Merge branch 'r8169-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/romieu...
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
78
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
84
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
88
89 #define DRV_VERSION "2.0.26.25"
90
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
94
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
97
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
99 {
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106 }
107
108 /*
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
117
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
122 {
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133 };
134
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"}
230 };
231
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
248 {"link_fault_cnt"}
249 };
250
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
324 };
325
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
329
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
335
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
338
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
344
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347 {
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354 }
355 /* Add the vlan */
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
358 {
359 int i;
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
364
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
367
368 nic->vlgrp = grp;
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
372 }
373
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
376
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
379 {
380 int i;
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
385
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
388
389 if (nic->vlgrp)
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
391
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
394 flags[i]);
395 }
396
397 /*
398 * Constants to be programmed into the Xena's registers, to configure
399 * the XAUI.
400 */
401
402 #define END_SIGN 0x0
403 static const u64 herc_act_dtx_cfg[] = {
404 /* Set address */
405 0x8000051536750000ULL, 0x80000515367500E0ULL,
406 /* Write data */
407 0x8000051536750004ULL, 0x80000515367500E4ULL,
408 /* Set address */
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410 /* Write data */
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412 /* Set address */
413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
414 /* Write data */
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
416 /* Set address */
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418 /* Write data */
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
420 /* Done */
421 END_SIGN
422 };
423
424 static const u64 xena_dtx_cfg[] = {
425 /* Set address */
426 0x8000051500000000ULL, 0x80000515000000E0ULL,
427 /* Write data */
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429 /* Set address */
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
431 /* Write data */
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433 /* Set address */
434 0x8002051500000000ULL, 0x80020515000000E0ULL,
435 /* Write data */
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
437 END_SIGN
438 };
439
440 /*
441 * Constants for Fixing the MacAddress problem seen mostly on
442 * Alpha machines.
443 */
444 static const u64 fix_mac[] = {
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
459 END_SIGN
460 };
461
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
464
465
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
488
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
491 */
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
494
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
498
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
505
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
509
510 /*
511 * S2IO device table.
512 * This table lists all the devices that this driver supports.
513 */
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
523 {0,}
524 };
525
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
527
528 static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
532 };
533
534 static struct pci_driver s2io_driver = {
535 .name = "S2IO",
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
539 .err_handler = &s2io_err_handler,
540 };
541
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
544
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
547 {
548 if (!sp->config.multiq) {
549 int i;
550
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
553 }
554 netif_tx_stop_all_queues(sp->dev);
555 }
556
557 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
558 {
559 if (!sp->config.multiq)
560 sp->mac_control.fifos[fifo_no].queue_state =
561 FIFO_QUEUE_STOP;
562
563 netif_tx_stop_all_queues(sp->dev);
564 }
565
566 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
567 {
568 if (!sp->config.multiq) {
569 int i;
570
571 for (i = 0; i < sp->config.tx_fifo_num; i++)
572 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
573 }
574 netif_tx_start_all_queues(sp->dev);
575 }
576
577 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
578 {
579 if (!sp->config.multiq)
580 sp->mac_control.fifos[fifo_no].queue_state =
581 FIFO_QUEUE_START;
582
583 netif_tx_start_all_queues(sp->dev);
584 }
585
586 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
587 {
588 if (!sp->config.multiq) {
589 int i;
590
591 for (i = 0; i < sp->config.tx_fifo_num; i++)
592 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
593 }
594 netif_tx_wake_all_queues(sp->dev);
595 }
596
597 static inline void s2io_wake_tx_queue(
598 struct fifo_info *fifo, int cnt, u8 multiq)
599 {
600
601 if (multiq) {
602 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
603 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
604 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
605 if (netif_queue_stopped(fifo->dev)) {
606 fifo->queue_state = FIFO_QUEUE_START;
607 netif_wake_queue(fifo->dev);
608 }
609 }
610 }
611
612 /**
613 * init_shared_mem - Allocation and Initialization of Memory
614 * @nic: Device private variable.
615 * Description: The function allocates all the memory areas shared
616 * between the NIC and the driver. This includes Tx descriptors,
617 * Rx descriptors and the statistics block.
618 */
619
620 static int init_shared_mem(struct s2io_nic *nic)
621 {
622 u32 size;
623 void *tmp_v_addr, *tmp_v_addr_next;
624 dma_addr_t tmp_p_addr, tmp_p_addr_next;
625 struct RxD_block *pre_rxd_blk = NULL;
626 int i, j, blk_cnt;
627 int lst_size, lst_per_page;
628 struct net_device *dev = nic->dev;
629 unsigned long tmp;
630 struct buffAdd *ba;
631
632 struct mac_info *mac_control;
633 struct config_param *config;
634 unsigned long long mem_allocated = 0;
635
636 mac_control = &nic->mac_control;
637 config = &nic->config;
638
639
640 /* Allocation and initialization of TXDLs in FIOFs */
641 size = 0;
642 for (i = 0; i < config->tx_fifo_num; i++) {
643 size += config->tx_cfg[i].fifo_len;
644 }
645 if (size > MAX_AVAILABLE_TXDS) {
646 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
647 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
648 return -EINVAL;
649 }
650
651 size = 0;
652 for (i = 0; i < config->tx_fifo_num; i++) {
653 size = config->tx_cfg[i].fifo_len;
654 /*
655 * Legal values are from 2 to 8192
656 */
657 if (size < 2) {
658 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
659 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
660 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
661 "are 2 to 8192\n");
662 return -EINVAL;
663 }
664 }
665
666 lst_size = (sizeof(struct TxD) * config->max_txds);
667 lst_per_page = PAGE_SIZE / lst_size;
668
669 for (i = 0; i < config->tx_fifo_num; i++) {
670 int fifo_len = config->tx_cfg[i].fifo_len;
671 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
672 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
673 GFP_KERNEL);
674 if (!mac_control->fifos[i].list_info) {
675 DBG_PRINT(INFO_DBG,
676 "Malloc failed for list_info\n");
677 return -ENOMEM;
678 }
679 mem_allocated += list_holder_size;
680 }
681 for (i = 0; i < config->tx_fifo_num; i++) {
682 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
683 lst_per_page);
684 mac_control->fifos[i].tx_curr_put_info.offset = 0;
685 mac_control->fifos[i].tx_curr_put_info.fifo_len =
686 config->tx_cfg[i].fifo_len - 1;
687 mac_control->fifos[i].tx_curr_get_info.offset = 0;
688 mac_control->fifos[i].tx_curr_get_info.fifo_len =
689 config->tx_cfg[i].fifo_len - 1;
690 mac_control->fifos[i].fifo_no = i;
691 mac_control->fifos[i].nic = nic;
692 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
693 mac_control->fifos[i].dev = dev;
694
695 for (j = 0; j < page_num; j++) {
696 int k = 0;
697 dma_addr_t tmp_p;
698 void *tmp_v;
699 tmp_v = pci_alloc_consistent(nic->pdev,
700 PAGE_SIZE, &tmp_p);
701 if (!tmp_v) {
702 DBG_PRINT(INFO_DBG,
703 "pci_alloc_consistent ");
704 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
705 return -ENOMEM;
706 }
707 /* If we got a zero DMA address(can happen on
708 * certain platforms like PPC), reallocate.
709 * Store virtual address of page we don't want,
710 * to be freed later.
711 */
712 if (!tmp_p) {
713 mac_control->zerodma_virt_addr = tmp_v;
714 DBG_PRINT(INIT_DBG,
715 "%s: Zero DMA address for TxDL. ", dev->name);
716 DBG_PRINT(INIT_DBG,
717 "Virtual address %p\n", tmp_v);
718 tmp_v = pci_alloc_consistent(nic->pdev,
719 PAGE_SIZE, &tmp_p);
720 if (!tmp_v) {
721 DBG_PRINT(INFO_DBG,
722 "pci_alloc_consistent ");
723 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
724 return -ENOMEM;
725 }
726 mem_allocated += PAGE_SIZE;
727 }
728 while (k < lst_per_page) {
729 int l = (j * lst_per_page) + k;
730 if (l == config->tx_cfg[i].fifo_len)
731 break;
732 mac_control->fifos[i].list_info[l].list_virt_addr =
733 tmp_v + (k * lst_size);
734 mac_control->fifos[i].list_info[l].list_phy_addr =
735 tmp_p + (k * lst_size);
736 k++;
737 }
738 }
739 }
740
741 for (i = 0; i < config->tx_fifo_num; i++) {
742 size = config->tx_cfg[i].fifo_len;
743 mac_control->fifos[i].ufo_in_band_v
744 = kcalloc(size, sizeof(u64), GFP_KERNEL);
745 if (!mac_control->fifos[i].ufo_in_band_v)
746 return -ENOMEM;
747 mem_allocated += (size * sizeof(u64));
748 }
749
750 /* Allocation and initialization of RXDs in Rings */
751 size = 0;
752 for (i = 0; i < config->rx_ring_num; i++) {
753 if (config->rx_cfg[i].num_rxd %
754 (rxd_count[nic->rxd_mode] + 1)) {
755 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
756 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
757 i);
758 DBG_PRINT(ERR_DBG, "RxDs per Block");
759 return FAILURE;
760 }
761 size += config->rx_cfg[i].num_rxd;
762 mac_control->rings[i].block_count =
763 config->rx_cfg[i].num_rxd /
764 (rxd_count[nic->rxd_mode] + 1 );
765 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
766 mac_control->rings[i].block_count;
767 }
768 if (nic->rxd_mode == RXD_MODE_1)
769 size = (size * (sizeof(struct RxD1)));
770 else
771 size = (size * (sizeof(struct RxD3)));
772
773 for (i = 0; i < config->rx_ring_num; i++) {
774 mac_control->rings[i].rx_curr_get_info.block_index = 0;
775 mac_control->rings[i].rx_curr_get_info.offset = 0;
776 mac_control->rings[i].rx_curr_get_info.ring_len =
777 config->rx_cfg[i].num_rxd - 1;
778 mac_control->rings[i].rx_curr_put_info.block_index = 0;
779 mac_control->rings[i].rx_curr_put_info.offset = 0;
780 mac_control->rings[i].rx_curr_put_info.ring_len =
781 config->rx_cfg[i].num_rxd - 1;
782 mac_control->rings[i].nic = nic;
783 mac_control->rings[i].ring_no = i;
784 mac_control->rings[i].lro = lro_enable;
785
786 blk_cnt = config->rx_cfg[i].num_rxd /
787 (rxd_count[nic->rxd_mode] + 1);
788 /* Allocating all the Rx blocks */
789 for (j = 0; j < blk_cnt; j++) {
790 struct rx_block_info *rx_blocks;
791 int l;
792
793 rx_blocks = &mac_control->rings[i].rx_blocks[j];
794 size = SIZE_OF_BLOCK; //size is always page size
795 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
796 &tmp_p_addr);
797 if (tmp_v_addr == NULL) {
798 /*
799 * In case of failure, free_shared_mem()
800 * is called, which should free any
801 * memory that was alloced till the
802 * failure happened.
803 */
804 rx_blocks->block_virt_addr = tmp_v_addr;
805 return -ENOMEM;
806 }
807 mem_allocated += size;
808 memset(tmp_v_addr, 0, size);
809 rx_blocks->block_virt_addr = tmp_v_addr;
810 rx_blocks->block_dma_addr = tmp_p_addr;
811 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
812 rxd_count[nic->rxd_mode],
813 GFP_KERNEL);
814 if (!rx_blocks->rxds)
815 return -ENOMEM;
816 mem_allocated +=
817 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
818 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
819 rx_blocks->rxds[l].virt_addr =
820 rx_blocks->block_virt_addr +
821 (rxd_size[nic->rxd_mode] * l);
822 rx_blocks->rxds[l].dma_addr =
823 rx_blocks->block_dma_addr +
824 (rxd_size[nic->rxd_mode] * l);
825 }
826 }
827 /* Interlinking all Rx Blocks */
828 for (j = 0; j < blk_cnt; j++) {
829 tmp_v_addr =
830 mac_control->rings[i].rx_blocks[j].block_virt_addr;
831 tmp_v_addr_next =
832 mac_control->rings[i].rx_blocks[(j + 1) %
833 blk_cnt].block_virt_addr;
834 tmp_p_addr =
835 mac_control->rings[i].rx_blocks[j].block_dma_addr;
836 tmp_p_addr_next =
837 mac_control->rings[i].rx_blocks[(j + 1) %
838 blk_cnt].block_dma_addr;
839
840 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
841 pre_rxd_blk->reserved_2_pNext_RxD_block =
842 (unsigned long) tmp_v_addr_next;
843 pre_rxd_blk->pNext_RxD_Blk_physical =
844 (u64) tmp_p_addr_next;
845 }
846 }
847 if (nic->rxd_mode == RXD_MODE_3B) {
848 /*
849 * Allocation of Storages for buffer addresses in 2BUFF mode
850 * and the buffers as well.
851 */
852 for (i = 0; i < config->rx_ring_num; i++) {
853 blk_cnt = config->rx_cfg[i].num_rxd /
854 (rxd_count[nic->rxd_mode]+ 1);
855 mac_control->rings[i].ba =
856 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
857 GFP_KERNEL);
858 if (!mac_control->rings[i].ba)
859 return -ENOMEM;
860 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
861 for (j = 0; j < blk_cnt; j++) {
862 int k = 0;
863 mac_control->rings[i].ba[j] =
864 kmalloc((sizeof(struct buffAdd) *
865 (rxd_count[nic->rxd_mode] + 1)),
866 GFP_KERNEL);
867 if (!mac_control->rings[i].ba[j])
868 return -ENOMEM;
869 mem_allocated += (sizeof(struct buffAdd) * \
870 (rxd_count[nic->rxd_mode] + 1));
871 while (k != rxd_count[nic->rxd_mode]) {
872 ba = &mac_control->rings[i].ba[j][k];
873
874 ba->ba_0_org = (void *) kmalloc
875 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
876 if (!ba->ba_0_org)
877 return -ENOMEM;
878 mem_allocated +=
879 (BUF0_LEN + ALIGN_SIZE);
880 tmp = (unsigned long)ba->ba_0_org;
881 tmp += ALIGN_SIZE;
882 tmp &= ~((unsigned long) ALIGN_SIZE);
883 ba->ba_0 = (void *) tmp;
884
885 ba->ba_1_org = (void *) kmalloc
886 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
887 if (!ba->ba_1_org)
888 return -ENOMEM;
889 mem_allocated
890 += (BUF1_LEN + ALIGN_SIZE);
891 tmp = (unsigned long) ba->ba_1_org;
892 tmp += ALIGN_SIZE;
893 tmp &= ~((unsigned long) ALIGN_SIZE);
894 ba->ba_1 = (void *) tmp;
895 k++;
896 }
897 }
898 }
899 }
900
901 /* Allocation and initialization of Statistics block */
902 size = sizeof(struct stat_block);
903 mac_control->stats_mem = pci_alloc_consistent
904 (nic->pdev, size, &mac_control->stats_mem_phy);
905
906 if (!mac_control->stats_mem) {
907 /*
908 * In case of failure, free_shared_mem() is called, which
909 * should free any memory that was alloced till the
910 * failure happened.
911 */
912 return -ENOMEM;
913 }
914 mem_allocated += size;
915 mac_control->stats_mem_sz = size;
916
917 tmp_v_addr = mac_control->stats_mem;
918 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
919 memset(tmp_v_addr, 0, size);
920 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
921 (unsigned long long) tmp_p_addr);
922 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
923 return SUCCESS;
924 }
925
926 /**
927 * free_shared_mem - Free the allocated Memory
928 * @nic: Device private variable.
929 * Description: This function is to free all memory locations allocated by
930 * the init_shared_mem() function and return it to the kernel.
931 */
932
933 static void free_shared_mem(struct s2io_nic *nic)
934 {
935 int i, j, blk_cnt, size;
936 void *tmp_v_addr;
937 dma_addr_t tmp_p_addr;
938 struct mac_info *mac_control;
939 struct config_param *config;
940 int lst_size, lst_per_page;
941 struct net_device *dev;
942 int page_num = 0;
943
944 if (!nic)
945 return;
946
947 dev = nic->dev;
948
949 mac_control = &nic->mac_control;
950 config = &nic->config;
951
952 lst_size = (sizeof(struct TxD) * config->max_txds);
953 lst_per_page = PAGE_SIZE / lst_size;
954
955 for (i = 0; i < config->tx_fifo_num; i++) {
956 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
957 lst_per_page);
958 for (j = 0; j < page_num; j++) {
959 int mem_blks = (j * lst_per_page);
960 if (!mac_control->fifos[i].list_info)
961 return;
962 if (!mac_control->fifos[i].list_info[mem_blks].
963 list_virt_addr)
964 break;
965 pci_free_consistent(nic->pdev, PAGE_SIZE,
966 mac_control->fifos[i].
967 list_info[mem_blks].
968 list_virt_addr,
969 mac_control->fifos[i].
970 list_info[mem_blks].
971 list_phy_addr);
972 nic->mac_control.stats_info->sw_stat.mem_freed
973 += PAGE_SIZE;
974 }
975 /* If we got a zero DMA address during allocation,
976 * free the page now
977 */
978 if (mac_control->zerodma_virt_addr) {
979 pci_free_consistent(nic->pdev, PAGE_SIZE,
980 mac_control->zerodma_virt_addr,
981 (dma_addr_t)0);
982 DBG_PRINT(INIT_DBG,
983 "%s: Freeing TxDL with zero DMA addr. ",
984 dev->name);
985 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
986 mac_control->zerodma_virt_addr);
987 nic->mac_control.stats_info->sw_stat.mem_freed
988 += PAGE_SIZE;
989 }
990 kfree(mac_control->fifos[i].list_info);
991 nic->mac_control.stats_info->sw_stat.mem_freed +=
992 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
993 }
994
995 size = SIZE_OF_BLOCK;
996 for (i = 0; i < config->rx_ring_num; i++) {
997 blk_cnt = mac_control->rings[i].block_count;
998 for (j = 0; j < blk_cnt; j++) {
999 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1000 block_virt_addr;
1001 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1002 block_dma_addr;
1003 if (tmp_v_addr == NULL)
1004 break;
1005 pci_free_consistent(nic->pdev, size,
1006 tmp_v_addr, tmp_p_addr);
1007 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1008 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1009 nic->mac_control.stats_info->sw_stat.mem_freed +=
1010 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1011 }
1012 }
1013
1014 if (nic->rxd_mode == RXD_MODE_3B) {
1015 /* Freeing buffer storage addresses in 2BUFF mode. */
1016 for (i = 0; i < config->rx_ring_num; i++) {
1017 blk_cnt = config->rx_cfg[i].num_rxd /
1018 (rxd_count[nic->rxd_mode] + 1);
1019 for (j = 0; j < blk_cnt; j++) {
1020 int k = 0;
1021 if (!mac_control->rings[i].ba[j])
1022 continue;
1023 while (k != rxd_count[nic->rxd_mode]) {
1024 struct buffAdd *ba =
1025 &mac_control->rings[i].ba[j][k];
1026 kfree(ba->ba_0_org);
1027 nic->mac_control.stats_info->sw_stat.\
1028 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1029 kfree(ba->ba_1_org);
1030 nic->mac_control.stats_info->sw_stat.\
1031 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1032 k++;
1033 }
1034 kfree(mac_control->rings[i].ba[j]);
1035 nic->mac_control.stats_info->sw_stat.mem_freed +=
1036 (sizeof(struct buffAdd) *
1037 (rxd_count[nic->rxd_mode] + 1));
1038 }
1039 kfree(mac_control->rings[i].ba);
1040 nic->mac_control.stats_info->sw_stat.mem_freed +=
1041 (sizeof(struct buffAdd *) * blk_cnt);
1042 }
1043 }
1044
1045 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1046 if (mac_control->fifos[i].ufo_in_band_v) {
1047 nic->mac_control.stats_info->sw_stat.mem_freed
1048 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1049 kfree(mac_control->fifos[i].ufo_in_band_v);
1050 }
1051 }
1052
1053 if (mac_control->stats_mem) {
1054 nic->mac_control.stats_info->sw_stat.mem_freed +=
1055 mac_control->stats_mem_sz;
1056 pci_free_consistent(nic->pdev,
1057 mac_control->stats_mem_sz,
1058 mac_control->stats_mem,
1059 mac_control->stats_mem_phy);
1060 }
1061 }
1062
1063 /**
1064 * s2io_verify_pci_mode -
1065 */
1066
1067 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1068 {
1069 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1070 register u64 val64 = 0;
1071 int mode;
1072
1073 val64 = readq(&bar0->pci_mode);
1074 mode = (u8)GET_PCI_MODE(val64);
1075
1076 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1077 return -1; /* Unknown PCI mode */
1078 return mode;
1079 }
1080
1081 #define NEC_VENID 0x1033
1082 #define NEC_DEVID 0x0125
1083 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1084 {
1085 struct pci_dev *tdev = NULL;
1086 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1087 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1088 if (tdev->bus == s2io_pdev->bus->parent) {
1089 pci_dev_put(tdev);
1090 return 1;
1091 }
1092 }
1093 }
1094 return 0;
1095 }
1096
1097 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1098 /**
1099 * s2io_print_pci_mode -
1100 */
1101 static int s2io_print_pci_mode(struct s2io_nic *nic)
1102 {
1103 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1104 register u64 val64 = 0;
1105 int mode;
1106 struct config_param *config = &nic->config;
1107
1108 val64 = readq(&bar0->pci_mode);
1109 mode = (u8)GET_PCI_MODE(val64);
1110
1111 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1112 return -1; /* Unknown PCI mode */
1113
1114 config->bus_speed = bus_speed[mode];
1115
1116 if (s2io_on_nec_bridge(nic->pdev)) {
1117 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1118 nic->dev->name);
1119 return mode;
1120 }
1121
1122 if (val64 & PCI_MODE_32_BITS) {
1123 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1124 } else {
1125 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1126 }
1127
1128 switch(mode) {
1129 case PCI_MODE_PCI_33:
1130 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1131 break;
1132 case PCI_MODE_PCI_66:
1133 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1134 break;
1135 case PCI_MODE_PCIX_M1_66:
1136 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1137 break;
1138 case PCI_MODE_PCIX_M1_100:
1139 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1140 break;
1141 case PCI_MODE_PCIX_M1_133:
1142 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1143 break;
1144 case PCI_MODE_PCIX_M2_66:
1145 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1146 break;
1147 case PCI_MODE_PCIX_M2_100:
1148 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1149 break;
1150 case PCI_MODE_PCIX_M2_133:
1151 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1152 break;
1153 default:
1154 return -1; /* Unsupported bus speed */
1155 }
1156
1157 return mode;
1158 }
1159
1160 /**
1161 * init_tti - Initialization transmit traffic interrupt scheme
1162 * @nic: device private variable
1163 * @link: link status (UP/DOWN) used to enable/disable continuous
1164 * transmit interrupts
1165 * Description: The function configures transmit traffic interrupts
1166 * Return Value: SUCCESS on success and
1167 * '-1' on failure
1168 */
1169
1170 static int init_tti(struct s2io_nic *nic, int link)
1171 {
1172 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1173 register u64 val64 = 0;
1174 int i;
1175 struct config_param *config;
1176
1177 config = &nic->config;
1178
1179 for (i = 0; i < config->tx_fifo_num; i++) {
1180 /*
1181 * TTI Initialization. Default Tx timer gets us about
1182 * 250 interrupts per sec. Continuous interrupts are enabled
1183 * by default.
1184 */
1185 if (nic->device_type == XFRAME_II_DEVICE) {
1186 int count = (nic->config.bus_speed * 125)/2;
1187 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1188 } else
1189 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1190
1191 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1192 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1193 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1194 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1195 if (i == 0)
1196 if (use_continuous_tx_intrs && (link == LINK_UP))
1197 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1198 writeq(val64, &bar0->tti_data1_mem);
1199
1200 if (nic->config.intr_type == MSI_X) {
1201 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1202 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1203 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1204 TTI_DATA2_MEM_TX_UFC_D(0x300);
1205 } else {
1206 if ((nic->config.tx_steering_type ==
1207 TX_DEFAULT_STEERING) &&
1208 (config->tx_fifo_num > 1) &&
1209 (i >= nic->udp_fifo_idx) &&
1210 (i < (nic->udp_fifo_idx +
1211 nic->total_udp_fifos)))
1212 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1213 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1214 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1215 TTI_DATA2_MEM_TX_UFC_D(0x120);
1216 else
1217 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1218 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1219 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1220 TTI_DATA2_MEM_TX_UFC_D(0x80);
1221 }
1222
1223 writeq(val64, &bar0->tti_data2_mem);
1224
1225 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1226 TTI_CMD_MEM_OFFSET(i);
1227 writeq(val64, &bar0->tti_command_mem);
1228
1229 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1230 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1231 return FAILURE;
1232 }
1233
1234 return SUCCESS;
1235 }
1236
1237 /**
1238 * init_nic - Initialization of hardware
1239 * @nic: device private variable
1240 * Description: The function sequentially configures every block
1241 * of the H/W from their reset values.
1242 * Return Value: SUCCESS on success and
1243 * '-1' on failure (endian settings incorrect).
1244 */
1245
1246 static int init_nic(struct s2io_nic *nic)
1247 {
1248 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1249 struct net_device *dev = nic->dev;
1250 register u64 val64 = 0;
1251 void __iomem *add;
1252 u32 time;
1253 int i, j;
1254 struct mac_info *mac_control;
1255 struct config_param *config;
1256 int dtx_cnt = 0;
1257 unsigned long long mem_share;
1258 int mem_size;
1259
1260 mac_control = &nic->mac_control;
1261 config = &nic->config;
1262
1263 /* to set the swapper controle on the card */
1264 if(s2io_set_swapper(nic)) {
1265 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1266 return -EIO;
1267 }
1268
1269 /*
1270 * Herc requires EOI to be removed from reset before XGXS, so..
1271 */
1272 if (nic->device_type & XFRAME_II_DEVICE) {
1273 val64 = 0xA500000000ULL;
1274 writeq(val64, &bar0->sw_reset);
1275 msleep(500);
1276 val64 = readq(&bar0->sw_reset);
1277 }
1278
1279 /* Remove XGXS from reset state */
1280 val64 = 0;
1281 writeq(val64, &bar0->sw_reset);
1282 msleep(500);
1283 val64 = readq(&bar0->sw_reset);
1284
1285 /* Ensure that it's safe to access registers by checking
1286 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1287 */
1288 if (nic->device_type == XFRAME_II_DEVICE) {
1289 for (i = 0; i < 50; i++) {
1290 val64 = readq(&bar0->adapter_status);
1291 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1292 break;
1293 msleep(10);
1294 }
1295 if (i == 50)
1296 return -ENODEV;
1297 }
1298
1299 /* Enable Receiving broadcasts */
1300 add = &bar0->mac_cfg;
1301 val64 = readq(&bar0->mac_cfg);
1302 val64 |= MAC_RMAC_BCAST_ENABLE;
1303 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1304 writel((u32) val64, add);
1305 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1306 writel((u32) (val64 >> 32), (add + 4));
1307
1308 /* Read registers in all blocks */
1309 val64 = readq(&bar0->mac_int_mask);
1310 val64 = readq(&bar0->mc_int_mask);
1311 val64 = readq(&bar0->xgxs_int_mask);
1312
1313 /* Set MTU */
1314 val64 = dev->mtu;
1315 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1316
1317 if (nic->device_type & XFRAME_II_DEVICE) {
1318 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1319 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1320 &bar0->dtx_control, UF);
1321 if (dtx_cnt & 0x1)
1322 msleep(1); /* Necessary!! */
1323 dtx_cnt++;
1324 }
1325 } else {
1326 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1327 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1328 &bar0->dtx_control, UF);
1329 val64 = readq(&bar0->dtx_control);
1330 dtx_cnt++;
1331 }
1332 }
1333
1334 /* Tx DMA Initialization */
1335 val64 = 0;
1336 writeq(val64, &bar0->tx_fifo_partition_0);
1337 writeq(val64, &bar0->tx_fifo_partition_1);
1338 writeq(val64, &bar0->tx_fifo_partition_2);
1339 writeq(val64, &bar0->tx_fifo_partition_3);
1340
1341
1342 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1343 val64 |=
1344 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1345 13) | vBIT(config->tx_cfg[i].fifo_priority,
1346 ((j * 32) + 5), 3);
1347
1348 if (i == (config->tx_fifo_num - 1)) {
1349 if (i % 2 == 0)
1350 i++;
1351 }
1352
1353 switch (i) {
1354 case 1:
1355 writeq(val64, &bar0->tx_fifo_partition_0);
1356 val64 = 0;
1357 j = 0;
1358 break;
1359 case 3:
1360 writeq(val64, &bar0->tx_fifo_partition_1);
1361 val64 = 0;
1362 j = 0;
1363 break;
1364 case 5:
1365 writeq(val64, &bar0->tx_fifo_partition_2);
1366 val64 = 0;
1367 j = 0;
1368 break;
1369 case 7:
1370 writeq(val64, &bar0->tx_fifo_partition_3);
1371 val64 = 0;
1372 j = 0;
1373 break;
1374 default:
1375 j++;
1376 break;
1377 }
1378 }
1379
1380 /*
1381 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1382 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1383 */
1384 if ((nic->device_type == XFRAME_I_DEVICE) &&
1385 (nic->pdev->revision < 4))
1386 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1387
1388 val64 = readq(&bar0->tx_fifo_partition_0);
1389 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1390 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1391
1392 /*
1393 * Initialization of Tx_PA_CONFIG register to ignore packet
1394 * integrity checking.
1395 */
1396 val64 = readq(&bar0->tx_pa_cfg);
1397 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1398 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1399 writeq(val64, &bar0->tx_pa_cfg);
1400
1401 /* Rx DMA intialization. */
1402 val64 = 0;
1403 for (i = 0; i < config->rx_ring_num; i++) {
1404 val64 |=
1405 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1406 3);
1407 }
1408 writeq(val64, &bar0->rx_queue_priority);
1409
1410 /*
1411 * Allocating equal share of memory to all the
1412 * configured Rings.
