Merge branch 'omap-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.17"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104 }
105
106 /*
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123 struct mac_info *mac_control;
124
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
219 {"rmac_pause_cnt"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
241 {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
260 {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
299 {"mem_allocated"},
300 {"mem_freed"},
301 {"link_up_cnt"},
302 {"link_down_cnt"},
303 {"link_up_time"},
304 {"link_down_time"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340 ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348
349 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
357
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 {
361 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367 }
368 /* Add the vlan */
369 static void s2io_vlan_rx_register(struct net_device *dev,
370 struct vlan_group *grp)
371 {
372 struct s2io_nic *nic = dev->priv;
373 unsigned long flags;
374
375 spin_lock_irqsave(&nic->tx_lock, flags);
376 nic->vlgrp = grp;
377 spin_unlock_irqrestore(&nic->tx_lock, flags);
378 }
379
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
382
383 /*
384 * Constants to be programmed into the Xena's registers, to configure
385 * the XAUI.
386 */
387
388 #define END_SIGN 0x0
389 static const u64 herc_act_dtx_cfg[] = {
390 /* Set address */
391 0x8000051536750000ULL, 0x80000515367500E0ULL,
392 /* Write data */
393 0x8000051536750004ULL, 0x80000515367500E4ULL,
394 /* Set address */
395 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396 /* Write data */
397 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398 /* Set address */
399 0x801205150D440000ULL, 0x801205150D4400E0ULL,
400 /* Write data */
401 0x801205150D440004ULL, 0x801205150D4400E4ULL,
402 /* Set address */
403 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404 /* Write data */
405 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406 /* Done */
407 END_SIGN
408 };
409
410 static const u64 xena_dtx_cfg[] = {
411 /* Set address */
412 0x8000051500000000ULL, 0x80000515000000E0ULL,
413 /* Write data */
414 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415 /* Set address */
416 0x8001051500000000ULL, 0x80010515000000E0ULL,
417 /* Write data */
418 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419 /* Set address */
420 0x8002051500000000ULL, 0x80020515000000E0ULL,
421 /* Write data */
422 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423 END_SIGN
424 };
425
426 /*
427 * Constants for Fixing the MacAddress problem seen mostly on
428 * Alpha machines.
429 */
430 static const u64 fix_mac[] = {
431 0x0060000000000000ULL, 0x0060600000000000ULL,
432 0x0040600000000000ULL, 0x0000600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0060600000000000ULL,
443 0x0020600000000000ULL, 0x0000600000000000ULL,
444 0x0040600000000000ULL, 0x0060600000000000ULL,
445 END_SIGN
446 };
447
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
450
451
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
455
456
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
473
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475 * aggregation happens until we hit max IP pkt size(64K)
476 */
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
479
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
483
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
490
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
494
495 /*
496 * S2IO device table.
497 * This table lists all the devices that this driver supports.
498 */
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501 PCI_ANY_ID, PCI_ANY_ID},
502 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503 PCI_ANY_ID, PCI_ANY_ID},
504 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505 PCI_ANY_ID, PCI_ANY_ID},
506 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507 PCI_ANY_ID, PCI_ANY_ID},
508 {0,}
509 };
510
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
512
513 static struct pci_error_handlers s2io_err_handler = {
514 .error_detected = s2io_io_error_detected,
515 .slot_reset = s2io_io_slot_reset,
516 .resume = s2io_io_resume,
517 };
518
519 static struct pci_driver s2io_driver = {
520 .name = "S2IO",
521 .id_table = s2io_tbl,
522 .probe = s2io_init_nic,
523 .remove = __devexit_p(s2io_rem_nic),
524 .err_handler = &s2io_err_handler,
525 };
526
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
529
530 /**
531 * init_shared_mem - Allocation and Initialization of Memory
532 * @nic: Device private variable.
533 * Description: The function allocates all the memory areas shared
534 * between the NIC and the driver. This includes Tx descriptors,
535 * Rx descriptors and the statistics block.
536 */
537
538 static int init_shared_mem(struct s2io_nic *nic)
539 {
540 u32 size;
541 void *tmp_v_addr, *tmp_v_addr_next;
542 dma_addr_t tmp_p_addr, tmp_p_addr_next;
543 struct RxD_block *pre_rxd_blk = NULL;
544 int i, j, blk_cnt;
545 int lst_size, lst_per_page;
546 struct net_device *dev = nic->dev;
547 unsigned long tmp;
548 struct buffAdd *ba;
549
550 struct mac_info *mac_control;
551 struct config_param *config;
552 unsigned long long mem_allocated = 0;
553
554 mac_control = &nic->mac_control;
555 config = &nic->config;
556
557
558 /* Allocation and initialization of TXDLs in FIOFs */
559 size = 0;
560 for (i = 0; i < config->tx_fifo_num; i++) {
561 size += config->tx_cfg[i].fifo_len;
562 }
563 if (size > MAX_AVAILABLE_TXDS) {
564 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
566 return -EINVAL;
567 }
568
569 lst_size = (sizeof(struct TxD) * config->max_txds);
570 lst_per_page = PAGE_SIZE / lst_size;
571
572 for (i = 0; i < config->tx_fifo_num; i++) {
573 int fifo_len = config->tx_cfg[i].fifo_len;
574 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
576 GFP_KERNEL);
577 if (!mac_control->fifos[i].list_info) {
578 DBG_PRINT(INFO_DBG,
579 "Malloc failed for list_info\n");
580 return -ENOMEM;
581 }
582 mem_allocated += list_holder_size;
583 }
584 for (i = 0; i < config->tx_fifo_num; i++) {
585 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586 lst_per_page);
587 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589 config->tx_cfg[i].fifo_len - 1;
590 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592 config->tx_cfg[i].fifo_len - 1;
593 mac_control->fifos[i].fifo_no = i;
594 mac_control->fifos[i].nic = nic;
595 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
596
597 for (j = 0; j < page_num; j++) {
598 int k = 0;
599 dma_addr_t tmp_p;
600 void *tmp_v;
601 tmp_v = pci_alloc_consistent(nic->pdev,
602 PAGE_SIZE, &tmp_p);
603 if (!tmp_v) {
604 DBG_PRINT(INFO_DBG,
605 "pci_alloc_consistent ");
606 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
607 return -ENOMEM;
608 }
609 /* If we got a zero DMA address(can happen on
610 * certain platforms like PPC), reallocate.
611 * Store virtual address of page we don't want,
612 * to be freed later.
613 */
614 if (!tmp_p) {
615 mac_control->zerodma_virt_addr = tmp_v;
616 DBG_PRINT(INIT_DBG,
617 "%s: Zero DMA address for TxDL. ", dev->name);
618 DBG_PRINT(INIT_DBG,
619 "Virtual address %p\n", tmp_v);
620 tmp_v = pci_alloc_consistent(nic->pdev,
621 PAGE_SIZE, &tmp_p);
622 if (!tmp_v) {
623 DBG_PRINT(INFO_DBG,
624 "pci_alloc_consistent ");
625 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
626 return -ENOMEM;
627 }
628 mem_allocated += PAGE_SIZE;
629 }
630 while (k < lst_per_page) {
631 int l = (j * lst_per_page) + k;
632 if (l == config->tx_cfg[i].fifo_len)
633 break;
634 mac_control->fifos[i].list_info[l].list_virt_addr =
635 tmp_v + (k * lst_size);
636 mac_control->fifos[i].list_info[l].list_phy_addr =
637 tmp_p + (k * lst_size);
638 k++;
639 }
640 }
641 }
642
643 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644 if (!nic->ufo_in_band_v)
645 return -ENOMEM;
646 mem_allocated += (size * sizeof(u64));
647
648 /* Allocation and initialization of RXDs in Rings */
649 size = 0;
650 for (i = 0; i < config->rx_ring_num; i++) {
651 if (config->rx_cfg[i].num_rxd %
652 (rxd_count[nic->rxd_mode] + 1)) {
653 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
655 i);
656 DBG_PRINT(ERR_DBG, "RxDs per Block");
657 return FAILURE;
658 }
659 size += config->rx_cfg[i].num_rxd;
660 mac_control->rings[i].block_count =
661 config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode] + 1 );
663 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664 mac_control->rings[i].block_count;
665 }
666 if (nic->rxd_mode == RXD_MODE_1)
667 size = (size * (sizeof(struct RxD1)));
668 else
669 size = (size * (sizeof(struct RxD3)));
670
671 for (i = 0; i < config->rx_ring_num; i++) {
672 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673 mac_control->rings[i].rx_curr_get_info.offset = 0;
674 mac_control->rings[i].rx_curr_get_info.ring_len =
675 config->rx_cfg[i].num_rxd - 1;
676 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677 mac_control->rings[i].rx_curr_put_info.offset = 0;
678 mac_control->rings[i].rx_curr_put_info.ring_len =
679 config->rx_cfg[i].num_rxd - 1;
680 mac_control->rings[i].nic = nic;
681 mac_control->rings[i].ring_no = i;
682
683 blk_cnt = config->rx_cfg[i].num_rxd /
684 (rxd_count[nic->rxd_mode] + 1);
685 /* Allocating all the Rx blocks */
686 for (j = 0; j < blk_cnt; j++) {
687 struct rx_block_info *rx_blocks;
688 int l;
689
690 rx_blocks = &mac_control->rings[i].rx_blocks[j];
691 size = SIZE_OF_BLOCK; //size is always page size
692 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693 &tmp_p_addr);
694 if (tmp_v_addr == NULL) {
695 /*
696 * In case of failure, free_shared_mem()
697 * is called, which should free any
698 * memory that was alloced till the
699 * failure happened.
700 */
701 rx_blocks->block_virt_addr = tmp_v_addr;
702 return -ENOMEM;
703 }
704 mem_allocated += size;
705 memset(tmp_v_addr, 0, size);
706 rx_blocks->block_virt_addr = tmp_v_addr;
707 rx_blocks->block_dma_addr = tmp_p_addr;
708 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709 rxd_count[nic->rxd_mode],
710 GFP_KERNEL);
711 if (!rx_blocks->rxds)
712 return -ENOMEM;
713 mem_allocated +=
714 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716 rx_blocks->rxds[l].virt_addr =
717 rx_blocks->block_virt_addr +
718 (rxd_size[nic->rxd_mode] * l);
719 rx_blocks->rxds[l].dma_addr =
720 rx_blocks->block_dma_addr +
721 (rxd_size[nic->rxd_mode] * l);
722 }
723 }
724 /* Interlinking all Rx Blocks */
725 for (j = 0; j < blk_cnt; j++) {
726 tmp_v_addr =
727 mac_control->rings[i].rx_blocks[j].block_virt_addr;
728 tmp_v_addr_next =
729 mac_control->rings[i].rx_blocks[(j + 1) %
730 blk_cnt].block_virt_addr;
731 tmp_p_addr =
732 mac_control->rings[i].rx_blocks[j].block_dma_addr;
733 tmp_p_addr_next =
734 mac_control->rings[i].rx_blocks[(j + 1) %
735 blk_cnt].block_dma_addr;
736
737 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738 pre_rxd_blk->reserved_2_pNext_RxD_block =
739 (unsigned long) tmp_v_addr_next;
740 pre_rxd_blk->pNext_RxD_Blk_physical =
741 (u64) tmp_p_addr_next;
742 }
743 }
744 if (nic->rxd_mode == RXD_MODE_3B) {
745 /*
746 * Allocation of Storages for buffer addresses in 2BUFF mode
747 * and the buffers as well.
748 */
749 for (i = 0; i < config->rx_ring_num; i++) {
750 blk_cnt = config->rx_cfg[i].num_rxd /
751 (rxd_count[nic->rxd_mode]+ 1);
752 mac_control->rings[i].ba =
753 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
754 GFP_KERNEL);
755 if (!mac_control->rings[i].ba)
756 return -ENOMEM;
757 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758 for (j = 0; j < blk_cnt; j++) {
759 int k = 0;
760 mac_control->rings[i].ba[j] =
761 kmalloc((sizeof(struct buffAdd) *
762 (rxd_count[nic->rxd_mode] + 1)),
763 GFP_KERNEL);
764 if (!mac_control->rings[i].ba[j])
765 return -ENOMEM;
766 mem_allocated += (sizeof(struct buffAdd) * \
767 (rxd_count[nic->rxd_mode] + 1));
768 while (k != rxd_count[nic->rxd_mode]) {
769 ba = &mac_control->rings[i].ba[j][k];
770
771 ba->ba_0_org = (void *) kmalloc
772 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
773 if (!ba->ba_0_org)
774 return -ENOMEM;
775 mem_allocated +=
776 (BUF0_LEN + ALIGN_SIZE);
777 tmp = (unsigned long)ba->ba_0_org;
778 tmp += ALIGN_SIZE;
779 tmp &= ~((unsigned long) ALIGN_SIZE);
780 ba->ba_0 = (void *) tmp;
781
782 ba->ba_1_org = (void *) kmalloc
783 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
784 if (!ba->ba_1_org)
785 return -ENOMEM;
786 mem_allocated
787 += (BUF1_LEN + ALIGN_SIZE);
788 tmp = (unsigned long) ba->ba_1_org;
789 tmp += ALIGN_SIZE;
790 tmp &= ~((unsigned long) ALIGN_SIZE);
791 ba->ba_1 = (void *) tmp;
792 k++;
793 }
794 }
795 }
796 }
797
798 /* Allocation and initialization of Statistics block */
799 size = sizeof(struct stat_block);
800 mac_control->stats_mem = pci_alloc_consistent
801 (nic->pdev, size, &mac_control->stats_mem_phy);
802
803 if (!mac_control->stats_mem) {
804 /*
805 * In case of failure, free_shared_mem() is called, which
806 * should free any memory that was alloced till the
807 * failure happened.
808 */
809 return -ENOMEM;
810 }
811 mem_allocated += size;
812 mac_control->stats_mem_sz = size;
813
814 tmp_v_addr = mac_control->stats_mem;
815 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816 memset(tmp_v_addr, 0, size);
817 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818 (unsigned long long) tmp_p_addr);
819 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
820 return SUCCESS;
821 }
822
823 /**
824 * free_shared_mem - Free the allocated Memory
825 * @nic: Device private variable.
826 * Description: This function is to free all memory locations allocated by
827 * the init_shared_mem() function and return it to the kernel.
828 */
829
830 static void free_shared_mem(struct s2io_nic *nic)
831 {
832 int i, j, blk_cnt, size;
833 u32 ufo_size = 0;
834 void *tmp_v_addr;
835 dma_addr_t tmp_p_addr;
836 struct mac_info *mac_control;
837 struct config_param *config;
838 int lst_size, lst_per_page;
839 struct net_device *dev;
840 int page_num = 0;
841
842 if (!nic)
843 return;
844
845 dev = nic->dev;
846
847 mac_control = &nic->mac_control;
848 config = &nic->config;
849
850 lst_size = (sizeof(struct TxD) * config->max_txds);
851 lst_per_page = PAGE_SIZE / lst_size;
852
853 for (i = 0; i < config->tx_fifo_num; i++) {
854 ufo_size += config->tx_cfg[i].fifo_len;
855 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856 lst_per_page);
857 for (j = 0; j < page_num; j++) {
858 int mem_blks = (j * lst_per_page);
859 if (!mac_control->fifos[i].list_info)
860 return;
861 if (!mac_control->fifos[i].list_info[mem_blks].
862 list_virt_addr)
863 break;
864 pci_free_consistent(nic->pdev, PAGE_SIZE,
865 mac_control->fifos[i].
866 list_info[mem_blks].
867 list_virt_addr,
868 mac_control->fifos[i].
869 list_info[mem_blks].
870 list_phy_addr);
871 nic->mac_control.stats_info->sw_stat.mem_freed
872 += PAGE_SIZE;
873 }
874 /* If we got a zero DMA address during allocation,
875 * free the page now
876 */
877 if (mac_control->zerodma_virt_addr) {
878 pci_free_consistent(nic->pdev, PAGE_SIZE,
879 mac_control->zerodma_virt_addr,
880 (dma_addr_t)0);
881 DBG_PRINT(INIT_DBG,
882 "%s: Freeing TxDL with zero DMA addr. ",
883 dev->name);
884 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885 mac_control->zerodma_virt_addr);
886 nic->mac_control.stats_info->sw_stat.mem_freed
887 += PAGE_SIZE;
888 }
889 kfree(mac_control->fifos[i].list_info);
890 nic->mac_control.stats_info->sw_stat.mem_freed +=
891 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
892 }
893
894 size = SIZE_OF_BLOCK;
895 for (i = 0; i < config->rx_ring_num; i++) {
896 blk_cnt = mac_control->rings[i].block_count;
897 for (j = 0; j < blk_cnt; j++) {
898 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899 block_virt_addr;
900 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901 block_dma_addr;
902 if (tmp_v_addr == NULL)
903 break;
904 pci_free_consistent(nic->pdev, size,
905 tmp_v_addr, tmp_p_addr);
906 nic->mac_control.stats_info->sw_stat.mem_freed += size;
907 kfree(mac_control->rings[i].rx_blocks[j].rxds);
908 nic->mac_control.stats_info->sw_stat.mem_freed +=
909 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
910 }
911 }
912
913 if (nic->rxd_mode == RXD_MODE_3B) {
914 /* Freeing buffer storage addresses in 2BUFF mode. */
915 for (i = 0; i < config->rx_ring_num; i++) {
916 blk_cnt = config->rx_cfg[i].num_rxd /
917 (rxd_count[nic->rxd_mode] + 1);
918 for (j = 0; j < blk_cnt; j++) {
919 int k = 0;
920 if (!mac_control->rings[i].ba[j])
921 continue;
922 while (k != rxd_count[nic->rxd_mode]) {
923 struct buffAdd *ba =
924 &mac_control->rings[i].ba[j][k];
925 kfree(ba->ba_0_org);
926 nic->mac_control.stats_info->sw_stat.\
927 mem_freed += (BUF0_LEN + ALIGN_SIZE);
928 kfree(ba->ba_1_org);
929 nic->mac_control.stats_info->sw_stat.\
930 mem_freed += (BUF1_LEN + ALIGN_SIZE);
931 k++;
932 }
933 kfree(mac_control->rings[i].ba[j]);
934 nic->mac_control.stats_info->sw_stat.mem_freed +=
935 (sizeof(struct buffAdd) *
936 (rxd_count[nic->rxd_mode] + 1));
937 }
938 kfree(mac_control->rings[i].ba);
939 nic->mac_control.stats_info->sw_stat.mem_freed +=
940 (sizeof(struct buffAdd *) * blk_cnt);
941 }
942 }
943
944 if (mac_control->stats_mem) {
945 pci_free_consistent(nic->pdev,
946 mac_control->stats_mem_sz,
947 mac_control->stats_mem,
948 mac_control->stats_mem_phy);
949 nic->mac_control.stats_info->sw_stat.mem_freed +=
950 mac_control->stats_mem_sz;
951 }
952 if (nic->ufo_in_band_v) {
953 kfree(nic->ufo_in_band_v);
954 nic->mac_control.stats_info->sw_stat.mem_freed
955 += (ufo_size * sizeof(u64));
956 }
957 }
958
959 /**
960 * s2io_verify_pci_mode -
961 */
962
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
964 {
965 struct XENA_dev_config __iomem *bar0 = nic->bar0;
966 register u64 val64 = 0;
967 int mode;
968
969 val64 = readq(&bar0->pci_mode);
970 mode = (u8)GET_PCI_MODE(val64);
971
972 if ( val64 & PCI_MODE_UNKNOWN_MODE)
973 return -1; /* Unknown PCI mode */
974 return mode;
975 }
976
977 #define NEC_VENID 0x1033
978 #define NEC_DEVID 0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
980 {
981 struct pci_dev *tdev = NULL;
982 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984 if (tdev->bus == s2io_pdev->bus->parent)
985 pci_dev_put(tdev);
986 return 1;
987 }
988 }
989 return 0;
990 }
991
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
993 /**
994 * s2io_print_pci_mode -
995 */
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
997 {
998 struct XENA_dev_config __iomem *bar0 = nic->bar0;
999 register u64 val64 = 0;
1000 int mode;
1001 struct config_param *config = &nic->config;
1002
1003 val64 = readq(&bar0->pci_mode);
1004 mode = (u8)GET_PCI_MODE(val64);
1005
1006 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007 return -1; /* Unknown PCI mode */
1008
1009 config->bus_speed = bus_speed[mode];
1010
1011 if (s2io_on_nec_bridge(nic->pdev)) {
1012 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1013 nic->dev->name);
1014 return mode;
1015 }
1016
1017 if (val64 & PCI_MODE_32_BITS) {
1018 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019 } else {
1020 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1021 }
1022
1023 switch(mode) {
1024 case PCI_MODE_PCI_33:
1025 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1026 break;
1027 case PCI_MODE_PCI_66:
1028 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1029 break;
1030 case PCI_MODE_PCIX_M1_66:
1031 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1032 break;
1033 case PCI_MODE_PCIX_M1_100:
1034 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1035 break;
1036 case PCI_MODE_PCIX_M1_133:
1037 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1038 break;
1039 case PCI_MODE_PCIX_M2_66:
1040 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1041 break;
1042 case PCI_MODE_PCIX_M2_100:
1043 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1044 break;
1045 case PCI_MODE_PCIX_M2_133:
1046 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1047 break;
1048 default:
1049 return -1; /* Unsupported bus speed */
1050 }
1051
1052 return mode;
1053 }
1054
1055 /**
1056 * init_nic - Initialization of hardware
1057 * @nic: device peivate variable
1058 * Description: The function sequentially configures every block
1059 * of the H/W from their reset values.
1060 * Return Value: SUCCESS on success and
1061 * '-1' on failure (endian settings incorrect).
1062 */
1063
1064 static int init_nic(struct s2io_nic *nic)
1065 {
1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067 struct net_device *dev = nic->dev;
1068 register u64 val64 = 0;
1069 void __iomem *add;
1070 u32 time;
1071 int i, j;
1072 struct mac_info *mac_control;
1073 struct config_param *config;
1074 int dtx_cnt = 0;
1075 unsigned long long mem_share;
1076 int mem_size;
1077
1078 mac_control = &nic->mac_control;
1079 config = &nic->config;
1080
1081 /* to set the swapper controle on the card */
1082 if(s2io_set_swapper(nic)) {
1083 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1084 return -EIO;
1085 }
1086
1087 /*
1088 * Herc requires EOI to be removed from reset before XGXS, so..
1089 */
1090 if (nic->device_type & XFRAME_II_DEVICE) {
1091 val64 = 0xA500000000ULL;
1092 writeq(val64, &bar0->sw_reset);
1093 msleep(500);
1094 val64 = readq(&bar0->sw_reset);
1095 }
1096
1097 /* Remove XGXS from reset state */
1098 val64 = 0;
1099 writeq(val64, &bar0->sw_reset);
1100 msleep(500);
1101 val64 = readq(&bar0->sw_reset);
1102
1103 /* Ensure that it's safe to access registers by checking
1104 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1105 */
1106 if (nic->device_type == XFRAME_II_DEVICE) {
1107 for (i = 0; i < 50; i++) {
1108 val64 = readq(&bar0->adapter_status);
1109 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1110 break;
1111 msleep(10);
1112 }
1113 if (i == 50)
1114 return -ENODEV;
1115 }
1116
1117 /* Enable Receiving broadcasts */
1118 add = &bar0->mac_cfg;
1119 val64 = readq(&bar0->mac_cfg);
1120 val64 |= MAC_RMAC_BCAST_ENABLE;
1121 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1122 writel((u32) val64, add);
1123 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1124 writel((u32) (val64 >> 32), (add + 4));
1125
1126 /* Read registers in all blocks */
1127 val64 = readq(&bar0->mac_int_mask);
1128 val64 = readq(&bar0->mc_int_mask);
1129 val64 = readq(&bar0->xgxs_int_mask);
1130
1131 /* Set MTU */
1132 val64 = dev->mtu;
1133 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1134
1135 if (nic->device_type & XFRAME_II_DEVICE) {
1136 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1137 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1138 &bar0->dtx_control, UF);
1139 if (dtx_cnt & 0x1)
1140 msleep(1); /* Necessary!! */
1141 dtx_cnt++;
1142 }
1143 } else {
1144 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1145 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1146 &bar0->dtx_control, UF);
1147 val64 = readq(&bar0->dtx_control);
1148 dtx_cnt++;
1149 }
1150 }
1151
1152 /* Tx DMA Initialization */
1153 val64 = 0;
1154 writeq(val64, &bar0->tx_fifo_partition_0);
1155 writeq(val64, &bar0->tx_fifo_partition_1);
1156 writeq(val64, &bar0->tx_fifo_partition_2);
1157 writeq(val64, &bar0->tx_fifo_partition_3);
1158
1159
1160 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1161 val64 |=
1162 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1163 13) | vBIT(config->tx_cfg[i].fifo_priority,
1164 ((i * 32) + 5), 3);
1165
1166 if (i == (config->tx_fifo_num - 1)) {
1167 if (i % 2 == 0)
1168 i++;
1169 }
1170
1171 switch (i) {
1172 case 1:
1173 writeq(val64, &bar0->tx_fifo_partition_0);
1174 val64 = 0;
1175 break;
1176 case 3:
1177 writeq(val64, &bar0->tx_fifo_partition_1);
1178 val64 = 0;
1179 break;
1180 case 5:
1181 writeq(val64, &bar0->tx_fifo_partition_2);
1182 val64 = 0;
1183 break;
1184 case 7:
1185 writeq(val64, &bar0->tx_fifo_partition_3);
1186 break;
1187 }
1188 }
1189
1190 /*
1191 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1192 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1193 */
1194 if ((nic->device_type == XFRAME_I_DEVICE) &&
1195 (nic->pdev->revision < 4))
1196 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1197
1198 val64 = readq(&bar0->tx_fifo_partition_0);
1199 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1200 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1201
1202 /*
1203 * Initialization of Tx_PA_CONFIG register to ignore packet
1204 * integrity checking.
1205 */
1206 val64 = readq(&bar0->tx_pa_cfg);
1207 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1208 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1209 writeq(val64, &bar0->tx_pa_cfg);
1210
1211 /* Rx DMA intialization. */
1212 val64 = 0;
1213 for (i = 0; i < config->rx_ring_num; i++) {
1214 val64 |=
1215 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1216 3);
1217 }
1218 writeq(val64, &bar0->rx_queue_priority);
1219
1220 /*
1221 * Allocating equal share of memory to all the
1222 * configured Rings.
1223 */
1224 val64 = 0;
1225 if (nic->device_type & XFRAME_II_DEVICE)
1226 mem_size = 32;
1227 else
1228 mem_size = 64;
1229
1230 for (i = 0; i < config->rx_ring_num; i++) {
1231 switch (i) {
1232 case 0:
1233 mem_share = (mem_size / config->rx_ring_num +
1234 mem_size % config->rx_ring_num);
1235 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1236 continue;
1237 case 1:
1238 mem_share = (mem_size / config->rx_ring_num);
1239 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1240 continue;
1241 case 2:
1242 mem_share = (mem_size / config->rx_ring_num);
1243 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1244 continue;
1245 case 3:
1246 mem_share = (mem_size / config->rx_ring_num);
1247 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1248 continue;
1249 case 4:
1250 mem_share = (mem_size / config->rx_ring_num);
1251 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1252 continue;
1253 case 5:
1254 mem_share = (mem_size / config->rx_ring_num);
1255 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1256 continue;
1257 case 6:
1258 mem_share = (mem_size / config->rx_ring_num);
1259 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1260 continue;
1261 case 7:
1262 mem_share = (mem_size / config->rx_ring_num);
1263 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1264 continue;
1265 }
1266 }
1267 writeq(val64, &bar0->rx_queue_cfg);
1268
1269 /*
1270 * Filling Tx round robin registers
1271 * as per the number of FIFOs
1272 */
1273 switch (config->tx_fifo_num) {
1274 case 1:
1275 val64 = 0x0000000000000000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_0);
1277 writeq(val64, &bar0->tx_w_round_robin_1);
1278 writeq(val64, &bar0->tx_w_round_robin_2);
1279 writeq(val64, &bar0->tx_w_round_robin_3);
1280 writeq(val64, &bar0->tx_w_round_robin_4);
1281 break;
1282 case 2:
1283 val64 = 0x0000010000010000ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_0);
1285 val64 = 0x0100000100000100ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_1);
1287 val64 = 0x0001000001000001ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_2);
1289 val64 = 0x0000010000010000ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_3);
1291 val64 = 0x0100000000000000ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_4);
1293 break;
1294 case 3:
1295 val64 = 0x0001000102000001ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_0);
1297 val64 = 0x0001020000010001ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_1);
1299 val64 = 0x0200000100010200ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_2);
1301 val64 = 0x0001000102000001ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_3);
1303 val64 = 0x0001020000000000ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_4);
1305 break;
1306 case 4:
1307 val64 = 0x0001020300010200ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_0);
1309 val64 = 0x0100000102030001ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_1);
1311 val64 = 0x0200010000010203ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_2);
1313 val64 = 0x0001020001000001ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_3);
1315 val64 = 0x0203000100000000ULL;
1316 writeq(val64, &bar0->tx_w_round_robin_4);
1317 break;
1318 case 5:
1319 val64 = 0x0001000203000102ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_0);
1321 val64 = 0x0001020001030004ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_1);
1323 val64 = 0x0001000203000102ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_2);
1325 val64 = 0x0001020001030004ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_3);
1327 val64 = 0x0001000000000000ULL;
1328 writeq(val64, &bar0->tx_w_round_robin_4);
1329 break;
1330 case 6:
1331 val64 = 0x0001020304000102ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_0);
1333 val64 = 0x0304050001020001ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_1);
1335 val64 = 0x0203000100000102ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_2);
1337 val64 = 0x0304000102030405ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_3);
1339 val64 = 0x0001000200000000ULL;
1340 writeq(val64, &bar0->tx_w_round_robin_4);
1341 break;
1342 case 7:
1343 val64 = 0x0001020001020300ULL;
1344 writeq(val64, &bar0->tx_w_round_robin_0);
1345 val64 = 0x0102030400010203ULL;
1346 writeq(val64, &bar0->tx_w_round_robin_1);
1347 val64 = 0x0405060001020001ULL;
1348 writeq(val64, &bar0->tx_w_round_robin_2);
1349 val64 = 0x0304050000010200ULL;
1350 writeq(val64, &bar0->tx_w_round_robin_3);
1351 val64 = 0x0102030000000000ULL;
1352 writeq(val64, &bar0->tx_w_round_robin_4);
1353 break;
1354 case 8:
1355 val64 = 0x0001020300040105ULL;
1356 writeq(val64, &bar0->tx_w_round_robin_0);
1357 val64 = 0x0200030106000204ULL;
1358 writeq(val64, &bar0->tx_w_round_robin_1);
1359 val64 = 0x0103000502010007ULL;
1360 writeq(val64, &bar0->tx_w_round_robin_2);
1361 val64 = 0x0304010002060500ULL;
1362 writeq(val64, &bar0->tx_w_round_robin_3);
1363 val64 = 0x0103020400000000ULL;
1364 writeq(val64, &bar0->tx_w_round_robin_4);
1365 break;
1366 }
1367
1368 /* Enable all configured Tx FIFO partitions */
1369 val64 = readq(&bar0->tx_fifo_partition_0);
1370 val64 |= (TX_FIFO_PARTITION_EN);
1371 writeq(val64, &bar0->tx_fifo_partition_0);
1372
1373 /* Filling the Rx round robin registers as per the
1374 * number of Rings and steering based on QoS.
