Merge branch 'upstream-net26' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
78
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
84
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
88
89 #define DRV_VERSION "2.0.26.19"
90
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
94
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
97
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
99 {
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106 }
107
108 /*
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
117
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 #define PANIC 1
122 #define LOW 2
123 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
124 {
125 struct mac_info *mac_control;
126
127 mac_control = &sp->mac_control;
128 if (rxb_size <= rxd_count[sp->rxd_mode])
129 return PANIC;
130 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
131 return LOW;
132 return 0;
133 }
134
135 static inline int is_s2io_card_up(const struct s2io_nic * sp)
136 {
137 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 }
139
140 /* Ethtool related variables and Macros. */
141 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
142 "Register test\t(offline)",
143 "Eeprom test\t(offline)",
144 "Link test\t(online)",
145 "RLDRAM test\t(offline)",
146 "BIST Test\t(offline)"
147 };
148
149 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
150 {"tmac_frms"},
151 {"tmac_data_octets"},
152 {"tmac_drop_frms"},
153 {"tmac_mcst_frms"},
154 {"tmac_bcst_frms"},
155 {"tmac_pause_ctrl_frms"},
156 {"tmac_ttl_octets"},
157 {"tmac_ucst_frms"},
158 {"tmac_nucst_frms"},
159 {"tmac_any_err_frms"},
160 {"tmac_ttl_less_fb_octets"},
161 {"tmac_vld_ip_octets"},
162 {"tmac_vld_ip"},
163 {"tmac_drop_ip"},
164 {"tmac_icmp"},
165 {"tmac_rst_tcp"},
166 {"tmac_tcp"},
167 {"tmac_udp"},
168 {"rmac_vld_frms"},
169 {"rmac_data_octets"},
170 {"rmac_fcs_err_frms"},
171 {"rmac_drop_frms"},
172 {"rmac_vld_mcst_frms"},
173 {"rmac_vld_bcst_frms"},
174 {"rmac_in_rng_len_err_frms"},
175 {"rmac_out_rng_len_err_frms"},
176 {"rmac_long_frms"},
177 {"rmac_pause_ctrl_frms"},
178 {"rmac_unsup_ctrl_frms"},
179 {"rmac_ttl_octets"},
180 {"rmac_accepted_ucst_frms"},
181 {"rmac_accepted_nucst_frms"},
182 {"rmac_discarded_frms"},
183 {"rmac_drop_events"},
184 {"rmac_ttl_less_fb_octets"},
185 {"rmac_ttl_frms"},
186 {"rmac_usized_frms"},
187 {"rmac_osized_frms"},
188 {"rmac_frag_frms"},
189 {"rmac_jabber_frms"},
190 {"rmac_ttl_64_frms"},
191 {"rmac_ttl_65_127_frms"},
192 {"rmac_ttl_128_255_frms"},
193 {"rmac_ttl_256_511_frms"},
194 {"rmac_ttl_512_1023_frms"},
195 {"rmac_ttl_1024_1518_frms"},
196 {"rmac_ip"},
197 {"rmac_ip_octets"},
198 {"rmac_hdr_err_ip"},
199 {"rmac_drop_ip"},
200 {"rmac_icmp"},
201 {"rmac_tcp"},
202 {"rmac_udp"},
203 {"rmac_err_drp_udp"},
204 {"rmac_xgmii_err_sym"},
205 {"rmac_frms_q0"},
206 {"rmac_frms_q1"},
207 {"rmac_frms_q2"},
208 {"rmac_frms_q3"},
209 {"rmac_frms_q4"},
210 {"rmac_frms_q5"},
211 {"rmac_frms_q6"},
212 {"rmac_frms_q7"},
213 {"rmac_full_q0"},
214 {"rmac_full_q1"},
215 {"rmac_full_q2"},
216 {"rmac_full_q3"},
217 {"rmac_full_q4"},
218 {"rmac_full_q5"},
219 {"rmac_full_q6"},
220 {"rmac_full_q7"},
221 {"rmac_pause_cnt"},
222 {"rmac_xgmii_data_err_cnt"},
223 {"rmac_xgmii_ctrl_err_cnt"},
224 {"rmac_accepted_ip"},
225 {"rmac_err_tcp"},
226 {"rd_req_cnt"},
227 {"new_rd_req_cnt"},
228 {"new_rd_req_rtry_cnt"},
229 {"rd_rtry_cnt"},
230 {"wr_rtry_rd_ack_cnt"},
231 {"wr_req_cnt"},
232 {"new_wr_req_cnt"},
233 {"new_wr_req_rtry_cnt"},
234 {"wr_rtry_cnt"},
235 {"wr_disc_cnt"},
236 {"rd_rtry_wr_ack_cnt"},
237 {"txp_wr_cnt"},
238 {"txd_rd_cnt"},
239 {"txd_wr_cnt"},
240 {"rxd_rd_cnt"},
241 {"rxd_wr_cnt"},
242 {"txf_rd_cnt"},
243 {"rxf_wr_cnt"}
244 };
245
246 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
247 {"rmac_ttl_1519_4095_frms"},
248 {"rmac_ttl_4096_8191_frms"},
249 {"rmac_ttl_8192_max_frms"},
250 {"rmac_ttl_gt_max_frms"},
251 {"rmac_osized_alt_frms"},
252 {"rmac_jabber_alt_frms"},
253 {"rmac_gt_max_alt_frms"},
254 {"rmac_vlan_frms"},
255 {"rmac_len_discard"},
256 {"rmac_fcs_discard"},
257 {"rmac_pf_discard"},
258 {"rmac_da_discard"},
259 {"rmac_red_discard"},
260 {"rmac_rts_discard"},
261 {"rmac_ingm_full_discard"},
262 {"link_fault_cnt"}
263 };
264
265 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
266 {"\n DRIVER STATISTICS"},
267 {"single_bit_ecc_errs"},
268 {"double_bit_ecc_errs"},
269 {"parity_err_cnt"},
270 {"serious_err_cnt"},
271 {"soft_reset_cnt"},
272 {"fifo_full_cnt"},
273 {"ring_0_full_cnt"},
274 {"ring_1_full_cnt"},
275 {"ring_2_full_cnt"},
276 {"ring_3_full_cnt"},
277 {"ring_4_full_cnt"},
278 {"ring_5_full_cnt"},
279 {"ring_6_full_cnt"},
280 {"ring_7_full_cnt"},
281 {"alarm_transceiver_temp_high"},
282 {"alarm_transceiver_temp_low"},
283 {"alarm_laser_bias_current_high"},
284 {"alarm_laser_bias_current_low"},
285 {"alarm_laser_output_power_high"},
286 {"alarm_laser_output_power_low"},
287 {"warn_transceiver_temp_high"},
288 {"warn_transceiver_temp_low"},
289 {"warn_laser_bias_current_high"},
290 {"warn_laser_bias_current_low"},
291 {"warn_laser_output_power_high"},
292 {"warn_laser_output_power_low"},
293 {"lro_aggregated_pkts"},
294 {"lro_flush_both_count"},
295 {"lro_out_of_sequence_pkts"},
296 {"lro_flush_due_to_max_pkts"},
297 {"lro_avg_aggr_pkts"},
298 {"mem_alloc_fail_cnt"},
299 {"pci_map_fail_cnt"},
300 {"watchdog_timer_cnt"},
301 {"mem_allocated"},
302 {"mem_freed"},
303 {"link_up_cnt"},
304 {"link_down_cnt"},
305 {"link_up_time"},
306 {"link_down_time"},
307 {"tx_tcode_buf_abort_cnt"},
308 {"tx_tcode_desc_abort_cnt"},
309 {"tx_tcode_parity_err_cnt"},
310 {"tx_tcode_link_loss_cnt"},
311 {"tx_tcode_list_proc_err_cnt"},
312 {"rx_tcode_parity_err_cnt"},
313 {"rx_tcode_abort_cnt"},
314 {"rx_tcode_parity_abort_cnt"},
315 {"rx_tcode_rda_fail_cnt"},
316 {"rx_tcode_unkn_prot_cnt"},
317 {"rx_tcode_fcs_err_cnt"},
318 {"rx_tcode_buf_size_err_cnt"},
319 {"rx_tcode_rxd_corrupt_cnt"},
320 {"rx_tcode_unkn_err_cnt"},
321 {"tda_err_cnt"},
322 {"pfc_err_cnt"},
323 {"pcc_err_cnt"},
324 {"tti_err_cnt"},
325 {"tpa_err_cnt"},
326 {"sm_err_cnt"},
327 {"lso_err_cnt"},
328 {"mac_tmac_err_cnt"},
329 {"mac_rmac_err_cnt"},
330 {"xgxs_txgxs_err_cnt"},
331 {"xgxs_rxgxs_err_cnt"},
332 {"rc_err_cnt"},
333 {"prc_pcix_err_cnt"},
334 {"rpa_err_cnt"},
335 {"rda_err_cnt"},
336 {"rti_err_cnt"},
337 {"mc_err_cnt"}
338 };
339
340 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
341 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
342 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
343
344 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
345 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346
347 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
348 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
349
350 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
351 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352
353 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
354 init_timer(&timer); \
355 timer.function = handle; \
356 timer.data = (unsigned long) arg; \
357 mod_timer(&timer, (jiffies + exp)) \
358
359 /* copy mac addr to def_mac_addr array */
360 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
361 {
362 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
363 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
364 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
365 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
366 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
367 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
368 }
369 /* Add the vlan */
370 static void s2io_vlan_rx_register(struct net_device *dev,
371 struct vlan_group *grp)
372 {
373 int i;
374 struct s2io_nic *nic = dev->priv;
375 unsigned long flags[MAX_TX_FIFOS];
376 struct mac_info *mac_control = &nic->mac_control;
377 struct config_param *config = &nic->config;
378
379 for (i = 0; i < config->tx_fifo_num; i++)
380 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
381
382 nic->vlgrp = grp;
383 for (i = config->tx_fifo_num - 1; i >= 0; i--)
384 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
385 flags[i]);
386 }
387
388 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
389 static int vlan_strip_flag;
390
391 /* Unregister the vlan */
392 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
393 {
394 int i;
395 struct s2io_nic *nic = dev->priv;
396 unsigned long flags[MAX_TX_FIFOS];
397 struct mac_info *mac_control = &nic->mac_control;
398 struct config_param *config = &nic->config;
399
400 for (i = 0; i < config->tx_fifo_num; i++)
401 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
402
403 if (nic->vlgrp)
404 vlan_group_set_device(nic->vlgrp, vid, NULL);
405
406 for (i = config->tx_fifo_num - 1; i >= 0; i--)
407 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
408 flags[i]);
409 }
410
411 /*
412 * Constants to be programmed into the Xena's registers, to configure
413 * the XAUI.