1413 */
1414 val64 = 0;
1415 if (nic->device_type & XFRAME_II_DEVICE)
1416 mem_size = 32;
1417 else
1418 mem_size = 64;
1419
1420 for (i = 0; i < config->rx_ring_num; i++) {
1421 switch (i) {
1422 case 0:
1423 mem_share = (mem_size / config->rx_ring_num +
1424 mem_size % config->rx_ring_num);
1425 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1426 continue;
1427 case 1:
1428 mem_share = (mem_size / config->rx_ring_num);
1429 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1430 continue;
1431 case 2:
1432 mem_share = (mem_size / config->rx_ring_num);
1433 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1434 continue;
1435 case 3:
1436 mem_share = (mem_size / config->rx_ring_num);
1437 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1438 continue;
1439 case 4:
1440 mem_share = (mem_size / config->rx_ring_num);
1441 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1442 continue;
1443 case 5:
1444 mem_share = (mem_size / config->rx_ring_num);
1445 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1446 continue;
1447 case 6:
1448 mem_share = (mem_size / config->rx_ring_num);
1449 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1450 continue;
1451 case 7:
1452 mem_share = (mem_size / config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1454 continue;
1455 }
1456 }
1457 writeq(val64, &bar0->rx_queue_cfg);
1458
1459 /*
1460 * Filling Tx round robin registers
1461 * as per the number of FIFOs for equal scheduling priority
1462 */
1463 switch (config->tx_fifo_num) {
1464 case 1:
1465 val64 = 0x0;
1466 writeq(val64, &bar0->tx_w_round_robin_0);
1467 writeq(val64, &bar0->tx_w_round_robin_1);
1468 writeq(val64, &bar0->tx_w_round_robin_2);
1469 writeq(val64, &bar0->tx_w_round_robin_3);
1470 writeq(val64, &bar0->tx_w_round_robin_4);
1471 break;
1472 case 2:
1473 val64 = 0x0001000100010001ULL;
1474 writeq(val64, &bar0->tx_w_round_robin_0);
1475 writeq(val64, &bar0->tx_w_round_robin_1);
1476 writeq(val64, &bar0->tx_w_round_robin_2);
1477 writeq(val64, &bar0->tx_w_round_robin_3);
1478 val64 = 0x0001000100000000ULL;
1479 writeq(val64, &bar0->tx_w_round_robin_4);
1480 break;
1481 case 3:
1482 val64 = 0x0001020001020001ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_0);
1484 val64 = 0x0200010200010200ULL;
1485 writeq(val64, &bar0->tx_w_round_robin_1);
1486 val64 = 0x0102000102000102ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_2);
1488 val64 = 0x0001020001020001ULL;
1489 writeq(val64, &bar0->tx_w_round_robin_3);
1490 val64 = 0x0200010200000000ULL;
1491 writeq(val64, &bar0->tx_w_round_robin_4);
1492 break;
1493 case 4:
1494 val64 = 0x0001020300010203ULL;
1495 writeq(val64, &bar0->tx_w_round_robin_0);
1496 writeq(val64, &bar0->tx_w_round_robin_1);
1497 writeq(val64, &bar0->tx_w_round_robin_2);
1498 writeq(val64, &bar0->tx_w_round_robin_3);
1499 val64 = 0x0001020300000000ULL;
1500 writeq(val64, &bar0->tx_w_round_robin_4);
1501 break;
1502 case 5:
1503 val64 = 0x0001020304000102ULL;
1504 writeq(val64, &bar0->tx_w_round_robin_0);
1505 val64 = 0x0304000102030400ULL;
1506 writeq(val64, &bar0->tx_w_round_robin_1);
1507 val64 = 0x0102030400010203ULL;
1508 writeq(val64, &bar0->tx_w_round_robin_2);
1509 val64 = 0x0400010203040001ULL;
1510 writeq(val64, &bar0->tx_w_round_robin_3);
1511 val64 = 0x0203040000000000ULL;
1512 writeq(val64, &bar0->tx_w_round_robin_4);
1513 break;
1514 case 6:
1515 val64 = 0x0001020304050001ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_0);
1517 val64 = 0x0203040500010203ULL;
1518 writeq(val64, &bar0->tx_w_round_robin_1);
1519 val64 = 0x0405000102030405ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_2);
1521 val64 = 0x0001020304050001ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_3);
1523 val64 = 0x0203040500000000ULL;
1524 writeq(val64, &bar0->tx_w_round_robin_4);
1525 break;
1526 case 7:
1527 val64 = 0x0001020304050600ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_0);
1529 val64 = 0x0102030405060001ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_1);
1531 val64 = 0x0203040506000102ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_2);
1533 val64 = 0x0304050600010203ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_3);
1535 val64 = 0x0405060000000000ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_4);
1537 break;
1538 case 8:
1539 val64 = 0x0001020304050607ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_0);
1541 writeq(val64, &bar0->tx_w_round_robin_1);
1542 writeq(val64, &bar0->tx_w_round_robin_2);
1543 writeq(val64, &bar0->tx_w_round_robin_3);
1544 val64 = 0x0001020300000000ULL;
1545 writeq(val64, &bar0->tx_w_round_robin_4);
1546 break;
1547 }
1548
1549 /* Enable all configured Tx FIFO partitions */
1550 val64 = readq(&bar0->tx_fifo_partition_0);
1551 val64 |= (TX_FIFO_PARTITION_EN);
1552 writeq(val64, &bar0->tx_fifo_partition_0);
1553
1554 /* Filling the Rx round robin registers as per the
1555 * number of Rings and steering based on QoS with
1556 * equal priority.
1557 */
1558 switch (config->rx_ring_num) {
1559 case 1:
1560 val64 = 0x0;
1561 writeq(val64, &bar0->rx_w_round_robin_0);
1562 writeq(val64, &bar0->rx_w_round_robin_1);
1563 writeq(val64, &bar0->rx_w_round_robin_2);
1564 writeq(val64, &bar0->rx_w_round_robin_3);
1565 writeq(val64, &bar0->rx_w_round_robin_4);
1566
1567 val64 = 0x8080808080808080ULL;
1568 writeq(val64, &bar0->rts_qos_steering);
1569 break;
1570 case 2:
1571 val64 = 0x0001000100010001ULL;
1572 writeq(val64, &bar0->rx_w_round_robin_0);
1573 writeq(val64, &bar0->rx_w_round_robin_1);
1574 writeq(val64, &bar0->rx_w_round_robin_2);
1575 writeq(val64, &bar0->rx_w_round_robin_3);
1576 val64 = 0x0001000100000000ULL;
1577 writeq(val64, &bar0->rx_w_round_robin_4);
1578
1579 val64 = 0x8080808040404040ULL;
1580 writeq(val64, &bar0->rts_qos_steering);
1581 break;
1582 case 3:
1583 val64 = 0x0001020001020001ULL;
1584 writeq(val64, &bar0->rx_w_round_robin_0);
1585 val64 = 0x0200010200010200ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_1);
1587 val64 = 0x0102000102000102ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_2);
1589 val64 = 0x0001020001020001ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_3);
1591 val64 = 0x0200010200000000ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_4);
1593
1594 val64 = 0x8080804040402020ULL;
1595 writeq(val64, &bar0->rts_qos_steering);
1596 break;
1597 case 4:
1598 val64 = 0x0001020300010203ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_0);
1600 writeq(val64, &bar0->rx_w_round_robin_1);
1601 writeq(val64, &bar0->rx_w_round_robin_2);
1602 writeq(val64, &bar0->rx_w_round_robin_3);
1603 val64 = 0x0001020300000000ULL;
1604 writeq(val64, &bar0->rx_w_round_robin_4);
1605
1606 val64 = 0x8080404020201010ULL;
1607 writeq(val64, &bar0->rts_qos_steering);
1608 break;
1609 case 5:
1610 val64 = 0x0001020304000102ULL;
1611 writeq(val64, &bar0->rx_w_round_robin_0);
1612 val64 = 0x0304000102030400ULL;
1613 writeq(val64, &bar0->rx_w_round_robin_1);
1614 val64 = 0x0102030400010203ULL;
1615 writeq(val64, &bar0->rx_w_round_robin_2);
1616 val64 = 0x0400010203040001ULL;
1617 writeq(val64, &bar0->rx_w_round_robin_3);
1618 val64 = 0x0203040000000000ULL;
1619 writeq(val64, &bar0->rx_w_round_robin_4);
1620
1621 val64 = 0x8080404020201008ULL;
1622 writeq(val64, &bar0->rts_qos_steering);
1623 break;
1624 case 6:
1625 val64 = 0x0001020304050001ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_0);
1627 val64 = 0x0203040500010203ULL;
1628 writeq(val64, &bar0->rx_w_round_robin_1);
1629 val64 = 0x0405000102030405ULL;
1630 writeq(val64, &bar0->rx_w_round_robin_2);
1631 val64 = 0x0001020304050001ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_3);
1633 val64 = 0x0203040500000000ULL;
1634 writeq(val64, &bar0->rx_w_round_robin_4);
1635
1636 val64 = 0x8080404020100804ULL;
1637 writeq(val64, &bar0->rts_qos_steering);
1638 break;
1639 case 7:
1640 val64 = 0x0001020304050600ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_0);
1642 val64 = 0x0102030405060001ULL;
1643 writeq(val64, &bar0->rx_w_round_robin_1);
1644 val64 = 0x0203040506000102ULL;
1645 writeq(val64, &bar0->rx_w_round_robin_2);
1646 val64 = 0x0304050600010203ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_3);
1648 val64 = 0x0405060000000000ULL;
1649 writeq(val64, &bar0->rx_w_round_robin_4);
1650
1651 val64 = 0x8080402010080402ULL;
1652 writeq(val64, &bar0->rts_qos_steering);
1653 break;
1654 case 8:
1655 val64 = 0x0001020304050607ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_0);
1657 writeq(val64, &bar0->rx_w_round_robin_1);
1658 writeq(val64, &bar0->rx_w_round_robin_2);
1659 writeq(val64, &bar0->rx_w_round_robin_3);
1660 val64 = 0x0001020300000000ULL;
1661 writeq(val64, &bar0->rx_w_round_robin_4);
1662
1663 val64 = 0x8040201008040201ULL;
1664 writeq(val64, &bar0->rts_qos_steering);
1665 break;
1666 }
1667
1668 /* UDP Fix */
1669 val64 = 0;
1670 for (i = 0; i < 8; i++)
1671 writeq(val64, &bar0->rts_frm_len_n[i]);
1672
1673 /* Set the default rts frame length for the rings configured */
1674 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1675 for (i = 0 ; i < config->rx_ring_num ; i++)
1676 writeq(val64, &bar0->rts_frm_len_n[i]);
1677
1678 /* Set the frame length for the configured rings
1679 * desired by the user
1680 */
1681 for (i = 0; i < config->rx_ring_num; i++) {
1682 /* If rts_frm_len[i] == 0 then it is assumed that user not
1683 * specified frame length steering.
1684 * If the user provides the frame length then program
1685 * the rts_frm_len register for those values or else
1686 * leave it as it is.
1687 */
1688 if (rts_frm_len[i] != 0) {
1689 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1690 &bar0->rts_frm_len_n[i]);
1691 }
1692 }
1693
1694 /* Disable differentiated services steering logic */
1695 for (i = 0; i < 64; i++) {
1696 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1697 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1698 dev->name);
1699 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1700 return -ENODEV;
1701 }
1702 }
1703
1704 /* Program statistics memory */
1705 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1706
1707 if (nic->device_type == XFRAME_II_DEVICE) {
1708 val64 = STAT_BC(0x320);
1709 writeq(val64, &bar0->stat_byte_cnt);
1710 }
1711
1712 /*
1713 * Initializing the sampling rate for the device to calculate the
1714 * bandwidth utilization.
1715 */
1716 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1717 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1718 writeq(val64, &bar0->mac_link_util);
1719
1720 /*
1721 * Initializing the Transmit and Receive Traffic Interrupt
1722 * Scheme.
1723 */
1724
1725 /* Initialize TTI */
1726 if (SUCCESS != init_tti(nic, nic->last_link_state))
1727 return -ENODEV;
1728
1729 /* RTI Initialization */
1730 if (nic->device_type == XFRAME_II_DEVICE) {
1731 /*
1732 * Programmed to generate Apprx 500 Intrs per
1733 * second
1734 */
1735 int count = (nic->config.bus_speed * 125)/4;
1736 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1737 } else
1738 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1739 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1740 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1741 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1742
1743 writeq(val64, &bar0->rti_data1_mem);
1744
1745 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1746 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1747 if (nic->config.intr_type == MSI_X)
1748 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1749 RTI_DATA2_MEM_RX_UFC_D(0x40));
1750 else
1751 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1752 RTI_DATA2_MEM_RX_UFC_D(0x80));
1753 writeq(val64, &bar0->rti_data2_mem);
1754
1755 for (i = 0; i < config->rx_ring_num; i++) {
1756 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1757 | RTI_CMD_MEM_OFFSET(i);
1758 writeq(val64, &bar0->rti_command_mem);
1759
1760 /*
1761 * Once the operation completes, the Strobe bit of the
1762 * command register will be reset. We poll for this
1763 * particular condition. We wait for a maximum of 500ms
1764 * for the operation to complete, if it's not complete
1765 * by then we return error.
1766 */
1767 time = 0;
1768 while (TRUE) {
1769 val64 = readq(&bar0->rti_command_mem);
1770 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1771 break;
1772
1773 if (time > 10) {
1774 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1775 dev->name);
1776 return -ENODEV;
1777 }
1778 time++;
1779 msleep(50);
1780 }
1781 }
1782
1783 /*
1784 * Initializing proper values as Pause threshold into all
1785 * the 8 Queues on Rx side.
1786 */
1787 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1788 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1789
1790 /* Disable RMAC PAD STRIPPING */
1791 add = &bar0->mac_cfg;
1792 val64 = readq(&bar0->mac_cfg);
1793 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1794 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1795 writel((u32) (val64), add);
1796 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1797 writel((u32) (val64 >> 32), (add + 4));
1798 val64 = readq(&bar0->mac_cfg);
1799
1800 /* Enable FCS stripping by adapter */
1801 add = &bar0->mac_cfg;
1802 val64 = readq(&bar0->mac_cfg);
1803 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1804 if (nic->device_type == XFRAME_II_DEVICE)
1805 writeq(val64, &bar0->mac_cfg);
1806 else {
1807 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1808 writel((u32) (val64), add);
1809 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1810 writel((u32) (val64 >> 32), (add + 4));
1811 }
1812
1813 /*
1814 * Set the time value to be inserted in the pause frame
1815 * generated by xena.
1816 */
1817 val64 = readq(&bar0->rmac_pause_cfg);
1818 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1819 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1820 writeq(val64, &bar0->rmac_pause_cfg);
1821
1822 /*
1823 * Set the Threshold Limit for Generating the pause frame
1824 * If the amount of data in any Queue exceeds ratio of
1825 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1826 * pause frame is generated
1827 */
1828 val64 = 0;
1829 for (i = 0; i < 4; i++) {
1830 val64 |=
1831 (((u64) 0xFF00 | nic->mac_control.
1832 mc_pause_threshold_q0q3)
1833 << (i * 2 * 8));
1834 }
1835 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1836
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
1839 val64 |=
1840 (((u64) 0xFF00 | nic->mac_control.
1841 mc_pause_threshold_q4q7)
1842 << (i * 2 * 8));
1843 }
1844 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1845
1846 /*
1847 * TxDMA will stop Read request if the number of read split has
1848 * exceeded the limit pointed by shared_splits
1849 */
1850 val64 = readq(&bar0->pic_control);
1851 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1852 writeq(val64, &bar0->pic_control);
1853
1854 if (nic->config.bus_speed == 266) {
1855 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1856 writeq(0x0, &bar0->read_retry_delay);
1857 writeq(0x0, &bar0->write_retry_delay);
1858 }
1859
1860 /*
1861 * Programming the Herc to split every write transaction
1862 * that does not start on an ADB to reduce disconnects.
1863 */
1864 if (nic->device_type == XFRAME_II_DEVICE) {
1865 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1866 MISC_LINK_STABILITY_PRD(3);
1867 writeq(val64, &bar0->misc_control);
1868 val64 = readq(&bar0->pic_control2);
1869 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1870 writeq(val64, &bar0->pic_control2);
1871 }
1872 if (strstr(nic->product_name, "CX4")) {
1873 val64 = TMAC_AVG_IPG(0x17);
1874 writeq(val64, &bar0->tmac_avg_ipg);
1875 }
1876
1877 return SUCCESS;
1878 }
1879 #define LINK_UP_DOWN_INTERRUPT 1
1880 #define MAC_RMAC_ERR_TIMER 2
1881
1882 static int s2io_link_fault_indication(struct s2io_nic *nic)
1883 {
1884 if (nic->device_type == XFRAME_II_DEVICE)
1885 return LINK_UP_DOWN_INTERRUPT;
1886 else
1887 return MAC_RMAC_ERR_TIMER;
1888 }
1889
1890 /**
1891 * do_s2io_write_bits - update alarm bits in alarm register
1892 * @value: alarm bits
1893 * @flag: interrupt status
1894 * @addr: address value
1895 * Description: update alarm bits in alarm register
1896 * Return Value:
1897 * NONE.
1898 */
1899 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1900 {
1901 u64 temp64;
1902
1903 temp64 = readq(addr);
1904
1905 if(flag == ENABLE_INTRS)
1906 temp64 &= ~((u64) value);
1907 else
1908 temp64 |= ((u64) value);
1909 writeq(temp64, addr);
1910 }
1911
1912 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1913 {
1914 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1915 register u64 gen_int_mask = 0;
1916 u64 interruptible;
1917
1918 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1919 if (mask & TX_DMA_INTR) {
1920
1921 gen_int_mask |= TXDMA_INT_M;
1922
1923 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1924 TXDMA_PCC_INT | TXDMA_TTI_INT |
1925 TXDMA_LSO_INT | TXDMA_TPA_INT |
1926 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1927
1928 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1929 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1930 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1931 &bar0->pfc_err_mask);
1932
1933 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1934 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1935 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1936
1937 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1938 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1939 PCC_N_SERR | PCC_6_COF_OV_ERR |
1940 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1941 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1942 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1943
1944 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1945 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1946
1947 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1948 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1949 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1950 flag, &bar0->lso_err_mask);
1951
1952 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1953 flag, &bar0->tpa_err_mask);
1954
1955 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1956
1957 }
1958
1959 if (mask & TX_MAC_INTR) {
1960 gen_int_mask |= TXMAC_INT_M;
1961 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1962 &bar0->mac_int_mask);
1963 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1964 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1965 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1966 flag, &bar0->mac_tmac_err_mask);
1967 }
1968
1969 if (mask & TX_XGXS_INTR) {
1970 gen_int_mask |= TXXGXS_INT_M;
1971 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1972 &bar0->xgxs_int_mask);
1973 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1974 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1975 flag, &bar0->xgxs_txgxs_err_mask);
1976 }
1977
1978 if (mask & RX_DMA_INTR) {
1979 gen_int_mask |= RXDMA_INT_M;
1980 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1981 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1982 flag, &bar0->rxdma_int_mask);
1983 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1984 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1985 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1986 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1987 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1988 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1989 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1990 &bar0->prc_pcix_err_mask);
1991 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1992 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1993 &bar0->rpa_err_mask);
1994 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1995 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1996 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1997 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1998 flag, &bar0->rda_err_mask);
1999 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2000 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2001 flag, &bar0->rti_err_mask);
2002 }
2003
2004 if (mask & RX_MAC_INTR) {
2005 gen_int_mask |= RXMAC_INT_M;
2006 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2007 &bar0->mac_int_mask);
2008 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2009 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2010 RMAC_DOUBLE_ECC_ERR;
2011 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2012 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2013 do_s2io_write_bits(interruptible,
2014 flag, &bar0->mac_rmac_err_mask);
2015 }
2016
2017 if (mask & RX_XGXS_INTR)
2018 {
2019 gen_int_mask |= RXXGXS_INT_M;
2020 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2021 &bar0->xgxs_int_mask);
2022 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2023 &bar0->xgxs_rxgxs_err_mask);
2024 }
2025
2026 if (mask & MC_INTR) {
2027 gen_int_mask |= MC_INT_M;
2028 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2029 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2030 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2031 &bar0->mc_err_mask);
2032 }
2033 nic->general_int_mask = gen_int_mask;
2034
2035 /* Remove this line when alarm interrupts are enabled */
2036 nic->general_int_mask = 0;
2037 }
2038 /**
2039 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2040 * @nic: device private variable,
2041 * @mask: A mask indicating which Intr block must be modified and,
2042 * @flag: A flag indicating whether to enable or disable the Intrs.
2043 * Description: This function will either disable or enable the interrupts
2044 * depending on the flag argument. The mask argument can be used to
2045 * enable/disable any Intr block.
2046 * Return Value: NONE.
2047 */
2048
2049 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2050 {
2051 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2052 register u64 temp64 = 0, intr_mask = 0;
2053
2054 intr_mask = nic->general_int_mask;
2055
2056 /* Top level interrupt classification */
2057 /* PIC Interrupts */
2058 if (mask & TX_PIC_INTR) {
2059 /* Enable PIC Intrs in the general intr mask register */
2060 intr_mask |= TXPIC_INT_M;
2061 if (flag == ENABLE_INTRS) {
2062 /*
2063 * If Hercules adapter enable GPIO otherwise
2064 * disable all PCIX, Flash, MDIO, IIC and GPIO
2065 * interrupts for now.
2066 * TODO
2067 */
2068 if (s2io_link_fault_indication(nic) ==
2069 LINK_UP_DOWN_INTERRUPT ) {
2070 do_s2io_write_bits(PIC_INT_GPIO, flag,
2071 &bar0->pic_int_mask);
2072 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2073 &bar0->gpio_int_mask);
2074 } else
2075 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2076 } else if (flag == DISABLE_INTRS) {
2077 /*
2078 * Disable PIC Intrs in the general
2079 * intr mask register
2080 */
2081 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2082 }
2083 }
2084
2085 /* Tx traffic interrupts */
2086 if (mask & TX_TRAFFIC_INTR) {
2087 intr_mask |= TXTRAFFIC_INT_M;
2088 if (flag == ENABLE_INTRS) {
2089 /*
2090 * Enable all the Tx side interrupts
2091 * writing 0 Enables all 64 TX interrupt levels
2092 */
2093 writeq(0x0, &bar0->tx_traffic_mask);
2094 } else if (flag == DISABLE_INTRS) {
2095 /*
2096 * Disable Tx Traffic Intrs in the general intr mask
2097 * register.
2098 */
2099 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2100 }
2101 }
2102
2103 /* Rx traffic interrupts */
2104 if (mask & RX_TRAFFIC_INTR) {
2105 intr_mask |= RXTRAFFIC_INT_M;
2106 if (flag == ENABLE_INTRS) {
2107 /* writing 0 Enables all 8 RX interrupt levels */
2108 writeq(0x0, &bar0->rx_traffic_mask);
2109 } else if (flag == DISABLE_INTRS) {
2110 /*
2111 * Disable Rx Traffic Intrs in the general intr mask
2112 * register.
2113 */
2114 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2115 }
2116 }
2117
2118 temp64 = readq(&bar0->general_int_mask);
2119 if (flag == ENABLE_INTRS)
2120 temp64 &= ~((u64) intr_mask);
2121 else
2122 temp64 = DISABLE_ALL_INTRS;
2123 writeq(temp64, &bar0->general_int_mask);
2124
2125 nic->general_int_mask = readq(&bar0->general_int_mask);
2126 }
2127
2128 /**
2129 * verify_pcc_quiescent- Checks for PCC quiescent state
2130 * Return: 1 If PCC is quiescence
2131 * 0 If PCC is not quiescence
2132 */
2133 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2134 {
2135 int ret = 0, herc;
2136 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2137 u64 val64 = readq(&bar0->adapter_status);
2138
2139 herc = (sp->device_type == XFRAME_II_DEVICE);
2140
2141 if (flag == FALSE) {
2142 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2143 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2144 ret = 1;
2145 } else {
2146 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2147 ret = 1;
2148 }
2149 } else {
2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2151 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2152 ADAPTER_STATUS_RMAC_PCC_IDLE))
2153 ret = 1;
2154 } else {
2155 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2156 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2157 ret = 1;
2158 }
2159 }
2160
2161 return ret;
2162 }
2163 /**
2164 * verify_xena_quiescence - Checks whether the H/W is ready
2165 * Description: Returns whether the H/W is ready to go or not. Depending
2166 * on whether adapter enable bit was written or not the comparison
2167 * differs and the calling function passes the input argument flag to
2168 * indicate this.
2169 * Return: 1 If xena is quiescence
2170 * 0 If Xena is not quiescence
2171 */
2172
2173 static int verify_xena_quiescence(struct s2io_nic *sp)
2174 {
2175 int mode;
2176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2177 u64 val64 = readq(&bar0->adapter_status);
2178 mode = s2io_verify_pci_mode(sp);
2179
2180 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2181 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2182 return 0;
2183 }
2184 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2185 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2186 return 0;
2187 }
2188 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2189 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2193 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2197 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2201 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2205 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2209 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2210 return 0;
2211 }
2212
2213 /*
2214 * In PCI 33 mode, the P_PLL is not used, and therefore,
2215 * the the P_PLL_LOCK bit in the adapter_status register will
2216 * not be asserted.
2217 */
2218 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2219 sp->device_type == XFRAME_II_DEVICE && mode !=
2220 PCI_MODE_PCI_33) {
2221 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2222 return 0;
2223 }
2224 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2225 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2226 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2227 return 0;
2228 }
2229 return 1;
2230 }
2231
2232 /**
2233 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2234 * @sp: Pointer to device specifc structure
2235 * Description :
2236 * New procedure to clear mac address reading problems on Alpha platforms
2237 *
2238 */
2239
2240 static void fix_mac_address(struct s2io_nic * sp)
2241 {
2242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2243 u64 val64;
2244 int i = 0;
2245
2246 while (fix_mac[i] != END_SIGN) {
2247 writeq(fix_mac[i++], &bar0->gpio_control);
2248 udelay(10);
2249 val64 = readq(&bar0->gpio_control);
2250 }
2251 }
2252
2253 /**
2254 * start_nic - Turns the device on
2255 * @nic : device private variable.
2256 * Description:
2257 * This function actually turns the device on. Before this function is
2258 * called,all Registers are configured from their reset states
2259 * and shared memory is allocated but the NIC is still quiescent. On
2260 * calling this function, the device interrupts are cleared and the NIC is
2261 * literally switched on by writing into the adapter control register.
2262 * Return Value:
2263 * SUCCESS on success and -1 on failure.
2264 */
2265
2266 static int start_nic(struct s2io_nic *nic)
2267 {
2268 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2269 struct net_device *dev = nic->dev;
2270 register u64 val64 = 0;
2271 u16 subid, i;
2272 struct mac_info *mac_control;
2273 struct config_param *config;
2274
2275 mac_control = &nic->mac_control;
2276 config = &nic->config;
2277
2278 /* PRC Initialization and configuration */
2279 for (i = 0; i < config->rx_ring_num; i++) {
2280 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2281 &bar0->prc_rxd0_n[i]);
2282
2283 val64 = readq(&bar0->prc_ctrl_n[i]);
2284 if (nic->rxd_mode == RXD_MODE_1)
2285 val64 |= PRC_CTRL_RC_ENABLED;
2286 else
2287 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2288 if (nic->device_type == XFRAME_II_DEVICE)
2289 val64 |= PRC_CTRL_GROUP_READS;
2290 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2291 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2292 writeq(val64, &bar0->prc_ctrl_n[i]);
2293 }
2294
2295 if (nic->rxd_mode == RXD_MODE_3B) {
2296 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2297 val64 = readq(&bar0->rx_pa_cfg);
2298 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2299 writeq(val64, &bar0->rx_pa_cfg);
2300 }
2301
2302 if (vlan_tag_strip == 0) {
2303 val64 = readq(&bar0->rx_pa_cfg);
2304 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2305 writeq(val64, &bar0->rx_pa_cfg);
2306 vlan_strip_flag = 0;
2307 }
2308
2309 /*
2310 * Enabling MC-RLDRAM. After enabling the device, we timeout
2311 * for around 100ms, which is approximately the time required
2312 * for the device to be ready for operation.
2313 */
2314 val64 = readq(&bar0->mc_rldram_mrs);
2315 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2316 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2317 val64 = readq(&bar0->mc_rldram_mrs);
2318
2319 msleep(100); /* Delay by around 100 ms. */
2320
2321 /* Enabling ECC Protection. */
2322 val64 = readq(&bar0->adapter_control);
2323 val64 &= ~ADAPTER_ECC_EN;
2324 writeq(val64, &bar0->adapter_control);
2325
2326 /*
2327 * Verify if the device is ready to be enabled, if so enable
2328 * it.
2329 */
2330 val64 = readq(&bar0->adapter_status);
2331 if (!verify_xena_quiescence(nic)) {
2332 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2333 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2334 (unsigned long long) val64);
2335 return FAILURE;
2336 }
2337
2338 /*
2339 * With some switches, link might be already up at this point.
2340 * Because of this weird behavior, when we enable laser,
2341 * we may not get link. We need to handle this. We cannot
2342 * figure out which switch is misbehaving. So we are forced to
2343 * make a global change.
2344 */
2345
2346 /* Enabling Laser. */
2347 val64 = readq(&bar0->adapter_control);
2348 val64 |= ADAPTER_EOI_TX_ON;
2349 writeq(val64, &bar0->adapter_control);
2350
2351 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2352 /*
2353 * Dont see link state interrupts initally on some switches,
2354 * so directly scheduling the link state task here.
2355 */
2356 schedule_work(&nic->set_link_task);
2357 }
2358 /* SXE-002: Initialize link and activity LED */
2359 subid = nic->pdev->subsystem_device;
2360 if (((subid & 0xFF) >= 0x07) &&
2361 (nic->device_type == XFRAME_I_DEVICE)) {
2362 val64 = readq(&bar0->gpio_control);
2363 val64 |= 0x0000800000000000ULL;
2364 writeq(val64, &bar0->gpio_control);
2365 val64 = 0x0411040400000000ULL;
2366 writeq(val64, (void __iomem *)bar0 + 0x2700);
2367 }
2368
2369 return SUCCESS;
2370 }
2371 /**
2372 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2373 */
2374 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2375 TxD *txdlp, int get_off)
2376 {
2377 struct s2io_nic *nic = fifo_data->nic;
2378 struct sk_buff *skb;
2379 struct TxD *txds;
2380 u16 j, frg_cnt;
2381
2382 txds = txdlp;
2383 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2384 pci_unmap_single(nic->pdev, (dma_addr_t)
2385 txds->Buffer_Pointer, sizeof(u64),
2386 PCI_DMA_TODEVICE);
2387 txds++;
2388 }
2389
2390 skb = (struct sk_buff *) ((unsigned long)
2391 txds->Host_Control);
2392 if (!skb) {
2393 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2394 return NULL;
2395 }
2396 pci_unmap_single(nic->pdev, (dma_addr_t)
2397 txds->Buffer_Pointer,
2398 skb->len - skb->data_len,
2399 PCI_DMA_TODEVICE);
2400 frg_cnt = skb_shinfo(skb)->nr_frags;
2401 if (frg_cnt) {
2402 txds++;
2403 for (j = 0; j < frg_cnt; j++, txds++) {
2404 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2405 if (!txds->Buffer_Pointer)
2406 break;
2407 pci_unmap_page(nic->pdev, (dma_addr_t)
2408 txds->Buffer_Pointer,
2409 frag->size, PCI_DMA_TODEVICE);
2410 }
2411 }
2412 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2413 return(skb);
2414 }
2415
2416 /**
2417 * free_tx_buffers - Free all queued Tx buffers
2418 * @nic : device private variable.
2419 * Description:
2420 * Free all queued Tx buffers.
2421 * Return Value: void
2422 */
2423
2424 static void free_tx_buffers(struct s2io_nic *nic)
2425 {
2426 struct net_device *dev = nic->dev;
2427 struct sk_buff *skb;
2428 struct TxD *txdp;
2429 int i, j;
2430 struct mac_info *mac_control;
2431 struct config_param *config;
2432 int cnt = 0;
2433
2434 mac_control = &nic->mac_control;
2435 config = &nic->config;
2436
2437 for (i = 0; i < config->tx_fifo_num; i++) {
2438 unsigned long flags;
2439 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2440 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2441 txdp = (struct TxD *) \
2442 mac_control->fifos[i].list_info[j].list_virt_addr;
2443 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444 if (skb) {
2445 nic->mac_control.stats_info->sw_stat.mem_freed
2446 += skb->truesize;
2447 dev_kfree_skb(skb);
2448 cnt++;
2449 }
2450 }
2451 DBG_PRINT(INTR_DBG,
2452 "%s:forcibly freeing %d skbs on FIFO%d\n",
2453 dev->name, cnt, i);
2454 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2455 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2456 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2457 }
2458 }
2459
2460 /**
2461 * stop_nic - To stop the nic
2462 * @nic ; device private variable.