1375 */
1376 switch (config->rx_ring_num) {
1377 case 1:
1378 val64 = 0x8080808080808080ULL;
1379 writeq(val64, &bar0->rts_qos_steering);
1380 break;
1381 case 2:
1382 val64 = 0x0000010000010000ULL;
1383 writeq(val64, &bar0->rx_w_round_robin_0);
1384 val64 = 0x0100000100000100ULL;
1385 writeq(val64, &bar0->rx_w_round_robin_1);
1386 val64 = 0x0001000001000001ULL;
1387 writeq(val64, &bar0->rx_w_round_robin_2);
1388 val64 = 0x0000010000010000ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_3);
1390 val64 = 0x0100000000000000ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_4);
1392
1393 val64 = 0x8080808040404040ULL;
1394 writeq(val64, &bar0->rts_qos_steering);
1395 break;
1396 case 3:
1397 val64 = 0x0001000102000001ULL;
1398 writeq(val64, &bar0->rx_w_round_robin_0);
1399 val64 = 0x0001020000010001ULL;
1400 writeq(val64, &bar0->rx_w_round_robin_1);
1401 val64 = 0x0200000100010200ULL;
1402 writeq(val64, &bar0->rx_w_round_robin_2);
1403 val64 = 0x0001000102000001ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_3);
1405 val64 = 0x0001020000000000ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_4);
1407
1408 val64 = 0x8080804040402020ULL;
1409 writeq(val64, &bar0->rts_qos_steering);
1410 break;
1411 case 4:
1412 val64 = 0x0001020300010200ULL;
1413 writeq(val64, &bar0->rx_w_round_robin_0);
1414 val64 = 0x0100000102030001ULL;
1415 writeq(val64, &bar0->rx_w_round_robin_1);
1416 val64 = 0x0200010000010203ULL;
1417 writeq(val64, &bar0->rx_w_round_robin_2);
1418 val64 = 0x0001020001000001ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_3);
1420 val64 = 0x0203000100000000ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_4);
1422
1423 val64 = 0x8080404020201010ULL;
1424 writeq(val64, &bar0->rts_qos_steering);
1425 break;
1426 case 5:
1427 val64 = 0x0001000203000102ULL;
1428 writeq(val64, &bar0->rx_w_round_robin_0);
1429 val64 = 0x0001020001030004ULL;
1430 writeq(val64, &bar0->rx_w_round_robin_1);
1431 val64 = 0x0001000203000102ULL;
1432 writeq(val64, &bar0->rx_w_round_robin_2);
1433 val64 = 0x0001020001030004ULL;
1434 writeq(val64, &bar0->rx_w_round_robin_3);
1435 val64 = 0x0001000000000000ULL;
1436 writeq(val64, &bar0->rx_w_round_robin_4);
1437
1438 val64 = 0x8080404020201008ULL;
1439 writeq(val64, &bar0->rts_qos_steering);
1440 break;
1441 case 6:
1442 val64 = 0x0001020304000102ULL;
1443 writeq(val64, &bar0->rx_w_round_robin_0);
1444 val64 = 0x0304050001020001ULL;
1445 writeq(val64, &bar0->rx_w_round_robin_1);
1446 val64 = 0x0203000100000102ULL;
1447 writeq(val64, &bar0->rx_w_round_robin_2);
1448 val64 = 0x0304000102030405ULL;
1449 writeq(val64, &bar0->rx_w_round_robin_3);
1450 val64 = 0x0001000200000000ULL;
1451 writeq(val64, &bar0->rx_w_round_robin_4);
1452
1453 val64 = 0x8080404020100804ULL;
1454 writeq(val64, &bar0->rts_qos_steering);
1455 break;
1456 case 7:
1457 val64 = 0x0001020001020300ULL;
1458 writeq(val64, &bar0->rx_w_round_robin_0);
1459 val64 = 0x0102030400010203ULL;
1460 writeq(val64, &bar0->rx_w_round_robin_1);
1461 val64 = 0x0405060001020001ULL;
1462 writeq(val64, &bar0->rx_w_round_robin_2);
1463 val64 = 0x0304050000010200ULL;
1464 writeq(val64, &bar0->rx_w_round_robin_3);
1465 val64 = 0x0102030000000000ULL;
1466 writeq(val64, &bar0->rx_w_round_robin_4);
1467
1468 val64 = 0x8080402010080402ULL;
1469 writeq(val64, &bar0->rts_qos_steering);
1470 break;
1471 case 8:
1472 val64 = 0x0001020300040105ULL;
1473 writeq(val64, &bar0->rx_w_round_robin_0);
1474 val64 = 0x0200030106000204ULL;
1475 writeq(val64, &bar0->rx_w_round_robin_1);
1476 val64 = 0x0103000502010007ULL;
1477 writeq(val64, &bar0->rx_w_round_robin_2);
1478 val64 = 0x0304010002060500ULL;
1479 writeq(val64, &bar0->rx_w_round_robin_3);
1480 val64 = 0x0103020400000000ULL;
1481 writeq(val64, &bar0->rx_w_round_robin_4);
1482
1483 val64 = 0x8040201008040201ULL;
1484 writeq(val64, &bar0->rts_qos_steering);
1485 break;
1486 }
1487
1488 /* UDP Fix */
1489 val64 = 0;
1490 for (i = 0; i < 8; i++)
1491 writeq(val64, &bar0->rts_frm_len_n[i]);
1492
1493 /* Set the default rts frame length for the rings configured */
1494 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1495 for (i = 0 ; i < config->rx_ring_num ; i++)
1496 writeq(val64, &bar0->rts_frm_len_n[i]);
1497
1498 /* Set the frame length for the configured rings
1499 * desired by the user
1500 */
1501 for (i = 0; i < config->rx_ring_num; i++) {
1502 /* If rts_frm_len[i] == 0 then it is assumed that user not
1503 * specified frame length steering.
1504 * If the user provides the frame length then program
1505 * the rts_frm_len register for those values or else
1506 * leave it as it is.
1507 */
1508 if (rts_frm_len[i] != 0) {
1509 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1510 &bar0->rts_frm_len_n[i]);
1511 }
1512 }
1513
1514 /* Disable differentiated services steering logic */
1515 for (i = 0; i < 64; i++) {
1516 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1517 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1518 dev->name);
1519 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1520 return -ENODEV;
1521 }
1522 }
1523
1524 /* Program statistics memory */
1525 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1526
1527 if (nic->device_type == XFRAME_II_DEVICE) {
1528 val64 = STAT_BC(0x320);
1529 writeq(val64, &bar0->stat_byte_cnt);
1530 }
1531
1532 /*
1533 * Initializing the sampling rate for the device to calculate the
1534 * bandwidth utilization.
1535 */
1536 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1537 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1538 writeq(val64, &bar0->mac_link_util);
1539
1540
1541 /*
1542 * Initializing the Transmit and Receive Traffic Interrupt
1543 * Scheme.
1544 */
1545 /*
1546 * TTI Initialization. Default Tx timer gets us about
1547 * 250 interrupts per sec. Continuous interrupts are enabled
1548 * by default.
1549 */
1550 if (nic->device_type == XFRAME_II_DEVICE) {
1551 int count = (nic->config.bus_speed * 125)/2;
1552 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1553 } else {
1554
1555 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1556 }
1557 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1558 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1559 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1560 if (use_continuous_tx_intrs)
1561 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1562 writeq(val64, &bar0->tti_data1_mem);
1563
1564 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1565 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1566 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1567 writeq(val64, &bar0->tti_data2_mem);
1568
1569 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1570 writeq(val64, &bar0->tti_command_mem);
1571
1572 /*
1573 * Once the operation completes, the Strobe bit of the command
1574 * register will be reset. We poll for this particular condition
1575 * We wait for a maximum of 500ms for the operation to complete,
1576 * if it's not complete by then we return error.
1577 */
1578 time = 0;
1579 while (TRUE) {
1580 val64 = readq(&bar0->tti_command_mem);
1581 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1582 break;
1583 }
1584 if (time > 10) {
1585 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1586 dev->name);
1587 return -ENODEV;
1588 }
1589 msleep(50);
1590 time++;
1591 }
1592
1593 /* RTI Initialization */
1594 if (nic->device_type == XFRAME_II_DEVICE) {
1595 /*
1596 * Programmed to generate Apprx 500 Intrs per
1597 * second
1598 */
1599 int count = (nic->config.bus_speed * 125)/4;
1600 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1601 } else
1602 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1603 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1604 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1605 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1606
1607 writeq(val64, &bar0->rti_data1_mem);
1608
1609 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1610 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1611 if (nic->config.intr_type == MSI_X)
1612 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1613 RTI_DATA2_MEM_RX_UFC_D(0x40));
1614 else
1615 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1616 RTI_DATA2_MEM_RX_UFC_D(0x80));
1617 writeq(val64, &bar0->rti_data2_mem);
1618
1619 for (i = 0; i < config->rx_ring_num; i++) {
1620 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1621 | RTI_CMD_MEM_OFFSET(i);
1622 writeq(val64, &bar0->rti_command_mem);
1623
1624 /*
1625 * Once the operation completes, the Strobe bit of the
1626 * command register will be reset. We poll for this
1627 * particular condition. We wait for a maximum of 500ms
1628 * for the operation to complete, if it's not complete
1629 * by then we return error.
1630 */
1631 time = 0;
1632 while (TRUE) {
1633 val64 = readq(&bar0->rti_command_mem);
1634 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1635 break;
1636
1637 if (time > 10) {
1638 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1639 dev->name);
1640 return -ENODEV;
1641 }
1642 time++;
1643 msleep(50);
1644 }
1645 }
1646
1647 /*
1648 * Initializing proper values as Pause threshold into all
1649 * the 8 Queues on Rx side.
1650 */
1651 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1652 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1653
1654 /* Disable RMAC PAD STRIPPING */
1655 add = &bar0->mac_cfg;
1656 val64 = readq(&bar0->mac_cfg);
1657 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1658 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1659 writel((u32) (val64), add);
1660 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1661 writel((u32) (val64 >> 32), (add + 4));
1662 val64 = readq(&bar0->mac_cfg);
1663
1664 /* Enable FCS stripping by adapter */
1665 add = &bar0->mac_cfg;
1666 val64 = readq(&bar0->mac_cfg);
1667 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1668 if (nic->device_type == XFRAME_II_DEVICE)
1669 writeq(val64, &bar0->mac_cfg);
1670 else {
1671 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1672 writel((u32) (val64), add);
1673 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1674 writel((u32) (val64 >> 32), (add + 4));
1675 }
1676
1677 /*
1678 * Set the time value to be inserted in the pause frame
1679 * generated by xena.
1680 */
1681 val64 = readq(&bar0->rmac_pause_cfg);
1682 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1683 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1684 writeq(val64, &bar0->rmac_pause_cfg);
1685
1686 /*
1687 * Set the Threshold Limit for Generating the pause frame
1688 * If the amount of data in any Queue exceeds ratio of
1689 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1690 * pause frame is generated
1691 */
1692 val64 = 0;
1693 for (i = 0; i < 4; i++) {
1694 val64 |=
1695 (((u64) 0xFF00 | nic->mac_control.
1696 mc_pause_threshold_q0q3)
1697 << (i * 2 * 8));
1698 }
1699 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1700
1701 val64 = 0;
1702 for (i = 0; i < 4; i++) {
1703 val64 |=
1704 (((u64) 0xFF00 | nic->mac_control.
1705 mc_pause_threshold_q4q7)
1706 << (i * 2 * 8));
1707 }
1708 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1709
1710 /*
1711 * TxDMA will stop Read request if the number of read split has
1712 * exceeded the limit pointed by shared_splits
1713 */
1714 val64 = readq(&bar0->pic_control);
1715 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1716 writeq(val64, &bar0->pic_control);
1717
1718 if (nic->config.bus_speed == 266) {
1719 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1720 writeq(0x0, &bar0->read_retry_delay);
1721 writeq(0x0, &bar0->write_retry_delay);
1722 }
1723
1724 /*
1725 * Programming the Herc to split every write transaction
1726 * that does not start on an ADB to reduce disconnects.
1727 */
1728 if (nic->device_type == XFRAME_II_DEVICE) {
1729 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1730 MISC_LINK_STABILITY_PRD(3);
1731 writeq(val64, &bar0->misc_control);
1732 val64 = readq(&bar0->pic_control2);
1733 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1734 writeq(val64, &bar0->pic_control2);
1735 }
1736 if (strstr(nic->product_name, "CX4")) {
1737 val64 = TMAC_AVG_IPG(0x17);
1738 writeq(val64, &bar0->tmac_avg_ipg);
1739 }
1740
1741 return SUCCESS;
1742 }
1743 #define LINK_UP_DOWN_INTERRUPT 1
1744 #define MAC_RMAC_ERR_TIMER 2
1745
1746 static int s2io_link_fault_indication(struct s2io_nic *nic)
1747 {
1748 if (nic->config.intr_type != INTA)
1749 return MAC_RMAC_ERR_TIMER;
1750 if (nic->device_type == XFRAME_II_DEVICE)
1751 return LINK_UP_DOWN_INTERRUPT;
1752 else
1753 return MAC_RMAC_ERR_TIMER;
1754 }
1755
1756 /**
1757 * do_s2io_write_bits - update alarm bits in alarm register
1758 * @value: alarm bits
1759 * @flag: interrupt status
1760 * @addr: address value
1761 * Description: update alarm bits in alarm register
1762 * Return Value:
1763 * NONE.
1764 */
1765 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1766 {
1767 u64 temp64;
1768
1769 temp64 = readq(addr);
1770
1771 if(flag == ENABLE_INTRS)
1772 temp64 &= ~((u64) value);
1773 else
1774 temp64 |= ((u64) value);
1775 writeq(temp64, addr);
1776 }
1777
1778 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1779 {
1780 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1781 register u64 gen_int_mask = 0;
1782
1783 if (mask & TX_DMA_INTR) {
1784
1785 gen_int_mask |= TXDMA_INT_M;
1786
1787 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1788 TXDMA_PCC_INT | TXDMA_TTI_INT |
1789 TXDMA_LSO_INT | TXDMA_TPA_INT |
1790 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1791
1792 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1793 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1794 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1795 &bar0->pfc_err_mask);
1796
1797 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1798 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1799 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1800
1801 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1802 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1803 PCC_N_SERR | PCC_6_COF_OV_ERR |
1804 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1805 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1806 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1807
1808 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1809 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1810
1811 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1812 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1813 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1814 flag, &bar0->lso_err_mask);
1815
1816 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1817 flag, &bar0->tpa_err_mask);
1818
1819 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1820
1821 }
1822
1823 if (mask & TX_MAC_INTR) {
1824 gen_int_mask |= TXMAC_INT_M;
1825 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1826 &bar0->mac_int_mask);
1827 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1828 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1829 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1830 flag, &bar0->mac_tmac_err_mask);
1831 }
1832
1833 if (mask & TX_XGXS_INTR) {
1834 gen_int_mask |= TXXGXS_INT_M;
1835 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1836 &bar0->xgxs_int_mask);
1837 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1838 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1839 flag, &bar0->xgxs_txgxs_err_mask);
1840 }
1841
1842 if (mask & RX_DMA_INTR) {
1843 gen_int_mask |= RXDMA_INT_M;
1844 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1845 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1846 flag, &bar0->rxdma_int_mask);
1847 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1848 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1849 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1850 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1851 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1852 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1853 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1854 &bar0->prc_pcix_err_mask);
1855 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1856 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1857 &bar0->rpa_err_mask);
1858 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1859 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1860 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1861 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1862 flag, &bar0->rda_err_mask);
1863 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1864 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1865 flag, &bar0->rti_err_mask);
1866 }
1867
1868 if (mask & RX_MAC_INTR) {
1869 gen_int_mask |= RXMAC_INT_M;
1870 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1871 &bar0->mac_int_mask);
1872 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1873 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1874 RMAC_DOUBLE_ECC_ERR |
1875 RMAC_LINK_STATE_CHANGE_INT,
1876 flag, &bar0->mac_rmac_err_mask);
1877 }
1878
1879 if (mask & RX_XGXS_INTR)
1880 {
1881 gen_int_mask |= RXXGXS_INT_M;
1882 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1883 &bar0->xgxs_int_mask);
1884 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1885 &bar0->xgxs_rxgxs_err_mask);
1886 }
1887
1888 if (mask & MC_INTR) {
1889 gen_int_mask |= MC_INT_M;
1890 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1891 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1892 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1893 &bar0->mc_err_mask);
1894 }
1895 nic->general_int_mask = gen_int_mask;
1896
1897 /* Remove this line when alarm interrupts are enabled */
1898 nic->general_int_mask = 0;
1899 }
1900 /**
1901 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1902 * @nic: device private variable,
1903 * @mask: A mask indicating which Intr block must be modified and,
1904 * @flag: A flag indicating whether to enable or disable the Intrs.
1905 * Description: This function will either disable or enable the interrupts
1906 * depending on the flag argument. The mask argument can be used to
1907 * enable/disable any Intr block.
1908 * Return Value: NONE.
1909 */
1910
1911 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1912 {
1913 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914 register u64 temp64 = 0, intr_mask = 0;
1915
1916 intr_mask = nic->general_int_mask;
1917
1918 /* Top level interrupt classification */
1919 /* PIC Interrupts */
1920 if (mask & TX_PIC_INTR) {
1921 /* Enable PIC Intrs in the general intr mask register */
1922 intr_mask |= TXPIC_INT_M;
1923 if (flag == ENABLE_INTRS) {
1924 /*
1925 * If Hercules adapter enable GPIO otherwise
1926 * disable all PCIX, Flash, MDIO, IIC and GPIO
1927 * interrupts for now.
1928 * TODO
1929 */
1930 if (s2io_link_fault_indication(nic) ==
1931 LINK_UP_DOWN_INTERRUPT ) {
1932 do_s2io_write_bits(PIC_INT_GPIO, flag,
1933 &bar0->pic_int_mask);
1934 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1935 &bar0->gpio_int_mask);
1936 } else
1937 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1938 } else if (flag == DISABLE_INTRS) {
1939 /*
1940 * Disable PIC Intrs in the general
1941 * intr mask register
1942 */
1943 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1944 }
1945 }
1946
1947 /* Tx traffic interrupts */
1948 if (mask & TX_TRAFFIC_INTR) {
1949 intr_mask |= TXTRAFFIC_INT_M;
1950 if (flag == ENABLE_INTRS) {
1951 /*
1952 * Enable all the Tx side interrupts
1953 * writing 0 Enables all 64 TX interrupt levels
1954 */
1955 writeq(0x0, &bar0->tx_traffic_mask);
1956 } else if (flag == DISABLE_INTRS) {
1957 /*
1958 * Disable Tx Traffic Intrs in the general intr mask
1959 * register.
1960 */
1961 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1962 }
1963 }
1964
1965 /* Rx traffic interrupts */
1966 if (mask & RX_TRAFFIC_INTR) {
1967 intr_mask |= RXTRAFFIC_INT_M;
1968 if (flag == ENABLE_INTRS) {
1969 /* writing 0 Enables all 8 RX interrupt levels */
1970 writeq(0x0, &bar0->rx_traffic_mask);
1971 } else if (flag == DISABLE_INTRS) {
1972 /*
1973 * Disable Rx Traffic Intrs in the general intr mask
1974 * register.
1975 */
1976 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1977 }
1978 }
1979
1980 temp64 = readq(&bar0->general_int_mask);
1981 if (flag == ENABLE_INTRS)
1982 temp64 &= ~((u64) intr_mask);
1983 else
1984 temp64 = DISABLE_ALL_INTRS;
1985 writeq(temp64, &bar0->general_int_mask);
1986
1987 nic->general_int_mask = readq(&bar0->general_int_mask);
1988 }
1989
1990 /**
1991 * verify_pcc_quiescent- Checks for PCC quiescent state
1992 * Return: 1 If PCC is quiescence
1993 * 0 If PCC is not quiescence
1994 */
1995 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1996 {
1997 int ret = 0, herc;
1998 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1999 u64 val64 = readq(&bar0->adapter_status);
2000
2001 herc = (sp->device_type == XFRAME_II_DEVICE);
2002
2003 if (flag == FALSE) {
2004 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2005 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2006 ret = 1;
2007 } else {
2008 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2009 ret = 1;
2010 }
2011 } else {
2012 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2013 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2014 ADAPTER_STATUS_RMAC_PCC_IDLE))
2015 ret = 1;
2016 } else {
2017 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2018 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2019 ret = 1;
2020 }
2021 }
2022
2023 return ret;
2024 }
2025 /**
2026 * verify_xena_quiescence - Checks whether the H/W is ready
2027 * Description: Returns whether the H/W is ready to go or not. Depending
2028 * on whether adapter enable bit was written or not the comparison
2029 * differs and the calling function passes the input argument flag to
2030 * indicate this.
2031 * Return: 1 If xena is quiescence
2032 * 0 If Xena is not quiescence
2033 */
2034
2035 static int verify_xena_quiescence(struct s2io_nic *sp)
2036 {
2037 int mode;
2038 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2039 u64 val64 = readq(&bar0->adapter_status);
2040 mode = s2io_verify_pci_mode(sp);
2041
2042 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2043 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2044 return 0;
2045 }
2046 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2047 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2048 return 0;
2049 }
2050 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2051 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2052 return 0;
2053 }
2054 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2055 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2056 return 0;
2057 }
2058 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2059 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2060 return 0;
2061 }
2062 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2063 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2064 return 0;
2065 }
2066 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2067 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2068 return 0;
2069 }
2070 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2071 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2072 return 0;
2073 }
2074
2075 /*
2076 * In PCI 33 mode, the P_PLL is not used, and therefore,
2077 * the the P_PLL_LOCK bit in the adapter_status register will
2078 * not be asserted.
2079 */
2080 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2081 sp->device_type == XFRAME_II_DEVICE && mode !=
2082 PCI_MODE_PCI_33) {
2083 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2084 return 0;
2085 }
2086 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2087 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2088 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2089 return 0;
2090 }
2091 return 1;
2092 }
2093
2094 /**
2095 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2096 * @sp: Pointer to device specifc structure
2097 * Description :
2098 * New procedure to clear mac address reading problems on Alpha platforms
2099 *
2100 */
2101
2102 static void fix_mac_address(struct s2io_nic * sp)
2103 {
2104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2105 u64 val64;
2106 int i = 0;
2107
2108 while (fix_mac[i] != END_SIGN) {
2109 writeq(fix_mac[i++], &bar0->gpio_control);
2110 udelay(10);
2111 val64 = readq(&bar0->gpio_control);
2112 }
2113 }
2114
2115 /**
2116 * start_nic - Turns the device on
2117 * @nic : device private variable.
2118 * Description:
2119 * This function actually turns the device on. Before this function is
2120 * called,all Registers are configured from their reset states
2121 * and shared memory is allocated but the NIC is still quiescent. On
2122 * calling this function, the device interrupts are cleared and the NIC is
2123 * literally switched on by writing into the adapter control register.
2124 * Return Value:
2125 * SUCCESS on success and -1 on failure.
2126 */
2127
2128 static int start_nic(struct s2io_nic *nic)
2129 {
2130 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2131 struct net_device *dev = nic->dev;
2132 register u64 val64 = 0;
2133 u16 subid, i;
2134 struct mac_info *mac_control;
2135 struct config_param *config;
2136
2137 mac_control = &nic->mac_control;
2138 config = &nic->config;
2139
2140 /* PRC Initialization and configuration */
2141 for (i = 0; i < config->rx_ring_num; i++) {
2142 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2143 &bar0->prc_rxd0_n[i]);
2144
2145 val64 = readq(&bar0->prc_ctrl_n[i]);
2146 if (nic->rxd_mode == RXD_MODE_1)
2147 val64 |= PRC_CTRL_RC_ENABLED;
2148 else
2149 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2150 if (nic->device_type == XFRAME_II_DEVICE)
2151 val64 |= PRC_CTRL_GROUP_READS;
2152 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2153 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2154 writeq(val64, &bar0->prc_ctrl_n[i]);
2155 }
2156
2157 if (nic->rxd_mode == RXD_MODE_3B) {
2158 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2159 val64 = readq(&bar0->rx_pa_cfg);
2160 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2161 writeq(val64, &bar0->rx_pa_cfg);
2162 }
2163
2164 if (vlan_tag_strip == 0) {
2165 val64 = readq(&bar0->rx_pa_cfg);
2166 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2167 writeq(val64, &bar0->rx_pa_cfg);
2168 vlan_strip_flag = 0;
2169 }
2170
2171 /*
2172 * Enabling MC-RLDRAM. After enabling the device, we timeout
2173 * for around 100ms, which is approximately the time required
2174 * for the device to be ready for operation.
2175 */
2176 val64 = readq(&bar0->mc_rldram_mrs);
2177 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2178 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2179 val64 = readq(&bar0->mc_rldram_mrs);
2180
2181 msleep(100); /* Delay by around 100 ms. */
2182
2183 /* Enabling ECC Protection. */
2184 val64 = readq(&bar0->adapter_control);
2185 val64 &= ~ADAPTER_ECC_EN;
2186 writeq(val64, &bar0->adapter_control);
2187
2188 /*
2189 * Verify if the device is ready to be enabled, if so enable
2190 * it.
2191 */
2192 val64 = readq(&bar0->adapter_status);
2193 if (!verify_xena_quiescence(nic)) {
2194 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2195 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2196 (unsigned long long) val64);
2197 return FAILURE;
2198 }
2199
2200 /*
2201 * With some switches, link might be already up at this point.
2202 * Because of this weird behavior, when we enable laser,
2203 * we may not get link. We need to handle this. We cannot
2204 * figure out which switch is misbehaving. So we are forced to
2205 * make a global change.
2206 */
2207
2208 /* Enabling Laser. */
2209 val64 = readq(&bar0->adapter_control);
2210 val64 |= ADAPTER_EOI_TX_ON;
2211 writeq(val64, &bar0->adapter_control);
2212
2213 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2214 /*
2215 * Dont see link state interrupts initally on some switches,
2216 * so directly scheduling the link state task here.
2217 */
2218 schedule_work(&nic->set_link_task);
2219 }
2220 /* SXE-002: Initialize link and activity LED */
2221 subid = nic->pdev->subsystem_device;
2222 if (((subid & 0xFF) >= 0x07) &&
2223 (nic->device_type == XFRAME_I_DEVICE)) {
2224 val64 = readq(&bar0->gpio_control);
2225 val64 |= 0x0000800000000000ULL;
2226 writeq(val64, &bar0->gpio_control);
2227 val64 = 0x0411040400000000ULL;
2228 writeq(val64, (void __iomem *)bar0 + 0x2700);
2229 }
2230
2231 return SUCCESS;
2232 }
2233 /**
2234 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2235 */
2236 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2237 TxD *txdlp, int get_off)
2238 {
2239 struct s2io_nic *nic = fifo_data->nic;
2240 struct sk_buff *skb;
2241 struct TxD *txds;
2242 u16 j, frg_cnt;
2243
2244 txds = txdlp;
2245 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2246 pci_unmap_single(nic->pdev, (dma_addr_t)
2247 txds->Buffer_Pointer, sizeof(u64),
2248 PCI_DMA_TODEVICE);
2249 txds++;
2250 }
2251
2252 skb = (struct sk_buff *) ((unsigned long)
2253 txds->Host_Control);
2254 if (!skb) {
2255 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2256 return NULL;
2257 }
2258 pci_unmap_single(nic->pdev, (dma_addr_t)
2259 txds->Buffer_Pointer,
2260 skb->len - skb->data_len,
2261 PCI_DMA_TODEVICE);
2262 frg_cnt = skb_shinfo(skb)->nr_frags;
2263 if (frg_cnt) {
2264 txds++;
2265 for (j = 0; j < frg_cnt; j++, txds++) {
2266 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2267 if (!txds->Buffer_Pointer)
2268 break;
2269 pci_unmap_page(nic->pdev, (dma_addr_t)
2270 txds->Buffer_Pointer,
2271 frag->size, PCI_DMA_TODEVICE);
2272 }
2273 }
2274 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2275 return(skb);
2276 }
2277
2278 /**
2279 * free_tx_buffers - Free all queued Tx buffers
2280 * @nic : device private variable.
2281 * Description:
2282 * Free all queued Tx buffers.