414 */
415
416 #define END_SIGN 0x0
417 static const u64 herc_act_dtx_cfg[] = {
418 /* Set address */
419 0x8000051536750000ULL, 0x80000515367500E0ULL,
420 /* Write data */
421 0x8000051536750004ULL, 0x80000515367500E4ULL,
422 /* Set address */
423 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
424 /* Write data */
425 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
426 /* Set address */
427 0x801205150D440000ULL, 0x801205150D4400E0ULL,
428 /* Write data */
429 0x801205150D440004ULL, 0x801205150D4400E4ULL,
430 /* Set address */
431 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
432 /* Write data */
433 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
434 /* Done */
435 END_SIGN
436 };
437
438 static const u64 xena_dtx_cfg[] = {
439 /* Set address */
440 0x8000051500000000ULL, 0x80000515000000E0ULL,
441 /* Write data */
442 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
443 /* Set address */
444 0x8001051500000000ULL, 0x80010515000000E0ULL,
445 /* Write data */
446 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
447 /* Set address */
448 0x8002051500000000ULL, 0x80020515000000E0ULL,
449 /* Write data */
450 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
451 END_SIGN
452 };
453
454 /*
455 * Constants for Fixing the MacAddress problem seen mostly on
456 * Alpha machines.
457 */
458 static const u64 fix_mac[] = {
459 0x0060000000000000ULL, 0x0060600000000000ULL,
460 0x0040600000000000ULL, 0x0000600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0060600000000000ULL,
471 0x0020600000000000ULL, 0x0000600000000000ULL,
472 0x0040600000000000ULL, 0x0060600000000000ULL,
473 END_SIGN
474 };
475
476 MODULE_LICENSE("GPL");
477 MODULE_VERSION(DRV_VERSION);
478
479
480 /* Module Loadable parameters. */
481 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
482 S2IO_PARM_INT(rx_ring_num, 1);
483 S2IO_PARM_INT(multiq, 0);
484 S2IO_PARM_INT(rx_ring_mode, 1);
485 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
486 S2IO_PARM_INT(rmac_pause_time, 0x100);
487 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
488 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
489 S2IO_PARM_INT(shared_splits, 0);
490 S2IO_PARM_INT(tmac_util_period, 5);
491 S2IO_PARM_INT(rmac_util_period, 5);
492 S2IO_PARM_INT(l3l4hdr_size, 128);
493 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
494 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
495 /* Frequency of Rx desc syncs expressed as power of 2 */
496 S2IO_PARM_INT(rxsync_frequency, 3);
497 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
498 S2IO_PARM_INT(intr_type, 2);
499 /* Large receive offload feature */
500 static unsigned int lro_enable;
501 module_param_named(lro, lro_enable, uint, 0);
502
503 /* Max pkts to be aggregated by LRO at one time. If not specified,
504 * aggregation happens until we hit max IP pkt size(64K)
505 */
506 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
507 S2IO_PARM_INT(indicate_max_pkts, 0);
508
509 S2IO_PARM_INT(napi, 1);
510 S2IO_PARM_INT(ufo, 0);
511 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
512
513 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
514 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
515 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
517 static unsigned int rts_frm_len[MAX_RX_RINGS] =
518 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
519
520 module_param_array(tx_fifo_len, uint, NULL, 0);
521 module_param_array(rx_ring_sz, uint, NULL, 0);
522 module_param_array(rts_frm_len, uint, NULL, 0);
523
524 /*
525 * S2IO device table.
526 * This table lists all the devices that this driver supports.
527 */
528 static struct pci_device_id s2io_tbl[] __devinitdata = {
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
534 PCI_ANY_ID, PCI_ANY_ID},
535 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
536 PCI_ANY_ID, PCI_ANY_ID},
537 {0,}
538 };
539
540 MODULE_DEVICE_TABLE(pci, s2io_tbl);
541
542 static struct pci_error_handlers s2io_err_handler = {
543 .error_detected = s2io_io_error_detected,
544 .slot_reset = s2io_io_slot_reset,
545 .resume = s2io_io_resume,
546 };
547
548 static struct pci_driver s2io_driver = {
549 .name = "S2IO",
550 .id_table = s2io_tbl,
551 .probe = s2io_init_nic,
552 .remove = __devexit_p(s2io_rem_nic),
553 .err_handler = &s2io_err_handler,
554 };
555
556 /* A simplifier macro used both by init and free shared_mem Fns(). */
557 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
558
559 /* netqueue manipulation helper functions */
560 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
561 {
562 int i;
563 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
564 if (sp->config.multiq) {
565 for (i = 0; i < sp->config.tx_fifo_num; i++)
566 netif_stop_subqueue(sp->dev, i);
567 } else
568 #endif
569 {
570 for (i = 0; i < sp->config.tx_fifo_num; i++)
571 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
573 }
574 }
575
576 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
577 {
578 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
579 if (sp->config.multiq)
580 netif_stop_subqueue(sp->dev, fifo_no);
581 else
582 #endif
583 {
584 sp->mac_control.fifos[fifo_no].queue_state =
585 FIFO_QUEUE_STOP;
586 netif_stop_queue(sp->dev);
587 }
588 }
589
590 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
591 {
592 int i;
593 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
594 if (sp->config.multiq) {
595 for (i = 0; i < sp->config.tx_fifo_num; i++)
596 netif_start_subqueue(sp->dev, i);
597 } else
598 #endif
599 {
600 for (i = 0; i < sp->config.tx_fifo_num; i++)
601 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
603 }
604 }
605
606 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
607 {
608 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
609 if (sp->config.multiq)
610 netif_start_subqueue(sp->dev, fifo_no);
611 else
612 #endif
613 {
614 sp->mac_control.fifos[fifo_no].queue_state =
615 FIFO_QUEUE_START;
616 netif_start_queue(sp->dev);
617 }
618 }
619
620 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
621 {
622 int i;
623 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
624 if (sp->config.multiq) {
625 for (i = 0; i < sp->config.tx_fifo_num; i++)
626 netif_wake_subqueue(sp->dev, i);
627 } else
628 #endif
629 {
630 for (i = 0; i < sp->config.tx_fifo_num; i++)
631 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
632 netif_wake_queue(sp->dev);
633 }
634 }
635
636 static inline void s2io_wake_tx_queue(
637 struct fifo_info *fifo, int cnt, u8 multiq)
638 {
639
640 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
641 if (multiq) {
642 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
643 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
644 } else
645 #endif
646 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
647 if (netif_queue_stopped(fifo->dev)) {
648 fifo->queue_state = FIFO_QUEUE_START;
649 netif_wake_queue(fifo->dev);
650 }
651 }
652 }
653
654 /**
655 * init_shared_mem - Allocation and Initialization of Memory
656 * @nic: Device private variable.