2463 * Description:
2464 * This function does exactly the opposite of what the start_nic()
2465 * function does. This function is called to stop the device.
2466 * Return Value:
2467 * void.
2468 */
2469
2470 static void stop_nic(struct s2io_nic *nic)
2471 {
2472 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2473 register u64 val64 = 0;
2474 u16 interruptible;
2475 struct mac_info *mac_control;
2476 struct config_param *config;
2477
2478 mac_control = &nic->mac_control;
2479 config = &nic->config;
2480
2481 /* Disable all interrupts */
2482 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2483 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2484 interruptible |= TX_PIC_INTR;
2485 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2486
2487 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2488 val64 = readq(&bar0->adapter_control);
2489 val64 &= ~(ADAPTER_CNTL_EN);
2490 writeq(val64, &bar0->adapter_control);
2491 }
2492
2493 /**
2494 * fill_rx_buffers - Allocates the Rx side skbs
2495 * @ring_info: per ring structure
2496 * @from_card_up: If this is true, we will map the buffer to get
2497 * the dma address for buf0 and buf1 to give it to the card.
2498 * Else we will sync the already mapped buffer to give it to the card.
2499 * Description:
2500 * The function allocates Rx side skbs and puts the physical
2501 * address of these buffers into the RxD buffer pointers, so that the NIC
2502 * can DMA the received frame into these locations.
2503 * The NIC supports 3 receive modes, viz
2504 * 1. single buffer,
2505 * 2. three buffer and
2506 * 3. Five buffer modes.
2507 * Each mode defines how many fragments the received frame will be split
2508 * up into by the NIC. The frame is split into L3 header, L4 Header,
2509 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2510 * is split into 3 fragments. As of now only single buffer mode is
2511 * supported.
2512 * Return Value:
2513 * SUCCESS on success or an appropriate -ve value on failure.
2514 */
2515 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2516 int from_card_up)
2517 {
2518 struct sk_buff *skb;
2519 struct RxD_t *rxdp;
2520 int off, size, block_no, block_no1;
2521 u32 alloc_tab = 0;
2522 u32 alloc_cnt;
2523 u64 tmp;
2524 struct buffAdd *ba;
2525 struct RxD_t *first_rxdp = NULL;
2526 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2527 int rxd_index = 0;
2528 struct RxD1 *rxdp1;
2529 struct RxD3 *rxdp3;
2530 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2531
2532 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2533
2534 block_no1 = ring->rx_curr_get_info.block_index;
2535 while (alloc_tab < alloc_cnt) {
2536 block_no = ring->rx_curr_put_info.block_index;
2537
2538 off = ring->rx_curr_put_info.offset;
2539
2540 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2541
2542 rxd_index = off + 1;
2543 if (block_no)
2544 rxd_index += (block_no * ring->rxd_count);
2545
2546 if ((block_no == block_no1) &&
2547 (off == ring->rx_curr_get_info.offset) &&
2548 (rxdp->Host_Control)) {
2549 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2550 ring->dev->name);
2551 DBG_PRINT(INTR_DBG, " info equated\n");
2552 goto end;
2553 }
2554 if (off && (off == ring->rxd_count)) {
2555 ring->rx_curr_put_info.block_index++;
2556 if (ring->rx_curr_put_info.block_index ==
2557 ring->block_count)
2558 ring->rx_curr_put_info.block_index = 0;
2559 block_no = ring->rx_curr_put_info.block_index;
2560 off = 0;
2561 ring->rx_curr_put_info.offset = off;
2562 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2563 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2564 ring->dev->name, rxdp);
2565
2566 }
2567
2568 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2569 ((ring->rxd_mode == RXD_MODE_3B) &&
2570 (rxdp->Control_2 & s2BIT(0)))) {
2571 ring->rx_curr_put_info.offset = off;
2572 goto end;
2573 }
2574 /* calculate size of skb based on ring mode */
2575 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2576 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2577 if (ring->rxd_mode == RXD_MODE_1)
2578 size += NET_IP_ALIGN;
2579 else
2580 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2581
2582 /* allocate skb */
2583 skb = dev_alloc_skb(size);
2584 if(!skb) {
2585 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2586 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2587 if (first_rxdp) {
2588 wmb();
2589 first_rxdp->Control_1 |= RXD_OWN_XENA;
2590 }
2591 stats->mem_alloc_fail_cnt++;
2592
2593 return -ENOMEM ;
2594 }
2595 stats->mem_allocated += skb->truesize;
2596
2597 if (ring->rxd_mode == RXD_MODE_1) {
2598 /* 1 buffer mode - normal operation mode */
2599 rxdp1 = (struct RxD1*)rxdp;
2600 memset(rxdp, 0, sizeof(struct RxD1));
2601 skb_reserve(skb, NET_IP_ALIGN);
2602 rxdp1->Buffer0_ptr = pci_map_single
2603 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2604 PCI_DMA_FROMDEVICE);
2605 if (pci_dma_mapping_error(nic->pdev,
2606 rxdp1->Buffer0_ptr))
2607 goto pci_map_failed;
2608
2609 rxdp->Control_2 =
2610 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2611 rxdp->Host_Control = (unsigned long) (skb);
2612 } else if (ring->rxd_mode == RXD_MODE_3B) {
2613 /*
2614 * 2 buffer mode -
2615 * 2 buffer mode provides 128
2616 * byte aligned receive buffers.
2617 */
2618
2619 rxdp3 = (struct RxD3*)rxdp;
2620 /* save buffer pointers to avoid frequent dma mapping */
2621 Buffer0_ptr = rxdp3->Buffer0_ptr;
2622 Buffer1_ptr = rxdp3->Buffer1_ptr;
2623 memset(rxdp, 0, sizeof(struct RxD3));
2624 /* restore the buffer pointers for dma sync*/
2625 rxdp3->Buffer0_ptr = Buffer0_ptr;
2626 rxdp3->Buffer1_ptr = Buffer1_ptr;
2627
2628 ba = &ring->ba[block_no][off];
2629 skb_reserve(skb, BUF0_LEN);
2630 tmp = (u64)(unsigned long) skb->data;
2631 tmp += ALIGN_SIZE;
2632 tmp &= ~ALIGN_SIZE;
2633 skb->data = (void *) (unsigned long)tmp;
2634 skb_reset_tail_pointer(skb);
2635
2636 if (from_card_up) {
2637 rxdp3->Buffer0_ptr =
2638 pci_map_single(ring->pdev, ba->ba_0,
2639 BUF0_LEN, PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
2642 goto pci_map_failed;
2643 } else
2644 pci_dma_sync_single_for_device(ring->pdev,
2645 (dma_addr_t) rxdp3->Buffer0_ptr,
2646 BUF0_LEN, PCI_DMA_FROMDEVICE);
2647
2648 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2649 if (ring->rxd_mode == RXD_MODE_3B) {
2650 /* Two buffer mode */
2651
2652 /*
2653 * Buffer2 will have L3/L4 header plus
2654 * L4 payload
2655 */
2656 rxdp3->Buffer2_ptr = pci_map_single
2657 (ring->pdev, skb->data, ring->mtu + 4,
2658 PCI_DMA_FROMDEVICE);
2659
2660 if (pci_dma_mapping_error(nic->pdev,
2661 rxdp3->Buffer2_ptr))
2662 goto pci_map_failed;
2663
2664 if (from_card_up) {
2665 rxdp3->Buffer1_ptr =
2666 pci_map_single(ring->pdev,
2667 ba->ba_1, BUF1_LEN,
2668 PCI_DMA_FROMDEVICE);
2669
2670 if (pci_dma_mapping_error(nic->pdev,
2671 rxdp3->Buffer1_ptr)) {
2672 pci_unmap_single
2673 (ring->pdev,
2674 (dma_addr_t)(unsigned long)
2675 skb->data,
2676 ring->mtu + 4,
2677 PCI_DMA_FROMDEVICE);
2678 goto pci_map_failed;
2679 }
2680 }
2681 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2682 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2683 (ring->mtu + 4);
2684 }
2685 rxdp->Control_2 |= s2BIT(0);
2686 rxdp->Host_Control = (unsigned long) (skb);
2687 }
2688 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2689 rxdp->Control_1 |= RXD_OWN_XENA;
2690 off++;
2691 if (off == (ring->rxd_count + 1))
2692 off = 0;
2693 ring->rx_curr_put_info.offset = off;
2694
2695 rxdp->Control_2 |= SET_RXD_MARKER;
2696 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2697 if (first_rxdp) {
2698 wmb();
2699 first_rxdp->Control_1 |= RXD_OWN_XENA;
2700 }
2701 first_rxdp = rxdp;
2702 }
2703 ring->rx_bufs_left += 1;
2704 alloc_tab++;
2705 }
2706
2707 end:
2708 /* Transfer ownership of first descriptor to adapter just before
2709 * exiting. Before that, use memory barrier so that ownership
2710 * and other fields are seen by adapter correctly.
2711 */
2712 if (first_rxdp) {
2713 wmb();
2714 first_rxdp->Control_1 |= RXD_OWN_XENA;
2715 }
2716
2717 return SUCCESS;
2718 pci_map_failed:
2719 stats->pci_map_fail_cnt++;
2720 stats->mem_freed += skb->truesize;
2721 dev_kfree_skb_irq(skb);
2722 return -ENOMEM;
2723 }
2724
2725 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2726 {
2727 struct net_device *dev = sp->dev;
2728 int j;
2729 struct sk_buff *skb;
2730 struct RxD_t *rxdp;
2731 struct mac_info *mac_control;
2732 struct buffAdd *ba;
2733 struct RxD1 *rxdp1;
2734 struct RxD3 *rxdp3;
2735
2736 mac_control = &sp->mac_control;
2737 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2738 rxdp = mac_control->rings[ring_no].
2739 rx_blocks[blk].rxds[j].virt_addr;
2740 skb = (struct sk_buff *)
2741 ((unsigned long) rxdp->Host_Control);
2742 if (!skb) {
2743 continue;
2744 }
2745 if (sp->rxd_mode == RXD_MODE_1) {
2746 rxdp1 = (struct RxD1*)rxdp;
2747 pci_unmap_single(sp->pdev, (dma_addr_t)
2748 rxdp1->Buffer0_ptr,
2749 dev->mtu +
2750 HEADER_ETHERNET_II_802_3_SIZE
2751 + HEADER_802_2_SIZE +
2752 HEADER_SNAP_SIZE,
2753 PCI_DMA_FROMDEVICE);
2754 memset(rxdp, 0, sizeof(struct RxD1));
2755 } else if(sp->rxd_mode == RXD_MODE_3B) {
2756 rxdp3 = (struct RxD3*)rxdp;
2757 ba = &mac_control->rings[ring_no].
2758 ba[blk][j];
2759 pci_unmap_single(sp->pdev, (dma_addr_t)
2760 rxdp3->Buffer0_ptr,
2761 BUF0_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev, (dma_addr_t)
2764 rxdp3->Buffer1_ptr,
2765 BUF1_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev, (dma_addr_t)
2768 rxdp3->Buffer2_ptr,
2769 dev->mtu + 4,
2770 PCI_DMA_FROMDEVICE);
2771 memset(rxdp, 0, sizeof(struct RxD3));
2772 }
2773 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2774 dev_kfree_skb(skb);
2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
2776 }
2777 }
2778
2779 /**
2780 * free_rx_buffers - Frees all Rx buffers
2781 * @sp: device private variable.
2782 * Description:
2783 * This function will free all Rx buffers allocated by host.
2784 * Return Value:
2785 * NONE.
2786 */
2787
2788 static void free_rx_buffers(struct s2io_nic *sp)
2789 {
2790 struct net_device *dev = sp->dev;
2791 int i, blk = 0, buf_cnt = 0;
2792 struct mac_info *mac_control;
2793 struct config_param *config;
2794
2795 mac_control = &sp->mac_control;
2796 config = &sp->config;
2797
2798 for (i = 0; i < config->rx_ring_num; i++) {
2799 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2800 free_rxd_blk(sp,i,blk);
2801
2802 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2803 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2804 mac_control->rings[i].rx_curr_put_info.offset = 0;
2805 mac_control->rings[i].rx_curr_get_info.offset = 0;
2806 mac_control->rings[i].rx_bufs_left = 0;
2807 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2808 dev->name, buf_cnt, i);
2809 }
2810 }
2811
2812 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2813 {
2814 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2815 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2816 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2817 }
2818 return 0;
2819 }
2820
2821 /**
2822 * s2io_poll - Rx interrupt handler for NAPI support
2823 * @napi : pointer to the napi structure.
2824 * @budget : The number of packets that were budgeted to be processed
2825 * during one pass through the 'Poll" function.
2826 * Description:
2827 * Comes into picture only if NAPI support has been incorporated. It does
2828 * the same thing that rx_intr_handler does, but not in a interrupt context
2829 * also It will process only a given number of packets.
2830 * Return value:
2831 * 0 on success and 1 if there are No Rx packets to be processed.
2832 */
2833
2834 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2835 {
2836 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2837 struct net_device *dev = ring->dev;
2838 struct config_param *config;
2839 struct mac_info *mac_control;
2840 int pkts_processed = 0;
2841 u8 __iomem *addr = NULL;
2842 u8 val8 = 0;
2843 struct s2io_nic *nic = dev->priv;
2844 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2845 int budget_org = budget;
2846
2847 config = &nic->config;
2848 mac_control = &nic->mac_control;
2849
2850 if (unlikely(!is_s2io_card_up(nic)))
2851 return 0;
2852
2853 pkts_processed = rx_intr_handler(ring, budget);
2854 s2io_chk_rx_buffers(nic, ring);
2855
2856 if (pkts_processed < budget_org) {
2857 netif_rx_complete(dev, napi);
2858 /*Re Enable MSI-Rx Vector*/
2859 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2860 addr += 7 - ring->ring_no;
2861 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2862 writeb(val8, addr);
2863 val8 = readb(addr);
2864 }
2865 return pkts_processed;
2866 }
2867 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2868 {
2869 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2870 struct ring_info *ring;
2871 struct net_device *dev = nic->dev;
2872 struct config_param *config;
2873 struct mac_info *mac_control;
2874 int pkts_processed = 0;
2875 int ring_pkts_processed, i;
2876 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2877 int budget_org = budget;
2878
2879 config = &nic->config;
2880 mac_control = &nic->mac_control;
2881
2882 if (unlikely(!is_s2io_card_up(nic)))
2883 return 0;
2884
2885 for (i = 0; i < config->rx_ring_num; i++) {
2886 ring = &mac_control->rings[i];
2887 ring_pkts_processed = rx_intr_handler(ring, budget);
2888 s2io_chk_rx_buffers(nic, ring);
2889 pkts_processed += ring_pkts_processed;
2890 budget -= ring_pkts_processed;
2891 if (budget <= 0)
2892 break;
2893 }
2894 if (pkts_processed < budget_org) {
2895 netif_rx_complete(dev, napi);
2896 /* Re enable the Rx interrupts for the ring */
2897 writeq(0, &bar0->rx_traffic_mask);
2898 readl(&bar0->rx_traffic_mask);
2899 }
2900 return pkts_processed;
2901 }
2902
2903 #ifdef CONFIG_NET_POLL_CONTROLLER
2904 /**
2905 * s2io_netpoll - netpoll event handler entry point
2906 * @dev : pointer to the device structure.
2907 * Description:
2908 * This function will be called by upper layer to check for events on the
2909 * interface in situations where interrupts are disabled. It is used for
2910 * specific in-kernel networking tasks, such as remote consoles and kernel
2911 * debugging over the network (example netdump in RedHat).
2912 */
2913 static void s2io_netpoll(struct net_device *dev)
2914 {
2915 struct s2io_nic *nic = dev->priv;
2916 struct mac_info *mac_control;
2917 struct config_param *config;
2918 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2919 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2920 int i;
2921
2922 if (pci_channel_offline(nic->pdev))
2923 return;
2924
2925 disable_irq(dev->irq);
2926
2927 mac_control = &nic->mac_control;
2928 config = &nic->config;
2929
2930 writeq(val64, &bar0->rx_traffic_int);
2931 writeq(val64, &bar0->tx_traffic_int);
2932
2933 /* we need to free up the transmitted skbufs or else netpoll will
2934 * run out of skbs and will fail and eventually netpoll application such
2935 * as netdump will fail.
2936 */
2937 for (i = 0; i < config->tx_fifo_num; i++)
2938 tx_intr_handler(&mac_control->fifos[i]);
2939
2940 /* check for received packet and indicate up to network */
2941 for (i = 0; i < config->rx_ring_num; i++)
2942 rx_intr_handler(&mac_control->rings[i], 0);
2943
2944 for (i = 0; i < config->rx_ring_num; i++) {
2945 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2946 -ENOMEM) {
2947 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2948 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2949 break;
2950 }
2951 }
2952 enable_irq(dev->irq);
2953 return;
2954 }
2955 #endif
2956
2957 /**
2958 * rx_intr_handler - Rx interrupt handler
2959 * @ring_info: per ring structure.
2960 * @budget: budget for napi processing.
2961 * Description:
2962 * If the interrupt is because of a received frame or if the
2963 * receive ring contains fresh as yet un-processed frames,this function is
2964 * called. It picks out the RxD at which place the last Rx processing had
2965 * stopped and sends the skb to the OSM's Rx handler and then increments
2966 * the offset.
2967 * Return Value:
2968 * No. of napi packets processed.
2969 */
2970 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2971 {
2972 int get_block, put_block;
2973 struct rx_curr_get_info get_info, put_info;
2974 struct RxD_t *rxdp;
2975 struct sk_buff *skb;
2976 int pkt_cnt = 0, napi_pkts = 0;
2977 int i;
2978 struct RxD1* rxdp1;
2979 struct RxD3* rxdp3;
2980
2981 get_info = ring_data->rx_curr_get_info;
2982 get_block = get_info.block_index;
2983 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2984 put_block = put_info.block_index;
2985 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2986
2987 while (RXD_IS_UP2DT(rxdp)) {
2988 /*
2989 * If your are next to put index then it's
2990 * FIFO full condition
2991 */
2992 if ((get_block == put_block) &&
2993 (get_info.offset + 1) == put_info.offset) {
2994 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2995 ring_data->dev->name);
2996 break;
2997 }
2998 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2999 if (skb == NULL) {
3000 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3001 ring_data->dev->name);
3002 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3003 return 0;
3004 }
3005 if (ring_data->rxd_mode == RXD_MODE_1) {
3006 rxdp1 = (struct RxD1*)rxdp;
3007 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3008 rxdp1->Buffer0_ptr,
3009 ring_data->mtu +
3010 HEADER_ETHERNET_II_802_3_SIZE +
3011 HEADER_802_2_SIZE +
3012 HEADER_SNAP_SIZE,
3013 PCI_DMA_FROMDEVICE);
3014 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3015 rxdp3 = (struct RxD3*)rxdp;
3016 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3017 rxdp3->Buffer0_ptr,
3018 BUF0_LEN, PCI_DMA_FROMDEVICE);
3019 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3020 rxdp3->Buffer2_ptr,
3021 ring_data->mtu + 4,
3022 PCI_DMA_FROMDEVICE);
3023 }
3024 prefetch(skb->data);
3025 rx_osm_handler(ring_data, rxdp);
3026 get_info.offset++;
3027 ring_data->rx_curr_get_info.offset = get_info.offset;
3028 rxdp = ring_data->rx_blocks[get_block].
3029 rxds[get_info.offset].virt_addr;
3030 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3031 get_info.offset = 0;
3032 ring_data->rx_curr_get_info.offset = get_info.offset;
3033 get_block++;
3034 if (get_block == ring_data->block_count)
3035 get_block = 0;
3036 ring_data->rx_curr_get_info.block_index = get_block;
3037 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3038 }
3039
3040 if (ring_data->nic->config.napi) {
3041 budget--;
3042 napi_pkts++;
3043 if (!budget)
3044 break;
3045 }
3046 pkt_cnt++;
3047 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3048 break;
3049 }
3050 if (ring_data->lro) {
3051 /* Clear all LRO sessions before exiting */
3052 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3053 struct lro *lro = &ring_data->lro0_n[i];
3054 if (lro->in_use) {
3055 update_L3L4_header(ring_data->nic, lro);
3056 queue_rx_frame(lro->parent, lro->vlan_tag);
3057 clear_lro_session(lro);
3058 }
3059 }
3060 }
3061 return(napi_pkts);
3062 }
3063
3064 /**
3065 * tx_intr_handler - Transmit interrupt handler
3066 * @nic : device private variable
3067 * Description:
3068 * If an interrupt was raised to indicate DMA complete of the
3069 * Tx packet, this function is called. It identifies the last TxD
3070 * whose buffer was freed and frees all skbs whose data have already
3071 * DMA'ed into the NICs internal memory.
3072 * Return Value:
3073 * NONE
3074 */
3075
3076 static void tx_intr_handler(struct fifo_info *fifo_data)
3077 {
3078 struct s2io_nic *nic = fifo_data->nic;
3079 struct tx_curr_get_info get_info, put_info;
3080 struct sk_buff *skb = NULL;
3081 struct TxD *txdlp;
3082 int pkt_cnt = 0;
3083 unsigned long flags = 0;
3084 u8 err_mask;
3085
3086 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3087 return;
3088
3089 get_info = fifo_data->tx_curr_get_info;
3090 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3091 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3092 list_virt_addr;
3093 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3094 (get_info.offset != put_info.offset) &&
3095 (txdlp->Host_Control)) {
3096 /* Check for TxD errors */
3097 if (txdlp->Control_1 & TXD_T_CODE) {
3098 unsigned long long err;
3099 err = txdlp->Control_1 & TXD_T_CODE;
3100 if (err & 0x1) {
3101 nic->mac_control.stats_info->sw_stat.
3102 parity_err_cnt++;
3103 }
3104
3105 /* update t_code statistics */
3106 err_mask = err >> 48;
3107 switch(err_mask) {
3108 case 2:
3109 nic->mac_control.stats_info->sw_stat.
3110 tx_buf_abort_cnt++;
3111 break;
3112
3113 case 3:
3114 nic->mac_control.stats_info->sw_stat.
3115 tx_desc_abort_cnt++;
3116 break;
3117
3118 case 7:
3119 nic->mac_control.stats_info->sw_stat.
3120 tx_parity_err_cnt++;
3121 break;
3122
3123 case 10:
3124 nic->mac_control.stats_info->sw_stat.
3125 tx_link_loss_cnt++;
3126 break;
3127
3128 case 15:
3129 nic->mac_control.stats_info->sw_stat.
3130 tx_list_proc_err_cnt++;
3131 break;
3132 }
3133 }
3134
3135 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3136 if (skb == NULL) {
3137 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3138 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3139 __FUNCTION__);
3140 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3141 return;
3142 }
3143 pkt_cnt++;
3144
3145 /* Updating the statistics block */
3146 nic->dev->stats.tx_bytes += skb->len;
3147 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3148 dev_kfree_skb_irq(skb);
3149
3150 get_info.offset++;
3151 if (get_info.offset == get_info.fifo_len + 1)
3152 get_info.offset = 0;
3153 txdlp = (struct TxD *) fifo_data->list_info
3154 [get_info.offset].list_virt_addr;
3155 fifo_data->tx_curr_get_info.offset =
3156 get_info.offset;
3157 }
3158
3159 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3160
3161 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3162 }
3163
3164 /**
3165 * s2io_mdio_write - Function to write in to MDIO registers
3166 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3167 * @addr : address value
3168 * @value : data value
3169 * @dev : pointer to net_device structure
3170 * Description:
3171 * This function is used to write values to the MDIO registers
3172 * NONE
3173 */
3174 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3175 {
3176 u64 val64 = 0x0;
3177 struct s2io_nic *sp = dev->priv;
3178 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3179
3180 //address transaction
3181 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3182 | MDIO_MMD_DEV_ADDR(mmd_type)
3183 | MDIO_MMS_PRT_ADDR(0x0);
3184 writeq(val64, &bar0->mdio_control);
3185 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3186 writeq(val64, &bar0->mdio_control);
3187 udelay(100);
3188
3189 //Data transaction
3190 val64 = 0x0;
3191 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3192 | MDIO_MMD_DEV_ADDR(mmd_type)
3193 | MDIO_MMS_PRT_ADDR(0x0)
3194 | MDIO_MDIO_DATA(value)
3195 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3196 writeq(val64, &bar0->mdio_control);
3197 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3198 writeq(val64, &bar0->mdio_control);
3199 udelay(100);
3200
3201 val64 = 0x0;
3202 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3203 | MDIO_MMD_DEV_ADDR(mmd_type)
3204 | MDIO_MMS_PRT_ADDR(0x0)
3205 | MDIO_OP(MDIO_OP_READ_TRANS);
3206 writeq(val64, &bar0->mdio_control);
3207 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3208 writeq(val64, &bar0->mdio_control);
3209 udelay(100);
3210
3211 }
3212
3213 /**
3214 * s2io_mdio_read - Function to write in to MDIO registers
3215 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3216 * @addr : address value
3217 * @dev : pointer to net_device structure
3218 * Description:
3219 * This function is used to read values to the MDIO registers
3220 * NONE
3221 */
3222 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3223 {
3224 u64 val64 = 0x0;
3225 u64 rval64 = 0x0;
3226 struct s2io_nic *sp = dev->priv;
3227 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3228
3229 /* address transaction */
3230 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3231 | MDIO_MMD_DEV_ADDR(mmd_type)
3232 | MDIO_MMS_PRT_ADDR(0x0);
3233 writeq(val64, &bar0->mdio_control);
3234 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3235 writeq(val64, &bar0->mdio_control);
3236 udelay(100);
3237
3238 /* Data transaction */
3239 val64 = 0x0;
3240 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3241 | MDIO_MMD_DEV_ADDR(mmd_type)
3242 | MDIO_MMS_PRT_ADDR(0x0)
3243 | MDIO_OP(MDIO_OP_READ_TRANS);
3244 writeq(val64, &bar0->mdio_control);
3245 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3246 writeq(val64, &bar0->mdio_control);
3247 udelay(100);
3248
3249 /* Read the value from regs */
3250 rval64 = readq(&bar0->mdio_control);
3251 rval64 = rval64 & 0xFFFF0000;
3252 rval64 = rval64 >> 16;
3253 return rval64;
3254 }
3255 /**
3256 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3257 * @counter : couter value to be updated
3258 * @flag : flag to indicate the status
3259 * @type : counter type
3260 * Description:
3261 * This function is to check the status of the xpak counters value
3262 * NONE
3263 */
3264
3265 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3266 {
3267 u64 mask = 0x3;
3268 u64 val64;
3269 int i;
3270 for(i = 0; i <index; i++)
3271 mask = mask << 0x2;
3272
3273 if(flag > 0)
3274 {
3275 *counter = *counter + 1;
3276 val64 = *regs_stat & mask;
3277 val64 = val64 >> (index * 0x2);
3278 val64 = val64 + 1;
3279 if(val64 == 3)
3280 {
3281 switch(type)
3282 {
3283 case 1:
3284 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3285 "service. Excessive temperatures may "
3286 "result in premature transceiver "
3287 "failure \n");
3288 break;
3289 case 2:
3290 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3291 "service Excessive bias currents may "
3292 "indicate imminent laser diode "
3293 "failure \n");
3294 break;
3295 case 3:
3296 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3297 "service Excessive laser output "
3298 "power may saturate far-end "
3299 "receiver\n");
3300 break;
3301 default:
3302 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3303 "type \n");
3304 }
3305 val64 = 0x0;
3306 }
3307 val64 = val64 << (index * 0x2);
3308 *regs_stat = (*regs_stat & (~mask)) | (val64);
3309
3310 } else {
3311 *regs_stat = *regs_stat & (~mask);
3312 }
3313 }
3314
3315 /**
3316 * s2io_updt_xpak_counter - Function to update the xpak counters
3317 * @dev : pointer to net_device struct
3318 * Description:
3319 * This function is to upate the status of the xpak counters value
3320 * NONE
3321 */
3322 static void s2io_updt_xpak_counter(struct net_device *dev)
3323 {
3324 u16 flag = 0x0;
3325 u16 type = 0x0;
3326 u16 val16 = 0x0;
3327 u64 val64 = 0x0;
3328 u64 addr = 0x0;
3329
3330 struct s2io_nic *sp = dev->priv;
3331 struct stat_block *stat_info = sp->mac_control.stats_info;
3332
3333 /* Check the communication with the MDIO slave */
3334 addr = 0x0000;
3335 val64 = 0x0;
3336 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3337 if((val64 == 0xFFFF) || (val64 == 0x0000))
3338 {
3339 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3340 "Returned %llx\n", (unsigned long long)val64);
3341 return;
3342 }
3343
3344 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3345 if(val64 != 0x2040)
3346 {
3347 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3348 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3349 (unsigned long long)val64);
3350 return;
3351 }
3352
3353 /* Loading the DOM register to MDIO register */
3354 addr = 0xA100;
3355 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3356 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3357
3358 /* Reading the Alarm flags */
3359 addr = 0xA070;
3360 val64 = 0x0;
3361 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3362
3363 flag = CHECKBIT(val64, 0x7);
3364 type = 1;
3365 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3366 &stat_info->xpak_stat.xpak_regs_stat,
3367 0x0, flag, type);
3368
3369 if(CHECKBIT(val64, 0x6))
3370 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3371
3372 flag = CHECKBIT(val64, 0x3);
3373 type = 2;
3374 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3375 &stat_info->xpak_stat.xpak_regs_stat,
3376 0x2, flag, type);
3377
3378 if(CHECKBIT(val64, 0x2))
3379 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3380
3381 flag = CHECKBIT(val64, 0x1);
3382 type = 3;
3383 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3384 &stat_info->xpak_stat.xpak_regs_stat,
3385 0x4, flag, type);
3386
3387 if(CHECKBIT(val64, 0x0))
3388 stat_info->xpak_stat.alarm_laser_output_power_low++;
3389
3390 /* Reading the Warning flags */
3391 addr = 0xA074;
3392 val64 = 0x0;
3393 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3394
3395 if(CHECKBIT(val64, 0x7))
3396 stat_info->xpak_stat.warn_transceiver_temp_high++;
3397
3398 if(CHECKBIT(val64, 0x6))
3399 stat_info->xpak_stat.warn_transceiver_temp_low++;
3400
3401 if(CHECKBIT(val64, 0x3))
3402 stat_info->xpak_stat.warn_laser_bias_current_high++;
3403
3404 if(CHECKBIT(val64, 0x2))
3405 stat_info->xpak_stat.warn_laser_bias_current_low++;
3406
3407 if(CHECKBIT(val64, 0x1))
3408 stat_info->xpak_stat.warn_laser_output_power_high++;
3409
3410 if(CHECKBIT(val64, 0x0))
3411 stat_info->xpak_stat.warn_laser_output_power_low++;
3412 }
3413
3414 /**
3415 * wait_for_cmd_complete - waits for a command to complete.
