
4570 {
4571 int i;
4572 u64 reg;
4573 u8 *reg_space = (u8 *) space;
4574 struct s2io_nic *sp = dev->priv;
4575
4576 regs->len = XENA_REG_SPACE;
4577 regs->version = sp->pdev->subsystem_device;
4578
4579 for (i = 0; i < regs->len; i += 8) {
4580 reg = readq(sp->bar0 + i);
4581 memcpy((reg_space + i), &reg, 8);
4582 }
4583 }
4584
4585 /**
4586 * s2io_phy_id - timer function that alternates adapter LED.
4587 * @data : address of the private member of the device structure, which
4588 * is a pointer to the s2io_nic structure, provided as an u32.
4589 * Description: This is actually the timer function that alternates the
4590 * adapter LED bit of the adapter control bit to set/reset every time on
4591 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4592 * once every second.
4593 */
4594 static void s2io_phy_id(unsigned long data)
4595 {
4596 struct s2io_nic *sp = (struct s2io_nic *) data;
4597 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4598 u64 val64 = 0;
4599 u16 subid;
4600
4601 subid = sp->pdev->subsystem_device;
4602 if ((sp->device_type == XFRAME_II_DEVICE) ||
4603 ((subid & 0xFF) >= 0x07)) {
4604 val64 = readq(&bar0->gpio_control);
4605 val64 ^= GPIO_CTRL_GPIO_0;
4606 writeq(val64, &bar0->gpio_control);
4607 } else {
4608 val64 = readq(&bar0->adapter_control);
4609 val64 ^= ADAPTER_LED_ON;
4610 writeq(val64, &bar0->adapter_control);
4611 }
4612
4613 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4614 }
4615
4616 /**
4617 * s2io_ethtool_idnic - To physically identify the nic on the system.
4618 * @sp : private member of the device structure, which is a pointer to the
4619 * s2io_nic structure.
4620 * @id : pointer to the structure with identification parameters given by
4621 * ethtool.
4622 * Description: Used to physically identify the NIC on the system.
4623 * The Link LED will blink for a time specified by the user for
4624 * identification.
4625 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4626 * identification is possible only if it's link is up.
4627 * Return value:
4628 * int , returns 0 on success
4629 */
4630
4631 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4632 {
4633 u64 val64 = 0, last_gpio_ctrl_val;
4634 struct s2io_nic *sp = dev->priv;
4635 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4636 u16 subid;
4637
4638 subid = sp->pdev->subsystem_device;
4639 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4640 if ((sp->device_type == XFRAME_I_DEVICE) &&
4641 ((subid & 0xFF) < 0x07)) {
4642 val64 = readq(&bar0->adapter_control);
4643 if (!(val64 & ADAPTER_CNTL_EN)) {
4644 printk(KERN_ERR
4645 "Adapter Link down, cannot blink LED\n");
4646 return -EFAULT;
4647 }
4648 }
4649 if (sp->id_timer.function == NULL) {
4650 init_timer(&sp->id_timer);
4651 sp->id_timer.function = s2io_phy_id;
4652 sp->id_timer.data = (unsigned long) sp;
4653 }
4654 mod_timer(&sp->id_timer, jiffies);
4655 if (data)
4656 msleep_interruptible(data * HZ);
4657 else
4658 msleep_interruptible(MAX_FLICKER_TIME);
4659 del_timer_sync(&sp->id_timer);
4660
4661 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4662 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4663 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4664 }
4665
4666 return 0;
4667 }
4668
4669 /**
4670 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4671 * @sp : private member of the device structure, which is a pointer to the
4672 * s2io_nic structure.
4673 * @ep : pointer to the structure with pause parameters given by ethtool.
4674 * Description:
4675 * Returns the Pause frame generation and reception capability of the NIC.
4676 * Return value:
4677 * void
4678 */
4679 static void s2io_ethtool_getpause_data(struct net_device *dev,
4680 struct ethtool_pauseparam *ep)
4681 {
4682 u64 val64;
4683 struct s2io_nic *sp = dev->priv;
4684 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4685
4686 val64 = readq(&bar0->rmac_pause_cfg);
4687 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4688 ep->tx_pause = TRUE;
4689 if (val64 & RMAC_PAUSE_RX_ENABLE)
4690 ep->rx_pause = TRUE;
4691 ep->autoneg = FALSE;
4692 }
4693
4694 /**
4695 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4696 * @sp : private member of the device structure, which is a pointer to the
4697 * s2io_nic structure.
4698 * @ep : pointer to the structure with pause parameters given by ethtool.
4699 * Description:
4700 * It can be used to set or reset Pause frame generation or reception
4701 * support of the NIC.
4702 * Return value:
4703 * int, returns 0 on Success
4704 */
4705
4706 static int s2io_ethtool_setpause_data(struct net_device *dev,
4707 struct ethtool_pauseparam *ep)
4708 {
4709 u64 val64;
4710 struct s2io_nic *sp = dev->priv;
4711 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4712
4713 val64 = readq(&bar0->rmac_pause_cfg);
4714 if (ep->tx_pause)
4715 val64 |= RMAC_PAUSE_GEN_ENABLE;
4716 else
4717 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4718 if (ep->rx_pause)
4719 val64 |= RMAC_PAUSE_RX_ENABLE;
4720 else
4721 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4722 writeq(val64, &bar0->rmac_pause_cfg);
4723 return 0;
4724 }
4725
4726 /**
4727 * read_eeprom - reads 4 bytes of data from user given offset.
4728 * @sp : private member of the device structure, which is a pointer to the
4729 * s2io_nic structure.
4730 * @off : offset at which the data must be written
4731 * @data : Its an output parameter where the data read at the given
4732 * offset is stored.
4733 * Description:
4734 * Will read 4 bytes of data from the user given offset and return the
4735 * read data.
4736 * NOTE: Will allow to read only part of the EEPROM visible through the
4737 * I2C bus.
4738 * Return value:
4739 * -1 on failure and 0 on success.
4740 */
4741
4742 #define S2IO_DEV_ID 5
4743 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4744 {
4745 int ret = -1;
4746 u32 exit_cnt = 0;
4747 u64 val64;
4748 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4749
4750 if (sp->device_type == XFRAME_I_DEVICE) {
4751 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4752 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4753 I2C_CONTROL_CNTL_START;
4754 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4755
4756 while (exit_cnt < 5) {
4757 val64 = readq(&bar0->i2c_control);
4758 if (I2C_CONTROL_CNTL_END(val64)) {
4759 *data = I2C_CONTROL_GET_DATA(val64);
4760 ret = 0;
4761 break;
4762 }
4763 msleep(50);
4764 exit_cnt++;
4765 }
4766 }
4767
4768 if (sp->device_type == XFRAME_II_DEVICE) {
4769 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4770 SPI_CONTROL_BYTECNT(0x3) |
4771 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4772 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4773 val64 |= SPI_CONTROL_REQ;
4774 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4775 while (exit_cnt < 5) {
4776 val64 = readq(&bar0->spi_control);
4777 if (val64 & SPI_CONTROL_NACK) {
4778 ret = 1;
4779 break;
4780 } else if (val64 & SPI_CONTROL_DONE) {
4781 *data = readq(&bar0->spi_data);
4782 *data &= 0xffffff;
4783 ret = 0;
4784 break;
4785 }
4786 msleep(50);
4787 exit_cnt++;
4788 }
4789 }
4790 return ret;
4791 }
4792
4793 /**
4794 * write_eeprom - actually writes the relevant part of the data value.
4795 * @sp : private member of the device structure, which is a pointer to the
4796 * s2io_nic structure.
4797 * @off : offset at which the data must be written
4798 * @data : The data that is to be written
4799 * @cnt : Number of bytes of the data that are actually to be written into
4800 * the Eeprom. (max of 3)
4801 * Description:
4802 * Actually writes the relevant part of the data value into the Eeprom
4803 * through the I2C bus.
4804 * Return value:
4805 * 0 on success, -1 on failure.
4806 */
4807
4808 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4809 {
4810 int exit_cnt = 0, ret = -1;
4811 u64 val64;
4812 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4813
4814 if (sp->device_type == XFRAME_I_DEVICE) {
4815 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4816 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4817 I2C_CONTROL_CNTL_START;
4818 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4819
4820 while (exit_cnt < 5) {
4821 val64 = readq(&bar0->i2c_control);
4822 if (I2C_CONTROL_CNTL_END(val64)) {
4823 if (!(val64 & I2C_CONTROL_NACK))
4824 ret = 0;
4825 break;
4826 }
4827 msleep(50);
4828 exit_cnt++;
4829 }
4830 }
4831
4832 if (sp->device_type == XFRAME_II_DEVICE) {
4833 int write_cnt = (cnt == 8) ? 0 : cnt;
4834 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4835
4836 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4837 SPI_CONTROL_BYTECNT(write_cnt) |
4838 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4839 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4840 val64 |= SPI_CONTROL_REQ;
4841 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4842 while (exit_cnt < 5) {
4843 val64 = readq(&bar0->spi_control);
4844 if (val64 & SPI_CONTROL_NACK) {
4845 ret = 1;
4846 break;
4847 } else if (val64 & SPI_CONTROL_DONE) {
4848 ret = 0;
4849 break;
4850 }
4851 msleep(50);
4852 exit_cnt++;
4853 }
4854 }
4855 return ret;
4856 }
4857 static void s2io_vpd_read(struct s2io_nic *nic)
4858 {
4859 u8 *vpd_data;
4860 u8 data;
4861 int i=0, cnt, fail = 0;
4862 int vpd_addr = 0x80;
4863
4864 if (nic->device_type == XFRAME_II_DEVICE) {
4865 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4866 vpd_addr = 0x80;
4867 }
4868 else {
4869 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4870 vpd_addr = 0x50;
4871 }
4872 strcpy(nic->serial_num, "NOT AVAILABLE");
4873
4874 vpd_data = kmalloc(256, GFP_KERNEL);
4875 if (!vpd_data)
4876 return;
4877
4878 for (i = 0; i < 256; i +=4 ) {
4879 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4880 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4881 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4882 for (cnt = 0; cnt <5; cnt++) {
4883 msleep(2);
4884 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4885 if (data == 0x80)
4886 break;
4887 }
4888 if (cnt >= 5) {
4889 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4890 fail = 1;
4891 break;
4892 }
4893 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4894 (u32 *)&vpd_data[i]);
4895 }
4896
4897 if(!fail) {
4898 /* read serial number of adapter */
4899 for (cnt = 0; cnt < 256; cnt++) {
4900 if ((vpd_data[cnt] == 'S') &&
4901 (vpd_data[cnt+1] == 'N') &&
4902 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4903 memset(nic->serial_num, 0, VPD_STRING_LEN);
4904 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4905 vpd_data[cnt+2]);
4906 break;
4907 }
4908 }
4909 }
4910
4911 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
4912 memset(nic->product_name, 0, vpd_data[1]);
4913 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4914 }
4915 kfree(vpd_data);
4916 }
4917
4918 /**
4919 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4920 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4921 * @eeprom : pointer to the user level structure provided by ethtool,
4922 * containing all relevant information.
4923 * @data_buf : user defined value to be written into Eeprom.