657 * Description: The function allocates all the memory areas shared
658 * between the NIC and the driver. This includes Tx descriptors,
659 * Rx descriptors and the statistics block.
660 */
661
662 static int init_shared_mem(struct s2io_nic *nic)
663 {
664 u32 size;
665 void *tmp_v_addr, *tmp_v_addr_next;
666 dma_addr_t tmp_p_addr, tmp_p_addr_next;
667 struct RxD_block *pre_rxd_blk = NULL;
668 int i, j, blk_cnt;
669 int lst_size, lst_per_page;
670 struct net_device *dev = nic->dev;
671 unsigned long tmp;
672 struct buffAdd *ba;
673
674 struct mac_info *mac_control;
675 struct config_param *config;
676 unsigned long long mem_allocated = 0;
677
678 mac_control = &nic->mac_control;
679 config = &nic->config;
680
681
682 /* Allocation and initialization of TXDLs in FIOFs */
683 size = 0;
684 for (i = 0; i < config->tx_fifo_num; i++) {
685 size += config->tx_cfg[i].fifo_len;
686 }
687 if (size > MAX_AVAILABLE_TXDS) {
688 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
689 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
690 return -EINVAL;
691 }
692
693 size = 0;
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 size = config->tx_cfg[i].fifo_len;
696 /*
697 * Legal values are from 2 to 8192
698 */
699 if (size < 2) {
700 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
701 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
702 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
703 "are 2 to 8192\n");
704 return -EINVAL;
705 }
706 }
707
708 lst_size = (sizeof(struct TxD) * config->max_txds);
709 lst_per_page = PAGE_SIZE / lst_size;
710
711 for (i = 0; i < config->tx_fifo_num; i++) {
712 int fifo_len = config->tx_cfg[i].fifo_len;
713 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
714 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
715 GFP_KERNEL);
716 if (!mac_control->fifos[i].list_info) {
717 DBG_PRINT(INFO_DBG,
718 "Malloc failed for list_info\n");
719 return -ENOMEM;
720 }
721 mem_allocated += list_holder_size;
722 }
723 for (i = 0; i < config->tx_fifo_num; i++) {
724 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
725 lst_per_page);
726 mac_control->fifos[i].tx_curr_put_info.offset = 0;
727 mac_control->fifos[i].tx_curr_put_info.fifo_len =
728 config->tx_cfg[i].fifo_len - 1;
729 mac_control->fifos[i].tx_curr_get_info.offset = 0;
730 mac_control->fifos[i].tx_curr_get_info.fifo_len =
731 config->tx_cfg[i].fifo_len - 1;
732 mac_control->fifos[i].fifo_no = i;
733 mac_control->fifos[i].nic = nic;
734 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
735 mac_control->fifos[i].dev = dev;
736
737 for (j = 0; j < page_num; j++) {
738 int k = 0;
739 dma_addr_t tmp_p;
740 void *tmp_v;
741 tmp_v = pci_alloc_consistent(nic->pdev,
742 PAGE_SIZE, &tmp_p);
743 if (!tmp_v) {
744 DBG_PRINT(INFO_DBG,
745 "pci_alloc_consistent ");
746 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
747 return -ENOMEM;
748 }
749 /* If we got a zero DMA address(can happen on
750 * certain platforms like PPC), reallocate.
751 * Store virtual address of page we don't want,
752 * to be freed later.
753 */
754 if (!tmp_p) {
755 mac_control->zerodma_virt_addr = tmp_v;
756 DBG_PRINT(INIT_DBG,
757 "%s: Zero DMA address for TxDL. ", dev->name);
758 DBG_PRINT(INIT_DBG,
759 "Virtual address %p\n", tmp_v);
760 tmp_v = pci_alloc_consistent(nic->pdev,
761 PAGE_SIZE, &tmp_p);
762 if (!tmp_v) {
763 DBG_PRINT(INFO_DBG,
764 "pci_alloc_consistent ");
765 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
766 return -ENOMEM;
767 }
768 mem_allocated += PAGE_SIZE;
769 }
770 while (k < lst_per_page) {
771 int l = (j * lst_per_page) + k;
772 if (l == config->tx_cfg[i].fifo_len)
773 break;
774 mac_control->fifos[i].list_info[l].list_virt_addr =
775 tmp_v + (k * lst_size);
776 mac_control->fifos[i].list_info[l].list_phy_addr =
777 tmp_p + (k * lst_size);
778 k++;
779 }
780 }
781 }
782
783 for (i = 0; i < config->tx_fifo_num; i++) {
784 size = config->tx_cfg[i].fifo_len;
785 mac_control->fifos[i].ufo_in_band_v
786 = kcalloc(size, sizeof(u64), GFP_KERNEL);
787 if (!mac_control->fifos[i].ufo_in_band_v)
788 return -ENOMEM;
789 mem_allocated += (size * sizeof(u64));
790 }
791
792 /* Allocation and initialization of RXDs in Rings */
793 size = 0;
794 for (i = 0; i < config->rx_ring_num; i++) {
795 if (config->rx_cfg[i].num_rxd %
796 (rxd_count[nic->rxd_mode] + 1)) {
797 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
798 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
799 i);
800 DBG_PRINT(ERR_DBG, "RxDs per Block");
801 return FAILURE;
802 }
803 size += config->rx_cfg[i].num_rxd;
804 mac_control->rings[i].block_count =
805 config->rx_cfg[i].num_rxd /
806 (rxd_count[nic->rxd_mode] + 1 );
807 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
808 mac_control->rings[i].block_count;
809 }
810 if (nic->rxd_mode == RXD_MODE_1)
811 size = (size * (sizeof(struct RxD1)));
812 else
813 size = (size * (sizeof(struct RxD3)));
814
815 for (i = 0; i < config->rx_ring_num; i++) {
816 mac_control->rings[i].rx_curr_get_info.block_index = 0;
817 mac_control->rings[i].rx_curr_get_info.offset = 0;
818 mac_control->rings[i].rx_curr_get_info.ring_len =
819 config->rx_cfg[i].num_rxd - 1;
820 mac_control->rings[i].rx_curr_put_info.block_index = 0;
821 mac_control->rings[i].rx_curr_put_info.offset = 0;
822 mac_control->rings[i].rx_curr_put_info.ring_len =
823 config->rx_cfg[i].num_rxd - 1;
824 mac_control->rings[i].nic = nic;
825 mac_control->rings[i].ring_no = i;
826
827 blk_cnt = config->rx_cfg[i].num_rxd /
828 (rxd_count[nic->rxd_mode] + 1);
829 /* Allocating all the Rx blocks */
830 for (j = 0; j < blk_cnt; j++) {
831 struct rx_block_info *rx_blocks;
832 int l;
833
834 rx_blocks = &mac_control->rings[i].rx_blocks[j];
835 size = SIZE_OF_BLOCK; //size is always page size
836 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
837 &tmp_p_addr);
838 if (tmp_v_addr == NULL) {
839 /*
840 * In case of failure, free_shared_mem()
841 * is called, which should free any
842 * memory that was alloced till the
843 * failure happened.
844 */
845 rx_blocks->block_virt_addr = tmp_v_addr;
846 return -ENOMEM;
847 }
848 mem_allocated += size;
849 memset(tmp_v_addr, 0, size);
850 rx_blocks->block_virt_addr = tmp_v_addr;
851 rx_blocks->block_dma_addr = tmp_p_addr;
852 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
853 rxd_count[nic->rxd_mode],
854 GFP_KERNEL);
855 if (!rx_blocks->rxds)
856 return -ENOMEM;
857 mem_allocated +=
858 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
859 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
860 rx_blocks->rxds[l].virt_addr =
861 rx_blocks->block_virt_addr +
862 (rxd_size[nic->rxd_mode] * l);
863 rx_blocks->rxds[l].dma_addr =
864 rx_blocks->block_dma_addr +
865 (rxd_size[nic->rxd_mode] * l);
866 }
867 }
868 /* Interlinking all Rx Blocks */
869 for (j = 0; j < blk_cnt; j++) {
870 tmp_v_addr =
871 mac_control->rings[i].rx_blocks[j].block_virt_addr;
872 tmp_v_addr_next =
873 mac_control->rings[i].rx_blocks[(j + 1) %
874 blk_cnt].block_virt_addr;
875 tmp_p_addr =
876 mac_control->rings[i].rx_blocks[j].block_dma_addr;
877 tmp_p_addr_next =
878 mac_control->rings[i].rx_blocks[(j + 1) %
879 blk_cnt].block_dma_addr;
880
881 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
882 pre_rxd_blk->reserved_2_pNext_RxD_block =
883 (unsigned long) tmp_v_addr_next;
884 pre_rxd_blk->pNext_RxD_Blk_physical =
885 (u64) tmp_p_addr_next;
886 }
887 }
888 if (nic->rxd_mode == RXD_MODE_3B) {
889 /*
890 * Allocation of Storages for buffer addresses in 2BUFF mode
891 * and the buffers as well.