3416 * @sp : private member of the device structure, which is a pointer to the
3417 * s2io_nic structure.
3418 * Description: Function that waits for a command to Write into RMAC
3419 * ADDR DATA registers to be completed and returns either success or
3420 * error depending on whether the command was complete or not.
3421 * Return value:
3422 * SUCCESS on success and FAILURE on failure.
3423 */
3424
3425 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3426 int bit_state)
3427 {
3428 int ret = FAILURE, cnt = 0, delay = 1;
3429 u64 val64;
3430
3431 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3432 return FAILURE;
3433
3434 do {
3435 val64 = readq(addr);
3436 if (bit_state == S2IO_BIT_RESET) {
3437 if (!(val64 & busy_bit)) {
3438 ret = SUCCESS;
3439 break;
3440 }
3441 } else {
3442 if (!(val64 & busy_bit)) {
3443 ret = SUCCESS;
3444 break;
3445 }
3446 }
3447
3448 if(in_interrupt())
3449 mdelay(delay);
3450 else
3451 msleep(delay);
3452
3453 if (++cnt >= 10)
3454 delay = 50;
3455 } while (cnt < 20);
3456 return ret;
3457 }
3458 /*
3459 * check_pci_device_id - Checks if the device id is supported
3460 * @id : device id
3461 * Description: Function to check if the pci device id is supported by driver.
3462 * Return value: Actual device id if supported else PCI_ANY_ID
3463 */
3464 static u16 check_pci_device_id(u16 id)
3465 {
3466 switch (id) {
3467 case PCI_DEVICE_ID_HERC_WIN:
3468 case PCI_DEVICE_ID_HERC_UNI:
3469 return XFRAME_II_DEVICE;
3470 case PCI_DEVICE_ID_S2IO_UNI:
3471 case PCI_DEVICE_ID_S2IO_WIN:
3472 return XFRAME_I_DEVICE;
3473 default:
3474 return PCI_ANY_ID;
3475 }
3476 }
3477
3478 /**
3479 * s2io_reset - Resets the card.
3480 * @sp : private member of the device structure.
3481 * Description: Function to Reset the card. This function then also
3482 * restores the previously saved PCI configuration space registers as
3483 * the card reset also resets the configuration space.
3484 * Return value:
3485 * void.
3486 */
3487
3488 static void s2io_reset(struct s2io_nic * sp)
3489 {
3490 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3491 u64 val64;
3492 u16 subid, pci_cmd;
3493 int i;
3494 u16 val16;
3495 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3496 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3497
3498 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3499 __FUNCTION__, sp->dev->name);
3500
3501 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3502 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3503
3504 val64 = SW_RESET_ALL;
3505 writeq(val64, &bar0->sw_reset);
3506 if (strstr(sp->product_name, "CX4")) {
3507 msleep(750);
3508 }
3509 msleep(250);
3510 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3511
3512 /* Restore the PCI state saved during initialization. */
3513 pci_restore_state(sp->pdev);
3514 pci_read_config_word(sp->pdev, 0x2, &val16);
3515 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3516 break;
3517 msleep(200);
3518 }
3519
3520 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3521 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3522 }
3523
3524 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3525
3526 s2io_init_pci(sp);
3527
3528 /* Set swapper to enable I/O register access */
3529 s2io_set_swapper(sp);
3530
3531 /* restore mac_addr entries */
3532 do_s2io_restore_unicast_mc(sp);
3533
3534 /* Restore the MSIX table entries from local variables */
3535 restore_xmsi_data(sp);
3536
3537 /* Clear certain PCI/PCI-X fields after reset */
3538 if (sp->device_type == XFRAME_II_DEVICE) {
3539 /* Clear "detected parity error" bit */
3540 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3541
3542 /* Clearing PCIX Ecc status register */
3543 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3544
3545 /* Clearing PCI_STATUS error reflected here */
3546 writeq(s2BIT(62), &bar0->txpic_int_reg);
3547 }
3548
3549 /* Reset device statistics maintained by OS */
3550 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3551
3552 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3553 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3554 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3555 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3556 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3557 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3558 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3559 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3560 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3561 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3562 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3563 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3564 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3565 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3566 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3567 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3568 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3569 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3570 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3571
3572 /* SXE-002: Configure link and activity LED to turn it off */
3573 subid = sp->pdev->subsystem_device;
3574 if (((subid & 0xFF) >= 0x07) &&
3575 (sp->device_type == XFRAME_I_DEVICE)) {
3576 val64 = readq(&bar0->gpio_control);
3577 val64 |= 0x0000800000000000ULL;
3578 writeq(val64, &bar0->gpio_control);
3579 val64 = 0x0411040400000000ULL;
3580 writeq(val64, (void __iomem *)bar0 + 0x2700);
3581 }
3582
3583 /*
3584 * Clear spurious ECC interrupts that would have occured on
3585 * XFRAME II cards after reset.
3586 */
3587 if (sp->device_type == XFRAME_II_DEVICE) {
3588 val64 = readq(&bar0->pcc_err_reg);
3589 writeq(val64, &bar0->pcc_err_reg);
3590 }
3591
3592 sp->device_enabled_once = FALSE;
3593 }
3594
3595 /**
3596 * s2io_set_swapper - to set the swapper controle on the card
3597 * @sp : private member of the device structure,
3598 * pointer to the s2io_nic structure.
3599 * Description: Function to set the swapper control on the card
3600 * correctly depending on the 'endianness' of the system.
3601 * Return value:
3602 * SUCCESS on success and FAILURE on failure.
3603 */
3604
3605 static int s2io_set_swapper(struct s2io_nic * sp)
3606 {
3607 struct net_device *dev = sp->dev;
3608 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3609 u64 val64, valt, valr;
3610
3611 /*
3612 * Set proper endian settings and verify the same by reading
3613 * the PIF Feed-back register.
3614 */
3615
3616 val64 = readq(&bar0->pif_rd_swapper_fb);
3617 if (val64 != 0x0123456789ABCDEFULL) {
3618 int i = 0;
3619 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3620 0x8100008181000081ULL, /* FE=1, SE=0 */
3621 0x4200004242000042ULL, /* FE=0, SE=1 */
3622 0}; /* FE=0, SE=0 */
3623
3624 while(i<4) {
3625 writeq(value[i], &bar0->swapper_ctrl);
3626 val64 = readq(&bar0->pif_rd_swapper_fb);
3627 if (val64 == 0x0123456789ABCDEFULL)
3628 break;
3629 i++;
3630 }
3631 if (i == 4) {
3632 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3633 dev->name);
3634 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3635 (unsigned long long) val64);
3636 return FAILURE;
3637 }
3638 valr = value[i];
3639 } else {
3640 valr = readq(&bar0->swapper_ctrl);
3641 }
3642
3643 valt = 0x0123456789ABCDEFULL;
3644 writeq(valt, &bar0->xmsi_address);
3645 val64 = readq(&bar0->xmsi_address);
3646
3647 if(val64 != valt) {
3648 int i = 0;
3649 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3650 0x0081810000818100ULL, /* FE=1, SE=0 */
3651 0x0042420000424200ULL, /* FE=0, SE=1 */
3652 0}; /* FE=0, SE=0 */
3653
3654 while(i<4) {
3655 writeq((value[i] | valr), &bar0->swapper_ctrl);
3656 writeq(valt, &bar0->xmsi_address);
3657 val64 = readq(&bar0->xmsi_address);
3658 if(val64 == valt)
3659 break;
3660 i++;
3661 }
3662 if(i == 4) {
3663 unsigned long long x = val64;
3664 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3665 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3666 return FAILURE;
3667 }
3668 }
3669 val64 = readq(&bar0->swapper_ctrl);
3670 val64 &= 0xFFFF000000000000ULL;
3671
3672 #ifdef __BIG_ENDIAN
3673 /*
3674 * The device by default set to a big endian format, so a
3675 * big endian driver need not set anything.
3676 */
3677 val64 |= (SWAPPER_CTRL_TXP_FE |
3678 SWAPPER_CTRL_TXP_SE |
3679 SWAPPER_CTRL_TXD_R_FE |
3680 SWAPPER_CTRL_TXD_W_FE |
3681 SWAPPER_CTRL_TXF_R_FE |
3682 SWAPPER_CTRL_RXD_R_FE |
3683 SWAPPER_CTRL_RXD_W_FE |
3684 SWAPPER_CTRL_RXF_W_FE |
3685 SWAPPER_CTRL_XMSI_FE |
3686 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3687 if (sp->config.intr_type == INTA)
3688 val64 |= SWAPPER_CTRL_XMSI_SE;
3689 writeq(val64, &bar0->swapper_ctrl);
3690 #else
3691 /*
3692 * Initially we enable all bits to make it accessible by the
3693 * driver, then we selectively enable only those bits that
3694 * we want to set.
3695 */
3696 val64 |= (SWAPPER_CTRL_TXP_FE |
3697 SWAPPER_CTRL_TXP_SE |
3698 SWAPPER_CTRL_TXD_R_FE |
3699 SWAPPER_CTRL_TXD_R_SE |
3700 SWAPPER_CTRL_TXD_W_FE |
3701 SWAPPER_CTRL_TXD_W_SE |
3702 SWAPPER_CTRL_TXF_R_FE |
3703 SWAPPER_CTRL_RXD_R_FE |
3704 SWAPPER_CTRL_RXD_R_SE |
3705 SWAPPER_CTRL_RXD_W_FE |
3706 SWAPPER_CTRL_RXD_W_SE |
3707 SWAPPER_CTRL_RXF_W_FE |
3708 SWAPPER_CTRL_XMSI_FE |
3709 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3710 if (sp->config.intr_type == INTA)
3711 val64 |= SWAPPER_CTRL_XMSI_SE;
3712 writeq(val64, &bar0->swapper_ctrl);
3713 #endif
3714 val64 = readq(&bar0->swapper_ctrl);
3715
3716 /*
3717 * Verifying if endian settings are accurate by reading a
3718 * feedback register.
3719 */
3720 val64 = readq(&bar0->pif_rd_swapper_fb);
3721 if (val64 != 0x0123456789ABCDEFULL) {
3722 /* Endian settings are incorrect, calls for another dekko. */
3723 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3724 dev->name);
3725 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3726 (unsigned long long) val64);
3727 return FAILURE;
3728 }
3729
3730 return SUCCESS;
3731 }
3732
3733 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3734 {
3735 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3736 u64 val64;
3737 int ret = 0, cnt = 0;
3738
3739 do {
3740 val64 = readq(&bar0->xmsi_access);
3741 if (!(val64 & s2BIT(15)))
3742 break;
3743 mdelay(1);
3744 cnt++;
3745 } while(cnt < 5);
3746 if (cnt == 5) {
3747 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3748 ret = 1;
3749 }
3750
3751 return ret;
3752 }
3753
3754 static void restore_xmsi_data(struct s2io_nic *nic)
3755 {
3756 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3757 u64 val64;
3758 int i, msix_index;
3759
3760
3761 if (nic->device_type == XFRAME_I_DEVICE)
3762 return;
3763
3764 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3765 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3766 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3767 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3768 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3769 writeq(val64, &bar0->xmsi_access);
3770 if (wait_for_msix_trans(nic, msix_index)) {
3771 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3772 continue;
3773 }
3774 }
3775 }
3776
3777 static void store_xmsi_data(struct s2io_nic *nic)
3778 {
3779 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3780 u64 val64, addr, data;
3781 int i, msix_index;
3782
3783 if (nic->device_type == XFRAME_I_DEVICE)
3784 return;
3785
3786 /* Store and display */
3787 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3788 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3789 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3790 writeq(val64, &bar0->xmsi_access);
3791 if (wait_for_msix_trans(nic, msix_index)) {
3792 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3793 continue;
3794 }
3795 addr = readq(&bar0->xmsi_address);
3796 data = readq(&bar0->xmsi_data);
3797 if (addr && data) {
3798 nic->msix_info[i].addr = addr;
3799 nic->msix_info[i].data = data;
3800 }
3801 }
3802 }
3803
3804 static int s2io_enable_msi_x(struct s2io_nic *nic)
3805 {
3806 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3807 u64 rx_mat;
3808 u16 msi_control; /* Temp variable */
3809 int ret, i, j, msix_indx = 1;
3810
3811 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3812 GFP_KERNEL);
3813 if (!nic->entries) {
3814 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3815 __FUNCTION__);
3816 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3817 return -ENOMEM;
3818 }
3819 nic->mac_control.stats_info->sw_stat.mem_allocated
3820 += (nic->num_entries * sizeof(struct msix_entry));
3821
3822 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3823
3824 nic->s2io_entries =
3825 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3826 GFP_KERNEL);
3827 if (!nic->s2io_entries) {
3828 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3829 __FUNCTION__);
3830 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3831 kfree(nic->entries);
3832 nic->mac_control.stats_info->sw_stat.mem_freed
3833 += (nic->num_entries * sizeof(struct msix_entry));
3834 return -ENOMEM;
3835 }
3836 nic->mac_control.stats_info->sw_stat.mem_allocated
3837 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3838 memset(nic->s2io_entries, 0,
3839 nic->num_entries * sizeof(struct s2io_msix_entry));
3840
3841 nic->entries[0].entry = 0;
3842 nic->s2io_entries[0].entry = 0;
3843 nic->s2io_entries[0].in_use = MSIX_FLG;
3844 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3845 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3846
3847 for (i = 1; i < nic->num_entries; i++) {
3848 nic->entries[i].entry = ((i - 1) * 8) + 1;
3849 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3850 nic->s2io_entries[i].arg = NULL;
3851 nic->s2io_entries[i].in_use = 0;
3852 }
3853
3854 rx_mat = readq(&bar0->rx_mat);
3855 for (j = 0; j < nic->config.rx_ring_num; j++) {
3856 rx_mat |= RX_MAT_SET(j, msix_indx);
3857 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3858 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3859 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3860 msix_indx += 8;
3861 }
3862 writeq(rx_mat, &bar0->rx_mat);
3863 readq(&bar0->rx_mat);
3864
3865 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3866 /* We fail init if error or we get less vectors than min required */
3867 if (ret) {
3868 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3869 kfree(nic->entries);
3870 nic->mac_control.stats_info->sw_stat.mem_freed
3871 += (nic->num_entries * sizeof(struct msix_entry));
3872 kfree(nic->s2io_entries);
3873 nic->mac_control.stats_info->sw_stat.mem_freed
3874 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3875 nic->entries = NULL;
3876 nic->s2io_entries = NULL;
3877 return -ENOMEM;
3878 }
3879
3880 /*
3881 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3882 * in the herc NIC. (Temp change, needs to be removed later)
3883 */
3884 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3885 msi_control |= 0x1; /* Enable MSI */
3886 pci_write_config_word(nic->pdev, 0x42, msi_control);
3887
3888 return 0;
3889 }
3890
3891 /* Handle software interrupt used during MSI(X) test */
3892 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3893 {
3894 struct s2io_nic *sp = dev_id;
3895
3896 sp->msi_detected = 1;
3897 wake_up(&sp->msi_wait);
3898
3899 return IRQ_HANDLED;
3900 }
3901
3902 /* Test interrupt path by forcing a a software IRQ */
3903 static int s2io_test_msi(struct s2io_nic *sp)
3904 {
3905 struct pci_dev *pdev = sp->pdev;
3906 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3907 int err;
3908 u64 val64, saved64;
3909
3910 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3911 sp->name, sp);
3912 if (err) {
3913 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3914 sp->dev->name, pci_name(pdev), pdev->irq);
3915 return err;
3916 }
3917
3918 init_waitqueue_head (&sp->msi_wait);
3919 sp->msi_detected = 0;
3920
3921 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3922 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3923 val64 |= SCHED_INT_CTRL_TIMER_EN;
3924 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3925 writeq(val64, &bar0->scheduled_int_ctrl);
3926
3927 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3928
3929 if (!sp->msi_detected) {
3930 /* MSI(X) test failed, go back to INTx mode */
3931 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3932 "using MSI(X) during test\n", sp->dev->name,
3933 pci_name(pdev));
3934
3935 err = -EOPNOTSUPP;
3936 }
3937
3938 free_irq(sp->entries[1].vector, sp);
3939
3940 writeq(saved64, &bar0->scheduled_int_ctrl);
3941
3942 return err;
3943 }
3944
3945 static void remove_msix_isr(struct s2io_nic *sp)
3946 {
3947 int i;
3948 u16 msi_control;
3949
3950 for (i = 0; i < sp->num_entries; i++) {
3951 if (sp->s2io_entries[i].in_use ==
3952 MSIX_REGISTERED_SUCCESS) {
3953 int vector = sp->entries[i].vector;
3954 void *arg = sp->s2io_entries[i].arg;
3955 free_irq(vector, arg);
3956 }
3957 }
3958
3959 kfree(sp->entries);
3960 kfree(sp->s2io_entries);
3961 sp->entries = NULL;
3962 sp->s2io_entries = NULL;
3963
3964 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3965 msi_control &= 0xFFFE; /* Disable MSI */
3966 pci_write_config_word(sp->pdev, 0x42, msi_control);
3967
3968 pci_disable_msix(sp->pdev);
3969 }
3970
3971 static void remove_inta_isr(struct s2io_nic *sp)
3972 {
3973 struct net_device *dev = sp->dev;
3974
3975 free_irq(sp->pdev->irq, dev);
3976 }
3977
3978 /* ********************************************************* *
3979 * Functions defined below concern the OS part of the driver *
3980 * ********************************************************* */
3981
3982 /**
3983 * s2io_open - open entry point of the driver
3984 * @dev : pointer to the device structure.
3985 * Description:
3986 * This function is the open entry point of the driver. It mainly calls a
3987 * function to allocate Rx buffers and inserts them into the buffer
3988 * descriptors and then enables the Rx part of the NIC.
3989 * Return value:
3990 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3991 * file on failure.
3992 */
3993
3994 static int s2io_open(struct net_device *dev)
3995 {
3996 struct s2io_nic *sp = dev->priv;
3997 int err = 0;
3998
3999 /*
4000 * Make sure you have link off by default every time
4001 * Nic is initialized
4002 */
4003 netif_carrier_off(dev);
4004 sp->last_link_state = 0;
4005
4006 /* Initialize H/W and enable interrupts */
4007 err = s2io_card_up(sp);
4008 if (err) {
4009 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4010 dev->name);
4011 goto hw_init_failed;
4012 }
4013
4014 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4015 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4016 s2io_card_down(sp);
4017 err = -ENODEV;
4018 goto hw_init_failed;
4019 }
4020 s2io_start_all_tx_queue(sp);
4021 return 0;
4022
4023 hw_init_failed:
4024 if (sp->config.intr_type == MSI_X) {
4025 if (sp->entries) {
4026 kfree(sp->entries);
4027 sp->mac_control.stats_info->sw_stat.mem_freed
4028 += (sp->num_entries * sizeof(struct msix_entry));
4029 }
4030 if (sp->s2io_entries) {
4031 kfree(sp->s2io_entries);
4032 sp->mac_control.stats_info->sw_stat.mem_freed
4033 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4034 }
4035 }
4036 return err;
4037 }
4038
4039 /**
4040 * s2io_close -close entry point of the driver
4041 * @dev : device pointer.
4042 * Description:
4043 * This is the stop entry point of the driver. It needs to undo exactly
4044 * whatever was done by the open entry point,thus it's usually referred to
4045 * as the close function.Among other things this function mainly stops the
4046 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4047 * Return value:
4048 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4049 * file on failure.
4050 */
4051
4052 static int s2io_close(struct net_device *dev)
4053 {
4054 struct s2io_nic *sp = dev->priv;
4055 struct config_param *config = &sp->config;
4056 u64 tmp64;
4057 int offset;
4058
4059 /* Return if the device is already closed *
4060 * Can happen when s2io_card_up failed in change_mtu *
4061 */
4062 if (!is_s2io_card_up(sp))
4063 return 0;
4064
4065 s2io_stop_all_tx_queue(sp);
4066 /* delete all populated mac entries */
4067 for (offset = 1; offset < config->max_mc_addr; offset++) {
4068 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4069 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4070 do_s2io_delete_unicast_mc(sp, tmp64);
4071 }
4072
4073 s2io_card_down(sp);
4074
4075 return 0;
4076 }
4077
4078 /**
4079 * s2io_xmit - Tx entry point of te driver
4080 * @skb : the socket buffer containing the Tx data.
4081 * @dev : device pointer.
4082 * Description :
4083 * This function is the Tx entry point of the driver. S2IO NIC supports
4084 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4085 * NOTE: when device cant queue the pkt,just the trans_start variable will
4086 * not be upadted.
4087 * Return value:
4088 * 0 on success & 1 on failure.
4089 */
4090
4091 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4092 {
4093 struct s2io_nic *sp = dev->priv;
4094 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4095 register u64 val64;
4096 struct TxD *txdp;
4097 struct TxFIFO_element __iomem *tx_fifo;
4098 unsigned long flags = 0;
4099 u16 vlan_tag = 0;
4100 struct fifo_info *fifo = NULL;
4101 struct mac_info *mac_control;
4102 struct config_param *config;
4103 int do_spin_lock = 1;
4104 int offload_type;
4105 int enable_per_list_interrupt = 0;
4106 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4107
4108 mac_control = &sp->mac_control;
4109 config = &sp->config;
4110
4111 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4112
4113 if (unlikely(skb->len <= 0)) {
4114 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4115 dev_kfree_skb_any(skb);
4116 return 0;
4117 }
4118
4119 if (!is_s2io_card_up(sp)) {
4120 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4121 dev->name);
4122 dev_kfree_skb(skb);
4123 return 0;
4124 }
4125
4126 queue = 0;
4127 if (sp->vlgrp && vlan_tx_tag_present(skb))
4128 vlan_tag = vlan_tx_tag_get(skb);
4129 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4130 if (skb->protocol == htons(ETH_P_IP)) {
4131 struct iphdr *ip;
4132 struct tcphdr *th;
4133 ip = ip_hdr(skb);
4134
4135 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4136 th = (struct tcphdr *)(((unsigned char *)ip) +
4137 ip->ihl*4);
4138
4139 if (ip->protocol == IPPROTO_TCP) {
4140 queue_len = sp->total_tcp_fifos;
4141 queue = (ntohs(th->source) +
4142 ntohs(th->dest)) &
4143 sp->fifo_selector[queue_len - 1];
4144 if (queue >= queue_len)
4145 queue = queue_len - 1;
4146 } else if (ip->protocol == IPPROTO_UDP) {
4147 queue_len = sp->total_udp_fifos;
4148 queue = (ntohs(th->source) +
4149 ntohs(th->dest)) &
4150 sp->fifo_selector[queue_len - 1];
4151 if (queue >= queue_len)
4152 queue = queue_len - 1;
4153 queue += sp->udp_fifo_idx;
4154 if (skb->len > 1024)
4155 enable_per_list_interrupt = 1;
4156 do_spin_lock = 0;
4157 }
4158 }
4159 }
4160 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4161 /* get fifo number based on skb->priority value */
4162 queue = config->fifo_mapping
4163 [skb->priority & (MAX_TX_FIFOS - 1)];
4164 fifo = &mac_control->fifos[queue];
4165
4166 if (do_spin_lock)
4167 spin_lock_irqsave(&fifo->tx_lock, flags);
4168 else {
4169 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4170 return NETDEV_TX_LOCKED;
4171 }
4172
4173 if (sp->config.multiq) {
4174 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4175 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4176 return NETDEV_TX_BUSY;
4177 }
4178 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4179 if (netif_queue_stopped(dev)) {
4180 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4181 return NETDEV_TX_BUSY;
4182 }
4183 }
4184
4185 put_off = (u16) fifo->tx_curr_put_info.offset;
4186 get_off = (u16) fifo->tx_curr_get_info.offset;
4187 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4188
4189 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4190 /* Avoid "put" pointer going beyond "get" pointer */
4191 if (txdp->Host_Control ||
4192 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4193 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4194 s2io_stop_tx_queue(sp, fifo->fifo_no);
4195 dev_kfree_skb(skb);
4196 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4197 return 0;
4198 }
4199
4200 offload_type = s2io_offload_type(skb);
4201 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4202 txdp->Control_1 |= TXD_TCP_LSO_EN;
4203 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4204 }
4205 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4206 txdp->Control_2 |=
4207 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4208 TXD_TX_CKO_UDP_EN);
4209 }
4210 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4211 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4212 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4213 if (enable_per_list_interrupt)
4214 if (put_off & (queue_len >> 5))
4215 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4216 if (vlan_tag) {
4217 txdp->Control_2 |= TXD_VLAN_ENABLE;
4218 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4219 }
4220
4221 frg_len = skb->len - skb->data_len;
4222 if (offload_type == SKB_GSO_UDP) {
4223 int ufo_size;
4224
4225 ufo_size = s2io_udp_mss(skb);
4226 ufo_size &= ~7;
4227 txdp->Control_1 |= TXD_UFO_EN;
4228 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4229 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4230 #ifdef __BIG_ENDIAN
4231 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4232 fifo->ufo_in_band_v[put_off] =
4233 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4234 #else
4235 fifo->ufo_in_band_v[put_off] =
4236 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4237 #endif
4238 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4239 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4240 fifo->ufo_in_band_v,
4241 sizeof(u64), PCI_DMA_TODEVICE);
4242 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4243 goto pci_map_failed;
4244 txdp++;
4245 }
4246
4247 txdp->Buffer_Pointer = pci_map_single
4248 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4249 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4250 goto pci_map_failed;
4251
4252 txdp->Host_Control = (unsigned long) skb;
4253 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4254 if (offload_type == SKB_GSO_UDP)
4255 txdp->Control_1 |= TXD_UFO_EN;
4256
4257 frg_cnt = skb_shinfo(skb)->nr_frags;
4258 /* For fragmented SKB. */
4259 for (i = 0; i < frg_cnt; i++) {
4260 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4261 /* A '0' length fragment will be ignored */
4262 if (!frag->size)
4263 continue;
4264 txdp++;
4265 txdp->Buffer_Pointer = (u64) pci_map_page
4266 (sp->pdev, frag->page, frag->page_offset,
4267 frag->size, PCI_DMA_TODEVICE);
4268 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4269 if (offload_type == SKB_GSO_UDP)
4270 txdp->Control_1 |= TXD_UFO_EN;
4271 }
4272 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4273
4274 if (offload_type == SKB_GSO_UDP)
4275 frg_cnt++; /* as Txd0 was used for inband header */
4276
4277 tx_fifo = mac_control->tx_FIFO_start[queue];
4278 val64 = fifo->list_info[put_off].list_phy_addr;
4279 writeq(val64, &tx_fifo->TxDL_Pointer);
4280
4281 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4282 TX_FIFO_LAST_LIST);
4283 if (offload_type)
4284 val64 |= TX_FIFO_SPECIAL_FUNC;
4285
4286 writeq(val64, &tx_fifo->List_Control);
4287
4288 mmiowb();
4289
4290 put_off++;
4291 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4292 put_off = 0;
4293 fifo->tx_curr_put_info.offset = put_off;
4294
4295 /* Avoid "put" pointer going beyond "get" pointer */
4296 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4297 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4298 DBG_PRINT(TX_DBG,
4299 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4300 put_off, get_off);
4301 s2io_stop_tx_queue(sp, fifo->fifo_no);
4302 }
4303 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4304 dev->trans_start = jiffies;
4305 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4306
4307 if (sp->config.intr_type == MSI_X)
4308 tx_intr_handler(fifo);
4309
4310 return 0;
4311 pci_map_failed:
4312 stats->pci_map_fail_cnt++;
4313 s2io_stop_tx_queue(sp, fifo->fifo_no);
4314 stats->mem_freed += skb->truesize;
4315 dev_kfree_skb(skb);
4316 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4317 return 0;
4318 }
4319
4320 static void
4321 s2io_alarm_handle(unsigned long data)
4322 {
4323 struct s2io_nic *sp = (struct s2io_nic *)data;
4324 struct net_device *dev = sp->dev;
4325
4326 s2io_handle_errors(dev);
4327 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4328 }
4329
4330 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4331 {
4332 struct ring_info *ring = (struct ring_info *)dev_id;
4333 struct s2io_nic *sp = ring->nic;
4334 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4335 struct net_device *dev = sp->dev;
4336
4337 if (unlikely(!is_s2io_card_up(sp)))
4338 return IRQ_HANDLED;
4339
4340 if (sp->config.napi) {
4341 u8 __iomem *addr = NULL;
4342 u8 val8 = 0;
4343
4344 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4345 addr += (7 - ring->ring_no);
4346 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4347 writeb(val8, addr);
4348 val8 = readb(addr);
4349 netif_rx_schedule(dev, &ring->napi);
4350 } else {
4351 rx_intr_handler(ring, 0);
4352 s2io_chk_rx_buffers(sp, ring);
4353 }
4354
4355 return IRQ_HANDLED;
4356 }
4357
4358 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4359 {
4360 int i;
4361 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4362 struct s2io_nic *sp = fifos->nic;
4363 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4364 struct config_param *config = &sp->config;
4365 u64 reason;
4366
4367 if (unlikely(!is_s2io_card_up(sp)))
4368 return IRQ_NONE;
4369
4370 reason = readq(&bar0->general_int_status);
4371 if (unlikely(reason == S2IO_MINUS_ONE))
4372 /* Nothing much can be done. Get out */
4373 return IRQ_HANDLED;
4374
4375 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4376 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4377
4378 if (reason & GEN_INTR_TXPIC)
4379 s2io_txpic_intr_handle(sp);
4380
4381 if (reason & GEN_INTR_TXTRAFFIC)
4382 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4383
4384 for (i = 0; i < config->tx_fifo_num; i++)
4385 tx_intr_handler(&fifos[i]);
4386
4387 writeq(sp->general_int_mask, &bar0->general_int_mask);
4388 readl(&bar0->general_int_status);
4389 return IRQ_HANDLED;
4390 }
4391 /* The interrupt was not raised by us */
4392 return IRQ_NONE;
4393 }
4394
4395 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4396 {
4397 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4398 u64 val64;
4399
4400 val64 = readq(&bar0->pic_int_status);
4401 if (val64 & PIC_INT_GPIO) {
4402 val64 = readq(&bar0->gpio_int_reg);
4403 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4404 (val64 & GPIO_INT_REG_LINK_UP)) {
4405 /*
4406 * This is unstable state so clear both up/down
4407 * interrupt and adapter to re-evaluate the link state.