4924 * Description: Reads the values stored in the Eeprom at given offset
4925 * for a given length. Stores these values int the input argument data
4926 * buffer 'data_buf' and returns these to the caller (ethtool.)
4927 * Return value:
4928 * int 0 on success
4929 */
4930
4931 static int s2io_ethtool_geeprom(struct net_device *dev,
4932 struct ethtool_eeprom *eeprom, u8 * data_buf)
4933 {
4934 u32 i, valid;
4935 u64 data;
4936 struct s2io_nic *sp = dev->priv;
4937
4938 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4939
4940 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4941 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4942
4943 for (i = 0; i < eeprom->len; i += 4) {
4944 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4945 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4946 return -EFAULT;
4947 }
4948 valid = INV(data);
4949 memcpy((data_buf + i), &valid, 4);
4950 }
4951 return 0;
4952 }
4953
4954 /**
4955 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4956 * @sp : private member of the device structure, which is a pointer to the
4957 * s2io_nic structure.
4958 * @eeprom : pointer to the user level structure provided by ethtool,
4959 * containing all relevant information.
4960 * @data_buf ; user defined value to be written into Eeprom.
4961 * Description:
4962 * Tries to write the user provided value in the Eeprom, at the offset
4963 * given by the user.
4964 * Return value:
4965 * 0 on success, -EFAULT on failure.
4966 */
4967
4968 static int s2io_ethtool_seeprom(struct net_device *dev,
4969 struct ethtool_eeprom *eeprom,
4970 u8 * data_buf)
4971 {
4972 int len = eeprom->len, cnt = 0;
4973 u64 valid = 0, data;
4974 struct s2io_nic *sp = dev->priv;
4975
4976 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4977 DBG_PRINT(ERR_DBG,
4978 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4979 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4980 eeprom->magic);
4981 return -EFAULT;
4982 }
4983
4984 while (len) {
4985 data = (u32) data_buf[cnt] & 0x000000FF;
4986 if (data) {
4987 valid = (u32) (data << 24);
4988 } else
4989 valid = data;
4990
4991 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4992 DBG_PRINT(ERR_DBG,
4993 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4994 DBG_PRINT(ERR_DBG,
4995 "write into the specified offset\n");
4996 return -EFAULT;
4997 }
4998 cnt++;
4999 len--;
5000 }
5001
5002 return 0;
5003 }
5004
5005 /**
5006 * s2io_register_test - reads and writes into all clock domains.
5007 * @sp : private member of the device structure, which is a pointer to the
5008 * s2io_nic structure.
5009 * @data : variable that returns the result of each of the test conducted b
5010 * by the driver.
5011 * Description:
5012 * Read and write into all clock domains. The NIC has 3 clock domains,
5013 * see that registers in all the three regions are accessible.
5014 * Return value:
5015 * 0 on success.
5016 */
5017
5018 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5019 {
5020 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5021 u64 val64 = 0, exp_val;
5022 int fail = 0;
5023
5024 val64 = readq(&bar0->pif_rd_swapper_fb);
5025 if (val64 != 0x123456789abcdefULL) {
5026 fail = 1;
5027 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5028 }
5029
5030 val64 = readq(&bar0->rmac_pause_cfg);
5031 if (val64 != 0xc000ffff00000000ULL) {
5032 fail = 1;
5033 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5034 }
5035
5036 val64 = readq(&bar0->rx_queue_cfg);
5037 if (sp->device_type == XFRAME_II_DEVICE)
5038 exp_val = 0x0404040404040404ULL;
5039 else
5040 exp_val = 0x0808080808080808ULL;
5041 if (val64 != exp_val) {
5042 fail = 1;
5043 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5044 }
5045
5046 val64 = readq(&bar0->xgxs_efifo_cfg);
5047 if (val64 != 0x000000001923141EULL) {
5048 fail = 1;
5049 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5050 }
5051
5052 val64 = 0x5A5A5A5A5A5A5A5AULL;
5053 writeq(val64, &bar0->xmsi_data);
5054 val64 = readq(&bar0->xmsi_data);
5055 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5056 fail = 1;
5057 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5058 }
5059
5060 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5061 writeq(val64, &bar0->xmsi_data);
5062 val64 = readq(&bar0->xmsi_data);
5063 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5064 fail = 1;
5065 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5066 }
5067
5068 *data = fail;
5069 return fail;
5070 }
5071
5072 /**
5073 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5074 * @sp : private member of the device structure, which is a pointer to the
5075 * s2io_nic structure.
5076 * @data:variable that returns the result of each of the test conducted by
5077 * the driver.
5078 * Description:
5079 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5080 * register.
5081 * Return value:
5082 * 0 on success.
5083 */
5084
5085 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5086 {
5087 int fail = 0;
5088 u64 ret_data, org_4F0, org_7F0;
5089 u8 saved_4F0 = 0, saved_7F0 = 0;
5090 struct net_device *dev = sp->dev;
5091
5092 /* Test Write Error at offset 0 */
5093 /* Note that SPI interface allows write access to all areas
5094 * of EEPROM. Hence doing all negative testing only for Xframe I.
5095 */
5096 if (sp->device_type == XFRAME_I_DEVICE)
5097 if (!write_eeprom(sp, 0, 0, 3))
5098 fail = 1;
5099
5100 /* Save current values at offsets 0x4F0 and 0x7F0 */
5101 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5102 saved_4F0 = 1;
5103 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5104 saved_7F0 = 1;
5105
5106 /* Test Write at offset 4f0 */
5107 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5108 fail = 1;
5109 if (read_eeprom(sp, 0x4F0, &ret_data))
5110 fail = 1;
5111
5112 if (ret_data != 0x012345) {
5113 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5114 "Data written %llx Data read %llx\n",
5115 dev->name, (unsigned long long)0x12345,
5116 (unsigned long long)ret_data);
5117 fail = 1;
5118 }
5119
5120 /* Reset the EEPROM data go FFFF */
5121 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5122
5123 /* Test Write Request Error at offset 0x7c */
5124 if (sp->device_type == XFRAME_I_DEVICE)
5125 if (!write_eeprom(sp, 0x07C, 0, 3))
5126 fail = 1;
5127
5128 /* Test Write Request at offset 0x7f0 */
5129 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5130 fail = 1;
5131 if (read_eeprom(sp, 0x7F0, &ret_data))
5132 fail = 1;
5133
5134 if (ret_data != 0x012345) {
5135 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5136 "Data written %llx Data read %llx\n",
5137 dev->name, (unsigned long long)0x12345,
5138 (unsigned long long)ret_data);
5139 fail = 1;
5140 }
5141
5142 /* Reset the EEPROM data go FFFF */
5143 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5144
5145 if (sp->device_type == XFRAME_I_DEVICE) {
5146 /* Test Write Error at offset 0x80 */
5147 if (!write_eeprom(sp, 0x080, 0, 3))
5148 fail = 1;
5149
5150 /* Test Write Error at offset 0xfc */
5151 if (!write_eeprom(sp, 0x0FC, 0, 3))
5152 fail = 1;
5153
5154 /* Test Write Error at offset 0x100 */
5155 if (!write_eeprom(sp, 0x100, 0, 3))
5156 fail = 1;
5157
5158 /* Test Write Error at offset 4ec */
5159 if (!write_eeprom(sp, 0x4EC, 0, 3))
5160 fail = 1;
5161 }
5162
5163 /* Restore values at offsets 0x4F0 and 0x7F0 */
5164 if (saved_4F0)
5165 write_eeprom(sp, 0x4F0, org_4F0, 3);
5166 if (saved_7F0)
5167 write_eeprom(sp, 0x7F0, org_7F0, 3);
5168
5169 *data = fail;
5170 return fail;
5171 }
5172
5173 /**
5174 * s2io_bist_test - invokes the MemBist test of the card .
5175 * @sp : private member of the device structure, which is a pointer to the
5176 * s2io_nic structure.
5177 * @data:variable that returns the result of each of the test conducted by
5178 * the driver.
5179 * Description:
5180 * This invokes the MemBist test of the card. We give around
5181 * 2 secs time for the Test to complete. If it's still not complete
5182 * within this peiod, we consider that the test failed.
5183 * Return value:
5184 * 0 on success and -1 on failure.
5185 */
5186
5187 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5188 {
5189 u8 bist = 0;
5190 int cnt = 0, ret = -1;
5191
5192 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5193 bist |= PCI_BIST_START;
5194 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5195
5196 while (cnt < 20) {
5197 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5198 if (!(bist & PCI_BIST_START)) {
5199 *data = (bist & PCI_BIST_CODE_MASK);
5200 ret = 0;
5201 break;
5202 }
5203 msleep(100);
5204 cnt++;
5205 }
5206
5207 return ret;
5208 }
5209
5210 /**
5211 * s2io-link_test - verifies the link state of the nic
5212 * @sp ; private member of the device structure, which is a pointer to the
5213 * s2io_nic structure.
5214 * @data: variable that returns the result of each of the test conducted by
5215 * the driver.
5216 * Description:
5217 * The function verifies the link state of the NIC and updates the input
5218 * argument 'data' appropriately.
5219 * Return value:
5220 * 0 on success.
5221 */
5222
5223 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5224 {
5225 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5226 u64 val64;
5227
5228 val64 = readq(&bar0->adapter_status);
5229 if(!(LINK_IS_UP(val64)))
5230 *data = 1;
5231 else
5232 *data = 0;
5233
5234 return *data;
5235 }
5236
5237 /**
5238 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5239 * @sp - private member of the device structure, which is a pointer to the
5240 * s2io_nic structure.
5241 * @data - variable that returns the result of each of the test
5242 * conducted by the driver.
5243 * Description:
5244 * This is one of the offline test that tests the read and write
5245 * access to the RldRam chip on the NIC.
5246 * Return value:
5247 * 0 on success.
5248 */
5249
5250 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5251 {
5252 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5253 u64 val64;
5254 int cnt, iteration = 0, test_fail = 0;
5255
5256 val64 = readq(&bar0->adapter_control);
5257 val64 &= ~ADAPTER_ECC_EN;
5258 writeq(val64, &bar0->adapter_control);
5259
5260 val64 = readq(&bar0->mc_rldram_test_ctrl);
5261 val64 |= MC_RLDRAM_TEST_MODE;
5262 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5263
5264 val64 = readq(&bar0->mc_rldram_mrs);
5265 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5266 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5267
5268 val64 |= MC_RLDRAM_MRS_ENABLE;
5269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5270
5271 while (iteration < 2) {
5272 val64 = 0x55555555aaaa0000ULL;
5273 if (iteration == 1) {
5274 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5275 }
5276 writeq(val64, &bar0->mc_rldram_test_d0);
5277
5278 val64 = 0xaaaa5a5555550000ULL;
5279 if (iteration == 1) {
5280 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5281 }
5282 writeq(val64, &bar0->mc_rldram_test_d1);
5283
5284 val64 = 0x55aaaaaaaa5a0000ULL;
5285 if (iteration == 1) {
5286 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5287 }
5288 writeq(val64, &bar0->mc_rldram_test_d2);
5289
5290 val64 = (u64) (0x0000003ffffe0100ULL);
5291 writeq(val64, &bar0->mc_rldram_test_add);
5292
5293 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5294 MC_RLDRAM_TEST_GO;
5295 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5296
5297 for (cnt = 0; cnt < 5; cnt++) {
5298 val64 = readq(&bar0->mc_rldram_test_ctrl);
5299 if (val64 & MC_RLDRAM_TEST_DONE)
5300 break;
5301 msleep(200);
5302 }
5303
5304 if (cnt == 5)
5305 break;
5306
5307 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5308 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5309
5310 for (cnt = 0; cnt < 5; cnt++) {
5311 val64 = readq(&bar0->mc_rldram_test_ctrl);
5312 if (val64 & MC_RLDRAM_TEST_DONE)
5313 break;
5314 msleep(500);
5315 }
5316
5317 if (cnt == 5)
5318 break;
5319
5320 val64 = readq(&bar0->mc_rldram_test_ctrl);
5321 if (!(val64 & MC_RLDRAM_TEST_PASS))
5322 test_fail = 1;
5323
5324 iteration++;
5325 }
5326
5327 *data = test_fail;
5328
5329 /* Bring the adapter out of test mode */
5330 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5331
5332 return test_fail;
5333 }
5334
5335 /**
5336 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5337 * @sp : private member of the device structure, which is a pointer to the
5338 * s2io_nic structure.