892 */
893 for (i = 0; i < config->rx_ring_num; i++) {
894 blk_cnt = config->rx_cfg[i].num_rxd /
895 (rxd_count[nic->rxd_mode]+ 1);
896 mac_control->rings[i].ba =
897 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
898 GFP_KERNEL);
899 if (!mac_control->rings[i].ba)
900 return -ENOMEM;
901 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
902 for (j = 0; j < blk_cnt; j++) {
903 int k = 0;
904 mac_control->rings[i].ba[j] =
905 kmalloc((sizeof(struct buffAdd) *
906 (rxd_count[nic->rxd_mode] + 1)),
907 GFP_KERNEL);
908 if (!mac_control->rings[i].ba[j])
909 return -ENOMEM;
910 mem_allocated += (sizeof(struct buffAdd) * \
911 (rxd_count[nic->rxd_mode] + 1));
912 while (k != rxd_count[nic->rxd_mode]) {
913 ba = &mac_control->rings[i].ba[j][k];
914
915 ba->ba_0_org = (void *) kmalloc
916 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
917 if (!ba->ba_0_org)
918 return -ENOMEM;
919 mem_allocated +=
920 (BUF0_LEN + ALIGN_SIZE);
921 tmp = (unsigned long)ba->ba_0_org;
922 tmp += ALIGN_SIZE;
923 tmp &= ~((unsigned long) ALIGN_SIZE);
924 ba->ba_0 = (void *) tmp;
925
926 ba->ba_1_org = (void *) kmalloc
927 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
928 if (!ba->ba_1_org)
929 return -ENOMEM;
930 mem_allocated
931 += (BUF1_LEN + ALIGN_SIZE);
932 tmp = (unsigned long) ba->ba_1_org;
933 tmp += ALIGN_SIZE;
934 tmp &= ~((unsigned long) ALIGN_SIZE);
935 ba->ba_1 = (void *) tmp;
936 k++;
937 }
938 }
939 }
940 }
941
942 /* Allocation and initialization of Statistics block */
943 size = sizeof(struct stat_block);
944 mac_control->stats_mem = pci_alloc_consistent
945 (nic->pdev, size, &mac_control->stats_mem_phy);
946
947 if (!mac_control->stats_mem) {
948 /*
949 * In case of failure, free_shared_mem() is called, which
950 * should free any memory that was alloced till the
951 * failure happened.
952 */
953 return -ENOMEM;
954 }
955 mem_allocated += size;
956 mac_control->stats_mem_sz = size;
957
958 tmp_v_addr = mac_control->stats_mem;
959 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
960 memset(tmp_v_addr, 0, size);
961 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
962 (unsigned long long) tmp_p_addr);
963 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
964 return SUCCESS;
965 }
966
967 /**
968 * free_shared_mem - Free the allocated Memory
969 * @nic: Device private variable.
970 * Description: This function is to free all memory locations allocated by
971 * the init_shared_mem() function and return it to the kernel.
972 */
973
974 static void free_shared_mem(struct s2io_nic *nic)
975 {
976 int i, j, blk_cnt, size;
977 void *tmp_v_addr;
978 dma_addr_t tmp_p_addr;
979 struct mac_info *mac_control;
980 struct config_param *config;
981 int lst_size, lst_per_page;
982 struct net_device *dev;
983 int page_num = 0;
984
985 if (!nic)
986 return;
987
988 dev = nic->dev;
989
990 mac_control = &nic->mac_control;
991 config = &nic->config;
992
993 lst_size = (sizeof(struct TxD) * config->max_txds);
994 lst_per_page = PAGE_SIZE / lst_size;
995
996 for (i = 0; i < config->tx_fifo_num; i++) {
997 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
998 lst_per_page);
999 for (j = 0; j < page_num; j++) {
1000 int mem_blks = (j * lst_per_page);
1001 if (!mac_control->fifos[i].list_info)
1002 return;
1003 if (!mac_control->fifos[i].list_info[mem_blks].
1004 list_virt_addr)
1005 break;
1006 pci_free_consistent(nic->pdev, PAGE_SIZE,
1007 mac_control->fifos[i].
1008 list_info[mem_blks].
1009 list_virt_addr,
1010 mac_control->fifos[i].
1011 list_info[mem_blks].
1012 list_phy_addr);
1013 nic->mac_control.stats_info->sw_stat.mem_freed
1014 += PAGE_SIZE;
1015 }
1016 /* If we got a zero DMA address during allocation,
1017 * free the page now
1018 */
1019 if (mac_control->zerodma_virt_addr) {
1020 pci_free_consistent(nic->pdev, PAGE_SIZE,
1021 mac_control->zerodma_virt_addr,
1022 (dma_addr_t)0);
1023 DBG_PRINT(INIT_DBG,
1024 "%s: Freeing TxDL with zero DMA addr. ",
1025 dev->name);
1026 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1027 mac_control->zerodma_virt_addr);
1028 nic->mac_control.stats_info->sw_stat.mem_freed
1029 += PAGE_SIZE;
1030 }
1031 kfree(mac_control->fifos[i].list_info);
1032 nic->mac_control.stats_info->sw_stat.mem_freed +=
1033 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1034 }
1035
1036 size = SIZE_OF_BLOCK;
1037 for (i = 0; i < config->rx_ring_num; i++) {
1038 blk_cnt = mac_control->rings[i].block_count;
1039 for (j = 0; j < blk_cnt; j++) {
1040 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1041 block_virt_addr;
1042 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1043 block_dma_addr;
1044 if (tmp_v_addr == NULL)
1045 break;
1046 pci_free_consistent(nic->pdev, size,
1047 tmp_v_addr, tmp_p_addr);
1048 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1049 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1050 nic->mac_control.stats_info->sw_stat.mem_freed +=
1051 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1052 }
1053 }
1054
1055 if (nic->rxd_mode == RXD_MODE_3B) {
1056 /* Freeing buffer storage addresses in 2BUFF mode. */
1057 for (i = 0; i < config->rx_ring_num; i++) {
1058 blk_cnt = config->rx_cfg[i].num_rxd /
1059 (rxd_count[nic->rxd_mode] + 1);
1060 for (j = 0; j < blk_cnt; j++) {
1061 int k = 0;
1062 if (!mac_control->rings[i].ba[j])
1063 continue;
1064 while (k != rxd_count[nic->rxd_mode]) {
1065 struct buffAdd *ba =
1066 &mac_control->rings[i].ba[j][k];
1067 kfree(ba->ba_0_org);
1068 nic->mac_control.stats_info->sw_stat.\
1069 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1070 kfree(ba->ba_1_org);
1071 nic->mac_control.stats_info->sw_stat.\
1072 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1073 k++;
1074 }
1075 kfree(mac_control->rings[i].ba[j]);
1076 nic->mac_control.stats_info->sw_stat.mem_freed +=
1077 (sizeof(struct buffAdd) *
1078 (rxd_count[nic->rxd_mode] + 1));
1079 }
1080 kfree(mac_control->rings[i].ba);
1081 nic->mac_control.stats_info->sw_stat.mem_freed +=
1082 (sizeof(struct buffAdd *) * blk_cnt);
1083 }
1084 }
1085
1086 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1087 if (mac_control->fifos[i].ufo_in_band_v) {
1088 nic->mac_control.stats_info->sw_stat.mem_freed
1089 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1090 kfree(mac_control->fifos[i].ufo_in_band_v);
1091 }
1092 }
1093
1094 if (mac_control->stats_mem) {
1095 nic->mac_control.stats_info->sw_stat.mem_freed +=
1096 mac_control->stats_mem_sz;
1097 pci_free_consistent(nic->pdev,
1098 mac_control->stats_mem_sz,
1099 mac_control->stats_mem,
1100 mac_control->stats_mem_phy);
1101 }
1102 }
1103
1104 /**
1105 * s2io_verify_pci_mode -
1106 */
1107
1108 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1109 {
1110 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111 register u64 val64 = 0;
1112 int mode;
1113
1114 val64 = readq(&bar0->pci_mode);
1115 mode = (u8)GET_PCI_MODE(val64);
1116
1117 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1118 return -1; /* Unknown PCI mode */
1119 return mode;
1120 }
1121
1122 #define NEC_VENID 0x1033
1123 #define NEC_DEVID 0x0125
1124 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1125 {
1126 struct pci_dev *tdev = NULL;
1127 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1128 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1129 if (tdev->bus == s2io_pdev->bus->parent)
1130 pci_dev_put(tdev);
1131 return 1;
1132 }
1133 }
1134 return 0;
1135 }
1136
1137 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1138 /**
1139 * s2io_print_pci_mode -
1140 */
1141 static int s2io_print_pci_mode(struct s2io_nic *nic)
1142 {
1143 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1144 register u64 val64 = 0;
1145 int mode;
1146 struct config_param *config = &nic->config;
1147
1148 val64 = readq(&bar0->pci_mode);
1149 mode = (u8)GET_PCI_MODE(val64);
1150
1151 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1152 return -1; /* Unknown PCI mode */
1153
1154 config->bus_speed = bus_speed[mode];
1155
1156 if (s2io_on_nec_bridge(nic->pdev)) {