2283 * Return Value: void
2284 */
2285
2286 static void free_tx_buffers(struct s2io_nic *nic)
2287 {
2288 struct net_device *dev = nic->dev;
2289 struct sk_buff *skb;
2290 struct TxD *txdp;
2291 int i, j;
2292 struct mac_info *mac_control;
2293 struct config_param *config;
2294 int cnt = 0;
2295
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2298
2299 for (i = 0; i < config->tx_fifo_num; i++) {
2300 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2301 txdp = (struct TxD *) \
2302 mac_control->fifos[i].list_info[j].list_virt_addr;
2303 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2304 if (skb) {
2305 nic->mac_control.stats_info->sw_stat.mem_freed
2306 += skb->truesize;
2307 dev_kfree_skb(skb);
2308 cnt++;
2309 }
2310 }
2311 DBG_PRINT(INTR_DBG,
2312 "%s:forcibly freeing %d skbs on FIFO%d\n",
2313 dev->name, cnt, i);
2314 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2315 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2316 }
2317 }
2318
2319 /**
2320 * stop_nic - To stop the nic
2321 * @nic ; device private variable.
2322 * Description:
2323 * This function does exactly the opposite of what the start_nic()
2324 * function does. This function is called to stop the device.
2325 * Return Value:
2326 * void.
2327 */
2328
2329 static void stop_nic(struct s2io_nic *nic)
2330 {
2331 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2332 register u64 val64 = 0;
2333 u16 interruptible;
2334 struct mac_info *mac_control;
2335 struct config_param *config;
2336
2337 mac_control = &nic->mac_control;
2338 config = &nic->config;
2339
2340 /* Disable all interrupts */
2341 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2342 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2343 interruptible |= TX_PIC_INTR;
2344 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2345
2346 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2347 val64 = readq(&bar0->adapter_control);
2348 val64 &= ~(ADAPTER_CNTL_EN);
2349 writeq(val64, &bar0->adapter_control);
2350 }
2351
2352 /**
2353 * fill_rx_buffers - Allocates the Rx side skbs
2354 * @nic: device private variable
2355 * @ring_no: ring number
2356 * Description:
2357 * The function allocates Rx side skbs and puts the physical
2358 * address of these buffers into the RxD buffer pointers, so that the NIC
2359 * can DMA the received frame into these locations.
2360 * The NIC supports 3 receive modes, viz
2361 * 1. single buffer,
2362 * 2. three buffer and
2363 * 3. Five buffer modes.
2364 * Each mode defines how many fragments the received frame will be split
2365 * up into by the NIC. The frame is split into L3 header, L4 Header,
2366 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2367 * is split into 3 fragments. As of now only single buffer mode is
2368 * supported.
2369 * Return Value:
2370 * SUCCESS on success or an appropriate -ve value on failure.
2371 */
2372
2373 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2374 {
2375 struct net_device *dev = nic->dev;
2376 struct sk_buff *skb;
2377 struct RxD_t *rxdp;
2378 int off, off1, size, block_no, block_no1;
2379 u32 alloc_tab = 0;
2380 u32 alloc_cnt;
2381 struct mac_info *mac_control;
2382 struct config_param *config;
2383 u64 tmp;
2384 struct buffAdd *ba;
2385 unsigned long flags;
2386 struct RxD_t *first_rxdp = NULL;
2387 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2388 struct RxD1 *rxdp1;
2389 struct RxD3 *rxdp3;
2390 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2391
2392 mac_control = &nic->mac_control;
2393 config = &nic->config;
2394 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2395 atomic_read(&nic->rx_bufs_left[ring_no]);
2396
2397 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2398 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2399 while (alloc_tab < alloc_cnt) {
2400 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2401 block_index;
2402 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2403
2404 rxdp = mac_control->rings[ring_no].
2405 rx_blocks[block_no].rxds[off].virt_addr;
2406
2407 if ((block_no == block_no1) && (off == off1) &&
2408 (rxdp->Host_Control)) {
2409 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2410 dev->name);
2411 DBG_PRINT(INTR_DBG, " info equated\n");
2412 goto end;
2413 }
2414 if (off && (off == rxd_count[nic->rxd_mode])) {
2415 mac_control->rings[ring_no].rx_curr_put_info.
2416 block_index++;
2417 if (mac_control->rings[ring_no].rx_curr_put_info.
2418 block_index == mac_control->rings[ring_no].
2419 block_count)
2420 mac_control->rings[ring_no].rx_curr_put_info.
2421 block_index = 0;
2422 block_no = mac_control->rings[ring_no].
2423 rx_curr_put_info.block_index;
2424 if (off == rxd_count[nic->rxd_mode])
2425 off = 0;
2426 mac_control->rings[ring_no].rx_curr_put_info.
2427 offset = off;
2428 rxdp = mac_control->rings[ring_no].
2429 rx_blocks[block_no].block_virt_addr;
2430 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2431 dev->name, rxdp);
2432 }
2433 if(!napi) {
2434 spin_lock_irqsave(&nic->put_lock, flags);
2435 mac_control->rings[ring_no].put_pos =
2436 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2437 spin_unlock_irqrestore(&nic->put_lock, flags);
2438 } else {
2439 mac_control->rings[ring_no].put_pos =
2440 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2441 }
2442 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2443 ((nic->rxd_mode == RXD_MODE_3B) &&
2444 (rxdp->Control_2 & s2BIT(0)))) {
2445 mac_control->rings[ring_no].rx_curr_put_info.
2446 offset = off;
2447 goto end;
2448 }
2449 /* calculate size of skb based on ring mode */
2450 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2451 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2452 if (nic->rxd_mode == RXD_MODE_1)
2453 size += NET_IP_ALIGN;
2454 else
2455 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2456
2457 /* allocate skb */
2458 skb = dev_alloc_skb(size);
2459 if(!skb) {
2460 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2461 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2462 if (first_rxdp) {
2463 wmb();
2464 first_rxdp->Control_1 |= RXD_OWN_XENA;
2465 }
2466 nic->mac_control.stats_info->sw_stat. \
2467 mem_alloc_fail_cnt++;
2468 return -ENOMEM ;
2469 }
2470 nic->mac_control.stats_info->sw_stat.mem_allocated
2471 += skb->truesize;
2472 if (nic->rxd_mode == RXD_MODE_1) {
2473 /* 1 buffer mode - normal operation mode */
2474 rxdp1 = (struct RxD1*)rxdp;
2475 memset(rxdp, 0, sizeof(struct RxD1));
2476 skb_reserve(skb, NET_IP_ALIGN);
2477 rxdp1->Buffer0_ptr = pci_map_single
2478 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2479 PCI_DMA_FROMDEVICE);
2480 if( (rxdp1->Buffer0_ptr == 0) ||
2481 (rxdp1->Buffer0_ptr ==
2482 DMA_ERROR_CODE))
2483 goto pci_map_failed;
2484
2485 rxdp->Control_2 =
2486 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2487
2488 } else if (nic->rxd_mode == RXD_MODE_3B) {
2489 /*
2490 * 2 buffer mode -
2491 * 2 buffer mode provides 128
2492 * byte aligned receive buffers.
2493 */
2494
2495 rxdp3 = (struct RxD3*)rxdp;
2496 /* save buffer pointers to avoid frequent dma mapping */
2497 Buffer0_ptr = rxdp3->Buffer0_ptr;
2498 Buffer1_ptr = rxdp3->Buffer1_ptr;
2499 memset(rxdp, 0, sizeof(struct RxD3));
2500 /* restore the buffer pointers for dma sync*/
2501 rxdp3->Buffer0_ptr = Buffer0_ptr;
2502 rxdp3->Buffer1_ptr = Buffer1_ptr;
2503
2504 ba = &mac_control->rings[ring_no].ba[block_no][off];
2505 skb_reserve(skb, BUF0_LEN);
2506 tmp = (u64)(unsigned long) skb->data;
2507 tmp += ALIGN_SIZE;
2508 tmp &= ~ALIGN_SIZE;
2509 skb->data = (void *) (unsigned long)tmp;
2510 skb_reset_tail_pointer(skb);
2511
2512 if (!(rxdp3->Buffer0_ptr))
2513 rxdp3->Buffer0_ptr =
2514 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2515 PCI_DMA_FROMDEVICE);
2516 else
2517 pci_dma_sync_single_for_device(nic->pdev,
2518 (dma_addr_t) rxdp3->Buffer0_ptr,
2519 BUF0_LEN, PCI_DMA_FROMDEVICE);
2520 if( (rxdp3->Buffer0_ptr == 0) ||
2521 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2522 goto pci_map_failed;
2523
2524 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2525 if (nic->rxd_mode == RXD_MODE_3B) {
2526 /* Two buffer mode */
2527
2528 /*
2529 * Buffer2 will have L3/L4 header plus
2530 * L4 payload
2531 */
2532 rxdp3->Buffer2_ptr = pci_map_single
2533 (nic->pdev, skb->data, dev->mtu + 4,
2534 PCI_DMA_FROMDEVICE);
2535
2536 if( (rxdp3->Buffer2_ptr == 0) ||
2537 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2538 goto pci_map_failed;
2539
2540 rxdp3->Buffer1_ptr =
2541 pci_map_single(nic->pdev,
2542 ba->ba_1, BUF1_LEN,
2543 PCI_DMA_FROMDEVICE);
2544 if( (rxdp3->Buffer1_ptr == 0) ||
2545 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2546 pci_unmap_single
2547 (nic->pdev,
2548 (dma_addr_t)rxdp3->Buffer2_ptr,
2549 dev->mtu + 4,
2550 PCI_DMA_FROMDEVICE);
2551 goto pci_map_failed;
2552 }
2553 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2554 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2555 (dev->mtu + 4);
2556 }
2557 rxdp->Control_2 |= s2BIT(0);
2558 }
2559 rxdp->Host_Control = (unsigned long) (skb);
2560 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2561 rxdp->Control_1 |= RXD_OWN_XENA;
2562 off++;
2563 if (off == (rxd_count[nic->rxd_mode] + 1))
2564 off = 0;
2565 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2566
2567 rxdp->Control_2 |= SET_RXD_MARKER;
2568 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2569 if (first_rxdp) {
2570 wmb();
2571 first_rxdp->Control_1 |= RXD_OWN_XENA;
2572 }
2573 first_rxdp = rxdp;
2574 }
2575 atomic_inc(&nic->rx_bufs_left[ring_no]);
2576 alloc_tab++;
2577 }
2578
2579 end:
2580 /* Transfer ownership of first descriptor to adapter just before
2581 * exiting. Before that, use memory barrier so that ownership
2582 * and other fields are seen by adapter correctly.
2583 */
2584 if (first_rxdp) {
2585 wmb();
2586 first_rxdp->Control_1 |= RXD_OWN_XENA;
2587 }
2588
2589 return SUCCESS;
2590 pci_map_failed:
2591 stats->pci_map_fail_cnt++;
2592 stats->mem_freed += skb->truesize;
2593 dev_kfree_skb_irq(skb);
2594 return -ENOMEM;
2595 }
2596
2597 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2598 {
2599 struct net_device *dev = sp->dev;
2600 int j;
2601 struct sk_buff *skb;
2602 struct RxD_t *rxdp;
2603 struct mac_info *mac_control;
2604 struct buffAdd *ba;
2605 struct RxD1 *rxdp1;
2606 struct RxD3 *rxdp3;
2607
2608 mac_control = &sp->mac_control;
2609 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2610 rxdp = mac_control->rings[ring_no].
2611 rx_blocks[blk].rxds[j].virt_addr;
2612 skb = (struct sk_buff *)
2613 ((unsigned long) rxdp->Host_Control);
2614 if (!skb) {
2615 continue;
2616 }
2617 if (sp->rxd_mode == RXD_MODE_1) {
2618 rxdp1 = (struct RxD1*)rxdp;
2619 pci_unmap_single(sp->pdev, (dma_addr_t)
2620 rxdp1->Buffer0_ptr,
2621 dev->mtu +
2622 HEADER_ETHERNET_II_802_3_SIZE
2623 + HEADER_802_2_SIZE +
2624 HEADER_SNAP_SIZE,
2625 PCI_DMA_FROMDEVICE);
2626 memset(rxdp, 0, sizeof(struct RxD1));
2627 } else if(sp->rxd_mode == RXD_MODE_3B) {
2628 rxdp3 = (struct RxD3*)rxdp;
2629 ba = &mac_control->rings[ring_no].
2630 ba[blk][j];
2631 pci_unmap_single(sp->pdev, (dma_addr_t)
2632 rxdp3->Buffer0_ptr,
2633 BUF0_LEN,
2634 PCI_DMA_FROMDEVICE);
2635 pci_unmap_single(sp->pdev, (dma_addr_t)
2636 rxdp3->Buffer1_ptr,
2637 BUF1_LEN,
2638 PCI_DMA_FROMDEVICE);
2639 pci_unmap_single(sp->pdev, (dma_addr_t)
2640 rxdp3->Buffer2_ptr,
2641 dev->mtu + 4,
2642 PCI_DMA_FROMDEVICE);
2643 memset(rxdp, 0, sizeof(struct RxD3));
2644 }
2645 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2646 dev_kfree_skb(skb);
2647 atomic_dec(&sp->rx_bufs_left[ring_no]);
2648 }
2649 }
2650
2651 /**
2652 * free_rx_buffers - Frees all Rx buffers
2653 * @sp: device private variable.
2654 * Description:
2655 * This function will free all Rx buffers allocated by host.
2656 * Return Value:
2657 * NONE.
2658 */
2659
2660 static void free_rx_buffers(struct s2io_nic *sp)
2661 {
2662 struct net_device *dev = sp->dev;
2663 int i, blk = 0, buf_cnt = 0;
2664 struct mac_info *mac_control;
2665 struct config_param *config;
2666
2667 mac_control = &sp->mac_control;
2668 config = &sp->config;
2669
2670 for (i = 0; i < config->rx_ring_num; i++) {
2671 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2672 free_rxd_blk(sp,i,blk);
2673
2674 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2675 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2676 mac_control->rings[i].rx_curr_put_info.offset = 0;
2677 mac_control->rings[i].rx_curr_get_info.offset = 0;
2678 atomic_set(&sp->rx_bufs_left[i], 0);
2679 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2680 dev->name, buf_cnt, i);
2681 }
2682 }
2683
2684 /**
2685 * s2io_poll - Rx interrupt handler for NAPI support
2686 * @napi : pointer to the napi structure.
2687 * @budget : The number of packets that were budgeted to be processed
2688 * during one pass through the 'Poll" function.
2689 * Description:
2690 * Comes into picture only if NAPI support has been incorporated. It does
2691 * the same thing that rx_intr_handler does, but not in a interrupt context
2692 * also It will process only a given number of packets.
2693 * Return value:
2694 * 0 on success and 1 if there are No Rx packets to be processed.
2695 */
2696
2697 static int s2io_poll(struct napi_struct *napi, int budget)
2698 {
2699 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2700 struct net_device *dev = nic->dev;
2701 int pkt_cnt = 0, org_pkts_to_process;
2702 struct mac_info *mac_control;
2703 struct config_param *config;
2704 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2705 int i;
2706
2707 mac_control = &nic->mac_control;
2708 config = &nic->config;
2709
2710 nic->pkts_to_process = budget;
2711 org_pkts_to_process = nic->pkts_to_process;
2712
2713 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2714 readl(&bar0->rx_traffic_int);
2715
2716 for (i = 0; i < config->rx_ring_num; i++) {
2717 rx_intr_handler(&mac_control->rings[i]);
2718 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2719 if (!nic->pkts_to_process) {
2720 /* Quota for the current iteration has been met */
2721 goto no_rx;
2722 }
2723 }
2724
2725 netif_rx_complete(dev, napi);
2726
2727 for (i = 0; i < config->rx_ring_num; i++) {
2728 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2729 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2730 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2731 break;
2732 }
2733 }
2734 /* Re enable the Rx interrupts. */
2735 writeq(0x0, &bar0->rx_traffic_mask);
2736 readl(&bar0->rx_traffic_mask);
2737 return pkt_cnt;
2738
2739 no_rx:
2740 for (i = 0; i < config->rx_ring_num; i++) {
2741 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2742 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2743 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2744 break;
2745 }
2746 }
2747 return pkt_cnt;
2748 }
2749
2750 #ifdef CONFIG_NET_POLL_CONTROLLER
2751 /**
2752 * s2io_netpoll - netpoll event handler entry point
2753 * @dev : pointer to the device structure.
2754 * Description:
2755 * This function will be called by upper layer to check for events on the
2756 * interface in situations where interrupts are disabled. It is used for
2757 * specific in-kernel networking tasks, such as remote consoles and kernel
2758 * debugging over the network (example netdump in RedHat).
2759 */
2760 static void s2io_netpoll(struct net_device *dev)
2761 {
2762 struct s2io_nic *nic = dev->priv;
2763 struct mac_info *mac_control;
2764 struct config_param *config;
2765 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2766 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2767 int i;
2768
2769 if (pci_channel_offline(nic->pdev))
2770 return;
2771
2772 disable_irq(dev->irq);
2773
2774 mac_control = &nic->mac_control;
2775 config = &nic->config;
2776
2777 writeq(val64, &bar0->rx_traffic_int);
2778 writeq(val64, &bar0->tx_traffic_int);
2779
2780 /* we need to free up the transmitted skbufs or else netpoll will
2781 * run out of skbs and will fail and eventually netpoll application such
2782 * as netdump will fail.
2783 */
2784 for (i = 0; i < config->tx_fifo_num; i++)
2785 tx_intr_handler(&mac_control->fifos[i]);
2786
2787 /* check for received packet and indicate up to network */
2788 for (i = 0; i < config->rx_ring_num; i++)
2789 rx_intr_handler(&mac_control->rings[i]);
2790
2791 for (i = 0; i < config->rx_ring_num; i++) {
2792 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2793 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2794 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2795 break;
2796 }
2797 }
2798 enable_irq(dev->irq);
2799 return;
2800 }
2801 #endif
2802
2803 /**
2804 * rx_intr_handler - Rx interrupt handler
2805 * @nic: device private variable.
2806 * Description:
2807 * If the interrupt is because of a received frame or if the
2808 * receive ring contains fresh as yet un-processed frames,this function is
2809 * called. It picks out the RxD at which place the last Rx processing had
2810 * stopped and sends the skb to the OSM's Rx handler and then increments
2811 * the offset.
2812 * Return Value:
2813 * NONE.
2814 */
2815 static void rx_intr_handler(struct ring_info *ring_data)
2816 {
2817 struct s2io_nic *nic = ring_data->nic;
2818 struct net_device *dev = (struct net_device *) nic->dev;
2819 int get_block, put_block, put_offset;
2820 struct rx_curr_get_info get_info, put_info;
2821 struct RxD_t *rxdp;
2822 struct sk_buff *skb;
2823 int pkt_cnt = 0;
2824 int i;
2825 struct RxD1* rxdp1;
2826 struct RxD3* rxdp3;
2827
2828 spin_lock(&nic->rx_lock);
2829
2830 get_info = ring_data->rx_curr_get_info;
2831 get_block = get_info.block_index;
2832 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2833 put_block = put_info.block_index;
2834 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2835 if (!napi) {
2836 spin_lock(&nic->put_lock);
2837 put_offset = ring_data->put_pos;
2838 spin_unlock(&nic->put_lock);
2839 } else
2840 put_offset = ring_data->put_pos;
2841
2842 while (RXD_IS_UP2DT(rxdp)) {
2843 /*
2844 * If your are next to put index then it's
2845 * FIFO full condition
2846 */
2847 if ((get_block == put_block) &&
2848 (get_info.offset + 1) == put_info.offset) {
2849 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2850 break;
2851 }
2852 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2853 if (skb == NULL) {
2854 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2855 dev->name);
2856 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2857 spin_unlock(&nic->rx_lock);
2858 return;
2859 }
2860 if (nic->rxd_mode == RXD_MODE_1) {
2861 rxdp1 = (struct RxD1*)rxdp;
2862 pci_unmap_single(nic->pdev, (dma_addr_t)
2863 rxdp1->Buffer0_ptr,
2864 dev->mtu +
2865 HEADER_ETHERNET_II_802_3_SIZE +
2866 HEADER_802_2_SIZE +
2867 HEADER_SNAP_SIZE,
2868 PCI_DMA_FROMDEVICE);
2869 } else if (nic->rxd_mode == RXD_MODE_3B) {
2870 rxdp3 = (struct RxD3*)rxdp;
2871 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2872 rxdp3->Buffer0_ptr,
2873 BUF0_LEN, PCI_DMA_FROMDEVICE);
2874 pci_unmap_single(nic->pdev, (dma_addr_t)
2875 rxdp3->Buffer2_ptr,
2876 dev->mtu + 4,
2877 PCI_DMA_FROMDEVICE);
2878 }
2879 prefetch(skb->data);
2880 rx_osm_handler(ring_data, rxdp);
2881 get_info.offset++;
2882 ring_data->rx_curr_get_info.offset = get_info.offset;
2883 rxdp = ring_data->rx_blocks[get_block].
2884 rxds[get_info.offset].virt_addr;
2885 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2886 get_info.offset = 0;
2887 ring_data->rx_curr_get_info.offset = get_info.offset;
2888 get_block++;
2889 if (get_block == ring_data->block_count)
2890 get_block = 0;
2891 ring_data->rx_curr_get_info.block_index = get_block;
2892 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2893 }
2894
2895 nic->pkts_to_process -= 1;
2896 if ((napi) && (!nic->pkts_to_process))
2897 break;
2898 pkt_cnt++;
2899 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2900 break;
2901 }
2902 if (nic->lro) {
2903 /* Clear all LRO sessions before exiting */
2904 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2905 struct lro *lro = &nic->lro0_n[i];
2906 if (lro->in_use) {
2907 update_L3L4_header(nic, lro);
2908 queue_rx_frame(lro->parent);
2909 clear_lro_session(lro);
2910 }
2911 }
2912 }
2913
2914 spin_unlock(&nic->rx_lock);
2915 }
2916
2917 /**
2918 * tx_intr_handler - Transmit interrupt handler
2919 * @nic : device private variable
2920 * Description:
2921 * If an interrupt was raised to indicate DMA complete of the
2922 * Tx packet, this function is called. It identifies the last TxD
2923 * whose buffer was freed and frees all skbs whose data have already
2924 * DMA'ed into the NICs internal memory.
2925 * Return Value:
2926 * NONE
2927 */
2928
2929 static void tx_intr_handler(struct fifo_info *fifo_data)
2930 {
2931 struct s2io_nic *nic = fifo_data->nic;
2932 struct net_device *dev = (struct net_device *) nic->dev;
2933 struct tx_curr_get_info get_info, put_info;
2934 struct sk_buff *skb;
2935 struct TxD *txdlp;
2936 u8 err_mask;
2937
2938 get_info = fifo_data->tx_curr_get_info;
2939 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2940 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2941 list_virt_addr;
2942 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2943 (get_info.offset != put_info.offset) &&
2944 (txdlp->Host_Control)) {
2945 /* Check for TxD errors */
2946 if (txdlp->Control_1 & TXD_T_CODE) {
2947 unsigned long long err;
2948 err = txdlp->Control_1 & TXD_T_CODE;
2949 if (err & 0x1) {
2950 nic->mac_control.stats_info->sw_stat.
2951 parity_err_cnt++;
2952 }
2953
2954 /* update t_code statistics */
2955 err_mask = err >> 48;
2956 switch(err_mask) {
2957 case 2:
2958 nic->mac_control.stats_info->sw_stat.
2959 tx_buf_abort_cnt++;
2960 break;
2961
2962 case 3:
2963 nic->mac_control.stats_info->sw_stat.
2964 tx_desc_abort_cnt++;
2965 break;
2966
2967 case 7:
2968 nic->mac_control.stats_info->sw_stat.
2969 tx_parity_err_cnt++;
2970 break;
2971
2972 case 10:
2973 nic->mac_control.stats_info->sw_stat.
2974 tx_link_loss_cnt++;
2975 break;
2976
2977 case 15:
2978 nic->mac_control.stats_info->sw_stat.
2979 tx_list_proc_err_cnt++;
2980 break;
2981 }
2982 }
2983
2984 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2985 if (skb == NULL) {
2986 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2987 __FUNCTION__);
2988 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2989 return;
2990 }
2991
2992 /* Updating the statistics block */
2993 nic->stats.tx_bytes += skb->len;
2994 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2995 dev_kfree_skb_irq(skb);
2996
2997 get_info.offset++;
2998 if (get_info.offset == get_info.fifo_len + 1)
2999 get_info.offset = 0;
3000 txdlp = (struct TxD *) fifo_data->list_info
3001 [get_info.offset].list_virt_addr;
3002 fifo_data->tx_curr_get_info.offset =
3003 get_info.offset;
3004 }
3005
3006 spin_lock(&nic->tx_lock);
3007 if (netif_queue_stopped(dev))
3008 netif_wake_queue(dev);
3009 spin_unlock(&nic->tx_lock);
3010 }
3011
3012 /**
3013 * s2io_mdio_write - Function to write in to MDIO registers
3014 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3015 * @addr : address value
3016 * @value : data value
3017 * @dev : pointer to net_device structure
3018 * Description:
3019 * This function is used to write values to the MDIO registers
3020 * NONE
3021 */
3022 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3023 {
3024 u64 val64 = 0x0;
3025 struct s2io_nic *sp = dev->priv;
3026 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3027
3028 //address transaction
3029 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3030 | MDIO_MMD_DEV_ADDR(mmd_type)
3031 | MDIO_MMS_PRT_ADDR(0x0);
3032 writeq(val64, &bar0->mdio_control);
3033 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3034 writeq(val64, &bar0->mdio_control);
3035 udelay(100);
3036
3037 //Data transaction
3038 val64 = 0x0;
3039 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3040 | MDIO_MMD_DEV_ADDR(mmd_type)
3041 | MDIO_MMS_PRT_ADDR(0x0)
3042 | MDIO_MDIO_DATA(value)
3043 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3044 writeq(val64, &bar0->mdio_control);
3045 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3046 writeq(val64, &bar0->mdio_control);
3047 udelay(100);
3048
3049 val64 = 0x0;
3050 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3051 | MDIO_MMD_DEV_ADDR(mmd_type)
3052 | MDIO_MMS_PRT_ADDR(0x0)
3053 | MDIO_OP(MDIO_OP_READ_TRANS);
3054 writeq(val64, &bar0->mdio_control);
3055 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3056 writeq(val64, &bar0->mdio_control);
3057 udelay(100);
3058
3059 }
3060
3061 /**
3062 * s2io_mdio_read - Function to write in to MDIO registers
3063 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3064 * @addr : address value
3065 * @dev : pointer to net_device structure
3066 * Description:
3067 * This function is used to read values to the MDIO registers
3068 * NONE
3069 */
3070 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3071 {
3072 u64 val64 = 0x0;
3073 u64 rval64 = 0x0;
3074 struct s2io_nic *sp = dev->priv;
3075 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3076
3077 /* address transaction */
3078 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3079 | MDIO_MMD_DEV_ADDR(mmd_type)
3080 | MDIO_MMS_PRT_ADDR(0x0);
3081 writeq(val64, &bar0->mdio_control);
3082 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3083 writeq(val64, &bar0->mdio_control);
3084 udelay(100);
3085
3086 /* Data transaction */
3087 val64 = 0x0;
3088 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3089 | MDIO_MMD_DEV_ADDR(mmd_type)
3090 | MDIO_MMS_PRT_ADDR(0x0)
3091 | MDIO_OP(MDIO_OP_READ_TRANS);
3092 writeq(val64, &bar0->mdio_control);
3093 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3094 writeq(val64, &bar0->mdio_control);
3095 udelay(100);
3096
3097 /* Read the value from regs */
3098 rval64 = readq(&bar0->mdio_control);
3099 rval64 = rval64 & 0xFFFF0000;
3100 rval64 = rval64 >> 16;
3101 return rval64;
3102 }
3103 /**
3104 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3105 * @counter : couter value to be updated
3106 * @flag : flag to indicate the status
3107 * @type : counter type
3108 * Description:
3109 * This function is to check the status of the xpak counters value
3110 * NONE
3111 */
3112
3113 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3114 {
3115 u64 mask = 0x3;
3116 u64 val64;
3117 int i;
3118 for(i = 0; i <index; i++)
3119 mask = mask << 0x2;
3120
3121 if(flag > 0)
3122 {
3123 *counter = *counter + 1;
3124 val64 = *regs_stat & mask;
3125 val64 = val64 >> (index * 0x2);
3126 val64 = val64 + 1;
3127 if(val64 == 3)
3128 {
3129 switch(type)
3130 {
3131 case 1:
3132 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3133 "service. Excessive temperatures may "
3134 "result in premature transceiver "
3135 "failure \n");
3136 break;
3137 case 2:
3138 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3139 "service Excessive bias currents may "
3140 "indicate imminent laser diode "
3141 "failure \n");
3142 break;
3143 case 3:
3144 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3145 "service Excessive laser output "
3146 "power may saturate far-end "
3147 "receiver\n");
3148 break;
3149 default:
3150 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3151 "type \n");
3152 }
3153 val64 = 0x0;
3154 }
3155 val64 = val64 << (index * 0x2);
3156 *regs_stat = (*regs_stat & (~mask)) | (val64);
3157
3158 } else {
3159 *regs_stat = *regs_stat & (~mask);
3160 }
3161 }
3162
3163 /**
3164 * s2io_updt_xpak_counter - Function to update the xpak counters
3165 * @dev : pointer to net_device struct
3166 * Description:
3167 * This function is to upate the status of the xpak counters value
3168 * NONE
3169 */
3170 static void s2io_updt_xpak_counter(struct net_device *dev)
3171 {
3172 u16 flag = 0x0;
3173 u16 type = 0x0;
3174 u16 val16 = 0x0;
3175 u64 val64 = 0x0;
3176 u64 addr = 0x0;
3177
3178 struct s2io_nic *sp = dev->priv;
3179 struct stat_block *stat_info = sp->mac_control.stats_info;
3180
3181 /* Check the communication with the MDIO slave */
3182 addr = 0x0000;
3183 val64 = 0x0;
3184 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3185 if((val64 == 0xFFFF) || (val64 == 0x0000))
3186 {
3187 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3188 "Returned %llx\n", (unsigned long long)val64);
3189 return;
3190 }
3191
3192 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3193 if(val64 != 0x2040)
3194 {
3195 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3196 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3197 (unsigned long long)val64);
3198 return;
3199 }
3200
3201 /* Loading the DOM register to MDIO register */
3202 addr = 0xA100;
3203 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3204 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3205
3206 /* Reading the Alarm flags */
3207 addr = 0xA070;
3208 val64 = 0x0;
3209 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3210
3211 flag = CHECKBIT(val64, 0x7);
3212 type = 1;
3213 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3214 &stat_info->xpak_stat.xpak_regs_stat,
3215 0x0, flag, type);
3216
3217 if(CHECKBIT(val64, 0x6))
3218 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3219
3220 flag = CHECKBIT(val64, 0x3);
3221 type = 2;
3222 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3223 &stat_info->xpak_stat.xpak_regs_stat,
3224 0x2, flag, type);
3225
3226 if(CHECKBIT(val64, 0x2))
3227 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3228
3229 flag = CHECKBIT(val64, 0x1);
3230 type = 3;
3231 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3232 &stat_info->xpak_stat.xpak_regs_stat,
3233 0x4, flag, type);
3234
3235 if(CHECKBIT(val64, 0x0))
3236 stat_info->xpak_stat.alarm_laser_output_power_low++;
3237
3238 /* Reading the Warning flags */
3239 addr = 0xA074;
3240 val64 = 0x0;
3241 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3242
3243 if(CHECKBIT(val64, 0x7))
3244 stat_info->xpak_stat.warn_transceiver_temp_high++;
3245
3246 if(CHECKBIT(val64, 0x6))
3247 stat_info->xpak_stat.warn_transceiver_temp_low++;
3248
3249 if(CHECKBIT(val64, 0x3))
3250 stat_info->xpak_stat.warn_laser_bias_current_high++;
3251
3252 if(CHECKBIT(val64, 0x2))
3253 stat_info->xpak_stat.warn_laser_bias_current_low++;
3254
3255 if(CHECKBIT(val64, 0x1))
3256 stat_info->xpak_stat.warn_laser_output_power_high++;
3257
3258 if(CHECKBIT(val64, 0x0))
3259 stat_info->xpak_stat.warn_laser_output_power_low++;
3260 }
3261
3262 /**
3263 * wait_for_cmd_complete - waits for a command to complete.
