Merge branch 'ucc_geth' of master.kernel.org:/pub/scm/linux/kernel/git/leo/fsl-soc...
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.25.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104 }
105
106 /*
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123 struct mac_info *mac_control;
124
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
214 {"rmac_pause_cnt"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
236 {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
255 {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 ("mem_alloc_fail_cnt"),
285 ("pci_map_fail_cnt"),
286 ("watchdog_timer_cnt"),
287 ("mem_allocated"),
288 ("mem_freed"),
289 ("link_up_cnt"),
290 ("link_down_cnt"),
291 ("link_up_time"),
292 ("link_down_time"),
293 ("tx_tcode_buf_abort_cnt"),
294 ("tx_tcode_desc_abort_cnt"),
295 ("tx_tcode_parity_err_cnt"),
296 ("tx_tcode_link_loss_cnt"),
297 ("tx_tcode_list_proc_err_cnt"),
298 ("rx_tcode_parity_err_cnt"),
299 ("rx_tcode_abort_cnt"),
300 ("rx_tcode_parity_abort_cnt"),
301 ("rx_tcode_rda_fail_cnt"),
302 ("rx_tcode_unkn_prot_cnt"),
303 ("rx_tcode_fcs_err_cnt"),
304 ("rx_tcode_buf_size_err_cnt"),
305 ("rx_tcode_rxd_corrupt_cnt"),
306 ("rx_tcode_unkn_err_cnt")
307 };
308
309 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
310 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
311 ETH_GSTRING_LEN
312 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
313
314 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
315 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
316
317 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
318 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
319
320 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
321 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
322
323 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
324 init_timer(&timer); \
325 timer.function = handle; \
326 timer.data = (unsigned long) arg; \
327 mod_timer(&timer, (jiffies + exp)) \
328
329 /* Add the vlan */
330 static void s2io_vlan_rx_register(struct net_device *dev,
331 struct vlan_group *grp)
332 {
333 struct s2io_nic *nic = dev->priv;
334 unsigned long flags;
335
336 spin_lock_irqsave(&nic->tx_lock, flags);
337 nic->vlgrp = grp;
338 spin_unlock_irqrestore(&nic->tx_lock, flags);
339 }
340
341 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
342 static int vlan_strip_flag;
343
344 /*
345 * Constants to be programmed into the Xena's registers, to configure
346 * the XAUI.
347 */
348
349 #define END_SIGN 0x0
350 static const u64 herc_act_dtx_cfg[] = {
351 /* Set address */
352 0x8000051536750000ULL, 0x80000515367500E0ULL,
353 /* Write data */
354 0x8000051536750004ULL, 0x80000515367500E4ULL,
355 /* Set address */
356 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
357 /* Write data */
358 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
359 /* Set address */
360 0x801205150D440000ULL, 0x801205150D4400E0ULL,
361 /* Write data */
362 0x801205150D440004ULL, 0x801205150D4400E4ULL,
363 /* Set address */
364 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
365 /* Write data */
366 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
367 /* Done */
368 END_SIGN
369 };
370
371 static const u64 xena_dtx_cfg[] = {
372 /* Set address */
373 0x8000051500000000ULL, 0x80000515000000E0ULL,
374 /* Write data */
375 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
376 /* Set address */
377 0x8001051500000000ULL, 0x80010515000000E0ULL,
378 /* Write data */
379 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
380 /* Set address */
381 0x8002051500000000ULL, 0x80020515000000E0ULL,
382 /* Write data */
383 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
384 END_SIGN
385 };
386
387 /*
388 * Constants for Fixing the MacAddress problem seen mostly on
389 * Alpha machines.
390 */
391 static const u64 fix_mac[] = {
392 0x0060000000000000ULL, 0x0060600000000000ULL,
393 0x0040600000000000ULL, 0x0000600000000000ULL,
394 0x0020600000000000ULL, 0x0060600000000000ULL,
395 0x0020600000000000ULL, 0x0060600000000000ULL,
396 0x0020600000000000ULL, 0x0060600000000000ULL,
397 0x0020600000000000ULL, 0x0060600000000000ULL,
398 0x0020600000000000ULL, 0x0060600000000000ULL,
399 0x0020600000000000ULL, 0x0060600000000000ULL,
400 0x0020600000000000ULL, 0x0060600000000000ULL,
401 0x0020600000000000ULL, 0x0060600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0060600000000000ULL,
404 0x0020600000000000ULL, 0x0000600000000000ULL,
405 0x0040600000000000ULL, 0x0060600000000000ULL,
406 END_SIGN
407 };
408
409 MODULE_LICENSE("GPL");
410 MODULE_VERSION(DRV_VERSION);
411
412
413 /* Module Loadable parameters. */
414 S2IO_PARM_INT(tx_fifo_num, 1);
415 S2IO_PARM_INT(rx_ring_num, 1);
416
417
418 S2IO_PARM_INT(rx_ring_mode, 1);
419 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
420 S2IO_PARM_INT(rmac_pause_time, 0x100);
421 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
422 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
423 S2IO_PARM_INT(shared_splits, 0);
424 S2IO_PARM_INT(tmac_util_period, 5);
425 S2IO_PARM_INT(rmac_util_period, 5);
426 S2IO_PARM_INT(bimodal, 0);
427 S2IO_PARM_INT(l3l4hdr_size, 128);
428 /* Frequency of Rx desc syncs expressed as power of 2 */
429 S2IO_PARM_INT(rxsync_frequency, 3);
430 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
431 S2IO_PARM_INT(intr_type, 0);
432 /* Large receive offload feature */
433 S2IO_PARM_INT(lro, 0);
434 /* Max pkts to be aggregated by LRO at one time. If not specified,
435 * aggregation happens until we hit max IP pkt size(64K)
436 */
437 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
438 S2IO_PARM_INT(indicate_max_pkts, 0);
439
440 S2IO_PARM_INT(napi, 1);
441 S2IO_PARM_INT(ufo, 0);
442 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
443
444 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
445 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
446 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
447 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
448 static unsigned int rts_frm_len[MAX_RX_RINGS] =
449 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
450
451 module_param_array(tx_fifo_len, uint, NULL, 0);
452 module_param_array(rx_ring_sz, uint, NULL, 0);
453 module_param_array(rts_frm_len, uint, NULL, 0);
454
455 /*
456 * S2IO device table.
457 * This table lists all the devices that this driver supports.
458 */
459 static struct pci_device_id s2io_tbl[] __devinitdata = {
460 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
461 PCI_ANY_ID, PCI_ANY_ID},
462 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
463 PCI_ANY_ID, PCI_ANY_ID},
464 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
465 PCI_ANY_ID, PCI_ANY_ID},
466 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
467 PCI_ANY_ID, PCI_ANY_ID},
468 {0,}
469 };
470
471 MODULE_DEVICE_TABLE(pci, s2io_tbl);
472
473 static struct pci_error_handlers s2io_err_handler = {
474 .error_detected = s2io_io_error_detected,
475 .slot_reset = s2io_io_slot_reset,
476 .resume = s2io_io_resume,
477 };
478
479 static struct pci_driver s2io_driver = {
480 .name = "S2IO",
481 .id_table = s2io_tbl,
482 .probe = s2io_init_nic,
483 .remove = __devexit_p(s2io_rem_nic),
484 .err_handler = &s2io_err_handler,
485 };
486
487 /* A simplifier macro used both by init and free shared_mem Fns(). */
488 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
489
490 /**
491 * init_shared_mem - Allocation and Initialization of Memory
492 * @nic: Device private variable.
493 * Description: The function allocates all the memory areas shared
494 * between the NIC and the driver. This includes Tx descriptors,
495 * Rx descriptors and the statistics block.
496 */
497
498 static int init_shared_mem(struct s2io_nic *nic)
499 {
500 u32 size;
501 void *tmp_v_addr, *tmp_v_addr_next;
502 dma_addr_t tmp_p_addr, tmp_p_addr_next;
503 struct RxD_block *pre_rxd_blk = NULL;
504 int i, j, blk_cnt;
505 int lst_size, lst_per_page;
506 struct net_device *dev = nic->dev;
507 unsigned long tmp;
508 struct buffAdd *ba;
509
510 struct mac_info *mac_control;
511 struct config_param *config;
512 unsigned long long mem_allocated = 0;
513
514 mac_control = &nic->mac_control;
515 config = &nic->config;
516
517
518 /* Allocation and initialization of TXDLs in FIOFs */
519 size = 0;
520 for (i = 0; i < config->tx_fifo_num; i++) {
521 size += config->tx_cfg[i].fifo_len;
522 }
523 if (size > MAX_AVAILABLE_TXDS) {
524 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
525 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
526 return -EINVAL;
527 }
528
529 lst_size = (sizeof(struct TxD) * config->max_txds);
530 lst_per_page = PAGE_SIZE / lst_size;
531
532 for (i = 0; i < config->tx_fifo_num; i++) {
533 int fifo_len = config->tx_cfg[i].fifo_len;
534 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
535 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
536 GFP_KERNEL);
537 if (!mac_control->fifos[i].list_info) {
538 DBG_PRINT(INFO_DBG,
539 "Malloc failed for list_info\n");
540 return -ENOMEM;
541 }
542 mem_allocated += list_holder_size;
543 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
544 }
545 for (i = 0; i < config->tx_fifo_num; i++) {
546 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
547 lst_per_page);
548 mac_control->fifos[i].tx_curr_put_info.offset = 0;
549 mac_control->fifos[i].tx_curr_put_info.fifo_len =
550 config->tx_cfg[i].fifo_len - 1;
551 mac_control->fifos[i].tx_curr_get_info.offset = 0;
552 mac_control->fifos[i].tx_curr_get_info.fifo_len =
553 config->tx_cfg[i].fifo_len - 1;
554 mac_control->fifos[i].fifo_no = i;
555 mac_control->fifos[i].nic = nic;
556 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
557
558 for (j = 0; j < page_num; j++) {
559 int k = 0;
560 dma_addr_t tmp_p;
561 void *tmp_v;
562 tmp_v = pci_alloc_consistent(nic->pdev,
563 PAGE_SIZE, &tmp_p);
564 if (!tmp_v) {
565 DBG_PRINT(INFO_DBG,
566 "pci_alloc_consistent ");
567 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
568 return -ENOMEM;
569 }
570 /* If we got a zero DMA address(can happen on
571 * certain platforms like PPC), reallocate.
572 * Store virtual address of page we don't want,
573 * to be freed later.
574 */
575 if (!tmp_p) {
576 mac_control->zerodma_virt_addr = tmp_v;
577 DBG_PRINT(INIT_DBG,
578 "%s: Zero DMA address for TxDL. ", dev->name);
579 DBG_PRINT(INIT_DBG,
580 "Virtual address %p\n", tmp_v);
581 tmp_v = pci_alloc_consistent(nic->pdev,
582 PAGE_SIZE, &tmp_p);
583 if (!tmp_v) {
584 DBG_PRINT(INFO_DBG,
585 "pci_alloc_consistent ");
586 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
587 return -ENOMEM;
588 }
589 mem_allocated += PAGE_SIZE;
590 }
591 while (k < lst_per_page) {
592 int l = (j * lst_per_page) + k;
593 if (l == config->tx_cfg[i].fifo_len)
594 break;
595 mac_control->fifos[i].list_info[l].list_virt_addr =
596 tmp_v + (k * lst_size);
597 mac_control->fifos[i].list_info[l].list_phy_addr =
598 tmp_p + (k * lst_size);
599 k++;
600 }
601 }
602 }
603
604 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
605 if (!nic->ufo_in_band_v)
606 return -ENOMEM;
607 mem_allocated += (size * sizeof(u64));
608
609 /* Allocation and initialization of RXDs in Rings */
610 size = 0;
611 for (i = 0; i < config->rx_ring_num; i++) {
612 if (config->rx_cfg[i].num_rxd %
613 (rxd_count[nic->rxd_mode] + 1)) {
614 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
615 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
616 i);
617 DBG_PRINT(ERR_DBG, "RxDs per Block");
618 return FAILURE;
619 }
620 size += config->rx_cfg[i].num_rxd;
621 mac_control->rings[i].block_count =
622 config->rx_cfg[i].num_rxd /
623 (rxd_count[nic->rxd_mode] + 1 );
624 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
625 mac_control->rings[i].block_count;
626 }
627 if (nic->rxd_mode == RXD_MODE_1)
628 size = (size * (sizeof(struct RxD1)));
629 else
630 size = (size * (sizeof(struct RxD3)));
631
632 for (i = 0; i < config->rx_ring_num; i++) {
633 mac_control->rings[i].rx_curr_get_info.block_index = 0;
634 mac_control->rings[i].rx_curr_get_info.offset = 0;
635 mac_control->rings[i].rx_curr_get_info.ring_len =
636 config->rx_cfg[i].num_rxd - 1;
637 mac_control->rings[i].rx_curr_put_info.block_index = 0;
638 mac_control->rings[i].rx_curr_put_info.offset = 0;
639 mac_control->rings[i].rx_curr_put_info.ring_len =
640 config->rx_cfg[i].num_rxd - 1;
641 mac_control->rings[i].nic = nic;
642 mac_control->rings[i].ring_no = i;
643
644 blk_cnt = config->rx_cfg[i].num_rxd /
645 (rxd_count[nic->rxd_mode] + 1);
646 /* Allocating all the Rx blocks */
647 for (j = 0; j < blk_cnt; j++) {
648 struct rx_block_info *rx_blocks;
649 int l;
650
651 rx_blocks = &mac_control->rings[i].rx_blocks[j];
652 size = SIZE_OF_BLOCK; //size is always page size
653 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
654 &tmp_p_addr);
655 if (tmp_v_addr == NULL) {
656 /*
657 * In case of failure, free_shared_mem()
658 * is called, which should free any
659 * memory that was alloced till the
660 * failure happened.
661 */
662 rx_blocks->block_virt_addr = tmp_v_addr;
663 return -ENOMEM;
664 }
665 mem_allocated += size;
666 memset(tmp_v_addr, 0, size);
667 rx_blocks->block_virt_addr = tmp_v_addr;
668 rx_blocks->block_dma_addr = tmp_p_addr;
669 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
670 rxd_count[nic->rxd_mode],
671 GFP_KERNEL);
672 if (!rx_blocks->rxds)
673 return -ENOMEM;
674 mem_allocated +=
675 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
676 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
677 rx_blocks->rxds[l].virt_addr =
678 rx_blocks->block_virt_addr +
679 (rxd_size[nic->rxd_mode] * l);
680 rx_blocks->rxds[l].dma_addr =
681 rx_blocks->block_dma_addr +
682 (rxd_size[nic->rxd_mode] * l);
683 }
684 }
685 /* Interlinking all Rx Blocks */
686 for (j = 0; j < blk_cnt; j++) {
687 tmp_v_addr =
688 mac_control->rings[i].rx_blocks[j].block_virt_addr;
689 tmp_v_addr_next =
690 mac_control->rings[i].rx_blocks[(j + 1) %
691 blk_cnt].block_virt_addr;
692 tmp_p_addr =
693 mac_control->rings[i].rx_blocks[j].block_dma_addr;
694 tmp_p_addr_next =
695 mac_control->rings[i].rx_blocks[(j + 1) %
696 blk_cnt].block_dma_addr;
697
698 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
699 pre_rxd_blk->reserved_2_pNext_RxD_block =
700 (unsigned long) tmp_v_addr_next;
701 pre_rxd_blk->pNext_RxD_Blk_physical =
702 (u64) tmp_p_addr_next;
703 }
704 }
705 if (nic->rxd_mode == RXD_MODE_3B) {
706 /*
707 * Allocation of Storages for buffer addresses in 2BUFF mode
708 * and the buffers as well.
709 */
710 for (i = 0; i < config->rx_ring_num; i++) {
711 blk_cnt = config->rx_cfg[i].num_rxd /
712 (rxd_count[nic->rxd_mode]+ 1);
713 mac_control->rings[i].ba =
714 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
715 GFP_KERNEL);
716 if (!mac_control->rings[i].ba)
717 return -ENOMEM;
718 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
719 for (j = 0; j < blk_cnt; j++) {
720 int k = 0;
721 mac_control->rings[i].ba[j] =
722 kmalloc((sizeof(struct buffAdd) *
723 (rxd_count[nic->rxd_mode] + 1)),
724 GFP_KERNEL);
725 if (!mac_control->rings[i].ba[j])
726 return -ENOMEM;
727 mem_allocated += (sizeof(struct buffAdd) * \
728 (rxd_count[nic->rxd_mode] + 1));
729 while (k != rxd_count[nic->rxd_mode]) {
730 ba = &mac_control->rings[i].ba[j][k];
731
732 ba->ba_0_org = (void *) kmalloc
733 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
734 if (!ba->ba_0_org)
735 return -ENOMEM;
736 mem_allocated +=
737 (BUF0_LEN + ALIGN_SIZE);
738 tmp = (unsigned long)ba->ba_0_org;
739 tmp += ALIGN_SIZE;
740 tmp &= ~((unsigned long) ALIGN_SIZE);
741 ba->ba_0 = (void *) tmp;
742
743 ba->ba_1_org = (void *) kmalloc
744 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
745 if (!ba->ba_1_org)
746 return -ENOMEM;
747 mem_allocated
748 += (BUF1_LEN + ALIGN_SIZE);
749 tmp = (unsigned long) ba->ba_1_org;
750 tmp += ALIGN_SIZE;
751 tmp &= ~((unsigned long) ALIGN_SIZE);
752 ba->ba_1 = (void *) tmp;
753 k++;
754 }
755 }
756 }
757 }
758
759 /* Allocation and initialization of Statistics block */
760 size = sizeof(struct stat_block);
761 mac_control->stats_mem = pci_alloc_consistent
762 (nic->pdev, size, &mac_control->stats_mem_phy);
763
764 if (!mac_control->stats_mem) {
765 /*
766 * In case of failure, free_shared_mem() is called, which
767 * should free any memory that was alloced till the
768 * failure happened.
769 */
770 return -ENOMEM;
771 }
772 mem_allocated += size;
773 mac_control->stats_mem_sz = size;
774
775 tmp_v_addr = mac_control->stats_mem;
776 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
777 memset(tmp_v_addr, 0, size);
778 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
779 (unsigned long long) tmp_p_addr);
780 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
781 return SUCCESS;
782 }
783
784 /**
785 * free_shared_mem - Free the allocated Memory
786 * @nic: Device private variable.
787 * Description: This function is to free all memory locations allocated by
788 * the init_shared_mem() function and return it to the kernel.
789 */
790
791 static void free_shared_mem(struct s2io_nic *nic)
792 {
793 int i, j, blk_cnt, size;
794 u32 ufo_size = 0;
795 void *tmp_v_addr;
796 dma_addr_t tmp_p_addr;
797 struct mac_info *mac_control;
798 struct config_param *config;
799 int lst_size, lst_per_page;
800 struct net_device *dev;
801 int page_num = 0;
802
803 if (!nic)
804 return;
805
806 dev = nic->dev;
807
808 mac_control = &nic->mac_control;
809 config = &nic->config;
810
811 lst_size = (sizeof(struct TxD) * config->max_txds);
812 lst_per_page = PAGE_SIZE / lst_size;
813
814 for (i = 0; i < config->tx_fifo_num; i++) {
815 ufo_size += config->tx_cfg[i].fifo_len;
816 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
817 lst_per_page);
818 for (j = 0; j < page_num; j++) {
819 int mem_blks = (j * lst_per_page);
820 if (!mac_control->fifos[i].list_info)
821 return;
822 if (!mac_control->fifos[i].list_info[mem_blks].
823 list_virt_addr)
824 break;
825 pci_free_consistent(nic->pdev, PAGE_SIZE,
826 mac_control->fifos[i].
827 list_info[mem_blks].
828 list_virt_addr,
829 mac_control->fifos[i].
830 list_info[mem_blks].
831 list_phy_addr);
832 nic->mac_control.stats_info->sw_stat.mem_freed
833 += PAGE_SIZE;
834 }
835 /* If we got a zero DMA address during allocation,
836 * free the page now
837 */
838 if (mac_control->zerodma_virt_addr) {
839 pci_free_consistent(nic->pdev, PAGE_SIZE,
840 mac_control->zerodma_virt_addr,
841 (dma_addr_t)0);
842 DBG_PRINT(INIT_DBG,
843 "%s: Freeing TxDL with zero DMA addr. ",
844 dev->name);
845 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
846 mac_control->zerodma_virt_addr);
847 nic->mac_control.stats_info->sw_stat.mem_freed
848 += PAGE_SIZE;
849 }
850 kfree(mac_control->fifos[i].list_info);
851 nic->mac_control.stats_info->sw_stat.mem_freed +=
852 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
853 }
854
855 size = SIZE_OF_BLOCK;
856 for (i = 0; i < config->rx_ring_num; i++) {
857 blk_cnt = mac_control->rings[i].block_count;
858 for (j = 0; j < blk_cnt; j++) {
859 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
860 block_virt_addr;
861 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
862 block_dma_addr;
863 if (tmp_v_addr == NULL)
864 break;
865 pci_free_consistent(nic->pdev, size,
866 tmp_v_addr, tmp_p_addr);
867 nic->mac_control.stats_info->sw_stat.mem_freed += size;
868 kfree(mac_control->rings[i].rx_blocks[j].rxds);
869 nic->mac_control.stats_info->sw_stat.mem_freed +=
870 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
871 }
872 }
873
874 if (nic->rxd_mode == RXD_MODE_3B) {
875 /* Freeing buffer storage addresses in 2BUFF mode. */
876 for (i = 0; i < config->rx_ring_num; i++) {
877 blk_cnt = config->rx_cfg[i].num_rxd /
878 (rxd_count[nic->rxd_mode] + 1);
879 for (j = 0; j < blk_cnt; j++) {
880 int k = 0;
881 if (!mac_control->rings[i].ba[j])
882 continue;
883 while (k != rxd_count[nic->rxd_mode]) {
884 struct buffAdd *ba =
885 &mac_control->rings[i].ba[j][k];
886 kfree(ba->ba_0_org);
887 nic->mac_control.stats_info->sw_stat.\
888 mem_freed += (BUF0_LEN + ALIGN_SIZE);
889 kfree(ba->ba_1_org);
890 nic->mac_control.stats_info->sw_stat.\
891 mem_freed += (BUF1_LEN + ALIGN_SIZE);
892 k++;
893 }
894 kfree(mac_control->rings[i].ba[j]);
895 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
896 (rxd_count[nic->rxd_mode] + 1));
897 }
898 kfree(mac_control->rings[i].ba);
899 nic->mac_control.stats_info->sw_stat.mem_freed +=
900 (sizeof(struct buffAdd *) * blk_cnt);
901 }
902 }
903
904 if (mac_control->stats_mem) {
905 pci_free_consistent(nic->pdev,
906 mac_control->stats_mem_sz,
907 mac_control->stats_mem,
908 mac_control->stats_mem_phy);
909 nic->mac_control.stats_info->sw_stat.mem_freed +=
910 mac_control->stats_mem_sz;
911 }
912 if (nic->ufo_in_band_v) {
913 kfree(nic->ufo_in_band_v);
914 nic->mac_control.stats_info->sw_stat.mem_freed
915 += (ufo_size * sizeof(u64));
916 }
917 }
918
919 /**
920 * s2io_verify_pci_mode -
921 */
922
923 static int s2io_verify_pci_mode(struct s2io_nic *nic)
924 {
925 struct XENA_dev_config __iomem *bar0 = nic->bar0;
926 register u64 val64 = 0;
927 int mode;
928
929 val64 = readq(&bar0->pci_mode);
930 mode = (u8)GET_PCI_MODE(val64);
931
932 if ( val64 & PCI_MODE_UNKNOWN_MODE)
933 return -1; /* Unknown PCI mode */
934 return mode;
935 }
936
937 #define NEC_VENID 0x1033
938 #define NEC_DEVID 0x0125
939 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
940 {
941 struct pci_dev *tdev = NULL;
942 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
943 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
944 if (tdev->bus == s2io_pdev->bus->parent)
945 pci_dev_put(tdev);
946 return 1;
947 }
948 }
949 return 0;
950 }
951
952 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
953 /**
954 * s2io_print_pci_mode -
955 */
956 static int s2io_print_pci_mode(struct s2io_nic *nic)
957 {
958 struct XENA_dev_config __iomem *bar0 = nic->bar0;
959 register u64 val64 = 0;
960 int mode;
961 struct config_param *config = &nic->config;
962
963 val64 = readq(&bar0->pci_mode);
964 mode = (u8)GET_PCI_MODE(val64);
965
966 if ( val64 & PCI_MODE_UNKNOWN_MODE)
967 return -1; /* Unknown PCI mode */
968
969 config->bus_speed = bus_speed[mode];
970
971 if (s2io_on_nec_bridge(nic->pdev)) {
972 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
973 nic->dev->name);
974 return mode;
975 }
976
977 if (val64 & PCI_MODE_32_BITS) {
978 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
979 } else {
980 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
981 }
982
983 switch(mode) {
984 case PCI_MODE_PCI_33:
985 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
986 break;
987 case PCI_MODE_PCI_66:
988 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
989 break;
990 case PCI_MODE_PCIX_M1_66:
991 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
992 break;
993 case PCI_MODE_PCIX_M1_100:
994 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
995 break;
996 case PCI_MODE_PCIX_M1_133:
997 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
998 break;
999 case PCI_MODE_PCIX_M2_66:
1000 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1001 break;
1002 case PCI_MODE_PCIX_M2_100:
1003 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1004 break;
1005 case PCI_MODE_PCIX_M2_133:
1006 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1007 break;
1008 default:
1009 return -1; /* Unsupported bus speed */
1010 }
1011
1012 return mode;
1013 }
1014
1015 /**
1016 * init_nic - Initialization of hardware
1017 * @nic: device peivate variable
1018 * Description: The function sequentially configures every block
1019 * of the H/W from their reset values.
1020 * Return Value: SUCCESS on success and
1021 * '-1' on failure (endian settings incorrect).
1022 */
1023
1024 static int init_nic(struct s2io_nic *nic)
1025 {
1026 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1027 struct net_device *dev = nic->dev;
1028 register u64 val64 = 0;
1029 void __iomem *add;
1030 u32 time;
1031 int i, j;
1032 struct mac_info *mac_control;
1033 struct config_param *config;
1034 int dtx_cnt = 0;
1035 unsigned long long mem_share;
1036 int mem_size;
1037
1038 mac_control = &nic->mac_control;
1039 config = &nic->config;
1040
1041 /* to set the swapper controle on the card */
1042 if(s2io_set_swapper(nic)) {
1043 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1044 return -1;
1045 }
1046
1047 /*
1048 * Herc requires EOI to be removed from reset before XGXS, so..
1049 */
1050 if (nic->device_type & XFRAME_II_DEVICE) {
1051 val64 = 0xA500000000ULL;
1052 writeq(val64, &bar0->sw_reset);
1053 msleep(500);
1054 val64 = readq(&bar0->sw_reset);
1055 }
1056
1057 /* Remove XGXS from reset state */
1058 val64 = 0;
1059 writeq(val64, &bar0->sw_reset);
1060 msleep(500);
1061 val64 = readq(&bar0->sw_reset);
1062
1063 /* Enable Receiving broadcasts */
1064 add = &bar0->mac_cfg;
1065 val64 = readq(&bar0->mac_cfg);
1066 val64 |= MAC_RMAC_BCAST_ENABLE;
1067 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1068 writel((u32) val64, add);
1069 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1070 writel((u32) (val64 >> 32), (add + 4));
1071
1072 /* Read registers in all blocks */
1073 val64 = readq(&bar0->mac_int_mask);
1074 val64 = readq(&bar0->mc_int_mask);
1075 val64 = readq(&bar0->xgxs_int_mask);
1076
1077 /* Set MTU */
1078 val64 = dev->mtu;
1079 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1080
1081 if (nic->device_type & XFRAME_II_DEVICE) {
1082 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1083 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1084 &bar0->dtx_control, UF);
1085 if (dtx_cnt & 0x1)
1086 msleep(1); /* Necessary!! */
1087 dtx_cnt++;
1088 }
1089 } else {
1090 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1091 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1092 &bar0->dtx_control, UF);
1093 val64 = readq(&bar0->dtx_control);
1094 dtx_cnt++;
1095 }
1096 }
1097
1098 /* Tx DMA Initialization */
1099 val64 = 0;
1100 writeq(val64, &bar0->tx_fifo_partition_0);
1101 writeq(val64, &bar0->tx_fifo_partition_1);
1102 writeq(val64, &bar0->tx_fifo_partition_2);
1103 writeq(val64, &bar0->tx_fifo_partition_3);
1104
1105
1106 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1107 val64 |=
1108 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1109 13) | vBIT(config->tx_cfg[i].fifo_priority,
1110 ((i * 32) + 5), 3);
1111
1112 if (i == (config->tx_fifo_num - 1)) {
1113 if (i % 2 == 0)
1114 i++;
1115 }
1116
1117 switch (i) {
1118 case 1:
1119 writeq(val64, &bar0->tx_fifo_partition_0);
1120 val64 = 0;
1121 break;
1122 case 3:
1123 writeq(val64, &bar0->tx_fifo_partition_1);
1124 val64 = 0;
1125 break;
1126 case 5:
1127 writeq(val64, &bar0->tx_fifo_partition_2);
1128 val64 = 0;
1129 break;
1130 case 7:
1131 writeq(val64, &bar0->tx_fifo_partition_3);
1132 break;
1133 }
1134 }
1135
1136 /*
1137 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1138 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1139 */
1140 if ((nic->device_type == XFRAME_I_DEVICE) &&
1141 (nic->pdev->revision < 4))
1142 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1143
1144 val64 = readq(&bar0->tx_fifo_partition_0);
1145 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1146 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1147
1148 /*
1149 * Initialization of Tx_PA_CONFIG register to ignore packet
1150 * integrity checking.