5339 * @ethtest : pointer to a ethtool command specific structure that will be
5340 * returned to the user.
5341 * @data : variable that returns the result of each of the test
5342 * conducted by the driver.
5343 * Description:
5344 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5345 * the health of the card.
5346 * Return value:
5347 * void
5348 */
5349
5350 static void s2io_ethtool_test(struct net_device *dev,
5351 struct ethtool_test *ethtest,
5352 uint64_t * data)
5353 {
5354 struct s2io_nic *sp = dev->priv;
5355 int orig_state = netif_running(sp->dev);
5356
5357 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5358 /* Offline Tests. */
5359 if (orig_state)
5360 s2io_close(sp->dev);
5361
5362 if (s2io_register_test(sp, &data[0]))
5363 ethtest->flags |= ETH_TEST_FL_FAILED;
5364
5365 s2io_reset(sp);
5366
5367 if (s2io_rldram_test(sp, &data[3]))
5368 ethtest->flags |= ETH_TEST_FL_FAILED;
5369
5370 s2io_reset(sp);
5371
5372 if (s2io_eeprom_test(sp, &data[1]))
5373 ethtest->flags |= ETH_TEST_FL_FAILED;
5374
5375 if (s2io_bist_test(sp, &data[4]))
5376 ethtest->flags |= ETH_TEST_FL_FAILED;
5377
5378 if (orig_state)
5379 s2io_open(sp->dev);
5380
5381 data[2] = 0;
5382 } else {
5383 /* Online Tests. */
5384 if (!orig_state) {
5385 DBG_PRINT(ERR_DBG,
5386 "%s: is not up, cannot run test\n",
5387 dev->name);
5388 data[0] = -1;
5389 data[1] = -1;
5390 data[2] = -1;
5391 data[3] = -1;
5392 data[4] = -1;
5393 }
5394
5395 if (s2io_link_test(sp, &data[2]))
5396 ethtest->flags |= ETH_TEST_FL_FAILED;
5397
5398 data[0] = 0;
5399 data[1] = 0;
5400 data[3] = 0;
5401 data[4] = 0;
5402 }
5403 }
5404
5405 static void s2io_get_ethtool_stats(struct net_device *dev,
5406 struct ethtool_stats *estats,
5407 u64 * tmp_stats)
5408 {
5409 int i = 0;
5410 struct s2io_nic *sp = dev->priv;
5411 struct stat_block *stat_info = sp->mac_control.stats_info;
5412
5413 s2io_updt_stats(sp);
5414 tmp_stats[i++] =
5415 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5416 le32_to_cpu(stat_info->tmac_frms);
5417 tmp_stats[i++] =
5418 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5419 le32_to_cpu(stat_info->tmac_data_octets);
5420 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5421 tmp_stats[i++] =
5422 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5423 le32_to_cpu(stat_info->tmac_mcst_frms);
5424 tmp_stats[i++] =
5425 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5426 le32_to_cpu(stat_info->tmac_bcst_frms);
5427 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5428 tmp_stats[i++] =
5429 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5430 le32_to_cpu(stat_info->tmac_ttl_octets);
5431 tmp_stats[i++] =
5432 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5433 le32_to_cpu(stat_info->tmac_ucst_frms);
5434 tmp_stats[i++] =
5435 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5436 le32_to_cpu(stat_info->tmac_nucst_frms);
5437 tmp_stats[i++] =
5438 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5439 le32_to_cpu(stat_info->tmac_any_err_frms);
5440 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5441 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5442 tmp_stats[i++] =
5443 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5444 le32_to_cpu(stat_info->tmac_vld_ip);
5445 tmp_stats[i++] =
5446 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5447 le32_to_cpu(stat_info->tmac_drop_ip);
5448 tmp_stats[i++] =
5449 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5450 le32_to_cpu(stat_info->tmac_icmp);
5451 tmp_stats[i++] =
5452 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5453 le32_to_cpu(stat_info->tmac_rst_tcp);
5454 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5455 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5456 le32_to_cpu(stat_info->tmac_udp);
5457 tmp_stats[i++] =
5458 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5459 le32_to_cpu(stat_info->rmac_vld_frms);
5460 tmp_stats[i++] =
5461 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5462 le32_to_cpu(stat_info->rmac_data_octets);
5463 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5464 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5465 tmp_stats[i++] =
5466 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5467 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5468 tmp_stats[i++] =
5469 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5470 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5471 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5472 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5476 tmp_stats[i++] =
5477 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5478 le32_to_cpu(stat_info->rmac_ttl_octets);
5479 tmp_stats[i++] =
5480 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5481 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5482 tmp_stats[i++] =
5483 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5484 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5485 tmp_stats[i++] =
5486 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5487 le32_to_cpu(stat_info->rmac_discarded_frms);
5488 tmp_stats[i++] =
5489 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5490 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5491 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5492 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5493 tmp_stats[i++] =
5494 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5495 le32_to_cpu(stat_info->rmac_usized_frms);
5496 tmp_stats[i++] =
5497 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5498 le32_to_cpu(stat_info->rmac_osized_frms);
5499 tmp_stats[i++] =
5500 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5501 le32_to_cpu(stat_info->rmac_frag_frms);
5502 tmp_stats[i++] =
5503 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5504 le32_to_cpu(stat_info->rmac_jabber_frms);
5505 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5506 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5507 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5508 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5509 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5510 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5511 tmp_stats[i++] =
5512 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5513 le32_to_cpu(stat_info->rmac_ip);
5514 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5515 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5516 tmp_stats[i++] =
5517 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5518 le32_to_cpu(stat_info->rmac_drop_ip);
5519 tmp_stats[i++] =
5520 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5521 le32_to_cpu(stat_info->rmac_icmp);
5522 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5523 tmp_stats[i++] =
5524 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5525 le32_to_cpu(stat_info->rmac_udp);
5526 tmp_stats[i++] =
5527 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5528 le32_to_cpu(stat_info->rmac_err_drp_udp);
5529 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5530 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5531 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5532 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5533 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5534 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5535 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5536 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5537 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5538 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5539 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5540 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5541 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5542 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5543 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5544 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5545 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5546 tmp_stats[i++] =
5547 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5548 le32_to_cpu(stat_info->rmac_pause_cnt);
5549 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5550 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5551 tmp_stats[i++] =
5552 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5553 le32_to_cpu(stat_info->rmac_accepted_ip);
5554 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5555 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5556 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5557 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5558 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5559 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5560 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5561 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5562 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5563 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5564 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5565 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5566 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5567 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5568 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5569 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5570 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5571 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5572 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5575 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5576 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5579 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5580 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5581 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5582 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5583 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5584 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5587 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5588 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5589 tmp_stats[i++] = 0;
5590 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5591 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5592 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5593 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5594 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5595 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5596 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5597 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5598 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5599 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5600 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5601 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5602 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5603 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5604 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5605 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5606 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5607 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5608 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5609 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5610 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5611 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5612 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5613 if (stat_info->sw_stat.num_aggregations) {
5614 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5615 int count = 0;
5616 /*
5617 * Since 64-bit divide does not work on all platforms,
5618 * do repeated subtraction.
5619 */
5620 while (tmp >= stat_info->sw_stat.num_aggregations) {
5621 tmp -= stat_info->sw_stat.num_aggregations;
5622 count++;
5623 }
5624 tmp_stats[i++] = count;
5625 }
5626 else
5627 tmp_stats[i++] = 0;
5628 }
5629
5630 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5631 {
5632 return (XENA_REG_SPACE);
5633 }
5634
5635
5636 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5637 {
5638 struct s2io_nic *sp = dev->priv;
5639
5640 return (sp->rx_csum);
5641 }
5642
5643 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5644 {
5645 struct s2io_nic *sp = dev->priv;
5646
5647 if (data)
5648 sp->rx_csum = 1;
5649 else
5650 sp->rx_csum = 0;
5651
5652 return 0;
5653 }
5654
5655 static int s2io_get_eeprom_len(struct net_device *dev)
5656 {
5657 return (XENA_EEPROM_SPACE);
5658 }
5659
5660 static int s2io_ethtool_self_test_count(struct net_device *dev)
5661 {
5662 return (S2IO_TEST_LEN);
5663 }
5664
5665 static void s2io_ethtool_get_strings(struct net_device *dev,
5666 u32 stringset, u8 * data)
5667 {
5668 switch (stringset) {
5669 case ETH_SS_TEST:
5670 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5671 break;
5672 case ETH_SS_STATS:
5673 memcpy(data, &ethtool_stats_keys,
5674 sizeof(ethtool_stats_keys));
5675 }
5676 }
5677 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5678 {
5679 return (S2IO_STAT_LEN);
5680 }
5681
5682 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5683 {
5684 if (data)
5685 dev->features |= NETIF_F_IP_CSUM;
5686 else
5687 dev->features &= ~NETIF_F_IP_CSUM;
5688
5689 return 0;
5690 }
5691
5692 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5693 {
5694 return (dev->features & NETIF_F_TSO) != 0;
5695 }
5696 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5697 {
5698 if (data)
5699 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5700 else
5701 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5702
5703 return 0;
5704 }
5705
5706 static const struct ethtool_ops netdev_ethtool_ops = {
5707 .get_settings = s2io_ethtool_gset,
5708 .set_settings = s2io_ethtool_sset,
5709 .get_drvinfo = s2io_ethtool_gdrvinfo,
5710 .get_regs_len = s2io_ethtool_get_regs_len,
5711 .get_regs = s2io_ethtool_gregs,
5712 .get_link = ethtool_op_get_link,
5713 .get_eeprom_len = s2io_get_eeprom_len,
5714 .get_eeprom = s2io_ethtool_geeprom,
5715 .set_eeprom = s2io_ethtool_seeprom,
5716 .get_pauseparam = s2io_ethtool_getpause_data,
5717 .set_pauseparam = s2io_ethtool_setpause_data,
5718 .get_rx_csum = s2io_ethtool_get_rx_csum,
5719 .set_rx_csum = s2io_ethtool_set_rx_csum,
5720 .get_tx_csum = ethtool_op_get_tx_csum,
5721 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5722 .get_sg = ethtool_op_get_sg,
5723 .set_sg = ethtool_op_set_sg,
5724 .get_tso = s2io_ethtool_op_get_tso,
5725 .set_tso = s2io_ethtool_op_set_tso,
5726 .get_ufo = ethtool_op_get_ufo,
5727 .set_ufo = ethtool_op_set_ufo,
5728 .self_test_count = s2io_ethtool_self_test_count,
5729 .self_test = s2io_ethtool_test,
5730 .get_strings = s2io_ethtool_get_strings,
5731 .phys_id = s2io_ethtool_idnic,
5732 .get_stats_count = s2io_ethtool_get_stats_count,
5733 .get_ethtool_stats = s2io_get_ethtool_stats
5734 };
5735
5736 /**
5737 * s2io_ioctl - Entry point for the Ioctl
5738 * @dev : Device pointer.