1157 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1158 nic->dev->name);
1159 return mode;
1160 }
1161
1162 if (val64 & PCI_MODE_32_BITS) {
1163 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1164 } else {
1165 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1166 }
1167
1168 switch(mode) {
1169 case PCI_MODE_PCI_33:
1170 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1171 break;
1172 case PCI_MODE_PCI_66:
1173 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1174 break;
1175 case PCI_MODE_PCIX_M1_66:
1176 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1177 break;
1178 case PCI_MODE_PCIX_M1_100:
1179 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1180 break;
1181 case PCI_MODE_PCIX_M1_133:
1182 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1183 break;
1184 case PCI_MODE_PCIX_M2_66:
1185 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1186 break;
1187 case PCI_MODE_PCIX_M2_100:
1188 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1189 break;
1190 case PCI_MODE_PCIX_M2_133:
1191 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1192 break;
1193 default:
1194 return -1; /* Unsupported bus speed */
1195 }
1196
1197 return mode;
1198 }
1199
1200 /**
1201 * init_tti - Initialization transmit traffic interrupt scheme
1202 * @nic: device private variable
1203 * @link: link status (UP/DOWN) used to enable/disable continuous
1204 * transmit interrupts
1205 * Description: The function configures transmit traffic interrupts
1206 * Return Value: SUCCESS on success and
1207 * '-1' on failure
1208 */
1209
1210 static int init_tti(struct s2io_nic *nic, int link)
1211 {
1212 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1213 register u64 val64 = 0;
1214 int i;
1215 struct config_param *config;
1216
1217 config = &nic->config;
1218
1219 for (i = 0; i < config->tx_fifo_num; i++) {
1220 /*
1221 * TTI Initialization. Default Tx timer gets us about
1222 * 250 interrupts per sec. Continuous interrupts are enabled
1223 * by default.
1224 */
1225 if (nic->device_type == XFRAME_II_DEVICE) {
1226 int count = (nic->config.bus_speed * 125)/2;
1227 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1228 } else
1229 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1230
1231 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1232 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1233 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1234 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1235
1236 if (use_continuous_tx_intrs && (link == LINK_UP))
1237 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1238 writeq(val64, &bar0->tti_data1_mem);
1239
1240 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x80);
1244
1245 writeq(val64, &bar0->tti_data2_mem);
1246
1247 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1248 TTI_CMD_MEM_OFFSET(i);
1249 writeq(val64, &bar0->tti_command_mem);
1250
1251 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1252 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1253 return FAILURE;
1254 }
1255
1256 return SUCCESS;
1257 }
1258
1259 /**
1260 * init_nic - Initialization of hardware
1261 * @nic: device private variable
1262 * Description: The function sequentially configures every block
1263 * of the H/W from their reset values.
1264 * Return Value: SUCCESS on success and
1265 * '-1' on failure (endian settings incorrect).
1266 */
1267
1268 static int init_nic(struct s2io_nic *nic)
1269 {
1270 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1271 struct net_device *dev = nic->dev;
1272 register u64 val64 = 0;
1273 void __iomem *add;
1274 u32 time;
1275 int i, j;
1276 struct mac_info *mac_control;
1277 struct config_param *config;
1278 int dtx_cnt = 0;
1279 unsigned long long mem_share;
1280 int mem_size;
1281
1282 mac_control = &nic->mac_control;
1283 config = &nic->config;
1284
1285 /* to set the swapper controle on the card */
1286 if(s2io_set_swapper(nic)) {
1287 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1288 return -EIO;
1289 }
1290
1291 /*
1292 * Herc requires EOI to be removed from reset before XGXS, so..
1293 */
1294 if (nic->device_type & XFRAME_II_DEVICE) {
1295 val64 = 0xA500000000ULL;
1296 writeq(val64, &bar0->sw_reset);
1297 msleep(500);
1298 val64 = readq(&bar0->sw_reset);
1299 }
1300
1301 /* Remove XGXS from reset state */
1302 val64 = 0;
1303 writeq(val64, &bar0->sw_reset);
1304 msleep(500);
1305 val64 = readq(&bar0->sw_reset);
1306
1307 /* Ensure that it's safe to access registers by checking
1308 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1309 */
1310 if (nic->device_type == XFRAME_II_DEVICE) {
1311 for (i = 0; i < 50; i++) {
1312 val64 = readq(&bar0->adapter_status);
1313 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1314 break;
1315 msleep(10);
1316 }
1317 if (i == 50)
1318 return -ENODEV;
1319 }
1320
1321 /* Enable Receiving broadcasts */
1322 add = &bar0->mac_cfg;
1323 val64 = readq(&bar0->mac_cfg);
1324 val64 |= MAC_RMAC_BCAST_ENABLE;
1325 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1326 writel((u32) val64, add);
1327 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1328 writel((u32) (val64 >> 32), (add + 4));
1329
1330 /* Read registers in all blocks */
1331 val64 = readq(&bar0->mac_int_mask);
1332 val64 = readq(&bar0->mc_int_mask);
1333 val64 = readq(&bar0->xgxs_int_mask);
1334
1335 /* Set MTU */
1336 val64 = dev->mtu;
1337 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1338
1339 if (nic->device_type & XFRAME_II_DEVICE) {
1340 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1341 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1342 &bar0->dtx_control, UF);
1343 if (dtx_cnt & 0x1)
1344 msleep(1); /* Necessary!! */
1345 dtx_cnt++;
1346 }
1347 } else {
1348 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1349 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1350 &bar0->dtx_control, UF);
1351 val64 = readq(&bar0->dtx_control);
1352 dtx_cnt++;
1353 }
1354 }
1355
1356 /* Tx DMA Initialization */
1357 val64 = 0;
1358 writeq(val64, &bar0->tx_fifo_partition_0);
1359 writeq(val64, &bar0->tx_fifo_partition_1);
1360 writeq(val64, &bar0->tx_fifo_partition_2);
1361 writeq(val64, &bar0->tx_fifo_partition_3);
1362
1363
1364 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1365 val64 |=
1366 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1367 13) | vBIT(config->tx_cfg[i].fifo_priority,
1368 ((j * 32) + 5), 3);
1369
1370 if (i == (config->tx_fifo_num - 1)) {
1371 if (i % 2 == 0)
1372 i++;
1373 }
1374
1375 switch (i) {
1376 case 1:
1377 writeq(val64, &bar0->tx_fifo_partition_0);
1378 val64 = 0;
1379 j = 0;
1380 break;
1381 case 3:
1382 writeq(val64, &bar0->tx_fifo_partition_1);
1383 val64 = 0;
1384 j = 0;
1385 break;
1386 case 5:
1387 writeq(val64, &bar0->tx_fifo_partition_2);
1388 val64 = 0;
1389 j = 0;
1390 break;
1391 case 7:
1392 writeq(val64, &bar0->tx_fifo_partition_3);
1393 val64 = 0;
1394 j = 0;
1395 break;
1396 default:
1397 j++;
1398 break;
1399 }
1400 }
1401
1402 /*
1403 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1404 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1405 */
1406 if ((nic->device_type == XFRAME_I_DEVICE) &&
1407 (nic->pdev->revision < 4))
1408 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1409
1410 val64 = readq(&bar0->tx_fifo_partition_0);
1411 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1412 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1413
1414 /*
1415 * Initialization of Tx_PA_CONFIG register to ignore packet
1416 * integrity checking.
1417 */
1418 val64 = readq(&bar0->tx_pa_cfg);
1419 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1420 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1421 writeq(val64, &bar0->tx_pa_cfg);
1422
1423 /* Rx DMA intialization. */
1424 val64 = 0;
1425 for (i = 0; i < config->rx_ring_num; i++) {
1426 val64 |=
1427 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1428 3);
1429 }
1430 writeq(val64, &bar0->rx_queue_priority);
1431
1432 /*
1433 * Allocating equal share of memory to all the
1434 * configured Rings.