3264 * @sp : private member of the device structure, which is a pointer to the
3265 * s2io_nic structure.
3266 * Description: Function that waits for a command to Write into RMAC
3267 * ADDR DATA registers to be completed and returns either success or
3268 * error depending on whether the command was complete or not.
3269 * Return value:
3270 * SUCCESS on success and FAILURE on failure.
3271 */
3272
3273 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3274 int bit_state)
3275 {
3276 int ret = FAILURE, cnt = 0, delay = 1;
3277 u64 val64;
3278
3279 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3280 return FAILURE;
3281
3282 do {
3283 val64 = readq(addr);
3284 if (bit_state == S2IO_BIT_RESET) {
3285 if (!(val64 & busy_bit)) {
3286 ret = SUCCESS;
3287 break;
3288 }
3289 } else {
3290 if (!(val64 & busy_bit)) {
3291 ret = SUCCESS;
3292 break;
3293 }
3294 }
3295
3296 if(in_interrupt())
3297 mdelay(delay);
3298 else
3299 msleep(delay);
3300
3301 if (++cnt >= 10)
3302 delay = 50;
3303 } while (cnt < 20);
3304 return ret;
3305 }
3306 /*
3307 * check_pci_device_id - Checks if the device id is supported
3308 * @id : device id
3309 * Description: Function to check if the pci device id is supported by driver.
3310 * Return value: Actual device id if supported else PCI_ANY_ID
3311 */
3312 static u16 check_pci_device_id(u16 id)
3313 {
3314 switch (id) {
3315 case PCI_DEVICE_ID_HERC_WIN:
3316 case PCI_DEVICE_ID_HERC_UNI:
3317 return XFRAME_II_DEVICE;
3318 case PCI_DEVICE_ID_S2IO_UNI:
3319 case PCI_DEVICE_ID_S2IO_WIN:
3320 return XFRAME_I_DEVICE;
3321 default:
3322 return PCI_ANY_ID;
3323 }
3324 }
3325
3326 /**
3327 * s2io_reset - Resets the card.
3328 * @sp : private member of the device structure.
3329 * Description: Function to Reset the card. This function then also
3330 * restores the previously saved PCI configuration space registers as
3331 * the card reset also resets the configuration space.
3332 * Return value:
3333 * void.
3334 */
3335
3336 static void s2io_reset(struct s2io_nic * sp)
3337 {
3338 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3339 u64 val64;
3340 u16 subid, pci_cmd;
3341 int i;
3342 u16 val16;
3343 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3344 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3345
3346 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3347 __FUNCTION__, sp->dev->name);
3348
3349 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3350 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3351
3352 val64 = SW_RESET_ALL;
3353 writeq(val64, &bar0->sw_reset);
3354 if (strstr(sp->product_name, "CX4")) {
3355 msleep(750);
3356 }
3357 msleep(250);
3358 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3359
3360 /* Restore the PCI state saved during initialization. */
3361 pci_restore_state(sp->pdev);
3362 pci_read_config_word(sp->pdev, 0x2, &val16);
3363 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3364 break;
3365 msleep(200);
3366 }
3367
3368 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3369 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3370 }
3371
3372 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3373
3374 s2io_init_pci(sp);
3375
3376 /* Set swapper to enable I/O register access */
3377 s2io_set_swapper(sp);
3378
3379 /* Restore the MSIX table entries from local variables */
3380 restore_xmsi_data(sp);
3381
3382 /* Clear certain PCI/PCI-X fields after reset */
3383 if (sp->device_type == XFRAME_II_DEVICE) {
3384 /* Clear "detected parity error" bit */
3385 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3386
3387 /* Clearing PCIX Ecc status register */
3388 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3389
3390 /* Clearing PCI_STATUS error reflected here */
3391 writeq(s2BIT(62), &bar0->txpic_int_reg);
3392 }
3393
3394 /* Reset device statistics maintained by OS */
3395 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3396
3397 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3398 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3399 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3400 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3401 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3402 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3403 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3404 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3405 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3406 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3407 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3408 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3409 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3410 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3411 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3412 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3413 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3414 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3415 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3416
3417 /* SXE-002: Configure link and activity LED to turn it off */
3418 subid = sp->pdev->subsystem_device;
3419 if (((subid & 0xFF) >= 0x07) &&
3420 (sp->device_type == XFRAME_I_DEVICE)) {
3421 val64 = readq(&bar0->gpio_control);
3422 val64 |= 0x0000800000000000ULL;
3423 writeq(val64, &bar0->gpio_control);
3424 val64 = 0x0411040400000000ULL;
3425 writeq(val64, (void __iomem *)bar0 + 0x2700);
3426 }
3427
3428 /*
3429 * Clear spurious ECC interrupts that would have occured on
3430 * XFRAME II cards after reset.
3431 */
3432 if (sp->device_type == XFRAME_II_DEVICE) {
3433 val64 = readq(&bar0->pcc_err_reg);
3434 writeq(val64, &bar0->pcc_err_reg);
3435 }
3436
3437 /* restore the previously assigned mac address */
3438 do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3439
3440 sp->device_enabled_once = FALSE;
3441 }
3442
3443 /**
3444 * s2io_set_swapper - to set the swapper controle on the card
3445 * @sp : private member of the device structure,
3446 * pointer to the s2io_nic structure.
3447 * Description: Function to set the swapper control on the card
3448 * correctly depending on the 'endianness' of the system.
3449 * Return value:
3450 * SUCCESS on success and FAILURE on failure.
3451 */
3452
3453 static int s2io_set_swapper(struct s2io_nic * sp)
3454 {
3455 struct net_device *dev = sp->dev;
3456 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3457 u64 val64, valt, valr;
3458
3459 /*
3460 * Set proper endian settings and verify the same by reading
3461 * the PIF Feed-back register.
3462 */
3463
3464 val64 = readq(&bar0->pif_rd_swapper_fb);
3465 if (val64 != 0x0123456789ABCDEFULL) {
3466 int i = 0;
3467 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3468 0x8100008181000081ULL, /* FE=1, SE=0 */
3469 0x4200004242000042ULL, /* FE=0, SE=1 */
3470 0}; /* FE=0, SE=0 */
3471
3472 while(i<4) {
3473 writeq(value[i], &bar0->swapper_ctrl);
3474 val64 = readq(&bar0->pif_rd_swapper_fb);
3475 if (val64 == 0x0123456789ABCDEFULL)
3476 break;
3477 i++;
3478 }
3479 if (i == 4) {
3480 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3481 dev->name);
3482 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3483 (unsigned long long) val64);
3484 return FAILURE;
3485 }
3486 valr = value[i];
3487 } else {
3488 valr = readq(&bar0->swapper_ctrl);
3489 }
3490
3491 valt = 0x0123456789ABCDEFULL;
3492 writeq(valt, &bar0->xmsi_address);
3493 val64 = readq(&bar0->xmsi_address);
3494
3495 if(val64 != valt) {
3496 int i = 0;
3497 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3498 0x0081810000818100ULL, /* FE=1, SE=0 */
3499 0x0042420000424200ULL, /* FE=0, SE=1 */
3500 0}; /* FE=0, SE=0 */
3501
3502 while(i<4) {
3503 writeq((value[i] | valr), &bar0->swapper_ctrl);
3504 writeq(valt, &bar0->xmsi_address);
3505 val64 = readq(&bar0->xmsi_address);
3506 if(val64 == valt)
3507 break;
3508 i++;
3509 }
3510 if(i == 4) {
3511 unsigned long long x = val64;
3512 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3513 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3514 return FAILURE;
3515 }
3516 }
3517 val64 = readq(&bar0->swapper_ctrl);
3518 val64 &= 0xFFFF000000000000ULL;
3519
3520 #ifdef __BIG_ENDIAN
3521 /*
3522 * The device by default set to a big endian format, so a
3523 * big endian driver need not set anything.
3524 */
3525 val64 |= (SWAPPER_CTRL_TXP_FE |
3526 SWAPPER_CTRL_TXP_SE |
3527 SWAPPER_CTRL_TXD_R_FE |
3528 SWAPPER_CTRL_TXD_W_FE |
3529 SWAPPER_CTRL_TXF_R_FE |
3530 SWAPPER_CTRL_RXD_R_FE |
3531 SWAPPER_CTRL_RXD_W_FE |
3532 SWAPPER_CTRL_RXF_W_FE |
3533 SWAPPER_CTRL_XMSI_FE |
3534 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3535 if (sp->config.intr_type == INTA)
3536 val64 |= SWAPPER_CTRL_XMSI_SE;
3537 writeq(val64, &bar0->swapper_ctrl);
3538 #else
3539 /*
3540 * Initially we enable all bits to make it accessible by the
3541 * driver, then we selectively enable only those bits that
3542 * we want to set.
3543 */
3544 val64 |= (SWAPPER_CTRL_TXP_FE |
3545 SWAPPER_CTRL_TXP_SE |
3546 SWAPPER_CTRL_TXD_R_FE |
3547 SWAPPER_CTRL_TXD_R_SE |
3548 SWAPPER_CTRL_TXD_W_FE |
3549 SWAPPER_CTRL_TXD_W_SE |
3550 SWAPPER_CTRL_TXF_R_FE |
3551 SWAPPER_CTRL_RXD_R_FE |
3552 SWAPPER_CTRL_RXD_R_SE |
3553 SWAPPER_CTRL_RXD_W_FE |
3554 SWAPPER_CTRL_RXD_W_SE |
3555 SWAPPER_CTRL_RXF_W_FE |
3556 SWAPPER_CTRL_XMSI_FE |
3557 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3558 if (sp->config.intr_type == INTA)
3559 val64 |= SWAPPER_CTRL_XMSI_SE;
3560 writeq(val64, &bar0->swapper_ctrl);
3561 #endif
3562 val64 = readq(&bar0->swapper_ctrl);
3563
3564 /*
3565 * Verifying if endian settings are accurate by reading a
3566 * feedback register.
3567 */
3568 val64 = readq(&bar0->pif_rd_swapper_fb);
3569 if (val64 != 0x0123456789ABCDEFULL) {
3570 /* Endian settings are incorrect, calls for another dekko. */
3571 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3572 dev->name);
3573 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3574 (unsigned long long) val64);
3575 return FAILURE;
3576 }
3577
3578 return SUCCESS;
3579 }
3580
3581 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3582 {
3583 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3584 u64 val64;
3585 int ret = 0, cnt = 0;
3586
3587 do {
3588 val64 = readq(&bar0->xmsi_access);
3589 if (!(val64 & s2BIT(15)))
3590 break;
3591 mdelay(1);
3592 cnt++;
3593 } while(cnt < 5);
3594 if (cnt == 5) {
3595 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3596 ret = 1;
3597 }
3598
3599 return ret;
3600 }
3601
3602 static void restore_xmsi_data(struct s2io_nic *nic)
3603 {
3604 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3605 u64 val64;
3606 int i;
3607
3608 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3609 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3610 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3611 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3612 writeq(val64, &bar0->xmsi_access);
3613 if (wait_for_msix_trans(nic, i)) {
3614 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3615 continue;
3616 }
3617 }
3618 }
3619
3620 static void store_xmsi_data(struct s2io_nic *nic)
3621 {
3622 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3623 u64 val64, addr, data;
3624 int i;
3625
3626 /* Store and display */
3627 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3628 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3629 writeq(val64, &bar0->xmsi_access);
3630 if (wait_for_msix_trans(nic, i)) {
3631 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3632 continue;
3633 }
3634 addr = readq(&bar0->xmsi_address);
3635 data = readq(&bar0->xmsi_data);
3636 if (addr && data) {
3637 nic->msix_info[i].addr = addr;
3638 nic->msix_info[i].data = data;
3639 }
3640 }
3641 }
3642
3643 static int s2io_enable_msi_x(struct s2io_nic *nic)
3644 {
3645 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3646 u64 tx_mat, rx_mat;
3647 u16 msi_control; /* Temp variable */
3648 int ret, i, j, msix_indx = 1;
3649
3650 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3651 GFP_KERNEL);
3652 if (!nic->entries) {
3653 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3654 __FUNCTION__);
3655 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3656 return -ENOMEM;
3657 }
3658 nic->mac_control.stats_info->sw_stat.mem_allocated
3659 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3660
3661 nic->s2io_entries =
3662 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3663 GFP_KERNEL);
3664 if (!nic->s2io_entries) {
3665 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3666 __FUNCTION__);
3667 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3668 kfree(nic->entries);
3669 nic->mac_control.stats_info->sw_stat.mem_freed
3670 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3671 return -ENOMEM;
3672 }
3673 nic->mac_control.stats_info->sw_stat.mem_allocated
3674 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3675
3676 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3677 nic->entries[i].entry = i;
3678 nic->s2io_entries[i].entry = i;
3679 nic->s2io_entries[i].arg = NULL;
3680 nic->s2io_entries[i].in_use = 0;
3681 }
3682
3683 tx_mat = readq(&bar0->tx_mat0_n[0]);
3684 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3685 tx_mat |= TX_MAT_SET(i, msix_indx);
3686 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3687 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3688 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3689 }
3690 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3691
3692 rx_mat = readq(&bar0->rx_mat);
3693 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3694 rx_mat |= RX_MAT_SET(j, msix_indx);
3695 nic->s2io_entries[msix_indx].arg
3696 = &nic->mac_control.rings[j];
3697 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3698 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3699 }
3700 writeq(rx_mat, &bar0->rx_mat);
3701
3702 nic->avail_msix_vectors = 0;
3703 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3704 /* We fail init if error or we get less vectors than min required */
3705 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3706 nic->avail_msix_vectors = ret;
3707 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3708 }
3709 if (ret) {
3710 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3711 kfree(nic->entries);
3712 nic->mac_control.stats_info->sw_stat.mem_freed
3713 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3714 kfree(nic->s2io_entries);
3715 nic->mac_control.stats_info->sw_stat.mem_freed
3716 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3717 nic->entries = NULL;
3718 nic->s2io_entries = NULL;
3719 nic->avail_msix_vectors = 0;
3720 return -ENOMEM;
3721 }
3722 if (!nic->avail_msix_vectors)
3723 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3724
3725 /*
3726 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3727 * in the herc NIC. (Temp change, needs to be removed later)
3728 */
3729 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3730 msi_control |= 0x1; /* Enable MSI */
3731 pci_write_config_word(nic->pdev, 0x42, msi_control);
3732
3733 return 0;
3734 }
3735
3736 /* Handle software interrupt used during MSI(X) test */
3737 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3738 {
3739 struct s2io_nic *sp = dev_id;
3740
3741 sp->msi_detected = 1;
3742 wake_up(&sp->msi_wait);
3743
3744 return IRQ_HANDLED;
3745 }
3746
3747 /* Test interrupt path by forcing a a software IRQ */
3748 static int s2io_test_msi(struct s2io_nic *sp)
3749 {
3750 struct pci_dev *pdev = sp->pdev;
3751 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3752 int err;
3753 u64 val64, saved64;
3754
3755 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3756 sp->name, sp);
3757 if (err) {
3758 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3759 sp->dev->name, pci_name(pdev), pdev->irq);
3760 return err;
3761 }
3762
3763 init_waitqueue_head (&sp->msi_wait);
3764 sp->msi_detected = 0;
3765
3766 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3767 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3768 val64 |= SCHED_INT_CTRL_TIMER_EN;
3769 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3770 writeq(val64, &bar0->scheduled_int_ctrl);
3771
3772 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3773
3774 if (!sp->msi_detected) {
3775 /* MSI(X) test failed, go back to INTx mode */
3776 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3777 "using MSI(X) during test\n", sp->dev->name,
3778 pci_name(pdev));
3779
3780 err = -EOPNOTSUPP;
3781 }
3782
3783 free_irq(sp->entries[1].vector, sp);
3784
3785 writeq(saved64, &bar0->scheduled_int_ctrl);
3786
3787 return err;
3788 }
3789
3790 static void remove_msix_isr(struct s2io_nic *sp)
3791 {
3792 int i;
3793 u16 msi_control;
3794
3795 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3796 if (sp->s2io_entries[i].in_use ==
3797 MSIX_REGISTERED_SUCCESS) {
3798 int vector = sp->entries[i].vector;
3799 void *arg = sp->s2io_entries[i].arg;
3800 free_irq(vector, arg);
3801 }
3802 }
3803
3804 kfree(sp->entries);
3805 kfree(sp->s2io_entries);
3806 sp->entries = NULL;
3807 sp->s2io_entries = NULL;
3808
3809 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3810 msi_control &= 0xFFFE; /* Disable MSI */
3811 pci_write_config_word(sp->pdev, 0x42, msi_control);
3812
3813 pci_disable_msix(sp->pdev);
3814 }
3815
3816 static void remove_inta_isr(struct s2io_nic *sp)
3817 {
3818 struct net_device *dev = sp->dev;
3819
3820 free_irq(sp->pdev->irq, dev);
3821 }
3822
3823 /* ********************************************************* *
3824 * Functions defined below concern the OS part of the driver *
3825 * ********************************************************* */
3826
3827 /**
3828 * s2io_open - open entry point of the driver
3829 * @dev : pointer to the device structure.
3830 * Description:
3831 * This function is the open entry point of the driver. It mainly calls a
3832 * function to allocate Rx buffers and inserts them into the buffer
3833 * descriptors and then enables the Rx part of the NIC.
3834 * Return value:
3835 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3836 * file on failure.
3837 */
3838
3839 static int s2io_open(struct net_device *dev)
3840 {
3841 struct s2io_nic *sp = dev->priv;
3842 int err = 0;
3843
3844 /*
3845 * Make sure you have link off by default every time
3846 * Nic is initialized
3847 */
3848 netif_carrier_off(dev);
3849 sp->last_link_state = 0;
3850
3851 if (sp->config.intr_type == MSI_X) {
3852 int ret = s2io_enable_msi_x(sp);
3853
3854 if (!ret) {
3855 ret = s2io_test_msi(sp);
3856 /* rollback MSI-X, will re-enable during add_isr() */
3857 remove_msix_isr(sp);
3858 }
3859 if (ret) {
3860
3861 DBG_PRINT(ERR_DBG,
3862 "%s: MSI-X requested but failed to enable\n",
3863 dev->name);
3864 sp->config.intr_type = INTA;
3865 }
3866 }
3867
3868 /* NAPI doesn't work well with MSI(X) */
3869 if (sp->config.intr_type != INTA) {
3870 if(sp->config.napi)
3871 sp->config.napi = 0;
3872 }
3873
3874 /* Initialize H/W and enable interrupts */
3875 err = s2io_card_up(sp);
3876 if (err) {
3877 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3878 dev->name);
3879 goto hw_init_failed;
3880 }
3881
3882 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3883 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3884 s2io_card_down(sp);
3885 err = -ENODEV;
3886 goto hw_init_failed;
3887 }
3888
3889 netif_start_queue(dev);
3890 return 0;
3891
3892 hw_init_failed:
3893 if (sp->config.intr_type == MSI_X) {
3894 if (sp->entries) {
3895 kfree(sp->entries);
3896 sp->mac_control.stats_info->sw_stat.mem_freed
3897 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3898 }
3899 if (sp->s2io_entries) {
3900 kfree(sp->s2io_entries);
3901 sp->mac_control.stats_info->sw_stat.mem_freed
3902 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3903 }
3904 }
3905 return err;
3906 }
3907
3908 /**
3909 * s2io_close -close entry point of the driver
3910 * @dev : device pointer.
3911 * Description:
3912 * This is the stop entry point of the driver. It needs to undo exactly
3913 * whatever was done by the open entry point,thus it's usually referred to
3914 * as the close function.Among other things this function mainly stops the
3915 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3916 * Return value:
3917 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3918 * file on failure.
3919 */
3920
3921 static int s2io_close(struct net_device *dev)
3922 {
3923 struct s2io_nic *sp = dev->priv;
3924
3925 /* Return if the device is already closed *
3926 * Can happen when s2io_card_up failed in change_mtu *
3927 */
3928 if (!is_s2io_card_up(sp))
3929 return 0;
3930
3931 netif_stop_queue(dev);
3932 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3933 s2io_card_down(sp);
3934
3935 return 0;
3936 }
3937
3938 /**
3939 * s2io_xmit - Tx entry point of te driver
3940 * @skb : the socket buffer containing the Tx data.
3941 * @dev : device pointer.
3942 * Description :
3943 * This function is the Tx entry point of the driver. S2IO NIC supports
3944 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3945 * NOTE: when device cant queue the pkt,just the trans_start variable will
3946 * not be upadted.
3947 * Return value:
3948 * 0 on success & 1 on failure.
3949 */
3950
3951 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3952 {
3953 struct s2io_nic *sp = dev->priv;
3954 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3955 register u64 val64;
3956 struct TxD *txdp;
3957 struct TxFIFO_element __iomem *tx_fifo;
3958 unsigned long flags;
3959 u16 vlan_tag = 0;
3960 int vlan_priority = 0;
3961 struct mac_info *mac_control;
3962 struct config_param *config;
3963 int offload_type;
3964 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3965
3966 mac_control = &sp->mac_control;
3967 config = &sp->config;
3968
3969 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3970
3971 if (unlikely(skb->len <= 0)) {
3972 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3973 dev_kfree_skb_any(skb);
3974 return 0;
3975 }
3976
3977 spin_lock_irqsave(&sp->tx_lock, flags);
3978 if (!is_s2io_card_up(sp)) {
3979 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3980 dev->name);
3981 spin_unlock_irqrestore(&sp->tx_lock, flags);
3982 dev_kfree_skb(skb);
3983 return 0;
3984 }
3985
3986 queue = 0;
3987 /* Get Fifo number to Transmit based on vlan priority */
3988 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3989 vlan_tag = vlan_tx_tag_get(skb);
3990 vlan_priority = vlan_tag >> 13;
3991 queue = config->fifo_mapping[vlan_priority];
3992 }
3993
3994 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3995 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3996 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3997 list_virt_addr;
3998
3999 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4000 /* Avoid "put" pointer going beyond "get" pointer */
4001 if (txdp->Host_Control ||
4002 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4003 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4004 netif_stop_queue(dev);
4005 dev_kfree_skb(skb);
4006 spin_unlock_irqrestore(&sp->tx_lock, flags);
4007 return 0;
4008 }
4009
4010 offload_type = s2io_offload_type(skb);
4011 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4012 txdp->Control_1 |= TXD_TCP_LSO_EN;
4013 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4014 }
4015 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4016 txdp->Control_2 |=
4017 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4018 TXD_TX_CKO_UDP_EN);
4019 }
4020 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4021 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4022 txdp->Control_2 |= config->tx_intr_type;
4023
4024 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4025 txdp->Control_2 |= TXD_VLAN_ENABLE;
4026 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4027 }
4028
4029 frg_len = skb->len - skb->data_len;
4030 if (offload_type == SKB_GSO_UDP) {
4031 int ufo_size;
4032
4033 ufo_size = s2io_udp_mss(skb);
4034 ufo_size &= ~7;
4035 txdp->Control_1 |= TXD_UFO_EN;
4036 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4037 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4038 #ifdef __BIG_ENDIAN
4039 sp->ufo_in_band_v[put_off] =
4040 (u64)skb_shinfo(skb)->ip6_frag_id;
4041 #else
4042 sp->ufo_in_band_v[put_off] =
4043 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4044 #endif
4045 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4046 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4047 sp->ufo_in_band_v,
4048 sizeof(u64), PCI_DMA_TODEVICE);
4049 if((txdp->Buffer_Pointer == 0) ||
4050 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4051 goto pci_map_failed;
4052 txdp++;
4053 }
4054
4055 txdp->Buffer_Pointer = pci_map_single
4056 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4057 if((txdp->Buffer_Pointer == 0) ||
4058 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4059 goto pci_map_failed;
4060
4061 txdp->Host_Control = (unsigned long) skb;
4062 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4063 if (offload_type == SKB_GSO_UDP)
4064 txdp->Control_1 |= TXD_UFO_EN;
4065
4066 frg_cnt = skb_shinfo(skb)->nr_frags;
4067 /* For fragmented SKB. */
4068 for (i = 0; i < frg_cnt; i++) {
4069 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4070 /* A '0' length fragment will be ignored */
4071 if (!frag->size)
4072 continue;
4073 txdp++;
4074 txdp->Buffer_Pointer = (u64) pci_map_page
4075 (sp->pdev, frag->page, frag->page_offset,
4076 frag->size, PCI_DMA_TODEVICE);
4077 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4078 if (offload_type == SKB_GSO_UDP)
4079 txdp->Control_1 |= TXD_UFO_EN;
4080 }
4081 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4082
4083 if (offload_type == SKB_GSO_UDP)
4084 frg_cnt++; /* as Txd0 was used for inband header */
4085
4086 tx_fifo = mac_control->tx_FIFO_start[queue];
4087 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4088 writeq(val64, &tx_fifo->TxDL_Pointer);
4089
4090 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4091 TX_FIFO_LAST_LIST);
4092 if (offload_type)
4093 val64 |= TX_FIFO_SPECIAL_FUNC;
4094
4095 writeq(val64, &tx_fifo->List_Control);
4096
4097 mmiowb();
4098
4099 put_off++;
4100 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4101 put_off = 0;
4102 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4103
4104 /* Avoid "put" pointer going beyond "get" pointer */
4105 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4106 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4107 DBG_PRINT(TX_DBG,
4108 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4109 put_off, get_off);
4110 netif_stop_queue(dev);
4111 }
4112 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4113 dev->trans_start = jiffies;
4114 spin_unlock_irqrestore(&sp->tx_lock, flags);
4115
4116 return 0;
4117 pci_map_failed:
4118 stats->pci_map_fail_cnt++;
4119 netif_stop_queue(dev);
4120 stats->mem_freed += skb->truesize;
4121 dev_kfree_skb(skb);
4122 spin_unlock_irqrestore(&sp->tx_lock, flags);
4123 return 0;
4124 }
4125
4126 static void
4127 s2io_alarm_handle(unsigned long data)
4128 {
4129 struct s2io_nic *sp = (struct s2io_nic *)data;
4130 struct net_device *dev = sp->dev;
4131
4132 s2io_handle_errors(dev);
4133 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4134 }
4135
4136 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4137 {
4138 int rxb_size, level;
4139
4140 if (!sp->lro) {
4141 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4142 level = rx_buffer_level(sp, rxb_size, rng_n);
4143
4144 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4145 int ret;
4146 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4147 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4148 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4149 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4150 __FUNCTION__);
4151 clear_bit(0, (&sp->tasklet_status));
4152 return -1;
4153 }
4154 clear_bit(0, (&sp->tasklet_status));
4155 } else if (level == LOW)
4156 tasklet_schedule(&sp->task);
4157
4158 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4159 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4160 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4161 }
4162 return 0;
4163 }
4164
4165 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4166 {
4167 struct ring_info *ring = (struct ring_info *)dev_id;
4168 struct s2io_nic *sp = ring->nic;
4169
4170 if (!is_s2io_card_up(sp))
4171 return IRQ_HANDLED;
4172
4173 rx_intr_handler(ring);
4174 s2io_chk_rx_buffers(sp, ring->ring_no);
4175
4176 return IRQ_HANDLED;
4177 }
4178
4179 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4180 {
4181 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4182 struct s2io_nic *sp = fifo->nic;
4183
4184 if (!is_s2io_card_up(sp))
4185 return IRQ_HANDLED;
4186
4187 tx_intr_handler(fifo);
4188 return IRQ_HANDLED;
4189 }
4190 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4191 {
4192 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4193 u64 val64;
4194
4195 val64 = readq(&bar0->pic_int_status);
4196 if (val64 & PIC_INT_GPIO) {
4197 val64 = readq(&bar0->gpio_int_reg);
4198 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4199 (val64 & GPIO_INT_REG_LINK_UP)) {
4200 /*
4201 * This is unstable state so clear both up/down
4202 * interrupt and adapter to re-evaluate the link state.