4408 */
4409 val64 |= GPIO_INT_REG_LINK_DOWN;
4410 val64 |= GPIO_INT_REG_LINK_UP;
4411 writeq(val64, &bar0->gpio_int_reg);
4412 val64 = readq(&bar0->gpio_int_mask);
4413 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4414 GPIO_INT_MASK_LINK_DOWN);
4415 writeq(val64, &bar0->gpio_int_mask);
4416 }
4417 else if (val64 & GPIO_INT_REG_LINK_UP) {
4418 val64 = readq(&bar0->adapter_status);
4419 /* Enable Adapter */
4420 val64 = readq(&bar0->adapter_control);
4421 val64 |= ADAPTER_CNTL_EN;
4422 writeq(val64, &bar0->adapter_control);
4423 val64 |= ADAPTER_LED_ON;
4424 writeq(val64, &bar0->adapter_control);
4425 if (!sp->device_enabled_once)
4426 sp->device_enabled_once = 1;
4427
4428 s2io_link(sp, LINK_UP);
4429 /*
4430 * unmask link down interrupt and mask link-up
4431 * intr
4432 */
4433 val64 = readq(&bar0->gpio_int_mask);
4434 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4435 val64 |= GPIO_INT_MASK_LINK_UP;
4436 writeq(val64, &bar0->gpio_int_mask);
4437
4438 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4439 val64 = readq(&bar0->adapter_status);
4440 s2io_link(sp, LINK_DOWN);
4441 /* Link is down so unmaks link up interrupt */
4442 val64 = readq(&bar0->gpio_int_mask);
4443 val64 &= ~GPIO_INT_MASK_LINK_UP;
4444 val64 |= GPIO_INT_MASK_LINK_DOWN;
4445 writeq(val64, &bar0->gpio_int_mask);
4446
4447 /* turn off LED */
4448 val64 = readq(&bar0->adapter_control);
4449 val64 = val64 &(~ADAPTER_LED_ON);
4450 writeq(val64, &bar0->adapter_control);
4451 }
4452 }
4453 val64 = readq(&bar0->gpio_int_mask);
4454 }
4455
4456 /**
4457 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4458 * @value: alarm bits
4459 * @addr: address value
4460 * @cnt: counter variable
4461 * Description: Check for alarm and increment the counter
4462 * Return Value:
4463 * 1 - if alarm bit set
4464 * 0 - if alarm bit is not set
4465 */
4466 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4467 unsigned long long *cnt)
4468 {
4469 u64 val64;
4470 val64 = readq(addr);
4471 if ( val64 & value ) {
4472 writeq(val64, addr);
4473 (*cnt)++;
4474 return 1;
4475 }
4476 return 0;
4477
4478 }
4479
4480 /**
4481 * s2io_handle_errors - Xframe error indication handler
4482 * @nic: device private variable
4483 * Description: Handle alarms such as loss of link, single or
4484 * double ECC errors, critical and serious errors.
4485 * Return Value:
4486 * NONE
4487 */
4488 static void s2io_handle_errors(void * dev_id)
4489 {
4490 struct net_device *dev = (struct net_device *) dev_id;
4491 struct s2io_nic *sp = dev->priv;
4492 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4493 u64 temp64 = 0,val64=0;
4494 int i = 0;
4495
4496 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4497 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4498
4499 if (!is_s2io_card_up(sp))
4500 return;
4501
4502 if (pci_channel_offline(sp->pdev))
4503 return;
4504
4505 memset(&sw_stat->ring_full_cnt, 0,
4506 sizeof(sw_stat->ring_full_cnt));
4507
4508 /* Handling the XPAK counters update */
4509 if(stats->xpak_timer_count < 72000) {
4510 /* waiting for an hour */
4511 stats->xpak_timer_count++;
4512 } else {
4513 s2io_updt_xpak_counter(dev);
4514 /* reset the count to zero */
4515 stats->xpak_timer_count = 0;
4516 }
4517
4518 /* Handling link status change error Intr */
4519 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4520 val64 = readq(&bar0->mac_rmac_err_reg);
4521 writeq(val64, &bar0->mac_rmac_err_reg);
4522 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4523 schedule_work(&sp->set_link_task);
4524 }
4525
4526 /* In case of a serious error, the device will be Reset. */
4527 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4528 &sw_stat->serious_err_cnt))
4529 goto reset;
4530
4531 /* Check for data parity error */
4532 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4533 &sw_stat->parity_err_cnt))
4534 goto reset;
4535
4536 /* Check for ring full counter */
4537 if (sp->device_type == XFRAME_II_DEVICE) {
4538 val64 = readq(&bar0->ring_bump_counter1);
4539 for (i=0; i<4; i++) {
4540 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4541 temp64 >>= 64 - ((i+1)*16);
4542 sw_stat->ring_full_cnt[i] += temp64;
4543 }
4544
4545 val64 = readq(&bar0->ring_bump_counter2);
4546 for (i=0; i<4; i++) {
4547 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4548 temp64 >>= 64 - ((i+1)*16);
4549 sw_stat->ring_full_cnt[i+4] += temp64;
4550 }
4551 }
4552
4553 val64 = readq(&bar0->txdma_int_status);
4554 /*check for pfc_err*/
4555 if (val64 & TXDMA_PFC_INT) {
4556 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4557 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4558 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4559 &sw_stat->pfc_err_cnt))
4560 goto reset;
4561 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4562 &sw_stat->pfc_err_cnt);
4563 }
4564
4565 /*check for tda_err*/
4566 if (val64 & TXDMA_TDA_INT) {
4567 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4568 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4569 &sw_stat->tda_err_cnt))
4570 goto reset;
4571 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4572 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4573 }
4574 /*check for pcc_err*/
4575 if (val64 & TXDMA_PCC_INT) {
4576 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4577 | PCC_N_SERR | PCC_6_COF_OV_ERR
4578 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4579 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4580 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4581 &sw_stat->pcc_err_cnt))
4582 goto reset;
4583 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4584 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4585 }
4586
4587 /*check for tti_err*/
4588 if (val64 & TXDMA_TTI_INT) {
4589 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4590 &sw_stat->tti_err_cnt))
4591 goto reset;
4592 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4593 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4594 }
4595
4596 /*check for lso_err*/
4597 if (val64 & TXDMA_LSO_INT) {
4598 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4599 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4600 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4601 goto reset;
4602 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4603 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4604 }
4605
4606 /*check for tpa_err*/
4607 if (val64 & TXDMA_TPA_INT) {
4608 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt))
4610 goto reset;
4611 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4612 &sw_stat->tpa_err_cnt);
4613 }
4614
4615 /*check for sm_err*/
4616 if (val64 & TXDMA_SM_INT) {
4617 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4618 &sw_stat->sm_err_cnt))
4619 goto reset;
4620 }
4621
4622 val64 = readq(&bar0->mac_int_status);
4623 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4624 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4625 &bar0->mac_tmac_err_reg,
4626 &sw_stat->mac_tmac_err_cnt))
4627 goto reset;
4628 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4629 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4630 &bar0->mac_tmac_err_reg,
4631 &sw_stat->mac_tmac_err_cnt);
4632 }
4633
4634 val64 = readq(&bar0->xgxs_int_status);
4635 if (val64 & XGXS_INT_STATUS_TXGXS) {
4636 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt))
4639 goto reset;
4640 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4641 &bar0->xgxs_txgxs_err_reg,
4642 &sw_stat->xgxs_txgxs_err_cnt);
4643 }
4644
4645 val64 = readq(&bar0->rxdma_int_status);
4646 if (val64 & RXDMA_INT_RC_INT_M) {
4647 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4648 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4649 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4650 goto reset;
4651 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4652 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653 &sw_stat->rc_err_cnt);
4654 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4655 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4656 &sw_stat->prc_pcix_err_cnt))
4657 goto reset;
4658 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4659 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4660 &sw_stat->prc_pcix_err_cnt);
4661 }
4662
4663 if (val64 & RXDMA_INT_RPA_INT_M) {
4664 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4665 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4666 goto reset;
4667 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4668 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4669 }
4670
4671 if (val64 & RXDMA_INT_RDA_INT_M) {
4672 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4673 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4674 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4675 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4676 goto reset;
4677 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4678 | RDA_MISC_ERR | RDA_PCIX_ERR,
4679 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4680 }
4681
4682 if (val64 & RXDMA_INT_RTI_INT_M) {
4683 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4684 &sw_stat->rti_err_cnt))
4685 goto reset;
4686 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4687 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4688 }
4689
4690 val64 = readq(&bar0->mac_int_status);
4691 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4692 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4693 &bar0->mac_rmac_err_reg,
4694 &sw_stat->mac_rmac_err_cnt))
4695 goto reset;
4696 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4697 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4698 &sw_stat->mac_rmac_err_cnt);
4699 }
4700
4701 val64 = readq(&bar0->xgxs_int_status);
4702 if (val64 & XGXS_INT_STATUS_RXGXS) {
4703 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4704 &bar0->xgxs_rxgxs_err_reg,
4705 &sw_stat->xgxs_rxgxs_err_cnt))
4706 goto reset;
4707 }
4708
4709 val64 = readq(&bar0->mc_int_status);
4710 if(val64 & MC_INT_STATUS_MC_INT) {
4711 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4712 &sw_stat->mc_err_cnt))
4713 goto reset;
4714
4715 /* Handling Ecc errors */
4716 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4717 writeq(val64, &bar0->mc_err_reg);
4718 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4719 sw_stat->double_ecc_errs++;
4720 if (sp->device_type != XFRAME_II_DEVICE) {
4721 /*
4722 * Reset XframeI only if critical error
4723 */
4724 if (val64 &
4725 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4726 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4727 goto reset;
4728 }
4729 } else
4730 sw_stat->single_ecc_errs++;
4731 }
4732 }
4733 return;
4734
4735 reset:
4736 s2io_stop_all_tx_queue(sp);
4737 schedule_work(&sp->rst_timer_task);
4738 sw_stat->soft_reset_cnt++;
4739 return;
4740 }
4741
4742 /**
4743 * s2io_isr - ISR handler of the device .
4744 * @irq: the irq of the device.
4745 * @dev_id: a void pointer to the dev structure of the NIC.
4746 * Description: This function is the ISR handler of the device. It
4747 * identifies the reason for the interrupt and calls the relevant
4748 * service routines. As a contongency measure, this ISR allocates the
4749 * recv buffers, if their numbers are below the panic value which is
4750 * presently set to 25% of the original number of rcv buffers allocated.
4751 * Return value:
4752 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4753 * IRQ_NONE: will be returned if interrupt is not from our device
4754 */
4755 static irqreturn_t s2io_isr(int irq, void *dev_id)
4756 {
4757 struct net_device *dev = (struct net_device *) dev_id;
4758 struct s2io_nic *sp = dev->priv;
4759 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4760 int i;
4761 u64 reason = 0;
4762 struct mac_info *mac_control;
4763 struct config_param *config;
4764
4765 /* Pretend we handled any irq's from a disconnected card */
4766 if (pci_channel_offline(sp->pdev))
4767 return IRQ_NONE;
4768
4769 if (!is_s2io_card_up(sp))
4770 return IRQ_NONE;
4771
4772 mac_control = &sp->mac_control;
4773 config = &sp->config;
4774
4775 /*
4776 * Identify the cause for interrupt and call the appropriate
4777 * interrupt handler. Causes for the interrupt could be;
4778 * 1. Rx of packet.
4779 * 2. Tx complete.
4780 * 3. Link down.
4781 */
4782 reason = readq(&bar0->general_int_status);
4783
4784 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4785 /* Nothing much can be done. Get out */
4786 return IRQ_HANDLED;
4787 }
4788
4789 if (reason & (GEN_INTR_RXTRAFFIC |
4790 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4791 {
4792 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4793
4794 if (config->napi) {
4795 if (reason & GEN_INTR_RXTRAFFIC) {
4796 netif_rx_schedule(dev, &sp->napi);
4797 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4798 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4799 readl(&bar0->rx_traffic_int);
4800 }
4801 } else {
4802 /*
4803 * rx_traffic_int reg is an R1 register, writing all 1's
4804 * will ensure that the actual interrupt causing bit
4805 * get's cleared and hence a read can be avoided.
4806 */
4807 if (reason & GEN_INTR_RXTRAFFIC)
4808 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4809
4810 for (i = 0; i < config->rx_ring_num; i++)
4811 rx_intr_handler(&mac_control->rings[i], 0);
4812 }
4813
4814 /*
4815 * tx_traffic_int reg is an R1 register, writing all 1's
4816 * will ensure that the actual interrupt causing bit get's
4817 * cleared and hence a read can be avoided.
4818 */
4819 if (reason & GEN_INTR_TXTRAFFIC)
4820 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4821
4822 for (i = 0; i < config->tx_fifo_num; i++)
4823 tx_intr_handler(&mac_control->fifos[i]);
4824
4825 if (reason & GEN_INTR_TXPIC)
4826 s2io_txpic_intr_handle(sp);
4827
4828 /*
4829 * Reallocate the buffers from the interrupt handler itself.
4830 */
4831 if (!config->napi) {
4832 for (i = 0; i < config->rx_ring_num; i++)
4833 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4834 }
4835 writeq(sp->general_int_mask, &bar0->general_int_mask);
4836 readl(&bar0->general_int_status);
4837
4838 return IRQ_HANDLED;
4839
4840 }
4841 else if (!reason) {
4842 /* The interrupt was not raised by us */
4843 return IRQ_NONE;
4844 }
4845
4846 return IRQ_HANDLED;
4847 }
4848
4849 /**
4850 * s2io_updt_stats -
4851 */
4852 static void s2io_updt_stats(struct s2io_nic *sp)
4853 {
4854 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4855 u64 val64;
4856 int cnt = 0;
4857
4858 if (is_s2io_card_up(sp)) {
4859 /* Apprx 30us on a 133 MHz bus */
4860 val64 = SET_UPDT_CLICKS(10) |
4861 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4862 writeq(val64, &bar0->stat_cfg);
4863 do {
4864 udelay(100);
4865 val64 = readq(&bar0->stat_cfg);
4866 if (!(val64 & s2BIT(0)))
4867 break;
4868 cnt++;
4869 if (cnt == 5)
4870 break; /* Updt failed */
4871 } while(1);
4872 }
4873 }
4874
4875 /**
4876 * s2io_get_stats - Updates the device statistics structure.
4877 * @dev : pointer to the device structure.
4878 * Description:
4879 * This function updates the device statistics structure in the s2io_nic
4880 * structure and returns a pointer to the same.
4881 * Return value:
4882 * pointer to the updated net_device_stats structure.
4883 */
4884
4885 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4886 {
4887 struct s2io_nic *sp = dev->priv;
4888 struct mac_info *mac_control;
4889 struct config_param *config;
4890 int i;
4891
4892
4893 mac_control = &sp->mac_control;
4894 config = &sp->config;
4895
4896 /* Configure Stats for immediate updt */
4897 s2io_updt_stats(sp);
4898
4899 /* Using sp->stats as a staging area, because reset (due to mtu
4900 change, for example) will clear some hardware counters */
4901 dev->stats.tx_packets +=
4902 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4903 sp->stats.tx_packets;
4904 sp->stats.tx_packets =
4905 le32_to_cpu(mac_control->stats_info->tmac_frms);
4906 dev->stats.tx_errors +=
4907 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4908 sp->stats.tx_errors;
4909 sp->stats.tx_errors =
4910 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4911 dev->stats.rx_errors +=
4912 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4913 sp->stats.rx_errors;
4914 sp->stats.rx_errors =
4915 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4916 dev->stats.multicast =
4917 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4918 sp->stats.multicast;
4919 sp->stats.multicast =
4920 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4921 dev->stats.rx_length_errors =
4922 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4923 sp->stats.rx_length_errors;
4924 sp->stats.rx_length_errors =
4925 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4926
4927 /* collect per-ring rx_packets and rx_bytes */
4928 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4929 for (i = 0; i < config->rx_ring_num; i++) {
4930 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4931 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4932 }
4933
4934 return (&dev->stats);
4935 }
4936
4937 /**
4938 * s2io_set_multicast - entry point for multicast address enable/disable.
4939 * @dev : pointer to the device structure
4940 * Description:
4941 * This function is a driver entry point which gets called by the kernel
4942 * whenever multicast addresses must be enabled/disabled. This also gets
4943 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4944 * determine, if multicast address must be enabled or if promiscuous mode
4945 * is to be disabled etc.
4946 * Return value:
4947 * void.
4948 */
4949
4950 static void s2io_set_multicast(struct net_device *dev)
4951 {
4952 int i, j, prev_cnt;
4953 struct dev_mc_list *mclist;
4954 struct s2io_nic *sp = dev->priv;
4955 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4956 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4957 0xfeffffffffffULL;
4958 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4959 void __iomem *add;
4960 struct config_param *config = &sp->config;
4961
4962 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4963 /* Enable all Multicast addresses */
4964 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4965 &bar0->rmac_addr_data0_mem);
4966 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4967 &bar0->rmac_addr_data1_mem);
4968 val64 = RMAC_ADDR_CMD_MEM_WE |
4969 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4970 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4971 writeq(val64, &bar0->rmac_addr_cmd_mem);
4972 /* Wait till command completes */
4973 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4974 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4975 S2IO_BIT_RESET);
4976
4977 sp->m_cast_flg = 1;
4978 sp->all_multi_pos = config->max_mc_addr - 1;
4979 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4980 /* Disable all Multicast addresses */
4981 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4982 &bar0->rmac_addr_data0_mem);
4983 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4984 &bar0->rmac_addr_data1_mem);
4985 val64 = RMAC_ADDR_CMD_MEM_WE |
4986 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4987 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4988 writeq(val64, &bar0->rmac_addr_cmd_mem);
4989 /* Wait till command completes */
4990 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4991 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4992 S2IO_BIT_RESET);
4993
4994 sp->m_cast_flg = 0;
4995 sp->all_multi_pos = 0;
4996 }
4997
4998 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4999 /* Put the NIC into promiscuous mode */
5000 add = &bar0->mac_cfg;
5001 val64 = readq(&bar0->mac_cfg);
5002 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5003
5004 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5005 writel((u32) val64, add);
5006 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5007 writel((u32) (val64 >> 32), (add + 4));
5008
5009 if (vlan_tag_strip != 1) {
5010 val64 = readq(&bar0->rx_pa_cfg);
5011 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5012 writeq(val64, &bar0->rx_pa_cfg);
5013 vlan_strip_flag = 0;
5014 }
5015
5016 val64 = readq(&bar0->mac_cfg);
5017 sp->promisc_flg = 1;
5018 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5019 dev->name);
5020 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5021 /* Remove the NIC from promiscuous mode */
5022 add = &bar0->mac_cfg;
5023 val64 = readq(&bar0->mac_cfg);
5024 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5025
5026 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5027 writel((u32) val64, add);
5028 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5029 writel((u32) (val64 >> 32), (add + 4));
5030
5031 if (vlan_tag_strip != 0) {
5032 val64 = readq(&bar0->rx_pa_cfg);
5033 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5034 writeq(val64, &bar0->rx_pa_cfg);
5035 vlan_strip_flag = 1;
5036 }
5037
5038 val64 = readq(&bar0->mac_cfg);
5039 sp->promisc_flg = 0;
5040 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5041 dev->name);
5042 }
5043
5044 /* Update individual M_CAST address list */
5045 if ((!sp->m_cast_flg) && dev->mc_count) {
5046 if (dev->mc_count >
5047 (config->max_mc_addr - config->max_mac_addr)) {
5048 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5049 dev->name);
5050 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5051 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5052 return;
5053 }
5054
5055 prev_cnt = sp->mc_addr_count;
5056 sp->mc_addr_count = dev->mc_count;
5057
5058 /* Clear out the previous list of Mc in the H/W. */
5059 for (i = 0; i < prev_cnt; i++) {
5060 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5061 &bar0->rmac_addr_data0_mem);
5062 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5063 &bar0->rmac_addr_data1_mem);
5064 val64 = RMAC_ADDR_CMD_MEM_WE |
5065 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5066 RMAC_ADDR_CMD_MEM_OFFSET
5067 (config->mc_start_offset + i);
5068 writeq(val64, &bar0->rmac_addr_cmd_mem);
5069
5070 /* Wait for command completes */
5071 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5072 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5073 S2IO_BIT_RESET)) {
5074 DBG_PRINT(ERR_DBG, "%s: Adding ",
5075 dev->name);
5076 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5077 return;
5078 }
5079 }
5080
5081 /* Create the new Rx filter list and update the same in H/W. */
5082 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5083 i++, mclist = mclist->next) {
5084 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5085 ETH_ALEN);
5086 mac_addr = 0;
5087 for (j = 0; j < ETH_ALEN; j++) {
5088 mac_addr |= mclist->dmi_addr[j];
5089 mac_addr <<= 8;
5090 }
5091 mac_addr >>= 8;
5092 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5093 &bar0->rmac_addr_data0_mem);
5094 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5095 &bar0->rmac_addr_data1_mem);
5096 val64 = RMAC_ADDR_CMD_MEM_WE |
5097 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5098 RMAC_ADDR_CMD_MEM_OFFSET
5099 (i + config->mc_start_offset);
5100 writeq(val64, &bar0->rmac_addr_cmd_mem);
5101
5102 /* Wait for command completes */
5103 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5104 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5105 S2IO_BIT_RESET)) {
5106 DBG_PRINT(ERR_DBG, "%s: Adding ",
5107 dev->name);
5108 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5109 return;
5110 }
5111 }
5112 }
5113 }
5114
5115 /* read from CAM unicast & multicast addresses and store it in
5116 * def_mac_addr structure
5117 */
5118 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5119 {
5120 int offset;
5121 u64 mac_addr = 0x0;
5122 struct config_param *config = &sp->config;
5123
5124 /* store unicast & multicast mac addresses */
5125 for (offset = 0; offset < config->max_mc_addr; offset++) {
5126 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5127 /* if read fails disable the entry */
5128 if (mac_addr == FAILURE)
5129 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5130 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5131 }
5132 }
5133
5134 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5135 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5136 {
5137 int offset;
5138 struct config_param *config = &sp->config;
5139 /* restore unicast mac address */
5140 for (offset = 0; offset < config->max_mac_addr; offset++)
5141 do_s2io_prog_unicast(sp->dev,
5142 sp->def_mac_addr[offset].mac_addr);
5143
5144 /* restore multicast mac address */
5145 for (offset = config->mc_start_offset;
5146 offset < config->max_mc_addr; offset++)
5147 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5148 }
5149
5150 /* add a multicast MAC address to CAM */
5151 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5152 {
5153 int i;
5154 u64 mac_addr = 0;
5155 struct config_param *config = &sp->config;
5156
5157 for (i = 0; i < ETH_ALEN; i++) {
5158 mac_addr <<= 8;
5159 mac_addr |= addr[i];
5160 }
5161 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5162 return SUCCESS;
5163
5164 /* check if the multicast mac already preset in CAM */
5165 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5166 u64 tmp64;
5167 tmp64 = do_s2io_read_unicast_mc(sp, i);
5168 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5169 break;
5170
5171 if (tmp64 == mac_addr)
5172 return SUCCESS;
5173 }
5174 if (i == config->max_mc_addr) {
5175 DBG_PRINT(ERR_DBG,
5176 "CAM full no space left for multicast MAC\n");
5177 return FAILURE;
5178 }
5179 /* Update the internal structure with this new mac address */
5180 do_s2io_copy_mac_addr(sp, i, mac_addr);
5181
5182 return (do_s2io_add_mac(sp, mac_addr, i));
5183 }
5184
5185 /* add MAC address to CAM */
5186 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5187 {
5188 u64 val64;
5189 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5190
5191 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5192 &bar0->rmac_addr_data0_mem);
5193
5194 val64 =
5195 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5196 RMAC_ADDR_CMD_MEM_OFFSET(off);
5197 writeq(val64, &bar0->rmac_addr_cmd_mem);
5198
5199 /* Wait till command completes */
5200 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5201 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5202 S2IO_BIT_RESET)) {
5203 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5204 return FAILURE;
5205 }
5206 return SUCCESS;
5207 }
5208 /* deletes a specified unicast/multicast mac entry from CAM */
5209 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5210 {
5211 int offset;
5212 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5213 struct config_param *config = &sp->config;
5214
5215 for (offset = 1;
5216 offset < config->max_mc_addr; offset++) {
5217 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5218 if (tmp64 == addr) {
5219 /* disable the entry by writing 0xffffffffffffULL */
5220 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5221 return FAILURE;
5222 /* store the new mac list from CAM */
5223 do_s2io_store_unicast_mc(sp);
5224 return SUCCESS;
5225 }
5226 }
5227 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5228 (unsigned long long)addr);
5229 return FAILURE;
5230 }
5231
5232 /* read mac entries from CAM */
5233 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5234 {
5235 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5236 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5237
5238 /* read mac addr */
5239 val64 =
5240 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5241 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5242 writeq(val64, &bar0->rmac_addr_cmd_mem);
5243
5244 /* Wait till command completes */
5245 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5246 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5247 S2IO_BIT_RESET)) {
5248 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5249 return FAILURE;
5250 }
5251 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5252 return (tmp64 >> 16);
5253 }
5254
5255 /**
5256 * s2io_set_mac_addr driver entry point
5257 */
5258
5259 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5260 {
5261 struct sockaddr *addr = p;
5262
5263 if (!is_valid_ether_addr(addr->sa_data))
5264 return -EINVAL;
5265
5266 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5267
5268 /* store the MAC address in CAM */
5269 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5270 }
5271 /**
5272 * do_s2io_prog_unicast - Programs the Xframe mac address
5273 * @dev : pointer to the device structure.
5274 * @addr: a uchar pointer to the new mac address which is to be set.
5275 * Description : This procedure will program the Xframe to receive
5276 * frames with new Mac Address
5277 * Return value: SUCCESS on success and an appropriate (-)ve integer
5278 * as defined in errno.h file on failure.
5279 */
5280
5281 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5282 {
5283 struct s2io_nic *sp = dev->priv;
5284 register u64 mac_addr = 0, perm_addr = 0;
5285 int i;
5286 u64 tmp64;
5287 struct config_param *config = &sp->config;
5288
5289 /*
5290 * Set the new MAC address as the new unicast filter and reflect this
5291 * change on the device address registered with the OS. It will be
5292 * at offset 0.
5293 */
5294 for (i = 0; i < ETH_ALEN; i++) {
5295 mac_addr <<= 8;
5296 mac_addr |= addr[i];
5297 perm_addr <<= 8;
5298 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5299 }
5300
5301 /* check if the dev_addr is different than perm_addr */
5302 if (mac_addr == perm_addr)
5303 return SUCCESS;
5304
5305 /* check if the mac already preset in CAM */
5306 for (i = 1; i < config->max_mac_addr; i++) {
5307 tmp64 = do_s2io_read_unicast_mc(sp, i);
5308 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5309 break;
5310
5311 if (tmp64 == mac_addr) {
5312 DBG_PRINT(INFO_DBG,
5313 "MAC addr:0x%llx already present in CAM\n",
5314 (unsigned long long)mac_addr);
5315 return SUCCESS;
5316 }
5317 }
5318 if (i == config->max_mac_addr) {
5319 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5320 return FAILURE;
5321 }
5322 /* Update the internal structure with this new mac address */
5323 do_s2io_copy_mac_addr(sp, i, mac_addr);
5324 return (do_s2io_add_mac(sp, mac_addr, i));
5325 }
5326
5327 /**
5328 * s2io_ethtool_sset - Sets different link parameters.
5329 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5330 * @info: pointer to the structure with parameters given by ethtool to set
5331 * link information.
5332 * Description:
5333 * The function sets different link parameters provided by the user onto
5334 * the NIC.
5335 * Return value:
5336 * 0 on success.
5337 */
5338
5339 static int s2io_ethtool_sset(struct net_device *dev,
5340 struct ethtool_cmd *info)
5341 {
5342 struct s2io_nic *sp = dev->priv;
5343 if ((info->autoneg == AUTONEG_ENABLE) ||
5344 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5345 return -EINVAL;
5346 else {
5347 s2io_close(sp->dev);
5348 s2io_open(sp->dev);
5349 }
5350
5351 return 0;
5352 }
5353
5354 /**
5355 * s2io_ethtol_gset - Return link specific information.
5356 * @sp : private member of the device structure, pointer to the
5357 * s2io_nic structure.
5358 * @info : pointer to the structure with parameters given by ethtool
5359 * to return link information.
5360 * Description:
5361 * Returns link specific information like speed, duplex etc.. to ethtool.
5362 * Return value :
5363 * return 0 on success.
5364 */
5365
5366 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5367 {
5368 struct s2io_nic *sp = dev->priv;
5369 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5370 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5371 info->port = PORT_FIBRE;
5372
5373 /* info->transceiver */
5374 info->transceiver = XCVR_EXTERNAL;
5375
5376 if (netif_carrier_ok(sp->dev)) {
5377 info->speed = 10000;
5378 info->duplex = DUPLEX_FULL;
5379 } else {
5380 info->speed = -1;
5381 info->duplex = -1;
5382 }
5383
5384 info->autoneg = AUTONEG_DISABLE;
5385 return 0;
5386 }
5387
5388 /**
5389 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5390 * @sp : private member of the device structure, which is a pointer to the
5391 * s2io_nic structure.
5392 * @info : pointer to the structure with parameters given by ethtool to
5393 * return driver information.
5394 * Description:
5395 * Returns driver specefic information like name, version etc.. to ethtool.
5396 * Return value:
5397 * void
5398 */
5399
5400 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5401 struct ethtool_drvinfo *info)
5402 {
5403 struct s2io_nic *sp = dev->priv;
5404
5405 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5406 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5407 strncpy(info->fw_version, "", sizeof(info->fw_version));
5408 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5409 info->regdump_len = XENA_REG_SPACE;
5410 info->eedump_len = XENA_EEPROM_SPACE;
5411 }
5412
5413 /**
5414 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5415 * @sp: private member of the device structure, which is a pointer to the
5416 * s2io_nic structure.
5417 * @regs : pointer to the structure with parameters given by ethtool for
5418 * dumping the registers.
5419 * @reg_space: The input argumnet into which all the registers are dumped.
5420 * Description:
5421 * Dumps the entire register space of xFrame NIC into the user given
5422 * buffer area.
5423 * Return value :
5424 * void .
5425 */
5426
5427 static void s2io_ethtool_gregs(struct net_device *dev,
5428 struct ethtool_regs *regs, void *space)
5429 {
5430 int i;
5431 u64 reg;
5432 u8 *reg_space = (u8 *) space;
5433 struct s2io_nic *sp = dev->priv;
5434
5435 regs->len = XENA_REG_SPACE;
5436 regs->version = sp->pdev->subsystem_device;
5437
5438 for (i = 0; i < regs->len; i += 8) {
5439 reg = readq(sp->bar0 + i);
5440 memcpy((reg_space + i), &reg, 8);
5441 }
5442 }
5443
5444 /**
5445 * s2io_phy_id - timer function that alternates adapter LED.
5446 * @data : address of the private member of the device structure, which
5447 * is a pointer to the s2io_nic structure, provided as an u32.
5448 * Description: This is actually the timer function that alternates the
5449 * adapter LED bit of the adapter control bit to set/reset every time on
5450 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5451 * once every second.
5452 */
5453 static void s2io_phy_id(unsigned long data)
5454 {
5455 struct s2io_nic *sp = (struct s2io_nic *) data;
5456 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5457 u64 val64 = 0;
5458 u16 subid;
5459
5460 subid = sp->pdev->subsystem_device;
5461 if ((sp->device_type == XFRAME_II_DEVICE) ||
5462 ((subid & 0xFF) >= 0x07)) {
5463 val64 = readq(&bar0->gpio_control);
5464 val64 ^= GPIO_CTRL_GPIO_0;
5465 writeq(val64, &bar0->gpio_control);
5466 } else {
5467 val64 = readq(&bar0->adapter_control);
5468 val64 ^= ADAPTER_LED_ON;
5469 writeq(val64, &bar0->adapter_control);
5470 }
5471
5472 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5473 }
5474
5475 /**
5476 * s2io_ethtool_idnic - To physically identify the nic on the system.