5739 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5740 * a proprietary structure used to pass information to the driver.
5741 * @cmd : This is used to distinguish between the different commands that
5742 * can be passed to the IOCTL functions.
5743 * Description:
5744 * Currently there are no special functionality supported in IOCTL, hence
5745 * function always return EOPNOTSUPPORTED
5746 */
5747
5748 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5749 {
5750 return -EOPNOTSUPP;
5751 }
5752
5753 /**
5754 * s2io_change_mtu - entry point to change MTU size for the device.
5755 * @dev : device pointer.
5756 * @new_mtu : the new MTU size for the device.
5757 * Description: A driver entry point to change MTU size for the device.
5758 * Before changing the MTU the device must be stopped.
5759 * Return value:
5760 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5761 * file on failure.
5762 */
5763
5764 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5765 {
5766 struct s2io_nic *sp = dev->priv;
5767
5768 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5769 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5770 dev->name);
5771 return -EPERM;
5772 }
5773
5774 dev->mtu = new_mtu;
5775 if (netif_running(dev)) {
5776 s2io_card_down(sp);
5777 netif_stop_queue(dev);
5778 if (s2io_card_up(sp)) {
5779 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5780 __FUNCTION__);
5781 }
5782 if (netif_queue_stopped(dev))
5783 netif_wake_queue(dev);
5784 } else { /* Device is down */
5785 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5786 u64 val64 = new_mtu;
5787
5788 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5789 }
5790
5791 return 0;
5792 }
5793
5794 /**
5795 * s2io_tasklet - Bottom half of the ISR.
5796 * @dev_adr : address of the device structure in dma_addr_t format.
5797 * Description:
5798 * This is the tasklet or the bottom half of the ISR. This is
5799 * an extension of the ISR which is scheduled by the scheduler to be run
5800 * when the load on the CPU is low. All low priority tasks of the ISR can
5801 * be pushed into the tasklet. For now the tasklet is used only to
5802 * replenish the Rx buffers in the Rx buffer descriptors.
5803 * Return value:
5804 * void.
5805 */
5806
5807 static void s2io_tasklet(unsigned long dev_addr)
5808 {
5809 struct net_device *dev = (struct net_device *) dev_addr;
5810 struct s2io_nic *sp = dev->priv;
5811 int i, ret;
5812 struct mac_info *mac_control;
5813 struct config_param *config;
5814
5815 mac_control = &sp->mac_control;
5816 config = &sp->config;
5817
5818 if (!TASKLET_IN_USE) {
5819 for (i = 0; i < config->rx_ring_num; i++) {
5820 ret = fill_rx_buffers(sp, i);
5821 if (ret == -ENOMEM) {
5822 DBG_PRINT(ERR_DBG, "%s: Out of ",
5823 dev->name);
5824 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5825 break;
5826 } else if (ret == -EFILL) {
5827 DBG_PRINT(ERR_DBG,
5828 "%s: Rx Ring %d is full\n",
5829 dev->name, i);
5830 break;
5831 }
5832 }
5833 clear_bit(0, (&sp->tasklet_status));
5834 }
5835 }
5836
5837 /**
5838 * s2io_set_link - Set the LInk status
5839 * @data: long pointer to device private structue
5840 * Description: Sets the link status for the adapter
5841 */
5842
5843 static void s2io_set_link(struct work_struct *work)
5844 {
5845 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
5846 struct net_device *dev = nic->dev;
5847 struct XENA_dev_config __iomem *bar0 = nic->bar0;
5848 register u64 val64;
5849 u16 subid;
5850
5851 if (test_and_set_bit(0, &(nic->link_state))) {
5852 /* The card is being reset, no point doing anything */
5853 return;
5854 }
5855
5856 subid = nic->pdev->subsystem_device;
5857 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5858 /*
5859 * Allow a small delay for the NICs self initiated
5860 * cleanup to complete.
5861 */
5862 msleep(100);
5863 }
5864
5865 val64 = readq(&bar0->adapter_status);
5866 if (LINK_IS_UP(val64)) {
5867 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5868 if (verify_xena_quiescence(nic)) {
5869 val64 = readq(&bar0->adapter_control);
5870 val64 |= ADAPTER_CNTL_EN;
5871 writeq(val64, &bar0->adapter_control);
5872 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5873 nic->device_type, subid)) {
5874 val64 = readq(&bar0->gpio_control);
5875 val64 |= GPIO_CTRL_GPIO_0;
5876 writeq(val64, &bar0->gpio_control);
5877 val64 = readq(&bar0->gpio_control);
5878 } else {
5879 val64 |= ADAPTER_LED_ON;
5880 writeq(val64, &bar0->adapter_control);
5881 }
5882 nic->device_enabled_once = TRUE;
5883 } else {
5884 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5885 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5886 netif_stop_queue(dev);
5887 }
5888 }
5889 val64 = readq(&bar0->adapter_status);
5890 if (!LINK_IS_UP(val64)) {
5891 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5892 DBG_PRINT(ERR_DBG, " Link down after enabling ");
5893 DBG_PRINT(ERR_DBG, "device \n");
5894 } else
5895 s2io_link(nic, LINK_UP);
5896 } else {
5897 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5898 subid)) {
5899 val64 = readq(&bar0->gpio_control);
5900 val64 &= ~GPIO_CTRL_GPIO_0;
5901 writeq(val64, &bar0->gpio_control);
5902 val64 = readq(&bar0->gpio_control);
5903 }
5904 s2io_link(nic, LINK_DOWN);
5905 }
5906 clear_bit(0, &(nic->link_state));
5907 }
5908
5909 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
5910 struct buffAdd *ba,
5911 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5912 u64 *temp2, int size)
5913 {
5914 struct net_device *dev = sp->dev;
5915 struct sk_buff *frag_list;
5916
5917 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5918 /* allocate skb */
5919 if (*skb) {
5920 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5921 /*
5922 * As Rx frame are not going to be processed,
5923 * using same mapped address for the Rxd
5924 * buffer pointer
5925 */
5926 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5927 } else {
5928 *skb = dev_alloc_skb(size);
5929 if (!(*skb)) {
5930 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5931 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5932 return -ENOMEM ;
5933 }
5934 /* storing the mapped addr in a temp variable
5935 * such it will be used for next rxd whose
5936 * Host Control is NULL
5937 */
5938 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5939 pci_map_single( sp->pdev, (*skb)->data,
5940 size - NET_IP_ALIGN,
5941 PCI_DMA_FROMDEVICE);
5942 rxdp->Host_Control = (unsigned long) (*skb);
5943 }
5944 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5945 /* Two buffer Mode */
5946 if (*skb) {
5947 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5948 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5949 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5950 } else {
5951 *skb = dev_alloc_skb(size);
5952 if (!(*skb)) {
5953 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5954 dev->name);
5955 return -ENOMEM;
5956 }
5957 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5958 pci_map_single(sp->pdev, (*skb)->data,
5959 dev->mtu + 4,
5960 PCI_DMA_FROMDEVICE);
5961 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5962 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5963 PCI_DMA_FROMDEVICE);
5964 rxdp->Host_Control = (unsigned long) (*skb);
5965
5966 /* Buffer-1 will be dummy buffer not used */
5967 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5968 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5969 PCI_DMA_FROMDEVICE);
5970 }
5971 } else if ((rxdp->Host_Control == 0)) {
5972 /* Three buffer mode */
5973 if (*skb) {
5974 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5975 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5976 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5977 } else {
5978 *skb = dev_alloc_skb(size);
5979 if (!(*skb)) {
5980 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5981 dev->name);
5982 return -ENOMEM;
5983 }
5984 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5985 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
5986 PCI_DMA_FROMDEVICE);
5987 /* Buffer-1 receives L3/L4 headers */
5988 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5989 pci_map_single( sp->pdev, (*skb)->data,
5990 l3l4hdr_size + 4,
5991 PCI_DMA_FROMDEVICE);
5992 /*
5993 * skb_shinfo(skb)->frag_list will have L4
5994 * data payload
5995 */
5996 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
5997 ALIGN_SIZE);
5998 if (skb_shinfo(*skb)->frag_list == NULL) {
5999 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6000 failed\n ", dev->name);
6001 return -ENOMEM ;
6002 }
6003 frag_list = skb_shinfo(*skb)->frag_list;
6004 frag_list->next = NULL;
6005 /*
6006 * Buffer-2 receives L4 data payload
6007 */
6008 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6009 pci_map_single( sp->pdev, frag_list->data,
6010 dev->mtu, PCI_DMA_FROMDEVICE);
6011 }
6012 }
6013 return 0;
6014 }
6015 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6016 int size)
6017 {
6018 struct net_device *dev = sp->dev;
6019 if (sp->rxd_mode == RXD_MODE_1) {
6020 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6021 } else if (sp->rxd_mode == RXD_MODE_3B) {
6022 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6023 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6024 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6025 } else {
6026 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6027 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6028 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6029 }
6030 }
6031
6032 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6033 {
6034 int i, j, k, blk_cnt = 0, size;
6035 struct mac_info * mac_control = &sp->mac_control;
6036 struct config_param *config = &sp->config;
6037 struct net_device *dev = sp->dev;
6038 struct RxD_t *rxdp = NULL;
6039 struct sk_buff *skb = NULL;
6040 struct buffAdd *ba = NULL;
6041 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6042
6043 /* Calculate the size based on ring mode */
6044 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6045 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6046 if (sp->rxd_mode == RXD_MODE_1)
6047 size += NET_IP_ALIGN;
6048 else if (sp->rxd_mode == RXD_MODE_3B)
6049 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6050 else
6051 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6052
6053 for (i = 0; i < config->rx_ring_num; i++) {
6054 blk_cnt = config->rx_cfg[i].num_rxd /
6055 (rxd_count[sp->rxd_mode] +1);
6056
6057 for (j = 0; j < blk_cnt; j++) {
6058 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6059 rxdp = mac_control->rings[i].