4203 */
4204 val64 |= GPIO_INT_REG_LINK_DOWN;
4205 val64 |= GPIO_INT_REG_LINK_UP;
4206 writeq(val64, &bar0->gpio_int_reg);
4207 val64 = readq(&bar0->gpio_int_mask);
4208 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4209 GPIO_INT_MASK_LINK_DOWN);
4210 writeq(val64, &bar0->gpio_int_mask);
4211 }
4212 else if (val64 & GPIO_INT_REG_LINK_UP) {
4213 val64 = readq(&bar0->adapter_status);
4214 /* Enable Adapter */
4215 val64 = readq(&bar0->adapter_control);
4216 val64 |= ADAPTER_CNTL_EN;
4217 writeq(val64, &bar0->adapter_control);
4218 val64 |= ADAPTER_LED_ON;
4219 writeq(val64, &bar0->adapter_control);
4220 if (!sp->device_enabled_once)
4221 sp->device_enabled_once = 1;
4222
4223 s2io_link(sp, LINK_UP);
4224 /*
4225 * unmask link down interrupt and mask link-up
4226 * intr
4227 */
4228 val64 = readq(&bar0->gpio_int_mask);
4229 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4230 val64 |= GPIO_INT_MASK_LINK_UP;
4231 writeq(val64, &bar0->gpio_int_mask);
4232
4233 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4234 val64 = readq(&bar0->adapter_status);
4235 s2io_link(sp, LINK_DOWN);
4236 /* Link is down so unmaks link up interrupt */
4237 val64 = readq(&bar0->gpio_int_mask);
4238 val64 &= ~GPIO_INT_MASK_LINK_UP;
4239 val64 |= GPIO_INT_MASK_LINK_DOWN;
4240 writeq(val64, &bar0->gpio_int_mask);
4241
4242 /* turn off LED */
4243 val64 = readq(&bar0->adapter_control);
4244 val64 = val64 &(~ADAPTER_LED_ON);
4245 writeq(val64, &bar0->adapter_control);
4246 }
4247 }
4248 val64 = readq(&bar0->gpio_int_mask);
4249 }
4250
4251 /**
4252 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4253 * @value: alarm bits
4254 * @addr: address value
4255 * @cnt: counter variable
4256 * Description: Check for alarm and increment the counter
4257 * Return Value:
4258 * 1 - if alarm bit set
4259 * 0 - if alarm bit is not set
4260 */
4261 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4262 unsigned long long *cnt)
4263 {
4264 u64 val64;
4265 val64 = readq(addr);
4266 if ( val64 & value ) {
4267 writeq(val64, addr);
4268 (*cnt)++;
4269 return 1;
4270 }
4271 return 0;
4272
4273 }
4274
4275 /**
4276 * s2io_handle_errors - Xframe error indication handler
4277 * @nic: device private variable
4278 * Description: Handle alarms such as loss of link, single or
4279 * double ECC errors, critical and serious errors.
4280 * Return Value:
4281 * NONE
4282 */
4283 static void s2io_handle_errors(void * dev_id)
4284 {
4285 struct net_device *dev = (struct net_device *) dev_id;
4286 struct s2io_nic *sp = dev->priv;
4287 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4288 u64 temp64 = 0,val64=0;
4289 int i = 0;
4290
4291 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4292 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4293
4294 if (!is_s2io_card_up(sp))
4295 return;
4296
4297 if (pci_channel_offline(sp->pdev))
4298 return;
4299
4300 memset(&sw_stat->ring_full_cnt, 0,
4301 sizeof(sw_stat->ring_full_cnt));
4302
4303 /* Handling the XPAK counters update */
4304 if(stats->xpak_timer_count < 72000) {
4305 /* waiting for an hour */
4306 stats->xpak_timer_count++;
4307 } else {
4308 s2io_updt_xpak_counter(dev);
4309 /* reset the count to zero */
4310 stats->xpak_timer_count = 0;
4311 }
4312
4313 /* Handling link status change error Intr */
4314 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4315 val64 = readq(&bar0->mac_rmac_err_reg);
4316 writeq(val64, &bar0->mac_rmac_err_reg);
4317 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4318 schedule_work(&sp->set_link_task);
4319 }
4320
4321 /* In case of a serious error, the device will be Reset. */
4322 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4323 &sw_stat->serious_err_cnt))
4324 goto reset;
4325
4326 /* Check for data parity error */
4327 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4328 &sw_stat->parity_err_cnt))
4329 goto reset;
4330
4331 /* Check for ring full counter */
4332 if (sp->device_type == XFRAME_II_DEVICE) {
4333 val64 = readq(&bar0->ring_bump_counter1);
4334 for (i=0; i<4; i++) {
4335 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4336 temp64 >>= 64 - ((i+1)*16);
4337 sw_stat->ring_full_cnt[i] += temp64;
4338 }
4339
4340 val64 = readq(&bar0->ring_bump_counter2);
4341 for (i=0; i<4; i++) {
4342 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4343 temp64 >>= 64 - ((i+1)*16);
4344 sw_stat->ring_full_cnt[i+4] += temp64;
4345 }
4346 }
4347
4348 val64 = readq(&bar0->txdma_int_status);
4349 /*check for pfc_err*/
4350 if (val64 & TXDMA_PFC_INT) {
4351 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4352 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4353 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4354 &sw_stat->pfc_err_cnt))
4355 goto reset;
4356 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4357 &sw_stat->pfc_err_cnt);
4358 }
4359
4360 /*check for tda_err*/
4361 if (val64 & TXDMA_TDA_INT) {
4362 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4363 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4364 &sw_stat->tda_err_cnt))
4365 goto reset;
4366 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4367 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4368 }
4369 /*check for pcc_err*/
4370 if (val64 & TXDMA_PCC_INT) {
4371 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4372 | PCC_N_SERR | PCC_6_COF_OV_ERR
4373 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4374 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4375 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4376 &sw_stat->pcc_err_cnt))
4377 goto reset;
4378 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4379 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4380 }
4381
4382 /*check for tti_err*/
4383 if (val64 & TXDMA_TTI_INT) {
4384 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4385 &sw_stat->tti_err_cnt))
4386 goto reset;
4387 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4388 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4389 }
4390
4391 /*check for lso_err*/
4392 if (val64 & TXDMA_LSO_INT) {
4393 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4394 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4395 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4396 goto reset;
4397 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4398 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4399 }
4400
4401 /*check for tpa_err*/
4402 if (val64 & TXDMA_TPA_INT) {
4403 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4404 &sw_stat->tpa_err_cnt))
4405 goto reset;
4406 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4407 &sw_stat->tpa_err_cnt);
4408 }
4409
4410 /*check for sm_err*/
4411 if (val64 & TXDMA_SM_INT) {
4412 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4413 &sw_stat->sm_err_cnt))
4414 goto reset;
4415 }
4416
4417 val64 = readq(&bar0->mac_int_status);
4418 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4419 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4420 &bar0->mac_tmac_err_reg,
4421 &sw_stat->mac_tmac_err_cnt))
4422 goto reset;
4423 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4424 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4425 &bar0->mac_tmac_err_reg,
4426 &sw_stat->mac_tmac_err_cnt);
4427 }
4428
4429 val64 = readq(&bar0->xgxs_int_status);
4430 if (val64 & XGXS_INT_STATUS_TXGXS) {
4431 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4432 &bar0->xgxs_txgxs_err_reg,
4433 &sw_stat->xgxs_txgxs_err_cnt))
4434 goto reset;
4435 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4436 &bar0->xgxs_txgxs_err_reg,
4437 &sw_stat->xgxs_txgxs_err_cnt);
4438 }
4439
4440 val64 = readq(&bar0->rxdma_int_status);
4441 if (val64 & RXDMA_INT_RC_INT_M) {
4442 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4443 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4444 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4445 goto reset;
4446 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4447 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4448 &sw_stat->rc_err_cnt);
4449 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4450 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4451 &sw_stat->prc_pcix_err_cnt))
4452 goto reset;
4453 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4454 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4455 &sw_stat->prc_pcix_err_cnt);
4456 }
4457
4458 if (val64 & RXDMA_INT_RPA_INT_M) {
4459 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4460 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4461 goto reset;
4462 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4463 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4464 }
4465
4466 if (val64 & RXDMA_INT_RDA_INT_M) {
4467 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4468 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4469 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4470 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4471 goto reset;
4472 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4473 | RDA_MISC_ERR | RDA_PCIX_ERR,
4474 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4475 }
4476
4477 if (val64 & RXDMA_INT_RTI_INT_M) {
4478 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4479 &sw_stat->rti_err_cnt))
4480 goto reset;
4481 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4482 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4483 }
4484
4485 val64 = readq(&bar0->mac_int_status);
4486 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4487 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4488 &bar0->mac_rmac_err_reg,
4489 &sw_stat->mac_rmac_err_cnt))
4490 goto reset;
4491 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4492 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4493 &sw_stat->mac_rmac_err_cnt);
4494 }
4495
4496 val64 = readq(&bar0->xgxs_int_status);
4497 if (val64 & XGXS_INT_STATUS_RXGXS) {
4498 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4499 &bar0->xgxs_rxgxs_err_reg,
4500 &sw_stat->xgxs_rxgxs_err_cnt))
4501 goto reset;
4502 }
4503
4504 val64 = readq(&bar0->mc_int_status);
4505 if(val64 & MC_INT_STATUS_MC_INT) {
4506 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4507 &sw_stat->mc_err_cnt))
4508 goto reset;
4509
4510 /* Handling Ecc errors */
4511 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4512 writeq(val64, &bar0->mc_err_reg);
4513 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4514 sw_stat->double_ecc_errs++;
4515 if (sp->device_type != XFRAME_II_DEVICE) {
4516 /*
4517 * Reset XframeI only if critical error
4518 */
4519 if (val64 &
4520 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4521 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4522 goto reset;
4523 }
4524 } else
4525 sw_stat->single_ecc_errs++;
4526 }
4527 }
4528 return;
4529
4530 reset:
4531 netif_stop_queue(dev);
4532 schedule_work(&sp->rst_timer_task);
4533 sw_stat->soft_reset_cnt++;
4534 return;
4535 }
4536
4537 /**
4538 * s2io_isr - ISR handler of the device .
4539 * @irq: the irq of the device.
4540 * @dev_id: a void pointer to the dev structure of the NIC.
4541 * Description: This function is the ISR handler of the device. It
4542 * identifies the reason for the interrupt and calls the relevant
4543 * service routines. As a contongency measure, this ISR allocates the
4544 * recv buffers, if their numbers are below the panic value which is
4545 * presently set to 25% of the original number of rcv buffers allocated.
4546 * Return value:
4547 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4548 * IRQ_NONE: will be returned if interrupt is not from our device
4549 */
4550 static irqreturn_t s2io_isr(int irq, void *dev_id)
4551 {
4552 struct net_device *dev = (struct net_device *) dev_id;
4553 struct s2io_nic *sp = dev->priv;
4554 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4555 int i;
4556 u64 reason = 0;
4557 struct mac_info *mac_control;
4558 struct config_param *config;
4559
4560 /* Pretend we handled any irq's from a disconnected card */
4561 if (pci_channel_offline(sp->pdev))
4562 return IRQ_NONE;
4563
4564 if (!is_s2io_card_up(sp))
4565 return IRQ_NONE;
4566
4567 mac_control = &sp->mac_control;
4568 config = &sp->config;
4569
4570 /*
4571 * Identify the cause for interrupt and call the appropriate
4572 * interrupt handler. Causes for the interrupt could be;
4573 * 1. Rx of packet.
4574 * 2. Tx complete.
4575 * 3. Link down.
4576 */
4577 reason = readq(&bar0->general_int_status);
4578
4579 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4580 /* Nothing much can be done. Get out */
4581 return IRQ_HANDLED;
4582 }
4583
4584 if (reason & (GEN_INTR_RXTRAFFIC |
4585 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4586 {
4587 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4588
4589 if (config->napi) {
4590 if (reason & GEN_INTR_RXTRAFFIC) {
4591 if (likely(netif_rx_schedule_prep(dev,
4592 &sp->napi))) {
4593 __netif_rx_schedule(dev, &sp->napi);
4594 writeq(S2IO_MINUS_ONE,
4595 &bar0->rx_traffic_mask);
4596 } else
4597 writeq(S2IO_MINUS_ONE,
4598 &bar0->rx_traffic_int);
4599 }
4600 } else {
4601 /*
4602 * rx_traffic_int reg is an R1 register, writing all 1's
4603 * will ensure that the actual interrupt causing bit
4604 * get's cleared and hence a read can be avoided.
4605 */
4606 if (reason & GEN_INTR_RXTRAFFIC)
4607 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4608
4609 for (i = 0; i < config->rx_ring_num; i++)
4610 rx_intr_handler(&mac_control->rings[i]);
4611 }
4612
4613 /*
4614 * tx_traffic_int reg is an R1 register, writing all 1's
4615 * will ensure that the actual interrupt causing bit get's
4616 * cleared and hence a read can be avoided.
4617 */
4618 if (reason & GEN_INTR_TXTRAFFIC)
4619 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4620
4621 for (i = 0; i < config->tx_fifo_num; i++)
4622 tx_intr_handler(&mac_control->fifos[i]);
4623
4624 if (reason & GEN_INTR_TXPIC)
4625 s2io_txpic_intr_handle(sp);
4626
4627 /*
4628 * Reallocate the buffers from the interrupt handler itself.
4629 */
4630 if (!config->napi) {
4631 for (i = 0; i < config->rx_ring_num; i++)
4632 s2io_chk_rx_buffers(sp, i);
4633 }
4634 writeq(sp->general_int_mask, &bar0->general_int_mask);
4635 readl(&bar0->general_int_status);
4636
4637 return IRQ_HANDLED;
4638
4639 }
4640 else if (!reason) {
4641 /* The interrupt was not raised by us */
4642 return IRQ_NONE;
4643 }
4644
4645 return IRQ_HANDLED;
4646 }
4647
4648 /**
4649 * s2io_updt_stats -
4650 */
4651 static void s2io_updt_stats(struct s2io_nic *sp)
4652 {
4653 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4654 u64 val64;
4655 int cnt = 0;
4656
4657 if (is_s2io_card_up(sp)) {
4658 /* Apprx 30us on a 133 MHz bus */
4659 val64 = SET_UPDT_CLICKS(10) |
4660 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4661 writeq(val64, &bar0->stat_cfg);
4662 do {
4663 udelay(100);
4664 val64 = readq(&bar0->stat_cfg);
4665 if (!(val64 & s2BIT(0)))
4666 break;
4667 cnt++;
4668 if (cnt == 5)
4669 break; /* Updt failed */
4670 } while(1);
4671 }
4672 }
4673
4674 /**
4675 * s2io_get_stats - Updates the device statistics structure.
4676 * @dev : pointer to the device structure.
4677 * Description:
4678 * This function updates the device statistics structure in the s2io_nic
4679 * structure and returns a pointer to the same.
4680 * Return value:
4681 * pointer to the updated net_device_stats structure.
4682 */
4683
4684 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4685 {
4686 struct s2io_nic *sp = dev->priv;
4687 struct mac_info *mac_control;
4688 struct config_param *config;
4689
4690
4691 mac_control = &sp->mac_control;
4692 config = &sp->config;
4693
4694 /* Configure Stats for immediate updt */
4695 s2io_updt_stats(sp);
4696
4697 sp->stats.tx_packets =
4698 le32_to_cpu(mac_control->stats_info->tmac_frms);
4699 sp->stats.tx_errors =
4700 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4701 sp->stats.rx_errors =
4702 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4703 sp->stats.multicast =
4704 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4705 sp->stats.rx_length_errors =
4706 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4707
4708 return (&sp->stats);
4709 }
4710
4711 /**
4712 * s2io_set_multicast - entry point for multicast address enable/disable.
4713 * @dev : pointer to the device structure
4714 * Description:
4715 * This function is a driver entry point which gets called by the kernel
4716 * whenever multicast addresses must be enabled/disabled. This also gets
4717 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4718 * determine, if multicast address must be enabled or if promiscuous mode
4719 * is to be disabled etc.
4720 * Return value:
4721 * void.
4722 */
4723
4724 static void s2io_set_multicast(struct net_device *dev)
4725 {
4726 int i, j, prev_cnt;
4727 struct dev_mc_list *mclist;
4728 struct s2io_nic *sp = dev->priv;
4729 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4730 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4731 0xfeffffffffffULL;
4732 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4733 void __iomem *add;
4734
4735 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4736 /* Enable all Multicast addresses */
4737 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4738 &bar0->rmac_addr_data0_mem);
4739 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4740 &bar0->rmac_addr_data1_mem);
4741 val64 = RMAC_ADDR_CMD_MEM_WE |
4742 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4743 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4744 writeq(val64, &bar0->rmac_addr_cmd_mem);
4745 /* Wait till command completes */
4746 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4747 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4748 S2IO_BIT_RESET);
4749
4750 sp->m_cast_flg = 1;
4751 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4752 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4753 /* Disable all Multicast addresses */
4754 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4755 &bar0->rmac_addr_data0_mem);
4756 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4757 &bar0->rmac_addr_data1_mem);
4758 val64 = RMAC_ADDR_CMD_MEM_WE |
4759 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4760 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4761 writeq(val64, &bar0->rmac_addr_cmd_mem);
4762 /* Wait till command completes */
4763 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4764 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4765 S2IO_BIT_RESET);
4766
4767 sp->m_cast_flg = 0;
4768 sp->all_multi_pos = 0;
4769 }
4770
4771 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4772 /* Put the NIC into promiscuous mode */
4773 add = &bar0->mac_cfg;
4774 val64 = readq(&bar0->mac_cfg);
4775 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4776
4777 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4778 writel((u32) val64, add);
4779 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4780 writel((u32) (val64 >> 32), (add + 4));
4781
4782 if (vlan_tag_strip != 1) {
4783 val64 = readq(&bar0->rx_pa_cfg);
4784 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4785 writeq(val64, &bar0->rx_pa_cfg);
4786 vlan_strip_flag = 0;
4787 }
4788
4789 val64 = readq(&bar0->mac_cfg);
4790 sp->promisc_flg = 1;
4791 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4792 dev->name);
4793 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4794 /* Remove the NIC from promiscuous mode */
4795 add = &bar0->mac_cfg;
4796 val64 = readq(&bar0->mac_cfg);
4797 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4798
4799 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4800 writel((u32) val64, add);
4801 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4802 writel((u32) (val64 >> 32), (add + 4));
4803
4804 if (vlan_tag_strip != 0) {
4805 val64 = readq(&bar0->rx_pa_cfg);
4806 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4807 writeq(val64, &bar0->rx_pa_cfg);
4808 vlan_strip_flag = 1;
4809 }
4810
4811 val64 = readq(&bar0->mac_cfg);
4812 sp->promisc_flg = 0;
4813 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4814 dev->name);
4815 }
4816
4817 /* Update individual M_CAST address list */
4818 if ((!sp->m_cast_flg) && dev->mc_count) {
4819 if (dev->mc_count >
4820 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4821 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4822 dev->name);
4823 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4824 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4825 return;
4826 }
4827
4828 prev_cnt = sp->mc_addr_count;
4829 sp->mc_addr_count = dev->mc_count;
4830
4831 /* Clear out the previous list of Mc in the H/W. */
4832 for (i = 0; i < prev_cnt; i++) {
4833 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4834 &bar0->rmac_addr_data0_mem);
4835 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4836 &bar0->rmac_addr_data1_mem);
4837 val64 = RMAC_ADDR_CMD_MEM_WE |
4838 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4839 RMAC_ADDR_CMD_MEM_OFFSET
4840 (MAC_MC_ADDR_START_OFFSET + i);
4841 writeq(val64, &bar0->rmac_addr_cmd_mem);
4842
4843 /* Wait for command completes */
4844 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4845 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4846 S2IO_BIT_RESET)) {
4847 DBG_PRINT(ERR_DBG, "%s: Adding ",
4848 dev->name);
4849 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4850 return;
4851 }
4852 }
4853
4854 /* Create the new Rx filter list and update the same in H/W. */
4855 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4856 i++, mclist = mclist->next) {
4857 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4858 ETH_ALEN);
4859 mac_addr = 0;
4860 for (j = 0; j < ETH_ALEN; j++) {
4861 mac_addr |= mclist->dmi_addr[j];
4862 mac_addr <<= 8;
4863 }
4864 mac_addr >>= 8;
4865 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4866 &bar0->rmac_addr_data0_mem);
4867 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4868 &bar0->rmac_addr_data1_mem);
4869 val64 = RMAC_ADDR_CMD_MEM_WE |
4870 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4871 RMAC_ADDR_CMD_MEM_OFFSET
4872 (i + MAC_MC_ADDR_START_OFFSET);
4873 writeq(val64, &bar0->rmac_addr_cmd_mem);
4874
4875 /* Wait for command completes */
4876 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4877 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4878 S2IO_BIT_RESET)) {
4879 DBG_PRINT(ERR_DBG, "%s: Adding ",
4880 dev->name);
4881 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4882 return;
4883 }
4884 }
4885 }
4886 }
4887
4888 /* add unicast MAC address to CAM */
4889 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4890 {
4891 u64 val64;
4892 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4893
4894 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4895 &bar0->rmac_addr_data0_mem);
4896
4897 val64 =
4898 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4899 RMAC_ADDR_CMD_MEM_OFFSET(off);
4900 writeq(val64, &bar0->rmac_addr_cmd_mem);
4901
4902 /* Wait till command completes */
4903 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4904 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4905 S2IO_BIT_RESET)) {
4906 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4907 return FAILURE;
4908 }
4909 return SUCCESS;
4910 }
4911
4912 /**
4913 * s2io_set_mac_addr driver entry point
4914 */
4915 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4916 {
4917 struct sockaddr *addr = p;
4918
4919 if (!is_valid_ether_addr(addr->sa_data))
4920 return -EINVAL;
4921
4922 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4923
4924 /* store the MAC address in CAM */
4925 return (do_s2io_prog_unicast(dev, dev->dev_addr));
4926 }
4927
4928 /**
4929 * do_s2io_prog_unicast - Programs the Xframe mac address
4930 * @dev : pointer to the device structure.
4931 * @addr: a uchar pointer to the new mac address which is to be set.
4932 * Description : This procedure will program the Xframe to receive
4933 * frames with new Mac Address
4934 * Return value: SUCCESS on success and an appropriate (-)ve integer
4935 * as defined in errno.h file on failure.
4936 */
4937 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4938 {
4939 struct s2io_nic *sp = dev->priv;
4940 register u64 mac_addr = 0, perm_addr = 0;
4941 int i;
4942
4943 /*
4944 * Set the new MAC address as the new unicast filter and reflect this
4945 * change on the device address registered with the OS. It will be
4946 * at offset 0.
4947 */
4948 for (i = 0; i < ETH_ALEN; i++) {
4949 mac_addr <<= 8;
4950 mac_addr |= addr[i];
4951 perm_addr <<= 8;
4952 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4953 }
4954
4955 /* check if the dev_addr is different than perm_addr */
4956 if (mac_addr == perm_addr)
4957 return SUCCESS;
4958
4959 /* Update the internal structure with this new mac address */
4960 do_s2io_copy_mac_addr(sp, 0, mac_addr);
4961 return (do_s2io_add_unicast(sp, mac_addr, 0));
4962 }
4963
4964 /**
4965 * s2io_ethtool_sset - Sets different link parameters.
4966 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4967 * @info: pointer to the structure with parameters given by ethtool to set
4968 * link information.
4969 * Description:
4970 * The function sets different link parameters provided by the user onto
4971 * the NIC.
4972 * Return value:
4973 * 0 on success.
4974 */
4975
4976 static int s2io_ethtool_sset(struct net_device *dev,
4977 struct ethtool_cmd *info)
4978 {
4979 struct s2io_nic *sp = dev->priv;
4980 if ((info->autoneg == AUTONEG_ENABLE) ||
4981 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4982 return -EINVAL;
4983 else {
4984 s2io_close(sp->dev);
4985 s2io_open(sp->dev);
4986 }
4987
4988 return 0;
4989 }
4990
4991 /**
4992 * s2io_ethtol_gset - Return link specific information.
4993 * @sp : private member of the device structure, pointer to the
4994 * s2io_nic structure.
4995 * @info : pointer to the structure with parameters given by ethtool
4996 * to return link information.
4997 * Description:
4998 * Returns link specific information like speed, duplex etc.. to ethtool.
4999 * Return value :
5000 * return 0 on success.
5001 */
5002
5003 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5004 {
5005 struct s2io_nic *sp = dev->priv;
5006 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5007 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5008 info->port = PORT_FIBRE;
5009
5010 /* info->transceiver */
5011 info->transceiver = XCVR_EXTERNAL;
5012
5013 if (netif_carrier_ok(sp->dev)) {
5014 info->speed = 10000;
5015 info->duplex = DUPLEX_FULL;
5016 } else {
5017 info->speed = -1;
5018 info->duplex = -1;
5019 }
5020
5021 info->autoneg = AUTONEG_DISABLE;
5022 return 0;
5023 }
5024
5025 /**
5026 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5027 * @sp : private member of the device structure, which is a pointer to the
5028 * s2io_nic structure.
5029 * @info : pointer to the structure with parameters given by ethtool to
5030 * return driver information.
5031 * Description:
5032 * Returns driver specefic information like name, version etc.. to ethtool.
5033 * Return value:
5034 * void
5035 */
5036
5037 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5038 struct ethtool_drvinfo *info)
5039 {
5040 struct s2io_nic *sp = dev->priv;
5041
5042 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5043 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5044 strncpy(info->fw_version, "", sizeof(info->fw_version));
5045 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5046 info->regdump_len = XENA_REG_SPACE;
5047 info->eedump_len = XENA_EEPROM_SPACE;
5048 }
5049
5050 /**
5051 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5052 * @sp: private member of the device structure, which is a pointer to the
5053 * s2io_nic structure.
5054 * @regs : pointer to the structure with parameters given by ethtool for
5055 * dumping the registers.
5056 * @reg_space: The input argumnet into which all the registers are dumped.
5057 * Description:
5058 * Dumps the entire register space of xFrame NIC into the user given
5059 * buffer area.
5060 * Return value :
5061 * void .
5062 */
5063
5064 static void s2io_ethtool_gregs(struct net_device *dev,
5065 struct ethtool_regs *regs, void *space)
5066 {
5067 int i;
5068 u64 reg;
5069 u8 *reg_space = (u8 *) space;
5070 struct s2io_nic *sp = dev->priv;
5071
5072 regs->len = XENA_REG_SPACE;
5073 regs->version = sp->pdev->subsystem_device;
5074
5075 for (i = 0; i < regs->len; i += 8) {
5076 reg = readq(sp->bar0 + i);
5077 memcpy((reg_space + i), &reg, 8);
5078 }
5079 }
5080
5081 /**
5082 * s2io_phy_id - timer function that alternates adapter LED.
5083 * @data : address of the private member of the device structure, which
5084 * is a pointer to the s2io_nic structure, provided as an u32.
5085 * Description: This is actually the timer function that alternates the
5086 * adapter LED bit of the adapter control bit to set/reset every time on
5087 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5088 * once every second.
5089 */
5090 static void s2io_phy_id(unsigned long data)
5091 {
5092 struct s2io_nic *sp = (struct s2io_nic *) data;
5093 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5094 u64 val64 = 0;
5095 u16 subid;
5096
5097 subid = sp->pdev->subsystem_device;
5098 if ((sp->device_type == XFRAME_II_DEVICE) ||
5099 ((subid & 0xFF) >= 0x07)) {
5100 val64 = readq(&bar0->gpio_control);
5101 val64 ^= GPIO_CTRL_GPIO_0;
5102 writeq(val64, &bar0->gpio_control);
5103 } else {
5104 val64 = readq(&bar0->adapter_control);
5105 val64 ^= ADAPTER_LED_ON;
5106 writeq(val64, &bar0->adapter_control);
5107 }
5108
5109 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5110 }
5111
5112 /**
5113 * s2io_ethtool_idnic - To physically identify the nic on the system.
5114 * @sp : private member of the device structure, which is a pointer to the
5115 * s2io_nic structure.
5116 * @id : pointer to the structure with identification parameters given by
5117 * ethtool.
5118 * Description: Used to physically identify the NIC on the system.
5119 * The Link LED will blink for a time specified by the user for
5120 * identification.
5121 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5122 * identification is possible only if it's link is up.
5123 * Return value:
5124 * int , returns 0 on success
5125 */
5126
5127 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5128 {
5129 u64 val64 = 0, last_gpio_ctrl_val;
5130 struct s2io_nic *sp = dev->priv;
5131 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5132 u16 subid;
5133
5134 subid = sp->pdev->subsystem_device;
5135 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5136 if ((sp->device_type == XFRAME_I_DEVICE) &&
5137 ((subid & 0xFF) < 0x07)) {
5138 val64 = readq(&bar0->adapter_control);
5139 if (!(val64 & ADAPTER_CNTL_EN)) {
5140 printk(KERN_ERR
5141 "Adapter Link down, cannot blink LED\n");
5142 return -EFAULT;
5143 }
5144 }
5145 if (sp->id_timer.function == NULL) {
5146 init_timer(&sp->id_timer);
5147 sp->id_timer.function = s2io_phy_id;
5148 sp->id_timer.data = (unsigned long) sp;
5149 }
5150 mod_timer(&sp->id_timer, jiffies);
5151 if (data)
5152 msleep_interruptible(data * HZ);
5153 else
5154 msleep_interruptible(MAX_FLICKER_TIME);
5155 del_timer_sync(&sp->id_timer);
5156
5157 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5158 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5159 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5160 }
5161
5162 return 0;
5163 }
5164
5165 static void s2io_ethtool_gringparam(struct net_device *dev,
5166 struct ethtool_ringparam *ering)
5167 {
5168 struct s2io_nic *sp = dev->priv;
5169 int i,tx_desc_count=0,rx_desc_count=0;
5170
5171 if (sp->rxd_mode == RXD_MODE_1)
5172 ering->rx_max_pending = MAX_RX_DESC_1;
5173 else if (sp->rxd_mode == RXD_MODE_3B)
5174 ering->rx_max_pending = MAX_RX_DESC_2;
5175
5176 ering->tx_max_pending = MAX_TX_DESC;
5177 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5178 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5179
5180 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5181 ering->tx_pending = tx_desc_count;
5182 rx_desc_count = 0;
5183 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5184 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5185
5186 ering->rx_pending = rx_desc_count;
5187
5188 ering->rx_mini_max_pending = 0;
5189 ering->rx_mini_pending = 0;
5190 if(sp->rxd_mode == RXD_MODE_1)
5191 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5192 else if (sp->rxd_mode == RXD_MODE_3B)
5193 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5194 ering->rx_jumbo_pending = rx_desc_count;
5195 }
5196
5197 /**
5198 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5199 * @sp : private member of the device structure, which is a pointer to the
5200 * s2io_nic structure.