1151 */
1152 val64 = readq(&bar0->tx_pa_cfg);
1153 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1154 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1155 writeq(val64, &bar0->tx_pa_cfg);
1156
1157 /* Rx DMA intialization. */
1158 val64 = 0;
1159 for (i = 0; i < config->rx_ring_num; i++) {
1160 val64 |=
1161 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1162 3);
1163 }
1164 writeq(val64, &bar0->rx_queue_priority);
1165
1166 /*
1167 * Allocating equal share of memory to all the
1168 * configured Rings.
1169 */
1170 val64 = 0;
1171 if (nic->device_type & XFRAME_II_DEVICE)
1172 mem_size = 32;
1173 else
1174 mem_size = 64;
1175
1176 for (i = 0; i < config->rx_ring_num; i++) {
1177 switch (i) {
1178 case 0:
1179 mem_share = (mem_size / config->rx_ring_num +
1180 mem_size % config->rx_ring_num);
1181 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1182 continue;
1183 case 1:
1184 mem_share = (mem_size / config->rx_ring_num);
1185 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1186 continue;
1187 case 2:
1188 mem_share = (mem_size / config->rx_ring_num);
1189 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1190 continue;
1191 case 3:
1192 mem_share = (mem_size / config->rx_ring_num);
1193 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1194 continue;
1195 case 4:
1196 mem_share = (mem_size / config->rx_ring_num);
1197 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1198 continue;
1199 case 5:
1200 mem_share = (mem_size / config->rx_ring_num);
1201 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1202 continue;
1203 case 6:
1204 mem_share = (mem_size / config->rx_ring_num);
1205 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1206 continue;
1207 case 7:
1208 mem_share = (mem_size / config->rx_ring_num);
1209 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1210 continue;
1211 }
1212 }
1213 writeq(val64, &bar0->rx_queue_cfg);
1214
1215 /*
1216 * Filling Tx round robin registers
1217 * as per the number of FIFOs
1218 */
1219 switch (config->tx_fifo_num) {
1220 case 1:
1221 val64 = 0x0000000000000000ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_0);
1223 writeq(val64, &bar0->tx_w_round_robin_1);
1224 writeq(val64, &bar0->tx_w_round_robin_2);
1225 writeq(val64, &bar0->tx_w_round_robin_3);
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 case 2:
1229 val64 = 0x0000010000010000ULL;
1230 writeq(val64, &bar0->tx_w_round_robin_0);
1231 val64 = 0x0100000100000100ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_1);
1233 val64 = 0x0001000001000001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_2);
1235 val64 = 0x0000010000010000ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_3);
1237 val64 = 0x0100000000000000ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_4);
1239 break;
1240 case 3:
1241 val64 = 0x0001000102000001ULL;
1242 writeq(val64, &bar0->tx_w_round_robin_0);
1243 val64 = 0x0001020000010001ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_1);
1245 val64 = 0x0200000100010200ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_2);
1247 val64 = 0x0001000102000001ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_3);
1249 val64 = 0x0001020000000000ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_4);
1251 break;
1252 case 4:
1253 val64 = 0x0001020300010200ULL;
1254 writeq(val64, &bar0->tx_w_round_robin_0);
1255 val64 = 0x0100000102030001ULL;
1256 writeq(val64, &bar0->tx_w_round_robin_1);
1257 val64 = 0x0200010000010203ULL;
1258 writeq(val64, &bar0->tx_w_round_robin_2);
1259 val64 = 0x0001020001000001ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_3);
1261 val64 = 0x0203000100000000ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_4);
1263 break;
1264 case 5:
1265 val64 = 0x0001000203000102ULL;
1266 writeq(val64, &bar0->tx_w_round_robin_0);
1267 val64 = 0x0001020001030004ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_1);
1269 val64 = 0x0001000203000102ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_2);
1271 val64 = 0x0001020001030004ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_3);
1273 val64 = 0x0001000000000000ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_4);
1275 break;
1276 case 6:
1277 val64 = 0x0001020304000102ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_0);
1279 val64 = 0x0304050001020001ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_1);
1281 val64 = 0x0203000100000102ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_2);
1283 val64 = 0x0304000102030405ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_3);
1285 val64 = 0x0001000200000000ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_4);
1287 break;
1288 case 7:
1289 val64 = 0x0001020001020300ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_0);
1291 val64 = 0x0102030400010203ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_1);
1293 val64 = 0x0405060001020001ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_2);
1295 val64 = 0x0304050000010200ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_3);
1297 val64 = 0x0102030000000000ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_4);
1299 break;
1300 case 8:
1301 val64 = 0x0001020300040105ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_0);
1303 val64 = 0x0200030106000204ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_1);
1305 val64 = 0x0103000502010007ULL;
1306 writeq(val64, &bar0->tx_w_round_robin_2);
1307 val64 = 0x0304010002060500ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_3);
1309 val64 = 0x0103020400000000ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_4);
1311 break;
1312 }
1313
1314 /* Enable all configured Tx FIFO partitions */
1315 val64 = readq(&bar0->tx_fifo_partition_0);
1316 val64 |= (TX_FIFO_PARTITION_EN);
1317 writeq(val64, &bar0->tx_fifo_partition_0);
1318
1319 /* Filling the Rx round robin registers as per the
1320 * number of Rings and steering based on QoS.
1321 */
1322 switch (config->rx_ring_num) {
1323 case 1:
1324 val64 = 0x8080808080808080ULL;
1325 writeq(val64, &bar0->rts_qos_steering);
1326 break;
1327 case 2:
1328 val64 = 0x0000010000010000ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_0);
1330 val64 = 0x0100000100000100ULL;
1331 writeq(val64, &bar0->rx_w_round_robin_1);
1332 val64 = 0x0001000001000001ULL;
1333 writeq(val64, &bar0->rx_w_round_robin_2);
1334 val64 = 0x0000010000010000ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_3);
1336 val64 = 0x0100000000000000ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_4);
1338
1339 val64 = 0x8080808040404040ULL;
1340 writeq(val64, &bar0->rts_qos_steering);
1341 break;
1342 case 3:
1343 val64 = 0x0001000102000001ULL;
1344 writeq(val64, &bar0->rx_w_round_robin_0);
1345 val64 = 0x0001020000010001ULL;
1346 writeq(val64, &bar0->rx_w_round_robin_1);
1347 val64 = 0x0200000100010200ULL;
1348 writeq(val64, &bar0->rx_w_round_robin_2);
1349 val64 = 0x0001000102000001ULL;
1350 writeq(val64, &bar0->rx_w_round_robin_3);
1351 val64 = 0x0001020000000000ULL;
1352 writeq(val64, &bar0->rx_w_round_robin_4);
1353
1354 val64 = 0x8080804040402020ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 4:
1358 val64 = 0x0001020300010200ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0100000102030001ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0200010000010203ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
1364 val64 = 0x0001020001000001ULL;
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0203000100000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369 val64 = 0x8080404020201010ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 case 5:
1373 val64 = 0x0001000203000102ULL;
1374 writeq(val64, &bar0->rx_w_round_robin_0);
1375 val64 = 0x0001020001030004ULL;
1376 writeq(val64, &bar0->rx_w_round_robin_1);
1377 val64 = 0x0001000203000102ULL;
1378 writeq(val64, &bar0->rx_w_round_robin_2);
1379 val64 = 0x0001020001030004ULL;
1380 writeq(val64, &bar0->rx_w_round_robin_3);
1381 val64 = 0x0001000000000000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_4);
1383
1384 val64 = 0x8080404020201008ULL;
1385 writeq(val64, &bar0->rts_qos_steering);
1386 break;
1387 case 6:
1388 val64 = 0x0001020304000102ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_0);
1390 val64 = 0x0304050001020001ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_1);
1392 val64 = 0x0203000100000102ULL;
1393 writeq(val64, &bar0->rx_w_round_robin_2);
1394 val64 = 0x0304000102030405ULL;
1395 writeq(val64, &bar0->rx_w_round_robin_3);
1396 val64 = 0x0001000200000000ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_4);
1398
1399 val64 = 0x8080404020100804ULL;
1400 writeq(val64, &bar0->rts_qos_steering);
1401 break;
1402 case 7:
1403 val64 = 0x0001020001020300ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_0);
1405 val64 = 0x0102030400010203ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_1);
1407 val64 = 0x0405060001020001ULL;
1408 writeq(val64, &bar0->rx_w_round_robin_2);
1409 val64 = 0x0304050000010200ULL;
1410 writeq(val64, &bar0->rx_w_round_robin_3);
1411 val64 = 0x0102030000000000ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_4);
1413
1414 val64 = 0x8080402010080402ULL;
1415 writeq(val64, &bar0->rts_qos_steering);
1416 break;
1417 case 8:
1418 val64 = 0x0001020300040105ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_0);
1420 val64 = 0x0200030106000204ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_1);
1422 val64 = 0x0103000502010007ULL;
1423 writeq(val64, &bar0->rx_w_round_robin_2);
1424 val64 = 0x0304010002060500ULL;
1425 writeq(val64, &bar0->rx_w_round_robin_3);
1426 val64 = 0x0103020400000000ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_4);
1428
1429 val64 = 0x8040201008040201ULL;
1430 writeq(val64, &bar0->rts_qos_steering);
1431 break;
1432 }
1433
1434 /* UDP Fix */
1435 val64 = 0;
1436 for (i = 0; i < 8; i++)
1437 writeq(val64, &bar0->rts_frm_len_n[i]);
1438
1439 /* Set the default rts frame length for the rings configured */
1440 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1441 for (i = 0 ; i < config->rx_ring_num ; i++)
1442 writeq(val64, &bar0->rts_frm_len_n[i]);
1443
1444 /* Set the frame length for the configured rings
1445 * desired by the user
1446 */
1447 for (i = 0; i < config->rx_ring_num; i++) {
1448 /* If rts_frm_len[i] == 0 then it is assumed that user not
1449 * specified frame length steering.
1450 * If the user provides the frame length then program
1451 * the rts_frm_len register for those values or else
1452 * leave it as it is.
1453 */
1454 if (rts_frm_len[i] != 0) {
1455 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1456 &bar0->rts_frm_len_n[i]);
1457 }
1458 }
1459
1460 /* Disable differentiated services steering logic */
1461 for (i = 0; i < 64; i++) {
1462 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1463 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1464 dev->name);
1465 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1466 return FAILURE;
1467 }
1468 }
1469
1470 /* Program statistics memory */
1471 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1472
1473 if (nic->device_type == XFRAME_II_DEVICE) {
1474 val64 = STAT_BC(0x320);
1475 writeq(val64, &bar0->stat_byte_cnt);
1476 }
1477
1478 /*
1479 * Initializing the sampling rate for the device to calculate the
1480 * bandwidth utilization.
1481 */
1482 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1483 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1484 writeq(val64, &bar0->mac_link_util);
1485
1486
1487 /*
1488 * Initializing the Transmit and Receive Traffic Interrupt
1489 * Scheme.
1490 */
1491 /*
1492 * TTI Initialization. Default Tx timer gets us about
1493 * 250 interrupts per sec. Continuous interrupts are enabled
1494 * by default.
1495 */
1496 if (nic->device_type == XFRAME_II_DEVICE) {
1497 int count = (nic->config.bus_speed * 125)/2;
1498 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1499 } else {
1500
1501 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1502 }
1503 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1504 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1505 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1506 if (use_continuous_tx_intrs)
1507 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1508 writeq(val64, &bar0->tti_data1_mem);
1509
1510 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1511 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1512 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1513 writeq(val64, &bar0->tti_data2_mem);
1514
1515 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1516 writeq(val64, &bar0->tti_command_mem);
1517
1518 /*
1519 * Once the operation completes, the Strobe bit of the command
1520 * register will be reset. We poll for this particular condition
1521 * We wait for a maximum of 500ms for the operation to complete,
1522 * if it's not complete by then we return error.
1523 */
1524 time = 0;
1525 while (TRUE) {
1526 val64 = readq(&bar0->tti_command_mem);
1527 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1528 break;
1529 }
1530 if (time > 10) {
1531 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1532 dev->name);
1533 return -1;
1534 }
1535 msleep(50);
1536 time++;
1537 }
1538
1539 if (nic->config.bimodal) {
1540 int k = 0;
1541 for (k = 0; k < config->rx_ring_num; k++) {
1542 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1543 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1544 writeq(val64, &bar0->tti_command_mem);
1545
1546 /*
1547 * Once the operation completes, the Strobe bit of the command
1548 * register will be reset. We poll for this particular condition
1549 * We wait for a maximum of 500ms for the operation to complete,
1550 * if it's not complete by then we return error.
1551 */
1552 time = 0;
1553 while (TRUE) {
1554 val64 = readq(&bar0->tti_command_mem);
1555 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1556 break;
1557 }
1558 if (time > 10) {
1559 DBG_PRINT(ERR_DBG,
1560 "%s: TTI init Failed\n",
1561 dev->name);
1562 return -1;
1563 }
1564 time++;
1565 msleep(50);
1566 }
1567 }
1568 } else {
1569
1570 /* RTI Initialization */
1571 if (nic->device_type == XFRAME_II_DEVICE) {
1572 /*
1573 * Programmed to generate Apprx 500 Intrs per
1574 * second
1575 */
1576 int count = (nic->config.bus_speed * 125)/4;
1577 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1578 } else {
1579 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1580 }
1581 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1582 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1583 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1584
1585 writeq(val64, &bar0->rti_data1_mem);
1586
1587 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1588 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1589 if (nic->intr_type == MSI_X)
1590 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1591 RTI_DATA2_MEM_RX_UFC_D(0x40));
1592 else
1593 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1594 RTI_DATA2_MEM_RX_UFC_D(0x80));
1595 writeq(val64, &bar0->rti_data2_mem);
1596
1597 for (i = 0; i < config->rx_ring_num; i++) {
1598 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1599 | RTI_CMD_MEM_OFFSET(i);
1600 writeq(val64, &bar0->rti_command_mem);
1601
1602 /*
1603 * Once the operation completes, the Strobe bit of the
1604 * command register will be reset. We poll for this
1605 * particular condition. We wait for a maximum of 500ms
1606 * for the operation to complete, if it's not complete
1607 * by then we return error.
1608 */
1609 time = 0;
1610 while (TRUE) {
1611 val64 = readq(&bar0->rti_command_mem);
1612 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1613 break;
1614 }
1615 if (time > 10) {
1616 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1617 dev->name);
1618 return -1;
1619 }
1620 time++;
1621 msleep(50);
1622 }
1623 }
1624 }
1625
1626 /*
1627 * Initializing proper values as Pause threshold into all
1628 * the 8 Queues on Rx side.
1629 */
1630 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1631 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1632
1633 /* Disable RMAC PAD STRIPPING */
1634 add = &bar0->mac_cfg;
1635 val64 = readq(&bar0->mac_cfg);
1636 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1637 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1638 writel((u32) (val64), add);
1639 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1640 writel((u32) (val64 >> 32), (add + 4));
1641 val64 = readq(&bar0->mac_cfg);
1642
1643 /* Enable FCS stripping by adapter */
1644 add = &bar0->mac_cfg;
1645 val64 = readq(&bar0->mac_cfg);
1646 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1647 if (nic->device_type == XFRAME_II_DEVICE)
1648 writeq(val64, &bar0->mac_cfg);
1649 else {
1650 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1651 writel((u32) (val64), add);
1652 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1653 writel((u32) (val64 >> 32), (add + 4));
1654 }
1655
1656 /*
1657 * Set the time value to be inserted in the pause frame
1658 * generated by xena.
1659 */
1660 val64 = readq(&bar0->rmac_pause_cfg);
1661 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1662 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1663 writeq(val64, &bar0->rmac_pause_cfg);
1664
1665 /*
1666 * Set the Threshold Limit for Generating the pause frame
1667 * If the amount of data in any Queue exceeds ratio of
1668 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1669 * pause frame is generated
1670 */
1671 val64 = 0;
1672 for (i = 0; i < 4; i++) {
1673 val64 |=
1674 (((u64) 0xFF00 | nic->mac_control.
1675 mc_pause_threshold_q0q3)
1676 << (i * 2 * 8));
1677 }
1678 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1679
1680 val64 = 0;
1681 for (i = 0; i < 4; i++) {
1682 val64 |=
1683 (((u64) 0xFF00 | nic->mac_control.
1684 mc_pause_threshold_q4q7)
1685 << (i * 2 * 8));
1686 }
1687 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1688
1689 /*
1690 * TxDMA will stop Read request if the number of read split has
1691 * exceeded the limit pointed by shared_splits
1692 */
1693 val64 = readq(&bar0->pic_control);
1694 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1695 writeq(val64, &bar0->pic_control);
1696
1697 if (nic->config.bus_speed == 266) {
1698 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1699 writeq(0x0, &bar0->read_retry_delay);
1700 writeq(0x0, &bar0->write_retry_delay);
1701 }
1702
1703 /*
1704 * Programming the Herc to split every write transaction
1705 * that does not start on an ADB to reduce disconnects.
1706 */
1707 if (nic->device_type == XFRAME_II_DEVICE) {
1708 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1709 MISC_LINK_STABILITY_PRD(3);
1710 writeq(val64, &bar0->misc_control);
1711 val64 = readq(&bar0->pic_control2);
1712 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1713 writeq(val64, &bar0->pic_control2);
1714 }
1715 if (strstr(nic->product_name, "CX4")) {
1716 val64 = TMAC_AVG_IPG(0x17);
1717 writeq(val64, &bar0->tmac_avg_ipg);
1718 }
1719
1720 return SUCCESS;
1721 }
1722 #define LINK_UP_DOWN_INTERRUPT 1
1723 #define MAC_RMAC_ERR_TIMER 2
1724
1725 static int s2io_link_fault_indication(struct s2io_nic *nic)
1726 {
1727 if (nic->intr_type != INTA)
1728 return MAC_RMAC_ERR_TIMER;
1729 if (nic->device_type == XFRAME_II_DEVICE)
1730 return LINK_UP_DOWN_INTERRUPT;
1731 else
1732 return MAC_RMAC_ERR_TIMER;
1733 }
1734
1735 /**
1736 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1737 * @nic: device private variable,
1738 * @mask: A mask indicating which Intr block must be modified and,
1739 * @flag: A flag indicating whether to enable or disable the Intrs.
1740 * Description: This function will either disable or enable the interrupts
1741 * depending on the flag argument. The mask argument can be used to
1742 * enable/disable any Intr block.
1743 * Return Value: NONE.
1744 */
1745
1746 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1747 {
1748 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1749 register u64 val64 = 0, temp64 = 0;
1750
1751 /* Top level interrupt classification */
1752 /* PIC Interrupts */
1753 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1754 /* Enable PIC Intrs in the general intr mask register */
1755 val64 = TXPIC_INT_M;
1756 if (flag == ENABLE_INTRS) {
1757 temp64 = readq(&bar0->general_int_mask);
1758 temp64 &= ~((u64) val64);
1759 writeq(temp64, &bar0->general_int_mask);
1760 /*
1761 * If Hercules adapter enable GPIO otherwise
1762 * disable all PCIX, Flash, MDIO, IIC and GPIO
1763 * interrupts for now.
1764 * TODO
1765 */
1766 if (s2io_link_fault_indication(nic) ==
1767 LINK_UP_DOWN_INTERRUPT ) {
1768 temp64 = readq(&bar0->pic_int_mask);
1769 temp64 &= ~((u64) PIC_INT_GPIO);
1770 writeq(temp64, &bar0->pic_int_mask);
1771 temp64 = readq(&bar0->gpio_int_mask);
1772 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1773 writeq(temp64, &bar0->gpio_int_mask);
1774 } else {
1775 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1776 }
1777 /*
1778 * No MSI Support is available presently, so TTI and
1779 * RTI interrupts are also disabled.
1780 */
1781 } else if (flag == DISABLE_INTRS) {
1782 /*
1783 * Disable PIC Intrs in the general
1784 * intr mask register
1785 */
1786 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1787 temp64 = readq(&bar0->general_int_mask);
1788 val64 |= temp64;
1789 writeq(val64, &bar0->general_int_mask);
1790 }
1791 }
1792
1793 /* MAC Interrupts */
1794 /* Enabling/Disabling MAC interrupts */
1795 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1796 val64 = TXMAC_INT_M | RXMAC_INT_M;
1797 if (flag == ENABLE_INTRS) {
1798 temp64 = readq(&bar0->general_int_mask);
1799 temp64 &= ~((u64) val64);
1800 writeq(temp64, &bar0->general_int_mask);
1801 /*
1802 * All MAC block error interrupts are disabled for now
1803 * TODO
1804 */
1805 } else if (flag == DISABLE_INTRS) {
1806 /*
1807 * Disable MAC Intrs in the general intr mask register
1808 */
1809 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1810 writeq(DISABLE_ALL_INTRS,
1811 &bar0->mac_rmac_err_mask);
1812
1813 temp64 = readq(&bar0->general_int_mask);
1814 val64 |= temp64;
1815 writeq(val64, &bar0->general_int_mask);
1816 }
1817 }
1818
1819 /* Tx traffic interrupts */
1820 if (mask & TX_TRAFFIC_INTR) {
1821 val64 = TXTRAFFIC_INT_M;
1822 if (flag == ENABLE_INTRS) {
1823 temp64 = readq(&bar0->general_int_mask);
1824 temp64 &= ~((u64) val64);
1825 writeq(temp64, &bar0->general_int_mask);
1826 /*
1827 * Enable all the Tx side interrupts
1828 * writing 0 Enables all 64 TX interrupt levels
1829 */
1830 writeq(0x0, &bar0->tx_traffic_mask);
1831 } else if (flag == DISABLE_INTRS) {
1832 /*
1833 * Disable Tx Traffic Intrs in the general intr mask
1834 * register.
1835 */
1836 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1837 temp64 = readq(&bar0->general_int_mask);
1838 val64 |= temp64;
1839 writeq(val64, &bar0->general_int_mask);
1840 }
1841 }
1842
1843 /* Rx traffic interrupts */
1844 if (mask & RX_TRAFFIC_INTR) {
1845 val64 = RXTRAFFIC_INT_M;
1846 if (flag == ENABLE_INTRS) {
1847 temp64 = readq(&bar0->general_int_mask);
1848 temp64 &= ~((u64) val64);
1849 writeq(temp64, &bar0->general_int_mask);
1850 /* writing 0 Enables all 8 RX interrupt levels */
1851 writeq(0x0, &bar0->rx_traffic_mask);
1852 } else if (flag == DISABLE_INTRS) {
1853 /*
1854 * Disable Rx Traffic Intrs in the general intr mask
1855 * register.
1856 */
1857 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1858 temp64 = readq(&bar0->general_int_mask);
1859 val64 |= temp64;
1860 writeq(val64, &bar0->general_int_mask);
1861 }
1862 }
1863 }
1864
1865 /**
1866 * verify_pcc_quiescent- Checks for PCC quiescent state
1867 * Return: 1 If PCC is quiescence
1868 * 0 If PCC is not quiescence
1869 */
1870 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1871 {
1872 int ret = 0, herc;
1873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1874 u64 val64 = readq(&bar0->adapter_status);
1875
1876 herc = (sp->device_type == XFRAME_II_DEVICE);
1877
1878 if (flag == FALSE) {
1879 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1880 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1881 ret = 1;
1882 } else {
1883 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1884 ret = 1;
1885 }
1886 } else {
1887 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1888 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1889 ADAPTER_STATUS_RMAC_PCC_IDLE))
1890 ret = 1;
1891 } else {
1892 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1893 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1894 ret = 1;
1895 }
1896 }
1897
1898 return ret;
1899 }
1900 /**
1901 * verify_xena_quiescence - Checks whether the H/W is ready
1902 * Description: Returns whether the H/W is ready to go or not. Depending
1903 * on whether adapter enable bit was written or not the comparison
1904 * differs and the calling function passes the input argument flag to
1905 * indicate this.
1906 * Return: 1 If xena is quiescence
1907 * 0 If Xena is not quiescence
1908 */
1909
1910 static int verify_xena_quiescence(struct s2io_nic *sp)
1911 {
1912 int mode;
1913 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1914 u64 val64 = readq(&bar0->adapter_status);
1915 mode = s2io_verify_pci_mode(sp);
1916
1917 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1918 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1919 return 0;
1920 }
1921 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1922 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1923 return 0;
1924 }
1925 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1926 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1927 return 0;
1928 }
1929 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1930 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1931 return 0;
1932 }
1933 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1934 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1935 return 0;
1936 }
1937 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1938 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1939 return 0;
1940 }
1941 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1942 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1943 return 0;
1944 }
1945 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1946 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1947 return 0;
1948 }
1949
1950 /*
1951 * In PCI 33 mode, the P_PLL is not used, and therefore,
1952 * the the P_PLL_LOCK bit in the adapter_status register will
1953 * not be asserted.
1954 */
1955 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1956 sp->device_type == XFRAME_II_DEVICE && mode !=
1957 PCI_MODE_PCI_33) {
1958 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1959 return 0;
1960 }
1961 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1962 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1963 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1964 return 0;
1965 }
1966 return 1;
1967 }
1968
1969 /**
1970 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1971 * @sp: Pointer to device specifc structure
1972 * Description :
1973 * New procedure to clear mac address reading problems on Alpha platforms
1974 *
1975 */
1976
1977 static void fix_mac_address(struct s2io_nic * sp)
1978 {
1979 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1980 u64 val64;
1981 int i = 0;
1982
1983 while (fix_mac[i] != END_SIGN) {
1984 writeq(fix_mac[i++], &bar0->gpio_control);
1985 udelay(10);
1986 val64 = readq(&bar0->gpio_control);
1987 }
1988 }
1989
1990 /**
1991 * start_nic - Turns the device on
1992 * @nic : device private variable.
1993 * Description:
1994 * This function actually turns the device on. Before this function is
1995 * called,all Registers are configured from their reset states
1996 * and shared memory is allocated but the NIC is still quiescent. On
1997 * calling this function, the device interrupts are cleared and the NIC is
1998 * literally switched on by writing into the adapter control register.
1999 * Return Value:
2000 * SUCCESS on success and -1 on failure.
2001 */
2002
2003 static int start_nic(struct s2io_nic *nic)
2004 {
2005 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2006 struct net_device *dev = nic->dev;
2007 register u64 val64 = 0;
2008 u16 subid, i;
2009 struct mac_info *mac_control;
2010 struct config_param *config;
2011
2012 mac_control = &nic->mac_control;
2013 config = &nic->config;
2014
2015 /* PRC Initialization and configuration */
2016 for (i = 0; i < config->rx_ring_num; i++) {
2017 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2018 &bar0->prc_rxd0_n[i]);
2019
2020 val64 = readq(&bar0->prc_ctrl_n[i]);
2021 if (nic->config.bimodal)
2022 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2023 if (nic->rxd_mode == RXD_MODE_1)
2024 val64 |= PRC_CTRL_RC_ENABLED;
2025 else
2026 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2027 if (nic->device_type == XFRAME_II_DEVICE)
2028 val64 |= PRC_CTRL_GROUP_READS;
2029 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2030 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2031 writeq(val64, &bar0->prc_ctrl_n[i]);
2032 }
2033
2034 if (nic->rxd_mode == RXD_MODE_3B) {
2035 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2036 val64 = readq(&bar0->rx_pa_cfg);
2037 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2038 writeq(val64, &bar0->rx_pa_cfg);
2039 }
2040
2041 if (vlan_tag_strip == 0) {
2042 val64 = readq(&bar0->rx_pa_cfg);
2043 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2044 writeq(val64, &bar0->rx_pa_cfg);
2045 vlan_strip_flag = 0;
2046 }
2047
2048 /*
2049 * Enabling MC-RLDRAM. After enabling the device, we timeout
2050 * for around 100ms, which is approximately the time required
2051 * for the device to be ready for operation.
2052 */
2053 val64 = readq(&bar0->mc_rldram_mrs);
2054 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2055 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2056 val64 = readq(&bar0->mc_rldram_mrs);
2057
2058 msleep(100); /* Delay by around 100 ms. */
2059
2060 /* Enabling ECC Protection. */
2061 val64 = readq(&bar0->adapter_control);
2062 val64 &= ~ADAPTER_ECC_EN;
2063 writeq(val64, &bar0->adapter_control);
2064
2065 /*
2066 * Clearing any possible Link state change interrupts that
2067 * could have popped up just before Enabling the card.
2068 */
2069 val64 = readq(&bar0->mac_rmac_err_reg);
2070 if (val64)
2071 writeq(val64, &bar0->mac_rmac_err_reg);
2072
2073 /*
2074 * Verify if the device is ready to be enabled, if so enable
2075 * it.
2076 */
2077 val64 = readq(&bar0->adapter_status);
2078 if (!verify_xena_quiescence(nic)) {
2079 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2080 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2081 (unsigned long long) val64);
2082 return FAILURE;
2083 }
2084
2085 /*
2086 * With some switches, link might be already up at this point.
2087 * Because of this weird behavior, when we enable laser,
2088 * we may not get link. We need to handle this. We cannot
2089 * figure out which switch is misbehaving. So we are forced to
2090 * make a global change.
2091 */
2092
2093 /* Enabling Laser. */
2094 val64 = readq(&bar0->adapter_control);
2095 val64 |= ADAPTER_EOI_TX_ON;
2096 writeq(val64, &bar0->adapter_control);
2097
2098 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2099 /*
2100 * Dont see link state interrupts initally on some switches,
2101 * so directly scheduling the link state task here.