5477 * @sp : private member of the device structure, which is a pointer to the
5478 * s2io_nic structure.
5479 * @id : pointer to the structure with identification parameters given by
5480 * ethtool.
5481 * Description: Used to physically identify the NIC on the system.
5482 * The Link LED will blink for a time specified by the user for
5483 * identification.
5484 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5485 * identification is possible only if it's link is up.
5486 * Return value:
5487 * int , returns 0 on success
5488 */
5489
5490 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5491 {
5492 u64 val64 = 0, last_gpio_ctrl_val;
5493 struct s2io_nic *sp = dev->priv;
5494 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5495 u16 subid;
5496
5497 subid = sp->pdev->subsystem_device;
5498 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5499 if ((sp->device_type == XFRAME_I_DEVICE) &&
5500 ((subid & 0xFF) < 0x07)) {
5501 val64 = readq(&bar0->adapter_control);
5502 if (!(val64 & ADAPTER_CNTL_EN)) {
5503 printk(KERN_ERR
5504 "Adapter Link down, cannot blink LED\n");
5505 return -EFAULT;
5506 }
5507 }
5508 if (sp->id_timer.function == NULL) {
5509 init_timer(&sp->id_timer);
5510 sp->id_timer.function = s2io_phy_id;
5511 sp->id_timer.data = (unsigned long) sp;
5512 }
5513 mod_timer(&sp->id_timer, jiffies);
5514 if (data)
5515 msleep_interruptible(data * HZ);
5516 else
5517 msleep_interruptible(MAX_FLICKER_TIME);
5518 del_timer_sync(&sp->id_timer);
5519
5520 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5521 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5522 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5523 }
5524
5525 return 0;
5526 }
5527
5528 static void s2io_ethtool_gringparam(struct net_device *dev,
5529 struct ethtool_ringparam *ering)
5530 {
5531 struct s2io_nic *sp = dev->priv;
5532 int i,tx_desc_count=0,rx_desc_count=0;
5533
5534 if (sp->rxd_mode == RXD_MODE_1)
5535 ering->rx_max_pending = MAX_RX_DESC_1;
5536 else if (sp->rxd_mode == RXD_MODE_3B)
5537 ering->rx_max_pending = MAX_RX_DESC_2;
5538
5539 ering->tx_max_pending = MAX_TX_DESC;
5540 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5541 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5542
5543 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5544 ering->tx_pending = tx_desc_count;
5545 rx_desc_count = 0;
5546 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5547 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5548
5549 ering->rx_pending = rx_desc_count;
5550
5551 ering->rx_mini_max_pending = 0;
5552 ering->rx_mini_pending = 0;
5553 if(sp->rxd_mode == RXD_MODE_1)
5554 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5555 else if (sp->rxd_mode == RXD_MODE_3B)
5556 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5557 ering->rx_jumbo_pending = rx_desc_count;
5558 }
5559
5560 /**
5561 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5562 * @sp : private member of the device structure, which is a pointer to the
5563 * s2io_nic structure.
5564 * @ep : pointer to the structure with pause parameters given by ethtool.
5565 * Description:
5566 * Returns the Pause frame generation and reception capability of the NIC.
5567 * Return value:
5568 * void
5569 */
5570 static void s2io_ethtool_getpause_data(struct net_device *dev,
5571 struct ethtool_pauseparam *ep)
5572 {
5573 u64 val64;
5574 struct s2io_nic *sp = dev->priv;
5575 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5576
5577 val64 = readq(&bar0->rmac_pause_cfg);
5578 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5579 ep->tx_pause = TRUE;
5580 if (val64 & RMAC_PAUSE_RX_ENABLE)
5581 ep->rx_pause = TRUE;
5582 ep->autoneg = FALSE;
5583 }
5584
5585 /**
5586 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5587 * @sp : private member of the device structure, which is a pointer to the
5588 * s2io_nic structure.
5589 * @ep : pointer to the structure with pause parameters given by ethtool.
5590 * Description:
5591 * It can be used to set or reset Pause frame generation or reception
5592 * support of the NIC.
5593 * Return value:
5594 * int, returns 0 on Success
5595 */
5596
5597 static int s2io_ethtool_setpause_data(struct net_device *dev,
5598 struct ethtool_pauseparam *ep)
5599 {
5600 u64 val64;
5601 struct s2io_nic *sp = dev->priv;
5602 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5603
5604 val64 = readq(&bar0->rmac_pause_cfg);
5605 if (ep->tx_pause)
5606 val64 |= RMAC_PAUSE_GEN_ENABLE;
5607 else
5608 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5609 if (ep->rx_pause)
5610 val64 |= RMAC_PAUSE_RX_ENABLE;
5611 else
5612 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5613 writeq(val64, &bar0->rmac_pause_cfg);
5614 return 0;
5615 }
5616
5617 /**
5618 * read_eeprom - reads 4 bytes of data from user given offset.
5619 * @sp : private member of the device structure, which is a pointer to the
5620 * s2io_nic structure.
5621 * @off : offset at which the data must be written
5622 * @data : Its an output parameter where the data read at the given
5623 * offset is stored.
5624 * Description:
5625 * Will read 4 bytes of data from the user given offset and return the
5626 * read data.
5627 * NOTE: Will allow to read only part of the EEPROM visible through the
5628 * I2C bus.
5629 * Return value:
5630 * -1 on failure and 0 on success.
5631 */
5632
5633 #define S2IO_DEV_ID 5
5634 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5635 {
5636 int ret = -1;
5637 u32 exit_cnt = 0;
5638 u64 val64;
5639 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5640
5641 if (sp->device_type == XFRAME_I_DEVICE) {
5642 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5643 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5644 I2C_CONTROL_CNTL_START;
5645 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5646
5647 while (exit_cnt < 5) {
5648 val64 = readq(&bar0->i2c_control);
5649 if (I2C_CONTROL_CNTL_END(val64)) {
5650 *data = I2C_CONTROL_GET_DATA(val64);
5651 ret = 0;
5652 break;
5653 }
5654 msleep(50);
5655 exit_cnt++;
5656 }
5657 }
5658
5659 if (sp->device_type == XFRAME_II_DEVICE) {
5660 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5661 SPI_CONTROL_BYTECNT(0x3) |
5662 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5663 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5664 val64 |= SPI_CONTROL_REQ;
5665 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5666 while (exit_cnt < 5) {
5667 val64 = readq(&bar0->spi_control);
5668 if (val64 & SPI_CONTROL_NACK) {
5669 ret = 1;
5670 break;
5671 } else if (val64 & SPI_CONTROL_DONE) {
5672 *data = readq(&bar0->spi_data);
5673 *data &= 0xffffff;
5674 ret = 0;
5675 break;
5676 }
5677 msleep(50);
5678 exit_cnt++;
5679 }
5680 }
5681 return ret;
5682 }
5683
5684 /**
5685 * write_eeprom - actually writes the relevant part of the data value.
5686 * @sp : private member of the device structure, which is a pointer to the
5687 * s2io_nic structure.
5688 * @off : offset at which the data must be written
5689 * @data : The data that is to be written
5690 * @cnt : Number of bytes of the data that are actually to be written into
5691 * the Eeprom. (max of 3)
5692 * Description:
5693 * Actually writes the relevant part of the data value into the Eeprom
5694 * through the I2C bus.
5695 * Return value:
5696 * 0 on success, -1 on failure.
5697 */
5698
5699 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5700 {
5701 int exit_cnt = 0, ret = -1;
5702 u64 val64;
5703 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5704
5705 if (sp->device_type == XFRAME_I_DEVICE) {
5706 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5707 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5708 I2C_CONTROL_CNTL_START;
5709 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5710
5711 while (exit_cnt < 5) {
5712 val64 = readq(&bar0->i2c_control);
5713 if (I2C_CONTROL_CNTL_END(val64)) {
5714 if (!(val64 & I2C_CONTROL_NACK))
5715 ret = 0;
5716 break;
5717 }
5718 msleep(50);
5719 exit_cnt++;
5720 }
5721 }
5722
5723 if (sp->device_type == XFRAME_II_DEVICE) {
5724 int write_cnt = (cnt == 8) ? 0 : cnt;
5725 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5726
5727 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5728 SPI_CONTROL_BYTECNT(write_cnt) |
5729 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5730 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5731 val64 |= SPI_CONTROL_REQ;
5732 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5733 while (exit_cnt < 5) {
5734 val64 = readq(&bar0->spi_control);
5735 if (val64 & SPI_CONTROL_NACK) {
5736 ret = 1;
5737 break;
5738 } else if (val64 & SPI_CONTROL_DONE) {
5739 ret = 0;
5740 break;
5741 }
5742 msleep(50);
5743 exit_cnt++;
5744 }
5745 }
5746 return ret;
5747 }
5748 static void s2io_vpd_read(struct s2io_nic *nic)
5749 {
5750 u8 *vpd_data;
5751 u8 data;
5752 int i=0, cnt, fail = 0;
5753 int vpd_addr = 0x80;
5754
5755 if (nic->device_type == XFRAME_II_DEVICE) {
5756 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5757 vpd_addr = 0x80;
5758 }
5759 else {
5760 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5761 vpd_addr = 0x50;
5762 }
5763 strcpy(nic->serial_num, "NOT AVAILABLE");
5764
5765 vpd_data = kmalloc(256, GFP_KERNEL);
5766 if (!vpd_data) {
5767 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5768 return;
5769 }
5770 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5771
5772 for (i = 0; i < 256; i +=4 ) {
5773 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5774 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5775 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5776 for (cnt = 0; cnt <5; cnt++) {
5777 msleep(2);
5778 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5779 if (data == 0x80)
5780 break;
5781 }
5782 if (cnt >= 5) {
5783 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5784 fail = 1;
5785 break;
5786 }
5787 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5788 (u32 *)&vpd_data[i]);
5789 }
5790
5791 if(!fail) {
5792 /* read serial number of adapter */
5793 for (cnt = 0; cnt < 256; cnt++) {
5794 if ((vpd_data[cnt] == 'S') &&
5795 (vpd_data[cnt+1] == 'N') &&
5796 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5797 memset(nic->serial_num, 0, VPD_STRING_LEN);
5798 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5799 vpd_data[cnt+2]);
5800 break;
5801 }
5802 }
5803 }
5804
5805 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5806 memset(nic->product_name, 0, vpd_data[1]);
5807 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5808 }
5809 kfree(vpd_data);
5810 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5811 }
5812
5813 /**
5814 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5815 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5816 * @eeprom : pointer to the user level structure provided by ethtool,
5817 * containing all relevant information.
5818 * @data_buf : user defined value to be written into Eeprom.
5819 * Description: Reads the values stored in the Eeprom at given offset
5820 * for a given length. Stores these values int the input argument data
5821 * buffer 'data_buf' and returns these to the caller (ethtool.)
5822 * Return value:
5823 * int 0 on success
5824 */
5825
5826 static int s2io_ethtool_geeprom(struct net_device *dev,
5827 struct ethtool_eeprom *eeprom, u8 * data_buf)
5828 {
5829 u32 i, valid;
5830 u64 data;
5831 struct s2io_nic *sp = dev->priv;
5832
5833 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5834
5835 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5836 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5837
5838 for (i = 0; i < eeprom->len; i += 4) {
5839 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5840 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5841 return -EFAULT;
5842 }
5843 valid = INV(data);
5844 memcpy((data_buf + i), &valid, 4);
5845 }
5846 return 0;
5847 }
5848
5849 /**
5850 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5851 * @sp : private member of the device structure, which is a pointer to the
5852 * s2io_nic structure.
5853 * @eeprom : pointer to the user level structure provided by ethtool,
5854 * containing all relevant information.
5855 * @data_buf ; user defined value to be written into Eeprom.
5856 * Description:
5857 * Tries to write the user provided value in the Eeprom, at the offset
5858 * given by the user.
5859 * Return value:
5860 * 0 on success, -EFAULT on failure.
5861 */
5862
5863 static int s2io_ethtool_seeprom(struct net_device *dev,
5864 struct ethtool_eeprom *eeprom,
5865 u8 * data_buf)
5866 {
5867 int len = eeprom->len, cnt = 0;
5868 u64 valid = 0, data;
5869 struct s2io_nic *sp = dev->priv;
5870
5871 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5872 DBG_PRINT(ERR_DBG,
5873 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5874 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5875 eeprom->magic);
5876 return -EFAULT;
5877 }
5878
5879 while (len) {
5880 data = (u32) data_buf[cnt] & 0x000000FF;
5881 if (data) {
5882 valid = (u32) (data << 24);
5883 } else
5884 valid = data;
5885
5886 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5887 DBG_PRINT(ERR_DBG,
5888 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5889 DBG_PRINT(ERR_DBG,
5890 "write into the specified offset\n");
5891 return -EFAULT;
5892 }
5893 cnt++;
5894 len--;
5895 }
5896
5897 return 0;
5898 }
5899
5900 /**
5901 * s2io_register_test - reads and writes into all clock domains.
5902 * @sp : private member of the device structure, which is a pointer to the
5903 * s2io_nic structure.
5904 * @data : variable that returns the result of each of the test conducted b
5905 * by the driver.
5906 * Description:
5907 * Read and write into all clock domains. The NIC has 3 clock domains,
5908 * see that registers in all the three regions are accessible.
5909 * Return value:
5910 * 0 on success.
5911 */
5912
5913 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5914 {
5915 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5916 u64 val64 = 0, exp_val;
5917 int fail = 0;
5918
5919 val64 = readq(&bar0->pif_rd_swapper_fb);
5920 if (val64 != 0x123456789abcdefULL) {
5921 fail = 1;
5922 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5923 }
5924
5925 val64 = readq(&bar0->rmac_pause_cfg);
5926 if (val64 != 0xc000ffff00000000ULL) {
5927 fail = 1;
5928 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5929 }
5930
5931 val64 = readq(&bar0->rx_queue_cfg);
5932 if (sp->device_type == XFRAME_II_DEVICE)
5933 exp_val = 0x0404040404040404ULL;
5934 else
5935 exp_val = 0x0808080808080808ULL;
5936 if (val64 != exp_val) {
5937 fail = 1;
5938 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5939 }
5940
5941 val64 = readq(&bar0->xgxs_efifo_cfg);
5942 if (val64 != 0x000000001923141EULL) {
5943 fail = 1;
5944 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5945 }
5946
5947 val64 = 0x5A5A5A5A5A5A5A5AULL;
5948 writeq(val64, &bar0->xmsi_data);
5949 val64 = readq(&bar0->xmsi_data);
5950 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5951 fail = 1;
5952 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5953 }
5954
5955 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5956 writeq(val64, &bar0->xmsi_data);
5957 val64 = readq(&bar0->xmsi_data);
5958 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5959 fail = 1;
5960 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5961 }
5962
5963 *data = fail;
5964 return fail;
5965 }
5966
5967 /**
5968 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5969 * @sp : private member of the device structure, which is a pointer to the
5970 * s2io_nic structure.
5971 * @data:variable that returns the result of each of the test conducted by
5972 * the driver.
5973 * Description:
5974 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5975 * register.
5976 * Return value:
5977 * 0 on success.
5978 */
5979
5980 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5981 {
5982 int fail = 0;
5983 u64 ret_data, org_4F0, org_7F0;
5984 u8 saved_4F0 = 0, saved_7F0 = 0;
5985 struct net_device *dev = sp->dev;
5986
5987 /* Test Write Error at offset 0 */
5988 /* Note that SPI interface allows write access to all areas
5989 * of EEPROM. Hence doing all negative testing only for Xframe I.
5990 */
5991 if (sp->device_type == XFRAME_I_DEVICE)
5992 if (!write_eeprom(sp, 0, 0, 3))
5993 fail = 1;
5994
5995 /* Save current values at offsets 0x4F0 and 0x7F0 */
5996 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5997 saved_4F0 = 1;
5998 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5999 saved_7F0 = 1;
6000
6001 /* Test Write at offset 4f0 */
6002 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6003 fail = 1;
6004 if (read_eeprom(sp, 0x4F0, &ret_data))
6005 fail = 1;
6006
6007 if (ret_data != 0x012345) {
6008 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6009 "Data written %llx Data read %llx\n",
6010 dev->name, (unsigned long long)0x12345,
6011 (unsigned long long)ret_data);
6012 fail = 1;
6013 }
6014
6015 /* Reset the EEPROM data go FFFF */
6016 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6017
6018 /* Test Write Request Error at offset 0x7c */
6019 if (sp->device_type == XFRAME_I_DEVICE)
6020 if (!write_eeprom(sp, 0x07C, 0, 3))
6021 fail = 1;
6022
6023 /* Test Write Request at offset 0x7f0 */
6024 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6025 fail = 1;
6026 if (read_eeprom(sp, 0x7F0, &ret_data))
6027 fail = 1;
6028
6029 if (ret_data != 0x012345) {
6030 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6031 "Data written %llx Data read %llx\n",
6032 dev->name, (unsigned long long)0x12345,
6033 (unsigned long long)ret_data);
6034 fail = 1;
6035 }
6036
6037 /* Reset the EEPROM data go FFFF */
6038 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6039
6040 if (sp->device_type == XFRAME_I_DEVICE) {
6041 /* Test Write Error at offset 0x80 */
6042 if (!write_eeprom(sp, 0x080, 0, 3))
6043 fail = 1;
6044
6045 /* Test Write Error at offset 0xfc */
6046 if (!write_eeprom(sp, 0x0FC, 0, 3))
6047 fail = 1;
6048
6049 /* Test Write Error at offset 0x100 */
6050 if (!write_eeprom(sp, 0x100, 0, 3))
6051 fail = 1;
6052
6053 /* Test Write Error at offset 4ec */
6054 if (!write_eeprom(sp, 0x4EC, 0, 3))
6055 fail = 1;
6056 }
6057
6058 /* Restore values at offsets 0x4F0 and 0x7F0 */
6059 if (saved_4F0)
6060 write_eeprom(sp, 0x4F0, org_4F0, 3);
6061 if (saved_7F0)
6062 write_eeprom(sp, 0x7F0, org_7F0, 3);
6063
6064 *data = fail;
6065 return fail;
6066 }
6067
6068 /**
6069 * s2io_bist_test - invokes the MemBist test of the card .
6070 * @sp : private member of the device structure, which is a pointer to the
6071 * s2io_nic structure.
6072 * @data:variable that returns the result of each of the test conducted by
6073 * the driver.
6074 * Description:
6075 * This invokes the MemBist test of the card. We give around
6076 * 2 secs time for the Test to complete. If it's still not complete
6077 * within this peiod, we consider that the test failed.
6078 * Return value:
6079 * 0 on success and -1 on failure.
6080 */
6081
6082 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6083 {
6084 u8 bist = 0;
6085 int cnt = 0, ret = -1;
6086
6087 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6088 bist |= PCI_BIST_START;
6089 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6090
6091 while (cnt < 20) {
6092 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6093 if (!(bist & PCI_BIST_START)) {
6094 *data = (bist & PCI_BIST_CODE_MASK);
6095 ret = 0;
6096 break;
6097 }
6098 msleep(100);
6099 cnt++;
6100 }
6101
6102 return ret;
6103 }
6104
6105 /**
6106 * s2io-link_test - verifies the link state of the nic
6107 * @sp ; private member of the device structure, which is a pointer to the
6108 * s2io_nic structure.
6109 * @data: variable that returns the result of each of the test conducted by
6110 * the driver.
6111 * Description:
6112 * The function verifies the link state of the NIC and updates the input
6113 * argument 'data' appropriately.
6114 * Return value:
6115 * 0 on success.
6116 */
6117
6118 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6119 {
6120 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6121 u64 val64;
6122
6123 val64 = readq(&bar0->adapter_status);
6124 if(!(LINK_IS_UP(val64)))
6125 *data = 1;
6126 else
6127 *data = 0;
6128
6129 return *data;
6130 }
6131
6132 /**
6133 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6134 * @sp - private member of the device structure, which is a pointer to the
6135 * s2io_nic structure.
6136 * @data - variable that returns the result of each of the test
6137 * conducted by the driver.
6138 * Description:
6139 * This is one of the offline test that tests the read and write
6140 * access to the RldRam chip on the NIC.
6141 * Return value:
6142 * 0 on success.
6143 */
6144
6145 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6146 {
6147 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6148 u64 val64;
6149 int cnt, iteration = 0, test_fail = 0;
6150
6151 val64 = readq(&bar0->adapter_control);
6152 val64 &= ~ADAPTER_ECC_EN;
6153 writeq(val64, &bar0->adapter_control);
6154
6155 val64 = readq(&bar0->mc_rldram_test_ctrl);
6156 val64 |= MC_RLDRAM_TEST_MODE;
6157 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6158
6159 val64 = readq(&bar0->mc_rldram_mrs);
6160 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6161 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6162
6163 val64 |= MC_RLDRAM_MRS_ENABLE;
6164 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6165
6166 while (iteration < 2) {
6167 val64 = 0x55555555aaaa0000ULL;
6168 if (iteration == 1) {
6169 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6170 }
6171 writeq(val64, &bar0->mc_rldram_test_d0);
6172
6173 val64 = 0xaaaa5a5555550000ULL;
6174 if (iteration == 1) {
6175 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6176 }
6177 writeq(val64, &bar0->mc_rldram_test_d1);
6178
6179 val64 = 0x55aaaaaaaa5a0000ULL;
6180 if (iteration == 1) {
6181 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6182 }
6183 writeq(val64, &bar0->mc_rldram_test_d2);
6184
6185 val64 = (u64) (0x0000003ffffe0100ULL);
6186 writeq(val64, &bar0->mc_rldram_test_add);
6187
6188 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6189 MC_RLDRAM_TEST_GO;
6190 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6191
6192 for (cnt = 0; cnt < 5; cnt++) {
6193 val64 = readq(&bar0->mc_rldram_test_ctrl);
6194 if (val64 & MC_RLDRAM_TEST_DONE)
6195 break;
6196 msleep(200);
6197 }
6198
6199 if (cnt == 5)
6200 break;
6201
6202 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6203 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6204
6205 for (cnt = 0; cnt < 5; cnt++) {
6206 val64 = readq(&bar0->mc_rldram_test_ctrl);
6207 if (val64 & MC_RLDRAM_TEST_DONE)
6208 break;
6209 msleep(500);
6210 }
6211
6212 if (cnt == 5)
6213 break;
6214
6215 val64 = readq(&bar0->mc_rldram_test_ctrl);
6216 if (!(val64 & MC_RLDRAM_TEST_PASS))
6217 test_fail = 1;
6218
6219 iteration++;
6220 }
6221
6222 *data = test_fail;
6223
6224 /* Bring the adapter out of test mode */
6225 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6226
6227 return test_fail;
6228 }
6229
6230 /**
6231 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6232 * @sp : private member of the device structure, which is a pointer to the
6233 * s2io_nic structure.
6234 * @ethtest : pointer to a ethtool command specific structure that will be
6235 * returned to the user.
6236 * @data : variable that returns the result of each of the test
6237 * conducted by the driver.
6238 * Description:
6239 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6240 * the health of the card.
6241 * Return value:
6242 * void
6243 */
6244
6245 static void s2io_ethtool_test(struct net_device *dev,
6246 struct ethtool_test *ethtest,
6247 uint64_t * data)
6248 {
6249 struct s2io_nic *sp = dev->priv;
6250 int orig_state = netif_running(sp->dev);
6251
6252 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6253 /* Offline Tests. */
6254 if (orig_state)
6255 s2io_close(sp->dev);
6256
6257 if (s2io_register_test(sp, &data[0]))
6258 ethtest->flags |= ETH_TEST_FL_FAILED;
6259
6260 s2io_reset(sp);
6261
6262 if (s2io_rldram_test(sp, &data[3]))
6263 ethtest->flags |= ETH_TEST_FL_FAILED;
6264
6265 s2io_reset(sp);
6266
6267 if (s2io_eeprom_test(sp, &data[1]))
6268 ethtest->flags |= ETH_TEST_FL_FAILED;
6269
6270 if (s2io_bist_test(sp, &data[4]))
6271 ethtest->flags |= ETH_TEST_FL_FAILED;
6272
6273 if (orig_state)
6274 s2io_open(sp->dev);
6275
6276 data[2] = 0;
6277 } else {
6278 /* Online Tests. */
6279 if (!orig_state) {
6280 DBG_PRINT(ERR_DBG,
6281 "%s: is not up, cannot run test\n",
6282 dev->name);
6283 data[0] = -1;
6284 data[1] = -1;
6285 data[2] = -1;
6286 data[3] = -1;
6287 data[4] = -1;
6288 }
6289
6290 if (s2io_link_test(sp, &data[2]))
6291 ethtest->flags |= ETH_TEST_FL_FAILED;
6292
6293 data[0] = 0;
6294 data[1] = 0;
6295 data[3] = 0;
6296 data[4] = 0;
6297 }
6298 }
6299
6300 static void s2io_get_ethtool_stats(struct net_device *dev,
6301 struct ethtool_stats *estats,
6302 u64 * tmp_stats)
6303 {
6304 int i = 0, k;
6305 struct s2io_nic *sp = dev->priv;
6306 struct stat_block *stat_info = sp->mac_control.stats_info;
6307
6308 s2io_updt_stats(sp);
6309 tmp_stats[i++] =
6310 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6311 le32_to_cpu(stat_info->tmac_frms);
6312 tmp_stats[i++] =
6313 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6314 le32_to_cpu(stat_info->tmac_data_octets);
6315 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6318 le32_to_cpu(stat_info->tmac_mcst_frms);
6319 tmp_stats[i++] =
6320 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6321 le32_to_cpu(stat_info->tmac_bcst_frms);
6322 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6323 tmp_stats[i++] =
6324 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6325 le32_to_cpu(stat_info->tmac_ttl_octets);
6326 tmp_stats[i++] =
6327 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6328 le32_to_cpu(stat_info->tmac_ucst_frms);
6329 tmp_stats[i++] =
6330 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_nucst_frms);
6332 tmp_stats[i++] =
6333 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6334 le32_to_cpu(stat_info->tmac_any_err_frms);
6335 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6336 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6339 le32_to_cpu(stat_info->tmac_vld_ip);
6340 tmp_stats[i++] =
6341 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6342 le32_to_cpu(stat_info->tmac_drop_ip);
6343 tmp_stats[i++] =
6344 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6345 le32_to_cpu(stat_info->tmac_icmp);
6346 tmp_stats[i++] =
6347 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6348 le32_to_cpu(stat_info->tmac_rst_tcp);
6349 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6350 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6351 le32_to_cpu(stat_info->tmac_udp);
6352 tmp_stats[i++] =
6353 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6354 le32_to_cpu(stat_info->rmac_vld_frms);
6355 tmp_stats[i++] =
6356 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6357 le32_to_cpu(stat_info->rmac_data_octets);
6358 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6359 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6363 tmp_stats[i++] =
6364 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6365 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6366 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6367 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6368 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6369 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6370 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6373 le32_to_cpu(stat_info->rmac_ttl_octets);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6376 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6379 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6380 tmp_stats[i++] =
6381 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6382 le32_to_cpu(stat_info->rmac_discarded_frms);
6383 tmp_stats[i++] =
6384 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6385 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6386 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6387 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6390 le32_to_cpu(stat_info->rmac_usized_frms);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6393 le32_to_cpu(stat_info->rmac_osized_frms);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6396 le32_to_cpu(stat_info->rmac_frag_frms);
6397 tmp_stats[i++] =
6398 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6399 le32_to_cpu(stat_info->rmac_jabber_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6403 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6404 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6406 tmp_stats[i++] =
6407 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6408 le32_to_cpu(stat_info->rmac_ip);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6410 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6411 tmp_stats[i++] =
6412 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6413 le32_to_cpu(stat_info->rmac_drop_ip);
6414 tmp_stats[i++] =
6415 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6416 le32_to_cpu(stat_info->rmac_icmp);
6417 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6420 le32_to_cpu(stat_info->rmac_udp);
6421 tmp_stats[i++] =
6422 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6423 le32_to_cpu(stat_info->rmac_err_drp_udp);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6430 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6431 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6432 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6438 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6439 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6440 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6441 tmp_stats[i++] =
6442 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6443 le32_to_cpu(stat_info->rmac_pause_cnt);
6444 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6445 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6446 tmp_stats[i++] =
6447 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6448 le32_to_cpu(stat_info->rmac_accepted_ip);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6468
6469 /* Enhanced statistics exist only for Hercules */
6470 if(sp->device_type == XFRAME_II_DEVICE) {
6471 tmp_stats[i++] =
6472 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6473 tmp_stats[i++] =
6474 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6475 tmp_stats[i++] =
6476 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6479 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6480 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6481 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6487 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6488 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6489 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6490 }
6491
6492 tmp_stats[i++] = 0;
6493 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6494 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6495 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6496 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6497 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6498 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6499 for (k = 0; k < MAX_RX_RINGS; k++)
6500 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6504 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6505 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6506 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6510 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6511 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6512 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6513 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6514 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6515 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6516 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6517 if (stat_info->sw_stat.num_aggregations) {
6518 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6519 int count = 0;
6520 /*
6521 * Since 64-bit divide does not work on all platforms,
6522 * do repeated subtraction.