5201 * @ep : pointer to the structure with pause parameters given by ethtool.
5202 * Description:
5203 * Returns the Pause frame generation and reception capability of the NIC.
5204 * Return value:
5205 * void
5206 */
5207 static void s2io_ethtool_getpause_data(struct net_device *dev,
5208 struct ethtool_pauseparam *ep)
5209 {
5210 u64 val64;
5211 struct s2io_nic *sp = dev->priv;
5212 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5213
5214 val64 = readq(&bar0->rmac_pause_cfg);
5215 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5216 ep->tx_pause = TRUE;
5217 if (val64 & RMAC_PAUSE_RX_ENABLE)
5218 ep->rx_pause = TRUE;
5219 ep->autoneg = FALSE;
5220 }
5221
5222 /**
5223 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5224 * @sp : private member of the device structure, which is a pointer to the
5225 * s2io_nic structure.
5226 * @ep : pointer to the structure with pause parameters given by ethtool.
5227 * Description:
5228 * It can be used to set or reset Pause frame generation or reception
5229 * support of the NIC.
5230 * Return value:
5231 * int, returns 0 on Success
5232 */
5233
5234 static int s2io_ethtool_setpause_data(struct net_device *dev,
5235 struct ethtool_pauseparam *ep)
5236 {
5237 u64 val64;
5238 struct s2io_nic *sp = dev->priv;
5239 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5240
5241 val64 = readq(&bar0->rmac_pause_cfg);
5242 if (ep->tx_pause)
5243 val64 |= RMAC_PAUSE_GEN_ENABLE;
5244 else
5245 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5246 if (ep->rx_pause)
5247 val64 |= RMAC_PAUSE_RX_ENABLE;
5248 else
5249 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5250 writeq(val64, &bar0->rmac_pause_cfg);
5251 return 0;
5252 }
5253
5254 /**
5255 * read_eeprom - reads 4 bytes of data from user given offset.
5256 * @sp : private member of the device structure, which is a pointer to the
5257 * s2io_nic structure.
5258 * @off : offset at which the data must be written
5259 * @data : Its an output parameter where the data read at the given
5260 * offset is stored.
5261 * Description:
5262 * Will read 4 bytes of data from the user given offset and return the
5263 * read data.
5264 * NOTE: Will allow to read only part of the EEPROM visible through the
5265 * I2C bus.
5266 * Return value:
5267 * -1 on failure and 0 on success.
5268 */
5269
5270 #define S2IO_DEV_ID 5
5271 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5272 {
5273 int ret = -1;
5274 u32 exit_cnt = 0;
5275 u64 val64;
5276 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5277
5278 if (sp->device_type == XFRAME_I_DEVICE) {
5279 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5280 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5281 I2C_CONTROL_CNTL_START;
5282 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5283
5284 while (exit_cnt < 5) {
5285 val64 = readq(&bar0->i2c_control);
5286 if (I2C_CONTROL_CNTL_END(val64)) {
5287 *data = I2C_CONTROL_GET_DATA(val64);
5288 ret = 0;
5289 break;
5290 }
5291 msleep(50);
5292 exit_cnt++;
5293 }
5294 }
5295
5296 if (sp->device_type == XFRAME_II_DEVICE) {
5297 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5298 SPI_CONTROL_BYTECNT(0x3) |
5299 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5300 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5301 val64 |= SPI_CONTROL_REQ;
5302 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5303 while (exit_cnt < 5) {
5304 val64 = readq(&bar0->spi_control);
5305 if (val64 & SPI_CONTROL_NACK) {
5306 ret = 1;
5307 break;
5308 } else if (val64 & SPI_CONTROL_DONE) {
5309 *data = readq(&bar0->spi_data);
5310 *data &= 0xffffff;
5311 ret = 0;
5312 break;
5313 }
5314 msleep(50);
5315 exit_cnt++;
5316 }
5317 }
5318 return ret;
5319 }
5320
5321 /**
5322 * write_eeprom - actually writes the relevant part of the data value.
5323 * @sp : private member of the device structure, which is a pointer to the
5324 * s2io_nic structure.
5325 * @off : offset at which the data must be written
5326 * @data : The data that is to be written
5327 * @cnt : Number of bytes of the data that are actually to be written into
5328 * the Eeprom. (max of 3)
5329 * Description:
5330 * Actually writes the relevant part of the data value into the Eeprom
5331 * through the I2C bus.
5332 * Return value:
5333 * 0 on success, -1 on failure.
5334 */
5335
5336 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5337 {
5338 int exit_cnt = 0, ret = -1;
5339 u64 val64;
5340 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5341
5342 if (sp->device_type == XFRAME_I_DEVICE) {
5343 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5344 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5345 I2C_CONTROL_CNTL_START;
5346 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5347
5348 while (exit_cnt < 5) {
5349 val64 = readq(&bar0->i2c_control);
5350 if (I2C_CONTROL_CNTL_END(val64)) {
5351 if (!(val64 & I2C_CONTROL_NACK))
5352 ret = 0;
5353 break;
5354 }
5355 msleep(50);
5356 exit_cnt++;
5357 }
5358 }
5359
5360 if (sp->device_type == XFRAME_II_DEVICE) {
5361 int write_cnt = (cnt == 8) ? 0 : cnt;
5362 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5363
5364 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5365 SPI_CONTROL_BYTECNT(write_cnt) |
5366 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5367 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5368 val64 |= SPI_CONTROL_REQ;
5369 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5370 while (exit_cnt < 5) {
5371 val64 = readq(&bar0->spi_control);
5372 if (val64 & SPI_CONTROL_NACK) {
5373 ret = 1;
5374 break;
5375 } else if (val64 & SPI_CONTROL_DONE) {
5376 ret = 0;
5377 break;
5378 }
5379 msleep(50);
5380 exit_cnt++;
5381 }
5382 }
5383 return ret;
5384 }
5385 static void s2io_vpd_read(struct s2io_nic *nic)
5386 {
5387 u8 *vpd_data;
5388 u8 data;
5389 int i=0, cnt, fail = 0;
5390 int vpd_addr = 0x80;
5391
5392 if (nic->device_type == XFRAME_II_DEVICE) {
5393 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5394 vpd_addr = 0x80;
5395 }
5396 else {
5397 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5398 vpd_addr = 0x50;
5399 }
5400 strcpy(nic->serial_num, "NOT AVAILABLE");
5401
5402 vpd_data = kmalloc(256, GFP_KERNEL);
5403 if (!vpd_data) {
5404 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5405 return;
5406 }
5407 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5408
5409 for (i = 0; i < 256; i +=4 ) {
5410 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5411 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5412 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5413 for (cnt = 0; cnt <5; cnt++) {
5414 msleep(2);
5415 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5416 if (data == 0x80)
5417 break;
5418 }
5419 if (cnt >= 5) {
5420 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5421 fail = 1;
5422 break;
5423 }
5424 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5425 (u32 *)&vpd_data[i]);
5426 }
5427
5428 if(!fail) {
5429 /* read serial number of adapter */
5430 for (cnt = 0; cnt < 256; cnt++) {
5431 if ((vpd_data[cnt] == 'S') &&
5432 (vpd_data[cnt+1] == 'N') &&
5433 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5434 memset(nic->serial_num, 0, VPD_STRING_LEN);
5435 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5436 vpd_data[cnt+2]);
5437 break;
5438 }
5439 }
5440 }
5441
5442 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5443 memset(nic->product_name, 0, vpd_data[1]);
5444 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5445 }
5446 kfree(vpd_data);
5447 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5448 }
5449
5450 /**
5451 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5452 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5453 * @eeprom : pointer to the user level structure provided by ethtool,
5454 * containing all relevant information.
5455 * @data_buf : user defined value to be written into Eeprom.
5456 * Description: Reads the values stored in the Eeprom at given offset
5457 * for a given length. Stores these values int the input argument data
5458 * buffer 'data_buf' and returns these to the caller (ethtool.)
5459 * Return value:
5460 * int 0 on success
5461 */
5462
5463 static int s2io_ethtool_geeprom(struct net_device *dev,
5464 struct ethtool_eeprom *eeprom, u8 * data_buf)
5465 {
5466 u32 i, valid;
5467 u64 data;
5468 struct s2io_nic *sp = dev->priv;
5469
5470 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5471
5472 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5473 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5474
5475 for (i = 0; i < eeprom->len; i += 4) {
5476 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5477 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5478 return -EFAULT;
5479 }
5480 valid = INV(data);
5481 memcpy((data_buf + i), &valid, 4);
5482 }
5483 return 0;
5484 }
5485
5486 /**
5487 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5488 * @sp : private member of the device structure, which is a pointer to the
5489 * s2io_nic structure.
5490 * @eeprom : pointer to the user level structure provided by ethtool,
5491 * containing all relevant information.
5492 * @data_buf ; user defined value to be written into Eeprom.
5493 * Description:
5494 * Tries to write the user provided value in the Eeprom, at the offset
5495 * given by the user.
5496 * Return value:
5497 * 0 on success, -EFAULT on failure.
5498 */
5499
5500 static int s2io_ethtool_seeprom(struct net_device *dev,
5501 struct ethtool_eeprom *eeprom,
5502 u8 * data_buf)
5503 {
5504 int len = eeprom->len, cnt = 0;
5505 u64 valid = 0, data;
5506 struct s2io_nic *sp = dev->priv;
5507
5508 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5509 DBG_PRINT(ERR_DBG,
5510 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5511 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5512 eeprom->magic);
5513 return -EFAULT;
5514 }
5515
5516 while (len) {
5517 data = (u32) data_buf[cnt] & 0x000000FF;
5518 if (data) {
5519 valid = (u32) (data << 24);
5520 } else
5521 valid = data;
5522
5523 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5524 DBG_PRINT(ERR_DBG,
5525 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5526 DBG_PRINT(ERR_DBG,
5527 "write into the specified offset\n");
5528 return -EFAULT;
5529 }
5530 cnt++;
5531 len--;
5532 }
5533
5534 return 0;
5535 }
5536
5537 /**
5538 * s2io_register_test - reads and writes into all clock domains.
5539 * @sp : private member of the device structure, which is a pointer to the
5540 * s2io_nic structure.
5541 * @data : variable that returns the result of each of the test conducted b
5542 * by the driver.
5543 * Description:
5544 * Read and write into all clock domains. The NIC has 3 clock domains,
5545 * see that registers in all the three regions are accessible.
5546 * Return value:
5547 * 0 on success.
5548 */
5549
5550 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5551 {
5552 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5553 u64 val64 = 0, exp_val;
5554 int fail = 0;
5555
5556 val64 = readq(&bar0->pif_rd_swapper_fb);
5557 if (val64 != 0x123456789abcdefULL) {
5558 fail = 1;
5559 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5560 }
5561
5562 val64 = readq(&bar0->rmac_pause_cfg);
5563 if (val64 != 0xc000ffff00000000ULL) {
5564 fail = 1;
5565 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5566 }
5567
5568 val64 = readq(&bar0->rx_queue_cfg);
5569 if (sp->device_type == XFRAME_II_DEVICE)
5570 exp_val = 0x0404040404040404ULL;
5571 else
5572 exp_val = 0x0808080808080808ULL;
5573 if (val64 != exp_val) {
5574 fail = 1;
5575 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5576 }
5577
5578 val64 = readq(&bar0->xgxs_efifo_cfg);
5579 if (val64 != 0x000000001923141EULL) {
5580 fail = 1;
5581 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5582 }
5583
5584 val64 = 0x5A5A5A5A5A5A5A5AULL;
5585 writeq(val64, &bar0->xmsi_data);
5586 val64 = readq(&bar0->xmsi_data);
5587 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5588 fail = 1;
5589 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5590 }
5591
5592 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5593 writeq(val64, &bar0->xmsi_data);
5594 val64 = readq(&bar0->xmsi_data);
5595 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5596 fail = 1;
5597 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5598 }
5599
5600 *data = fail;
5601 return fail;
5602 }
5603
5604 /**
5605 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5606 * @sp : private member of the device structure, which is a pointer to the
5607 * s2io_nic structure.
5608 * @data:variable that returns the result of each of the test conducted by
5609 * the driver.
5610 * Description:
5611 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5612 * register.
5613 * Return value:
5614 * 0 on success.
5615 */
5616
5617 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5618 {
5619 int fail = 0;
5620 u64 ret_data, org_4F0, org_7F0;
5621 u8 saved_4F0 = 0, saved_7F0 = 0;
5622 struct net_device *dev = sp->dev;
5623
5624 /* Test Write Error at offset 0 */
5625 /* Note that SPI interface allows write access to all areas
5626 * of EEPROM. Hence doing all negative testing only for Xframe I.
5627 */
5628 if (sp->device_type == XFRAME_I_DEVICE)
5629 if (!write_eeprom(sp, 0, 0, 3))
5630 fail = 1;
5631
5632 /* Save current values at offsets 0x4F0 and 0x7F0 */
5633 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5634 saved_4F0 = 1;
5635 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5636 saved_7F0 = 1;
5637
5638 /* Test Write at offset 4f0 */
5639 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5640 fail = 1;
5641 if (read_eeprom(sp, 0x4F0, &ret_data))
5642 fail = 1;
5643
5644 if (ret_data != 0x012345) {
5645 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5646 "Data written %llx Data read %llx\n",
5647 dev->name, (unsigned long long)0x12345,
5648 (unsigned long long)ret_data);
5649 fail = 1;
5650 }
5651
5652 /* Reset the EEPROM data go FFFF */
5653 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5654
5655 /* Test Write Request Error at offset 0x7c */
5656 if (sp->device_type == XFRAME_I_DEVICE)
5657 if (!write_eeprom(sp, 0x07C, 0, 3))
5658 fail = 1;
5659
5660 /* Test Write Request at offset 0x7f0 */
5661 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5662 fail = 1;
5663 if (read_eeprom(sp, 0x7F0, &ret_data))
5664 fail = 1;
5665
5666 if (ret_data != 0x012345) {
5667 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5668 "Data written %llx Data read %llx\n",
5669 dev->name, (unsigned long long)0x12345,
5670 (unsigned long long)ret_data);
5671 fail = 1;
5672 }
5673
5674 /* Reset the EEPROM data go FFFF */
5675 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5676
5677 if (sp->device_type == XFRAME_I_DEVICE) {
5678 /* Test Write Error at offset 0x80 */
5679 if (!write_eeprom(sp, 0x080, 0, 3))
5680 fail = 1;
5681
5682 /* Test Write Error at offset 0xfc */
5683 if (!write_eeprom(sp, 0x0FC, 0, 3))
5684 fail = 1;
5685
5686 /* Test Write Error at offset 0x100 */
5687 if (!write_eeprom(sp, 0x100, 0, 3))
5688 fail = 1;
5689
5690 /* Test Write Error at offset 4ec */
5691 if (!write_eeprom(sp, 0x4EC, 0, 3))
5692 fail = 1;
5693 }
5694
5695 /* Restore values at offsets 0x4F0 and 0x7F0 */
5696 if (saved_4F0)
5697 write_eeprom(sp, 0x4F0, org_4F0, 3);
5698 if (saved_7F0)
5699 write_eeprom(sp, 0x7F0, org_7F0, 3);
5700
5701 *data = fail;
5702 return fail;
5703 }
5704
5705 /**
5706 * s2io_bist_test - invokes the MemBist test of the card .
5707 * @sp : private member of the device structure, which is a pointer to the
5708 * s2io_nic structure.
5709 * @data:variable that returns the result of each of the test conducted by
5710 * the driver.
5711 * Description:
5712 * This invokes the MemBist test of the card. We give around
5713 * 2 secs time for the Test to complete. If it's still not complete
5714 * within this peiod, we consider that the test failed.
5715 * Return value:
5716 * 0 on success and -1 on failure.
5717 */
5718
5719 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5720 {
5721 u8 bist = 0;
5722 int cnt = 0, ret = -1;
5723
5724 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5725 bist |= PCI_BIST_START;
5726 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5727
5728 while (cnt < 20) {
5729 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5730 if (!(bist & PCI_BIST_START)) {
5731 *data = (bist & PCI_BIST_CODE_MASK);
5732 ret = 0;
5733 break;
5734 }
5735 msleep(100);
5736 cnt++;
5737 }
5738
5739 return ret;
5740 }
5741
5742 /**
5743 * s2io-link_test - verifies the link state of the nic
5744 * @sp ; private member of the device structure, which is a pointer to the
5745 * s2io_nic structure.
5746 * @data: variable that returns the result of each of the test conducted by
5747 * the driver.
5748 * Description:
5749 * The function verifies the link state of the NIC and updates the input
5750 * argument 'data' appropriately.
5751 * Return value:
5752 * 0 on success.
5753 */
5754
5755 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5756 {
5757 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5758 u64 val64;
5759
5760 val64 = readq(&bar0->adapter_status);
5761 if(!(LINK_IS_UP(val64)))
5762 *data = 1;
5763 else
5764 *data = 0;
5765
5766 return *data;
5767 }
5768
5769 /**
5770 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5771 * @sp - private member of the device structure, which is a pointer to the
5772 * s2io_nic structure.
5773 * @data - variable that returns the result of each of the test
5774 * conducted by the driver.
5775 * Description:
5776 * This is one of the offline test that tests the read and write
5777 * access to the RldRam chip on the NIC.
5778 * Return value:
5779 * 0 on success.
5780 */
5781
5782 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5783 {
5784 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5785 u64 val64;
5786 int cnt, iteration = 0, test_fail = 0;
5787
5788 val64 = readq(&bar0->adapter_control);
5789 val64 &= ~ADAPTER_ECC_EN;
5790 writeq(val64, &bar0->adapter_control);
5791
5792 val64 = readq(&bar0->mc_rldram_test_ctrl);
5793 val64 |= MC_RLDRAM_TEST_MODE;
5794 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5795
5796 val64 = readq(&bar0->mc_rldram_mrs);
5797 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5798 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5799
5800 val64 |= MC_RLDRAM_MRS_ENABLE;
5801 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5802
5803 while (iteration < 2) {
5804 val64 = 0x55555555aaaa0000ULL;
5805 if (iteration == 1) {
5806 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5807 }
5808 writeq(val64, &bar0->mc_rldram_test_d0);
5809
5810 val64 = 0xaaaa5a5555550000ULL;
5811 if (iteration == 1) {
5812 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5813 }
5814 writeq(val64, &bar0->mc_rldram_test_d1);
5815
5816 val64 = 0x55aaaaaaaa5a0000ULL;
5817 if (iteration == 1) {
5818 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5819 }
5820 writeq(val64, &bar0->mc_rldram_test_d2);
5821
5822 val64 = (u64) (0x0000003ffffe0100ULL);
5823 writeq(val64, &bar0->mc_rldram_test_add);
5824
5825 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5826 MC_RLDRAM_TEST_GO;
5827 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5828
5829 for (cnt = 0; cnt < 5; cnt++) {
5830 val64 = readq(&bar0->mc_rldram_test_ctrl);
5831 if (val64 & MC_RLDRAM_TEST_DONE)
5832 break;
5833 msleep(200);
5834 }
5835
5836 if (cnt == 5)
5837 break;
5838
5839 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5840 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5841
5842 for (cnt = 0; cnt < 5; cnt++) {
5843 val64 = readq(&bar0->mc_rldram_test_ctrl);
5844 if (val64 & MC_RLDRAM_TEST_DONE)
5845 break;
5846 msleep(500);
5847 }
5848
5849 if (cnt == 5)
5850 break;
5851
5852 val64 = readq(&bar0->mc_rldram_test_ctrl);
5853 if (!(val64 & MC_RLDRAM_TEST_PASS))
5854 test_fail = 1;
5855
5856 iteration++;
5857 }
5858
5859 *data = test_fail;
5860
5861 /* Bring the adapter out of test mode */
5862 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5863
5864 return test_fail;
5865 }
5866
5867 /**
5868 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5869 * @sp : private member of the device structure, which is a pointer to the
5870 * s2io_nic structure.
5871 * @ethtest : pointer to a ethtool command specific structure that will be
5872 * returned to the user.
5873 * @data : variable that returns the result of each of the test
5874 * conducted by the driver.
5875 * Description:
5876 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5877 * the health of the card.
5878 * Return value:
5879 * void
5880 */
5881
5882 static void s2io_ethtool_test(struct net_device *dev,
5883 struct ethtool_test *ethtest,
5884 uint64_t * data)
5885 {
5886 struct s2io_nic *sp = dev->priv;
5887 int orig_state = netif_running(sp->dev);
5888
5889 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5890 /* Offline Tests. */
5891 if (orig_state)
5892 s2io_close(sp->dev);
5893
5894 if (s2io_register_test(sp, &data[0]))
5895 ethtest->flags |= ETH_TEST_FL_FAILED;
5896
5897 s2io_reset(sp);
5898
5899 if (s2io_rldram_test(sp, &data[3]))
5900 ethtest->flags |= ETH_TEST_FL_FAILED;
5901
5902 s2io_reset(sp);
5903
5904 if (s2io_eeprom_test(sp, &data[1]))
5905 ethtest->flags |= ETH_TEST_FL_FAILED;
5906
5907 if (s2io_bist_test(sp, &data[4]))
5908 ethtest->flags |= ETH_TEST_FL_FAILED;
5909
5910 if (orig_state)
5911 s2io_open(sp->dev);
5912
5913 data[2] = 0;
5914 } else {
5915 /* Online Tests. */
5916 if (!orig_state) {
5917 DBG_PRINT(ERR_DBG,
5918 "%s: is not up, cannot run test\n",
5919 dev->name);
5920 data[0] = -1;
5921 data[1] = -1;
5922 data[2] = -1;
5923 data[3] = -1;
5924 data[4] = -1;
5925 }
5926
5927 if (s2io_link_test(sp, &data[2]))
5928 ethtest->flags |= ETH_TEST_FL_FAILED;
5929
5930 data[0] = 0;
5931 data[1] = 0;
5932 data[3] = 0;
5933 data[4] = 0;
5934 }
5935 }
5936
5937 static void s2io_get_ethtool_stats(struct net_device *dev,
5938 struct ethtool_stats *estats,
5939 u64 * tmp_stats)
5940 {
5941 int i = 0, k;
5942 struct s2io_nic *sp = dev->priv;
5943 struct stat_block *stat_info = sp->mac_control.stats_info;
5944
5945 s2io_updt_stats(sp);
5946 tmp_stats[i++] =
5947 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5948 le32_to_cpu(stat_info->tmac_frms);
5949 tmp_stats[i++] =
5950 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5951 le32_to_cpu(stat_info->tmac_data_octets);
5952 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5953 tmp_stats[i++] =
5954 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5955 le32_to_cpu(stat_info->tmac_mcst_frms);
5956 tmp_stats[i++] =
5957 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5958 le32_to_cpu(stat_info->tmac_bcst_frms);
5959 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5960 tmp_stats[i++] =
5961 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5962 le32_to_cpu(stat_info->tmac_ttl_octets);
5963 tmp_stats[i++] =
5964 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5965 le32_to_cpu(stat_info->tmac_ucst_frms);
5966 tmp_stats[i++] =
5967 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5968 le32_to_cpu(stat_info->tmac_nucst_frms);
5969 tmp_stats[i++] =
5970 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5971 le32_to_cpu(stat_info->tmac_any_err_frms);
5972 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5973 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5974 tmp_stats[i++] =
5975 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5976 le32_to_cpu(stat_info->tmac_vld_ip);
5977 tmp_stats[i++] =
5978 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5979 le32_to_cpu(stat_info->tmac_drop_ip);
5980 tmp_stats[i++] =
5981 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5982 le32_to_cpu(stat_info->tmac_icmp);
5983 tmp_stats[i++] =
5984 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5985 le32_to_cpu(stat_info->tmac_rst_tcp);
5986 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5987 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5988 le32_to_cpu(stat_info->tmac_udp);
5989 tmp_stats[i++] =
5990 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5991 le32_to_cpu(stat_info->rmac_vld_frms);
5992 tmp_stats[i++] =
5993 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5994 le32_to_cpu(stat_info->rmac_data_octets);
5995 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5996 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5997 tmp_stats[i++] =
5998 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5999 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6000 tmp_stats[i++] =
6001 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6002 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6003 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6004 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6005 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6006 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6007 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6008 tmp_stats[i++] =
6009 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6010 le32_to_cpu(stat_info->rmac_ttl_octets);
6011 tmp_stats[i++] =
6012 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6013 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6014 tmp_stats[i++] =
6015 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6016 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6017 tmp_stats[i++] =
6018 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6019 le32_to_cpu(stat_info->rmac_discarded_frms);
6020 tmp_stats[i++] =
6021 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6022 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6023 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6024 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6025 tmp_stats[i++] =
6026 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6027 le32_to_cpu(stat_info->rmac_usized_frms);
6028 tmp_stats[i++] =
6029 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6030 le32_to_cpu(stat_info->rmac_osized_frms);
6031 tmp_stats[i++] =
6032 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6033 le32_to_cpu(stat_info->rmac_frag_frms);
6034 tmp_stats[i++] =
6035 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6036 le32_to_cpu(stat_info->rmac_jabber_frms);
6037 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6038 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6039 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6040 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6041 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6042 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6043 tmp_stats[i++] =
6044 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6045 le32_to_cpu(stat_info->rmac_ip);
6046 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6047 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6048 tmp_stats[i++] =
6049 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6050 le32_to_cpu(stat_info->rmac_drop_ip);
6051 tmp_stats[i++] =
6052 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6053 le32_to_cpu(stat_info->rmac_icmp);
6054 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6055 tmp_stats[i++] =
6056 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6057 le32_to_cpu(stat_info->rmac_udp);
6058 tmp_stats[i++] =
6059 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6060 le32_to_cpu(stat_info->rmac_err_drp_udp);
6061 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6062 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6063 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6064 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6065 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6066 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6067 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6068 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6069 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6070 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6071 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6072 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6073 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6074 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6075 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6076 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6077 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6078 tmp_stats[i++] =
6079 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6080 le32_to_cpu(stat_info->rmac_pause_cnt);
6081 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6082 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6083 tmp_stats[i++] =
6084 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6085 le32_to_cpu(stat_info->rmac_accepted_ip);
6086 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6087 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6088 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6089 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6090 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6091 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6092 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6093 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6094 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6095 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6096 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6097 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6098 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6099 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6100 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6101 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6102 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6103 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6104 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6105
6106 /* Enhanced statistics exist only for Hercules */
6107 if(sp->device_type == XFRAME_II_DEVICE) {
6108 tmp_stats[i++] =
6109 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6110 tmp_stats[i++] =
6111 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6112 tmp_stats[i++] =
6113 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6114 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6115 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6116 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6117 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6118 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6119 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6120 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6121 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6122 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6123 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6124 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6125 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6126 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6127 }
6128
6129 tmp_stats[i++] = 0;
6130 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6131 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6132 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6133 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6134 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6135 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6136 for (k = 0; k < MAX_RX_RINGS; k++)
6137 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6138 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6139 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6140 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6141 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6142 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6143 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6144 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6145 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6146 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6147 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6148 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6149 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6150 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6151 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6152 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6153 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6154 if (stat_info->sw_stat.num_aggregations) {
6155 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6156 int count = 0;
6157 /*
6158 * Since 64-bit divide does not work on all platforms,
6159 * do repeated subtraction.