6060 rx_blocks[j].rxds[k].virt_addr;
6061 if(sp->rxd_mode >= RXD_MODE_3A)
6062 ba = &mac_control->rings[i].ba[j][k];
6063 set_rxd_buffer_pointer(sp, rxdp, ba,
6064 &skb,(u64 *)&temp0_64,
6065 (u64 *)&temp1_64,
6066 (u64 *)&temp2_64, size);
6067
6068 set_rxd_buffer_size(sp, rxdp, size);
6069 wmb();
6070 /* flip the Ownership bit to Hardware */
6071 rxdp->Control_1 |= RXD_OWN_XENA;
6072 }
6073 }
6074 }
6075 return 0;
6076
6077 }
6078
6079 static int s2io_add_isr(struct s2io_nic * sp)
6080 {
6081 int ret = 0;
6082 struct net_device *dev = sp->dev;
6083 int err = 0;
6084
6085 if (sp->intr_type == MSI)
6086 ret = s2io_enable_msi(sp);
6087 else if (sp->intr_type == MSI_X)
6088 ret = s2io_enable_msi_x(sp);
6089 if (ret) {
6090 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6091 sp->intr_type = INTA;
6092 }
6093
6094 /* Store the values of the MSIX table in the struct s2io_nic structure */
6095 store_xmsi_data(sp);
6096
6097 /* After proper initialization of H/W, register ISR */
6098 if (sp->intr_type == MSI) {
6099 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6100 IRQF_SHARED, sp->name, dev);
6101 if (err) {
6102 pci_disable_msi(sp->pdev);
6103 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6104 dev->name);
6105 return -1;
6106 }
6107 }
6108 if (sp->intr_type == MSI_X) {
6109 int i;
6110
6111 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6112 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6113 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6114 dev->name, i);
6115 err = request_irq(sp->entries[i].vector,
6116 s2io_msix_fifo_handle, 0, sp->desc[i],
6117 sp->s2io_entries[i].arg);
6118 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6119 (unsigned long long)sp->msix_info[i].addr);
6120 } else {
6121 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6122 dev->name, i);
6123 err = request_irq(sp->entries[i].vector,
6124 s2io_msix_ring_handle, 0, sp->desc[i],
6125 sp->s2io_entries[i].arg);
6126 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6127 (unsigned long long)sp->msix_info[i].addr);
6128 }
6129 if (err) {
6130 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6131 "failed\n", dev->name, i);
6132 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6133 return -1;
6134 }
6135 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6136 }
6137 }
6138 if (sp->intr_type == INTA) {
6139 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6140 sp->name, dev);
6141 if (err) {
6142 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6143 dev->name);
6144 return -1;
6145 }
6146 }
6147 return 0;
6148 }
6149 static void s2io_rem_isr(struct s2io_nic * sp)
6150 {
6151 int cnt = 0;
6152 struct net_device *dev = sp->dev;
6153
6154 if (sp->intr_type == MSI_X) {
6155 int i;
6156 u16 msi_control;
6157
6158 for (i=1; (sp->s2io_entries[i].in_use ==
6159 MSIX_REGISTERED_SUCCESS); i++) {
6160 int vector = sp->entries[i].vector;
6161 void *arg = sp->s2io_entries[i].arg;
6162
6163 free_irq(vector, arg);
6164 }
6165 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6166 msi_control &= 0xFFFE; /* Disable MSI */
6167 pci_write_config_word(sp->pdev, 0x42, msi_control);
6168
6169 pci_disable_msix(sp->pdev);
6170 } else {
6171 free_irq(sp->pdev->irq, dev);
6172 if (sp->intr_type == MSI) {
6173 u16 val;
6174
6175 pci_disable_msi(sp->pdev);
6176 pci_read_config_word(sp->pdev, 0x4c, &val);
6177 val ^= 0x1;
6178 pci_write_config_word(sp->pdev, 0x4c, val);
6179 }
6180 }
6181 /* Waiting till all Interrupt handlers are complete */
6182 cnt = 0;
6183 do {
6184 msleep(10);
6185 if (!atomic_read(&sp->isr_cnt))
6186 break;
6187 cnt++;
6188 } while(cnt < 5);
6189 }
6190
6191 static void s2io_card_down(struct s2io_nic * sp)
6192 {
6193 int cnt = 0;
6194 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6195 unsigned long flags;
6196 register u64 val64 = 0;
6197
6198 del_timer_sync(&sp->alarm_timer);
6199 /* If s2io_set_link task is executing, wait till it completes. */
6200 while (test_and_set_bit(0, &(sp->link_state))) {
6201 msleep(50);
6202 }
6203 atomic_set(&sp->card_state, CARD_DOWN);
6204
6205 /* disable Tx and Rx traffic on the NIC */
6206 stop_nic(sp);
6207
6208 s2io_rem_isr(sp);
6209
6210 /* Kill tasklet. */
6211 tasklet_kill(&sp->task);
6212
6213 /* Check if the device is Quiescent and then Reset the NIC */
6214 do {
6215 /* As per the HW requirement we need to replenish the
6216 * receive buffer to avoid the ring bump. Since there is
6217 * no intention of processing the Rx frame at this pointwe are
6218 * just settting the ownership bit of rxd in Each Rx
6219 * ring to HW and set the appropriate buffer size
6220 * based on the ring mode
6221 */
6222 rxd_owner_bit_reset(sp);
6223
6224 val64 = readq(&bar0->adapter_status);
6225 if (verify_xena_quiescence(sp)) {
6226 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6227 break;
6228 }
6229
6230 msleep(50);
6231 cnt++;
6232 if (cnt == 10) {
6233 DBG_PRINT(ERR_DBG,
6234 "s2io_close:Device not Quiescent ");
6235 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6236 (unsigned long long) val64);
6237 break;
6238 }
6239 } while (1);
6240 s2io_reset(sp);
6241
6242 spin_lock_irqsave(&sp->tx_lock, flags);
6243 /* Free all Tx buffers */
6244 free_tx_buffers(sp);
6245 spin_unlock_irqrestore(&sp->tx_lock, flags);
6246
6247 /* Free all Rx buffers */
6248 spin_lock_irqsave(&sp->rx_lock, flags);
6249 free_rx_buffers(sp);
6250 spin_unlock_irqrestore(&sp->rx_lock, flags);
6251
6252 clear_bit(0, &(sp->link_state));
6253 }
6254
6255 static int s2io_card_up(struct s2io_nic * sp)
6256 {
6257 int i, ret = 0;
6258 struct mac_info *mac_control;
6259 struct config_param *config;
6260 struct net_device *dev = (struct net_device *) sp->dev;
6261 u16 interruptible;
6262
6263 /* Initialize the H/W I/O registers */
6264 if (init_nic(sp) != 0) {
6265 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6266 dev->name);
6267 s2io_reset(sp);
6268 return -ENODEV;
6269 }
6270
6271 /*
6272 * Initializing the Rx buffers. For now we are considering only 1
6273 * Rx ring and initializing buffers into 30 Rx blocks
6274 */
6275 mac_control = &sp->mac_control;
6276 config = &sp->config;
6277
6278 for (i = 0; i < config->rx_ring_num; i++) {
6279 if ((ret = fill_rx_buffers(sp, i))) {
6280 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6281 dev->name);
6282 s2io_reset(sp);
6283 free_rx_buffers(sp);
6284 return -ENOMEM;
6285 }
6286 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6287 atomic_read(&sp->rx_bufs_left[i]));
6288 }
6289 /* Maintain the state prior to the open */
6290 if (sp->promisc_flg)
6291 sp->promisc_flg = 0;
6292 if (sp->m_cast_flg) {
6293 sp->m_cast_flg = 0;
6294 sp->all_multi_pos= 0;
6295 }
6296
6297 /* Setting its receive mode */
6298 s2io_set_multicast(dev);
6299
6300 if (sp->lro) {
6301 /* Initialize max aggregatable pkts per session based on MTU */
6302 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6303 /* Check if we can use(if specified) user provided value */
6304 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6305 sp->lro_max_aggr_per_sess = lro_max_pkts;
6306 }
6307
6308 /* Enable Rx Traffic and interrupts on the NIC */
6309 if (start_nic(sp)) {
6310 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6311 s2io_reset(sp);
6312 free_rx_buffers(sp);
6313 return -ENODEV;
6314 }
6315
6316 /* Add interrupt service routine */
6317 if (s2io_add_isr(sp) != 0) {
6318 if (sp->intr_type == MSI_X)
6319 s2io_rem_isr(sp);
6320 s2io_reset(sp);
6321 free_rx_buffers(sp);
6322 return -ENODEV;
6323 }
6324
6325 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6326
6327 /* Enable tasklet for the device */
6328 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6329
6330 /* Enable select interrupts */
6331 if (sp->intr_type != INTA)
6332 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6333 else {
6334 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6335 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6336 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6337 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6338 }
6339
6340
6341 atomic_set(&sp->card_state, CARD_UP);
6342 return 0;
6343 }
6344
6345 /**
6346 * s2io_restart_nic - Resets the NIC.
6347 * @data : long pointer to the device private structure
6348 * Description:
6349 * This function is scheduled to be run by the s2io_tx_watchdog
6350 * function after 0.5 secs to reset the NIC. The idea is to reduce
6351 * the run time of the watch dog routine which is run holding a
6352 * spin lock.
6353 */
6354
6355 static void s2io_restart_nic(struct work_struct *work)
6356 {
6357 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6358 struct net_device *dev = sp->dev;
6359
6360 s2io_card_down(sp);
6361 if (s2io_card_up(sp)) {
6362 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6363 dev->name);
6364 }
6365 netif_wake_queue(dev);
6366 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6367 dev->name);
6368
6369 }
6370
6371 /**
6372 * s2io_tx_watchdog - Watchdog for transmit side.
6373 * @dev : Pointer to net device structure
6374 * Description:
6375 * This function is triggered if the Tx Queue is stopped
6376 * for a pre-defined amount of time when the Interface is still up.
6377 * If the Interface is jammed in such a situation, the hardware is
6378 * reset (by s2io_close) and restarted again (by s2io_open) to
6379 * overcome any problem that might have been caused in the hardware.
6380 * Return value:
6381 * void
6382 */
6383
6384 static void s2io_tx_watchdog(struct net_device *dev)
6385 {
6386 struct s2io_nic *sp = dev->priv;
6387
6388 if (netif_carrier_ok(dev)) {
6389 schedule_work(&sp->rst_timer_task);
6390 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6391 }
6392 }
6393
6394 /**
6395 * rx_osm_handler - To perform some OS related operations on SKB.
6396 * @sp: private member of the device structure,pointer to s2io_nic structure.
6397 * @skb : the socket buffer pointer.
6398 * @len : length of the packet
6399 * @cksum : FCS checksum of the frame.
6400 * @ring_no : the ring from which this RxD was extracted.
6401 * Description:
6402 * This function is called by the Rx interrupt serivce routine to perform
6403 * some OS related operations on the SKB before passing it to the upper
6404 * layers. It mainly checks if the checksum is OK, if so adds it to the
6405 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6406 * to the upper layer. If the checksum is wrong, it increments the Rx
6407 * packet error count, frees the SKB and returns error.
6408 * Return value:
6409 * SUCCESS on success and -1 on failure.