2102 */
2103 schedule_work(&nic->set_link_task);
2104 }
2105 /* SXE-002: Initialize link and activity LED */
2106 subid = nic->pdev->subsystem_device;
2107 if (((subid & 0xFF) >= 0x07) &&
2108 (nic->device_type == XFRAME_I_DEVICE)) {
2109 val64 = readq(&bar0->gpio_control);
2110 val64 |= 0x0000800000000000ULL;
2111 writeq(val64, &bar0->gpio_control);
2112 val64 = 0x0411040400000000ULL;
2113 writeq(val64, (void __iomem *)bar0 + 0x2700);
2114 }
2115
2116 return SUCCESS;
2117 }
2118 /**
2119 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2120 */
2121 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2122 TxD *txdlp, int get_off)
2123 {
2124 struct s2io_nic *nic = fifo_data->nic;
2125 struct sk_buff *skb;
2126 struct TxD *txds;
2127 u16 j, frg_cnt;
2128
2129 txds = txdlp;
2130 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2131 pci_unmap_single(nic->pdev, (dma_addr_t)
2132 txds->Buffer_Pointer, sizeof(u64),
2133 PCI_DMA_TODEVICE);
2134 txds++;
2135 }
2136
2137 skb = (struct sk_buff *) ((unsigned long)
2138 txds->Host_Control);
2139 if (!skb) {
2140 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2141 return NULL;
2142 }
2143 pci_unmap_single(nic->pdev, (dma_addr_t)
2144 txds->Buffer_Pointer,
2145 skb->len - skb->data_len,
2146 PCI_DMA_TODEVICE);
2147 frg_cnt = skb_shinfo(skb)->nr_frags;
2148 if (frg_cnt) {
2149 txds++;
2150 for (j = 0; j < frg_cnt; j++, txds++) {
2151 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2152 if (!txds->Buffer_Pointer)
2153 break;
2154 pci_unmap_page(nic->pdev, (dma_addr_t)
2155 txds->Buffer_Pointer,
2156 frag->size, PCI_DMA_TODEVICE);
2157 }
2158 }
2159 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2160 return(skb);
2161 }
2162
2163 /**
2164 * free_tx_buffers - Free all queued Tx buffers
2165 * @nic : device private variable.
2166 * Description:
2167 * Free all queued Tx buffers.
2168 * Return Value: void
2169 */
2170
2171 static void free_tx_buffers(struct s2io_nic *nic)
2172 {
2173 struct net_device *dev = nic->dev;
2174 struct sk_buff *skb;
2175 struct TxD *txdp;
2176 int i, j;
2177 struct mac_info *mac_control;
2178 struct config_param *config;
2179 int cnt = 0;
2180
2181 mac_control = &nic->mac_control;
2182 config = &nic->config;
2183
2184 for (i = 0; i < config->tx_fifo_num; i++) {
2185 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2186 txdp = (struct TxD *) \
2187 mac_control->fifos[i].list_info[j].list_virt_addr;
2188 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2189 if (skb) {
2190 nic->mac_control.stats_info->sw_stat.mem_freed
2191 += skb->truesize;
2192 dev_kfree_skb(skb);
2193 cnt++;
2194 }
2195 }
2196 DBG_PRINT(INTR_DBG,
2197 "%s:forcibly freeing %d skbs on FIFO%d\n",
2198 dev->name, cnt, i);
2199 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2200 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2201 }
2202 }
2203
2204 /**
2205 * stop_nic - To stop the nic
2206 * @nic ; device private variable.
2207 * Description:
2208 * This function does exactly the opposite of what the start_nic()
2209 * function does. This function is called to stop the device.
2210 * Return Value:
2211 * void.
2212 */
2213
2214 static void stop_nic(struct s2io_nic *nic)
2215 {
2216 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2217 register u64 val64 = 0;
2218 u16 interruptible;
2219 struct mac_info *mac_control;
2220 struct config_param *config;
2221
2222 mac_control = &nic->mac_control;
2223 config = &nic->config;
2224
2225 /* Disable all interrupts */
2226 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2227 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2228 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2229 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2230
2231 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2232 val64 = readq(&bar0->adapter_control);
2233 val64 &= ~(ADAPTER_CNTL_EN);
2234 writeq(val64, &bar0->adapter_control);
2235 }
2236
2237 /**
2238 * fill_rx_buffers - Allocates the Rx side skbs
2239 * @nic: device private variable
2240 * @ring_no: ring number
2241 * Description:
2242 * The function allocates Rx side skbs and puts the physical
2243 * address of these buffers into the RxD buffer pointers, so that the NIC
2244 * can DMA the received frame into these locations.
2245 * The NIC supports 3 receive modes, viz
2246 * 1. single buffer,
2247 * 2. three buffer and
2248 * 3. Five buffer modes.
2249 * Each mode defines how many fragments the received frame will be split
2250 * up into by the NIC. The frame is split into L3 header, L4 Header,
2251 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2252 * is split into 3 fragments. As of now only single buffer mode is
2253 * supported.
2254 * Return Value:
2255 * SUCCESS on success or an appropriate -ve value on failure.
2256 */
2257
2258 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2259 {
2260 struct net_device *dev = nic->dev;
2261 struct sk_buff *skb;
2262 struct RxD_t *rxdp;
2263 int off, off1, size, block_no, block_no1;
2264 u32 alloc_tab = 0;
2265 u32 alloc_cnt;
2266 struct mac_info *mac_control;
2267 struct config_param *config;
2268 u64 tmp;
2269 struct buffAdd *ba;
2270 unsigned long flags;
2271 struct RxD_t *first_rxdp = NULL;
2272 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2273 struct RxD1 *rxdp1;
2274 struct RxD3 *rxdp3;
2275 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2276
2277 mac_control = &nic->mac_control;
2278 config = &nic->config;
2279 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2280 atomic_read(&nic->rx_bufs_left[ring_no]);
2281
2282 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2283 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2284 while (alloc_tab < alloc_cnt) {
2285 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2286 block_index;
2287 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2288
2289 rxdp = mac_control->rings[ring_no].
2290 rx_blocks[block_no].rxds[off].virt_addr;
2291
2292 if ((block_no == block_no1) && (off == off1) &&
2293 (rxdp->Host_Control)) {
2294 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2295 dev->name);
2296 DBG_PRINT(INTR_DBG, " info equated\n");
2297 goto end;
2298 }
2299 if (off && (off == rxd_count[nic->rxd_mode])) {
2300 mac_control->rings[ring_no].rx_curr_put_info.
2301 block_index++;
2302 if (mac_control->rings[ring_no].rx_curr_put_info.
2303 block_index == mac_control->rings[ring_no].
2304 block_count)
2305 mac_control->rings[ring_no].rx_curr_put_info.
2306 block_index = 0;
2307 block_no = mac_control->rings[ring_no].
2308 rx_curr_put_info.block_index;
2309 if (off == rxd_count[nic->rxd_mode])
2310 off = 0;
2311 mac_control->rings[ring_no].rx_curr_put_info.
2312 offset = off;
2313 rxdp = mac_control->rings[ring_no].
2314 rx_blocks[block_no].block_virt_addr;
2315 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2316 dev->name, rxdp);
2317 }
2318 if(!napi) {
2319 spin_lock_irqsave(&nic->put_lock, flags);
2320 mac_control->rings[ring_no].put_pos =
2321 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2322 spin_unlock_irqrestore(&nic->put_lock, flags);
2323 } else {
2324 mac_control->rings[ring_no].put_pos =
2325 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2326 }
2327 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2328 ((nic->rxd_mode == RXD_MODE_3B) &&
2329 (rxdp->Control_2 & BIT(0)))) {
2330 mac_control->rings[ring_no].rx_curr_put_info.
2331 offset = off;
2332 goto end;
2333 }
2334 /* calculate size of skb based on ring mode */
2335 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2336 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2337 if (nic->rxd_mode == RXD_MODE_1)
2338 size += NET_IP_ALIGN;
2339 else
2340 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2341
2342 /* allocate skb */
2343 skb = dev_alloc_skb(size);
2344 if(!skb) {
2345 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2346 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2347 if (first_rxdp) {
2348 wmb();
2349 first_rxdp->Control_1 |= RXD_OWN_XENA;
2350 }
2351 nic->mac_control.stats_info->sw_stat. \
2352 mem_alloc_fail_cnt++;
2353 return -ENOMEM ;
2354 }
2355 nic->mac_control.stats_info->sw_stat.mem_allocated
2356 += skb->truesize;
2357 if (nic->rxd_mode == RXD_MODE_1) {
2358 /* 1 buffer mode - normal operation mode */
2359 rxdp1 = (struct RxD1*)rxdp;
2360 memset(rxdp, 0, sizeof(struct RxD1));
2361 skb_reserve(skb, NET_IP_ALIGN);
2362 rxdp1->Buffer0_ptr = pci_map_single
2363 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364 PCI_DMA_FROMDEVICE);
2365 if( (rxdp1->Buffer0_ptr == 0) ||
2366 (rxdp1->Buffer0_ptr ==
2367 DMA_ERROR_CODE))
2368 goto pci_map_failed;
2369
2370 rxdp->Control_2 =
2371 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2372
2373 } else if (nic->rxd_mode == RXD_MODE_3B) {
2374 /*
2375 * 2 buffer mode -
2376 * 2 buffer mode provides 128
2377 * byte aligned receive buffers.
2378 */
2379
2380 rxdp3 = (struct RxD3*)rxdp;
2381 /* save buffer pointers to avoid frequent dma mapping */
2382 Buffer0_ptr = rxdp3->Buffer0_ptr;
2383 Buffer1_ptr = rxdp3->Buffer1_ptr;
2384 memset(rxdp, 0, sizeof(struct RxD3));
2385 /* restore the buffer pointers for dma sync*/
2386 rxdp3->Buffer0_ptr = Buffer0_ptr;
2387 rxdp3->Buffer1_ptr = Buffer1_ptr;
2388
2389 ba = &mac_control->rings[ring_no].ba[block_no][off];
2390 skb_reserve(skb, BUF0_LEN);
2391 tmp = (u64)(unsigned long) skb->data;
2392 tmp += ALIGN_SIZE;
2393 tmp &= ~ALIGN_SIZE;
2394 skb->data = (void *) (unsigned long)tmp;
2395 skb_reset_tail_pointer(skb);
2396
2397 if (!(rxdp3->Buffer0_ptr))
2398 rxdp3->Buffer0_ptr =
2399 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2400 PCI_DMA_FROMDEVICE);
2401 else
2402 pci_dma_sync_single_for_device(nic->pdev,
2403 (dma_addr_t) rxdp3->Buffer0_ptr,
2404 BUF0_LEN, PCI_DMA_FROMDEVICE);
2405 if( (rxdp3->Buffer0_ptr == 0) ||
2406 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2407 goto pci_map_failed;
2408
2409 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2410 if (nic->rxd_mode == RXD_MODE_3B) {
2411 /* Two buffer mode */
2412
2413 /*
2414 * Buffer2 will have L3/L4 header plus
2415 * L4 payload
2416 */
2417 rxdp3->Buffer2_ptr = pci_map_single
2418 (nic->pdev, skb->data, dev->mtu + 4,
2419 PCI_DMA_FROMDEVICE);
2420
2421 if( (rxdp3->Buffer2_ptr == 0) ||
2422 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2423 goto pci_map_failed;
2424
2425 rxdp3->Buffer1_ptr =
2426 pci_map_single(nic->pdev,
2427 ba->ba_1, BUF1_LEN,
2428 PCI_DMA_FROMDEVICE);
2429 if( (rxdp3->Buffer1_ptr == 0) ||
2430 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2431 pci_unmap_single
2432 (nic->pdev,
2433 (dma_addr_t)rxdp3->Buffer2_ptr,
2434 dev->mtu + 4,
2435 PCI_DMA_FROMDEVICE);
2436 goto pci_map_failed;
2437 }
2438 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2439 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2440 (dev->mtu + 4);
2441 }
2442 rxdp->Control_2 |= BIT(0);
2443 }
2444 rxdp->Host_Control = (unsigned long) (skb);
2445 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2446 rxdp->Control_1 |= RXD_OWN_XENA;
2447 off++;
2448 if (off == (rxd_count[nic->rxd_mode] + 1))
2449 off = 0;
2450 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2451
2452 rxdp->Control_2 |= SET_RXD_MARKER;
2453 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2454 if (first_rxdp) {
2455 wmb();
2456 first_rxdp->Control_1 |= RXD_OWN_XENA;
2457 }
2458 first_rxdp = rxdp;
2459 }
2460 atomic_inc(&nic->rx_bufs_left[ring_no]);
2461 alloc_tab++;
2462 }
2463
2464 end:
2465 /* Transfer ownership of first descriptor to adapter just before
2466 * exiting. Before that, use memory barrier so that ownership
2467 * and other fields are seen by adapter correctly.
2468 */
2469 if (first_rxdp) {
2470 wmb();
2471 first_rxdp->Control_1 |= RXD_OWN_XENA;
2472 }
2473
2474 return SUCCESS;
2475 pci_map_failed:
2476 stats->pci_map_fail_cnt++;
2477 stats->mem_freed += skb->truesize;
2478 dev_kfree_skb_irq(skb);
2479 return -ENOMEM;
2480 }
2481
2482 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2483 {
2484 struct net_device *dev = sp->dev;
2485 int j;
2486 struct sk_buff *skb;
2487 struct RxD_t *rxdp;
2488 struct mac_info *mac_control;
2489 struct buffAdd *ba;
2490 struct RxD1 *rxdp1;
2491 struct RxD3 *rxdp3;
2492
2493 mac_control = &sp->mac_control;
2494 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2495 rxdp = mac_control->rings[ring_no].
2496 rx_blocks[blk].rxds[j].virt_addr;
2497 skb = (struct sk_buff *)
2498 ((unsigned long) rxdp->Host_Control);
2499 if (!skb) {
2500 continue;
2501 }
2502 if (sp->rxd_mode == RXD_MODE_1) {
2503 rxdp1 = (struct RxD1*)rxdp;
2504 pci_unmap_single(sp->pdev, (dma_addr_t)
2505 rxdp1->Buffer0_ptr,
2506 dev->mtu +
2507 HEADER_ETHERNET_II_802_3_SIZE
2508 + HEADER_802_2_SIZE +
2509 HEADER_SNAP_SIZE,
2510 PCI_DMA_FROMDEVICE);
2511 memset(rxdp, 0, sizeof(struct RxD1));
2512 } else if(sp->rxd_mode == RXD_MODE_3B) {
2513 rxdp3 = (struct RxD3*)rxdp;
2514 ba = &mac_control->rings[ring_no].
2515 ba[blk][j];
2516 pci_unmap_single(sp->pdev, (dma_addr_t)
2517 rxdp3->Buffer0_ptr,
2518 BUF0_LEN,
2519 PCI_DMA_FROMDEVICE);
2520 pci_unmap_single(sp->pdev, (dma_addr_t)
2521 rxdp3->Buffer1_ptr,
2522 BUF1_LEN,
2523 PCI_DMA_FROMDEVICE);
2524 pci_unmap_single(sp->pdev, (dma_addr_t)
2525 rxdp3->Buffer2_ptr,
2526 dev->mtu + 4,
2527 PCI_DMA_FROMDEVICE);
2528 memset(rxdp, 0, sizeof(struct RxD3));
2529 }
2530 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2531 dev_kfree_skb(skb);
2532 atomic_dec(&sp->rx_bufs_left[ring_no]);
2533 }
2534 }
2535
2536 /**
2537 * free_rx_buffers - Frees all Rx buffers
2538 * @sp: device private variable.
2539 * Description:
2540 * This function will free all Rx buffers allocated by host.
2541 * Return Value:
2542 * NONE.
2543 */
2544
2545 static void free_rx_buffers(struct s2io_nic *sp)
2546 {
2547 struct net_device *dev = sp->dev;
2548 int i, blk = 0, buf_cnt = 0;
2549 struct mac_info *mac_control;
2550 struct config_param *config;
2551
2552 mac_control = &sp->mac_control;
2553 config = &sp->config;
2554
2555 for (i = 0; i < config->rx_ring_num; i++) {
2556 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2557 free_rxd_blk(sp,i,blk);
2558
2559 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2560 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2561 mac_control->rings[i].rx_curr_put_info.offset = 0;
2562 mac_control->rings[i].rx_curr_get_info.offset = 0;
2563 atomic_set(&sp->rx_bufs_left[i], 0);
2564 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2565 dev->name, buf_cnt, i);
2566 }
2567 }
2568
2569 /**
2570 * s2io_poll - Rx interrupt handler for NAPI support
2571 * @dev : pointer to the device structure.
2572 * @budget : The number of packets that were budgeted to be processed
2573 * during one pass through the 'Poll" function.
2574 * Description:
2575 * Comes into picture only if NAPI support has been incorporated. It does
2576 * the same thing that rx_intr_handler does, but not in a interrupt context
2577 * also It will process only a given number of packets.
2578 * Return value:
2579 * 0 on success and 1 if there are No Rx packets to be processed.
2580 */
2581
2582 static int s2io_poll(struct net_device *dev, int *budget)
2583 {
2584 struct s2io_nic *nic = dev->priv;
2585 int pkt_cnt = 0, org_pkts_to_process;
2586 struct mac_info *mac_control;
2587 struct config_param *config;
2588 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2589 int i;
2590
2591 atomic_inc(&nic->isr_cnt);
2592 mac_control = &nic->mac_control;
2593 config = &nic->config;
2594
2595 nic->pkts_to_process = *budget;
2596 if (nic->pkts_to_process > dev->quota)
2597 nic->pkts_to_process = dev->quota;
2598 org_pkts_to_process = nic->pkts_to_process;
2599
2600 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2601 readl(&bar0->rx_traffic_int);
2602
2603 for (i = 0; i < config->rx_ring_num; i++) {
2604 rx_intr_handler(&mac_control->rings[i]);
2605 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2606 if (!nic->pkts_to_process) {
2607 /* Quota for the current iteration has been met */
2608 goto no_rx;
2609 }
2610 }
2611 if (!pkt_cnt)
2612 pkt_cnt = 1;
2613
2614 dev->quota -= pkt_cnt;
2615 *budget -= pkt_cnt;
2616 netif_rx_complete(dev);
2617
2618 for (i = 0; i < config->rx_ring_num; i++) {
2619 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2620 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2621 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2622 break;
2623 }
2624 }
2625 /* Re enable the Rx interrupts. */
2626 writeq(0x0, &bar0->rx_traffic_mask);
2627 readl(&bar0->rx_traffic_mask);
2628 atomic_dec(&nic->isr_cnt);
2629 return 0;
2630
2631 no_rx:
2632 dev->quota -= pkt_cnt;
2633 *budget -= pkt_cnt;
2634
2635 for (i = 0; i < config->rx_ring_num; i++) {
2636 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2637 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2638 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2639 break;
2640 }
2641 }
2642 atomic_dec(&nic->isr_cnt);
2643 return 1;
2644 }
2645
2646 #ifdef CONFIG_NET_POLL_CONTROLLER
2647 /**
2648 * s2io_netpoll - netpoll event handler entry point
2649 * @dev : pointer to the device structure.
2650 * Description:
2651 * This function will be called by upper layer to check for events on the
2652 * interface in situations where interrupts are disabled. It is used for
2653 * specific in-kernel networking tasks, such as remote consoles and kernel
2654 * debugging over the network (example netdump in RedHat).
2655 */
2656 static void s2io_netpoll(struct net_device *dev)
2657 {
2658 struct s2io_nic *nic = dev->priv;
2659 struct mac_info *mac_control;
2660 struct config_param *config;
2661 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2662 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2663 int i;
2664
2665 if (pci_channel_offline(nic->pdev))
2666 return;
2667
2668 disable_irq(dev->irq);
2669
2670 atomic_inc(&nic->isr_cnt);
2671 mac_control = &nic->mac_control;
2672 config = &nic->config;
2673
2674 writeq(val64, &bar0->rx_traffic_int);
2675 writeq(val64, &bar0->tx_traffic_int);
2676
2677 /* we need to free up the transmitted skbufs or else netpoll will
2678 * run out of skbs and will fail and eventually netpoll application such
2679 * as netdump will fail.
2680 */
2681 for (i = 0; i < config->tx_fifo_num; i++)
2682 tx_intr_handler(&mac_control->fifos[i]);
2683
2684 /* check for received packet and indicate up to network */
2685 for (i = 0; i < config->rx_ring_num; i++)
2686 rx_intr_handler(&mac_control->rings[i]);
2687
2688 for (i = 0; i < config->rx_ring_num; i++) {
2689 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2690 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2691 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2692 break;
2693 }
2694 }
2695 atomic_dec(&nic->isr_cnt);
2696 enable_irq(dev->irq);
2697 return;
2698 }
2699 #endif
2700
2701 /**
2702 * rx_intr_handler - Rx interrupt handler
2703 * @nic: device private variable.
2704 * Description:
2705 * If the interrupt is because of a received frame or if the
2706 * receive ring contains fresh as yet un-processed frames,this function is
2707 * called. It picks out the RxD at which place the last Rx processing had
2708 * stopped and sends the skb to the OSM's Rx handler and then increments
2709 * the offset.
2710 * Return Value:
2711 * NONE.
2712 */
2713 static void rx_intr_handler(struct ring_info *ring_data)
2714 {
2715 struct s2io_nic *nic = ring_data->nic;
2716 struct net_device *dev = (struct net_device *) nic->dev;
2717 int get_block, put_block, put_offset;
2718 struct rx_curr_get_info get_info, put_info;
2719 struct RxD_t *rxdp;
2720 struct sk_buff *skb;
2721 int pkt_cnt = 0;
2722 int i;
2723 struct RxD1* rxdp1;
2724 struct RxD3* rxdp3;
2725
2726 spin_lock(&nic->rx_lock);
2727 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2728 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2729 __FUNCTION__, dev->name);
2730 spin_unlock(&nic->rx_lock);
2731 return;
2732 }
2733
2734 get_info = ring_data->rx_curr_get_info;
2735 get_block = get_info.block_index;
2736 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2737 put_block = put_info.block_index;
2738 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2739 if (!napi) {
2740 spin_lock(&nic->put_lock);
2741 put_offset = ring_data->put_pos;
2742 spin_unlock(&nic->put_lock);
2743 } else
2744 put_offset = ring_data->put_pos;
2745
2746 while (RXD_IS_UP2DT(rxdp)) {
2747 /*
2748 * If your are next to put index then it's
2749 * FIFO full condition
2750 */
2751 if ((get_block == put_block) &&
2752 (get_info.offset + 1) == put_info.offset) {
2753 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2754 break;
2755 }
2756 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2757 if (skb == NULL) {
2758 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2759 dev->name);
2760 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2761 spin_unlock(&nic->rx_lock);
2762 return;
2763 }
2764 if (nic->rxd_mode == RXD_MODE_1) {
2765 rxdp1 = (struct RxD1*)rxdp;
2766 pci_unmap_single(nic->pdev, (dma_addr_t)
2767 rxdp1->Buffer0_ptr,
2768 dev->mtu +
2769 HEADER_ETHERNET_II_802_3_SIZE +
2770 HEADER_802_2_SIZE +
2771 HEADER_SNAP_SIZE,
2772 PCI_DMA_FROMDEVICE);
2773 } else if (nic->rxd_mode == RXD_MODE_3B) {
2774 rxdp3 = (struct RxD3*)rxdp;
2775 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2776 rxdp3->Buffer0_ptr,
2777 BUF0_LEN, PCI_DMA_FROMDEVICE);
2778 pci_unmap_single(nic->pdev, (dma_addr_t)
2779 rxdp3->Buffer2_ptr,
2780 dev->mtu + 4,
2781 PCI_DMA_FROMDEVICE);
2782 }
2783 prefetch(skb->data);
2784 rx_osm_handler(ring_data, rxdp);
2785 get_info.offset++;
2786 ring_data->rx_curr_get_info.offset = get_info.offset;
2787 rxdp = ring_data->rx_blocks[get_block].
2788 rxds[get_info.offset].virt_addr;
2789 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2790 get_info.offset = 0;
2791 ring_data->rx_curr_get_info.offset = get_info.offset;
2792 get_block++;
2793 if (get_block == ring_data->block_count)
2794 get_block = 0;
2795 ring_data->rx_curr_get_info.block_index = get_block;
2796 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2797 }
2798
2799 nic->pkts_to_process -= 1;
2800 if ((napi) && (!nic->pkts_to_process))
2801 break;
2802 pkt_cnt++;
2803 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2804 break;
2805 }
2806 if (nic->lro) {
2807 /* Clear all LRO sessions before exiting */
2808 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2809 struct lro *lro = &nic->lro0_n[i];
2810 if (lro->in_use) {
2811 update_L3L4_header(nic, lro);
2812 queue_rx_frame(lro->parent);
2813 clear_lro_session(lro);
2814 }
2815 }
2816 }
2817
2818 spin_unlock(&nic->rx_lock);
2819 }
2820
2821 /**
2822 * tx_intr_handler - Transmit interrupt handler
2823 * @nic : device private variable
2824 * Description:
2825 * If an interrupt was raised to indicate DMA complete of the
2826 * Tx packet, this function is called. It identifies the last TxD
2827 * whose buffer was freed and frees all skbs whose data have already
2828 * DMA'ed into the NICs internal memory.
2829 * Return Value:
2830 * NONE
2831 */
2832
2833 static void tx_intr_handler(struct fifo_info *fifo_data)
2834 {
2835 struct s2io_nic *nic = fifo_data->nic;
2836 struct net_device *dev = (struct net_device *) nic->dev;
2837 struct tx_curr_get_info get_info, put_info;
2838 struct sk_buff *skb;
2839 struct TxD *txdlp;
2840 u8 err_mask;
2841
2842 get_info = fifo_data->tx_curr_get_info;
2843 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2844 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2845 list_virt_addr;
2846 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2847 (get_info.offset != put_info.offset) &&
2848 (txdlp->Host_Control)) {
2849 /* Check for TxD errors */
2850 if (txdlp->Control_1 & TXD_T_CODE) {
2851 unsigned long long err;
2852 err = txdlp->Control_1 & TXD_T_CODE;
2853 if (err & 0x1) {
2854 nic->mac_control.stats_info->sw_stat.
2855 parity_err_cnt++;
2856 }
2857
2858 /* update t_code statistics */
2859 err_mask = err >> 48;
2860 switch(err_mask) {
2861 case 2:
2862 nic->mac_control.stats_info->sw_stat.
2863 tx_buf_abort_cnt++;
2864 break;
2865
2866 case 3:
2867 nic->mac_control.stats_info->sw_stat.
2868 tx_desc_abort_cnt++;
2869 break;
2870
2871 case 7:
2872 nic->mac_control.stats_info->sw_stat.
2873 tx_parity_err_cnt++;
2874 break;
2875
2876 case 10:
2877 nic->mac_control.stats_info->sw_stat.
2878 tx_link_loss_cnt++;
2879 break;
2880
2881 case 15:
2882 nic->mac_control.stats_info->sw_stat.