6160 */
6161 while (tmp >= stat_info->sw_stat.num_aggregations) {
6162 tmp -= stat_info->sw_stat.num_aggregations;
6163 count++;
6164 }
6165 tmp_stats[i++] = count;
6166 }
6167 else
6168 tmp_stats[i++] = 0;
6169 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6170 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6171 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6172 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6173 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6174 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6175 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6176 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6177 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6178
6179 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6180 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6181 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6182 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6183 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6184
6185 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6186 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6187 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6188 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6189 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6190 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6191 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6192 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6193 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6194 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6195 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6198 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6199 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6200 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6204 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6205 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6206 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6207 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6208 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6209 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6210 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6211 }
6212
6213 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6214 {
6215 return (XENA_REG_SPACE);
6216 }
6217
6218
6219 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6220 {
6221 struct s2io_nic *sp = dev->priv;
6222
6223 return (sp->rx_csum);
6224 }
6225
6226 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6227 {
6228 struct s2io_nic *sp = dev->priv;
6229
6230 if (data)
6231 sp->rx_csum = 1;
6232 else
6233 sp->rx_csum = 0;
6234
6235 return 0;
6236 }
6237
6238 static int s2io_get_eeprom_len(struct net_device *dev)
6239 {
6240 return (XENA_EEPROM_SPACE);
6241 }
6242
6243 static int s2io_get_sset_count(struct net_device *dev, int sset)
6244 {
6245 struct s2io_nic *sp = dev->priv;
6246
6247 switch (sset) {
6248 case ETH_SS_TEST:
6249 return S2IO_TEST_LEN;
6250 case ETH_SS_STATS:
6251 switch(sp->device_type) {
6252 case XFRAME_I_DEVICE:
6253 return XFRAME_I_STAT_LEN;
6254 case XFRAME_II_DEVICE:
6255 return XFRAME_II_STAT_LEN;
6256 default:
6257 return 0;
6258 }
6259 default:
6260 return -EOPNOTSUPP;
6261 }
6262 }
6263
6264 static void s2io_ethtool_get_strings(struct net_device *dev,
6265 u32 stringset, u8 * data)
6266 {
6267 int stat_size = 0;
6268 struct s2io_nic *sp = dev->priv;
6269
6270 switch (stringset) {
6271 case ETH_SS_TEST:
6272 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6273 break;
6274 case ETH_SS_STATS:
6275 stat_size = sizeof(ethtool_xena_stats_keys);
6276 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6277 if(sp->device_type == XFRAME_II_DEVICE) {
6278 memcpy(data + stat_size,
6279 &ethtool_enhanced_stats_keys,
6280 sizeof(ethtool_enhanced_stats_keys));
6281 stat_size += sizeof(ethtool_enhanced_stats_keys);
6282 }
6283
6284 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6285 sizeof(ethtool_driver_stats_keys));
6286 }
6287 }
6288
6289 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6290 {
6291 if (data)
6292 dev->features |= NETIF_F_IP_CSUM;
6293 else
6294 dev->features &= ~NETIF_F_IP_CSUM;
6295
6296 return 0;
6297 }
6298
6299 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6300 {
6301 return (dev->features & NETIF_F_TSO) != 0;
6302 }
6303 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6304 {
6305 if (data)
6306 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6307 else
6308 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6309
6310 return 0;
6311 }
6312
6313 static const struct ethtool_ops netdev_ethtool_ops = {
6314 .get_settings = s2io_ethtool_gset,
6315 .set_settings = s2io_ethtool_sset,
6316 .get_drvinfo = s2io_ethtool_gdrvinfo,
6317 .get_regs_len = s2io_ethtool_get_regs_len,
6318 .get_regs = s2io_ethtool_gregs,
6319 .get_link = ethtool_op_get_link,
6320 .get_eeprom_len = s2io_get_eeprom_len,
6321 .get_eeprom = s2io_ethtool_geeprom,
6322 .set_eeprom = s2io_ethtool_seeprom,
6323 .get_ringparam = s2io_ethtool_gringparam,
6324 .get_pauseparam = s2io_ethtool_getpause_data,
6325 .set_pauseparam = s2io_ethtool_setpause_data,
6326 .get_rx_csum = s2io_ethtool_get_rx_csum,
6327 .set_rx_csum = s2io_ethtool_set_rx_csum,
6328 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6329 .set_sg = ethtool_op_set_sg,
6330 .get_tso = s2io_ethtool_op_get_tso,
6331 .set_tso = s2io_ethtool_op_set_tso,
6332 .set_ufo = ethtool_op_set_ufo,
6333 .self_test = s2io_ethtool_test,
6334 .get_strings = s2io_ethtool_get_strings,
6335 .phys_id = s2io_ethtool_idnic,
6336 .get_ethtool_stats = s2io_get_ethtool_stats,
6337 .get_sset_count = s2io_get_sset_count,
6338 };
6339
6340 /**
6341 * s2io_ioctl - Entry point for the Ioctl
6342 * @dev : Device pointer.
6343 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6344 * a proprietary structure used to pass information to the driver.
6345 * @cmd : This is used to distinguish between the different commands that
6346 * can be passed to the IOCTL functions.
6347 * Description:
6348 * Currently there are no special functionality supported in IOCTL, hence
6349 * function always return EOPNOTSUPPORTED
6350 */
6351
6352 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6353 {
6354 return -EOPNOTSUPP;
6355 }
6356
6357 /**
6358 * s2io_change_mtu - entry point to change MTU size for the device.
6359 * @dev : device pointer.
6360 * @new_mtu : the new MTU size for the device.
6361 * Description: A driver entry point to change MTU size for the device.
6362 * Before changing the MTU the device must be stopped.
6363 * Return value:
6364 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6365 * file on failure.
6366 */
6367
6368 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6369 {
6370 struct s2io_nic *sp = dev->priv;
6371 int ret = 0;
6372
6373 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6374 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6375 dev->name);
6376 return -EPERM;
6377 }
6378
6379 dev->mtu = new_mtu;
6380 if (netif_running(dev)) {
6381 s2io_card_down(sp);
6382 netif_stop_queue(dev);
6383 ret = s2io_card_up(sp);
6384 if (ret) {
6385 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6386 __FUNCTION__);
6387 return ret;
6388 }
6389 if (netif_queue_stopped(dev))
6390 netif_wake_queue(dev);
6391 } else { /* Device is down */
6392 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6393 u64 val64 = new_mtu;
6394
6395 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6396 }
6397
6398 return ret;
6399 }
6400
6401 /**
6402 * s2io_tasklet - Bottom half of the ISR.
6403 * @dev_adr : address of the device structure in dma_addr_t format.
6404 * Description:
6405 * This is the tasklet or the bottom half of the ISR. This is
6406 * an extension of the ISR which is scheduled by the scheduler to be run
6407 * when the load on the CPU is low. All low priority tasks of the ISR can
6408 * be pushed into the tasklet. For now the tasklet is used only to
6409 * replenish the Rx buffers in the Rx buffer descriptors.
6410 * Return value:
6411 * void.
6412 */
6413
6414 static void s2io_tasklet(unsigned long dev_addr)
6415 {
6416 struct net_device *dev = (struct net_device *) dev_addr;
6417 struct s2io_nic *sp = dev->priv;
6418 int i, ret;
6419 struct mac_info *mac_control;
6420 struct config_param *config;
6421
6422 mac_control = &sp->mac_control;
6423 config = &sp->config;
6424
6425 if (!TASKLET_IN_USE) {
6426 for (i = 0; i < config->rx_ring_num; i++) {
6427 ret = fill_rx_buffers(sp, i);
6428 if (ret == -ENOMEM) {
6429 DBG_PRINT(INFO_DBG, "%s: Out of ",
6430 dev->name);
6431 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6432 break;
6433 } else if (ret == -EFILL) {
6434 DBG_PRINT(INFO_DBG,
6435 "%s: Rx Ring %d is full\n",
6436 dev->name, i);
6437 break;
6438 }
6439 }
6440 clear_bit(0, (&sp->tasklet_status));
6441 }
6442 }
6443
6444 /**
6445 * s2io_set_link - Set the LInk status
6446 * @data: long pointer to device private structue
6447 * Description: Sets the link status for the adapter
6448 */
6449
6450 static void s2io_set_link(struct work_struct *work)
6451 {
6452 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6453 struct net_device *dev = nic->dev;
6454 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6455 register u64 val64;
6456 u16 subid;
6457
6458 rtnl_lock();
6459
6460 if (!netif_running(dev))
6461 goto out_unlock;
6462
6463 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6464 /* The card is being reset, no point doing anything */
6465 goto out_unlock;
6466 }
6467
6468 subid = nic->pdev->subsystem_device;
6469 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6470 /*
6471 * Allow a small delay for the NICs self initiated
6472 * cleanup to complete.
6473 */
6474 msleep(100);
6475 }
6476
6477 val64 = readq(&bar0->adapter_status);
6478 if (LINK_IS_UP(val64)) {
6479 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6480 if (verify_xena_quiescence(nic)) {
6481 val64 = readq(&bar0->adapter_control);
6482 val64 |= ADAPTER_CNTL_EN;
6483 writeq(val64, &bar0->adapter_control);
6484 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6485 nic->device_type, subid)) {
6486 val64 = readq(&bar0->gpio_control);
6487 val64 |= GPIO_CTRL_GPIO_0;
6488 writeq(val64, &bar0->gpio_control);
6489 val64 = readq(&bar0->gpio_control);
6490 } else {
6491 val64 |= ADAPTER_LED_ON;
6492 writeq(val64, &bar0->adapter_control);
6493 }
6494 nic->device_enabled_once = TRUE;
6495 } else {
6496 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6497 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6498 netif_stop_queue(dev);
6499 }
6500 }
6501 val64 = readq(&bar0->adapter_control);
6502 val64 |= ADAPTER_LED_ON;
6503 writeq(val64, &bar0->adapter_control);
6504 s2io_link(nic, LINK_UP);
6505 } else {
6506 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6507 subid)) {
6508 val64 = readq(&bar0->gpio_control);
6509 val64 &= ~GPIO_CTRL_GPIO_0;
6510 writeq(val64, &bar0->gpio_control);
6511 val64 = readq(&bar0->gpio_control);
6512 }
6513 /* turn off LED */
6514 val64 = readq(&bar0->adapter_control);
6515 val64 = val64 &(~ADAPTER_LED_ON);
6516 writeq(val64, &bar0->adapter_control);
6517 s2io_link(nic, LINK_DOWN);
6518 }
6519 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6520
6521 out_unlock:
6522 rtnl_unlock();
6523 }
6524
6525 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6526 struct buffAdd *ba,
6527 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6528 u64 *temp2, int size)
6529 {
6530 struct net_device *dev = sp->dev;
6531 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6532
6533 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6534 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6535 /* allocate skb */
6536 if (*skb) {
6537 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6538 /*
6539 * As Rx frame are not going to be processed,
6540 * using same mapped address for the Rxd
6541 * buffer pointer
6542 */
6543 rxdp1->Buffer0_ptr = *temp0;
6544 } else {
6545 *skb = dev_alloc_skb(size);
6546 if (!(*skb)) {
6547 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6548 DBG_PRINT(INFO_DBG, "memory to allocate ");
6549 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6550 sp->mac_control.stats_info->sw_stat. \
6551 mem_alloc_fail_cnt++;
6552 return -ENOMEM ;
6553 }
6554 sp->mac_control.stats_info->sw_stat.mem_allocated
6555 += (*skb)->truesize;
6556 /* storing the mapped addr in a temp variable
6557 * such it will be used for next rxd whose
6558 * Host Control is NULL
6559 */
6560 rxdp1->Buffer0_ptr = *temp0 =
6561 pci_map_single( sp->pdev, (*skb)->data,
6562 size - NET_IP_ALIGN,
6563 PCI_DMA_FROMDEVICE);
6564 if( (rxdp1->Buffer0_ptr == 0) ||
6565 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6566 goto memalloc_failed;
6567 }
6568 rxdp->Host_Control = (unsigned long) (*skb);
6569 }
6570 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6571 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6572 /* Two buffer Mode */
6573 if (*skb) {
6574 rxdp3->Buffer2_ptr = *temp2;
6575 rxdp3->Buffer0_ptr = *temp0;
6576 rxdp3->Buffer1_ptr = *temp1;
6577 } else {
6578 *skb = dev_alloc_skb(size);
6579 if (!(*skb)) {
6580 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6581 DBG_PRINT(INFO_DBG, "memory to allocate ");
6582 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6583 sp->mac_control.stats_info->sw_stat. \
6584 mem_alloc_fail_cnt++;
6585 return -ENOMEM;
6586 }
6587 sp->mac_control.stats_info->sw_stat.mem_allocated
6588 += (*skb)->truesize;
6589 rxdp3->Buffer2_ptr = *temp2 =
6590 pci_map_single(sp->pdev, (*skb)->data,
6591 dev->mtu + 4,
6592 PCI_DMA_FROMDEVICE);
6593 if( (rxdp3->Buffer2_ptr == 0) ||
6594 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6595 goto memalloc_failed;
6596 }
6597 rxdp3->Buffer0_ptr = *temp0 =
6598 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6599 PCI_DMA_FROMDEVICE);
6600 if( (rxdp3->Buffer0_ptr == 0) ||
6601 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6602 pci_unmap_single (sp->pdev,
6603 (dma_addr_t)rxdp3->Buffer2_ptr,
6604 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6605 goto memalloc_failed;
6606 }
6607 rxdp->Host_Control = (unsigned long) (*skb);
6608
6609 /* Buffer-1 will be dummy buffer not used */
6610 rxdp3->Buffer1_ptr = *temp1 =
6611 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6612 PCI_DMA_FROMDEVICE);
6613 if( (rxdp3->Buffer1_ptr == 0) ||
6614 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6615 pci_unmap_single (sp->pdev,
6616 (dma_addr_t)rxdp3->Buffer0_ptr,
6617 BUF0_LEN, PCI_DMA_FROMDEVICE);
6618 pci_unmap_single (sp->pdev,
6619 (dma_addr_t)rxdp3->Buffer2_ptr,
6620 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6621 goto memalloc_failed;
6622 }
6623 }
6624 }
6625 return 0;
6626 memalloc_failed:
6627 stats->pci_map_fail_cnt++;
6628 stats->mem_freed += (*skb)->truesize;
6629 dev_kfree_skb(*skb);
6630 return -ENOMEM;
6631 }
6632
6633 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6634 int size)
6635 {
6636 struct net_device *dev = sp->dev;
6637 if (sp->rxd_mode == RXD_MODE_1) {
6638 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6639 } else if (sp->rxd_mode == RXD_MODE_3B) {
6640 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6641 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6642 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6643 }
6644 }
6645
6646 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6647 {
6648 int i, j, k, blk_cnt = 0, size;
6649 struct mac_info * mac_control = &sp->mac_control;
6650 struct config_param *config = &sp->config;
6651 struct net_device *dev = sp->dev;
6652 struct RxD_t *rxdp = NULL;
6653 struct sk_buff *skb = NULL;
6654 struct buffAdd *ba = NULL;
6655 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6656
6657 /* Calculate the size based on ring mode */
6658 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6659 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6660 if (sp->rxd_mode == RXD_MODE_1)
6661 size += NET_IP_ALIGN;
6662 else if (sp->rxd_mode == RXD_MODE_3B)
6663 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6664
6665 for (i = 0; i < config->rx_ring_num; i++) {
6666 blk_cnt = config->rx_cfg[i].num_rxd /
6667 (rxd_count[sp->rxd_mode] +1);
6668
6669 for (j = 0; j < blk_cnt; j++) {
6670 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6671 rxdp = mac_control->rings[i].
6672 rx_blocks[j].rxds[k].virt_addr;
6673 if(sp->rxd_mode == RXD_MODE_3B)
6674 ba = &mac_control->rings[i].ba[j][k];
6675 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6676 &skb,(u64 *)&temp0_64,
6677 (u64 *)&temp1_64,
6678 (u64 *)&temp2_64,
6679 size) == ENOMEM) {
6680 return 0;
6681 }
6682
6683 set_rxd_buffer_size(sp, rxdp, size);
6684 wmb();
6685 /* flip the Ownership bit to Hardware */
6686 rxdp->Control_1 |= RXD_OWN_XENA;
6687 }
6688 }
6689 }
6690 return 0;
6691
6692 }
6693
6694 static int s2io_add_isr(struct s2io_nic * sp)
6695 {
6696 int ret = 0;
6697 struct net_device *dev = sp->dev;
6698 int err = 0;
6699
6700 if (sp->config.intr_type == MSI_X)
6701 ret = s2io_enable_msi_x(sp);
6702 if (ret) {
6703 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6704 sp->config.intr_type = INTA;
6705 }
6706
6707 /* Store the values of the MSIX table in the struct s2io_nic structure */
6708 store_xmsi_data(sp);
6709
6710 /* After proper initialization of H/W, register ISR */
6711 if (sp->config.intr_type == MSI_X) {
6712 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6713
6714 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6715 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6716 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6717 dev->name, i);
6718 err = request_irq(sp->entries[i].vector,
6719 s2io_msix_fifo_handle, 0, sp->desc[i],
6720 sp->s2io_entries[i].arg);
6721 /* If either data or addr is zero print it */
6722 if(!(sp->msix_info[i].addr &&
6723 sp->msix_info[i].data)) {
6724 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6725 "Data:0x%lx\n",sp->desc[i],
6726 (unsigned long long)
6727 sp->msix_info[i].addr,
6728 (unsigned long)
6729 ntohl(sp->msix_info[i].data));
6730 } else {
6731 msix_tx_cnt++;
6732 }
6733 } else {
6734 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6735 dev->name, i);
6736 err = request_irq(sp->entries[i].vector,
6737 s2io_msix_ring_handle, 0, sp->desc[i],
6738 sp->s2io_entries[i].arg);
6739 /* If either data or addr is zero print it */
6740 if(!(sp->msix_info[i].addr &&
6741 sp->msix_info[i].data)) {
6742 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6743 "Data:0x%lx\n",sp->desc[i],
6744 (unsigned long long)
6745 sp->msix_info[i].addr,
6746 (unsigned long)
6747 ntohl(sp->msix_info[i].data));
6748 } else {
6749 msix_rx_cnt++;
6750 }
6751 }
6752 if (err) {
6753 remove_msix_isr(sp);
6754 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6755 "failed\n", dev->name, i);
6756 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6757 dev->name);
6758 sp->config.intr_type = INTA;
6759 break;
6760 }
6761 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6762 }
6763 if (!err) {
6764 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6765 msix_tx_cnt);
6766 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6767 msix_rx_cnt);
6768 }
6769 }
6770 if (sp->config.intr_type == INTA) {
6771 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6772 sp->name, dev);
6773 if (err) {
6774 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6775 dev->name);
6776 return -1;
6777 }
6778 }
6779 return 0;
6780 }
6781 static void s2io_rem_isr(struct s2io_nic * sp)
6782 {
6783 if (sp->config.intr_type == MSI_X)
6784 remove_msix_isr(sp);
6785 else
6786 remove_inta_isr(sp);
6787 }
6788
6789 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6790 {
6791 int cnt = 0;
6792 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6793 unsigned long flags;
6794 register u64 val64 = 0;
6795 struct config_param *config;
6796 config = &sp->config;
6797
6798 if (!is_s2io_card_up(sp))
6799 return;
6800
6801 del_timer_sync(&sp->alarm_timer);
6802 /* If s2io_set_link task is executing, wait till it completes. */
6803 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6804 msleep(50);
6805 }
6806 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6807
6808 /* Disable napi */
6809 if (config->napi)
6810 napi_disable(&sp->napi);
6811
6812 /* disable Tx and Rx traffic on the NIC */
6813 if (do_io)
6814 stop_nic(sp);
6815
6816 s2io_rem_isr(sp);
6817
6818 /* Kill tasklet. */
6819 tasklet_kill(&sp->task);
6820
6821 /* Check if the device is Quiescent and then Reset the NIC */
6822 while(do_io) {
6823 /* As per the HW requirement we need to replenish the
6824 * receive buffer to avoid the ring bump. Since there is
6825 * no intention of processing the Rx frame at this pointwe are
6826 * just settting the ownership bit of rxd in Each Rx
6827 * ring to HW and set the appropriate buffer size
6828 * based on the ring mode
6829 */
6830 rxd_owner_bit_reset(sp);
6831
6832 val64 = readq(&bar0->adapter_status);
6833 if (verify_xena_quiescence(sp)) {
6834 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6835 break;
6836 }
6837
6838 msleep(50);
6839 cnt++;
6840 if (cnt == 10) {
6841 DBG_PRINT(ERR_DBG,
6842 "s2io_close:Device not Quiescent ");
6843 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6844 (unsigned long long) val64);
6845 break;
6846 }
6847 }
6848 if (do_io)
6849 s2io_reset(sp);
6850
6851 spin_lock_irqsave(&sp->tx_lock, flags);
6852 /* Free all Tx buffers */
6853 free_tx_buffers(sp);
6854 spin_unlock_irqrestore(&sp->tx_lock, flags);
6855
6856 /* Free all Rx buffers */
6857 spin_lock_irqsave(&sp->rx_lock, flags);
6858 free_rx_buffers(sp);
6859 spin_unlock_irqrestore(&sp->rx_lock, flags);
6860
6861 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6862 }
6863
6864 static void s2io_card_down(struct s2io_nic * sp)
6865 {
6866 do_s2io_card_down(sp, 1);
6867 }
6868
6869 static int s2io_card_up(struct s2io_nic * sp)
6870 {
6871 int i, ret = 0;
6872 struct mac_info *mac_control;
6873 struct config_param *config;
6874 struct net_device *dev = (struct net_device *) sp->dev;
6875 u16 interruptible;
6876
6877 /* Initialize the H/W I/O registers */
6878 ret = init_nic(sp);
6879 if (ret != 0) {
6880 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6881 dev->name);
6882 if (ret != -EIO)
6883 s2io_reset(sp);
6884 return ret;
6885 }
6886
6887 /*
6888 * Initializing the Rx buffers. For now we are considering only 1
6889 * Rx ring and initializing buffers into 30 Rx blocks
6890 */
6891 mac_control = &sp->mac_control;
6892 config = &sp->config;
6893
6894 for (i = 0; i < config->rx_ring_num; i++) {
6895 if ((ret = fill_rx_buffers(sp, i))) {
6896 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6897 dev->name);
6898 s2io_reset(sp);
6899 free_rx_buffers(sp);
6900 return -ENOMEM;
6901 }
6902 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6903 atomic_read(&sp->rx_bufs_left[i]));
6904 }
6905
6906 /* Initialise napi */
6907 if (config->napi)
6908 napi_enable(&sp->napi);
6909
6910 /* Maintain the state prior to the open */
6911 if (sp->promisc_flg)
6912 sp->promisc_flg = 0;
6913 if (sp->m_cast_flg) {
6914 sp->m_cast_flg = 0;
6915 sp->all_multi_pos= 0;
6916 }
6917
6918 /* Setting its receive mode */
6919 s2io_set_multicast(dev);
6920
6921 if (sp->lro) {
6922 /* Initialize max aggregatable pkts per session based on MTU */
6923 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6924 /* Check if we can use(if specified) user provided value */
6925 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6926 sp->lro_max_aggr_per_sess = lro_max_pkts;
6927 }
6928
6929 /* Enable Rx Traffic and interrupts on the NIC */
6930 if (start_nic(sp)) {
6931 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6932 s2io_reset(sp);
6933 free_rx_buffers(sp);
6934 return -ENODEV;
6935 }
6936
6937 /* Add interrupt service routine */
6938 if (s2io_add_isr(sp) != 0) {
6939 if (sp->config.intr_type == MSI_X)
6940 s2io_rem_isr(sp);
6941 s2io_reset(sp);
6942 free_rx_buffers(sp);
6943 return -ENODEV;
6944 }
6945
6946 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6947
6948 /* Enable tasklet for the device */
6949 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6950
6951 /* Enable select interrupts */
6952 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6953 if (sp->config.intr_type != INTA)
6954 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6955 else {
6956 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6957 interruptible |= TX_PIC_INTR;
6958 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6959 }
6960
6961 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6962 return 0;
6963 }
6964
6965 /**
6966 * s2io_restart_nic - Resets the NIC.
6967 * @data : long pointer to the device private structure
6968 * Description:
6969 * This function is scheduled to be run by the s2io_tx_watchdog
6970 * function after 0.5 secs to reset the NIC. The idea is to reduce
6971 * the run time of the watch dog routine which is run holding a
6972 * spin lock.
6973 */
6974
6975 static void s2io_restart_nic(struct work_struct *work)
6976 {
6977 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6978 struct net_device *dev = sp->dev;
6979
6980 rtnl_lock();
6981
6982 if (!netif_running(dev))
6983 goto out_unlock;
6984
6985 s2io_card_down(sp);
6986 if (s2io_card_up(sp)) {
6987 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6988 dev->name);
6989 }
6990 netif_wake_queue(dev);
6991 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6992 dev->name);
6993 out_unlock:
6994 rtnl_unlock();
6995 }
6996
6997 /**
6998 * s2io_tx_watchdog - Watchdog for transmit side.
6999 * @dev : Pointer to net device structure
7000 * Description:
7001 * This function is triggered if the Tx Queue is stopped
7002 * for a pre-defined amount of time when the Interface is still up.
7003 * If the Interface is jammed in such a situation, the hardware is
7004 * reset (by s2io_close) and restarted again (by s2io_open) to
7005 * overcome any problem that might have been caused in the hardware.
7006 * Return value:
7007 * void
7008 */
7009
7010 static void s2io_tx_watchdog(struct net_device *dev)
7011 {
7012 struct s2io_nic *sp = dev->priv;
7013
7014 if (netif_carrier_ok(dev)) {
7015 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7016 schedule_work(&sp->rst_timer_task);
7017 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7018 }
7019 }
7020
7021 /**
7022 * rx_osm_handler - To perform some OS related operations on SKB.
7023 * @sp: private member of the device structure,pointer to s2io_nic structure.
7024 * @skb : the socket buffer pointer.
7025 * @len : length of the packet
7026 * @cksum : FCS checksum of the frame.
7027 * @ring_no : the ring from which this RxD was extracted.
7028 * Description:
7029 * This function is called by the Rx interrupt serivce routine to perform
7030 * some OS related operations on the SKB before passing it to the upper
7031 * layers. It mainly checks if the checksum is OK, if so adds it to the
7032 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7033 * to the upper layer. If the checksum is wrong, it increments the Rx
7034 * packet error count, frees the SKB and returns error.
7035 * Return value:
7036 * SUCCESS on success and -1 on failure.
7037 */
7038 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7039 {
7040 struct s2io_nic *sp = ring_data->nic;
7041 struct net_device *dev = (struct net_device *) sp->dev;
7042 struct sk_buff *skb = (struct sk_buff *)
7043 ((unsigned long) rxdp->Host_Control);
7044 int ring_no = ring_data->ring_no;
7045 u16 l3_csum, l4_csum;
7046 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7047 struct lro *lro;
7048 u8 err_mask;
7049
7050 skb->dev = dev;
7051
7052 if (err) {
7053 /* Check for parity error */
7054 if (err & 0x1) {
7055 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7056 }
7057 err_mask = err >> 48;
7058 switch(err_mask) {
7059 case 1:
7060 sp->mac_control.stats_info->sw_stat.
7061 rx_parity_err_cnt++;
7062 break;
7063
7064 case 2:
7065 sp->mac_control.stats_info->sw_stat.
7066 rx_abort_cnt++;
7067 break;
7068
7069 case 3:
7070 sp->mac_control.stats_info->sw_stat.
7071 rx_parity_abort_cnt++;
7072 break;
7073
7074 case 4:
7075 sp->mac_control.stats_info->sw_stat.
7076 rx_rda_fail_cnt++;
7077 break;
7078
7079 case 5:
7080 sp->mac_control.stats_info->sw_stat.
7081 rx_unkn_prot_cnt++;
7082 break;
7083
7084 case 6:
7085 sp->mac_control.stats_info->sw_stat.
7086 rx_fcs_err_cnt++;
7087 break;
7088
7089 case 7:
7090 sp->mac_control.stats_info->sw_stat.
7091 rx_buf_size_err_cnt++;
7092 break;
7093
7094 case 8:
7095 sp->mac_control.stats_info->sw_stat.
7096 rx_rxd_corrupt_cnt++;
7097 break;
7098
7099 case 15:
7100 sp->mac_control.stats_info->sw_stat.
7101 rx_unkn_err_cnt++;
7102 break;
7103 }
7104 /*
7105 * Drop the packet if bad transfer code. Exception being
7106 * 0x5, which could be due to unsupported IPv6 extension header.
7107 * In this case, we let stack handle the packet.
7108 * Note that in this case, since checksum will be incorrect,
7109 * stack will validate the same.
7110 */
7111 if (err_mask != 0x5) {
7112 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7113 dev->name, err_mask);
7114 sp->stats.rx_crc_errors++;
7115 sp->mac_control.stats_info->sw_stat.mem_freed
7116 += skb->truesize;
7117 dev_kfree_skb(skb);
7118 atomic_dec(&sp->rx_bufs_left[ring_no]);
7119 rxdp->Host_Control = 0;
7120 return 0;
7121 }
7122 }
7123
7124 /* Updating statistics */
7125 sp->stats.rx_packets++;
7126 rxdp->Host_Control = 0;
7127 if (sp->rxd_mode == RXD_MODE_1) {
7128 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7129
7130 sp->stats.rx_bytes += len;
7131 skb_put(skb, len);
7132
7133 } else if (sp->rxd_mode == RXD_MODE_3B) {
7134 int get_block = ring_data->rx_curr_get_info.block_index;
7135 int get_off = ring_data->rx_curr_get_info.offset;
7136 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7137 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7138 unsigned char *buff = skb_push(skb, buf0_len);
7139
7140 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7141 sp->stats.rx_bytes += buf0_len + buf2_len;
7142 memcpy(buff, ba->ba_0, buf0_len);
7143 skb_put(skb, buf2_len);
7144 }
7145
7146 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7147 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7148 (sp->rx_csum)) {
7149 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7150 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7151 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7152 /*
7153 * NIC verifies if the Checksum of the received
7154 * frame is Ok or not and accordingly returns
7155 * a flag in the RxD.
7156 */
7157 skb->ip_summed = CHECKSUM_UNNECESSARY;
7158 if (sp->lro) {
7159 u32 tcp_len;
7160 u8 *tcp;
7161 int ret = 0;
7162
7163 ret = s2io_club_tcp_session(skb->data, &tcp,
7164 &tcp_len, &lro,
7165 rxdp, sp);
7166 switch (ret) {
7167 case 3: /* Begin anew */
7168 lro->parent = skb;
7169 goto aggregate;
7170 case 1: /* Aggregate */
7171 {
7172 lro_append_pkt(sp, lro,
7173 skb, tcp_len);
7174 goto aggregate;
7175 }
7176 case 4: /* Flush session */
7177 {
7178 lro_append_pkt(sp, lro,
7179 skb, tcp_len);
7180 queue_rx_frame(lro->parent);
7181 clear_lro_session(lro);
7182 sp->mac_control.stats_info->
7183 sw_stat.flush_max_pkts++;
7184 goto aggregate;
7185 }
7186 case 2: /* Flush both */
7187 lro->parent->data_len =
7188 lro->frags_len;
7189 sp->mac_control.stats_info->
7190 sw_stat.sending_both++;
7191 queue_rx_frame(lro->parent);
7192 clear_lro_session(lro);
7193 goto send_up;
7194 case 0: /* sessions exceeded */
7195 case -1: /* non-TCP or not
7196 * L2 aggregatable
7197 */
7198 case 5: /*
7199 * First pkt in session not
7200 * L3/L4 aggregatable
7201 */
7202 break;
7203 default:
7204 DBG_PRINT(ERR_DBG,
7205 "%s: Samadhana!!\n",
7206 __FUNCTION__);
7207 BUG();
7208 }
7209 }
7210 } else {
7211 /*
7212 * Packet with erroneous checksum, let the
7213 * upper layers deal with it.