6523 */
6524 while (tmp >= stat_info->sw_stat.num_aggregations) {
6525 tmp -= stat_info->sw_stat.num_aggregations;
6526 count++;
6527 }
6528 tmp_stats[i++] = count;
6529 }
6530 else
6531 tmp_stats[i++] = 0;
6532 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6533 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6534 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6536 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6537 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6538 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6539 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6540 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6541
6542 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6547
6548 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6572 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6573 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6574 }
6575
6576 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6577 {
6578 return (XENA_REG_SPACE);
6579 }
6580
6581
6582 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6583 {
6584 struct s2io_nic *sp = dev->priv;
6585
6586 return (sp->rx_csum);
6587 }
6588
6589 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6590 {
6591 struct s2io_nic *sp = dev->priv;
6592
6593 if (data)
6594 sp->rx_csum = 1;
6595 else
6596 sp->rx_csum = 0;
6597
6598 return 0;
6599 }
6600
6601 static int s2io_get_eeprom_len(struct net_device *dev)
6602 {
6603 return (XENA_EEPROM_SPACE);
6604 }
6605
6606 static int s2io_get_sset_count(struct net_device *dev, int sset)
6607 {
6608 struct s2io_nic *sp = dev->priv;
6609
6610 switch (sset) {
6611 case ETH_SS_TEST:
6612 return S2IO_TEST_LEN;
6613 case ETH_SS_STATS:
6614 switch(sp->device_type) {
6615 case XFRAME_I_DEVICE:
6616 return XFRAME_I_STAT_LEN;
6617 case XFRAME_II_DEVICE:
6618 return XFRAME_II_STAT_LEN;
6619 default:
6620 return 0;
6621 }
6622 default:
6623 return -EOPNOTSUPP;
6624 }
6625 }
6626
6627 static void s2io_ethtool_get_strings(struct net_device *dev,
6628 u32 stringset, u8 * data)
6629 {
6630 int stat_size = 0;
6631 struct s2io_nic *sp = dev->priv;
6632
6633 switch (stringset) {
6634 case ETH_SS_TEST:
6635 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6636 break;
6637 case ETH_SS_STATS:
6638 stat_size = sizeof(ethtool_xena_stats_keys);
6639 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6640 if(sp->device_type == XFRAME_II_DEVICE) {
6641 memcpy(data + stat_size,
6642 &ethtool_enhanced_stats_keys,
6643 sizeof(ethtool_enhanced_stats_keys));
6644 stat_size += sizeof(ethtool_enhanced_stats_keys);
6645 }
6646
6647 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6648 sizeof(ethtool_driver_stats_keys));
6649 }
6650 }
6651
6652 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6653 {
6654 if (data)
6655 dev->features |= NETIF_F_IP_CSUM;
6656 else
6657 dev->features &= ~NETIF_F_IP_CSUM;
6658
6659 return 0;
6660 }
6661
6662 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6663 {
6664 return (dev->features & NETIF_F_TSO) != 0;
6665 }
6666 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6667 {
6668 if (data)
6669 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6670 else
6671 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6672
6673 return 0;
6674 }
6675
6676 static const struct ethtool_ops netdev_ethtool_ops = {
6677 .get_settings = s2io_ethtool_gset,
6678 .set_settings = s2io_ethtool_sset,
6679 .get_drvinfo = s2io_ethtool_gdrvinfo,
6680 .get_regs_len = s2io_ethtool_get_regs_len,
6681 .get_regs = s2io_ethtool_gregs,
6682 .get_link = ethtool_op_get_link,
6683 .get_eeprom_len = s2io_get_eeprom_len,
6684 .get_eeprom = s2io_ethtool_geeprom,
6685 .set_eeprom = s2io_ethtool_seeprom,
6686 .get_ringparam = s2io_ethtool_gringparam,
6687 .get_pauseparam = s2io_ethtool_getpause_data,
6688 .set_pauseparam = s2io_ethtool_setpause_data,
6689 .get_rx_csum = s2io_ethtool_get_rx_csum,
6690 .set_rx_csum = s2io_ethtool_set_rx_csum,
6691 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6692 .set_sg = ethtool_op_set_sg,
6693 .get_tso = s2io_ethtool_op_get_tso,
6694 .set_tso = s2io_ethtool_op_set_tso,
6695 .set_ufo = ethtool_op_set_ufo,
6696 .self_test = s2io_ethtool_test,
6697 .get_strings = s2io_ethtool_get_strings,
6698 .phys_id = s2io_ethtool_idnic,
6699 .get_ethtool_stats = s2io_get_ethtool_stats,
6700 .get_sset_count = s2io_get_sset_count,
6701 };
6702
6703 /**
6704 * s2io_ioctl - Entry point for the Ioctl
6705 * @dev : Device pointer.
6706 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6707 * a proprietary structure used to pass information to the driver.
6708 * @cmd : This is used to distinguish between the different commands that
6709 * can be passed to the IOCTL functions.
6710 * Description:
6711 * Currently there are no special functionality supported in IOCTL, hence
6712 * function always return EOPNOTSUPPORTED
6713 */
6714
6715 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6716 {
6717 return -EOPNOTSUPP;
6718 }
6719
6720 /**
6721 * s2io_change_mtu - entry point to change MTU size for the device.
6722 * @dev : device pointer.
6723 * @new_mtu : the new MTU size for the device.
6724 * Description: A driver entry point to change MTU size for the device.
6725 * Before changing the MTU the device must be stopped.
6726 * Return value:
6727 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6728 * file on failure.
6729 */
6730
6731 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6732 {
6733 struct s2io_nic *sp = dev->priv;
6734 int ret = 0;
6735
6736 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6737 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6738 dev->name);
6739 return -EPERM;
6740 }
6741
6742 dev->mtu = new_mtu;
6743 if (netif_running(dev)) {
6744 s2io_stop_all_tx_queue(sp);
6745 s2io_card_down(sp);
6746 ret = s2io_card_up(sp);
6747 if (ret) {
6748 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6749 __FUNCTION__);
6750 return ret;
6751 }
6752 s2io_wake_all_tx_queue(sp);
6753 } else { /* Device is down */
6754 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6755 u64 val64 = new_mtu;
6756
6757 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6758 }
6759
6760 return ret;
6761 }
6762
6763 /**
6764 * s2io_set_link - Set the LInk status
6765 * @data: long pointer to device private structue
6766 * Description: Sets the link status for the adapter
6767 */
6768
6769 static void s2io_set_link(struct work_struct *work)
6770 {
6771 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6772 struct net_device *dev = nic->dev;
6773 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6774 register u64 val64;
6775 u16 subid;
6776
6777 rtnl_lock();
6778
6779 if (!netif_running(dev))
6780 goto out_unlock;
6781
6782 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6783 /* The card is being reset, no point doing anything */
6784 goto out_unlock;
6785 }
6786
6787 subid = nic->pdev->subsystem_device;
6788 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6789 /*
6790 * Allow a small delay for the NICs self initiated
6791 * cleanup to complete.
6792 */
6793 msleep(100);
6794 }
6795
6796 val64 = readq(&bar0->adapter_status);
6797 if (LINK_IS_UP(val64)) {
6798 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6799 if (verify_xena_quiescence(nic)) {
6800 val64 = readq(&bar0->adapter_control);
6801 val64 |= ADAPTER_CNTL_EN;
6802 writeq(val64, &bar0->adapter_control);
6803 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6804 nic->device_type, subid)) {
6805 val64 = readq(&bar0->gpio_control);
6806 val64 |= GPIO_CTRL_GPIO_0;
6807 writeq(val64, &bar0->gpio_control);
6808 val64 = readq(&bar0->gpio_control);
6809 } else {
6810 val64 |= ADAPTER_LED_ON;
6811 writeq(val64, &bar0->adapter_control);
6812 }
6813 nic->device_enabled_once = TRUE;
6814 } else {
6815 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6816 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6817 s2io_stop_all_tx_queue(nic);
6818 }
6819 }
6820 val64 = readq(&bar0->adapter_control);
6821 val64 |= ADAPTER_LED_ON;
6822 writeq(val64, &bar0->adapter_control);
6823 s2io_link(nic, LINK_UP);
6824 } else {
6825 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6826 subid)) {
6827 val64 = readq(&bar0->gpio_control);
6828 val64 &= ~GPIO_CTRL_GPIO_0;
6829 writeq(val64, &bar0->gpio_control);
6830 val64 = readq(&bar0->gpio_control);
6831 }
6832 /* turn off LED */
6833 val64 = readq(&bar0->adapter_control);
6834 val64 = val64 &(~ADAPTER_LED_ON);
6835 writeq(val64, &bar0->adapter_control);
6836 s2io_link(nic, LINK_DOWN);
6837 }
6838 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6839
6840 out_unlock:
6841 rtnl_unlock();
6842 }
6843
6844 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6845 struct buffAdd *ba,
6846 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6847 u64 *temp2, int size)
6848 {
6849 struct net_device *dev = sp->dev;
6850 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6851
6852 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6853 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6854 /* allocate skb */
6855 if (*skb) {
6856 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6857 /*
6858 * As Rx frame are not going to be processed,
6859 * using same mapped address for the Rxd
6860 * buffer pointer
6861 */
6862 rxdp1->Buffer0_ptr = *temp0;
6863 } else {
6864 *skb = dev_alloc_skb(size);
6865 if (!(*skb)) {
6866 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6867 DBG_PRINT(INFO_DBG, "memory to allocate ");
6868 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6869 sp->mac_control.stats_info->sw_stat. \
6870 mem_alloc_fail_cnt++;
6871 return -ENOMEM ;
6872 }
6873 sp->mac_control.stats_info->sw_stat.mem_allocated
6874 += (*skb)->truesize;
6875 /* storing the mapped addr in a temp variable
6876 * such it will be used for next rxd whose
6877 * Host Control is NULL
6878 */
6879 rxdp1->Buffer0_ptr = *temp0 =
6880 pci_map_single( sp->pdev, (*skb)->data,
6881 size - NET_IP_ALIGN,
6882 PCI_DMA_FROMDEVICE);
6883 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6884 goto memalloc_failed;
6885 rxdp->Host_Control = (unsigned long) (*skb);
6886 }
6887 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6888 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6889 /* Two buffer Mode */
6890 if (*skb) {
6891 rxdp3->Buffer2_ptr = *temp2;
6892 rxdp3->Buffer0_ptr = *temp0;
6893 rxdp3->Buffer1_ptr = *temp1;
6894 } else {
6895 *skb = dev_alloc_skb(size);
6896 if (!(*skb)) {
6897 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6898 DBG_PRINT(INFO_DBG, "memory to allocate ");
6899 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6900 sp->mac_control.stats_info->sw_stat. \
6901 mem_alloc_fail_cnt++;
6902 return -ENOMEM;
6903 }
6904 sp->mac_control.stats_info->sw_stat.mem_allocated
6905 += (*skb)->truesize;
6906 rxdp3->Buffer2_ptr = *temp2 =
6907 pci_map_single(sp->pdev, (*skb)->data,
6908 dev->mtu + 4,
6909 PCI_DMA_FROMDEVICE);
6910 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6911 goto memalloc_failed;
6912 rxdp3->Buffer0_ptr = *temp0 =
6913 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6914 PCI_DMA_FROMDEVICE);
6915 if (pci_dma_mapping_error(sp->pdev,
6916 rxdp3->Buffer0_ptr)) {
6917 pci_unmap_single (sp->pdev,
6918 (dma_addr_t)rxdp3->Buffer2_ptr,
6919 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6920 goto memalloc_failed;
6921 }
6922 rxdp->Host_Control = (unsigned long) (*skb);
6923
6924 /* Buffer-1 will be dummy buffer not used */
6925 rxdp3->Buffer1_ptr = *temp1 =
6926 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6927 PCI_DMA_FROMDEVICE);
6928 if (pci_dma_mapping_error(sp->pdev,
6929 rxdp3->Buffer1_ptr)) {
6930 pci_unmap_single (sp->pdev,
6931 (dma_addr_t)rxdp3->Buffer0_ptr,
6932 BUF0_LEN, PCI_DMA_FROMDEVICE);
6933 pci_unmap_single (sp->pdev,
6934 (dma_addr_t)rxdp3->Buffer2_ptr,
6935 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6936 goto memalloc_failed;
6937 }
6938 }
6939 }
6940 return 0;
6941 memalloc_failed:
6942 stats->pci_map_fail_cnt++;
6943 stats->mem_freed += (*skb)->truesize;
6944 dev_kfree_skb(*skb);
6945 return -ENOMEM;
6946 }
6947
6948 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6949 int size)
6950 {
6951 struct net_device *dev = sp->dev;
6952 if (sp->rxd_mode == RXD_MODE_1) {
6953 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6954 } else if (sp->rxd_mode == RXD_MODE_3B) {
6955 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6956 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6957 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6958 }
6959 }
6960
6961 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6962 {
6963 int i, j, k, blk_cnt = 0, size;
6964 struct mac_info * mac_control = &sp->mac_control;
6965 struct config_param *config = &sp->config;
6966 struct net_device *dev = sp->dev;
6967 struct RxD_t *rxdp = NULL;
6968 struct sk_buff *skb = NULL;
6969 struct buffAdd *ba = NULL;
6970 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6971
6972 /* Calculate the size based on ring mode */
6973 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6974 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6975 if (sp->rxd_mode == RXD_MODE_1)
6976 size += NET_IP_ALIGN;
6977 else if (sp->rxd_mode == RXD_MODE_3B)
6978 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6979
6980 for (i = 0; i < config->rx_ring_num; i++) {
6981 blk_cnt = config->rx_cfg[i].num_rxd /
6982 (rxd_count[sp->rxd_mode] +1);
6983
6984 for (j = 0; j < blk_cnt; j++) {
6985 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6986 rxdp = mac_control->rings[i].
6987 rx_blocks[j].rxds[k].virt_addr;
6988 if(sp->rxd_mode == RXD_MODE_3B)
6989 ba = &mac_control->rings[i].ba[j][k];
6990 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6991 &skb,(u64 *)&temp0_64,
6992 (u64 *)&temp1_64,
6993 (u64 *)&temp2_64,
6994 size) == -ENOMEM) {
6995 return 0;
6996 }
6997
6998 set_rxd_buffer_size(sp, rxdp, size);
6999 wmb();
7000 /* flip the Ownership bit to Hardware */
7001 rxdp->Control_1 |= RXD_OWN_XENA;
7002 }
7003 }
7004 }
7005 return 0;
7006
7007 }
7008
7009 static int s2io_add_isr(struct s2io_nic * sp)
7010 {
7011 int ret = 0;
7012 struct net_device *dev = sp->dev;
7013 int err = 0;
7014
7015 if (sp->config.intr_type == MSI_X)
7016 ret = s2io_enable_msi_x(sp);
7017 if (ret) {
7018 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7019 sp->config.intr_type = INTA;
7020 }
7021
7022 /* Store the values of the MSIX table in the struct s2io_nic structure */
7023 store_xmsi_data(sp);
7024
7025 /* After proper initialization of H/W, register ISR */
7026 if (sp->config.intr_type == MSI_X) {
7027 int i, msix_rx_cnt = 0;
7028
7029 for (i = 0; i < sp->num_entries; i++) {
7030 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7031 if (sp->s2io_entries[i].type ==
7032 MSIX_RING_TYPE) {
7033 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7034 dev->name, i);
7035 err = request_irq(sp->entries[i].vector,
7036 s2io_msix_ring_handle, 0,
7037 sp->desc[i],
7038 sp->s2io_entries[i].arg);
7039 } else if (sp->s2io_entries[i].type ==
7040 MSIX_ALARM_TYPE) {
7041 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7042 dev->name, i);
7043 err = request_irq(sp->entries[i].vector,
7044 s2io_msix_fifo_handle, 0,
7045 sp->desc[i],
7046 sp->s2io_entries[i].arg);
7047
7048 }
7049 /* if either data or addr is zero print it. */
7050 if (!(sp->msix_info[i].addr &&
7051 sp->msix_info[i].data)) {
7052 DBG_PRINT(ERR_DBG,
7053 "%s @Addr:0x%llx Data:0x%llx\n",
7054 sp->desc[i],
7055 (unsigned long long)
7056 sp->msix_info[i].addr,
7057 (unsigned long long)
7058 ntohl(sp->msix_info[i].data));
7059 } else
7060 msix_rx_cnt++;
7061 if (err) {
7062 remove_msix_isr(sp);
7063
7064 DBG_PRINT(ERR_DBG,
7065 "%s:MSI-X-%d registration "
7066 "failed\n", dev->name, i);
7067
7068 DBG_PRINT(ERR_DBG,
7069 "%s: Defaulting to INTA\n",
7070 dev->name);
7071 sp->config.intr_type = INTA;
7072 break;
7073 }
7074 sp->s2io_entries[i].in_use =
7075 MSIX_REGISTERED_SUCCESS;
7076 }
7077 }
7078 if (!err) {
7079 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7080 --msix_rx_cnt);
7081 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7082 " through alarm vector\n");
7083 }
7084 }
7085 if (sp->config.intr_type == INTA) {
7086 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7087 sp->name, dev);
7088 if (err) {
7089 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7090 dev->name);
7091 return -1;
7092 }
7093 }
7094 return 0;
7095 }
7096 static void s2io_rem_isr(struct s2io_nic * sp)
7097 {
7098 if (sp->config.intr_type == MSI_X)
7099 remove_msix_isr(sp);
7100 else
7101 remove_inta_isr(sp);
7102 }
7103
7104 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7105 {
7106 int cnt = 0;
7107 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7108 register u64 val64 = 0;
7109 struct config_param *config;
7110 config = &sp->config;
7111
7112 if (!is_s2io_card_up(sp))
7113 return;
7114
7115 del_timer_sync(&sp->alarm_timer);
7116 /* If s2io_set_link task is executing, wait till it completes. */
7117 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7118 msleep(50);
7119 }
7120 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7121
7122 /* Disable napi */
7123 if (sp->config.napi) {
7124 int off = 0;
7125 if (config->intr_type == MSI_X) {
7126 for (; off < sp->config.rx_ring_num; off++)
7127 napi_disable(&sp->mac_control.rings[off].napi);
7128 }
7129 else
7130 napi_disable(&sp->napi);
7131 }
7132
7133 /* disable Tx and Rx traffic on the NIC */
7134 if (do_io)
7135 stop_nic(sp);
7136
7137 s2io_rem_isr(sp);
7138
7139 /* stop the tx queue, indicate link down */
7140 s2io_link(sp, LINK_DOWN);
7141
7142 /* Check if the device is Quiescent and then Reset the NIC */
7143 while(do_io) {
7144 /* As per the HW requirement we need to replenish the
7145 * receive buffer to avoid the ring bump. Since there is
7146 * no intention of processing the Rx frame at this pointwe are
7147 * just settting the ownership bit of rxd in Each Rx
7148 * ring to HW and set the appropriate buffer size
7149 * based on the ring mode
7150 */
7151 rxd_owner_bit_reset(sp);
7152
7153 val64 = readq(&bar0->adapter_status);
7154 if (verify_xena_quiescence(sp)) {
7155 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7156 break;
7157 }
7158
7159 msleep(50);
7160 cnt++;
7161 if (cnt == 10) {
7162 DBG_PRINT(ERR_DBG,
7163 "s2io_close:Device not Quiescent ");
7164 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7165 (unsigned long long) val64);
7166 break;
7167 }
7168 }
7169 if (do_io)
7170 s2io_reset(sp);
7171
7172 /* Free all Tx buffers */
7173 free_tx_buffers(sp);
7174
7175 /* Free all Rx buffers */
7176 free_rx_buffers(sp);
7177
7178 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7179 }
7180
7181 static void s2io_card_down(struct s2io_nic * sp)
7182 {
7183 do_s2io_card_down(sp, 1);
7184 }
7185
7186 static int s2io_card_up(struct s2io_nic * sp)
7187 {
7188 int i, ret = 0;
7189 struct mac_info *mac_control;
7190 struct config_param *config;
7191 struct net_device *dev = (struct net_device *) sp->dev;
7192 u16 interruptible;
7193
7194 /* Initialize the H/W I/O registers */
7195 ret = init_nic(sp);
7196 if (ret != 0) {
7197 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7198 dev->name);
7199 if (ret != -EIO)
7200 s2io_reset(sp);
7201 return ret;
7202 }
7203
7204 /*
7205 * Initializing the Rx buffers. For now we are considering only 1
7206 * Rx ring and initializing buffers into 30 Rx blocks
7207 */
7208 mac_control = &sp->mac_control;
7209 config = &sp->config;
7210
7211 for (i = 0; i < config->rx_ring_num; i++) {
7212 mac_control->rings[i].mtu = dev->mtu;
7213 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7214 if (ret) {
7215 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7216 dev->name);
7217 s2io_reset(sp);
7218 free_rx_buffers(sp);
7219 return -ENOMEM;
7220 }
7221 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7222 mac_control->rings[i].rx_bufs_left);
7223 }
7224
7225 /* Initialise napi */
7226 if (config->napi) {
7227 int i;
7228 if (config->intr_type == MSI_X) {
7229 for (i = 0; i < sp->config.rx_ring_num; i++)
7230 napi_enable(&sp->mac_control.rings[i].napi);
7231 } else {
7232 napi_enable(&sp->napi);
7233 }
7234 }
7235
7236 /* Maintain the state prior to the open */
7237 if (sp->promisc_flg)
7238 sp->promisc_flg = 0;
7239 if (sp->m_cast_flg) {
7240 sp->m_cast_flg = 0;
7241 sp->all_multi_pos= 0;
7242 }
7243
7244 /* Setting its receive mode */
7245 s2io_set_multicast(dev);
7246
7247 if (sp->lro) {
7248 /* Initialize max aggregatable pkts per session based on MTU */
7249 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7250 /* Check if we can use(if specified) user provided value */
7251 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7252 sp->lro_max_aggr_per_sess = lro_max_pkts;
7253 }
7254
7255 /* Enable Rx Traffic and interrupts on the NIC */
7256 if (start_nic(sp)) {
7257 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7258 s2io_reset(sp);
7259 free_rx_buffers(sp);
7260 return -ENODEV;
7261 }
7262
7263 /* Add interrupt service routine */
7264 if (s2io_add_isr(sp) != 0) {
7265 if (sp->config.intr_type == MSI_X)
7266 s2io_rem_isr(sp);
7267 s2io_reset(sp);
7268 free_rx_buffers(sp);
7269 return -ENODEV;
7270 }
7271
7272 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7273
7274 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7275
7276 /* Enable select interrupts */
7277 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7278 if (sp->config.intr_type != INTA) {
7279 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7280 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7281 } else {
7282 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7283 interruptible |= TX_PIC_INTR;
7284 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7285 }
7286
7287 return 0;
7288 }
7289
7290 /**
7291 * s2io_restart_nic - Resets the NIC.
7292 * @data : long pointer to the device private structure
7293 * Description:
7294 * This function is scheduled to be run by the s2io_tx_watchdog
7295 * function after 0.5 secs to reset the NIC. The idea is to reduce
7296 * the run time of the watch dog routine which is run holding a
7297 * spin lock.
7298 */
7299
7300 static void s2io_restart_nic(struct work_struct *work)
7301 {
7302 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7303 struct net_device *dev = sp->dev;
7304
7305 rtnl_lock();
7306
7307 if (!netif_running(dev))
7308 goto out_unlock;
7309
7310 s2io_card_down(sp);
7311 if (s2io_card_up(sp)) {
7312 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7313 dev->name);
7314 }
7315 s2io_wake_all_tx_queue(sp);
7316 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7317 dev->name);
7318 out_unlock:
7319 rtnl_unlock();
7320 }
7321
7322 /**
7323 * s2io_tx_watchdog - Watchdog for transmit side.
7324 * @dev : Pointer to net device structure
7325 * Description:
7326 * This function is triggered if the Tx Queue is stopped
7327 * for a pre-defined amount of time when the Interface is still up.
7328 * If the Interface is jammed in such a situation, the hardware is
7329 * reset (by s2io_close) and restarted again (by s2io_open) to
7330 * overcome any problem that might have been caused in the hardware.
7331 * Return value:
7332 * void
7333 */
7334
7335 static void s2io_tx_watchdog(struct net_device *dev)
7336 {
7337 struct s2io_nic *sp = dev->priv;
7338
7339 if (netif_carrier_ok(dev)) {
7340 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7341 schedule_work(&sp->rst_timer_task);
7342 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7343 }
7344 }
7345
7346 /**
7347 * rx_osm_handler - To perform some OS related operations on SKB.
7348 * @sp: private member of the device structure,pointer to s2io_nic structure.
7349 * @skb : the socket buffer pointer.
7350 * @len : length of the packet
7351 * @cksum : FCS checksum of the frame.
7352 * @ring_no : the ring from which this RxD was extracted.
7353 * Description:
7354 * This function is called by the Rx interrupt serivce routine to perform
7355 * some OS related operations on the SKB before passing it to the upper
7356 * layers. It mainly checks if the checksum is OK, if so adds it to the
7357 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7358 * to the upper layer. If the checksum is wrong, it increments the Rx
7359 * packet error count, frees the SKB and returns error.
7360 * Return value:
7361 * SUCCESS on success and -1 on failure.
7362 */
7363 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7364 {
7365 struct s2io_nic *sp = ring_data->nic;
7366 struct net_device *dev = (struct net_device *) ring_data->dev;
7367 struct sk_buff *skb = (struct sk_buff *)
7368 ((unsigned long) rxdp->Host_Control);
7369 int ring_no = ring_data->ring_no;
7370 u16 l3_csum, l4_csum;
7371 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7372 struct lro *lro;
7373 u8 err_mask;
7374
7375 skb->dev = dev;
7376
7377 if (err) {
7378 /* Check for parity error */
7379 if (err & 0x1) {
7380 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7381 }
7382 err_mask = err >> 48;
7383 switch(err_mask) {
7384 case 1:
7385 sp->mac_control.stats_info->sw_stat.
7386 rx_parity_err_cnt++;
7387 break;
7388
7389 case 2:
7390 sp->mac_control.stats_info->sw_stat.
7391 rx_abort_cnt++;
7392 break;
7393
7394 case 3:
7395 sp->mac_control.stats_info->sw_stat.
7396 rx_parity_abort_cnt++;
7397 break;
7398
7399 case 4:
7400 sp->mac_control.stats_info->sw_stat.
7401 rx_rda_fail_cnt++;
7402 break;
7403
7404 case 5:
7405 sp->mac_control.stats_info->sw_stat.
7406 rx_unkn_prot_cnt++;
7407 break;
7408
7409 case 6:
7410 sp->mac_control.stats_info->sw_stat.
7411 rx_fcs_err_cnt++;
7412 break;
7413
7414 case 7:
7415 sp->mac_control.stats_info->sw_stat.
7416 rx_buf_size_err_cnt++;
7417 break;
7418
7419 case 8:
7420 sp->mac_control.stats_info->sw_stat.
7421 rx_rxd_corrupt_cnt++;
7422 break;
7423
7424 case 15:
7425 sp->mac_control.stats_info->sw_stat.
7426 rx_unkn_err_cnt++;
7427 break;
7428 }
7429 /*
7430 * Drop the packet if bad transfer code. Exception being
7431 * 0x5, which could be due to unsupported IPv6 extension header.
7432 * In this case, we let stack handle the packet.
7433 * Note that in this case, since checksum will be incorrect,
7434 * stack will validate the same.
7435 */
7436 if (err_mask != 0x5) {
7437 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7438 dev->name, err_mask);
7439 dev->stats.rx_crc_errors++;
7440 sp->mac_control.stats_info->sw_stat.mem_freed
7441 += skb->truesize;
7442 dev_kfree_skb(skb);
7443 ring_data->rx_bufs_left -= 1;
7444 rxdp->Host_Control = 0;
7445 return 0;
7446 }
7447 }
7448
7449 /* Updating statistics */
7450 ring_data->rx_packets++;
7451 rxdp->Host_Control = 0;
7452 if (sp->rxd_mode == RXD_MODE_1) {
7453 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7454
7455 ring_data->rx_bytes += len;
7456 skb_put(skb, len);
7457
7458 } else if (sp->rxd_mode == RXD_MODE_3B) {
7459 int get_block = ring_data->rx_curr_get_info.block_index;
7460 int get_off = ring_data->rx_curr_get_info.offset;
7461 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7462 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7463 unsigned char *buff = skb_push(skb, buf0_len);
7464
7465 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7466 ring_data->rx_bytes += buf0_len + buf2_len;
7467 memcpy(buff, ba->ba_0, buf0_len);
7468 skb_put(skb, buf2_len);
7469 }
7470
7471 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7472 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7473 (sp->rx_csum)) {
7474 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7475 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7476 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7477 /*
7478 * NIC verifies if the Checksum of the received
7479 * frame is Ok or not and accordingly returns
7480 * a flag in the RxD.
7481 */
7482 skb->ip_summed = CHECKSUM_UNNECESSARY;
7483 if (ring_data->lro) {
7484 u32 tcp_len;
7485 u8 *tcp;
7486 int ret = 0;
7487
7488 ret = s2io_club_tcp_session(ring_data,
7489 skb->data, &tcp, &tcp_len, &lro,
7490 rxdp, sp);
7491 switch (ret) {
7492 case 3: /* Begin anew */
7493 lro->parent = skb;
7494 goto aggregate;
7495 case 1: /* Aggregate */
7496 {
7497 lro_append_pkt(sp, lro,
7498 skb, tcp_len);
7499 goto aggregate;
7500 }
7501 case 4: /* Flush session */
7502 {
7503 lro_append_pkt(sp, lro,
7504 skb, tcp_len);
7505 queue_rx_frame(lro->parent,
7506 lro->vlan_tag);
7507 clear_lro_session(lro);
7508 sp->mac_control.stats_info->
7509 sw_stat.flush_max_pkts++;
7510 goto aggregate;
7511 }
7512 case 2: /* Flush both */
7513 lro->parent->data_len =
7514 lro->frags_len;
7515 sp->mac_control.stats_info->
7516 sw_stat.sending_both++;
7517 queue_rx_frame(lro->parent,
7518 lro->vlan_tag);
7519 clear_lro_session(lro);
7520 goto send_up;
7521 case 0: /* sessions exceeded */
7522 case -1: /* non-TCP or not
7523 * L2 aggregatable
7524 */
7525 case 5: /*
7526 * First pkt in session not
7527 * L3/L4 aggregatable
7528 */
7529 break;
7530 default:
7531 DBG_PRINT(ERR_DBG,
7532 "%s: Samadhana!!\n",
7533 __FUNCTION__);
7534 BUG();
7535 }
7536 }
7537 } else {
7538 /*
7539 * Packet with erroneous checksum, let the
7540 * upper layers deal with it.
7541 */
7542 skb->ip_summed = CHECKSUM_NONE;
7543 }
7544 } else
7545 skb->ip_summed = CHECKSUM_NONE;
7546
7547 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7548 send_up:
7549 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7550 dev->last_rx = jiffies;
7551 aggregate:
7552 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7553 return SUCCESS;
7554 }
7555
7556 /**
7557 * s2io_link - stops/starts the Tx queue.
7558 * @sp : private member of the device structure, which is a pointer to the
7559 * s2io_nic structure.
7560 * @link : inidicates whether link is UP/DOWN.
7561 * Description:
7562 * This function stops/starts the Tx queue depending on whether the link
7563 * status of the NIC is is down or up. This is called by the Alarm
7564 * interrupt handler whenever a link change interrupt comes up.
7565 * Return value:
7566 * void.
7567 */
7568
7569 static void s2io_link(struct s2io_nic * sp, int link)
7570 {
7571 struct net_device *dev = (struct net_device *) sp->dev;
7572
7573 if (link != sp->last_link_state) {
7574 init_tti(sp, link);
7575 if (link == LINK_DOWN) {
7576 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7577 s2io_stop_all_tx_queue(sp);
7578 netif_carrier_off(dev);
7579 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7580 sp->mac_control.stats_info->sw_stat.link_up_time =
7581 jiffies - sp->start_time;
7582 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7583 } else {
7584 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7585 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7586 sp->mac_control.stats_info->sw_stat.link_down_time =
7587 jiffies - sp->start_time;
7588 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7589 netif_carrier_on(dev);
7590 s2io_wake_all_tx_queue(sp);
7591 }
7592 }
7593 sp->last_link_state = link;
7594 sp->start_time = jiffies;
7595 }
7596
7597 /**
7598 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7599 * @sp : private member of the device structure, which is a pointer to the
7600 * s2io_nic structure.
7601 * Description:
7602 * This function initializes a few of the PCI and PCI-X configuration registers
7603 * with recommended values.