2883 tx_list_proc_err_cnt++;
2884 break;
2885 }
2886 }
2887
2888 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2889 if (skb == NULL) {
2890 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2891 __FUNCTION__);
2892 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2893 return;
2894 }
2895
2896 /* Updating the statistics block */
2897 nic->stats.tx_bytes += skb->len;
2898 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2899 dev_kfree_skb_irq(skb);
2900
2901 get_info.offset++;
2902 if (get_info.offset == get_info.fifo_len + 1)
2903 get_info.offset = 0;
2904 txdlp = (struct TxD *) fifo_data->list_info
2905 [get_info.offset].list_virt_addr;
2906 fifo_data->tx_curr_get_info.offset =
2907 get_info.offset;
2908 }
2909
2910 spin_lock(&nic->tx_lock);
2911 if (netif_queue_stopped(dev))
2912 netif_wake_queue(dev);
2913 spin_unlock(&nic->tx_lock);
2914 }
2915
2916 /**
2917 * s2io_mdio_write - Function to write in to MDIO registers
2918 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2919 * @addr : address value
2920 * @value : data value
2921 * @dev : pointer to net_device structure
2922 * Description:
2923 * This function is used to write values to the MDIO registers
2924 * NONE
2925 */
2926 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2927 {
2928 u64 val64 = 0x0;
2929 struct s2io_nic *sp = dev->priv;
2930 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2931
2932 //address transaction
2933 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2934 | MDIO_MMD_DEV_ADDR(mmd_type)
2935 | MDIO_MMS_PRT_ADDR(0x0);
2936 writeq(val64, &bar0->mdio_control);
2937 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2938 writeq(val64, &bar0->mdio_control);
2939 udelay(100);
2940
2941 //Data transaction
2942 val64 = 0x0;
2943 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2944 | MDIO_MMD_DEV_ADDR(mmd_type)
2945 | MDIO_MMS_PRT_ADDR(0x0)
2946 | MDIO_MDIO_DATA(value)
2947 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2948 writeq(val64, &bar0->mdio_control);
2949 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2950 writeq(val64, &bar0->mdio_control);
2951 udelay(100);
2952
2953 val64 = 0x0;
2954 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2955 | MDIO_MMD_DEV_ADDR(mmd_type)
2956 | MDIO_MMS_PRT_ADDR(0x0)
2957 | MDIO_OP(MDIO_OP_READ_TRANS);
2958 writeq(val64, &bar0->mdio_control);
2959 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2960 writeq(val64, &bar0->mdio_control);
2961 udelay(100);
2962
2963 }
2964
2965 /**
2966 * s2io_mdio_read - Function to write in to MDIO registers
2967 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2968 * @addr : address value
2969 * @dev : pointer to net_device structure
2970 * Description:
2971 * This function is used to read values to the MDIO registers
2972 * NONE
2973 */
2974 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2975 {
2976 u64 val64 = 0x0;
2977 u64 rval64 = 0x0;
2978 struct s2io_nic *sp = dev->priv;
2979 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2980
2981 /* address transaction */
2982 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2983 | MDIO_MMD_DEV_ADDR(mmd_type)
2984 | MDIO_MMS_PRT_ADDR(0x0);
2985 writeq(val64, &bar0->mdio_control);
2986 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2987 writeq(val64, &bar0->mdio_control);
2988 udelay(100);
2989
2990 /* Data transaction */
2991 val64 = 0x0;
2992 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2993 | MDIO_MMD_DEV_ADDR(mmd_type)
2994 | MDIO_MMS_PRT_ADDR(0x0)
2995 | MDIO_OP(MDIO_OP_READ_TRANS);
2996 writeq(val64, &bar0->mdio_control);
2997 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2998 writeq(val64, &bar0->mdio_control);
2999 udelay(100);
3000
3001 /* Read the value from regs */
3002 rval64 = readq(&bar0->mdio_control);
3003 rval64 = rval64 & 0xFFFF0000;
3004 rval64 = rval64 >> 16;
3005 return rval64;
3006 }
3007 /**
3008 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3009 * @counter : couter value to be updated
3010 * @flag : flag to indicate the status
3011 * @type : counter type
3012 * Description:
3013 * This function is to check the status of the xpak counters value
3014 * NONE
3015 */
3016
3017 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3018 {
3019 u64 mask = 0x3;
3020 u64 val64;
3021 int i;
3022 for(i = 0; i <index; i++)
3023 mask = mask << 0x2;
3024
3025 if(flag > 0)
3026 {
3027 *counter = *counter + 1;
3028 val64 = *regs_stat & mask;
3029 val64 = val64 >> (index * 0x2);
3030 val64 = val64 + 1;
3031 if(val64 == 3)
3032 {
3033 switch(type)
3034 {
3035 case 1:
3036 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3037 "service. Excessive temperatures may "
3038 "result in premature transceiver "
3039 "failure \n");
3040 break;
3041 case 2:
3042 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3043 "service Excessive bias currents may "
3044 "indicate imminent laser diode "
3045 "failure \n");
3046 break;
3047 case 3:
3048 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3049 "service Excessive laser output "
3050 "power may saturate far-end "
3051 "receiver\n");
3052 break;
3053 default:
3054 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3055 "type \n");
3056 }
3057 val64 = 0x0;
3058 }
3059 val64 = val64 << (index * 0x2);
3060 *regs_stat = (*regs_stat & (~mask)) | (val64);
3061
3062 } else {
3063 *regs_stat = *regs_stat & (~mask);
3064 }
3065 }
3066
3067 /**
3068 * s2io_updt_xpak_counter - Function to update the xpak counters
3069 * @dev : pointer to net_device struct
3070 * Description:
3071 * This function is to upate the status of the xpak counters value
3072 * NONE
3073 */
3074 static void s2io_updt_xpak_counter(struct net_device *dev)
3075 {
3076 u16 flag = 0x0;
3077 u16 type = 0x0;
3078 u16 val16 = 0x0;
3079 u64 val64 = 0x0;
3080 u64 addr = 0x0;
3081
3082 struct s2io_nic *sp = dev->priv;
3083 struct stat_block *stat_info = sp->mac_control.stats_info;
3084
3085 /* Check the communication with the MDIO slave */
3086 addr = 0x0000;
3087 val64 = 0x0;
3088 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3089 if((val64 == 0xFFFF) || (val64 == 0x0000))
3090 {
3091 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3092 "Returned %llx\n", (unsigned long long)val64);
3093 return;
3094 }
3095
3096 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3097 if(val64 != 0x2040)
3098 {
3099 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3100 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3101 (unsigned long long)val64);
3102 return;
3103 }
3104
3105 /* Loading the DOM register to MDIO register */
3106 addr = 0xA100;
3107 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3108 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3109
3110 /* Reading the Alarm flags */
3111 addr = 0xA070;
3112 val64 = 0x0;
3113 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3114
3115 flag = CHECKBIT(val64, 0x7);
3116 type = 1;
3117 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3118 &stat_info->xpak_stat.xpak_regs_stat,
3119 0x0, flag, type);
3120
3121 if(CHECKBIT(val64, 0x6))
3122 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3123
3124 flag = CHECKBIT(val64, 0x3);
3125 type = 2;
3126 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3127 &stat_info->xpak_stat.xpak_regs_stat,
3128 0x2, flag, type);
3129
3130 if(CHECKBIT(val64, 0x2))
3131 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3132
3133 flag = CHECKBIT(val64, 0x1);
3134 type = 3;
3135 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3136 &stat_info->xpak_stat.xpak_regs_stat,
3137 0x4, flag, type);
3138
3139 if(CHECKBIT(val64, 0x0))
3140 stat_info->xpak_stat.alarm_laser_output_power_low++;
3141
3142 /* Reading the Warning flags */
3143 addr = 0xA074;
3144 val64 = 0x0;
3145 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3146
3147 if(CHECKBIT(val64, 0x7))
3148 stat_info->xpak_stat.warn_transceiver_temp_high++;
3149
3150 if(CHECKBIT(val64, 0x6))
3151 stat_info->xpak_stat.warn_transceiver_temp_low++;
3152
3153 if(CHECKBIT(val64, 0x3))
3154 stat_info->xpak_stat.warn_laser_bias_current_high++;
3155
3156 if(CHECKBIT(val64, 0x2))
3157 stat_info->xpak_stat.warn_laser_bias_current_low++;
3158
3159 if(CHECKBIT(val64, 0x1))
3160 stat_info->xpak_stat.warn_laser_output_power_high++;
3161
3162 if(CHECKBIT(val64, 0x0))
3163 stat_info->xpak_stat.warn_laser_output_power_low++;
3164 }
3165
3166 /**
3167 * alarm_intr_handler - Alarm Interrrupt handler
3168 * @nic: device private variable
3169 * Description: If the interrupt was neither because of Rx packet or Tx
3170 * complete, this function is called. If the interrupt was to indicate
3171 * a loss of link, the OSM link status handler is invoked for any other
3172 * alarm interrupt the block that raised the interrupt is displayed
3173 * and a H/W reset is issued.
3174 * Return Value:
3175 * NONE
3176 */
3177
3178 static void alarm_intr_handler(struct s2io_nic *nic)
3179 {
3180 struct net_device *dev = (struct net_device *) nic->dev;
3181 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3182 register u64 val64 = 0, err_reg = 0;
3183 u64 cnt;
3184 int i;
3185 if (atomic_read(&nic->card_state) == CARD_DOWN)
3186 return;
3187 if (pci_channel_offline(nic->pdev))
3188 return;
3189 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3190 /* Handling the XPAK counters update */
3191 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3192 /* waiting for an hour */
3193 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3194 } else {
3195 s2io_updt_xpak_counter(dev);
3196 /* reset the count to zero */
3197 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3198 }
3199
3200 /* Handling link status change error Intr */
3201 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3202 err_reg = readq(&bar0->mac_rmac_err_reg);
3203 writeq(err_reg, &bar0->mac_rmac_err_reg);
3204 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3205 schedule_work(&nic->set_link_task);
3206 }
3207 }
3208
3209 /* Handling Ecc errors */
3210 val64 = readq(&bar0->mc_err_reg);
3211 writeq(val64, &bar0->mc_err_reg);
3212 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3213 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3214 nic->mac_control.stats_info->sw_stat.
3215 double_ecc_errs++;
3216 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3217 dev->name);
3218 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3219 if (nic->device_type != XFRAME_II_DEVICE) {
3220 /* Reset XframeI only if critical error */
3221 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3222 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3223 netif_stop_queue(dev);
3224 schedule_work(&nic->rst_timer_task);
3225 nic->mac_control.stats_info->sw_stat.
3226 soft_reset_cnt++;
3227 }
3228 }
3229 } else {
3230 nic->mac_control.stats_info->sw_stat.
3231 single_ecc_errs++;
3232 }
3233 }
3234
3235 /* In case of a serious error, the device will be Reset. */
3236 val64 = readq(&bar0->serr_source);
3237 if (val64 & SERR_SOURCE_ANY) {
3238 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3239 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3240 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3241 (unsigned long long)val64);
3242 netif_stop_queue(dev);
3243 schedule_work(&nic->rst_timer_task);
3244 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3245 }
3246
3247 /*
3248 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3249 * Error occurs, the adapter will be recycled by disabling the
3250 * adapter enable bit and enabling it again after the device
3251 * becomes Quiescent.
3252 */
3253 val64 = readq(&bar0->pcc_err_reg);
3254 writeq(val64, &bar0->pcc_err_reg);
3255 if (val64 & PCC_FB_ECC_DB_ERR) {
3256 u64 ac = readq(&bar0->adapter_control);
3257 ac &= ~(ADAPTER_CNTL_EN);
3258 writeq(ac, &bar0->adapter_control);
3259 ac = readq(&bar0->adapter_control);
3260 schedule_work(&nic->set_link_task);
3261 }
3262 /* Check for data parity error */
3263 val64 = readq(&bar0->pic_int_status);
3264 if (val64 & PIC_INT_GPIO) {
3265 val64 = readq(&bar0->gpio_int_reg);
3266 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3267 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3268 schedule_work(&nic->rst_timer_task);
3269 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3270 }
3271 }
3272
3273 /* Check for ring full counter */
3274 if (nic->device_type & XFRAME_II_DEVICE) {
3275 val64 = readq(&bar0->ring_bump_counter1);
3276 for (i=0; i<4; i++) {
3277 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3278 cnt >>= 64 - ((i+1)*16);
3279 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3280 += cnt;
3281 }
3282
3283 val64 = readq(&bar0->ring_bump_counter2);
3284 for (i=0; i<4; i++) {
3285 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3286 cnt >>= 64 - ((i+1)*16);
3287 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3288 += cnt;
3289 }
3290 }
3291
3292 /* Other type of interrupts are not being handled now, TODO */
3293 }
3294
3295 /**
3296 * wait_for_cmd_complete - waits for a command to complete.
3297 * @sp : private member of the device structure, which is a pointer to the
3298 * s2io_nic structure.
3299 * Description: Function that waits for a command to Write into RMAC
3300 * ADDR DATA registers to be completed and returns either success or
3301 * error depending on whether the command was complete or not.
3302 * Return value:
3303 * SUCCESS on success and FAILURE on failure.
3304 */
3305
3306 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3307 int bit_state)
3308 {
3309 int ret = FAILURE, cnt = 0, delay = 1;
3310 u64 val64;
3311
3312 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3313 return FAILURE;
3314
3315 do {
3316 val64 = readq(addr);
3317 if (bit_state == S2IO_BIT_RESET) {
3318 if (!(val64 & busy_bit)) {
3319 ret = SUCCESS;
3320 break;
3321 }
3322 } else {
3323 if (!(val64 & busy_bit)) {
3324 ret = SUCCESS;
3325 break;
3326 }
3327 }
3328
3329 if(in_interrupt())
3330 mdelay(delay);
3331 else
3332 msleep(delay);
3333
3334 if (++cnt >= 10)
3335 delay = 50;
3336 } while (cnt < 20);
3337 return ret;
3338 }
3339 /*
3340 * check_pci_device_id - Checks if the device id is supported
3341 * @id : device id
3342 * Description: Function to check if the pci device id is supported by driver.
3343 * Return value: Actual device id if supported else PCI_ANY_ID
3344 */
3345 static u16 check_pci_device_id(u16 id)
3346 {
3347 switch (id) {
3348 case PCI_DEVICE_ID_HERC_WIN:
3349 case PCI_DEVICE_ID_HERC_UNI:
3350 return XFRAME_II_DEVICE;
3351 case PCI_DEVICE_ID_S2IO_UNI:
3352 case PCI_DEVICE_ID_S2IO_WIN:
3353 return XFRAME_I_DEVICE;
3354 default:
3355 return PCI_ANY_ID;
3356 }
3357 }
3358
3359 /**
3360 * s2io_reset - Resets the card.
3361 * @sp : private member of the device structure.
3362 * Description: Function to Reset the card. This function then also
3363 * restores the previously saved PCI configuration space registers as
3364 * the card reset also resets the configuration space.
3365 * Return value:
3366 * void.
3367 */
3368
3369 static void s2io_reset(struct s2io_nic * sp)
3370 {
3371 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3372 u64 val64;
3373 u16 subid, pci_cmd;
3374 int i;
3375 u16 val16;
3376 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3377 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3378
3379 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3380 __FUNCTION__, sp->dev->name);
3381
3382 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3383 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3384
3385 val64 = SW_RESET_ALL;
3386 writeq(val64, &bar0->sw_reset);
3387 if (strstr(sp->product_name, "CX4")) {
3388 msleep(750);
3389 }
3390 msleep(250);
3391 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3392
3393 /* Restore the PCI state saved during initialization. */
3394 pci_restore_state(sp->pdev);
3395 pci_read_config_word(sp->pdev, 0x2, &val16);
3396 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3397 break;
3398 msleep(200);
3399 }
3400
3401 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3402 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3403 }
3404
3405 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3406
3407 s2io_init_pci(sp);
3408
3409 /* Set swapper to enable I/O register access */
3410 s2io_set_swapper(sp);
3411
3412 /* Restore the MSIX table entries from local variables */
3413 restore_xmsi_data(sp);
3414
3415 /* Clear certain PCI/PCI-X fields after reset */
3416 if (sp->device_type == XFRAME_II_DEVICE) {
3417 /* Clear "detected parity error" bit */
3418 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3419
3420 /* Clearing PCIX Ecc status register */
3421 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3422
3423 /* Clearing PCI_STATUS error reflected here */
3424 writeq(BIT(62), &bar0->txpic_int_reg);
3425 }
3426
3427 /* Reset device statistics maintained by OS */
3428 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3429
3430 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3431 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3432 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3433 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3434 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3435 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3436 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3437 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3438 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3439 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3440 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3441 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3442 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3443 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3444 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3445 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3446 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3447 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3448 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3449
3450 /* SXE-002: Configure link and activity LED to turn it off */
3451 subid = sp->pdev->subsystem_device;
3452 if (((subid & 0xFF) >= 0x07) &&
3453 (sp->device_type == XFRAME_I_DEVICE)) {
3454 val64 = readq(&bar0->gpio_control);
3455 val64 |= 0x0000800000000000ULL;
3456 writeq(val64, &bar0->gpio_control);
3457 val64 = 0x0411040400000000ULL;
3458 writeq(val64, (void __iomem *)bar0 + 0x2700);
3459 }
3460
3461 /*
3462 * Clear spurious ECC interrupts that would have occured on
3463 * XFRAME II cards after reset.
3464 */
3465 if (sp->device_type == XFRAME_II_DEVICE) {
3466 val64 = readq(&bar0->pcc_err_reg);
3467 writeq(val64, &bar0->pcc_err_reg);
3468 }
3469
3470 /* restore the previously assigned mac address */
3471 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3472
3473 sp->device_enabled_once = FALSE;
3474 }
3475
3476 /**
3477 * s2io_set_swapper - to set the swapper controle on the card
3478 * @sp : private member of the device structure,
3479 * pointer to the s2io_nic structure.
3480 * Description: Function to set the swapper control on the card
3481 * correctly depending on the 'endianness' of the system.
3482 * Return value:
3483 * SUCCESS on success and FAILURE on failure.
3484 */
3485
3486 static int s2io_set_swapper(struct s2io_nic * sp)
3487 {
3488 struct net_device *dev = sp->dev;
3489 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3490 u64 val64, valt, valr;
3491
3492 /*
3493 * Set proper endian settings and verify the same by reading
3494 * the PIF Feed-back register.
3495 */
3496
3497 val64 = readq(&bar0->pif_rd_swapper_fb);
3498 if (val64 != 0x0123456789ABCDEFULL) {
3499 int i = 0;
3500 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3501 0x8100008181000081ULL, /* FE=1, SE=0 */
3502 0x4200004242000042ULL, /* FE=0, SE=1 */
3503 0}; /* FE=0, SE=0 */
3504
3505 while(i<4) {
3506 writeq(value[i], &bar0->swapper_ctrl);
3507 val64 = readq(&bar0->pif_rd_swapper_fb);
3508 if (val64 == 0x0123456789ABCDEFULL)
3509 break;
3510 i++;
3511 }
3512 if (i == 4) {
3513 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3514 dev->name);
3515 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3516 (unsigned long long) val64);
3517 return FAILURE;
3518 }
3519 valr = value[i];
3520 } else {
3521 valr = readq(&bar0->swapper_ctrl);
3522 }
3523
3524 valt = 0x0123456789ABCDEFULL;
3525 writeq(valt, &bar0->xmsi_address);
3526 val64 = readq(&bar0->xmsi_address);
3527
3528 if(val64 != valt) {
3529 int i = 0;
3530 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3531 0x0081810000818100ULL, /* FE=1, SE=0 */
3532 0x0042420000424200ULL, /* FE=0, SE=1 */
3533 0}; /* FE=0, SE=0 */
3534
3535 while(i<4) {
3536 writeq((value[i] | valr), &bar0->swapper_ctrl);
3537 writeq(valt, &bar0->xmsi_address);
3538 val64 = readq(&bar0->xmsi_address);
3539 if(val64 == valt)
3540 break;
3541 i++;
3542 }
3543 if(i == 4) {
3544 unsigned long long x = val64;
3545 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3546 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3547 return FAILURE;
3548 }
3549 }
3550 val64 = readq(&bar0->swapper_ctrl);
3551 val64 &= 0xFFFF000000000000ULL;
3552
3553 #ifdef __BIG_ENDIAN
3554 /*
3555 * The device by default set to a big endian format, so a
3556 * big endian driver need not set anything.
3557 */
3558 val64 |= (SWAPPER_CTRL_TXP_FE |
3559 SWAPPER_CTRL_TXP_SE |
3560 SWAPPER_CTRL_TXD_R_FE |
3561 SWAPPER_CTRL_TXD_W_FE |
3562 SWAPPER_CTRL_TXF_R_FE |
3563 SWAPPER_CTRL_RXD_R_FE |
3564 SWAPPER_CTRL_RXD_W_FE |
3565 SWAPPER_CTRL_RXF_W_FE |
3566 SWAPPER_CTRL_XMSI_FE |
3567 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3568 if (sp->intr_type == INTA)
3569 val64 |= SWAPPER_CTRL_XMSI_SE;
3570 writeq(val64, &bar0->swapper_ctrl);
3571 #else
3572 /*
3573 * Initially we enable all bits to make it accessible by the
3574 * driver, then we selectively enable only those bits that
3575 * we want to set.
3576 */
3577 val64 |= (SWAPPER_CTRL_TXP_FE |
3578 SWAPPER_CTRL_TXP_SE |
3579 SWAPPER_CTRL_TXD_R_FE |
3580 SWAPPER_CTRL_TXD_R_SE |
3581 SWAPPER_CTRL_TXD_W_FE |
3582 SWAPPER_CTRL_TXD_W_SE |
3583 SWAPPER_CTRL_TXF_R_FE |
3584 SWAPPER_CTRL_RXD_R_FE |
3585 SWAPPER_CTRL_RXD_R_SE |
3586 SWAPPER_CTRL_RXD_W_FE |
3587 SWAPPER_CTRL_RXD_W_SE |
3588 SWAPPER_CTRL_RXF_W_FE |
3589 SWAPPER_CTRL_XMSI_FE |
3590 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3591 if (sp->intr_type == INTA)
3592 val64 |= SWAPPER_CTRL_XMSI_SE;
3593 writeq(val64, &bar0->swapper_ctrl);
3594 #endif
3595 val64 = readq(&bar0->swapper_ctrl);
3596
3597 /*
3598 * Verifying if endian settings are accurate by reading a
3599 * feedback register.
3600 */
3601 val64 = readq(&bar0->pif_rd_swapper_fb);
3602 if (val64 != 0x0123456789ABCDEFULL) {
3603 /* Endian settings are incorrect, calls for another dekko. */
3604 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3605 dev->name);
3606 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3607 (unsigned long long) val64);
3608 return FAILURE;
3609 }
3610
3611 return SUCCESS;
3612 }
3613
3614 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3615 {
3616 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3617 u64 val64;
3618 int ret = 0, cnt = 0;
3619
3620 do {
3621 val64 = readq(&bar0->xmsi_access);
3622 if (!(val64 & BIT(15)))
3623 break;
3624 mdelay(1);
3625 cnt++;
3626 } while(cnt < 5);
3627 if (cnt == 5) {
3628 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3629 ret = 1;
3630 }
3631
3632 return ret;
3633 }
3634
3635 static void restore_xmsi_data(struct s2io_nic *nic)
3636 {
3637 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3638 u64 val64;
3639 int i;
3640
3641 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3642 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3643 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3644 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3645 writeq(val64, &bar0->xmsi_access);
3646 if (wait_for_msix_trans(nic, i)) {
3647 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3648 continue;
3649 }
3650 }
3651 }
3652
3653 static void store_xmsi_data(struct s2io_nic *nic)
3654 {
3655 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3656 u64 val64, addr, data;
3657 int i;
3658
3659 /* Store and display */
3660 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3661 val64 = (BIT(15) | vBIT(i, 26, 6));
3662 writeq(val64, &bar0->xmsi_access);
3663 if (wait_for_msix_trans(nic, i)) {
3664 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3665 continue;
3666 }
3667 addr = readq(&bar0->xmsi_address);
3668 data = readq(&bar0->xmsi_data);
3669 if (addr && data) {
3670 nic->msix_info[i].addr = addr;
3671 nic->msix_info[i].data = data;
3672 }
3673 }
3674 }
3675
3676 static int s2io_enable_msi_x(struct s2io_nic *nic)
3677 {
3678 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3679 u64 tx_mat, rx_mat;
3680 u16 msi_control; /* Temp variable */
3681 int ret, i, j, msix_indx = 1;
3682
3683 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3684 GFP_KERNEL);
3685 if (nic->entries == NULL) {
3686 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3687 __FUNCTION__);
3688 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3689 return -ENOMEM;
3690 }
3691 nic->mac_control.stats_info->sw_stat.mem_allocated
3692 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3693 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3694
3695 nic->s2io_entries =
3696 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3697 GFP_KERNEL);
3698 if (nic->s2io_entries == NULL) {
3699 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3700 __FUNCTION__);
3701 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3702 kfree(nic->entries);
3703 nic->mac_control.stats_info->sw_stat.mem_freed
3704 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3705 return -ENOMEM;
3706 }
3707 nic->mac_control.stats_info->sw_stat.mem_allocated
3708 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3709 memset(nic->s2io_entries, 0,
3710 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3711
3712 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3713 nic->entries[i].entry = i;
3714 nic->s2io_entries[i].entry = i;
3715 nic->s2io_entries[i].arg = NULL;
3716 nic->s2io_entries[i].in_use = 0;
3717 }
3718
3719 tx_mat = readq(&bar0->tx_mat0_n[0]);
3720 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3721 tx_mat |= TX_MAT_SET(i, msix_indx);
3722 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3723 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3724 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3725 }
3726 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3727
3728 if (!nic->config.bimodal) {
3729 rx_mat = readq(&bar0->rx_mat);
3730 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3731 rx_mat |= RX_MAT_SET(j, msix_indx);
3732 nic->s2io_entries[msix_indx].arg
3733 = &nic->mac_control.rings[j];
3734 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3735 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3736 }
3737 writeq(rx_mat, &bar0->rx_mat);
3738 } else {
3739 tx_mat = readq(&bar0->tx_mat0_n[7]);
3740 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3741 tx_mat |= TX_MAT_SET(i, msix_indx);
3742 nic->s2io_entries[msix_indx].arg
3743 = &nic->mac_control.rings[j];
3744 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3745 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3746 }
3747 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3748 }
3749
3750 nic->avail_msix_vectors = 0;
3751 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3752 /* We fail init if error or we get less vectors than min required */
3753 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3754 nic->avail_msix_vectors = ret;
3755 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3756 }
3757 if (ret) {
3758 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3759 kfree(nic->entries);
3760 nic->mac_control.stats_info->sw_stat.mem_freed
3761 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3762 kfree(nic->s2io_entries);
3763 nic->mac_control.stats_info->sw_stat.mem_freed
3764 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3765 nic->entries = NULL;
3766 nic->s2io_entries = NULL;
3767 nic->avail_msix_vectors = 0;
3768 return -ENOMEM;
3769 }
3770 if (!nic->avail_msix_vectors)
3771 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3772
3773 /*
3774 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3775 * in the herc NIC. (Temp change, needs to be removed later)
3776 */
3777 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3778 msi_control |= 0x1; /* Enable MSI */
3779 pci_write_config_word(nic->pdev, 0x42, msi_control);
3780
3781 return 0;
3782 }
3783
3784 /* ********************************************************* *
3785 * Functions defined below concern the OS part of the driver *
3786 * ********************************************************* */
3787
3788 /**
3789 * s2io_open - open entry point of the driver
3790 * @dev : pointer to the device structure.
3791 * Description:
3792 * This function is the open entry point of the driver. It mainly calls a
3793 * function to allocate Rx buffers and inserts them into the buffer
3794 * descriptors and then enables the Rx part of the NIC.
3795 * Return value:
3796 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3797 * file on failure.
3798 */
3799
3800 static int s2io_open(struct net_device *dev)
3801 {
3802 struct s2io_nic *sp = dev->priv;
3803 int err = 0;
3804
3805 /*
3806 * Make sure you have link off by default every time
3807 * Nic is initialized
3808 */
3809 netif_carrier_off(dev);
3810 sp->last_link_state = 0;
3811
3812 /* Initialize H/W and enable interrupts */
3813 err = s2io_card_up(sp);
3814 if (err) {
3815 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3816 dev->name);
3817 goto hw_init_failed;
3818 }
3819
3820 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3821 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3822 s2io_card_down(sp);
3823 err = -ENODEV;
3824 goto hw_init_failed;
3825 }
3826
3827 netif_start_queue(dev);
3828 return 0;
3829
3830 hw_init_failed:
3831 if (sp->intr_type == MSI_X) {
3832 if (sp->entries) {
3833 kfree(sp->entries);
3834 sp->mac_control.stats_info->sw_stat.mem_freed
3835 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3836 }
3837 if (sp->s2io_entries) {
3838 kfree(sp->s2io_entries);
3839 sp->mac_control.stats_info->sw_stat.mem_freed
3840 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3841 }
3842 }
3843 return err;
3844 }
3845
3846 /**
3847 * s2io_close -close entry point of the driver
3848 * @dev : device pointer.
3849 * Description:
3850 * This is the stop entry point of the driver. It needs to undo exactly
3851 * whatever was done by the open entry point,thus it's usually referred to
3852 * as the close function.Among other things this function mainly stops the
3853 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3854 * Return value:
3855 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3856 * file on failure.
3857 */
3858
3859 static int s2io_close(struct net_device *dev)
3860 {
3861 struct s2io_nic *sp = dev->priv;
3862
3863 netif_stop_queue(dev);
3864 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3865 s2io_card_down(sp);
3866
3867 return 0;
3868 }
3869
3870 /**
3871 * s2io_xmit - Tx entry point of te driver
3872 * @skb : the socket buffer containing the Tx data.
3873 * @dev : device pointer.
3874 * Description :
3875 * This function is the Tx entry point of the driver. S2IO NIC supports
3876 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3877 * NOTE: when device cant queue the pkt,just the trans_start variable will
3878 * not be upadted.
3879 * Return value:
3880 * 0 on success & 1 on failure.