7214 */
7215 skb->ip_summed = CHECKSUM_NONE;
7216 }
7217 } else {
7218 skb->ip_summed = CHECKSUM_NONE;
7219 }
7220 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7221 if (!sp->lro) {
7222 skb->protocol = eth_type_trans(skb, dev);
7223 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7224 vlan_strip_flag)) {
7225 /* Queueing the vlan frame to the upper layer */
7226 if (napi)
7227 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7228 RXD_GET_VLAN_TAG(rxdp->Control_2));
7229 else
7230 vlan_hwaccel_rx(skb, sp->vlgrp,
7231 RXD_GET_VLAN_TAG(rxdp->Control_2));
7232 } else {
7233 if (napi)
7234 netif_receive_skb(skb);
7235 else
7236 netif_rx(skb);
7237 }
7238 } else {
7239 send_up:
7240 queue_rx_frame(skb);
7241 }
7242 dev->last_rx = jiffies;
7243 aggregate:
7244 atomic_dec(&sp->rx_bufs_left[ring_no]);
7245 return SUCCESS;
7246 }
7247
7248 /**
7249 * s2io_link - stops/starts the Tx queue.
7250 * @sp : private member of the device structure, which is a pointer to the
7251 * s2io_nic structure.
7252 * @link : inidicates whether link is UP/DOWN.
7253 * Description:
7254 * This function stops/starts the Tx queue depending on whether the link
7255 * status of the NIC is is down or up. This is called by the Alarm
7256 * interrupt handler whenever a link change interrupt comes up.
7257 * Return value:
7258 * void.
7259 */
7260
7261 static void s2io_link(struct s2io_nic * sp, int link)
7262 {
7263 struct net_device *dev = (struct net_device *) sp->dev;
7264
7265 if (link != sp->last_link_state) {
7266 if (link == LINK_DOWN) {
7267 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7268 netif_carrier_off(dev);
7269 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7270 sp->mac_control.stats_info->sw_stat.link_up_time =
7271 jiffies - sp->start_time;
7272 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7273 } else {
7274 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7275 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7276 sp->mac_control.stats_info->sw_stat.link_down_time =
7277 jiffies - sp->start_time;
7278 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7279 netif_carrier_on(dev);
7280 }
7281 }
7282 sp->last_link_state = link;
7283 sp->start_time = jiffies;
7284 }
7285
7286 /**
7287 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7288 * @sp : private member of the device structure, which is a pointer to the
7289 * s2io_nic structure.
7290 * Description:
7291 * This function initializes a few of the PCI and PCI-X configuration registers
7292 * with recommended values.
7293 * Return value:
7294 * void
7295 */
7296
7297 static void s2io_init_pci(struct s2io_nic * sp)
7298 {
7299 u16 pci_cmd = 0, pcix_cmd = 0;
7300
7301 /* Enable Data Parity Error Recovery in PCI-X command register. */
7302 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7303 &(pcix_cmd));
7304 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7305 (pcix_cmd | 1));
7306 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7307 &(pcix_cmd));
7308
7309 /* Set the PErr Response bit in PCI command register. */
7310 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7311 pci_write_config_word(sp->pdev, PCI_COMMAND,
7312 (pci_cmd | PCI_COMMAND_PARITY));
7313 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7314 }
7315
7316 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7317 {
7318 if ( tx_fifo_num > 8) {
7319 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7320 "supported\n");
7321 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7322 tx_fifo_num = 8;
7323 }
7324 if ( rx_ring_num > 8) {
7325 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7326 "supported\n");
7327 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7328 rx_ring_num = 8;
7329 }
7330 if (*dev_intr_type != INTA)
7331 napi = 0;
7332
7333 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7334 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7335 "Defaulting to INTA\n");
7336 *dev_intr_type = INTA;
7337 }
7338
7339 if ((*dev_intr_type == MSI_X) &&
7340 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7341 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7342 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7343 "Defaulting to INTA\n");
7344 *dev_intr_type = INTA;
7345 }
7346
7347 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7348 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7349 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7350 rx_ring_mode = 1;
7351 }
7352 return SUCCESS;
7353 }
7354
7355 /**
7356 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7357 * or Traffic class respectively.
7358 * @nic: device peivate variable
7359 * Description: The function configures the receive steering to
7360 * desired receive ring.
7361 * Return Value: SUCCESS on success and
7362 * '-1' on failure (endian settings incorrect).
7363 */
7364 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7365 {
7366 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7367 register u64 val64 = 0;
7368
7369 if (ds_codepoint > 63)
7370 return FAILURE;
7371
7372 val64 = RTS_DS_MEM_DATA(ring);
7373 writeq(val64, &bar0->rts_ds_mem_data);
7374
7375 val64 = RTS_DS_MEM_CTRL_WE |
7376 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7377 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7378
7379 writeq(val64, &bar0->rts_ds_mem_ctrl);
7380
7381 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7382 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7383 S2IO_BIT_RESET);
7384 }
7385
7386 /**
7387 * s2io_init_nic - Initialization of the adapter .
7388 * @pdev : structure containing the PCI related information of the device.
7389 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7390 * Description:
7391 * The function initializes an adapter identified by the pci_dec structure.
7392 * All OS related initialization including memory and device structure and
7393 * initlaization of the device private variable is done. Also the swapper
7394 * control register is initialized to enable read and write into the I/O
7395 * registers of the device.
7396 * Return value:
7397 * returns 0 on success and negative on failure.
7398 */
7399
7400 static int __devinit
7401 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7402 {
7403 struct s2io_nic *sp;
7404 struct net_device *dev;
7405 int i, j, ret;
7406 int dma_flag = FALSE;
7407 u32 mac_up, mac_down;
7408 u64 val64 = 0, tmp64 = 0;
7409 struct XENA_dev_config __iomem *bar0 = NULL;
7410 u16 subid;
7411 struct mac_info *mac_control;
7412 struct config_param *config;
7413 int mode;
7414 u8 dev_intr_type = intr_type;
7415 DECLARE_MAC_BUF(mac);
7416
7417 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7418 return ret;
7419
7420 if ((ret = pci_enable_device(pdev))) {
7421 DBG_PRINT(ERR_DBG,
7422 "s2io_init_nic: pci_enable_device failed\n");
7423 return ret;
7424 }
7425
7426 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7427 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7428 dma_flag = TRUE;
7429 if (pci_set_consistent_dma_mask
7430 (pdev, DMA_64BIT_MASK)) {
7431 DBG_PRINT(ERR_DBG,
7432 "Unable to obtain 64bit DMA for \
7433 consistent allocations\n");
7434 pci_disable_device(pdev);
7435 return -ENOMEM;
7436 }
7437 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7438 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7439 } else {
7440 pci_disable_device(pdev);
7441 return -ENOMEM;
7442 }
7443 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7444 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7445 pci_disable_device(pdev);
7446 return -ENODEV;
7447 }
7448
7449 dev = alloc_etherdev(sizeof(struct s2io_nic));
7450 if (dev == NULL) {
7451 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7452 pci_disable_device(pdev);
7453 pci_release_regions(pdev);
7454 return -ENODEV;
7455 }
7456
7457 pci_set_master(pdev);
7458 pci_set_drvdata(pdev, dev);
7459 SET_NETDEV_DEV(dev, &pdev->dev);
7460
7461 /* Private member variable initialized to s2io NIC structure */
7462 sp = dev->priv;
7463 memset(sp, 0, sizeof(struct s2io_nic));
7464 sp->dev = dev;
7465 sp->pdev = pdev;
7466 sp->high_dma_flag = dma_flag;
7467 sp->device_enabled_once = FALSE;
7468 if (rx_ring_mode == 1)
7469 sp->rxd_mode = RXD_MODE_1;
7470 if (rx_ring_mode == 2)
7471 sp->rxd_mode = RXD_MODE_3B;
7472
7473 sp->config.intr_type = dev_intr_type;
7474
7475 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7476 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7477 sp->device_type = XFRAME_II_DEVICE;
7478 else
7479 sp->device_type = XFRAME_I_DEVICE;
7480
7481 sp->lro = lro_enable;
7482
7483 /* Initialize some PCI/PCI-X fields of the NIC. */
7484 s2io_init_pci(sp);
7485
7486 /*
7487 * Setting the device configuration parameters.
7488 * Most of these parameters can be specified by the user during
7489 * module insertion as they are module loadable parameters. If
7490 * these parameters are not not specified during load time, they
7491 * are initialized with default values.
7492 */
7493 mac_control = &sp->mac_control;
7494 config = &sp->config;
7495
7496 config->napi = napi;
7497
7498 /* Tx side parameters. */
7499 config->tx_fifo_num = tx_fifo_num;
7500 for (i = 0; i < MAX_TX_FIFOS; i++) {
7501 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7502 config->tx_cfg[i].fifo_priority = i;
7503 }
7504
7505 /* mapping the QoS priority to the configured fifos */
7506 for (i = 0; i < MAX_TX_FIFOS; i++)
7507 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7508
7509 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7510 for (i = 0; i < config->tx_fifo_num; i++) {
7511 config->tx_cfg[i].f_no_snoop =
7512 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7513 if (config->tx_cfg[i].fifo_len < 65) {
7514 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7515 break;
7516 }
7517 }
7518 /* + 2 because one Txd for skb->data and one Txd for UFO */
7519 config->max_txds = MAX_SKB_FRAGS + 2;
7520
7521 /* Rx side parameters. */
7522 config->rx_ring_num = rx_ring_num;
7523 for (i = 0; i < MAX_RX_RINGS; i++) {
7524 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7525 (rxd_count[sp->rxd_mode] + 1);
7526 config->rx_cfg[i].ring_priority = i;
7527 }
7528
7529 for (i = 0; i < rx_ring_num; i++) {
7530 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7531 config->rx_cfg[i].f_no_snoop =
7532 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7533 }
7534
7535 /* Setting Mac Control parameters */
7536 mac_control->rmac_pause_time = rmac_pause_time;
7537 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7538 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7539
7540
7541 /* Initialize Ring buffer parameters. */
7542 for (i = 0; i < config->rx_ring_num; i++)
7543 atomic_set(&sp->rx_bufs_left[i], 0);
7544
7545 /* initialize the shared memory used by the NIC and the host */
7546 if (init_shared_mem(sp)) {
7547 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7548 dev->name);
7549 ret = -ENOMEM;
7550 goto mem_alloc_failed;
7551 }
7552
7553 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7554 pci_resource_len(pdev, 0));
7555 if (!sp->bar0) {
7556 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7557 dev->name);
7558 ret = -ENOMEM;
7559 goto bar0_remap_failed;
7560 }
7561
7562 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7563 pci_resource_len(pdev, 2));
7564 if (!sp->bar1) {
7565 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7566 dev->name);
7567 ret = -ENOMEM;
7568 goto bar1_remap_failed;
7569 }
7570
7571 dev->irq = pdev->irq;
7572 dev->base_addr = (unsigned long) sp->bar0;
7573
7574 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7575 for (j = 0; j < MAX_TX_FIFOS; j++) {
7576 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7577 (sp->bar1 + (j * 0x00020000));
7578 }
7579
7580 /* Driver entry points */
7581 dev->open = &s2io_open;
7582 dev->stop = &s2io_close;
7583 dev->hard_start_xmit = &s2io_xmit;
7584 dev->get_stats = &s2io_get_stats;
7585 dev->set_multicast_list = &s2io_set_multicast;
7586 dev->do_ioctl = &s2io_ioctl;
7587 dev->set_mac_address = &s2io_set_mac_addr;
7588 dev->change_mtu = &s2io_change_mtu;
7589 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7590 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7591 dev->vlan_rx_register = s2io_vlan_rx_register;
7592
7593 /*
7594 * will use eth_mac_addr() for dev->set_mac_address
7595 * mac address will be set every time dev->open() is called
7596 */
7597 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7598
7599 #ifdef CONFIG_NET_POLL_CONTROLLER
7600 dev->poll_controller = s2io_netpoll;
7601 #endif
7602
7603 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7604 if (sp->high_dma_flag == TRUE)
7605 dev->features |= NETIF_F_HIGHDMA;
7606 dev->features |= NETIF_F_TSO;
7607 dev->features |= NETIF_F_TSO6;
7608 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7609 dev->features |= NETIF_F_UFO;
7610 dev->features |= NETIF_F_HW_CSUM;
7611 }
7612
7613 dev->tx_timeout = &s2io_tx_watchdog;
7614 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7615 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7616 INIT_WORK(&sp->set_link_task, s2io_set_link);
7617
7618 pci_save_state(sp->pdev);
7619
7620 /* Setting swapper control on the NIC, for proper reset operation */
7621 if (s2io_set_swapper(sp)) {
7622 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7623 dev->name);
7624 ret = -EAGAIN;
7625 goto set_swap_failed;
7626 }
7627
7628 /* Verify if the Herc works on the slot its placed into */
7629 if (sp->device_type & XFRAME_II_DEVICE) {
7630 mode = s2io_verify_pci_mode(sp);
7631 if (mode < 0) {
7632 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7633 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7634 ret = -EBADSLT;
7635 goto set_swap_failed;
7636 }
7637 }
7638
7639 /* Not needed for Herc */
7640 if (sp->device_type & XFRAME_I_DEVICE) {
7641 /*
7642 * Fix for all "FFs" MAC address problems observed on
7643 * Alpha platforms
7644 */
7645 fix_mac_address(sp);
7646 s2io_reset(sp);
7647 }
7648
7649 /*
7650 * MAC address initialization.
7651 * For now only one mac address will be read and used.
7652 */
7653 bar0 = sp->bar0;
7654 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7655 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7656 writeq(val64, &bar0->rmac_addr_cmd_mem);
7657 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7658 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7659 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7660 mac_down = (u32) tmp64;
7661 mac_up = (u32) (tmp64 >> 32);
7662
7663 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7664 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7665 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7666 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7667 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7668 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7669
7670 /* Set the factory defined MAC address initially */
7671 dev->addr_len = ETH_ALEN;
7672 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7673 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7674
7675 /* Store the values of the MSIX table in the s2io_nic structure */
7676 store_xmsi_data(sp);
7677 /* reset Nic and bring it to known state */
7678 s2io_reset(sp);
7679
7680 /*
7681 * Initialize the tasklet status and link state flags
7682 * and the card state parameter
7683 */
7684 sp->tasklet_status = 0;
7685 sp->state = 0;
7686
7687 /* Initialize spinlocks */
7688 spin_lock_init(&sp->tx_lock);
7689
7690 if (!napi)
7691 spin_lock_init(&sp->put_lock);
7692 spin_lock_init(&sp->rx_lock);
7693
7694 /*
7695 * SXE-002: Configure link and activity LED to init state
7696 * on driver load.
7697 */
7698 subid = sp->pdev->subsystem_device;
7699 if ((subid & 0xFF) >= 0x07) {
7700 val64 = readq(&bar0->gpio_control);
7701 val64 |= 0x0000800000000000ULL;
7702 writeq(val64, &bar0->gpio_control);
7703 val64 = 0x0411040400000000ULL;
7704 writeq(val64, (void __iomem *) bar0 + 0x2700);
7705 val64 = readq(&bar0->gpio_control);
7706 }
7707
7708 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7709
7710 if (register_netdev(dev)) {
7711 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7712 ret = -ENODEV;
7713 goto register_failed;
7714 }
7715 s2io_vpd_read(sp);
7716 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7717 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7718 sp->product_name, pdev->revision);
7719 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7720 s2io_driver_version);
7721 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7722 dev->name, print_mac(mac, dev->dev_addr));
7723 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7724 if (sp->device_type & XFRAME_II_DEVICE) {
7725 mode = s2io_print_pci_mode(sp);
7726 if (mode < 0) {
7727 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7728 ret = -EBADSLT;
7729 unregister_netdev(dev);
7730 goto set_swap_failed;
7731 }
7732 }
7733 switch(sp->rxd_mode) {
7734 case RXD_MODE_1:
7735 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7736 dev->name);
7737 break;
7738 case RXD_MODE_3B:
7739 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7740 dev->name);
7741 break;
7742 }
7743
7744 if (napi)
7745 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7746 switch(sp->config.intr_type) {
7747 case INTA:
7748 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7749 break;
7750 case MSI_X:
7751 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7752 break;
7753 }
7754 if (sp->lro)
7755 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7756 dev->name);
7757 if (ufo)
7758 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7759 " enabled\n", dev->name);
7760 /* Initialize device name */
7761 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7762
7763 /*
7764 * Make Link state as off at this point, when the Link change
7765 * interrupt comes the state will be automatically changed to
7766 * the right state.
7767 */
7768 netif_carrier_off(dev);
7769
7770 return 0;
7771
7772 register_failed:
7773 set_swap_failed:
7774 iounmap(sp->bar1);
7775 bar1_remap_failed:
7776 iounmap(sp->bar0);
7777 bar0_remap_failed:
7778 mem_alloc_failed:
7779 free_shared_mem(sp);
7780 pci_disable_device(pdev);
7781 pci_release_regions(pdev);
7782 pci_set_drvdata(pdev, NULL);
7783 free_netdev(dev);
7784
7785 return ret;
7786 }
7787
7788 /**
7789 * s2io_rem_nic - Free the PCI device
7790 * @pdev: structure containing the PCI related information of the device.
7791 * Description: This function is called by the Pci subsystem to release a
7792 * PCI device and free up all resource held up by the device. This could
7793 * be in response to a Hot plug event or when the driver is to be removed
7794 * from memory.
7795 */
7796
7797 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7798 {
7799 struct net_device *dev =
7800 (struct net_device *) pci_get_drvdata(pdev);
7801 struct s2io_nic *sp;
7802
7803 if (dev == NULL) {
7804 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7805 return;
7806 }
7807
7808 flush_scheduled_work();
7809
7810 sp = dev->priv;
7811 unregister_netdev(dev);
7812
7813 free_shared_mem(sp);
7814 iounmap(sp->bar0);
7815 iounmap(sp->bar1);
7816 pci_release_regions(pdev);
7817 pci_set_drvdata(pdev, NULL);
7818 free_netdev(dev);
7819 pci_disable_device(pdev);
7820 }
7821
7822 /**
7823 * s2io_starter - Entry point for the driver
7824 * Description: This function is the entry point for the driver. It verifies
7825 * the module loadable parameters and initializes PCI configuration space.
7826 */
7827
7828 static int __init s2io_starter(void)
7829 {
7830 return pci_register_driver(&s2io_driver);
7831 }
7832
7833 /**
7834 * s2io_closer - Cleanup routine for the driver
7835 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7836 */
7837
7838 static __exit void s2io_closer(void)
7839 {
7840 pci_unregister_driver(&s2io_driver);
7841 DBG_PRINT(INIT_DBG, "cleanup done\n");
7842 }
7843
7844 module_init(s2io_starter);
7845 module_exit(s2io_closer);
7846
7847 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7848 struct tcphdr **tcp, struct RxD_t *rxdp)
7849 {
7850 int ip_off;
7851 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7852
7853 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7854 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7855 __FUNCTION__);
7856 return -1;
7857 }
7858
7859 /* TODO:
7860 * By default the VLAN field in the MAC is stripped by the card, if this
7861 * feature is turned off in rx_pa_cfg register, then the ip_off field
7862 * has to be shifted by a further 2 bytes
7863 */
7864 switch (l2_type) {
7865 case 0: /* DIX type */
7866 case 4: /* DIX type with VLAN */
7867 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7868 break;
7869 /* LLC, SNAP etc are considered non-mergeable */
7870 default:
7871 return -1;
7872 }
7873
7874 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7875 ip_len = (u8)((*ip)->ihl);
7876 ip_len <<= 2;
7877 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7878
7879 return 0;
7880 }
7881
7882 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7883 struct tcphdr *tcp)
7884 {
7885 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7886 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7887 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7888 return -1;
7889 return 0;
7890 }
7891
7892 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7893 {
7894 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7895 }
7896
7897 static void initiate_new_session(struct lro *lro, u8 *l2h,
7898 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7899 {
7900 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7901 lro->l2h = l2h;
7902 lro->iph = ip;
7903 lro->tcph = tcp;
7904 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7905 lro->tcp_ack = ntohl(tcp->ack_seq);
7906 lro->sg_num = 1;
7907 lro->total_len = ntohs(ip->tot_len);
7908 lro->frags_len = 0;
7909 /*
7910 * check if we saw TCP timestamp. Other consistency checks have
7911 * already been done.
7912 */
7913 if (tcp->doff == 8) {
7914 u32 *ptr;
7915 ptr = (u32 *)(tcp+1);
7916 lro->saw_ts = 1;
7917 lro->cur_tsval = *(ptr+1);
7918 lro->cur_tsecr = *(ptr+2);
7919 }
7920 lro->in_use = 1;
7921 }
7922
7923 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7924 {
7925 struct iphdr *ip = lro->iph;
7926 struct tcphdr *tcp = lro->tcph;
7927 __sum16 nchk;
7928 struct stat_block *statinfo = sp->mac_control.stats_info;
7929 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7930
7931 /* Update L3 header */
7932 ip->tot_len = htons(lro->total_len);
7933 ip->check = 0;
7934 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7935 ip->check = nchk;
7936
7937 /* Update L4 header */
7938 tcp->ack_seq = lro->tcp_ack;
7939 tcp->window = lro->window;
7940
7941 /* Update tsecr field if this session has timestamps enabled */
7942 if (lro->saw_ts) {
7943 u32 *ptr = (u32 *)(tcp + 1);
7944 *(ptr+2) = lro->cur_tsecr;
7945 }
7946
7947 /* Update counters required for calculation of
7948 * average no. of packets aggregated.
7949 */
7950 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7951 statinfo->sw_stat.num_aggregations++;
7952 }
7953
7954 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7955 struct tcphdr *tcp, u32 l4_pyld)
7956 {
7957 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7958 lro->total_len += l4_pyld;
7959 lro->frags_len += l4_pyld;
7960 lro->tcp_next_seq += l4_pyld;
7961 lro->sg_num++;
7962
7963 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7964 lro->tcp_ack = tcp->ack_seq;
7965 lro->window = tcp->window;
7966
7967 if (lro->saw_ts) {
7968 u32 *ptr;
7969 /* Update tsecr and tsval from this packet */
7970 ptr = (u32 *) (tcp + 1);
7971 lro->cur_tsval = *(ptr + 1);
7972 lro->cur_tsecr = *(ptr + 2);
7973 }
7974 }
7975
7976 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7977 struct tcphdr *tcp, u32 tcp_pyld_len)
7978 {
7979 u8 *ptr;
7980
7981 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7982
7983 if (!tcp_pyld_len) {
7984 /* Runt frame or a pure ack */
7985 return -1;
7986 }
7987
7988 if (ip->ihl != 5) /* IP has options */
7989 return -1;
7990
7991 /* If we see CE codepoint in IP header, packet is not mergeable */
7992 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7993 return -1;
7994
7995 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7996 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7997 tcp->ece || tcp->cwr || !tcp->ack) {
7998 /*
7999 * Currently recognize only the ack control word and
8000 * any other control field being set would result in
8001 * flushing the LRO session
8002 */
8003 return -1;
8004 }
8005
8006 /*
8007 * Allow only one TCP timestamp option. Don't aggregate if
8008 * any other options are detected.
8009 */
8010 if (tcp->doff != 5 && tcp->doff != 8)
8011 return -1;
8012
8013 if (tcp->doff == 8) {
8014 ptr = (u8 *)(tcp + 1);
8015 while (*ptr == TCPOPT_NOP)
8016 ptr++;
8017 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8018 return -1;
8019
8020 /* Ensure timestamp value increases monotonically */
8021 if (l_lro)
8022 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8023 return -1;
8024
8025 /* timestamp echo reply should be non-zero */
8026 if (*((u32 *)(ptr+6)) == 0)
8027 return -1;
8028 }
8029
8030 return 0;
8031 }
8032
8033 static int
8034 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8035 struct RxD_t *rxdp, struct s2io_nic *sp)
8036 {
8037 struct iphdr *ip;
8038 struct tcphdr *tcph;
8039 int ret = 0, i;
8040
8041 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8042 rxdp))) {
8043 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8044 ip->saddr, ip->daddr);
8045 } else {
8046 return ret;
8047 }
8048
8049 tcph = (struct tcphdr *)*tcp;
8050 *tcp_len = get_l4_pyld_length(ip, tcph);
8051 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8052 struct lro *l_lro = &sp->lro0_n[i];
8053 if (l_lro->in_use) {
8054 if (check_for_socket_match(l_lro, ip, tcph))
8055 continue;
8056 /* Sock pair matched */
8057 *lro = l_lro;
8058
8059 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8060 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8061 "0x%x, actual 0x%x\n", __FUNCTION__,
8062 (*lro)->tcp_next_seq,
8063 ntohl(tcph->seq));
8064
8065 sp->mac_control.stats_info->
8066 sw_stat.outof_sequence_pkts++;
8067 ret = 2;
8068 break;
8069 }
8070
8071 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8072 ret = 1; /* Aggregate */
8073 else
8074 ret = 2; /* Flush both */
8075 break;
8076 }
8077 }
8078
8079 if (ret == 0) {
8080 /* Before searching for available LRO objects,
8081 * check if the pkt is L3/L4 aggregatable. If not
8082 * don't create new LRO session. Just send this
8083 * packet up.
8084 */
8085 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8086 return 5;
8087 }
8088
8089 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8090 struct lro *l_lro = &sp->lro0_n[i];
8091 if (!(l_lro->in_use)) {
8092 *lro = l_lro;
8093 ret = 3; /* Begin anew */
8094 break;
8095 }
8096 }
8097 }
8098
8099 if (ret == 0) { /* sessions exceeded */
8100 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8101 __FUNCTION__);
8102 *lro = NULL;
8103 return ret;
8104 }
8105
8106 switch (ret) {
8107 case 3:
8108 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8109 break;
8110 case 2:
8111 update_L3L4_header(sp, *lro);
8112 break;
8113 case 1:
8114 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8115 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8116 update_L3L4_header(sp, *lro);
8117 ret = 4; /* Flush the LRO */
8118 }
8119 break;
8120 default:
8121 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8122 __FUNCTION__);
8123 break;
8124 }
8125
8126 return ret;
8127 }
8128
8129 static void clear_lro_session(struct lro *lro)
8130 {
8131 static u16 lro_struct_size = sizeof(struct lro);
8132
8133 memset(lro, 0, lro_struct_size);
8134 }
8135
8136 static void queue_rx_frame(struct sk_buff *skb)
8137 {
8138 struct net_device *dev = skb->dev;
8139
8140 skb->protocol = eth_type_trans(skb, dev);
8141 if (napi)
8142 netif_receive_skb(skb);
8143 else
8144 netif_rx(skb);
8145 }
8146
8147 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8148 struct sk_buff *skb,
8149 u32 tcp_len)
8150 {
8151 struct sk_buff *first = lro->parent;
8152
8153 first->len += tcp_len;
8154 first->data_len = lro->frags_len;
8155 skb_pull(skb, (skb->len - tcp_len));
8156 if (skb_shinfo(first)->frag_list)
8157 lro->last_frag->next = skb;
8158 else
8159 skb_shinfo(first)->frag_list = skb;
8160 first->truesize += skb->truesize;
8161 lro->last_frag = skb;
8162 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8163 return;
8164 }
8165
8166 /**
8167 * s2io_io_error_detected - called when PCI error is detected
8168 * @pdev: Pointer to PCI device
8169 * @state: The current pci connection state
8170 *
8171 * This function is called after a PCI bus error affecting
8172 * this device has been detected.
8173 */
8174 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8175 pci_channel_state_t state)
8176 {
8177 struct net_device *netdev = pci_get_drvdata(pdev);
8178 struct s2io_nic *sp = netdev->priv;
8179
8180 netif_device_detach(netdev);
8181
8182 if (netif_running(netdev)) {
8183 /* Bring down the card, while avoiding PCI I/O */
8184 do_s2io_card_down(sp, 0);
8185 }
8186 pci_disable_device(pdev);
8187
8188 return PCI_ERS_RESULT_NEED_RESET;
8189 }
8190
8191 /**
8192 * s2io_io_slot_reset - called after the pci bus has been reset.
8193 * @pdev: Pointer to PCI device
8194 *
8195 * Restart the card from scratch, as if from a cold-boot.
8196 * At this point, the card has exprienced a hard reset,
8197 * followed by fixups by BIOS, and has its config space
8198 * set up identically to what it was at cold boot.
8199 */
8200 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8201 {
8202 struct net_device *netdev = pci_get_drvdata(pdev);
8203 struct s2io_nic *sp = netdev->priv;
8204
8205 if (pci_enable_device(pdev)) {
8206 printk(KERN_ERR "s2io: "
8207 "Cannot re-enable PCI device after reset.\n");
8208 return PCI_ERS_RESULT_DISCONNECT;
8209 }
8210
8211 pci_set_master(pdev);
8212 s2io_reset(sp);
8213
8214 return PCI_ERS_RESULT_RECOVERED;
8215 }
8216
8217 /**
8218 * s2io_io_resume - called when traffic can start flowing again.
8219 * @pdev: Pointer to PCI device
8220 *
8221 * This callback is called when the error recovery driver tells
8222 * us that its OK to resume normal operation.
8223 */
8224 static void s2io_io_resume(struct pci_dev *pdev)
8225 {
8226 struct net_device *netdev = pci_get_drvdata(pdev);
8227 struct s2io_nic *sp = netdev->priv;
8228
8229 if (netif_running(netdev)) {
8230 if (s2io_card_up(sp)) {
8231 printk(KERN_ERR "s2io: "
8232 "Can't bring device back up after reset.\n");
8233 return;
8234 }
8235
8236 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8237 s2io_card_down(sp);
8238 printk(KERN_ERR "s2io: "
8239 "Can't resetore mac addr after reset.\n");
8240 return;
8241 }
8242 }
8243
8244 netif_device_attach(netdev);
8245 netif_wake_queue(netdev);
8246 }
This page took 0.340681 seconds and 5 git commands to generate.