7604 * Return value:
7605 * void
7606 */
7607
7608 static void s2io_init_pci(struct s2io_nic * sp)
7609 {
7610 u16 pci_cmd = 0, pcix_cmd = 0;
7611
7612 /* Enable Data Parity Error Recovery in PCI-X command register. */
7613 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7614 &(pcix_cmd));
7615 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7616 (pcix_cmd | 1));
7617 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7618 &(pcix_cmd));
7619
7620 /* Set the PErr Response bit in PCI command register. */
7621 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7622 pci_write_config_word(sp->pdev, PCI_COMMAND,
7623 (pci_cmd | PCI_COMMAND_PARITY));
7624 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7625 }
7626
7627 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7628 u8 *dev_multiq)
7629 {
7630 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7631 (tx_fifo_num < 1)) {
7632 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7633 "(%d) not supported\n", tx_fifo_num);
7634
7635 if (tx_fifo_num < 1)
7636 tx_fifo_num = 1;
7637 else
7638 tx_fifo_num = MAX_TX_FIFOS;
7639
7640 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7641 DBG_PRINT(ERR_DBG, "tx fifos\n");
7642 }
7643
7644 if (multiq)
7645 *dev_multiq = multiq;
7646
7647 if (tx_steering_type && (1 == tx_fifo_num)) {
7648 if (tx_steering_type != TX_DEFAULT_STEERING)
7649 DBG_PRINT(ERR_DBG,
7650 "s2io: Tx steering is not supported with "
7651 "one fifo. Disabling Tx steering.\n");
7652 tx_steering_type = NO_STEERING;
7653 }
7654
7655 if ((tx_steering_type < NO_STEERING) ||
7656 (tx_steering_type > TX_DEFAULT_STEERING)) {
7657 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7658 "supported\n");
7659 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7660 tx_steering_type = NO_STEERING;
7661 }
7662
7663 if (rx_ring_num > MAX_RX_RINGS) {
7664 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7665 "supported\n");
7666 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7667 MAX_RX_RINGS);
7668 rx_ring_num = MAX_RX_RINGS;
7669 }
7670
7671 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7672 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7673 "Defaulting to INTA\n");
7674 *dev_intr_type = INTA;
7675 }
7676
7677 if ((*dev_intr_type == MSI_X) &&
7678 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7679 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7680 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7681 "Defaulting to INTA\n");
7682 *dev_intr_type = INTA;
7683 }
7684
7685 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7686 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7687 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7688 rx_ring_mode = 1;
7689 }
7690 return SUCCESS;
7691 }
7692
7693 /**
7694 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7695 * or Traffic class respectively.
7696 * @nic: device private variable
7697 * Description: The function configures the receive steering to
7698 * desired receive ring.
7699 * Return Value: SUCCESS on success and
7700 * '-1' on failure (endian settings incorrect).
7701 */
7702 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7703 {
7704 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7705 register u64 val64 = 0;
7706
7707 if (ds_codepoint > 63)
7708 return FAILURE;
7709
7710 val64 = RTS_DS_MEM_DATA(ring);
7711 writeq(val64, &bar0->rts_ds_mem_data);
7712
7713 val64 = RTS_DS_MEM_CTRL_WE |
7714 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7715 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7716
7717 writeq(val64, &bar0->rts_ds_mem_ctrl);
7718
7719 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7720 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7721 S2IO_BIT_RESET);
7722 }
7723
7724 /**
7725 * s2io_init_nic - Initialization of the adapter .
7726 * @pdev : structure containing the PCI related information of the device.
7727 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7728 * Description:
7729 * The function initializes an adapter identified by the pci_dec structure.
7730 * All OS related initialization including memory and device structure and
7731 * initlaization of the device private variable is done. Also the swapper
7732 * control register is initialized to enable read and write into the I/O
7733 * registers of the device.
7734 * Return value:
7735 * returns 0 on success and negative on failure.
7736 */
7737
7738 static int __devinit
7739 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7740 {
7741 struct s2io_nic *sp;
7742 struct net_device *dev;
7743 int i, j, ret;
7744 int dma_flag = FALSE;
7745 u32 mac_up, mac_down;
7746 u64 val64 = 0, tmp64 = 0;
7747 struct XENA_dev_config __iomem *bar0 = NULL;
7748 u16 subid;
7749 struct mac_info *mac_control;
7750 struct config_param *config;
7751 int mode;
7752 u8 dev_intr_type = intr_type;
7753 u8 dev_multiq = 0;
7754 DECLARE_MAC_BUF(mac);
7755
7756 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7757 if (ret)
7758 return ret;
7759
7760 if ((ret = pci_enable_device(pdev))) {
7761 DBG_PRINT(ERR_DBG,
7762 "s2io_init_nic: pci_enable_device failed\n");
7763 return ret;
7764 }
7765
7766 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7767 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7768 dma_flag = TRUE;
7769 if (pci_set_consistent_dma_mask
7770 (pdev, DMA_64BIT_MASK)) {
7771 DBG_PRINT(ERR_DBG,
7772 "Unable to obtain 64bit DMA for \
7773 consistent allocations\n");
7774 pci_disable_device(pdev);
7775 return -ENOMEM;
7776 }
7777 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7778 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7779 } else {
7780 pci_disable_device(pdev);
7781 return -ENOMEM;
7782 }
7783 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7784 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7785 pci_disable_device(pdev);
7786 return -ENODEV;
7787 }
7788 if (dev_multiq)
7789 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7790 else
7791 dev = alloc_etherdev(sizeof(struct s2io_nic));
7792 if (dev == NULL) {
7793 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7794 pci_disable_device(pdev);
7795 pci_release_regions(pdev);
7796 return -ENODEV;
7797 }
7798
7799 pci_set_master(pdev);
7800 pci_set_drvdata(pdev, dev);
7801 SET_NETDEV_DEV(dev, &pdev->dev);
7802
7803 /* Private member variable initialized to s2io NIC structure */
7804 sp = dev->priv;
7805 memset(sp, 0, sizeof(struct s2io_nic));
7806 sp->dev = dev;
7807 sp->pdev = pdev;
7808 sp->high_dma_flag = dma_flag;
7809 sp->device_enabled_once = FALSE;
7810 if (rx_ring_mode == 1)
7811 sp->rxd_mode = RXD_MODE_1;
7812 if (rx_ring_mode == 2)
7813 sp->rxd_mode = RXD_MODE_3B;
7814
7815 sp->config.intr_type = dev_intr_type;
7816
7817 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7818 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7819 sp->device_type = XFRAME_II_DEVICE;
7820 else
7821 sp->device_type = XFRAME_I_DEVICE;
7822
7823 sp->lro = lro_enable;
7824
7825 /* Initialize some PCI/PCI-X fields of the NIC. */
7826 s2io_init_pci(sp);
7827
7828 /*
7829 * Setting the device configuration parameters.
7830 * Most of these parameters can be specified by the user during
7831 * module insertion as they are module loadable parameters. If
7832 * these parameters are not not specified during load time, they
7833 * are initialized with default values.
7834 */
7835 mac_control = &sp->mac_control;
7836 config = &sp->config;
7837
7838 config->napi = napi;
7839 config->tx_steering_type = tx_steering_type;
7840
7841 /* Tx side parameters. */
7842 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7843 config->tx_fifo_num = MAX_TX_FIFOS;
7844 else
7845 config->tx_fifo_num = tx_fifo_num;
7846
7847 /* Initialize the fifos used for tx steering */
7848 if (config->tx_fifo_num < 5) {
7849 if (config->tx_fifo_num == 1)
7850 sp->total_tcp_fifos = 1;
7851 else
7852 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7853 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7854 sp->total_udp_fifos = 1;
7855 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7856 } else {
7857 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7858 FIFO_OTHER_MAX_NUM);
7859 sp->udp_fifo_idx = sp->total_tcp_fifos;
7860 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7861 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7862 }
7863
7864 config->multiq = dev_multiq;
7865 for (i = 0; i < config->tx_fifo_num; i++) {
7866 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7867 config->tx_cfg[i].fifo_priority = i;
7868 }
7869
7870 /* mapping the QoS priority to the configured fifos */
7871 for (i = 0; i < MAX_TX_FIFOS; i++)
7872 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7873
7874 /* map the hashing selector table to the configured fifos */
7875 for (i = 0; i < config->tx_fifo_num; i++)
7876 sp->fifo_selector[i] = fifo_selector[i];
7877
7878
7879 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7880 for (i = 0; i < config->tx_fifo_num; i++) {
7881 config->tx_cfg[i].f_no_snoop =
7882 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7883 if (config->tx_cfg[i].fifo_len < 65) {
7884 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7885 break;
7886 }
7887 }
7888 /* + 2 because one Txd for skb->data and one Txd for UFO */
7889 config->max_txds = MAX_SKB_FRAGS + 2;
7890
7891 /* Rx side parameters. */
7892 config->rx_ring_num = rx_ring_num;
7893 for (i = 0; i < config->rx_ring_num; i++) {
7894 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7895 (rxd_count[sp->rxd_mode] + 1);
7896 config->rx_cfg[i].ring_priority = i;
7897 mac_control->rings[i].rx_bufs_left = 0;
7898 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7899 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7900 mac_control->rings[i].pdev = sp->pdev;
7901 mac_control->rings[i].dev = sp->dev;
7902 }
7903
7904 for (i = 0; i < rx_ring_num; i++) {
7905 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7906 config->rx_cfg[i].f_no_snoop =
7907 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7908 }
7909
7910 /* Setting Mac Control parameters */
7911 mac_control->rmac_pause_time = rmac_pause_time;
7912 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7913 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7914
7915
7916 /* initialize the shared memory used by the NIC and the host */
7917 if (init_shared_mem(sp)) {
7918 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7919 dev->name);
7920 ret = -ENOMEM;
7921 goto mem_alloc_failed;
7922 }
7923
7924 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7925 pci_resource_len(pdev, 0));
7926 if (!sp->bar0) {
7927 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7928 dev->name);
7929 ret = -ENOMEM;
7930 goto bar0_remap_failed;
7931 }
7932
7933 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7934 pci_resource_len(pdev, 2));
7935 if (!sp->bar1) {
7936 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7937 dev->name);
7938 ret = -ENOMEM;
7939 goto bar1_remap_failed;
7940 }
7941
7942 dev->irq = pdev->irq;
7943 dev->base_addr = (unsigned long) sp->bar0;
7944
7945 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7946 for (j = 0; j < MAX_TX_FIFOS; j++) {
7947 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7948 (sp->bar1 + (j * 0x00020000));
7949 }
7950
7951 /* Driver entry points */
7952 dev->open = &s2io_open;
7953 dev->stop = &s2io_close;
7954 dev->hard_start_xmit = &s2io_xmit;
7955 dev->get_stats = &s2io_get_stats;
7956 dev->set_multicast_list = &s2io_set_multicast;
7957 dev->do_ioctl = &s2io_ioctl;
7958 dev->set_mac_address = &s2io_set_mac_addr;
7959 dev->change_mtu = &s2io_change_mtu;
7960 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7961 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7962 dev->vlan_rx_register = s2io_vlan_rx_register;
7963 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7964
7965 /*
7966 * will use eth_mac_addr() for dev->set_mac_address
7967 * mac address will be set every time dev->open() is called
7968 */
7969 #ifdef CONFIG_NET_POLL_CONTROLLER
7970 dev->poll_controller = s2io_netpoll;
7971 #endif
7972
7973 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7974 if (sp->high_dma_flag == TRUE)
7975 dev->features |= NETIF_F_HIGHDMA;
7976 dev->features |= NETIF_F_TSO;
7977 dev->features |= NETIF_F_TSO6;
7978 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7979 dev->features |= NETIF_F_UFO;
7980 dev->features |= NETIF_F_HW_CSUM;
7981 }
7982 dev->tx_timeout = &s2io_tx_watchdog;
7983 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7984 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7985 INIT_WORK(&sp->set_link_task, s2io_set_link);
7986
7987 pci_save_state(sp->pdev);
7988
7989 /* Setting swapper control on the NIC, for proper reset operation */
7990 if (s2io_set_swapper(sp)) {
7991 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7992 dev->name);
7993 ret = -EAGAIN;
7994 goto set_swap_failed;
7995 }
7996
7997 /* Verify if the Herc works on the slot its placed into */
7998 if (sp->device_type & XFRAME_II_DEVICE) {
7999 mode = s2io_verify_pci_mode(sp);
8000 if (mode < 0) {
8001 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
8002 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8003 ret = -EBADSLT;
8004 goto set_swap_failed;
8005 }
8006 }
8007
8008 if (sp->config.intr_type == MSI_X) {
8009 sp->num_entries = config->rx_ring_num + 1;
8010 ret = s2io_enable_msi_x(sp);
8011
8012 if (!ret) {
8013 ret = s2io_test_msi(sp);
8014 /* rollback MSI-X, will re-enable during add_isr() */
8015 remove_msix_isr(sp);
8016 }
8017 if (ret) {
8018
8019 DBG_PRINT(ERR_DBG,
8020 "%s: MSI-X requested but failed to enable\n",
8021 dev->name);
8022 sp->config.intr_type = INTA;
8023 }
8024 }
8025
8026 if (config->intr_type == MSI_X) {
8027 for (i = 0; i < config->rx_ring_num ; i++)
8028 netif_napi_add(dev, &mac_control->rings[i].napi,
8029 s2io_poll_msix, 64);
8030 } else {
8031 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8032 }
8033
8034 /* Not needed for Herc */
8035 if (sp->device_type & XFRAME_I_DEVICE) {
8036 /*
8037 * Fix for all "FFs" MAC address problems observed on
8038 * Alpha platforms
8039 */
8040 fix_mac_address(sp);
8041 s2io_reset(sp);
8042 }
8043
8044 /*
8045 * MAC address initialization.
8046 * For now only one mac address will be read and used.
8047 */
8048 bar0 = sp->bar0;
8049 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8050 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8051 writeq(val64, &bar0->rmac_addr_cmd_mem);
8052 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8053 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8054 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8055 mac_down = (u32) tmp64;
8056 mac_up = (u32) (tmp64 >> 32);
8057
8058 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8059 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8060 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8061 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8062 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8063 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8064
8065 /* Set the factory defined MAC address initially */
8066 dev->addr_len = ETH_ALEN;
8067 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8068 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8069
8070 /* initialize number of multicast & unicast MAC entries variables */
8071 if (sp->device_type == XFRAME_I_DEVICE) {
8072 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8073 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8074 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8075 } else if (sp->device_type == XFRAME_II_DEVICE) {
8076 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8077 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8078 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8079 }
8080
8081 /* store mac addresses from CAM to s2io_nic structure */
8082 do_s2io_store_unicast_mc(sp);
8083
8084 /* Configure MSIX vector for number of rings configured plus one */
8085 if ((sp->device_type == XFRAME_II_DEVICE) &&
8086 (config->intr_type == MSI_X))
8087 sp->num_entries = config->rx_ring_num + 1;
8088
8089 /* Store the values of the MSIX table in the s2io_nic structure */
8090 store_xmsi_data(sp);
8091 /* reset Nic and bring it to known state */
8092 s2io_reset(sp);
8093
8094 /*
8095 * Initialize link state flags
8096 * and the card state parameter
8097 */
8098 sp->state = 0;
8099
8100 /* Initialize spinlocks */
8101 for (i = 0; i < sp->config.tx_fifo_num; i++)
8102 spin_lock_init(&mac_control->fifos[i].tx_lock);
8103
8104 /*
8105 * SXE-002: Configure link and activity LED to init state
8106 * on driver load.
8107 */
8108 subid = sp->pdev->subsystem_device;
8109 if ((subid & 0xFF) >= 0x07) {
8110 val64 = readq(&bar0->gpio_control);
8111 val64 |= 0x0000800000000000ULL;
8112 writeq(val64, &bar0->gpio_control);
8113 val64 = 0x0411040400000000ULL;
8114 writeq(val64, (void __iomem *) bar0 + 0x2700);
8115 val64 = readq(&bar0->gpio_control);
8116 }
8117
8118 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8119
8120 if (register_netdev(dev)) {
8121 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8122 ret = -ENODEV;
8123 goto register_failed;
8124 }
8125 s2io_vpd_read(sp);
8126 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8127 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8128 sp->product_name, pdev->revision);
8129 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8130 s2io_driver_version);
8131 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8132 dev->name, print_mac(mac, dev->dev_addr));
8133 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8134 if (sp->device_type & XFRAME_II_DEVICE) {
8135 mode = s2io_print_pci_mode(sp);
8136 if (mode < 0) {
8137 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8138 ret = -EBADSLT;
8139 unregister_netdev(dev);
8140 goto set_swap_failed;
8141 }
8142 }
8143 switch(sp->rxd_mode) {
8144 case RXD_MODE_1:
8145 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8146 dev->name);
8147 break;
8148 case RXD_MODE_3B:
8149 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8150 dev->name);
8151 break;
8152 }
8153
8154 switch (sp->config.napi) {
8155 case 0:
8156 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8157 break;
8158 case 1:
8159 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8160 break;
8161 }
8162
8163 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8164 sp->config.tx_fifo_num);
8165
8166 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8167 sp->config.rx_ring_num);
8168
8169 switch(sp->config.intr_type) {
8170 case INTA:
8171 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8172 break;
8173 case MSI_X:
8174 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8175 break;
8176 }
8177 if (sp->config.multiq) {
8178 for (i = 0; i < sp->config.tx_fifo_num; i++)
8179 mac_control->fifos[i].multiq = config->multiq;
8180 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8181 dev->name);
8182 } else
8183 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8184 dev->name);
8185
8186 switch (sp->config.tx_steering_type) {
8187 case NO_STEERING:
8188 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8189 " transmit\n", dev->name);
8190 break;
8191 case TX_PRIORITY_STEERING:
8192 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8193 " transmit\n", dev->name);
8194 break;
8195 case TX_DEFAULT_STEERING:
8196 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8197 " transmit\n", dev->name);
8198 }
8199
8200 if (sp->lro)
8201 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8202 dev->name);
8203 if (ufo)
8204 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8205 " enabled\n", dev->name);
8206 /* Initialize device name */
8207 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8208
8209 /*
8210 * Make Link state as off at this point, when the Link change
8211 * interrupt comes the state will be automatically changed to
8212 * the right state.
8213 */
8214 netif_carrier_off(dev);
8215
8216 return 0;
8217
8218 register_failed:
8219 set_swap_failed:
8220 iounmap(sp->bar1);
8221 bar1_remap_failed:
8222 iounmap(sp->bar0);
8223 bar0_remap_failed:
8224 mem_alloc_failed:
8225 free_shared_mem(sp);
8226 pci_disable_device(pdev);
8227 pci_release_regions(pdev);
8228 pci_set_drvdata(pdev, NULL);
8229 free_netdev(dev);
8230
8231 return ret;
8232 }
8233
8234 /**
8235 * s2io_rem_nic - Free the PCI device
8236 * @pdev: structure containing the PCI related information of the device.
8237 * Description: This function is called by the Pci subsystem to release a
8238 * PCI device and free up all resource held up by the device. This could
8239 * be in response to a Hot plug event or when the driver is to be removed
8240 * from memory.
8241 */
8242
8243 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8244 {
8245 struct net_device *dev =
8246 (struct net_device *) pci_get_drvdata(pdev);
8247 struct s2io_nic *sp;
8248
8249 if (dev == NULL) {
8250 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8251 return;
8252 }
8253
8254 flush_scheduled_work();
8255
8256 sp = dev->priv;
8257 unregister_netdev(dev);
8258
8259 free_shared_mem(sp);
8260 iounmap(sp->bar0);
8261 iounmap(sp->bar1);
8262 pci_release_regions(pdev);
8263 pci_set_drvdata(pdev, NULL);
8264 free_netdev(dev);
8265 pci_disable_device(pdev);
8266 }
8267
8268 /**
8269 * s2io_starter - Entry point for the driver
8270 * Description: This function is the entry point for the driver. It verifies
8271 * the module loadable parameters and initializes PCI configuration space.
8272 */
8273
8274 static int __init s2io_starter(void)
8275 {
8276 return pci_register_driver(&s2io_driver);
8277 }
8278
8279 /**
8280 * s2io_closer - Cleanup routine for the driver
8281 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8282 */
8283
8284 static __exit void s2io_closer(void)
8285 {
8286 pci_unregister_driver(&s2io_driver);
8287 DBG_PRINT(INIT_DBG, "cleanup done\n");
8288 }
8289
8290 module_init(s2io_starter);
8291 module_exit(s2io_closer);
8292
8293 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8294 struct tcphdr **tcp, struct RxD_t *rxdp,
8295 struct s2io_nic *sp)
8296 {
8297 int ip_off;
8298 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8299
8300 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8301 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8302 __FUNCTION__);
8303 return -1;
8304 }
8305
8306 /* Checking for DIX type or DIX type with VLAN */
8307 if ((l2_type == 0)
8308 || (l2_type == 4)) {
8309 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8310 /*
8311 * If vlan stripping is disabled and the frame is VLAN tagged,
8312 * shift the offset by the VLAN header size bytes.
8313 */
8314 if ((!vlan_strip_flag) &&
8315 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8316 ip_off += HEADER_VLAN_SIZE;
8317 } else {
8318 /* LLC, SNAP etc are considered non-mergeable */
8319 return -1;
8320 }
8321
8322 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8323 ip_len = (u8)((*ip)->ihl);
8324 ip_len <<= 2;
8325 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8326
8327 return 0;
8328 }
8329
8330 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8331 struct tcphdr *tcp)
8332 {
8333 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8334 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8335 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8336 return -1;
8337 return 0;
8338 }
8339
8340 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8341 {
8342 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8343 }
8344
8345 static void initiate_new_session(struct lro *lro, u8 *l2h,
8346 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8347 {
8348 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8349 lro->l2h = l2h;
8350 lro->iph = ip;
8351 lro->tcph = tcp;
8352 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8353 lro->tcp_ack = tcp->ack_seq;
8354 lro->sg_num = 1;
8355 lro->total_len = ntohs(ip->tot_len);
8356 lro->frags_len = 0;
8357 lro->vlan_tag = vlan_tag;
8358 /*
8359 * check if we saw TCP timestamp. Other consistency checks have
8360 * already been done.
8361 */
8362 if (tcp->doff == 8) {
8363 __be32 *ptr;
8364 ptr = (__be32 *)(tcp+1);
8365 lro->saw_ts = 1;
8366 lro->cur_tsval = ntohl(*(ptr+1));
8367 lro->cur_tsecr = *(ptr+2);
8368 }
8369 lro->in_use = 1;
8370 }
8371
8372 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8373 {
8374 struct iphdr *ip = lro->iph;
8375 struct tcphdr *tcp = lro->tcph;
8376 __sum16 nchk;
8377 struct stat_block *statinfo = sp->mac_control.stats_info;
8378 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8379
8380 /* Update L3 header */
8381 ip->tot_len = htons(lro->total_len);
8382 ip->check = 0;
8383 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8384 ip->check = nchk;
8385
8386 /* Update L4 header */
8387 tcp->ack_seq = lro->tcp_ack;
8388 tcp->window = lro->window;
8389
8390 /* Update tsecr field if this session has timestamps enabled */
8391 if (lro->saw_ts) {
8392 __be32 *ptr = (__be32 *)(tcp + 1);
8393 *(ptr+2) = lro->cur_tsecr;
8394 }
8395
8396 /* Update counters required for calculation of
8397 * average no. of packets aggregated.
8398 */
8399 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8400 statinfo->sw_stat.num_aggregations++;
8401 }
8402
8403 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8404 struct tcphdr *tcp, u32 l4_pyld)
8405 {
8406 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8407 lro->total_len += l4_pyld;
8408 lro->frags_len += l4_pyld;
8409 lro->tcp_next_seq += l4_pyld;
8410 lro->sg_num++;
8411
8412 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8413 lro->tcp_ack = tcp->ack_seq;
8414 lro->window = tcp->window;
8415
8416 if (lro->saw_ts) {
8417 __be32 *ptr;
8418 /* Update tsecr and tsval from this packet */
8419 ptr = (__be32 *)(tcp+1);
8420 lro->cur_tsval = ntohl(*(ptr+1));
8421 lro->cur_tsecr = *(ptr + 2);
8422 }
8423 }
8424
8425 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8426 struct tcphdr *tcp, u32 tcp_pyld_len)
8427 {
8428 u8 *ptr;
8429
8430 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8431
8432 if (!tcp_pyld_len) {
8433 /* Runt frame or a pure ack */
8434 return -1;
8435 }
8436
8437 if (ip->ihl != 5) /* IP has options */
8438 return -1;
8439
8440 /* If we see CE codepoint in IP header, packet is not mergeable */
8441 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8442 return -1;
8443
8444 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8445 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8446 tcp->ece || tcp->cwr || !tcp->ack) {
8447 /*
8448 * Currently recognize only the ack control word and
8449 * any other control field being set would result in
8450 * flushing the LRO session
8451 */
8452 return -1;
8453 }
8454
8455 /*
8456 * Allow only one TCP timestamp option. Don't aggregate if
8457 * any other options are detected.
8458 */
8459 if (tcp->doff != 5 && tcp->doff != 8)
8460 return -1;
8461
8462 if (tcp->doff == 8) {
8463 ptr = (u8 *)(tcp + 1);
8464 while (*ptr == TCPOPT_NOP)
8465 ptr++;
8466 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8467 return -1;
8468
8469 /* Ensure timestamp value increases monotonically */
8470 if (l_lro)
8471 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8472 return -1;
8473
8474 /* timestamp echo reply should be non-zero */
8475 if (*((__be32 *)(ptr+6)) == 0)
8476 return -1;
8477 }
8478
8479 return 0;
8480 }
8481
8482 static int
8483 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8484 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8485 struct s2io_nic *sp)
8486 {
8487 struct iphdr *ip;
8488 struct tcphdr *tcph;
8489 int ret = 0, i;
8490 u16 vlan_tag = 0;
8491
8492 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8493 rxdp, sp))) {
8494 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8495 ip->saddr, ip->daddr);
8496 } else
8497 return ret;
8498
8499 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8500 tcph = (struct tcphdr *)*tcp;
8501 *tcp_len = get_l4_pyld_length(ip, tcph);
8502 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8503 struct lro *l_lro = &ring_data->lro0_n[i];
8504 if (l_lro->in_use) {
8505 if (check_for_socket_match(l_lro, ip, tcph))
8506 continue;
8507 /* Sock pair matched */
8508 *lro = l_lro;
8509
8510 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8511 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8512 "0x%x, actual 0x%x\n", __FUNCTION__,
8513 (*lro)->tcp_next_seq,
8514 ntohl(tcph->seq));
8515
8516 sp->mac_control.stats_info->
8517 sw_stat.outof_sequence_pkts++;
8518 ret = 2;
8519 break;
8520 }
8521
8522 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8523 ret = 1; /* Aggregate */
8524 else
8525 ret = 2; /* Flush both */
8526 break;
8527 }
8528 }
8529
8530 if (ret == 0) {
8531 /* Before searching for available LRO objects,
8532 * check if the pkt is L3/L4 aggregatable. If not
8533 * don't create new LRO session. Just send this
8534 * packet up.
8535 */
8536 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8537 return 5;
8538 }
8539
8540 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8541 struct lro *l_lro = &ring_data->lro0_n[i];
8542 if (!(l_lro->in_use)) {
8543 *lro = l_lro;
8544 ret = 3; /* Begin anew */
8545 break;
8546 }
8547 }
8548 }
8549
8550 if (ret == 0) { /* sessions exceeded */
8551 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8552 __FUNCTION__);
8553 *lro = NULL;
8554 return ret;
8555 }
8556
8557 switch (ret) {
8558 case 3:
8559 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8560 vlan_tag);
8561 break;
8562 case 2:
8563 update_L3L4_header(sp, *lro);
8564 break;
8565 case 1:
8566 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8567 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8568 update_L3L4_header(sp, *lro);
8569 ret = 4; /* Flush the LRO */
8570 }
8571 break;
8572 default:
8573 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8574 __FUNCTION__);
8575 break;
8576 }
8577
8578 return ret;
8579 }
8580
8581 static void clear_lro_session(struct lro *lro)
8582 {
8583 static u16 lro_struct_size = sizeof(struct lro);
8584
8585 memset(lro, 0, lro_struct_size);
8586 }
8587
8588 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8589 {
8590 struct net_device *dev = skb->dev;
8591 struct s2io_nic *sp = dev->priv;
8592
8593 skb->protocol = eth_type_trans(skb, dev);
8594 if (sp->vlgrp && vlan_tag
8595 && (vlan_strip_flag)) {
8596 /* Queueing the vlan frame to the upper layer */
8597 if (sp->config.napi)
8598 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8599 else
8600 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8601 } else {
8602 if (sp->config.napi)
8603 netif_receive_skb(skb);
8604 else
8605 netif_rx(skb);
8606 }
8607 }
8608
8609 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8610 struct sk_buff *skb,
8611 u32 tcp_len)
8612 {
8613 struct sk_buff *first = lro->parent;
8614
8615 first->len += tcp_len;
8616 first->data_len = lro->frags_len;
8617 skb_pull(skb, (skb->len - tcp_len));
8618 if (skb_shinfo(first)->frag_list)
8619 lro->last_frag->next = skb;
8620 else
8621 skb_shinfo(first)->frag_list = skb;
8622 first->truesize += skb->truesize;
8623 lro->last_frag = skb;
8624 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8625 return;
8626 }
8627
8628 /**
8629 * s2io_io_error_detected - called when PCI error is detected
8630 * @pdev: Pointer to PCI device
8631 * @state: The current pci connection state
8632 *
8633 * This function is called after a PCI bus error affecting
8634 * this device has been detected.
8635 */
8636 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8637 pci_channel_state_t state)
8638 {
8639 struct net_device *netdev = pci_get_drvdata(pdev);
8640 struct s2io_nic *sp = netdev->priv;
8641
8642 netif_device_detach(netdev);
8643
8644 if (netif_running(netdev)) {
8645 /* Bring down the card, while avoiding PCI I/O */
8646 do_s2io_card_down(sp, 0);
8647 }
8648 pci_disable_device(pdev);
8649
8650 return PCI_ERS_RESULT_NEED_RESET;
8651 }
8652
8653 /**
8654 * s2io_io_slot_reset - called after the pci bus has been reset.
8655 * @pdev: Pointer to PCI device
8656 *
8657 * Restart the card from scratch, as if from a cold-boot.
8658 * At this point, the card has exprienced a hard reset,
8659 * followed by fixups by BIOS, and has its config space
8660 * set up identically to what it was at cold boot.
8661 */
8662 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8663 {
8664 struct net_device *netdev = pci_get_drvdata(pdev);
8665 struct s2io_nic *sp = netdev->priv;
8666
8667 if (pci_enable_device(pdev)) {
8668 printk(KERN_ERR "s2io: "
8669 "Cannot re-enable PCI device after reset.\n");
8670 return PCI_ERS_RESULT_DISCONNECT;
8671 }
8672
8673 pci_set_master(pdev);
8674 s2io_reset(sp);
8675
8676 return PCI_ERS_RESULT_RECOVERED;
8677 }
8678
8679 /**
8680 * s2io_io_resume - called when traffic can start flowing again.
8681 * @pdev: Pointer to PCI device
8682 *
8683 * This callback is called when the error recovery driver tells
8684 * us that its OK to resume normal operation.
8685 */
8686 static void s2io_io_resume(struct pci_dev *pdev)
8687 {
8688 struct net_device *netdev = pci_get_drvdata(pdev);
8689 struct s2io_nic *sp = netdev->priv;
8690
8691 if (netif_running(netdev)) {
8692 if (s2io_card_up(sp)) {
8693 printk(KERN_ERR "s2io: "
8694 "Can't bring device back up after reset.\n");
8695 return;
8696 }
8697
8698 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8699 s2io_card_down(sp);
8700 printk(KERN_ERR "s2io: "
8701 "Can't resetore mac addr after reset.\n");
8702 return;
8703 }
8704 }
8705
8706 netif_device_attach(netdev);
8707 netif_tx_wake_all_queues(netdev);
8708 }
This page took 0.265355 seconds and 5 git commands to generate.