3881 */
3882
3883 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3884 {
3885 struct s2io_nic *sp = dev->priv;
3886 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3887 register u64 val64;
3888 struct TxD *txdp;
3889 struct TxFIFO_element __iomem *tx_fifo;
3890 unsigned long flags;
3891 u16 vlan_tag = 0;
3892 int vlan_priority = 0;
3893 struct mac_info *mac_control;
3894 struct config_param *config;
3895 int offload_type;
3896 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3897
3898 mac_control = &sp->mac_control;
3899 config = &sp->config;
3900
3901 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3902
3903 if (unlikely(skb->len <= 0)) {
3904 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3905 dev_kfree_skb_any(skb);
3906 return 0;
3907 }
3908
3909 spin_lock_irqsave(&sp->tx_lock, flags);
3910 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3911 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3912 dev->name);
3913 spin_unlock_irqrestore(&sp->tx_lock, flags);
3914 dev_kfree_skb(skb);
3915 return 0;
3916 }
3917
3918 queue = 0;
3919 /* Get Fifo number to Transmit based on vlan priority */
3920 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3921 vlan_tag = vlan_tx_tag_get(skb);
3922 vlan_priority = vlan_tag >> 13;
3923 queue = config->fifo_mapping[vlan_priority];
3924 }
3925
3926 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3927 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3928 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3929 list_virt_addr;
3930
3931 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3932 /* Avoid "put" pointer going beyond "get" pointer */
3933 if (txdp->Host_Control ||
3934 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3935 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3936 netif_stop_queue(dev);
3937 dev_kfree_skb(skb);
3938 spin_unlock_irqrestore(&sp->tx_lock, flags);
3939 return 0;
3940 }
3941
3942 offload_type = s2io_offload_type(skb);
3943 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3944 txdp->Control_1 |= TXD_TCP_LSO_EN;
3945 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3946 }
3947 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3948 txdp->Control_2 |=
3949 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3950 TXD_TX_CKO_UDP_EN);
3951 }
3952 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3953 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3954 txdp->Control_2 |= config->tx_intr_type;
3955
3956 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3957 txdp->Control_2 |= TXD_VLAN_ENABLE;
3958 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3959 }
3960
3961 frg_len = skb->len - skb->data_len;
3962 if (offload_type == SKB_GSO_UDP) {
3963 int ufo_size;
3964
3965 ufo_size = s2io_udp_mss(skb);
3966 ufo_size &= ~7;
3967 txdp->Control_1 |= TXD_UFO_EN;
3968 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3969 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3970 #ifdef __BIG_ENDIAN
3971 sp->ufo_in_band_v[put_off] =
3972 (u64)skb_shinfo(skb)->ip6_frag_id;
3973 #else
3974 sp->ufo_in_band_v[put_off] =
3975 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3976 #endif
3977 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3978 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3979 sp->ufo_in_band_v,
3980 sizeof(u64), PCI_DMA_TODEVICE);
3981 if((txdp->Buffer_Pointer == 0) ||
3982 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
3983 goto pci_map_failed;
3984 txdp++;
3985 }
3986
3987 txdp->Buffer_Pointer = pci_map_single
3988 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3989 if((txdp->Buffer_Pointer == 0) ||
3990 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
3991 goto pci_map_failed;
3992
3993 txdp->Host_Control = (unsigned long) skb;
3994 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3995 if (offload_type == SKB_GSO_UDP)
3996 txdp->Control_1 |= TXD_UFO_EN;
3997
3998 frg_cnt = skb_shinfo(skb)->nr_frags;
3999 /* For fragmented SKB. */
4000 for (i = 0; i < frg_cnt; i++) {
4001 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4002 /* A '0' length fragment will be ignored */
4003 if (!frag->size)
4004 continue;
4005 txdp++;
4006 txdp->Buffer_Pointer = (u64) pci_map_page
4007 (sp->pdev, frag->page, frag->page_offset,
4008 frag->size, PCI_DMA_TODEVICE);
4009 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4010 if (offload_type == SKB_GSO_UDP)
4011 txdp->Control_1 |= TXD_UFO_EN;
4012 }
4013 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4014
4015 if (offload_type == SKB_GSO_UDP)
4016 frg_cnt++; /* as Txd0 was used for inband header */
4017
4018 tx_fifo = mac_control->tx_FIFO_start[queue];
4019 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4020 writeq(val64, &tx_fifo->TxDL_Pointer);
4021
4022 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4023 TX_FIFO_LAST_LIST);
4024 if (offload_type)
4025 val64 |= TX_FIFO_SPECIAL_FUNC;
4026
4027 writeq(val64, &tx_fifo->List_Control);
4028
4029 mmiowb();
4030
4031 put_off++;
4032 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4033 put_off = 0;
4034 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4035
4036 /* Avoid "put" pointer going beyond "get" pointer */
4037 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4038 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4039 DBG_PRINT(TX_DBG,
4040 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4041 put_off, get_off);
4042 netif_stop_queue(dev);
4043 }
4044 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4045 dev->trans_start = jiffies;
4046 spin_unlock_irqrestore(&sp->tx_lock, flags);
4047
4048 return 0;
4049 pci_map_failed:
4050 stats->pci_map_fail_cnt++;
4051 netif_stop_queue(dev);
4052 stats->mem_freed += skb->truesize;
4053 dev_kfree_skb(skb);
4054 spin_unlock_irqrestore(&sp->tx_lock, flags);
4055 return 0;
4056 }
4057
4058 static void
4059 s2io_alarm_handle(unsigned long data)
4060 {
4061 struct s2io_nic *sp = (struct s2io_nic *)data;
4062
4063 alarm_intr_handler(sp);
4064 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4065 }
4066
4067 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4068 {
4069 int rxb_size, level;
4070
4071 if (!sp->lro) {
4072 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4073 level = rx_buffer_level(sp, rxb_size, rng_n);
4074
4075 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4076 int ret;
4077 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4078 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4079 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4080 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4081 __FUNCTION__);
4082 clear_bit(0, (&sp->tasklet_status));
4083 return -1;
4084 }
4085 clear_bit(0, (&sp->tasklet_status));
4086 } else if (level == LOW)
4087 tasklet_schedule(&sp->task);
4088
4089 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4090 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4091 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4092 }
4093 return 0;
4094 }
4095
4096 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4097 {
4098 struct ring_info *ring = (struct ring_info *)dev_id;
4099 struct s2io_nic *sp = ring->nic;
4100
4101 atomic_inc(&sp->isr_cnt);
4102
4103 rx_intr_handler(ring);
4104 s2io_chk_rx_buffers(sp, ring->ring_no);
4105
4106 atomic_dec(&sp->isr_cnt);
4107 return IRQ_HANDLED;
4108 }
4109
4110 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4111 {
4112 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4113 struct s2io_nic *sp = fifo->nic;
4114
4115 atomic_inc(&sp->isr_cnt);
4116 tx_intr_handler(fifo);
4117 atomic_dec(&sp->isr_cnt);
4118 return IRQ_HANDLED;
4119 }
4120 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4121 {
4122 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4123 u64 val64;
4124
4125 val64 = readq(&bar0->pic_int_status);
4126 if (val64 & PIC_INT_GPIO) {
4127 val64 = readq(&bar0->gpio_int_reg);
4128 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4129 (val64 & GPIO_INT_REG_LINK_UP)) {
4130 /*
4131 * This is unstable state so clear both up/down
4132 * interrupt and adapter to re-evaluate the link state.
4133 */
4134 val64 |= GPIO_INT_REG_LINK_DOWN;
4135 val64 |= GPIO_INT_REG_LINK_UP;
4136 writeq(val64, &bar0->gpio_int_reg);
4137 val64 = readq(&bar0->gpio_int_mask);
4138 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4139 GPIO_INT_MASK_LINK_DOWN);
4140 writeq(val64, &bar0->gpio_int_mask);
4141 }
4142 else if (val64 & GPIO_INT_REG_LINK_UP) {
4143 val64 = readq(&bar0->adapter_status);
4144 /* Enable Adapter */
4145 val64 = readq(&bar0->adapter_control);
4146 val64 |= ADAPTER_CNTL_EN;
4147 writeq(val64, &bar0->adapter_control);
4148 val64 |= ADAPTER_LED_ON;
4149 writeq(val64, &bar0->adapter_control);
4150 if (!sp->device_enabled_once)
4151 sp->device_enabled_once = 1;
4152
4153 s2io_link(sp, LINK_UP);
4154 /*
4155 * unmask link down interrupt and mask link-up
4156 * intr
4157 */
4158 val64 = readq(&bar0->gpio_int_mask);
4159 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4160 val64 |= GPIO_INT_MASK_LINK_UP;
4161 writeq(val64, &bar0->gpio_int_mask);
4162
4163 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4164 val64 = readq(&bar0->adapter_status);
4165 s2io_link(sp, LINK_DOWN);
4166 /* Link is down so unmaks link up interrupt */
4167 val64 = readq(&bar0->gpio_int_mask);
4168 val64 &= ~GPIO_INT_MASK_LINK_UP;
4169 val64 |= GPIO_INT_MASK_LINK_DOWN;
4170 writeq(val64, &bar0->gpio_int_mask);
4171
4172 /* turn off LED */
4173 val64 = readq(&bar0->adapter_control);
4174 val64 = val64 &(~ADAPTER_LED_ON);
4175 writeq(val64, &bar0->adapter_control);
4176 }
4177 }
4178 val64 = readq(&bar0->gpio_int_mask);
4179 }
4180
4181 /**
4182 * s2io_isr - ISR handler of the device .
4183 * @irq: the irq of the device.
4184 * @dev_id: a void pointer to the dev structure of the NIC.
4185 * Description: This function is the ISR handler of the device. It
4186 * identifies the reason for the interrupt and calls the relevant
4187 * service routines. As a contongency measure, this ISR allocates the
4188 * recv buffers, if their numbers are below the panic value which is
4189 * presently set to 25% of the original number of rcv buffers allocated.
4190 * Return value:
4191 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4192 * IRQ_NONE: will be returned if interrupt is not from our device
4193 */
4194 static irqreturn_t s2io_isr(int irq, void *dev_id)
4195 {
4196 struct net_device *dev = (struct net_device *) dev_id;
4197 struct s2io_nic *sp = dev->priv;
4198 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4199 int i;
4200 u64 reason = 0;
4201 struct mac_info *mac_control;
4202 struct config_param *config;
4203
4204 /* Pretend we handled any irq's from a disconnected card */
4205 if (pci_channel_offline(sp->pdev))
4206 return IRQ_NONE;
4207
4208 atomic_inc(&sp->isr_cnt);
4209 mac_control = &sp->mac_control;
4210 config = &sp->config;
4211
4212 /*
4213 * Identify the cause for interrupt and call the appropriate
4214 * interrupt handler. Causes for the interrupt could be;
4215 * 1. Rx of packet.
4216 * 2. Tx complete.
4217 * 3. Link down.
4218 * 4. Error in any functional blocks of the NIC.
4219 */
4220 reason = readq(&bar0->general_int_status);
4221
4222 if (!reason) {
4223 /* The interrupt was not raised by us. */
4224 atomic_dec(&sp->isr_cnt);
4225 return IRQ_NONE;
4226 }
4227 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4228 /* Disable device and get out */
4229 atomic_dec(&sp->isr_cnt);
4230 return IRQ_NONE;
4231 }
4232
4233 if (napi) {
4234 if (reason & GEN_INTR_RXTRAFFIC) {
4235 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4236 __netif_rx_schedule(dev);
4237 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4238 }
4239 else
4240 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4241 }
4242 } else {
4243 /*
4244 * Rx handler is called by default, without checking for the
4245 * cause of interrupt.
4246 * rx_traffic_int reg is an R1 register, writing all 1's
4247 * will ensure that the actual interrupt causing bit get's
4248 * cleared and hence a read can be avoided.
4249 */
4250 if (reason & GEN_INTR_RXTRAFFIC)
4251 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4252
4253 for (i = 0; i < config->rx_ring_num; i++) {
4254 rx_intr_handler(&mac_control->rings[i]);
4255 }
4256 }
4257
4258 /*
4259 * tx_traffic_int reg is an R1 register, writing all 1's
4260 * will ensure that the actual interrupt causing bit get's
4261 * cleared and hence a read can be avoided.
4262 */
4263 if (reason & GEN_INTR_TXTRAFFIC)
4264 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4265
4266 for (i = 0; i < config->tx_fifo_num; i++)
4267 tx_intr_handler(&mac_control->fifos[i]);
4268
4269 if (reason & GEN_INTR_TXPIC)
4270 s2io_txpic_intr_handle(sp);
4271 /*
4272 * If the Rx buffer count is below the panic threshold then
4273 * reallocate the buffers from the interrupt handler itself,
4274 * else schedule a tasklet to reallocate the buffers.
4275 */
4276 if (!napi) {
4277 for (i = 0; i < config->rx_ring_num; i++)
4278 s2io_chk_rx_buffers(sp, i);
4279 }
4280
4281 writeq(0, &bar0->general_int_mask);
4282 readl(&bar0->general_int_status);
4283
4284 atomic_dec(&sp->isr_cnt);
4285 return IRQ_HANDLED;
4286 }
4287
4288 /**
4289 * s2io_updt_stats -
4290 */
4291 static void s2io_updt_stats(struct s2io_nic *sp)
4292 {
4293 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4294 u64 val64;
4295 int cnt = 0;
4296
4297 if (atomic_read(&sp->card_state) == CARD_UP) {
4298 /* Apprx 30us on a 133 MHz bus */
4299 val64 = SET_UPDT_CLICKS(10) |
4300 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4301 writeq(val64, &bar0->stat_cfg);
4302 do {
4303 udelay(100);
4304 val64 = readq(&bar0->stat_cfg);
4305 if (!(val64 & BIT(0)))
4306 break;
4307 cnt++;
4308 if (cnt == 5)
4309 break; /* Updt failed */
4310 } while(1);
4311 }
4312 }
4313
4314 /**
4315 * s2io_get_stats - Updates the device statistics structure.
4316 * @dev : pointer to the device structure.
4317 * Description:
4318 * This function updates the device statistics structure in the s2io_nic
4319 * structure and returns a pointer to the same.
4320 * Return value:
4321 * pointer to the updated net_device_stats structure.
4322 */
4323
4324 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4325 {
4326 struct s2io_nic *sp = dev->priv;
4327 struct mac_info *mac_control;
4328 struct config_param *config;
4329
4330
4331 mac_control = &sp->mac_control;
4332 config = &sp->config;
4333
4334 /* Configure Stats for immediate updt */
4335 s2io_updt_stats(sp);
4336
4337 sp->stats.tx_packets =
4338 le32_to_cpu(mac_control->stats_info->tmac_frms);
4339 sp->stats.tx_errors =
4340 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4341 sp->stats.rx_errors =
4342 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4343 sp->stats.multicast =
4344 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4345 sp->stats.rx_length_errors =
4346 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4347
4348 return (&sp->stats);
4349 }
4350
4351 /**
4352 * s2io_set_multicast - entry point for multicast address enable/disable.
4353 * @dev : pointer to the device structure
4354 * Description:
4355 * This function is a driver entry point which gets called by the kernel
4356 * whenever multicast addresses must be enabled/disabled. This also gets
4357 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4358 * determine, if multicast address must be enabled or if promiscuous mode
4359 * is to be disabled etc.
4360 * Return value:
4361 * void.
4362 */
4363
4364 static void s2io_set_multicast(struct net_device *dev)
4365 {
4366 int i, j, prev_cnt;
4367 struct dev_mc_list *mclist;
4368 struct s2io_nic *sp = dev->priv;
4369 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4370 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4371 0xfeffffffffffULL;
4372 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4373 void __iomem *add;
4374
4375 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4376 /* Enable all Multicast addresses */
4377 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4378 &bar0->rmac_addr_data0_mem);
4379 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4380 &bar0->rmac_addr_data1_mem);
4381 val64 = RMAC_ADDR_CMD_MEM_WE |
4382 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4383 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4384 writeq(val64, &bar0->rmac_addr_cmd_mem);
4385 /* Wait till command completes */
4386 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4387 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4388 S2IO_BIT_RESET);
4389
4390 sp->m_cast_flg = 1;
4391 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4392 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4393 /* Disable all Multicast addresses */
4394 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4395 &bar0->rmac_addr_data0_mem);
4396 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4397 &bar0->rmac_addr_data1_mem);
4398 val64 = RMAC_ADDR_CMD_MEM_WE |
4399 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4400 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4401 writeq(val64, &bar0->rmac_addr_cmd_mem);
4402 /* Wait till command completes */
4403 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4404 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4405 S2IO_BIT_RESET);
4406
4407 sp->m_cast_flg = 0;
4408 sp->all_multi_pos = 0;
4409 }
4410
4411 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4412 /* Put the NIC into promiscuous mode */
4413 add = &bar0->mac_cfg;
4414 val64 = readq(&bar0->mac_cfg);
4415 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4416
4417 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4418 writel((u32) val64, add);
4419 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4420 writel((u32) (val64 >> 32), (add + 4));
4421
4422 if (vlan_tag_strip != 1) {
4423 val64 = readq(&bar0->rx_pa_cfg);
4424 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4425 writeq(val64, &bar0->rx_pa_cfg);
4426 vlan_strip_flag = 0;
4427 }
4428
4429 val64 = readq(&bar0->mac_cfg);
4430 sp->promisc_flg = 1;
4431 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4432 dev->name);
4433 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4434 /* Remove the NIC from promiscuous mode */
4435 add = &bar0->mac_cfg;
4436 val64 = readq(&bar0->mac_cfg);
4437 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4438
4439 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4440 writel((u32) val64, add);
4441 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4442 writel((u32) (val64 >> 32), (add + 4));
4443
4444 if (vlan_tag_strip != 0) {
4445 val64 = readq(&bar0->rx_pa_cfg);
4446 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4447 writeq(val64, &bar0->rx_pa_cfg);
4448 vlan_strip_flag = 1;
4449 }
4450
4451 val64 = readq(&bar0->mac_cfg);
4452 sp->promisc_flg = 0;
4453 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4454 dev->name);
4455 }
4456
4457 /* Update individual M_CAST address list */
4458 if ((!sp->m_cast_flg) && dev->mc_count) {
4459 if (dev->mc_count >
4460 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4461 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4462 dev->name);
4463 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4464 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4465 return;
4466 }
4467
4468 prev_cnt = sp->mc_addr_count;
4469 sp->mc_addr_count = dev->mc_count;
4470
4471 /* Clear out the previous list of Mc in the H/W. */
4472 for (i = 0; i < prev_cnt; i++) {
4473 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4474 &bar0->rmac_addr_data0_mem);
4475 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4476 &bar0->rmac_addr_data1_mem);
4477 val64 = RMAC_ADDR_CMD_MEM_WE |
4478 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4479 RMAC_ADDR_CMD_MEM_OFFSET
4480 (MAC_MC_ADDR_START_OFFSET + i);
4481 writeq(val64, &bar0->rmac_addr_cmd_mem);
4482
4483 /* Wait for command completes */
4484 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4485 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4486 S2IO_BIT_RESET)) {
4487 DBG_PRINT(ERR_DBG, "%s: Adding ",
4488 dev->name);
4489 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4490 return;
4491 }
4492 }
4493
4494 /* Create the new Rx filter list and update the same in H/W. */
4495 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4496 i++, mclist = mclist->next) {
4497 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4498 ETH_ALEN);
4499 mac_addr = 0;
4500 for (j = 0; j < ETH_ALEN; j++) {
4501 mac_addr |= mclist->dmi_addr[j];
4502 mac_addr <<= 8;
4503 }
4504 mac_addr >>= 8;
4505 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4506 &bar0->rmac_addr_data0_mem);
4507 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4508 &bar0->rmac_addr_data1_mem);
4509 val64 = RMAC_ADDR_CMD_MEM_WE |
4510 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4511 RMAC_ADDR_CMD_MEM_OFFSET
4512 (i + MAC_MC_ADDR_START_OFFSET);
4513 writeq(val64, &bar0->rmac_addr_cmd_mem);
4514
4515 /* Wait for command completes */
4516 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4517 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4518 S2IO_BIT_RESET)) {
4519 DBG_PRINT(ERR_DBG, "%s: Adding ",
4520 dev->name);
4521 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4522 return;
4523 }
4524 }
4525 }
4526 }
4527
4528 /**
4529 * s2io_set_mac_addr - Programs the Xframe mac address
4530 * @dev : pointer to the device structure.
4531 * @addr: a uchar pointer to the new mac address which is to be set.
4532 * Description : This procedure will program the Xframe to receive
4533 * frames with new Mac Address
4534 * Return value: SUCCESS on success and an appropriate (-)ve integer
4535 * as defined in errno.h file on failure.
4536 */
4537
4538 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4539 {
4540 struct s2io_nic *sp = dev->priv;
4541 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4542 register u64 val64, mac_addr = 0;
4543 int i;
4544 u64 old_mac_addr = 0;
4545
4546 /*
4547 * Set the new MAC address as the new unicast filter and reflect this
4548 * change on the device address registered with the OS. It will be
4549 * at offset 0.
4550 */
4551 for (i = 0; i < ETH_ALEN; i++) {
4552 mac_addr <<= 8;
4553 mac_addr |= addr[i];
4554 old_mac_addr <<= 8;
4555 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4556 }
4557
4558 if(0 == mac_addr)
4559 return SUCCESS;
4560
4561 /* Update the internal structure with this new mac address */
4562 if(mac_addr != old_mac_addr) {
4563 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4564 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4565 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4566 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4567 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4568 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4569 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4570 }
4571
4572 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4573 &bar0->rmac_addr_data0_mem);
4574
4575 val64 =
4576 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4577 RMAC_ADDR_CMD_MEM_OFFSET(0);
4578 writeq(val64, &bar0->rmac_addr_cmd_mem);
4579 /* Wait till command completes */
4580 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4581 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4582 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4583 return FAILURE;
4584 }
4585
4586 return SUCCESS;
4587 }
4588
4589 /**
4590 * s2io_ethtool_sset - Sets different link parameters.
4591 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4592 * @info: pointer to the structure with parameters given by ethtool to set
4593 * link information.
4594 * Description:
4595 * The function sets different link parameters provided by the user onto
4596 * the NIC.
4597 * Return value:
4598 * 0 on success.
4599 */
4600
4601 static int s2io_ethtool_sset(struct net_device *dev,
4602 struct ethtool_cmd *info)
4603 {
4604 struct s2io_nic *sp = dev->priv;
4605 if ((info->autoneg == AUTONEG_ENABLE) ||
4606 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4607 return -EINVAL;
4608 else {
4609 s2io_close(sp->dev);
4610 s2io_open(sp->dev);
4611 }
4612
4613 return 0;
4614 }
4615
4616 /**
4617 * s2io_ethtol_gset - Return link specific information.
4618 * @sp : private member of the device structure, pointer to the
4619 * s2io_nic structure.
4620 * @info : pointer to the structure with parameters given by ethtool
4621 * to return link information.
4622 * Description:
4623 * Returns link specific information like speed, duplex etc.. to ethtool.
4624 * Return value :
4625 * return 0 on success.
4626 */
4627
4628 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4629 {
4630 struct s2io_nic *sp = dev->priv;
4631 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4632 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4633 info->port = PORT_FIBRE;
4634 /* info->transceiver?? TODO */
4635
4636 if (netif_carrier_ok(sp->dev)) {
4637 info->speed = 10000;
4638 info->duplex = DUPLEX_FULL;
4639 } else {
4640 info->speed = -1;
4641 info->duplex = -1;
4642 }
4643
4644 info->autoneg = AUTONEG_DISABLE;
4645 return 0;
4646 }
4647
4648 /**
4649 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4650 * @sp : private member of the device structure, which is a pointer to the
4651 * s2io_nic structure.
4652 * @info : pointer to the structure with parameters given by ethtool to
4653 * return driver information.
4654 * Description:
4655 * Returns driver specefic information like name, version etc.. to ethtool.
4656 * Return value:
4657 * void
4658 */
4659
4660 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4661 struct ethtool_drvinfo *info)
4662 {
4663 struct s2io_nic *sp = dev->priv;
4664
4665 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4666 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4667 strncpy(info->fw_version, "", sizeof(info->fw_version));
4668 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4669 info->regdump_len = XENA_REG_SPACE;
4670 info->eedump_len = XENA_EEPROM_SPACE;
4671 info->testinfo_len = S2IO_TEST_LEN;
4672
4673 if (sp->device_type == XFRAME_I_DEVICE)
4674 info->n_stats = XFRAME_I_STAT_LEN;
4675 else
4676 info->n_stats = XFRAME_II_STAT_LEN;
4677 }
4678
4679 /**
4680 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4681 * @sp: private member of the device structure, which is a pointer to the
4682 * s2io_nic structure.
4683 * @regs : pointer to the structure with parameters given by ethtool for
4684 * dumping the registers.
4685 * @reg_space: The input argumnet into which all the registers are dumped.
4686 * Description:
4687 * Dumps the entire register space of xFrame NIC into the user given
4688 * buffer area.
4689 * Return value :
4690 * void .
4691 */
4692
4693 static void s2io_ethtool_gregs(struct net_device *dev,
4694 struct ethtool_regs *regs, void *space)
4695 {
4696 int i;
4697 u64 reg;
4698 u8 *reg_space = (u8 *) space;
4699 struct s2io_nic *sp = dev->priv;
4700
4701 regs->len = XENA_REG_SPACE;
4702 regs->version = sp->pdev->subsystem_device;
4703
4704 for (i = 0; i < regs->len; i += 8) {
4705 reg = readq(sp->bar0 + i);
4706 memcpy((reg_space + i), &reg, 8);
4707 }
4708 }
4709
4710 /**
4711 * s2io_phy_id - timer function that alternates adapter LED.
4712 * @data : address of the private member of the device structure, which
4713 * is a pointer to the s2io_nic structure, provided as an u32.
4714 * Description: This is actually the timer function that alternates the
4715 * adapter LED bit of the adapter control bit to set/reset every time on
4716 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4717 * once every second.
4718 */
4719 static void s2io_phy_id(unsigned long data)
4720 {
4721 struct s2io_nic *sp = (struct s2io_nic *) data;
4722 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4723 u64 val64 = 0;
4724 u16 subid;
4725
4726 subid = sp->pdev->subsystem_device;
4727 if ((sp->device_type == XFRAME_II_DEVICE) ||
4728 ((subid & 0xFF) >= 0x07)) {
4729 val64 = readq(&bar0->gpio_control);
4730 val64 ^= GPIO_CTRL_GPIO_0;
4731 writeq(val64, &bar0->gpio_control);
4732 } else {
4733 val64 = readq(&bar0->adapter_control);
4734 val64 ^= ADAPTER_LED_ON;
4735 writeq(val64, &bar0->adapter_control);
4736 }
4737
4738 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4739 }
4740
4741 /**
4742 * s2io_ethtool_idnic - To physically identify the nic on the system.
4743 * @sp : private member of the device structure, which is a pointer to the
4744 * s2io_nic structure.
4745 * @id : pointer to the structure with identification parameters given by
4746 * ethtool.
4747 * Description: Used to physically identify the NIC on the system.
4748 * The Link LED will blink for a time specified by the user for
4749 * identification.
4750 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4751 * identification is possible only if it's link is up.
4752 * Return value:
4753 * int , returns 0 on success
4754 */
4755
4756 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4757 {
4758 u64 val64 = 0, last_gpio_ctrl_val;
4759 struct s2io_nic *sp = dev->priv;
4760 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4761 u16 subid;
4762
4763 subid = sp->pdev->subsystem_device;
4764 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4765 if ((sp->device_type == XFRAME_I_DEVICE) &&
4766 ((subid & 0xFF) < 0x07)) {
4767 val64 = readq(&bar0->adapter_control);
4768 if (!(val64 & ADAPTER_CNTL_EN)) {
4769 printk(KERN_ERR
4770 "Adapter Link down, cannot blink LED\n");
4771 return -EFAULT;
4772 }
4773 }
4774 if (sp->id_timer.function == NULL) {
4775 init_timer(&sp->id_timer);
4776 sp->id_timer.function = s2io_phy_id;
4777 sp->id_timer.data = (unsigned long) sp;
4778 }
4779 mod_timer(&sp->id_timer, jiffies);
4780 if (data)
4781 msleep_interruptible(data * HZ);
4782 else
4783 msleep_interruptible(MAX_FLICKER_TIME);
4784 del_timer_sync(&sp->id_timer);
4785
4786 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4787 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4788 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4789 }
4790
4791 return 0;
4792 }
4793
4794 static void s2io_ethtool_gringparam(struct net_device *dev,
4795 struct ethtool_ringparam *ering)
4796 {
4797 struct s2io_nic *sp = dev->priv;
4798 int i,tx_desc_count=0,rx_desc_count=0;
4799
4800 if (sp->rxd_mode == RXD_MODE_1)
4801 ering->rx_max_pending = MAX_RX_DESC_1;
4802 else if (sp->rxd_mode == RXD_MODE_3B)
4803 ering->rx_max_pending = MAX_RX_DESC_2;
4804
4805 ering->tx_max_pending = MAX_TX_DESC;
4806 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
4807 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4808
4809 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4810 ering->tx_pending = tx_desc_count;
4811 rx_desc_count = 0;
4812 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
4813 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4814
4815 ering->rx_pending = rx_desc_count;
4816
4817 ering->rx_mini_max_pending = 0;
4818 ering->rx_mini_pending = 0;
4819 if(sp->rxd_mode == RXD_MODE_1)
4820 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4821 else if (sp->rxd_mode == RXD_MODE_3B)
4822 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4823 ering->rx_jumbo_pending = rx_desc_count;
4824 }
4825
4826 /**
4827 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4828 * @sp : private member of the device structure, which is a pointer to the
4829 * s2io_nic structure.
4830 * @ep : pointer to the structure with pause parameters given by ethtool.
4831 * Description:
4832 * Returns the Pause frame generation and reception capability of the NIC.
4833 * Return value:
4834 * void
4835 */
4836 static void s2io_ethtool_getpause_data(struct net_device *dev,
4837 struct ethtool_pauseparam *ep)
4838 {
4839 u64 val64;
4840 struct s2io_nic *sp = dev->priv;
4841 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4842
4843 val64 = readq(&bar0->rmac_pause_cfg);
4844 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4845 ep->tx_pause = TRUE;
4846 if (val64 & RMAC_PAUSE_RX_ENABLE)
4847 ep->rx_pause = TRUE;
4848 ep->autoneg = FALSE;
4849 }
4850
4851 /**
4852 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4853 * @sp : private member of the device structure, which is a pointer to the
4854 * s2io_nic structure.
4855 * @ep : pointer to the structure with pause parameters given by ethtool.
4856 * Description:
4857 * It can be used to set or reset Pause frame generation or reception
4858 * support of the NIC.
4859 * Return value:
4860 * int, returns 0 on Success
4861 */
4862
4863 static int s2io_ethtool_setpause_data(struct net_device *dev,
4864 struct ethtool_pauseparam *ep)
4865 {
4866 u64 val64;
4867 struct s2io_nic *sp = dev->priv;
4868 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4869
4870 val64 = readq(&bar0->rmac_pause_cfg);
4871 if (ep->tx_pause)
4872 val64 |= RMAC_PAUSE_GEN_ENABLE;
4873 else
4874 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4875 if (ep->rx_pause)
4876 val64 |= RMAC_PAUSE_RX_ENABLE;
4877 else
4878 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4879 writeq(val64, &bar0->rmac_pause_cfg);
4880 return 0;
4881 }
4882
4883 /**
4884 * read_eeprom - reads 4 bytes of data from user given offset.