6410 */
6411 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6412 {
6413 struct s2io_nic *sp = ring_data->nic;
6414 struct net_device *dev = (struct net_device *) sp->dev;
6415 struct sk_buff *skb = (struct sk_buff *)
6416 ((unsigned long) rxdp->Host_Control);
6417 int ring_no = ring_data->ring_no;
6418 u16 l3_csum, l4_csum;
6419 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6420 struct lro *lro;
6421
6422 skb->dev = dev;
6423
6424 if (err) {
6425 /* Check for parity error */
6426 if (err & 0x1) {
6427 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6428 }
6429
6430 /*
6431 * Drop the packet if bad transfer code. Exception being
6432 * 0x5, which could be due to unsupported IPv6 extension header.
6433 * In this case, we let stack handle the packet.
6434 * Note that in this case, since checksum will be incorrect,
6435 * stack will validate the same.
6436 */
6437 if (err && ((err >> 48) != 0x5)) {
6438 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6439 dev->name, err);
6440 sp->stats.rx_crc_errors++;
6441 dev_kfree_skb(skb);
6442 atomic_dec(&sp->rx_bufs_left[ring_no]);
6443 rxdp->Host_Control = 0;
6444 return 0;
6445 }
6446 }
6447
6448 /* Updating statistics */
6449 rxdp->Host_Control = 0;
6450 sp->rx_pkt_count++;
6451 sp->stats.rx_packets++;
6452 if (sp->rxd_mode == RXD_MODE_1) {
6453 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6454
6455 sp->stats.rx_bytes += len;
6456 skb_put(skb, len);
6457
6458 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6459 int get_block = ring_data->rx_curr_get_info.block_index;
6460 int get_off = ring_data->rx_curr_get_info.offset;
6461 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6462 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6463 unsigned char *buff = skb_push(skb, buf0_len);
6464
6465 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6466 sp->stats.rx_bytes += buf0_len + buf2_len;
6467 memcpy(buff, ba->ba_0, buf0_len);
6468
6469 if (sp->rxd_mode == RXD_MODE_3A) {
6470 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6471
6472 skb_put(skb, buf1_len);
6473 skb->len += buf2_len;
6474 skb->data_len += buf2_len;
6475 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6476 sp->stats.rx_bytes += buf1_len;
6477
6478 } else
6479 skb_put(skb, buf2_len);
6480 }
6481
6482 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6483 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6484 (sp->rx_csum)) {
6485 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6486 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6487 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6488 /*
6489 * NIC verifies if the Checksum of the received
6490 * frame is Ok or not and accordingly returns
6491 * a flag in the RxD.
6492 */
6493 skb->ip_summed = CHECKSUM_UNNECESSARY;
6494 if (sp->lro) {
6495 u32 tcp_len;
6496 u8 *tcp;
6497 int ret = 0;
6498
6499 ret = s2io_club_tcp_session(skb->data, &tcp,
6500 &tcp_len, &lro, rxdp, sp);
6501 switch (ret) {
6502 case 3: /* Begin anew */
6503 lro->parent = skb;
6504 goto aggregate;
6505 case 1: /* Aggregate */
6506 {
6507 lro_append_pkt(sp, lro,
6508 skb, tcp_len);
6509 goto aggregate;
6510 }
6511 case 4: /* Flush session */
6512 {
6513 lro_append_pkt(sp, lro,
6514 skb, tcp_len);
6515 queue_rx_frame(lro->parent);
6516 clear_lro_session(lro);
6517 sp->mac_control.stats_info->
6518 sw_stat.flush_max_pkts++;
6519 goto aggregate;
6520 }
6521 case 2: /* Flush both */
6522 lro->parent->data_len =
6523 lro->frags_len;
6524 sp->mac_control.stats_info->
6525 sw_stat.sending_both++;
6526 queue_rx_frame(lro->parent);
6527 clear_lro_session(lro);
6528 goto send_up;
6529 case 0: /* sessions exceeded */
6530 case -1: /* non-TCP or not
6531 * L2 aggregatable
6532 */
6533 case 5: /*
6534 * First pkt in session not
6535 * L3/L4 aggregatable
6536 */
6537 break;
6538 default:
6539 DBG_PRINT(ERR_DBG,
6540 "%s: Samadhana!!\n",
6541 __FUNCTION__);
6542 BUG();
6543 }
6544 }
6545 } else {
6546 /*
6547 * Packet with erroneous checksum, let the
6548 * upper layers deal with it.
6549 */
6550 skb->ip_summed = CHECKSUM_NONE;
6551 }
6552 } else {
6553 skb->ip_summed = CHECKSUM_NONE;
6554 }
6555
6556 if (!sp->lro) {
6557 skb->protocol = eth_type_trans(skb, dev);
6558 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6559 /* Queueing the vlan frame to the upper layer */
6560 if (napi)
6561 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6562 RXD_GET_VLAN_TAG(rxdp->Control_2));
6563 else
6564 vlan_hwaccel_rx(skb, sp->vlgrp,
6565 RXD_GET_VLAN_TAG(rxdp->Control_2));
6566 } else {
6567 if (napi)
6568 netif_receive_skb(skb);
6569 else
6570 netif_rx(skb);
6571 }
6572 } else {
6573 send_up:
6574 queue_rx_frame(skb);
6575 }
6576 dev->last_rx = jiffies;
6577 aggregate:
6578 atomic_dec(&sp->rx_bufs_left[ring_no]);
6579 return SUCCESS;
6580 }
6581
6582 /**
6583 * s2io_link - stops/starts the Tx queue.
6584 * @sp : private member of the device structure, which is a pointer to the
6585 * s2io_nic structure.
6586 * @link : inidicates whether link is UP/DOWN.
6587 * Description:
6588 * This function stops/starts the Tx queue depending on whether the link
6589 * status of the NIC is is down or up. This is called by the Alarm
6590 * interrupt handler whenever a link change interrupt comes up.
6591 * Return value:
6592 * void.
6593 */
6594
6595 static void s2io_link(struct s2io_nic * sp, int link)
6596 {
6597 struct net_device *dev = (struct net_device *) sp->dev;
6598
6599 if (link != sp->last_link_state) {
6600 if (link == LINK_DOWN) {
6601 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6602 netif_carrier_off(dev);
6603 } else {
6604 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6605 netif_carrier_on(dev);
6606 }
6607 }
6608 sp->last_link_state = link;
6609 }
6610
6611 /**
6612 * get_xena_rev_id - to identify revision ID of xena.
6613 * @pdev : PCI Dev structure
6614 * Description:
6615 * Function to identify the Revision ID of xena.
6616 * Return value:
6617 * returns the revision ID of the device.
6618 */
6619
6620 static int get_xena_rev_id(struct pci_dev *pdev)
6621 {
6622 u8 id = 0;
6623 int ret;
6624 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6625 return id;
6626 }
6627
6628 /**
6629 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6630 * @sp : private member of the device structure, which is a pointer to the
6631 * s2io_nic structure.
6632 * Description:
6633 * This function initializes a few of the PCI and PCI-X configuration registers
6634 * with recommended values.
6635 * Return value:
6636 * void
6637 */
6638
6639 static void s2io_init_pci(struct s2io_nic * sp)
6640 {
6641 u16 pci_cmd = 0, pcix_cmd = 0;
6642
6643 /* Enable Data Parity Error Recovery in PCI-X command register. */
6644 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6645 &(pcix_cmd));
6646 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6647 (pcix_cmd | 1));
6648 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6649 &(pcix_cmd));
6650
6651 /* Set the PErr Response bit in PCI command register. */
6652 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6653 pci_write_config_word(sp->pdev, PCI_COMMAND,
6654 (pci_cmd | PCI_COMMAND_PARITY));
6655 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6656 }
6657
6658 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6659 {
6660 if ( tx_fifo_num > 8) {
6661 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6662 "supported\n");
6663 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6664 tx_fifo_num = 8;
6665 }
6666 if ( rx_ring_num > 8) {
6667 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6668 "supported\n");
6669 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6670 rx_ring_num = 8;
6671 }
6672 if (*dev_intr_type != INTA)
6673 napi = 0;
6674
6675 #ifndef CONFIG_PCI_MSI
6676 if (*dev_intr_type != INTA) {
6677 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6678 "MSI/MSI-X. Defaulting to INTA\n");
6679 *dev_intr_type = INTA;
6680 }
6681 #else
6682 if (*dev_intr_type > MSI_X) {
6683 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6684 "Defaulting to INTA\n");
6685 *dev_intr_type = INTA;
6686 }
6687 #endif
6688 if ((*dev_intr_type == MSI_X) &&
6689 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6690 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6691 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6692 "Defaulting to INTA\n");
6693 *dev_intr_type = INTA;
6694 }
6695 if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6696 napi = 0;
6697 if (rx_ring_mode > 3) {
6698 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6699 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6700 rx_ring_mode = 3;
6701 }
6702 return SUCCESS;
6703 }
6704
6705 /**
6706 * s2io_init_nic - Initialization of the adapter .
6707 * @pdev : structure containing the PCI related information of the device.
6708 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6709 * Description:
6710 * The function initializes an adapter identified by the pci_dec structure.
6711 * All OS related initialization including memory and device structure and
6712 * initlaization of the device private variable is done. Also the swapper
6713 * control register is initialized to enable read and write into the I/O
6714 * registers of the device.
6715 * Return value:
6716 * returns 0 on success and negative on failure.
6717 */
6718
6719 static int __devinit
6720 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6721 {
6722 struct s2io_nic *sp;
6723 struct net_device *dev;
6724 int i, j, ret;
6725 int dma_flag = FALSE;
6726 u32 mac_up, mac_down;
6727 u64 val64 = 0, tmp64 = 0;
6728 struct XENA_dev_config __iomem *bar0 = NULL;
6729 u16 subid;
6730 struct mac_info *mac_control;
6731 struct config_param *config;
6732 int mode;
6733 u8 dev_intr_type = intr_type;
6734
6735 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6736 return ret;
6737
6738 if ((ret = pci_enable_device(pdev))) {
6739 DBG_PRINT(ERR_DBG,
6740 "s2io_init_nic: pci_enable_device failed\n");
6741 return ret;
6742 }
6743
6744 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6745 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6746 dma_flag = TRUE;
6747 if (pci_set_consistent_dma_mask
6748 (pdev, DMA_64BIT_MASK)) {
6749 DBG_PRINT(ERR_DBG,
6750 "Unable to obtain 64bit DMA for \
6751 consistent allocations\n");
6752 pci_disable_device(pdev);
6753 return -ENOMEM;
6754 }
6755 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6756 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6757 } else {
6758 pci_disable_device(pdev);
6759 return -ENOMEM;
6760 }
6761 if (dev_intr_type != MSI_X) {
6762 if (pci_request_regions(pdev, s2io_driver_name)) {
6763 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6764 pci_disable_device(pdev);
6765 return -ENODEV;
6766 }
6767 }
6768 else {
6769 if (!(request_mem_region(pci_resource_start(pdev, 0),
6770 pci_resource_len(pdev, 0), s2io_driver_name))) {
6771 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6772 pci_disable_device(pdev);
6773 return -ENODEV;
6774 }
6775 if (!(request_mem_region(pci_resource_start(pdev, 2),
6776 pci_resource_len(pdev, 2), s2io_driver_name))) {
6777 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6778 release_mem_region(pci_resource_start(pdev, 0),
6779 pci_resource_len(pdev, 0));
6780 pci_disable_device(pdev);
6781 return -ENODEV;
6782 }
6783 }
6784
6785 dev = alloc_etherdev(sizeof(struct s2io_nic));
6786 if (dev == NULL) {
6787 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6788 pci_disable_device(pdev);
6789 pci_release_regions(pdev);
6790 return -ENODEV;
6791 }
6792
6793 pci_set_master(pdev);
6794 pci_set_drvdata(pdev, dev);
6795 SET_MODULE_OWNER(dev);
6796 SET_NETDEV_DEV(dev, &pdev->dev);
6797
6798 /* Private member variable initialized to s2io NIC structure */
6799 sp = dev->priv;
6800 memset(sp, 0, sizeof(struct s2io_nic));
6801 sp->dev = dev;
6802 sp->pdev = pdev;
6803 sp->high_dma_flag = dma_flag;
6804 sp->device_enabled_once = FALSE;
6805 if (rx_ring_mode == 1)
6806 sp->rxd_mode = RXD_MODE_1;
6807 if (rx_ring_mode == 2)
6808 sp->rxd_mode = RXD_MODE_3B;
6809 if (rx_ring_mode == 3)
6810 sp->rxd_mode = RXD_MODE_3A;
6811
6812 sp->intr_type = dev_intr_type;
6813
6814 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6815 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6816 sp->device_type = XFRAME_II_DEVICE;
6817 else
6818 sp->device_type = XFRAME_I_DEVICE;
6819
6820 sp->lro = lro;
6821
6822 /* Initialize some PCI/PCI-X fields of the NIC. */
6823 s2io_init_pci(sp);
6824
6825 /*
6826 * Setting the device configuration parameters.