1435 */
1436 val64 = 0;
1437 if (nic->device_type & XFRAME_II_DEVICE)
1438 mem_size = 32;
1439 else
1440 mem_size = 64;
1441
1442 for (i = 0; i < config->rx_ring_num; i++) {
1443 switch (i) {
1444 case 0:
1445 mem_share = (mem_size / config->rx_ring_num +
1446 mem_size % config->rx_ring_num);
1447 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1448 continue;
1449 case 1:
1450 mem_share = (mem_size / config->rx_ring_num);
1451 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1452 continue;
1453 case 2:
1454 mem_share = (mem_size / config->rx_ring_num);
1455 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1456 continue;
1457 case 3:
1458 mem_share = (mem_size / config->rx_ring_num);
1459 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1460 continue;
1461 case 4:
1462 mem_share = (mem_size / config->rx_ring_num);
1463 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1464 continue;
1465 case 5:
1466 mem_share = (mem_size / config->rx_ring_num);
1467 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1468 continue;
1469 case 6:
1470 mem_share = (mem_size / config->rx_ring_num);
1471 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1472 continue;
1473 case 7:
1474 mem_share = (mem_size / config->rx_ring_num);
1475 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1476 continue;
1477 }
1478 }
1479 writeq(val64, &bar0->rx_queue_cfg);
1480
1481 /*
1482 * Filling Tx round robin registers
1483 * as per the number of FIFOs for equal scheduling priority
1484 */
1485 switch (config->tx_fifo_num) {
1486 case 1:
1487 val64 = 0x0;
1488 writeq(val64, &bar0->tx_w_round_robin_0);
1489 writeq(val64, &bar0->tx_w_round_robin_1);
1490 writeq(val64, &bar0->tx_w_round_robin_2);
1491 writeq(val64, &bar0->tx_w_round_robin_3);
1492 writeq(val64, &bar0->tx_w_round_robin_4);
1493 break;
1494 case 2:
1495 val64 = 0x0001000100010001ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_0);
1497 writeq(val64, &bar0->tx_w_round_robin_1);
1498 writeq(val64, &bar0->tx_w_round_robin_2);
1499 writeq(val64, &bar0->tx_w_round_robin_3);
1500 val64 = 0x0001000100000000ULL;
1501 writeq(val64, &bar0->tx_w_round_robin_4);
1502 break;
1503 case 3:
1504 val64 = 0x0001020001020001ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_0);
1506 val64 = 0x0200010200010200ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_1);
1508 val64 = 0x0102000102000102ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_2);
1510 val64 = 0x0001020001020001ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_3);
1512 val64 = 0x0200010200000000ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_4);
1514 break;
1515 case 4:
1516 val64 = 0x0001020300010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_0);
1518 writeq(val64, &bar0->tx_w_round_robin_1);
1519 writeq(val64, &bar0->tx_w_round_robin_2);
1520 writeq(val64, &bar0->tx_w_round_robin_3);
1521 val64 = 0x0001020300000000ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 5:
1525 val64 = 0x0001020304000102ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_0);
1527 val64 = 0x0304000102030400ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_1);
1529 val64 = 0x0102030400010203ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_2);
1531 val64 = 0x0400010203040001ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_3);
1533 val64 = 0x0203040000000000ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 6:
1537 val64 = 0x0001020304050001ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_0);
1539 val64 = 0x0203040500010203ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_1);
1541 val64 = 0x0405000102030405ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_2);
1543 val64 = 0x0001020304050001ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_3);
1545 val64 = 0x0203040500000000ULL;
1546 writeq(val64, &bar0->tx_w_round_robin_4);
1547 break;
1548 case 7:
1549 val64 = 0x0001020304050600ULL;
1550 writeq(val64, &bar0->tx_w_round_robin_0);
1551 val64 = 0x0102030405060001ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_1);
1553 val64 = 0x0203040506000102ULL;
1554 writeq(val64, &bar0->tx_w_round_robin_2);
1555 val64 = 0x0304050600010203ULL;
1556 writeq(val64, &bar0->tx_w_round_robin_3);
1557 val64 = 0x0405060000000000ULL;
1558 writeq(val64, &bar0->tx_w_round_robin_4);
1559 break;
1560 case 8:
1561 val64 = 0x0001020304050607ULL;
1562 writeq(val64, &bar0->tx_w_round_robin_0);
1563 writeq(val64, &bar0->tx_w_round_robin_1);
1564 writeq(val64, &bar0->tx_w_round_robin_2);
1565 writeq(val64, &bar0->tx_w_round_robin_3);
1566 val64 = 0x0001020300000000ULL;
1567 writeq(val64, &bar0->tx_w_round_robin_4);
1568 break;
1569 }
1570
1571 /* Enable all configured Tx FIFO partitions */
1572 val64 = readq(&bar0->tx_fifo_partition_0);
1573 val64 |= (TX_FIFO_PARTITION_EN);
1574 writeq(val64, &bar0->tx_fifo_partition_0);
1575
1576 /* Filling the Rx round robin registers as per the
1577 * number of Rings and steering based on QoS.
1578 */
1579 switch (config->rx_ring_num) {
1580 case 1:
1581 val64 = 0x8080808080808080ULL;
1582 writeq(val64, &bar0->rts_qos_steering);
1583 break;
1584 case 2:
1585 val64 = 0x0000010000010000ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_0);
1587 val64 = 0x0100000100000100ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_1);
1589 val64 = 0x0001000001000001ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_2);
1591 val64 = 0x0000010000010000ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 val64 = 0x0100000000000000ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_4);
1595
1596 val64 = 0x8080808040404040ULL;
1597 writeq(val64, &bar0->rts_qos_steering);
1598 break;
1599 case 3:
1600 val64 = 0x0001000102000001ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_0);
1602 val64 = 0x0001020000010001ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_1);
1604 val64 = 0x0200000100010200ULL;
1605 writeq(val64, &bar0->rx_w_round_robin_2);
1606 val64 = 0x0001000102000001ULL;
1607 writeq(val64, &bar0->rx_w_round_robin_3);
1608 val64 = 0x0001020000000000ULL;
1609 writeq(val64, &bar0->rx_w_round_robin_4);
1610
1611 val64 = 0x8080804040402020ULL;
1612 writeq(val64, &bar0->rts_qos_steering);
1613 break;
1614 case 4:
1615 val64 = 0x0001020300010200ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_0);
1617 val64 = 0x0100000102030001ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_1);
1619 val64 = 0x0200010000010203ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_2);
1621 val64 = 0x0001020001000001ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_3);
1623 val64 = 0x0203000100000000ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_4);
1625
1626 val64 = 0x8080404020201010ULL;
1627 writeq(val64, &bar0->rts_qos_steering);
1628 break;
1629 case 5:
1630 val64 = 0x0001000203000102ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_0);
1632 val64 = 0x0001020001030004ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_1);
1634 val64 = 0x0001000203000102ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_2);
1636 val64 = 0x0001020001030004ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_3);
1638 val64 = 0x0001000000000000ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_4);
1640
1641 val64 = 0x8080404020201008ULL;
1642 writeq(val64, &bar0->rts_qos_steering);
1643 break;
1644 case 6:
1645 val64 = 0x0001020304000102ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_0);
1647 val64 = 0x0304050001020001ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_1);
1649 val64 = 0x0203000100000102ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_2);
1651 val64 = 0x0304000102030405ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_3);
1653 val64 = 0x0001000200000000ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_4);
1655
1656 val64 = 0x8080404020100804ULL;
1657 writeq(val64, &bar0->rts_qos_steering);
1658 break;
1659 case 7:
1660 val64 = 0x0001020001020300ULL;
1661 writeq(val64, &bar0->rx_w_round_robin_0);
1662 val64 = 0x0102030400010203ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_1);
1664 val64 = 0x0405060001020001ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 val64 = 0x0304050000010200ULL;
1667 writeq(val64, &bar0->rx_w_round_robin_3);
1668 val64 = 0x0102030000000000ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671 val64 = 0x8080402010080402ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 case 8:
1675 val64 = 0x0001020300040105ULL;
1676 writeq(val64, &bar0->rx_w_round_robin_0);
1677 val64 = 0x0200030106000204ULL;
1678 writeq(val64, &bar0->rx_w_round_robin_1);
1679 val64 = 0x0103000502010007ULL;
1680 writeq(val64, &bar0->rx_w_round_robin_2);
1681 val64 = 0x0304010002060500ULL;
1682 writeq(val64, &bar0->rx_w_round_robin_3);
1683 val64 = 0x0103020400000000ULL;
1684 writeq(val64, &bar0->rx_w_round_robin_4);
1685
1686 val64 = 0x8040201008040201ULL;
1687 writeq(val64, &bar0->rts_qos_steering);
1688 break;
1689 }
1690
1691 /* UDP Fix */
1692 val64 = 0;
1693 for (i = 0; i < 8; i++)
1694 writeq(val64, &bar0->rts_frm_len_n[i]);
1695
1696 /* Set the default rts frame length for the rings configured */
1697 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1698 for (i = 0 ; i < config->rx_ring_num ; i++)
1699 writeq(val64, &bar0->rts_frm_len_n[i]);
1700
1701 /* Set the frame length for the configured rings
1702 * desired by the user
1703 */
1704 for (i = 0; i < config->rx_ring_num; i++) {
1705 /* If rts_frm_len[i] == 0 then it is assumed that user not
1706 * specified frame length steering.