4885 * @sp : private member of the device structure, which is a pointer to the
4886 * s2io_nic structure.
4887 * @off : offset at which the data must be written
4888 * @data : Its an output parameter where the data read at the given
4889 * offset is stored.
4890 * Description:
4891 * Will read 4 bytes of data from the user given offset and return the
4892 * read data.
4893 * NOTE: Will allow to read only part of the EEPROM visible through the
4894 * I2C bus.
4895 * Return value:
4896 * -1 on failure and 0 on success.
4897 */
4898
4899 #define S2IO_DEV_ID 5
4900 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4901 {
4902 int ret = -1;
4903 u32 exit_cnt = 0;
4904 u64 val64;
4905 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4906
4907 if (sp->device_type == XFRAME_I_DEVICE) {
4908 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4909 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4910 I2C_CONTROL_CNTL_START;
4911 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4912
4913 while (exit_cnt < 5) {
4914 val64 = readq(&bar0->i2c_control);
4915 if (I2C_CONTROL_CNTL_END(val64)) {
4916 *data = I2C_CONTROL_GET_DATA(val64);
4917 ret = 0;
4918 break;
4919 }
4920 msleep(50);
4921 exit_cnt++;
4922 }
4923 }
4924
4925 if (sp->device_type == XFRAME_II_DEVICE) {
4926 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4927 SPI_CONTROL_BYTECNT(0x3) |
4928 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4929 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4930 val64 |= SPI_CONTROL_REQ;
4931 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4932 while (exit_cnt < 5) {
4933 val64 = readq(&bar0->spi_control);
4934 if (val64 & SPI_CONTROL_NACK) {
4935 ret = 1;
4936 break;
4937 } else if (val64 & SPI_CONTROL_DONE) {
4938 *data = readq(&bar0->spi_data);
4939 *data &= 0xffffff;
4940 ret = 0;
4941 break;
4942 }
4943 msleep(50);
4944 exit_cnt++;
4945 }
4946 }
4947 return ret;
4948 }
4949
4950 /**
4951 * write_eeprom - actually writes the relevant part of the data value.
4952 * @sp : private member of the device structure, which is a pointer to the
4953 * s2io_nic structure.
4954 * @off : offset at which the data must be written
4955 * @data : The data that is to be written
4956 * @cnt : Number of bytes of the data that are actually to be written into
4957 * the Eeprom. (max of 3)
4958 * Description:
4959 * Actually writes the relevant part of the data value into the Eeprom
4960 * through the I2C bus.
4961 * Return value:
4962 * 0 on success, -1 on failure.
4963 */
4964
4965 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4966 {
4967 int exit_cnt = 0, ret = -1;
4968 u64 val64;
4969 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4970
4971 if (sp->device_type == XFRAME_I_DEVICE) {
4972 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4973 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4974 I2C_CONTROL_CNTL_START;
4975 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4976
4977 while (exit_cnt < 5) {
4978 val64 = readq(&bar0->i2c_control);
4979 if (I2C_CONTROL_CNTL_END(val64)) {
4980 if (!(val64 & I2C_CONTROL_NACK))
4981 ret = 0;
4982 break;
4983 }
4984 msleep(50);
4985 exit_cnt++;
4986 }
4987 }
4988
4989 if (sp->device_type == XFRAME_II_DEVICE) {
4990 int write_cnt = (cnt == 8) ? 0 : cnt;
4991 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4992
4993 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4994 SPI_CONTROL_BYTECNT(write_cnt) |
4995 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4996 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4997 val64 |= SPI_CONTROL_REQ;
4998 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4999 while (exit_cnt < 5) {
5000 val64 = readq(&bar0->spi_control);
5001 if (val64 & SPI_CONTROL_NACK) {
5002 ret = 1;
5003 break;
5004 } else if (val64 & SPI_CONTROL_DONE) {
5005 ret = 0;
5006 break;
5007 }
5008 msleep(50);
5009 exit_cnt++;
5010 }
5011 }
5012 return ret;
5013 }
5014 static void s2io_vpd_read(struct s2io_nic *nic)
5015 {
5016 u8 *vpd_data;
5017 u8 data;
5018 int i=0, cnt, fail = 0;
5019 int vpd_addr = 0x80;
5020
5021 if (nic->device_type == XFRAME_II_DEVICE) {
5022 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5023 vpd_addr = 0x80;
5024 }
5025 else {
5026 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5027 vpd_addr = 0x50;
5028 }
5029 strcpy(nic->serial_num, "NOT AVAILABLE");
5030
5031 vpd_data = kmalloc(256, GFP_KERNEL);
5032 if (!vpd_data) {
5033 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5034 return;
5035 }
5036 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5037
5038 for (i = 0; i < 256; i +=4 ) {
5039 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5040 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5041 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5042 for (cnt = 0; cnt <5; cnt++) {
5043 msleep(2);
5044 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5045 if (data == 0x80)
5046 break;
5047 }
5048 if (cnt >= 5) {
5049 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5050 fail = 1;
5051 break;
5052 }
5053 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5054 (u32 *)&vpd_data[i]);
5055 }
5056
5057 if(!fail) {
5058 /* read serial number of adapter */
5059 for (cnt = 0; cnt < 256; cnt++) {
5060 if ((vpd_data[cnt] == 'S') &&
5061 (vpd_data[cnt+1] == 'N') &&
5062 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5063 memset(nic->serial_num, 0, VPD_STRING_LEN);
5064 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5065 vpd_data[cnt+2]);
5066 break;
5067 }
5068 }
5069 }
5070
5071 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5072 memset(nic->product_name, 0, vpd_data[1]);
5073 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5074 }
5075 kfree(vpd_data);
5076 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5077 }
5078
5079 /**
5080 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5081 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5082 * @eeprom : pointer to the user level structure provided by ethtool,
5083 * containing all relevant information.
5084 * @data_buf : user defined value to be written into Eeprom.
5085 * Description: Reads the values stored in the Eeprom at given offset
5086 * for a given length. Stores these values int the input argument data
5087 * buffer 'data_buf' and returns these to the caller (ethtool.)
5088 * Return value:
5089 * int 0 on success
5090 */
5091
5092 static int s2io_ethtool_geeprom(struct net_device *dev,
5093 struct ethtool_eeprom *eeprom, u8 * data_buf)
5094 {
5095 u32 i, valid;
5096 u64 data;
5097 struct s2io_nic *sp = dev->priv;
5098
5099 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5100
5101 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5102 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5103
5104 for (i = 0; i < eeprom->len; i += 4) {
5105 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5106 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5107 return -EFAULT;
5108 }
5109 valid = INV(data);
5110 memcpy((data_buf + i), &valid, 4);
5111 }
5112 return 0;
5113 }
5114
5115 /**
5116 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5117 * @sp : private member of the device structure, which is a pointer to the
5118 * s2io_nic structure.
5119 * @eeprom : pointer to the user level structure provided by ethtool,
5120 * containing all relevant information.
5121 * @data_buf ; user defined value to be written into Eeprom.
5122 * Description:
5123 * Tries to write the user provided value in the Eeprom, at the offset
5124 * given by the user.
5125 * Return value:
5126 * 0 on success, -EFAULT on failure.
5127 */
5128
5129 static int s2io_ethtool_seeprom(struct net_device *dev,
5130 struct ethtool_eeprom *eeprom,
5131 u8 * data_buf)
5132 {
5133 int len = eeprom->len, cnt = 0;
5134 u64 valid = 0, data;
5135 struct s2io_nic *sp = dev->priv;
5136
5137 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5138 DBG_PRINT(ERR_DBG,
5139 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5140 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5141 eeprom->magic);
5142 return -EFAULT;
5143 }
5144
5145 while (len) {
5146 data = (u32) data_buf[cnt] & 0x000000FF;
5147 if (data) {
5148 valid = (u32) (data << 24);
5149 } else
5150 valid = data;
5151
5152 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5153 DBG_PRINT(ERR_DBG,
5154 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5155 DBG_PRINT(ERR_DBG,
5156 "write into the specified offset\n");
5157 return -EFAULT;
5158 }
5159 cnt++;
5160 len--;
5161 }
5162
5163 return 0;
5164 }
5165
5166 /**
5167 * s2io_register_test - reads and writes into all clock domains.
5168 * @sp : private member of the device structure, which is a pointer to the
5169 * s2io_nic structure.
5170 * @data : variable that returns the result of each of the test conducted b
5171 * by the driver.
5172 * Description:
5173 * Read and write into all clock domains. The NIC has 3 clock domains,
5174 * see that registers in all the three regions are accessible.
5175 * Return value:
5176 * 0 on success.
5177 */
5178
5179 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5180 {
5181 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5182 u64 val64 = 0, exp_val;
5183 int fail = 0;
5184
5185 val64 = readq(&bar0->pif_rd_swapper_fb);
5186 if (val64 != 0x123456789abcdefULL) {
5187 fail = 1;
5188 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5189 }
5190
5191 val64 = readq(&bar0->rmac_pause_cfg);
5192 if (val64 != 0xc000ffff00000000ULL) {
5193 fail = 1;
5194 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5195 }
5196
5197 val64 = readq(&bar0->rx_queue_cfg);
5198 if (sp->device_type == XFRAME_II_DEVICE)
5199 exp_val = 0x0404040404040404ULL;
5200 else
5201 exp_val = 0x0808080808080808ULL;
5202 if (val64 != exp_val) {
5203 fail = 1;
5204 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5205 }
5206
5207 val64 = readq(&bar0->xgxs_efifo_cfg);
5208 if (val64 != 0x000000001923141EULL) {
5209 fail = 1;
5210 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5211 }
5212
5213 val64 = 0x5A5A5A5A5A5A5A5AULL;
5214 writeq(val64, &bar0->xmsi_data);
5215 val64 = readq(&bar0->xmsi_data);
5216 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5217 fail = 1;
5218 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5219 }
5220
5221 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5222 writeq(val64, &bar0->xmsi_data);
5223 val64 = readq(&bar0->xmsi_data);
5224 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5225 fail = 1;
5226 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5227 }
5228
5229 *data = fail;
5230 return fail;
5231 }
5232
5233 /**
5234 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5235 * @sp : private member of the device structure, which is a pointer to the
5236 * s2io_nic structure.
5237 * @data:variable that returns the result of each of the test conducted by
5238 * the driver.
5239 * Description:
5240 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5241 * register.
5242 * Return value:
5243 * 0 on success.
5244 */
5245
5246 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5247 {
5248 int fail = 0;
5249 u64 ret_data, org_4F0, org_7F0;
5250 u8 saved_4F0 = 0, saved_7F0 = 0;
5251 struct net_device *dev = sp->dev;
5252
5253 /* Test Write Error at offset 0 */
5254 /* Note that SPI interface allows write access to all areas
5255 * of EEPROM. Hence doing all negative testing only for Xframe I.
5256 */
5257 if (sp->device_type == XFRAME_I_DEVICE)
5258 if (!write_eeprom(sp, 0, 0, 3))
5259 fail = 1;
5260
5261 /* Save current values at offsets 0x4F0 and 0x7F0 */
5262 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5263 saved_4F0 = 1;
5264 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5265 saved_7F0 = 1;
5266
5267 /* Test Write at offset 4f0 */
5268 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5269 fail = 1;
5270 if (read_eeprom(sp, 0x4F0, &ret_data))
5271 fail = 1;
5272
5273 if (ret_data != 0x012345) {
5274 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5275 "Data written %llx Data read %llx\n",
5276 dev->name, (unsigned long long)0x12345,
5277 (unsigned long long)ret_data);
5278 fail = 1;
5279 }
5280
5281 /* Reset the EEPROM data go FFFF */
5282 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5283
5284 /* Test Write Request Error at offset 0x7c */
5285 if (sp->device_type == XFRAME_I_DEVICE)
5286 if (!write_eeprom(sp, 0x07C, 0, 3))
5287 fail = 1;
5288
5289 /* Test Write Request at offset 0x7f0 */
5290 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5291 fail = 1;
5292 if (read_eeprom(sp, 0x7F0, &ret_data))
5293 fail = 1;
5294
5295 if (ret_data != 0x012345) {
5296 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5297 "Data written %llx Data read %llx\n",
5298 dev->name, (unsigned long long)0x12345,
5299 (unsigned long long)ret_data);
5300 fail = 1;
5301 }
5302
5303 /* Reset the EEPROM data go FFFF */
5304 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5305
5306 if (sp->device_type == XFRAME_I_DEVICE) {
5307 /* Test Write Error at offset 0x80 */
5308 if (!write_eeprom(sp, 0x080, 0, 3))
5309 fail = 1;
5310
5311 /* Test Write Error at offset 0xfc */
5312 if (!write_eeprom(sp, 0x0FC, 0, 3))
5313 fail = 1;
5314
5315 /* Test Write Error at offset 0x100 */
5316 if (!write_eeprom(sp, 0x100, 0, 3))
5317 fail = 1;
5318
5319 /* Test Write Error at offset 4ec */
5320 if (!write_eeprom(sp, 0x4EC, 0, 3))
5321 fail = 1;
5322 }
5323
5324 /* Restore values at offsets 0x4F0 and 0x7F0 */
5325 if (saved_4F0)
5326 write_eeprom(sp, 0x4F0, org_4F0, 3);
5327 if (saved_7F0)
5328 write_eeprom(sp, 0x7F0, org_7F0, 3);
5329
5330 *data = fail;
5331 return fail;
5332 }
5333
5334 /**
5335 * s2io_bist_test - invokes the MemBist test of the card .
5336 * @sp : private member of the device structure, which is a pointer to the
5337 * s2io_nic structure.
5338 * @data:variable that returns the result of each of the test conducted by
5339 * the driver.
5340 * Description:
5341 * This invokes the MemBist test of the card. We give around
5342 * 2 secs time for the Test to complete. If it's still not complete
5343 * within this peiod, we consider that the test failed.
5344 * Return value:
5345 * 0 on success and -1 on failure.
5346 */
5347
5348 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5349 {
5350 u8 bist = 0;
5351 int cnt = 0, ret = -1;
5352
5353 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5354 bist |= PCI_BIST_START;
5355 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5356
5357 while (cnt < 20) {
5358 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5359 if (!(bist & PCI_BIST_START)) {
5360 *data = (bist & PCI_BIST_CODE_MASK);
5361 ret = 0;
5362 break;
5363 }
5364 msleep(100);
5365 cnt++;
5366 }
5367
5368 return ret;
5369 }
5370
5371 /**
5372 * s2io-link_test - verifies the link state of the nic
5373 * @sp ; private member of the device structure, which is a pointer to the
5374 * s2io_nic structure.
5375 * @data: variable that returns the result of each of the test conducted by
5376 * the driver.
5377 * Description:
5378 * The function verifies the link state of the NIC and updates the input
5379 * argument 'data' appropriately.
5380 * Return value:
5381 * 0 on success.
5382 */
5383
5384 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5385 {
5386 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5387 u64 val64;
5388
5389 val64 = readq(&bar0->adapter_status);
5390 if(!(LINK_IS_UP(val64)))
5391 *data = 1;
5392 else
5393 *data = 0;
5394
5395 return *data;
5396 }
5397
5398 /**
5399 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5400 * @sp - private member of the device structure, which is a pointer to the
5401 * s2io_nic structure.
5402 * @data - variable that returns the result of each of the test
5403 * conducted by the driver.
5404 * Description:
5405 * This is one of the offline test that tests the read and write
5406 * access to the RldRam chip on the NIC.
5407 * Return value:
5408 * 0 on success.
5409 */
5410
5411 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5412 {
5413 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5414 u64 val64;
5415 int cnt, iteration = 0, test_fail = 0;
5416
5417 val64 = readq(&bar0->adapter_control);
5418 val64 &= ~ADAPTER_ECC_EN;
5419 writeq(val64, &bar0->adapter_control);
5420
5421 val64 = readq(&bar0->mc_rldram_test_ctrl);
5422 val64 |= MC_RLDRAM_TEST_MODE;
5423 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5424
5425 val64 = readq(&bar0->mc_rldram_mrs);
5426 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5427 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5428
5429 val64 |= MC_RLDRAM_MRS_ENABLE;
5430 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5431
5432 while (iteration < 2) {
5433 val64 = 0x55555555aaaa0000ULL;
5434 if (iteration == 1) {
5435 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5436 }
5437 writeq(val64, &bar0->mc_rldram_test_d0);
5438
5439 val64 = 0xaaaa5a5555550000ULL;
5440 if (iteration == 1) {
5441 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5442 }
5443 writeq(val64, &bar0->mc_rldram_test_d1);
5444
5445 val64 = 0x55aaaaaaaa5a0000ULL;
5446 if (iteration == 1) {
5447 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5448 }
5449 writeq(val64, &bar0->mc_rldram_test_d2);
5450
5451 val64 = (u64) (0x0000003ffffe0100ULL);
5452 writeq(val64, &bar0->mc_rldram_test_add);
5453
5454 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5455 MC_RLDRAM_TEST_GO;
5456 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5457
5458 for (cnt = 0; cnt < 5; cnt++) {
5459 val64 = readq(&bar0->mc_rldram_test_ctrl);
5460 if (val64 & MC_RLDRAM_TEST_DONE)
5461 break;
5462 msleep(200);
5463 }
5464
5465 if (cnt == 5)
5466 break;
5467
5468 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5469 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5470
5471 for (cnt = 0; cnt < 5; cnt++) {
5472 val64 = readq(&bar0->mc_rldram_test_ctrl);
5473 if (val64 & MC_RLDRAM_TEST_DONE)
5474 break;
5475 msleep(500);
5476 }
5477
5478 if (cnt == 5)
5479 break;
5480
5481 val64 = readq(&bar0->mc_rldram_test_ctrl);
5482 if (!(val64 & MC_RLDRAM_TEST_PASS))
5483 test_fail = 1;
5484
5485 iteration++;
5486 }
5487
5488 *data = test_fail;
5489
5490 /* Bring the adapter out of test mode */
5491 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5492
5493 return test_fail;
5494 }
5495
5496 /**
5497 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5498 * @sp : private member of the device structure, which is a pointer to the
5499 * s2io_nic structure.
5500 * @ethtest : pointer to a ethtool command specific structure that will be
5501 * returned to the user.
5502 * @data : variable that returns the result of each of the test
5503 * conducted by the driver.
5504 * Description:
5505 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5506 * the health of the card.
5507 * Return value:
5508 * void
5509 */
5510
5511 static void s2io_ethtool_test(struct net_device *dev,
5512 struct ethtool_test *ethtest,
5513 uint64_t * data)
5514 {
5515 struct s2io_nic *sp = dev->priv;
5516 int orig_state = netif_running(sp->dev);
5517
5518 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5519 /* Offline Tests. */
5520 if (orig_state)
5521 s2io_close(sp->dev);
5522
5523 if (s2io_register_test(sp, &data[0]))
5524 ethtest->flags |= ETH_TEST_FL_FAILED;
5525
5526 s2io_reset(sp);
5527
5528 if (s2io_rldram_test(sp, &data[3]))
5529 ethtest->flags |= ETH_TEST_FL_FAILED;
5530
5531 s2io_reset(sp);
5532
5533 if (s2io_eeprom_test(sp, &data[1]))
5534 ethtest->flags |= ETH_TEST_FL_FAILED;
5535
5536 if (s2io_bist_test(sp, &data[4]))
5537 ethtest->flags |= ETH_TEST_FL_FAILED;
5538
5539 if (orig_state)
5540 s2io_open(sp->dev);
5541
5542 data[2] = 0;
5543 } else {
5544 /* Online Tests. */
5545 if (!orig_state) {
5546 DBG_PRINT(ERR_DBG,
5547 "%s: is not up, cannot run test\n",
5548 dev->name);
5549 data[0] = -1;
5550 data[1] = -1;
5551 data[2] = -1;
5552 data[3] = -1;
5553 data[4] = -1;
5554 }
5555
5556 if (s2io_link_test(sp, &data[2]))
5557 ethtest->flags |= ETH_TEST_FL_FAILED;
5558
5559 data[0] = 0;
5560 data[1] = 0;
5561 data[3] = 0;
5562 data[4] = 0;
5563 }
5564 }
5565
5566 static void s2io_get_ethtool_stats(struct net_device *dev,
5567 struct ethtool_stats *estats,
5568 u64 * tmp_stats)
5569 {
5570 int i = 0;
5571 struct s2io_nic *sp = dev->priv;
5572 struct stat_block *stat_info = sp->mac_control.stats_info;
5573
5574 s2io_updt_stats(sp);
5575 tmp_stats[i++] =
5576 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5577 le32_to_cpu(stat_info->tmac_frms);
5578 tmp_stats[i++] =
5579 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5580 le32_to_cpu(stat_info->tmac_data_octets);
5581 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5582 tmp_stats[i++] =
5583 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5584 le32_to_cpu(stat_info->tmac_mcst_frms);
5585 tmp_stats[i++] =
5586 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5587 le32_to_cpu(stat_info->tmac_bcst_frms);
5588 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5589 tmp_stats[i++] =
5590 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5591 le32_to_cpu(stat_info->tmac_ttl_octets);
5592 tmp_stats[i++] =
5593 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5594 le32_to_cpu(stat_info->tmac_ucst_frms);
5595 tmp_stats[i++] =
5596 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5597 le32_to_cpu(stat_info->tmac_nucst_frms);
5598 tmp_stats[i++] =
5599 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5600 le32_to_cpu(stat_info->tmac_any_err_frms);
5601 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5602 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5603 tmp_stats[i++] =
5604 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5605 le32_to_cpu(stat_info->tmac_vld_ip);
5606 tmp_stats[i++] =
5607 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5608 le32_to_cpu(stat_info->tmac_drop_ip);
5609 tmp_stats[i++] =
5610 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5611 le32_to_cpu(stat_info->tmac_icmp);
5612 tmp_stats[i++] =
5613 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5614 le32_to_cpu(stat_info->tmac_rst_tcp);
5615 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5616 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5617 le32_to_cpu(stat_info->tmac_udp);
5618 tmp_stats[i++] =
5619 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5620 le32_to_cpu(stat_info->rmac_vld_frms);
5621 tmp_stats[i++] =
5622 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5623 le32_to_cpu(stat_info->rmac_data_octets);
5624 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5625 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5626 tmp_stats[i++] =
5627 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5628 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5629 tmp_stats[i++] =
5630 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5631 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5632 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5633 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5634 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5635 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5636 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5637 tmp_stats[i++] =
5638 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5639 le32_to_cpu(stat_info->rmac_ttl_octets);
5640 tmp_stats[i++] =
5641 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5642 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5643 tmp_stats[i++] =
5644 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5645 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5646 tmp_stats[i++] =
5647 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5648 le32_to_cpu(stat_info->rmac_discarded_frms);
5649 tmp_stats[i++] =
5650 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5651 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5652 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5653 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5654 tmp_stats[i++] =
5655 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5656 le32_to_cpu(stat_info->rmac_usized_frms);
5657 tmp_stats[i++] =
5658 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5659 le32_to_cpu(stat_info->rmac_osized_frms);
5660 tmp_stats[i++] =
5661 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5662 le32_to_cpu(stat_info->rmac_frag_frms);
5663 tmp_stats[i++] =
5664 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5665 le32_to_cpu(stat_info->rmac_jabber_frms);
5666 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5667 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5668 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5669 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5670 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5671 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5672 tmp_stats[i++] =
5673 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5674 le32_to_cpu(stat_info->rmac_ip);
5675 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5676 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5677 tmp_stats[i++] =
5678 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5679 le32_to_cpu(stat_info->rmac_drop_ip);
5680 tmp_stats[i++] =
5681 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5682 le32_to_cpu(stat_info->rmac_icmp);
5683 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5684 tmp_stats[i++] =
5685 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5686 le32_to_cpu(stat_info->rmac_udp);
5687 tmp_stats[i++] =
5688 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5689 le32_to_cpu(stat_info->rmac_err_drp_udp);
5690 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5695 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5696 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5697 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5698 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5699 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5700 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5701 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5702 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5703 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5704 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5705 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5706 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5707 tmp_stats[i++] =
5708 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5709 le32_to_cpu(stat_info->rmac_pause_cnt);
5710 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5711 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5712 tmp_stats[i++] =
5713 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5714 le32_to_cpu(stat_info->rmac_accepted_ip);
5715 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5716 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5717 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5718 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5719 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5720 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5721 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5722 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5723 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5724 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5725 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5726 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5727 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5728 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5729 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5730 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5731 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5732 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5733 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5734
5735 /* Enhanced statistics exist only for Hercules */
5736 if(sp->device_type == XFRAME_II_DEVICE) {
5737 tmp_stats[i++] =
5738 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5739 tmp_stats[i++] =
5740 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5741 tmp_stats[i++] =
5742 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5743 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5744 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5745 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5746 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5747 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5748 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5749 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5750 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5751 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5752 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5753 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5754 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5755 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5756 }
5757
5758 tmp_stats[i++] = 0;
5759 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5760 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5761 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5762 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5763 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5764 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5765 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5766 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5767 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5768 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5769 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5770 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5771 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5772 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5773 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5774 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5775 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5776 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5777 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5778 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5779 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5780 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5781 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5782 if (stat_info->sw_stat.num_aggregations) {
5783 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5784 int count = 0;
5785 /*
5786 * Since 64-bit divide does not work on all platforms,
5787 * do repeated subtraction.
5788 */
5789 while (tmp >= stat_info->sw_stat.num_aggregations) {
5790 tmp -= stat_info->sw_stat.num_aggregations;
5791 count++;
5792 }
5793 tmp_stats[i++] = count;
5794 }
5795 else
5796 tmp_stats[i++] = 0;
5797 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5798 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
5799 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5800 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5801 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5802 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5803 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5804 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5805 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5806
5807 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5808 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5809 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5810 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5811 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5812
5813 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5814 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5815 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5816 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5817 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5818 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5819 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5820 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5821 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5822 }
5823
5824 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5825 {
5826 return (XENA_REG_SPACE);
5827 }
5828
5829
5830 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5831 {
5832 struct s2io_nic *sp = dev->priv;
5833
5834 return (sp->rx_csum);
5835 }
5836
5837 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5838 {
5839 struct s2io_nic *sp = dev->priv;
5840
5841 if (data)
5842 sp->rx_csum = 1;
5843 else
5844 sp->rx_csum = 0;
5845
5846 return 0;
5847 }
5848
5849 static int s2io_get_eeprom_len(struct net_device *dev)
5850 {
5851 return (XENA_EEPROM_SPACE);
5852 }
5853
5854 static int s2io_ethtool_self_test_count(struct net_device *dev)
5855 {
5856 return (S2IO_TEST_LEN);
5857 }
5858
5859 static void s2io_ethtool_get_strings(struct net_device *dev,
5860 u32 stringset, u8 * data)
5861 {
5862 int stat_size = 0;
5863 struct s2io_nic *sp = dev->priv;
5864
5865 switch (stringset) {
5866 case ETH_SS_TEST:
5867 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5868 break;
5869 case ETH_SS_STATS:
5870 stat_size = sizeof(ethtool_xena_stats_keys);
5871 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5872 if(sp->device_type == XFRAME_II_DEVICE) {
5873 memcpy(data + stat_size,
5874 &ethtool_enhanced_stats_keys,
5875 sizeof(ethtool_enhanced_stats_keys));
5876 stat_size += sizeof(ethtool_enhanced_stats_keys);
5877 }
5878
5879 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5880 sizeof(ethtool_driver_stats_keys));
5881 }
5882 }
5883 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5884 {
5885 struct s2io_nic *sp = dev->priv;
5886 int stat_count = 0;
5887 switch(sp->device_type) {
5888 case XFRAME_I_DEVICE:
5889 stat_count = XFRAME_I_STAT_LEN;
5890 break;
5891
5892 case XFRAME_II_DEVICE:
5893 stat_count = XFRAME_II_STAT_LEN;
5894 break;
5895 }
5896
5897 return stat_count;
5898 }
5899
5900 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5901 {
5902 if (data)
5903 dev->features |= NETIF_F_IP_CSUM;
5904 else
5905 dev->features &= ~NETIF_F_IP_CSUM;
5906
5907 return 0;
5908 }
5909
5910 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5911 {
5912 return (dev->features & NETIF_F_TSO) != 0;
5913 }
5914 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5915 {
5916 if (data)
5917 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5918 else
5919 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5920
5921 return 0;
5922 }
5923
5924 static const struct ethtool_ops netdev_ethtool_ops = {
5925 .get_settings = s2io_ethtool_gset,
5926 .set_settings = s2io_ethtool_sset,
5927 .get_drvinfo = s2io_ethtool_gdrvinfo,
5928 .get_regs_len = s2io_ethtool_get_regs_len,
5929 .get_regs = s2io_ethtool_gregs,
5930 .get_link = ethtool_op_get_link,
5931 .get_eeprom_len = s2io_get_eeprom_len,
5932 .get_eeprom = s2io_ethtool_geeprom,
5933 .set_eeprom = s2io_ethtool_seeprom,
5934 .get_ringparam = s2io_ethtool_gringparam,
5935 .get_pauseparam = s2io_ethtool_getpause_data,
5936 .set_pauseparam = s2io_ethtool_setpause_data,
5937 .get_rx_csum = s2io_ethtool_get_rx_csum,
5938 .set_rx_csum = s2io_ethtool_set_rx_csum,
5939 .get_tx_csum = ethtool_op_get_tx_csum,
5940 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5941 .get_sg = ethtool_op_get_sg,
5942 .set_sg = ethtool_op_set_sg,
5943 .get_tso = s2io_ethtool_op_get_tso,
5944 .set_tso = s2io_ethtool_op_set_tso,
5945 .get_ufo = ethtool_op_get_ufo,
5946 .set_ufo = ethtool_op_set_ufo,
5947 .self_test_count = s2io_ethtool_self_test_count,
5948 .self_test = s2io_ethtool_test,
5949 .get_strings = s2io_ethtool_get_strings,
5950 .phys_id = s2io_ethtool_idnic,
5951 .get_stats_count = s2io_ethtool_get_stats_count,
5952 .get_ethtool_stats = s2io_get_ethtool_stats
5953 };
5954
5955 /**
5956 * s2io_ioctl - Entry point for the Ioctl
5957 * @dev : Device pointer.