6827 * Most of these parameters can be specified by the user during
6828 * module insertion as they are module loadable parameters. If
6829 * these parameters are not not specified during load time, they
6830 * are initialized with default values.
6831 */
6832 mac_control = &sp->mac_control;
6833 config = &sp->config;
6834
6835 /* Tx side parameters. */
6836 config->tx_fifo_num = tx_fifo_num;
6837 for (i = 0; i < MAX_TX_FIFOS; i++) {
6838 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6839 config->tx_cfg[i].fifo_priority = i;
6840 }
6841
6842 /* mapping the QoS priority to the configured fifos */
6843 for (i = 0; i < MAX_TX_FIFOS; i++)
6844 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6845
6846 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6847 for (i = 0; i < config->tx_fifo_num; i++) {
6848 config->tx_cfg[i].f_no_snoop =
6849 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6850 if (config->tx_cfg[i].fifo_len < 65) {
6851 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6852 break;
6853 }
6854 }
6855 /* + 2 because one Txd for skb->data and one Txd for UFO */
6856 config->max_txds = MAX_SKB_FRAGS + 2;
6857
6858 /* Rx side parameters. */
6859 config->rx_ring_num = rx_ring_num;
6860 for (i = 0; i < MAX_RX_RINGS; i++) {
6861 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6862 (rxd_count[sp->rxd_mode] + 1);
6863 config->rx_cfg[i].ring_priority = i;
6864 }
6865
6866 for (i = 0; i < rx_ring_num; i++) {
6867 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6868 config->rx_cfg[i].f_no_snoop =
6869 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6870 }
6871
6872 /* Setting Mac Control parameters */
6873 mac_control->rmac_pause_time = rmac_pause_time;
6874 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6875 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6876
6877
6878 /* Initialize Ring buffer parameters. */
6879 for (i = 0; i < config->rx_ring_num; i++)
6880 atomic_set(&sp->rx_bufs_left[i], 0);
6881
6882 /* Initialize the number of ISRs currently running */
6883 atomic_set(&sp->isr_cnt, 0);
6884
6885 /* initialize the shared memory used by the NIC and the host */
6886 if (init_shared_mem(sp)) {
6887 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6888 dev->name);
6889 ret = -ENOMEM;
6890 goto mem_alloc_failed;
6891 }
6892
6893 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6894 pci_resource_len(pdev, 0));
6895 if (!sp->bar0) {
6896 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
6897 dev->name);
6898 ret = -ENOMEM;
6899 goto bar0_remap_failed;
6900 }
6901
6902 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6903 pci_resource_len(pdev, 2));
6904 if (!sp->bar1) {
6905 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
6906 dev->name);
6907 ret = -ENOMEM;
6908 goto bar1_remap_failed;
6909 }
6910
6911 dev->irq = pdev->irq;
6912 dev->base_addr = (unsigned long) sp->bar0;
6913
6914 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6915 for (j = 0; j < MAX_TX_FIFOS; j++) {
6916 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
6917 (sp->bar1 + (j * 0x00020000));
6918 }
6919
6920 /* Driver entry points */
6921 dev->open = &s2io_open;
6922 dev->stop = &s2io_close;
6923 dev->hard_start_xmit = &s2io_xmit;
6924 dev->get_stats = &s2io_get_stats;
6925 dev->set_multicast_list = &s2io_set_multicast;
6926 dev->do_ioctl = &s2io_ioctl;
6927 dev->change_mtu = &s2io_change_mtu;
6928 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6929 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6930 dev->vlan_rx_register = s2io_vlan_rx_register;
6931 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6932
6933 /*
6934 * will use eth_mac_addr() for dev->set_mac_address
6935 * mac address will be set every time dev->open() is called
6936 */
6937 dev->poll = s2io_poll;
6938 dev->weight = 32;
6939
6940 #ifdef CONFIG_NET_POLL_CONTROLLER
6941 dev->poll_controller = s2io_netpoll;
6942 #endif
6943
6944 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6945 if (sp->high_dma_flag == TRUE)
6946 dev->features |= NETIF_F_HIGHDMA;
6947 dev->features |= NETIF_F_TSO;
6948 dev->features |= NETIF_F_TSO6;
6949 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
6950 dev->features |= NETIF_F_UFO;
6951 dev->features |= NETIF_F_HW_CSUM;
6952 }
6953
6954 dev->tx_timeout = &s2io_tx_watchdog;
6955 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6956 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6957 INIT_WORK(&sp->set_link_task, s2io_set_link);
6958
6959 pci_save_state(sp->pdev);
6960
6961 /* Setting swapper control on the NIC, for proper reset operation */
6962 if (s2io_set_swapper(sp)) {
6963 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6964 dev->name);
6965 ret = -EAGAIN;
6966 goto set_swap_failed;
6967 }
6968
6969 /* Verify if the Herc works on the slot its placed into */
6970 if (sp->device_type & XFRAME_II_DEVICE) {
6971 mode = s2io_verify_pci_mode(sp);
6972 if (mode < 0) {
6973 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6974 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6975 ret = -EBADSLT;
6976 goto set_swap_failed;
6977 }
6978 }
6979
6980 /* Not needed for Herc */
6981 if (sp->device_type & XFRAME_I_DEVICE) {
6982 /*
6983 * Fix for all "FFs" MAC address problems observed on
6984 * Alpha platforms
6985 */
6986 fix_mac_address(sp);
6987 s2io_reset(sp);
6988 }
6989
6990 /*
6991 * MAC address initialization.
6992 * For now only one mac address will be read and used.
6993 */
6994 bar0 = sp->bar0;
6995 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6996 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6997 writeq(val64, &bar0->rmac_addr_cmd_mem);
6998 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6999 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7000 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7001 mac_down = (u32) tmp64;
7002 mac_up = (u32) (tmp64 >> 32);
7003
7004 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7005
7006 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7007 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7008 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7009 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7010 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7011 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7012
7013 /* Set the factory defined MAC address initially */
7014 dev->addr_len = ETH_ALEN;
7015 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7016
7017 /* reset Nic and bring it to known state */
7018 s2io_reset(sp);
7019
7020 /*
7021 * Initialize the tasklet status and link state flags
7022 * and the card state parameter
7023 */
7024 atomic_set(&(sp->card_state), 0);
7025 sp->tasklet_status = 0;
7026 sp->link_state = 0;
7027
7028 /* Initialize spinlocks */
7029 spin_lock_init(&sp->tx_lock);
7030
7031 if (!napi)
7032 spin_lock_init(&sp->put_lock);
7033 spin_lock_init(&sp->rx_lock);
7034
7035 /*
7036 * SXE-002: Configure link and activity LED to init state
7037 * on driver load.
7038 */
7039 subid = sp->pdev->subsystem_device;
7040 if ((subid & 0xFF) >= 0x07) {
7041 val64 = readq(&bar0->gpio_control);
7042 val64 |= 0x0000800000000000ULL;
7043 writeq(val64, &bar0->gpio_control);
7044 val64 = 0x0411040400000000ULL;
7045 writeq(val64, (void __iomem *) bar0 + 0x2700);
7046 val64 = readq(&bar0->gpio_control);
7047 }
7048
7049 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7050
7051 if (register_netdev(dev)) {
7052 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7053 ret = -ENODEV;
7054 goto register_failed;
7055 }
7056 s2io_vpd_read(sp);
7057 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7058 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7059 sp->product_name, get_xena_rev_id(sp->pdev));
7060 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7061 s2io_driver_version);
7062 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7063 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7064 sp->def_mac_addr[0].mac_addr[0],
7065 sp->def_mac_addr[0].mac_addr[1],
7066 sp->def_mac_addr[0].mac_addr[2],
7067 sp->def_mac_addr[0].mac_addr[3],
7068 sp->def_mac_addr[0].mac_addr[4],
7069 sp->def_mac_addr[0].mac_addr[5]);
7070 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7071 if (sp->device_type & XFRAME_II_DEVICE) {
7072 mode = s2io_print_pci_mode(sp);
7073 if (mode < 0) {
7074 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7075 ret = -EBADSLT;
7076 unregister_netdev(dev);
7077 goto set_swap_failed;
7078 }
7079 }
7080 switch(sp->rxd_mode) {
7081 case RXD_MODE_1:
7082 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7083 dev->name);
7084 break;
7085 case RXD_MODE_3B:
7086 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7087 dev->name);
7088 break;
7089 case RXD_MODE_3A:
7090 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7091 dev->name);
7092 break;
7093 }
7094
7095 if (napi)
7096 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7097 switch(sp->intr_type) {
7098 case INTA:
7099 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7100 break;
7101 case MSI:
7102 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7103 break;
7104 case MSI_X:
7105 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7106 break;
7107 }
7108 if (sp->lro)
7109 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7110 dev->name);
7111 if (ufo)
7112 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7113 " enabled\n", dev->name);
7114 /* Initialize device name */
7115 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7116
7117 /* Initialize bimodal Interrupts */
7118 sp->config.bimodal = bimodal;
7119 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7120 sp->config.bimodal = 0;
7121 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7122 dev->name);
7123 }
7124
7125 /*
7126 * Make Link state as off at this point, when the Link change
7127 * interrupt comes the state will be automatically changed to
7128 * the right state.