1707 * If the user provides the frame length then program
1708 * the rts_frm_len register for those values or else
1709 * leave it as it is.
1710 */
1711 if (rts_frm_len[i] != 0) {
1712 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1713 &bar0->rts_frm_len_n[i]);
1714 }
1715 }
1716
1717 /* Disable differentiated services steering logic */
1718 for (i = 0; i < 64; i++) {
1719 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1720 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1721 dev->name);
1722 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1723 return -ENODEV;
1724 }
1725 }
1726
1727 /* Program statistics memory */
1728 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1729
1730 if (nic->device_type == XFRAME_II_DEVICE) {
1731 val64 = STAT_BC(0x320);
1732 writeq(val64, &bar0->stat_byte_cnt);
1733 }
1734
1735 /*
1736 * Initializing the sampling rate for the device to calculate the
1737 * bandwidth utilization.
1738 */
1739 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1740 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1741 writeq(val64, &bar0->mac_link_util);
1742
1743 /*
1744 * Initializing the Transmit and Receive Traffic Interrupt
1745 * Scheme.
1746 */
1747
1748 /* Initialize TTI */
1749 if (SUCCESS != init_tti(nic, nic->last_link_state))
1750 return -ENODEV;
1751
1752 /* RTI Initialization */
1753 if (nic->device_type == XFRAME_II_DEVICE) {
1754 /*
1755 * Programmed to generate Apprx 500 Intrs per
1756 * second
1757 */
1758 int count = (nic->config.bus_speed * 125)/4;
1759 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1760 } else
1761 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1762 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1763 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1764 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1765
1766 writeq(val64, &bar0->rti_data1_mem);
1767
1768 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1769 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1770 if (nic->config.intr_type == MSI_X)
1771 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1772 RTI_DATA2_MEM_RX_UFC_D(0x40));
1773 else
1774 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1775 RTI_DATA2_MEM_RX_UFC_D(0x80));
1776 writeq(val64, &bar0->rti_data2_mem);
1777
1778 for (i = 0; i < config->rx_ring_num; i++) {
1779 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1780 | RTI_CMD_MEM_OFFSET(i);
1781 writeq(val64, &bar0->rti_command_mem);
1782
1783 /*
1784 * Once the operation completes, the Strobe bit of the
1785 * command register will be reset. We poll for this
1786 * particular condition. We wait for a maximum of 500ms
1787 * for the operation to complete, if it's not complete
1788 * by then we return error.
1789 */
1790 time = 0;
1791 while (TRUE) {
1792 val64 = readq(&bar0->rti_command_mem);
1793 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1794 break;
1795
1796 if (time > 10) {
1797 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1798 dev->name);
1799 return -ENODEV;
1800 }
1801 time++;
1802 msleep(50);
1803 }
1804 }
1805
1806 /*
1807 * Initializing proper values as Pause threshold into all
1808 * the 8 Queues on Rx side.
1809 */
1810 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1811 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1812
1813 /* Disable RMAC PAD STRIPPING */
1814 add = &bar0->mac_cfg;
1815 val64 = readq(&bar0->mac_cfg);
1816 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818 writel((u32) (val64), add);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64 >> 32), (add + 4));
1821 val64 = readq(&bar0->mac_cfg);
1822
1823 /* Enable FCS stripping by adapter */
1824 add = &bar0->mac_cfg;
1825 val64 = readq(&bar0->mac_cfg);
1826 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1827 if (nic->device_type == XFRAME_II_DEVICE)
1828 writeq(val64, &bar0->mac_cfg);
1829 else {
1830 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1831 writel((u32) (val64), add);
1832 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1833 writel((u32) (val64 >> 32), (add + 4));
1834 }
1835
1836 /*
1837 * Set the time value to be inserted in the pause frame
1838 * generated by xena.
1839 */
1840 val64 = readq(&bar0->rmac_pause_cfg);
1841 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1842 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1843 writeq(val64, &bar0->rmac_pause_cfg);
1844
1845 /*
1846 * Set the Threshold Limit for Generating the pause frame
1847 * If the amount of data in any Queue exceeds ratio of
1848 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1849 * pause frame is generated
1850 */
1851 val64 = 0;
1852 for (i = 0; i < 4; i++) {
1853 val64 |=
1854 (((u64) 0xFF00 | nic->mac_control.
1855 mc_pause_threshold_q0q3)
1856 << (i * 2 * 8));
1857 }
1858 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1859
1860 val64 = 0;
1861 for (i = 0; i < 4; i++) {
1862 val64 |=
1863 (((u64) 0xFF00 | nic->mac_control.
1864 mc_pause_threshold_q4q7)
1865 << (i * 2 * 8));
1866 }
1867 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1868
1869 /*
1870 * TxDMA will stop Read request if the number of read split has
1871 * exceeded the limit pointed by shared_splits
1872 */
1873 val64 = readq(&bar0->pic_control);
1874 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1875 writeq(val64, &bar0->pic_control);
1876
1877 if (nic->config.bus_speed == 266) {
1878 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1879 writeq(0x0, &bar0->read_retry_delay);
1880 writeq(0x0, &bar0->write_retry_delay);
1881 }
1882
1883 /*
1884 * Programming the Herc to split every write transaction
1885 * that does not start on an ADB to reduce disconnects.
1886 */
1887 if (nic->device_type == XFRAME_II_DEVICE) {
1888 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1889 MISC_LINK_STABILITY_PRD(3);
1890 writeq(val64, &bar0->misc_control);
1891 val64 = readq(&bar0->pic_control2);
1892 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1893 writeq(val64, &bar0->pic_control2);
1894 }
1895 if (strstr(nic->product_name, "CX4")) {
1896 val64 = TMAC_AVG_IPG(0x17);
1897 writeq(val64, &bar0->tmac_avg_ipg);
1898 }
1899
1900 return SUCCESS;
1901 }
1902 #define LINK_UP_DOWN_INTERRUPT 1
1903 #define MAC_RMAC_ERR_TIMER 2
1904
1905 static int s2io_link_fault_indication(struct s2io_nic *nic)
1906 {
1907 if (nic->config.intr_type != INTA)
1908 return MAC_RMAC_ERR_TIMER;
1909 if (nic->device_type == XFRAME_II_DEVICE)
1910 return LINK_UP_DOWN_INTERRUPT;
1911 else
1912 return MAC_RMAC_ERR_TIMER;
1913 }
1914
1915 /**
1916 * do_s2io_write_bits - update alarm bits in alarm register
1917 * @value: alarm bits
1918 * @flag: interrupt status
1919 * @addr: address value
1920 * Description: update alarm bits in alarm register
1921 * Return Value:
1922 * NONE.