5958 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5959 * a proprietary structure used to pass information to the driver.
5960 * @cmd : This is used to distinguish between the different commands that
5961 * can be passed to the IOCTL functions.
5962 * Description:
5963 * Currently there are no special functionality supported in IOCTL, hence
5964 * function always return EOPNOTSUPPORTED
5965 */
5966
5967 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5968 {
5969 return -EOPNOTSUPP;
5970 }
5971
5972 /**
5973 * s2io_change_mtu - entry point to change MTU size for the device.
5974 * @dev : device pointer.
5975 * @new_mtu : the new MTU size for the device.
5976 * Description: A driver entry point to change MTU size for the device.
5977 * Before changing the MTU the device must be stopped.
5978 * Return value:
5979 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5980 * file on failure.
5981 */
5982
5983 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5984 {
5985 struct s2io_nic *sp = dev->priv;
5986
5987 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5988 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5989 dev->name);
5990 return -EPERM;
5991 }
5992
5993 dev->mtu = new_mtu;
5994 if (netif_running(dev)) {
5995 s2io_card_down(sp);
5996 netif_stop_queue(dev);
5997 if (s2io_card_up(sp)) {
5998 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5999 __FUNCTION__);
6000 }
6001 if (netif_queue_stopped(dev))
6002 netif_wake_queue(dev);
6003 } else { /* Device is down */
6004 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6005 u64 val64 = new_mtu;
6006
6007 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6008 }
6009
6010 return 0;
6011 }
6012
6013 /**
6014 * s2io_tasklet - Bottom half of the ISR.
6015 * @dev_adr : address of the device structure in dma_addr_t format.
6016 * Description:
6017 * This is the tasklet or the bottom half of the ISR. This is
6018 * an extension of the ISR which is scheduled by the scheduler to be run
6019 * when the load on the CPU is low. All low priority tasks of the ISR can
6020 * be pushed into the tasklet. For now the tasklet is used only to
6021 * replenish the Rx buffers in the Rx buffer descriptors.
6022 * Return value:
6023 * void.
6024 */
6025
6026 static void s2io_tasklet(unsigned long dev_addr)
6027 {
6028 struct net_device *dev = (struct net_device *) dev_addr;
6029 struct s2io_nic *sp = dev->priv;
6030 int i, ret;
6031 struct mac_info *mac_control;
6032 struct config_param *config;
6033
6034 mac_control = &sp->mac_control;
6035 config = &sp->config;
6036
6037 if (!TASKLET_IN_USE) {
6038 for (i = 0; i < config->rx_ring_num; i++) {
6039 ret = fill_rx_buffers(sp, i);
6040 if (ret == -ENOMEM) {
6041 DBG_PRINT(INFO_DBG, "%s: Out of ",
6042 dev->name);
6043 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6044 break;
6045 } else if (ret == -EFILL) {
6046 DBG_PRINT(INFO_DBG,
6047 "%s: Rx Ring %d is full\n",
6048 dev->name, i);
6049 break;
6050 }
6051 }
6052 clear_bit(0, (&sp->tasklet_status));
6053 }
6054 }
6055
6056 /**
6057 * s2io_set_link - Set the LInk status
6058 * @data: long pointer to device private structue
6059 * Description: Sets the link status for the adapter
6060 */
6061
6062 static void s2io_set_link(struct work_struct *work)
6063 {
6064 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6065 struct net_device *dev = nic->dev;
6066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6067 register u64 val64;
6068 u16 subid;
6069
6070 rtnl_lock();
6071
6072 if (!netif_running(dev))
6073 goto out_unlock;
6074
6075 if (test_and_set_bit(0, &(nic->link_state))) {
6076 /* The card is being reset, no point doing anything */
6077 goto out_unlock;
6078 }
6079
6080 subid = nic->pdev->subsystem_device;
6081 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6082 /*
6083 * Allow a small delay for the NICs self initiated
6084 * cleanup to complete.
6085 */
6086 msleep(100);
6087 }
6088
6089 val64 = readq(&bar0->adapter_status);
6090 if (LINK_IS_UP(val64)) {
6091 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6092 if (verify_xena_quiescence(nic)) {
6093 val64 = readq(&bar0->adapter_control);
6094 val64 |= ADAPTER_CNTL_EN;
6095 writeq(val64, &bar0->adapter_control);
6096 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6097 nic->device_type, subid)) {
6098 val64 = readq(&bar0->gpio_control);
6099 val64 |= GPIO_CTRL_GPIO_0;
6100 writeq(val64, &bar0->gpio_control);
6101 val64 = readq(&bar0->gpio_control);
6102 } else {
6103 val64 |= ADAPTER_LED_ON;
6104 writeq(val64, &bar0->adapter_control);
6105 }
6106 nic->device_enabled_once = TRUE;
6107 } else {
6108 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6109 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6110 netif_stop_queue(dev);
6111 }
6112 }
6113 val64 = readq(&bar0->adapter_status);
6114 if (!LINK_IS_UP(val64)) {
6115 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6116 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6117 DBG_PRINT(ERR_DBG, "device \n");
6118 } else
6119 s2io_link(nic, LINK_UP);
6120 } else {
6121 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6122 subid)) {
6123 val64 = readq(&bar0->gpio_control);
6124 val64 &= ~GPIO_CTRL_GPIO_0;
6125 writeq(val64, &bar0->gpio_control);
6126 val64 = readq(&bar0->gpio_control);
6127 }
6128 s2io_link(nic, LINK_DOWN);
6129 }
6130 clear_bit(0, &(nic->link_state));
6131
6132 out_unlock:
6133 rtnl_unlock();
6134 }
6135
6136 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6137 struct buffAdd *ba,
6138 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6139 u64 *temp2, int size)
6140 {
6141 struct net_device *dev = sp->dev;
6142 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6143
6144 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6145 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6146 /* allocate skb */
6147 if (*skb) {
6148 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6149 /*
6150 * As Rx frame are not going to be processed,
6151 * using same mapped address for the Rxd
6152 * buffer pointer
6153 */
6154 rxdp1->Buffer0_ptr = *temp0;
6155 } else {
6156 *skb = dev_alloc_skb(size);
6157 if (!(*skb)) {
6158 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6159 DBG_PRINT(INFO_DBG, "memory to allocate ");
6160 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6161 sp->mac_control.stats_info->sw_stat. \
6162 mem_alloc_fail_cnt++;
6163 return -ENOMEM ;
6164 }
6165 sp->mac_control.stats_info->sw_stat.mem_allocated
6166 += (*skb)->truesize;
6167 /* storing the mapped addr in a temp variable
6168 * such it will be used for next rxd whose
6169 * Host Control is NULL
6170 */
6171 rxdp1->Buffer0_ptr = *temp0 =
6172 pci_map_single( sp->pdev, (*skb)->data,
6173 size - NET_IP_ALIGN,
6174 PCI_DMA_FROMDEVICE);
6175 if( (rxdp1->Buffer0_ptr == 0) ||
6176 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6177 goto memalloc_failed;
6178 }
6179 rxdp->Host_Control = (unsigned long) (*skb);
6180 }
6181 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6182 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6183 /* Two buffer Mode */
6184 if (*skb) {
6185 rxdp3->Buffer2_ptr = *temp2;
6186 rxdp3->Buffer0_ptr = *temp0;
6187 rxdp3->Buffer1_ptr = *temp1;
6188 } else {
6189 *skb = dev_alloc_skb(size);
6190 if (!(*skb)) {
6191 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6192 DBG_PRINT(INFO_DBG, "memory to allocate ");
6193 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6194 sp->mac_control.stats_info->sw_stat. \
6195 mem_alloc_fail_cnt++;
6196 return -ENOMEM;
6197 }
6198 sp->mac_control.stats_info->sw_stat.mem_allocated
6199 += (*skb)->truesize;
6200 rxdp3->Buffer2_ptr = *temp2 =
6201 pci_map_single(sp->pdev, (*skb)->data,
6202 dev->mtu + 4,
6203 PCI_DMA_FROMDEVICE);
6204 if( (rxdp3->Buffer2_ptr == 0) ||
6205 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6206 goto memalloc_failed;
6207 }
6208 rxdp3->Buffer0_ptr = *temp0 =
6209 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6210 PCI_DMA_FROMDEVICE);
6211 if( (rxdp3->Buffer0_ptr == 0) ||
6212 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6213 pci_unmap_single (sp->pdev,
6214 (dma_addr_t)rxdp3->Buffer2_ptr,
6215 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6216 goto memalloc_failed;
6217 }
6218 rxdp->Host_Control = (unsigned long) (*skb);
6219
6220 /* Buffer-1 will be dummy buffer not used */
6221 rxdp3->Buffer1_ptr = *temp1 =
6222 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6223 PCI_DMA_FROMDEVICE);
6224 if( (rxdp3->Buffer1_ptr == 0) ||
6225 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6226 pci_unmap_single (sp->pdev,
6227 (dma_addr_t)rxdp3->Buffer0_ptr,
6228 BUF0_LEN, PCI_DMA_FROMDEVICE);
6229 pci_unmap_single (sp->pdev,
6230 (dma_addr_t)rxdp3->Buffer2_ptr,
6231 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6232 goto memalloc_failed;
6233 }
6234 }
6235 }
6236 return 0;
6237 memalloc_failed:
6238 stats->pci_map_fail_cnt++;
6239 stats->mem_freed += (*skb)->truesize;
6240 dev_kfree_skb(*skb);
6241 return -ENOMEM;
6242 }
6243
6244 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6245 int size)
6246 {
6247 struct net_device *dev = sp->dev;
6248 if (sp->rxd_mode == RXD_MODE_1) {
6249 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6250 } else if (sp->rxd_mode == RXD_MODE_3B) {
6251 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6252 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6253 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6254 }
6255 }
6256
6257 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6258 {
6259 int i, j, k, blk_cnt = 0, size;
6260 struct mac_info * mac_control = &sp->mac_control;
6261 struct config_param *config = &sp->config;
6262 struct net_device *dev = sp->dev;
6263 struct RxD_t *rxdp = NULL;
6264 struct sk_buff *skb = NULL;
6265 struct buffAdd *ba = NULL;
6266 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6267
6268 /* Calculate the size based on ring mode */
6269 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6270 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6271 if (sp->rxd_mode == RXD_MODE_1)
6272 size += NET_IP_ALIGN;
6273 else if (sp->rxd_mode == RXD_MODE_3B)
6274 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6275
6276 for (i = 0; i < config->rx_ring_num; i++) {
6277 blk_cnt = config->rx_cfg[i].num_rxd /
6278 (rxd_count[sp->rxd_mode] +1);
6279
6280 for (j = 0; j < blk_cnt; j++) {
6281 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6282 rxdp = mac_control->rings[i].
6283 rx_blocks[j].rxds[k].virt_addr;
6284 if(sp->rxd_mode == RXD_MODE_3B)
6285 ba = &mac_control->rings[i].ba[j][k];
6286 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6287 &skb,(u64 *)&temp0_64,
6288 (u64 *)&temp1_64,
6289 (u64 *)&temp2_64,
6290 size) == ENOMEM) {
6291 return 0;
6292 }
6293
6294 set_rxd_buffer_size(sp, rxdp, size);
6295 wmb();
6296 /* flip the Ownership bit to Hardware */
6297 rxdp->Control_1 |= RXD_OWN_XENA;
6298 }
6299 }
6300 }
6301 return 0;
6302
6303 }
6304
6305 static int s2io_add_isr(struct s2io_nic * sp)
6306 {
6307 int ret = 0;
6308 struct net_device *dev = sp->dev;
6309 int err = 0;
6310
6311 if (sp->intr_type == MSI_X)
6312 ret = s2io_enable_msi_x(sp);
6313 if (ret) {
6314 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6315 sp->intr_type = INTA;
6316 }
6317
6318 /* Store the values of the MSIX table in the struct s2io_nic structure */
6319 store_xmsi_data(sp);
6320
6321 /* After proper initialization of H/W, register ISR */
6322 if (sp->intr_type == MSI_X) {
6323 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6324
6325 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6326 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6327 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6328 dev->name, i);
6329 err = request_irq(sp->entries[i].vector,
6330 s2io_msix_fifo_handle, 0, sp->desc[i],
6331 sp->s2io_entries[i].arg);
6332 /* If either data or addr is zero print it */
6333 if(!(sp->msix_info[i].addr &&
6334 sp->msix_info[i].data)) {
6335 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6336 "Data:0x%lx\n",sp->desc[i],
6337 (unsigned long long)
6338 sp->msix_info[i].addr,
6339 (unsigned long)
6340 ntohl(sp->msix_info[i].data));
6341 } else {
6342 msix_tx_cnt++;
6343 }
6344 } else {
6345 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6346 dev->name, i);
6347 err = request_irq(sp->entries[i].vector,
6348 s2io_msix_ring_handle, 0, sp->desc[i],
6349 sp->s2io_entries[i].arg);
6350 /* If either data or addr is zero print it */
6351 if(!(sp->msix_info[i].addr &&
6352 sp->msix_info[i].data)) {
6353 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6354 "Data:0x%lx\n",sp->desc[i],
6355 (unsigned long long)
6356 sp->msix_info[i].addr,
6357 (unsigned long)
6358 ntohl(sp->msix_info[i].data));
6359 } else {
6360 msix_rx_cnt++;
6361 }
6362 }
6363 if (err) {
6364 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6365 "failed\n", dev->name, i);
6366 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6367 return -1;
6368 }
6369 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6370 }
6371 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6372 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6373 }
6374 if (sp->intr_type == INTA) {
6375 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6376 sp->name, dev);
6377 if (err) {
6378 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6379 dev->name);
6380 return -1;
6381 }
6382 }
6383 return 0;
6384 }
6385 static void s2io_rem_isr(struct s2io_nic * sp)
6386 {
6387 int cnt = 0;
6388 struct net_device *dev = sp->dev;
6389
6390 if (sp->intr_type == MSI_X) {
6391 int i;
6392 u16 msi_control;
6393
6394 for (i=1; (sp->s2io_entries[i].in_use ==
6395 MSIX_REGISTERED_SUCCESS); i++) {
6396 int vector = sp->entries[i].vector;
6397 void *arg = sp->s2io_entries[i].arg;
6398
6399 free_irq(vector, arg);
6400 }
6401 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6402 msi_control &= 0xFFFE; /* Disable MSI */
6403 pci_write_config_word(sp->pdev, 0x42, msi_control);
6404
6405 pci_disable_msix(sp->pdev);
6406 } else {
6407 free_irq(sp->pdev->irq, dev);
6408 }
6409 /* Waiting till all Interrupt handlers are complete */
6410 cnt = 0;
6411 do {
6412 msleep(10);
6413 if (!atomic_read(&sp->isr_cnt))
6414 break;
6415 cnt++;
6416 } while(cnt < 5);
6417 }
6418
6419 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6420 {
6421 int cnt = 0;
6422 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6423 unsigned long flags;
6424 register u64 val64 = 0;
6425
6426 del_timer_sync(&sp->alarm_timer);
6427 /* If s2io_set_link task is executing, wait till it completes. */
6428 while (test_and_set_bit(0, &(sp->link_state))) {
6429 msleep(50);
6430 }
6431 atomic_set(&sp->card_state, CARD_DOWN);
6432
6433 /* disable Tx and Rx traffic on the NIC */
6434 if (do_io)
6435 stop_nic(sp);
6436
6437 s2io_rem_isr(sp);
6438
6439 /* Kill tasklet. */
6440 tasklet_kill(&sp->task);
6441
6442 /* Check if the device is Quiescent and then Reset the NIC */
6443 while(do_io) {
6444 /* As per the HW requirement we need to replenish the
6445 * receive buffer to avoid the ring bump. Since there is
6446 * no intention of processing the Rx frame at this pointwe are
6447 * just settting the ownership bit of rxd in Each Rx
6448 * ring to HW and set the appropriate buffer size
6449 * based on the ring mode
6450 */
6451 rxd_owner_bit_reset(sp);
6452
6453 val64 = readq(&bar0->adapter_status);
6454 if (verify_xena_quiescence(sp)) {
6455 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6456 break;
6457 }
6458
6459 msleep(50);
6460 cnt++;
6461 if (cnt == 10) {
6462 DBG_PRINT(ERR_DBG,
6463 "s2io_close:Device not Quiescent ");
6464 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6465 (unsigned long long) val64);
6466 break;
6467 }
6468 }
6469 if (do_io)
6470 s2io_reset(sp);
6471
6472 spin_lock_irqsave(&sp->tx_lock, flags);
6473 /* Free all Tx buffers */
6474 free_tx_buffers(sp);
6475 spin_unlock_irqrestore(&sp->tx_lock, flags);
6476
6477 /* Free all Rx buffers */
6478 spin_lock_irqsave(&sp->rx_lock, flags);
6479 free_rx_buffers(sp);
6480 spin_unlock_irqrestore(&sp->rx_lock, flags);
6481
6482 clear_bit(0, &(sp->link_state));
6483 }
6484
6485 static void s2io_card_down(struct s2io_nic * sp)
6486 {
6487 do_s2io_card_down(sp, 1);
6488 }
6489
6490 static int s2io_card_up(struct s2io_nic * sp)
6491 {
6492 int i, ret = 0;
6493 struct mac_info *mac_control;
6494 struct config_param *config;
6495 struct net_device *dev = (struct net_device *) sp->dev;
6496 u16 interruptible;
6497
6498 /* Initialize the H/W I/O registers */
6499 if (init_nic(sp) != 0) {
6500 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6501 dev->name);
6502 s2io_reset(sp);
6503 return -ENODEV;
6504 }
6505
6506 /*
6507 * Initializing the Rx buffers. For now we are considering only 1
6508 * Rx ring and initializing buffers into 30 Rx blocks
6509 */
6510 mac_control = &sp->mac_control;
6511 config = &sp->config;
6512
6513 for (i = 0; i < config->rx_ring_num; i++) {
6514 if ((ret = fill_rx_buffers(sp, i))) {
6515 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6516 dev->name);
6517 s2io_reset(sp);
6518 free_rx_buffers(sp);
6519 return -ENOMEM;
6520 }
6521 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6522 atomic_read(&sp->rx_bufs_left[i]));
6523 }
6524 /* Maintain the state prior to the open */
6525 if (sp->promisc_flg)
6526 sp->promisc_flg = 0;
6527 if (sp->m_cast_flg) {
6528 sp->m_cast_flg = 0;
6529 sp->all_multi_pos= 0;
6530 }
6531
6532 /* Setting its receive mode */
6533 s2io_set_multicast(dev);
6534
6535 if (sp->lro) {
6536 /* Initialize max aggregatable pkts per session based on MTU */
6537 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6538 /* Check if we can use(if specified) user provided value */
6539 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6540 sp->lro_max_aggr_per_sess = lro_max_pkts;
6541 }
6542
6543 /* Enable Rx Traffic and interrupts on the NIC */
6544 if (start_nic(sp)) {
6545 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6546 s2io_reset(sp);
6547 free_rx_buffers(sp);
6548 return -ENODEV;
6549 }
6550
6551 /* Add interrupt service routine */
6552 if (s2io_add_isr(sp) != 0) {
6553 if (sp->intr_type == MSI_X)
6554 s2io_rem_isr(sp);
6555 s2io_reset(sp);
6556 free_rx_buffers(sp);
6557 return -ENODEV;
6558 }
6559
6560 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6561
6562 /* Enable tasklet for the device */
6563 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6564
6565 /* Enable select interrupts */
6566 if (sp->intr_type != INTA)
6567 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6568 else {
6569 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6570 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6571 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6572 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6573 }
6574
6575
6576 atomic_set(&sp->card_state, CARD_UP);
6577 return 0;
6578 }
6579
6580 /**
6581 * s2io_restart_nic - Resets the NIC.
6582 * @data : long pointer to the device private structure
6583 * Description:
6584 * This function is scheduled to be run by the s2io_tx_watchdog
6585 * function after 0.5 secs to reset the NIC. The idea is to reduce
6586 * the run time of the watch dog routine which is run holding a
6587 * spin lock.
6588 */
6589
6590 static void s2io_restart_nic(struct work_struct *work)
6591 {
6592 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6593 struct net_device *dev = sp->dev;
6594
6595 rtnl_lock();
6596
6597 if (!netif_running(dev))
6598 goto out_unlock;
6599
6600 s2io_card_down(sp);
6601 if (s2io_card_up(sp)) {
6602 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6603 dev->name);
6604 }
6605 netif_wake_queue(dev);
6606 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6607 dev->name);
6608 out_unlock:
6609 rtnl_unlock();
6610 }
6611
6612 /**
6613 * s2io_tx_watchdog - Watchdog for transmit side.
6614 * @dev : Pointer to net device structure
6615 * Description:
6616 * This function is triggered if the Tx Queue is stopped
6617 * for a pre-defined amount of time when the Interface is still up.
6618 * If the Interface is jammed in such a situation, the hardware is
6619 * reset (by s2io_close) and restarted again (by s2io_open) to
6620 * overcome any problem that might have been caused in the hardware.
6621 * Return value:
6622 * void
6623 */
6624
6625 static void s2io_tx_watchdog(struct net_device *dev)
6626 {
6627 struct s2io_nic *sp = dev->priv;
6628
6629 if (netif_carrier_ok(dev)) {
6630 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6631 schedule_work(&sp->rst_timer_task);
6632 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6633 }
6634 }
6635
6636 /**
6637 * rx_osm_handler - To perform some OS related operations on SKB.
6638 * @sp: private member of the device structure,pointer to s2io_nic structure.
6639 * @skb : the socket buffer pointer.
6640 * @len : length of the packet
6641 * @cksum : FCS checksum of the frame.
6642 * @ring_no : the ring from which this RxD was extracted.
6643 * Description:
6644 * This function is called by the Rx interrupt serivce routine to perform
6645 * some OS related operations on the SKB before passing it to the upper
6646 * layers. It mainly checks if the checksum is OK, if so adds it to the
6647 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6648 * to the upper layer. If the checksum is wrong, it increments the Rx
6649 * packet error count, frees the SKB and returns error.
6650 * Return value:
6651 * SUCCESS on success and -1 on failure.
6652 */
6653 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6654 {
6655 struct s2io_nic *sp = ring_data->nic;
6656 struct net_device *dev = (struct net_device *) sp->dev;
6657 struct sk_buff *skb = (struct sk_buff *)
6658 ((unsigned long) rxdp->Host_Control);
6659 int ring_no = ring_data->ring_no;
6660 u16 l3_csum, l4_csum;
6661 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6662 struct lro *lro;
6663 u8 err_mask;
6664
6665 skb->dev = dev;
6666
6667 if (err) {
6668 /* Check for parity error */
6669 if (err & 0x1) {
6670 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6671 }
6672 err_mask = err >> 48;
6673 switch(err_mask) {
6674 case 1:
6675 sp->mac_control.stats_info->sw_stat.
6676 rx_parity_err_cnt++;
6677 break;
6678
6679 case 2:
6680 sp->mac_control.stats_info->sw_stat.
6681 rx_abort_cnt++;
6682 break;
6683
6684 case 3:
6685 sp->mac_control.stats_info->sw_stat.
6686 rx_parity_abort_cnt++;
6687 break;
6688
6689 case 4:
6690 sp->mac_control.stats_info->sw_stat.
6691 rx_rda_fail_cnt++;
6692 break;
6693
6694 case 5:
6695 sp->mac_control.stats_info->sw_stat.
6696 rx_unkn_prot_cnt++;
6697 break;
6698
6699 case 6:
6700 sp->mac_control.stats_info->sw_stat.
6701 rx_fcs_err_cnt++;
6702 break;
6703
6704 case 7:
6705 sp->mac_control.stats_info->sw_stat.
6706 rx_buf_size_err_cnt++;
6707 break;
6708
6709 case 8:
6710 sp->mac_control.stats_info->sw_stat.
6711 rx_rxd_corrupt_cnt++;
6712 break;
6713
6714 case 15:
6715 sp->mac_control.stats_info->sw_stat.
6716 rx_unkn_err_cnt++;
6717 break;
6718 }
6719 /*
6720 * Drop the packet if bad transfer code. Exception being
6721 * 0x5, which could be due to unsupported IPv6 extension header.
6722 * In this case, we let stack handle the packet.
6723 * Note that in this case, since checksum will be incorrect,
6724 * stack will validate the same.
6725 */
6726 if (err_mask != 0x5) {
6727 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6728 dev->name, err_mask);
6729 sp->stats.rx_crc_errors++;
6730 sp->mac_control.stats_info->sw_stat.mem_freed
6731 += skb->truesize;
6732 dev_kfree_skb(skb);
6733 atomic_dec(&sp->rx_bufs_left[ring_no]);
6734 rxdp->Host_Control = 0;
6735 return 0;
6736 }
6737 }
6738
6739 /* Updating statistics */
6740 sp->stats.rx_packets++;
6741 rxdp->Host_Control = 0;
6742 if (sp->rxd_mode == RXD_MODE_1) {
6743 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6744
6745 sp->stats.rx_bytes += len;
6746 skb_put(skb, len);
6747
6748 } else if (sp->rxd_mode == RXD_MODE_3B) {
6749 int get_block = ring_data->rx_curr_get_info.block_index;
6750 int get_off = ring_data->rx_curr_get_info.offset;
6751 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6752 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6753 unsigned char *buff = skb_push(skb, buf0_len);
6754
6755 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6756 sp->stats.rx_bytes += buf0_len + buf2_len;
6757 memcpy(buff, ba->ba_0, buf0_len);
6758 skb_put(skb, buf2_len);
6759 }
6760
6761 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6762 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6763 (sp->rx_csum)) {
6764 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6765 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6766 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6767 /*
6768 * NIC verifies if the Checksum of the received
6769 * frame is Ok or not and accordingly returns
6770 * a flag in the RxD.
6771 */
6772 skb->ip_summed = CHECKSUM_UNNECESSARY;
6773 if (sp->lro) {
6774 u32 tcp_len;
6775 u8 *tcp;
6776 int ret = 0;
6777
6778 ret = s2io_club_tcp_session(skb->data, &tcp,
6779 &tcp_len, &lro, rxdp, sp);
6780 switch (ret) {
6781 case 3: /* Begin anew */
6782 lro->parent = skb;
6783 goto aggregate;
6784 case 1: /* Aggregate */
6785 {
6786 lro_append_pkt(sp, lro,
6787 skb, tcp_len);
6788 goto aggregate;
6789 }
6790 case 4: /* Flush session */
6791 {
6792 lro_append_pkt(sp, lro,
6793 skb, tcp_len);
6794 queue_rx_frame(lro->parent);
6795 clear_lro_session(lro);
6796 sp->mac_control.stats_info->
6797 sw_stat.flush_max_pkts++;
6798 goto aggregate;
6799 }
6800 case 2: /* Flush both */
6801 lro->parent->data_len =
6802 lro->frags_len;
6803 sp->mac_control.stats_info->
6804 sw_stat.sending_both++;
6805 queue_rx_frame(lro->parent);
6806 clear_lro_session(lro);
6807 goto send_up;
6808 case 0: /* sessions exceeded */
6809 case -1: /* non-TCP or not
6810 * L2 aggregatable
6811 */
6812 case 5: /*
6813 * First pkt in session not
6814 * L3/L4 aggregatable
6815 */
6816 break;
6817 default:
6818 DBG_PRINT(ERR_DBG,
6819 "%s: Samadhana!!\n",
6820 __FUNCTION__);
6821 BUG();
6822 }
6823 }
6824 } else {
6825 /*
6826 * Packet with erroneous checksum, let the
6827 * upper layers deal with it.
6828 */
6829 skb->ip_summed = CHECKSUM_NONE;
6830 }
6831 } else {
6832 skb->ip_summed = CHECKSUM_NONE;
6833 }
6834 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
6835 if (!sp->lro) {
6836 skb->protocol = eth_type_trans(skb, dev);
6837 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6838 vlan_strip_flag)) {
6839 /* Queueing the vlan frame to the upper layer */
6840 if (napi)
6841 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6842 RXD_GET_VLAN_TAG(rxdp->Control_2));
6843 else
6844 vlan_hwaccel_rx(skb, sp->vlgrp,
6845 RXD_GET_VLAN_TAG(rxdp->Control_2));
6846 } else {
6847 if (napi)
6848 netif_receive_skb(skb);
6849 else
6850 netif_rx(skb);
6851 }
6852 } else {
6853 send_up:
6854 queue_rx_frame(skb);
6855 }
6856 dev->last_rx = jiffies;
6857 aggregate:
6858 atomic_dec(&sp->rx_bufs_left[ring_no]);
6859 return SUCCESS;
6860 }
6861
6862 /**
6863 * s2io_link - stops/starts the Tx queue.