7129 */
7130 netif_carrier_off(dev);
7131
7132 return 0;
7133
7134 register_failed:
7135 set_swap_failed:
7136 iounmap(sp->bar1);
7137 bar1_remap_failed:
7138 iounmap(sp->bar0);
7139 bar0_remap_failed:
7140 mem_alloc_failed:
7141 free_shared_mem(sp);
7142 pci_disable_device(pdev);
7143 if (dev_intr_type != MSI_X)
7144 pci_release_regions(pdev);
7145 else {
7146 release_mem_region(pci_resource_start(pdev, 0),
7147 pci_resource_len(pdev, 0));
7148 release_mem_region(pci_resource_start(pdev, 2),
7149 pci_resource_len(pdev, 2));
7150 }
7151 pci_set_drvdata(pdev, NULL);
7152 free_netdev(dev);
7153
7154 return ret;
7155 }
7156
7157 /**
7158 * s2io_rem_nic - Free the PCI device
7159 * @pdev: structure containing the PCI related information of the device.
7160 * Description: This function is called by the Pci subsystem to release a
7161 * PCI device and free up all resource held up by the device. This could
7162 * be in response to a Hot plug event or when the driver is to be removed
7163 * from memory.
7164 */
7165
7166 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7167 {
7168 struct net_device *dev =
7169 (struct net_device *) pci_get_drvdata(pdev);
7170 struct s2io_nic *sp;
7171
7172 if (dev == NULL) {
7173 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7174 return;
7175 }
7176
7177 sp = dev->priv;
7178 unregister_netdev(dev);
7179
7180 free_shared_mem(sp);
7181 iounmap(sp->bar0);
7182 iounmap(sp->bar1);
7183 if (sp->intr_type != MSI_X)
7184 pci_release_regions(pdev);
7185 else {
7186 release_mem_region(pci_resource_start(pdev, 0),
7187 pci_resource_len(pdev, 0));
7188 release_mem_region(pci_resource_start(pdev, 2),
7189 pci_resource_len(pdev, 2));
7190 }
7191 pci_set_drvdata(pdev, NULL);
7192 free_netdev(dev);
7193 pci_disable_device(pdev);
7194 }
7195
7196 /**
7197 * s2io_starter - Entry point for the driver
7198 * Description: This function is the entry point for the driver. It verifies
7199 * the module loadable parameters and initializes PCI configuration space.
7200 */
7201
7202 int __init s2io_starter(void)
7203 {
7204 return pci_register_driver(&s2io_driver);
7205 }
7206
7207 /**
7208 * s2io_closer - Cleanup routine for the driver
7209 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7210 */
7211
7212 static __exit void s2io_closer(void)
7213 {
7214 pci_unregister_driver(&s2io_driver);
7215 DBG_PRINT(INIT_DBG, "cleanup done\n");
7216 }
7217
7218 module_init(s2io_starter);
7219 module_exit(s2io_closer);
7220
7221 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7222 struct tcphdr **tcp, struct RxD_t *rxdp)
7223 {
7224 int ip_off;
7225 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7226
7227 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7228 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7229 __FUNCTION__);
7230 return -1;
7231 }
7232
7233 /* TODO:
7234 * By default the VLAN field in the MAC is stripped by the card, if this
7235 * feature is turned off in rx_pa_cfg register, then the ip_off field
7236 * has to be shifted by a further 2 bytes
7237 */
7238 switch (l2_type) {
7239 case 0: /* DIX type */
7240 case 4: /* DIX type with VLAN */
7241 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7242 break;
7243 /* LLC, SNAP etc are considered non-mergeable */
7244 default:
7245 return -1;
7246 }
7247
7248 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7249 ip_len = (u8)((*ip)->ihl);
7250 ip_len <<= 2;
7251 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7252
7253 return 0;
7254 }
7255
7256 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7257 struct tcphdr *tcp)
7258 {
7259 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7260 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7261 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7262 return -1;
7263 return 0;
7264 }
7265
7266 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7267 {
7268 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7269 }
7270
7271 static void initiate_new_session(struct lro *lro, u8 *l2h,
7272 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7273 {
7274 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7275 lro->l2h = l2h;
7276 lro->iph = ip;
7277 lro->tcph = tcp;
7278 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7279 lro->tcp_ack = ntohl(tcp->ack_seq);
7280 lro->sg_num = 1;
7281 lro->total_len = ntohs(ip->tot_len);
7282 lro->frags_len = 0;
7283 /*
7284 * check if we saw TCP timestamp. Other consistency checks have
7285 * already been done.
7286 */
7287 if (tcp->doff == 8) {
7288 u32 *ptr;
7289 ptr = (u32 *)(tcp+1);
7290 lro->saw_ts = 1;
7291 lro->cur_tsval = *(ptr+1);
7292 lro->cur_tsecr = *(ptr+2);
7293 }
7294 lro->in_use = 1;
7295 }
7296
7297 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7298 {
7299 struct iphdr *ip = lro->iph;
7300 struct tcphdr *tcp = lro->tcph;
7301 u16 nchk;
7302 struct stat_block *statinfo = sp->mac_control.stats_info;
7303 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7304
7305 /* Update L3 header */
7306 ip->tot_len = htons(lro->total_len);
7307 ip->check = 0;
7308 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7309 ip->check = nchk;
7310
7311 /* Update L4 header */
7312 tcp->ack_seq = lro->tcp_ack;
7313 tcp->window = lro->window;
7314
7315 /* Update tsecr field if this session has timestamps enabled */
7316 if (lro->saw_ts) {
7317 u32 *ptr = (u32 *)(tcp + 1);
7318 *(ptr+2) = lro->cur_tsecr;
7319 }
7320
7321 /* Update counters required for calculation of
7322 * average no. of packets aggregated.
7323 */
7324 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7325 statinfo->sw_stat.num_aggregations++;
7326 }
7327
7328 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7329 struct tcphdr *tcp, u32 l4_pyld)
7330 {
7331 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7332 lro->total_len += l4_pyld;
7333 lro->frags_len += l4_pyld;
7334 lro->tcp_next_seq += l4_pyld;
7335 lro->sg_num++;
7336
7337 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7338 lro->tcp_ack = tcp->ack_seq;
7339 lro->window = tcp->window;
7340
7341 if (lro->saw_ts) {
7342 u32 *ptr;
7343 /* Update tsecr and tsval from this packet */
7344 ptr = (u32 *) (tcp + 1);
7345 lro->cur_tsval = *(ptr + 1);
7346 lro->cur_tsecr = *(ptr + 2);
7347 }
7348 }
7349
7350 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7351 struct tcphdr *tcp, u32 tcp_pyld_len)
7352 {
7353 u8 *ptr;
7354
7355 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7356
7357 if (!tcp_pyld_len) {
7358 /* Runt frame or a pure ack */
7359 return -1;
7360 }
7361
7362 if (ip->ihl != 5) /* IP has options */
7363 return -1;
7364
7365 /* If we see CE codepoint in IP header, packet is not mergeable */
7366 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7367 return -1;
7368
7369 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7370 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7371 tcp->ece || tcp->cwr || !tcp->ack) {
7372 /*
7373 * Currently recognize only the ack control word and
7374 * any other control field being set would result in
7375 * flushing the LRO session
7376 */
7377 return -1;
7378 }
7379
7380 /*
7381 * Allow only one TCP timestamp option. Don't aggregate if
7382 * any other options are detected.
7383 */
7384 if (tcp->doff != 5 && tcp->doff != 8)
7385 return -1;
7386
7387 if (tcp->doff == 8) {
7388 ptr = (u8 *)(tcp + 1);
7389 while (*ptr == TCPOPT_NOP)
7390 ptr++;
7391 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7392 return -1;
7393
7394 /* Ensure timestamp value increases monotonically */
7395 if (l_lro)
7396 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7397 return -1;
7398
7399 /* timestamp echo reply should be non-zero */
7400 if (*((u32 *)(ptr+6)) == 0)
7401 return -1;
7402 }
7403
7404 return 0;
7405 }
7406
7407 static int
7408 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7409 struct RxD_t *rxdp, struct s2io_nic *sp)
7410 {
7411 struct iphdr *ip;
7412 struct tcphdr *tcph;
7413 int ret = 0, i;
7414
7415 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7416 rxdp))) {
7417 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7418 ip->saddr, ip->daddr);
7419 } else {
7420 return ret;
7421 }
7422
7423 tcph = (struct tcphdr *)*tcp;
7424 *tcp_len = get_l4_pyld_length(ip, tcph);
7425 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7426 struct lro *l_lro = &sp->lro0_n[i];
7427 if (l_lro->in_use) {
7428 if (check_for_socket_match(l_lro, ip, tcph))
7429 continue;
7430 /* Sock pair matched */
7431 *lro = l_lro;
7432
7433 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7434 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7435 "0x%x, actual 0x%x\n", __FUNCTION__,
7436 (*lro)->tcp_next_seq,
7437 ntohl(tcph->seq));
7438
7439 sp->mac_control.stats_info->
7440 sw_stat.outof_sequence_pkts++;
7441 ret = 2;
7442 break;
7443 }
7444
7445 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7446 ret = 1; /* Aggregate */
7447 else
7448 ret = 2; /* Flush both */
7449 break;
7450 }
7451 }
7452
7453 if (ret == 0) {
7454 /* Before searching for available LRO objects,
7455 * check if the pkt is L3/L4 aggregatable. If not
7456 * don't create new LRO session. Just send this
7457 * packet up.
7458 */
7459 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7460 return 5;
7461 }
7462
7463 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7464 struct lro *l_lro = &sp->lro0_n[i];
7465 if (!(l_lro->in_use)) {
7466 *lro = l_lro;
7467 ret = 3; /* Begin anew */
7468 break;
7469 }
7470 }
7471 }
7472
7473 if (ret == 0) { /* sessions exceeded */
7474 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7475 __FUNCTION__);
7476 *lro = NULL;
7477 return ret;
7478 }
7479
7480 switch (ret) {
7481 case 3:
7482 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7483 break;
7484 case 2:
7485 update_L3L4_header(sp, *lro);
7486 break;
7487 case 1:
7488 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7489 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7490 update_L3L4_header(sp, *lro);
7491 ret = 4; /* Flush the LRO */
7492 }
7493 break;
7494 default:
7495 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7496 __FUNCTION__);
7497 break;
7498 }
7499
7500 return ret;
7501 }
7502
7503 static void clear_lro_session(struct lro *lro)
7504 {
7505 static u16 lro_struct_size = sizeof(struct lro);
7506
7507 memset(lro, 0, lro_struct_size);
7508 }
7509
7510 static void queue_rx_frame(struct sk_buff *skb)
7511 {
7512 struct net_device *dev = skb->dev;
7513
7514 skb->protocol = eth_type_trans(skb, dev);
7515 if (napi)
7516 netif_receive_skb(skb);
7517 else
7518 netif_rx(skb);
7519 }
7520
7521 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7522 struct sk_buff *skb,
7523 u32 tcp_len)
7524 {
7525 struct sk_buff *first = lro->parent;
7526
7527 first->len += tcp_len;
7528 first->data_len = lro->frags_len;
7529 skb_pull(skb, (skb->len - tcp_len));
7530 if (skb_shinfo(first)->frag_list)
7531 lro->last_frag->next = skb;
7532 else
7533 skb_shinfo(first)->frag_list = skb;
7534 first->truesize += skb->truesize;
7535 lro->last_frag = skb;
7536 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7537 return;
7538 }
This page took 0.201968 seconds and 5 git commands to generate.