6864 * @sp : private member of the device structure, which is a pointer to the
6865 * s2io_nic structure.
6866 * @link : inidicates whether link is UP/DOWN.
6867 * Description:
6868 * This function stops/starts the Tx queue depending on whether the link
6869 * status of the NIC is is down or up. This is called by the Alarm
6870 * interrupt handler whenever a link change interrupt comes up.
6871 * Return value:
6872 * void.
6873 */
6874
6875 static void s2io_link(struct s2io_nic * sp, int link)
6876 {
6877 struct net_device *dev = (struct net_device *) sp->dev;
6878
6879 if (link != sp->last_link_state) {
6880 if (link == LINK_DOWN) {
6881 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6882 netif_carrier_off(dev);
6883 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
6884 sp->mac_control.stats_info->sw_stat.link_up_time =
6885 jiffies - sp->start_time;
6886 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
6887 } else {
6888 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6889 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
6890 sp->mac_control.stats_info->sw_stat.link_down_time =
6891 jiffies - sp->start_time;
6892 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
6893 netif_carrier_on(dev);
6894 }
6895 }
6896 sp->last_link_state = link;
6897 sp->start_time = jiffies;
6898 }
6899
6900 /**
6901 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6902 * @sp : private member of the device structure, which is a pointer to the
6903 * s2io_nic structure.
6904 * Description:
6905 * This function initializes a few of the PCI and PCI-X configuration registers
6906 * with recommended values.
6907 * Return value:
6908 * void
6909 */
6910
6911 static void s2io_init_pci(struct s2io_nic * sp)
6912 {
6913 u16 pci_cmd = 0, pcix_cmd = 0;
6914
6915 /* Enable Data Parity Error Recovery in PCI-X command register. */
6916 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6917 &(pcix_cmd));
6918 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6919 (pcix_cmd | 1));
6920 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6921 &(pcix_cmd));
6922
6923 /* Set the PErr Response bit in PCI command register. */
6924 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6925 pci_write_config_word(sp->pdev, PCI_COMMAND,
6926 (pci_cmd | PCI_COMMAND_PARITY));
6927 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6928 }
6929
6930 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6931 {
6932 if ( tx_fifo_num > 8) {
6933 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6934 "supported\n");
6935 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6936 tx_fifo_num = 8;
6937 }
6938 if ( rx_ring_num > 8) {
6939 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6940 "supported\n");
6941 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6942 rx_ring_num = 8;
6943 }
6944 if (*dev_intr_type != INTA)
6945 napi = 0;
6946
6947 #ifndef CONFIG_PCI_MSI
6948 if (*dev_intr_type != INTA) {
6949 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6950 "MSI/MSI-X. Defaulting to INTA\n");
6951 *dev_intr_type = INTA;
6952 }
6953 #else
6954 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
6955 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6956 "Defaulting to INTA\n");
6957 *dev_intr_type = INTA;
6958 }
6959 #endif
6960 if ((*dev_intr_type == MSI_X) &&
6961 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6962 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6963 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6964 "Defaulting to INTA\n");
6965 *dev_intr_type = INTA;
6966 }
6967
6968 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
6969 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6970 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
6971 rx_ring_mode = 1;
6972 }
6973 return SUCCESS;
6974 }
6975
6976 /**
6977 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6978 * or Traffic class respectively.
6979 * @nic: device peivate variable
6980 * Description: The function configures the receive steering to
6981 * desired receive ring.
6982 * Return Value: SUCCESS on success and
6983 * '-1' on failure (endian settings incorrect).
6984 */
6985 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6986 {
6987 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6988 register u64 val64 = 0;
6989
6990 if (ds_codepoint > 63)
6991 return FAILURE;
6992
6993 val64 = RTS_DS_MEM_DATA(ring);
6994 writeq(val64, &bar0->rts_ds_mem_data);
6995
6996 val64 = RTS_DS_MEM_CTRL_WE |
6997 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6998 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6999
7000 writeq(val64, &bar0->rts_ds_mem_ctrl);
7001
7002 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7003 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7004 S2IO_BIT_RESET);
7005 }
7006
7007 /**
7008 * s2io_init_nic - Initialization of the adapter .
7009 * @pdev : structure containing the PCI related information of the device.
7010 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7011 * Description:
7012 * The function initializes an adapter identified by the pci_dec structure.
7013 * All OS related initialization including memory and device structure and
7014 * initlaization of the device private variable is done. Also the swapper
7015 * control register is initialized to enable read and write into the I/O
7016 * registers of the device.
7017 * Return value:
7018 * returns 0 on success and negative on failure.
7019 */
7020
7021 static int __devinit
7022 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7023 {
7024 struct s2io_nic *sp;
7025 struct net_device *dev;
7026 int i, j, ret;
7027 int dma_flag = FALSE;
7028 u32 mac_up, mac_down;
7029 u64 val64 = 0, tmp64 = 0;
7030 struct XENA_dev_config __iomem *bar0 = NULL;
7031 u16 subid;
7032 struct mac_info *mac_control;
7033 struct config_param *config;
7034 int mode;
7035 u8 dev_intr_type = intr_type;
7036
7037 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7038 return ret;
7039
7040 if ((ret = pci_enable_device(pdev))) {
7041 DBG_PRINT(ERR_DBG,
7042 "s2io_init_nic: pci_enable_device failed\n");
7043 return ret;
7044 }
7045
7046 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7047 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7048 dma_flag = TRUE;
7049 if (pci_set_consistent_dma_mask
7050 (pdev, DMA_64BIT_MASK)) {
7051 DBG_PRINT(ERR_DBG,
7052 "Unable to obtain 64bit DMA for \
7053 consistent allocations\n");
7054 pci_disable_device(pdev);
7055 return -ENOMEM;
7056 }
7057 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7058 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7059 } else {
7060 pci_disable_device(pdev);
7061 return -ENOMEM;
7062 }
7063 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7064 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7065 pci_disable_device(pdev);
7066 return -ENODEV;
7067 }
7068
7069 dev = alloc_etherdev(sizeof(struct s2io_nic));
7070 if (dev == NULL) {
7071 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7072 pci_disable_device(pdev);
7073 pci_release_regions(pdev);
7074 return -ENODEV;
7075 }
7076
7077 pci_set_master(pdev);
7078 pci_set_drvdata(pdev, dev);
7079 SET_MODULE_OWNER(dev);
7080 SET_NETDEV_DEV(dev, &pdev->dev);
7081
7082 /* Private member variable initialized to s2io NIC structure */
7083 sp = dev->priv;
7084 memset(sp, 0, sizeof(struct s2io_nic));
7085 sp->dev = dev;
7086 sp->pdev = pdev;
7087 sp->high_dma_flag = dma_flag;
7088 sp->device_enabled_once = FALSE;
7089 if (rx_ring_mode == 1)
7090 sp->rxd_mode = RXD_MODE_1;
7091 if (rx_ring_mode == 2)
7092 sp->rxd_mode = RXD_MODE_3B;
7093
7094 sp->intr_type = dev_intr_type;
7095
7096 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7097 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7098 sp->device_type = XFRAME_II_DEVICE;
7099 else
7100 sp->device_type = XFRAME_I_DEVICE;
7101
7102 sp->lro = lro;
7103
7104 /* Initialize some PCI/PCI-X fields of the NIC. */
7105 s2io_init_pci(sp);
7106
7107 /*
7108 * Setting the device configuration parameters.
7109 * Most of these parameters can be specified by the user during
7110 * module insertion as they are module loadable parameters. If
7111 * these parameters are not not specified during load time, they
7112 * are initialized with default values.
7113 */
7114 mac_control = &sp->mac_control;
7115 config = &sp->config;
7116
7117 /* Tx side parameters. */
7118 config->tx_fifo_num = tx_fifo_num;
7119 for (i = 0; i < MAX_TX_FIFOS; i++) {
7120 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7121 config->tx_cfg[i].fifo_priority = i;
7122 }
7123
7124 /* mapping the QoS priority to the configured fifos */
7125 for (i = 0; i < MAX_TX_FIFOS; i++)
7126 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7127
7128 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7129 for (i = 0; i < config->tx_fifo_num; i++) {
7130 config->tx_cfg[i].f_no_snoop =
7131 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7132 if (config->tx_cfg[i].fifo_len < 65) {
7133 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7134 break;
7135 }
7136 }
7137 /* + 2 because one Txd for skb->data and one Txd for UFO */
7138 config->max_txds = MAX_SKB_FRAGS + 2;
7139
7140 /* Rx side parameters. */
7141 config->rx_ring_num = rx_ring_num;
7142 for (i = 0; i < MAX_RX_RINGS; i++) {
7143 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7144 (rxd_count[sp->rxd_mode] + 1);
7145 config->rx_cfg[i].ring_priority = i;
7146 }
7147
7148 for (i = 0; i < rx_ring_num; i++) {
7149 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7150 config->rx_cfg[i].f_no_snoop =
7151 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7152 }
7153
7154 /* Setting Mac Control parameters */
7155 mac_control->rmac_pause_time = rmac_pause_time;
7156 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7157 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7158
7159
7160 /* Initialize Ring buffer parameters. */
7161 for (i = 0; i < config->rx_ring_num; i++)
7162 atomic_set(&sp->rx_bufs_left[i], 0);
7163
7164 /* Initialize the number of ISRs currently running */
7165 atomic_set(&sp->isr_cnt, 0);
7166
7167 /* initialize the shared memory used by the NIC and the host */
7168 if (init_shared_mem(sp)) {
7169 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7170 dev->name);
7171 ret = -ENOMEM;
7172 goto mem_alloc_failed;
7173 }
7174
7175 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7176 pci_resource_len(pdev, 0));
7177 if (!sp->bar0) {
7178 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7179 dev->name);
7180 ret = -ENOMEM;
7181 goto bar0_remap_failed;
7182 }
7183
7184 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7185 pci_resource_len(pdev, 2));
7186 if (!sp->bar1) {
7187 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7188 dev->name);
7189 ret = -ENOMEM;
7190 goto bar1_remap_failed;
7191 }
7192
7193 dev->irq = pdev->irq;
7194 dev->base_addr = (unsigned long) sp->bar0;
7195
7196 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7197 for (j = 0; j < MAX_TX_FIFOS; j++) {
7198 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7199 (sp->bar1 + (j * 0x00020000));
7200 }
7201
7202 /* Driver entry points */
7203 dev->open = &s2io_open;
7204 dev->stop = &s2io_close;
7205 dev->hard_start_xmit = &s2io_xmit;
7206 dev->get_stats = &s2io_get_stats;
7207 dev->set_multicast_list = &s2io_set_multicast;
7208 dev->do_ioctl = &s2io_ioctl;
7209 dev->change_mtu = &s2io_change_mtu;
7210 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7211 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7212 dev->vlan_rx_register = s2io_vlan_rx_register;
7213
7214 /*
7215 * will use eth_mac_addr() for dev->set_mac_address
7216 * mac address will be set every time dev->open() is called
7217 */
7218 dev->poll = s2io_poll;
7219 dev->weight = 32;
7220
7221 #ifdef CONFIG_NET_POLL_CONTROLLER
7222 dev->poll_controller = s2io_netpoll;
7223 #endif
7224
7225 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7226 if (sp->high_dma_flag == TRUE)
7227 dev->features |= NETIF_F_HIGHDMA;
7228 dev->features |= NETIF_F_TSO;
7229 dev->features |= NETIF_F_TSO6;
7230 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7231 dev->features |= NETIF_F_UFO;
7232 dev->features |= NETIF_F_HW_CSUM;
7233 }
7234
7235 dev->tx_timeout = &s2io_tx_watchdog;
7236 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7237 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7238 INIT_WORK(&sp->set_link_task, s2io_set_link);
7239
7240 pci_save_state(sp->pdev);
7241
7242 /* Setting swapper control on the NIC, for proper reset operation */
7243 if (s2io_set_swapper(sp)) {
7244 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7245 dev->name);
7246 ret = -EAGAIN;
7247 goto set_swap_failed;
7248 }
7249
7250 /* Verify if the Herc works on the slot its placed into */
7251 if (sp->device_type & XFRAME_II_DEVICE) {
7252 mode = s2io_verify_pci_mode(sp);
7253 if (mode < 0) {
7254 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7255 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7256 ret = -EBADSLT;
7257 goto set_swap_failed;
7258 }
7259 }
7260
7261 /* Not needed for Herc */
7262 if (sp->device_type & XFRAME_I_DEVICE) {
7263 /*
7264 * Fix for all "FFs" MAC address problems observed on
7265 * Alpha platforms
7266 */
7267 fix_mac_address(sp);
7268 s2io_reset(sp);
7269 }
7270
7271 /*
7272 * MAC address initialization.
7273 * For now only one mac address will be read and used.
7274 */
7275 bar0 = sp->bar0;
7276 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7277 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7278 writeq(val64, &bar0->rmac_addr_cmd_mem);
7279 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7280 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7281 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7282 mac_down = (u32) tmp64;
7283 mac_up = (u32) (tmp64 >> 32);
7284
7285 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7286 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7287 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7288 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7289 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7290 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7291
7292 /* Set the factory defined MAC address initially */
7293 dev->addr_len = ETH_ALEN;
7294 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7295
7296 /* reset Nic and bring it to known state */
7297 s2io_reset(sp);
7298
7299 /*
7300 * Initialize the tasklet status and link state flags
7301 * and the card state parameter
7302 */
7303 atomic_set(&(sp->card_state), 0);
7304 sp->tasklet_status = 0;
7305 sp->link_state = 0;
7306
7307 /* Initialize spinlocks */
7308 spin_lock_init(&sp->tx_lock);
7309
7310 if (!napi)
7311 spin_lock_init(&sp->put_lock);
7312 spin_lock_init(&sp->rx_lock);
7313
7314 /*
7315 * SXE-002: Configure link and activity LED to init state
7316 * on driver load.
7317 */
7318 subid = sp->pdev->subsystem_device;
7319 if ((subid & 0xFF) >= 0x07) {
7320 val64 = readq(&bar0->gpio_control);
7321 val64 |= 0x0000800000000000ULL;
7322 writeq(val64, &bar0->gpio_control);
7323 val64 = 0x0411040400000000ULL;
7324 writeq(val64, (void __iomem *) bar0 + 0x2700);
7325 val64 = readq(&bar0->gpio_control);
7326 }
7327
7328 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7329
7330 if (register_netdev(dev)) {
7331 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7332 ret = -ENODEV;
7333 goto register_failed;
7334 }
7335 s2io_vpd_read(sp);
7336 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7337 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7338 sp->product_name, pdev->revision);
7339 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7340 s2io_driver_version);
7341 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7342 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7343 sp->def_mac_addr[0].mac_addr[0],
7344 sp->def_mac_addr[0].mac_addr[1],
7345 sp->def_mac_addr[0].mac_addr[2],
7346 sp->def_mac_addr[0].mac_addr[3],
7347 sp->def_mac_addr[0].mac_addr[4],
7348 sp->def_mac_addr[0].mac_addr[5]);
7349 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7350 if (sp->device_type & XFRAME_II_DEVICE) {
7351 mode = s2io_print_pci_mode(sp);
7352 if (mode < 0) {
7353 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7354 ret = -EBADSLT;
7355 unregister_netdev(dev);
7356 goto set_swap_failed;
7357 }
7358 }
7359 switch(sp->rxd_mode) {
7360 case RXD_MODE_1:
7361 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7362 dev->name);
7363 break;
7364 case RXD_MODE_3B:
7365 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7366 dev->name);
7367 break;
7368 }
7369
7370 if (napi)
7371 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7372 switch(sp->intr_type) {
7373 case INTA:
7374 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7375 break;
7376 case MSI_X:
7377 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7378 break;
7379 }
7380 if (sp->lro)
7381 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7382 dev->name);
7383 if (ufo)
7384 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7385 " enabled\n", dev->name);
7386 /* Initialize device name */
7387 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7388
7389 /* Initialize bimodal Interrupts */
7390 sp->config.bimodal = bimodal;
7391 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7392 sp->config.bimodal = 0;
7393 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7394 dev->name);
7395 }
7396
7397 /*
7398 * Make Link state as off at this point, when the Link change
7399 * interrupt comes the state will be automatically changed to
7400 * the right state.
7401 */
7402 netif_carrier_off(dev);
7403
7404 return 0;
7405
7406 register_failed:
7407 set_swap_failed:
7408 iounmap(sp->bar1);
7409 bar1_remap_failed:
7410 iounmap(sp->bar0);
7411 bar0_remap_failed:
7412 mem_alloc_failed:
7413 free_shared_mem(sp);
7414 pci_disable_device(pdev);
7415 pci_release_regions(pdev);
7416 pci_set_drvdata(pdev, NULL);
7417 free_netdev(dev);
7418
7419 return ret;
7420 }
7421
7422 /**
7423 * s2io_rem_nic - Free the PCI device
7424 * @pdev: structure containing the PCI related information of the device.
7425 * Description: This function is called by the Pci subsystem to release a
7426 * PCI device and free up all resource held up by the device. This could
7427 * be in response to a Hot plug event or when the driver is to be removed
7428 * from memory.
7429 */
7430
7431 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7432 {
7433 struct net_device *dev =
7434 (struct net_device *) pci_get_drvdata(pdev);
7435 struct s2io_nic *sp;
7436
7437 if (dev == NULL) {
7438 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7439 return;
7440 }
7441
7442 flush_scheduled_work();
7443
7444 sp = dev->priv;
7445 unregister_netdev(dev);
7446
7447 free_shared_mem(sp);
7448 iounmap(sp->bar0);
7449 iounmap(sp->bar1);
7450 pci_release_regions(pdev);
7451 pci_set_drvdata(pdev, NULL);
7452 free_netdev(dev);
7453 pci_disable_device(pdev);
7454 }
7455
7456 /**
7457 * s2io_starter - Entry point for the driver
7458 * Description: This function is the entry point for the driver. It verifies
7459 * the module loadable parameters and initializes PCI configuration space.
7460 */
7461
7462 int __init s2io_starter(void)
7463 {
7464 return pci_register_driver(&s2io_driver);
7465 }
7466
7467 /**
7468 * s2io_closer - Cleanup routine for the driver
7469 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7470 */
7471
7472 static __exit void s2io_closer(void)
7473 {
7474 pci_unregister_driver(&s2io_driver);
7475 DBG_PRINT(INIT_DBG, "cleanup done\n");
7476 }
7477
7478 module_init(s2io_starter);
7479 module_exit(s2io_closer);
7480
7481 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7482 struct tcphdr **tcp, struct RxD_t *rxdp)
7483 {
7484 int ip_off;
7485 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7486
7487 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7488 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7489 __FUNCTION__);
7490 return -1;
7491 }
7492
7493 /* TODO:
7494 * By default the VLAN field in the MAC is stripped by the card, if this
7495 * feature is turned off in rx_pa_cfg register, then the ip_off field
7496 * has to be shifted by a further 2 bytes
7497 */
7498 switch (l2_type) {
7499 case 0: /* DIX type */
7500 case 4: /* DIX type with VLAN */
7501 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7502 break;
7503 /* LLC, SNAP etc are considered non-mergeable */
7504 default:
7505 return -1;
7506 }
7507
7508 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7509 ip_len = (u8)((*ip)->ihl);
7510 ip_len <<= 2;
7511 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7512
7513 return 0;
7514 }
7515
7516 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7517 struct tcphdr *tcp)
7518 {
7519 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7520 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7521 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7522 return -1;
7523 return 0;
7524 }
7525
7526 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7527 {
7528 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7529 }
7530
7531 static void initiate_new_session(struct lro *lro, u8 *l2h,
7532 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7533 {
7534 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7535 lro->l2h = l2h;
7536 lro->iph = ip;
7537 lro->tcph = tcp;
7538 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7539 lro->tcp_ack = ntohl(tcp->ack_seq);
7540 lro->sg_num = 1;
7541 lro->total_len = ntohs(ip->tot_len);
7542 lro->frags_len = 0;
7543 /*
7544 * check if we saw TCP timestamp. Other consistency checks have
7545 * already been done.
7546 */
7547 if (tcp->doff == 8) {
7548 u32 *ptr;
7549 ptr = (u32 *)(tcp+1);
7550 lro->saw_ts = 1;
7551 lro->cur_tsval = *(ptr+1);
7552 lro->cur_tsecr = *(ptr+2);
7553 }
7554 lro->in_use = 1;
7555 }
7556
7557 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7558 {
7559 struct iphdr *ip = lro->iph;
7560 struct tcphdr *tcp = lro->tcph;
7561 __sum16 nchk;
7562 struct stat_block *statinfo = sp->mac_control.stats_info;
7563 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7564
7565 /* Update L3 header */
7566 ip->tot_len = htons(lro->total_len);
7567 ip->check = 0;
7568 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7569 ip->check = nchk;
7570
7571 /* Update L4 header */
7572 tcp->ack_seq = lro->tcp_ack;
7573 tcp->window = lro->window;
7574
7575 /* Update tsecr field if this session has timestamps enabled */
7576 if (lro->saw_ts) {
7577 u32 *ptr = (u32 *)(tcp + 1);
7578 *(ptr+2) = lro->cur_tsecr;
7579 }
7580
7581 /* Update counters required for calculation of
7582 * average no. of packets aggregated.
7583 */
7584 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7585 statinfo->sw_stat.num_aggregations++;
7586 }
7587
7588 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7589 struct tcphdr *tcp, u32 l4_pyld)
7590 {
7591 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7592 lro->total_len += l4_pyld;
7593 lro->frags_len += l4_pyld;
7594 lro->tcp_next_seq += l4_pyld;
7595 lro->sg_num++;
7596
7597 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7598 lro->tcp_ack = tcp->ack_seq;
7599 lro->window = tcp->window;
7600
7601 if (lro->saw_ts) {
7602 u32 *ptr;
7603 /* Update tsecr and tsval from this packet */
7604 ptr = (u32 *) (tcp + 1);
7605 lro->cur_tsval = *(ptr + 1);
7606 lro->cur_tsecr = *(ptr + 2);
7607 }
7608 }
7609
7610 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7611 struct tcphdr *tcp, u32 tcp_pyld_len)
7612 {
7613 u8 *ptr;
7614
7615 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7616
7617 if (!tcp_pyld_len) {
7618 /* Runt frame or a pure ack */
7619 return -1;
7620 }
7621
7622 if (ip->ihl != 5) /* IP has options */
7623 return -1;
7624
7625 /* If we see CE codepoint in IP header, packet is not mergeable */
7626 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7627 return -1;
7628
7629 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7630 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7631 tcp->ece || tcp->cwr || !tcp->ack) {
7632 /*
7633 * Currently recognize only the ack control word and
7634 * any other control field being set would result in
7635 * flushing the LRO session
7636 */
7637 return -1;
7638 }
7639
7640 /*
7641 * Allow only one TCP timestamp option. Don't aggregate if
7642 * any other options are detected.
7643 */
7644 if (tcp->doff != 5 && tcp->doff != 8)
7645 return -1;
7646
7647 if (tcp->doff == 8) {
7648 ptr = (u8 *)(tcp + 1);
7649 while (*ptr == TCPOPT_NOP)
7650 ptr++;
7651 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7652 return -1;
7653
7654 /* Ensure timestamp value increases monotonically */
7655 if (l_lro)
7656 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7657 return -1;
7658
7659 /* timestamp echo reply should be non-zero */
7660 if (*((u32 *)(ptr+6)) == 0)
7661 return -1;
7662 }
7663
7664 return 0;
7665 }
7666
7667 static int
7668 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7669 struct RxD_t *rxdp, struct s2io_nic *sp)
7670 {
7671 struct iphdr *ip;
7672 struct tcphdr *tcph;
7673 int ret = 0, i;
7674
7675 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7676 rxdp))) {
7677 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7678 ip->saddr, ip->daddr);
7679 } else {
7680 return ret;
7681 }
7682
7683 tcph = (struct tcphdr *)*tcp;
7684 *tcp_len = get_l4_pyld_length(ip, tcph);
7685 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7686 struct lro *l_lro = &sp->lro0_n[i];
7687 if (l_lro->in_use) {
7688 if (check_for_socket_match(l_lro, ip, tcph))
7689 continue;
7690 /* Sock pair matched */
7691 *lro = l_lro;
7692
7693 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7694 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7695 "0x%x, actual 0x%x\n", __FUNCTION__,
7696 (*lro)->tcp_next_seq,
7697 ntohl(tcph->seq));
7698
7699 sp->mac_control.stats_info->
7700 sw_stat.outof_sequence_pkts++;
7701 ret = 2;
7702 break;
7703 }
7704
7705 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7706 ret = 1; /* Aggregate */
7707 else
7708 ret = 2; /* Flush both */
7709 break;
7710 }
7711 }
7712
7713 if (ret == 0) {
7714 /* Before searching for available LRO objects,
7715 * check if the pkt is L3/L4 aggregatable. If not
7716 * don't create new LRO session. Just send this
7717 * packet up.
7718 */
7719 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7720 return 5;
7721 }
7722
7723 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7724 struct lro *l_lro = &sp->lro0_n[i];
7725 if (!(l_lro->in_use)) {
7726 *lro = l_lro;
7727 ret = 3; /* Begin anew */
7728 break;
7729 }
7730 }
7731 }
7732
7733 if (ret == 0) { /* sessions exceeded */
7734 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7735 __FUNCTION__);
7736 *lro = NULL;
7737 return ret;
7738 }
7739
7740 switch (ret) {
7741 case 3:
7742 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7743 break;
7744 case 2:
7745 update_L3L4_header(sp, *lro);
7746 break;
7747 case 1:
7748 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7749 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7750 update_L3L4_header(sp, *lro);
7751 ret = 4; /* Flush the LRO */
7752 }
7753 break;
7754 default:
7755 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7756 __FUNCTION__);
7757 break;
7758 }
7759
7760 return ret;
7761 }
7762
7763 static void clear_lro_session(struct lro *lro)
7764 {
7765 static u16 lro_struct_size = sizeof(struct lro);
7766
7767 memset(lro, 0, lro_struct_size);
7768 }
7769
7770 static void queue_rx_frame(struct sk_buff *skb)
7771 {
7772 struct net_device *dev = skb->dev;
7773
7774 skb->protocol = eth_type_trans(skb, dev);
7775 if (napi)
7776 netif_receive_skb(skb);
7777 else
7778 netif_rx(skb);
7779 }
7780
7781 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7782 struct sk_buff *skb,
7783 u32 tcp_len)
7784 {
7785 struct sk_buff *first = lro->parent;
7786
7787 first->len += tcp_len;
7788 first->data_len = lro->frags_len;
7789 skb_pull(skb, (skb->len - tcp_len));
7790 if (skb_shinfo(first)->frag_list)
7791 lro->last_frag->next = skb;
7792 else
7793 skb_shinfo(first)->frag_list = skb;
7794 first->truesize += skb->truesize;
7795 lro->last_frag = skb;
7796 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7797 return;
7798 }
7799
7800 /**
7801 * s2io_io_error_detected - called when PCI error is detected
7802 * @pdev: Pointer to PCI device
7803 * @state: The current pci connection state
7804 *
7805 * This function is called after a PCI bus error affecting
7806 * this device has been detected.
7807 */
7808 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
7809 pci_channel_state_t state)
7810 {
7811 struct net_device *netdev = pci_get_drvdata(pdev);
7812 struct s2io_nic *sp = netdev->priv;
7813
7814 netif_device_detach(netdev);
7815
7816 if (netif_running(netdev)) {
7817 /* Bring down the card, while avoiding PCI I/O */
7818 do_s2io_card_down(sp, 0);
7819 }
7820 pci_disable_device(pdev);
7821
7822 return PCI_ERS_RESULT_NEED_RESET;
7823 }
7824
7825 /**
7826 * s2io_io_slot_reset - called after the pci bus has been reset.
7827 * @pdev: Pointer to PCI device
7828 *
7829 * Restart the card from scratch, as if from a cold-boot.
7830 * At this point, the card has exprienced a hard reset,
7831 * followed by fixups by BIOS, and has its config space
7832 * set up identically to what it was at cold boot.
7833 */
7834 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
7835 {
7836 struct net_device *netdev = pci_get_drvdata(pdev);
7837 struct s2io_nic *sp = netdev->priv;
7838
7839 if (pci_enable_device(pdev)) {
7840 printk(KERN_ERR "s2io: "
7841 "Cannot re-enable PCI device after reset.\n");
7842 return PCI_ERS_RESULT_DISCONNECT;
7843 }
7844
7845 pci_set_master(pdev);
7846 s2io_reset(sp);
7847
7848 return PCI_ERS_RESULT_RECOVERED;
7849 }
7850
7851 /**
7852 * s2io_io_resume - called when traffic can start flowing again.
7853 * @pdev: Pointer to PCI device
7854 *
7855 * This callback is called when the error recovery driver tells
7856 * us that its OK to resume normal operation.
7857 */
7858 static void s2io_io_resume(struct pci_dev *pdev)
7859 {
7860 struct net_device *netdev = pci_get_drvdata(pdev);
7861 struct s2io_nic *sp = netdev->priv;
7862
7863 if (netif_running(netdev)) {
7864 if (s2io_card_up(sp)) {
7865 printk(KERN_ERR "s2io: "
7866 "Can't bring device back up after reset.\n");
7867 return;
7868 }
7869
7870 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
7871 s2io_card_down(sp);
7872 printk(KERN_ERR "s2io: "
7873 "Can't resetore mac addr after reset.\n");
7874 return;
7875 }
7876 }
7877
7878 netif_device_attach(netdev);
7879 netif_wake_queue(netdev);
7880 }
This page took 0.313212 seconds and 6 git commands to generate.