1923 */
1924 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1925 {
1926 u64 temp64;
1927
1928 temp64 = readq(addr);
1929
1930 if(flag == ENABLE_INTRS)
1931 temp64 &= ~((u64) value);
1932 else
1933 temp64 |= ((u64) value);
1934 writeq(temp64, addr);
1935 }
1936
1937 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1938 {
1939 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1940 register u64 gen_int_mask = 0;
1941
1942 if (mask & TX_DMA_INTR) {
1943
1944 gen_int_mask |= TXDMA_INT_M;
1945
1946 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1947 TXDMA_PCC_INT | TXDMA_TTI_INT |
1948 TXDMA_LSO_INT | TXDMA_TPA_INT |
1949 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1950
1951 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1952 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1953 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1954 &bar0->pfc_err_mask);
1955
1956 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1957 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1958 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1959
1960 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1961 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1962 PCC_N_SERR | PCC_6_COF_OV_ERR |
1963 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1964 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1965 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1966
1967 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1968 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1969
1970 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1971 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1972 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1973 flag, &bar0->lso_err_mask);
1974
1975 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1976 flag, &bar0->tpa_err_mask);
1977
1978 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1979
1980 }
1981
1982 if (mask & TX_MAC_INTR) {
1983 gen_int_mask |= TXMAC_INT_M;
1984 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1985 &bar0->mac_int_mask);
1986 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1987 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1988 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1989 flag, &bar0->mac_tmac_err_mask);
1990 }
1991
1992 if (mask & TX_XGXS_INTR) {
1993 gen_int_mask |= TXXGXS_INT_M;
1994 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1995 &bar0->xgxs_int_mask);
1996 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1997 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1998 flag, &bar0->xgxs_txgxs_err_mask);
1999 }
2000
2001 if (mask & RX_DMA_INTR) {
2002 gen_int_mask |= RXDMA_INT_M;
2003 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2004 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2005 flag, &bar0->rxdma_int_mask);
2006 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2007 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2008 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2009 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2010 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2011 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2012 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2013 &bar0->prc_pcix_err_mask);
2014 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2015 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2016 &bar0->rpa_err_mask);
2017 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2018 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2019 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2020 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2021 flag, &bar0->rda_err_mask);
2022 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2023 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2024 flag, &bar0->rti_err_mask);
2025 }
2026
2027 if (mask & RX_MAC_INTR) {
2028 gen_int_mask |= RXMAC_INT_M;
2029 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2030 &bar0->mac_int_mask);
2031 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2032 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2033 RMAC_DOUBLE_ECC_ERR |
2034 RMAC_LINK_STATE_CHANGE_INT,
2035 flag, &bar0->mac_rmac_err_mask);
2036 }
2037
2038 if (mask & RX_XGXS_INTR)
2039 {
2040 gen_int_mask |= RXXGXS_INT_M;
2041 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2042 &bar0->xgxs_int_mask);
2043 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2044 &bar0->xgxs_rxgxs_err_mask);
2045 }
2046
2047 if (mask & MC_INTR) {
2048 gen_int_mask |= MC_INT_M;
2049 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2050 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2051 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2052 &bar0->mc_err_mask);
2053 }
2054 nic->general_int_mask = gen_int_mask;
2055
2056 /* Remove this line when alarm interrupts are enabled */
2057 nic->general_int_mask = 0;
2058 }
2059 /**
2060 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2061 * @nic: device private variable,
2062 * @mask: A mask indicating which Intr block must be modified and,
2063 * @flag: A flag indicating whether to enable or disable the Intrs.
2064 * Description: This function will either disable or enable the interrupts
2065 * depending on the flag argument. The mask argument can be used to
2066 * enable/disable any Intr block.
2067 * Return Value: NONE.
2068 */
2069
2070 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2071 {
2072 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2073 register u64 temp64 = 0, intr_mask = 0;
2074
2075 intr_mask = nic->general_int_mask;
2076
2077 /* Top level interrupt classification */
2078 /* PIC Interrupts */
2079 if (mask & TX_PIC_INTR) {
2080 /* Enable PIC Intrs in the general intr mask register */
2081 intr_mask |= TXPIC_INT_M;
2082 if (flag == ENABLE_INTRS) {
2083 /*
2084 * If Hercules adapter enable GPIO otherwise
2085 * disable all PCIX, Flash, MDIO, IIC and GPIO
2086 * interrupts for now.
2087 * TODO
2088 */
2089 if (s2io_link_fault_indication(nic) ==
2090 LINK_UP_DOWN_INTERRUPT ) {
2091 do_s2io_write_bits(PIC_INT_GPIO, flag,
2092 &bar0->pic_int_mask);
2093 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2094 &bar0->gpio_int_mask);
2095 } else
2096 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2097 } else if (flag == DISABLE_INTRS) {
2098 /*
2099 * Disable PIC Intrs in the general
2100 * intr mask register
2101 */
2102 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2103 }
2104 }
2105
2106 /* Tx traffic interrupts */
2107 if (mask & TX_TRAFFIC_INTR) {
2108 intr_mask |= TXTRAFFIC_INT_M;
2109 if (flag == ENABLE_INTRS) {
2110 /*
2111 * Enable all the Tx side interrupts
2112 * writing 0 Enables all 64 TX interrupt levels
2113 */
2114 writeq(0x0, &bar0->tx_traffic_mask);
2115 } else if (flag == DISABLE_INTRS) {
2116 /*
2117 * Disable Tx Traffic Intrs in the general intr mask
2118 * register.
2119 */
2120 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2121 }
2122 }
2123
2124 /* Rx traffic interrupts */
2125 if (mask & RX_TRAFFIC_INTR) {
2126 intr_mask |= RXTRAFFIC_INT_M;
2127 if (flag == ENABLE_INTRS) {
2128 /* writing 0 Enables all 8 RX interrupt levels */
2129 writeq(0x0, &bar0->rx_traffic_mask);
2130 } else if (flag == DISABLE_INTRS) {
2131 /*
2132 * Disable Rx Traffic Intrs in the general intr mask
2133 * register.
2134 */
2135 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2136 }
2137 }
2138
2139 temp64 = readq(&bar0->general_int_mask);
2140 if (flag == ENABLE_INTRS)
2141 temp64 &= ~((u64) intr_mask);
2142 else
2143 temp64 = DISABLE_ALL_INTRS;
2144 writeq(temp64, &bar0->general_int_mask);
2145
2146 nic->general_int_mask = readq(&bar0->general_int_mask);
2147 }
2148
2149 /**
2150 * verify_pcc_quiescent- Checks for PCC quiescent state
2151 * Return: 1 If PCC is quiescence
2152 * 0 If PCC is not quiescence
2153 */
2154 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2155 {
2156 int ret = 0, herc;
2157 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2158 u64 val64 = readq(&bar0->adapter_status);
2159
2160 herc = (sp->device_type == XFRAME_II_DEVICE);
2161
2162 if (flag == FALSE) {
2163 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2164 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2165 ret = 1;
2166 } else {
2167 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2168 ret = 1;
2169 }
2170 } else {
2171 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2172 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2173 ADAPTER_STATUS_RMAC_PCC_IDLE))
2174 ret = 1;
2175 } else {
2176 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2177 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2178 ret = 1;
2179 }
2180 }
2181
2182 return ret;
2183 }
2184 /**
2185 * verify_xena_quiescence - Checks whether the H/W is ready
2186 * Description: Returns whether the H/W is ready to go or not. Depending
2187 * on whether adapter enable bit was written or not the comparison
2188 * differs and the calling function passes the input argument flag to
2189 * indicate this.
2190 * Return: 1 If xena is quiescence
2191 * 0 If Xena is not quiescence
2192 */
2193
2194 static int verify_xena_quiescence(struct s2io_nic *sp)
2195 {
2196 int mode;
2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 u64 val64 = readq(&bar0->adapter_status);
2199 mode = s2io_verify_pci_mode(sp);
2200
2201 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2206 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2210 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2214 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2215 return 0;
2216 }
2217 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2218 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2219 return 0;
2220 }
2221 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2222 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2223 return 0;
2224 }
2225 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2226 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2227 return 0;
2228 }
2229 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2230 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2231 return 0;
2232 }
2233
2234 /*
2235 * In PCI 33 mode, the P_PLL is not used, and therefore,
2236 * the the P_PLL_LOCK bit in the adapter_status register will
2237 * not be asserted.
2238 */
2239 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2240 sp->device_type == XFRAME_II_DEVICE && mode !=
2241 PCI_MODE_PCI_33) {
2242 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2243 return 0;
2244 }
2245 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2246 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2247 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2248 return 0;
2249 }
2250 return 1;
2251 }
2252
2253 /**
2254 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2255 * @sp: Pointer to device specifc structure
2256 * Description :
2257 * New procedure to clear mac address reading problems on Alpha platforms
2258 *
2259 */
2260
2261 static void fix_mac_address(struct s2io_nic * sp)
2262 {
2263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2264 u64 val64;
2265 int i = 0;
2266
2267 while (fix_mac[i] != END_SIGN) {
2268 writeq(fix_mac[i++], &bar0->gpio_control);
2269 udelay(10);
2270 val64 = readq(&bar0->gpio_control);
2271 }
2272 }
2273
2274 /**
2275 * start_nic - Turns the device on
2276 * @nic : device private variable.
2277 * Description:
2278 * This function actually turns the device on. Before this function is
2279 * called,all Registers are configured from their reset states
2280 * and shared memory is allocated but the NIC is still quiescent. On
2281 * calling this function, the device interrupts are cleared and the NIC is
2282 * literally switched on by writing into the adapter control register.
2283 * Return Value:
2284 * SUCCESS on success and -1 on failure.
2285 */
2286
2287 static int start_nic(struct s2io_nic *nic)
2288 {
2289 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2290 struct net_device *dev = nic->dev;
2291 register u64 val64 = 0;
2292 u16 subid, i;
2293 struct mac_info *mac_control;
2294 struct config_param *config;
2295
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2298
2299 /* PRC Initialization and configuration */
2300 for (i = 0; i < config->rx_ring_num; i++) {
2301 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2302 &bar0->prc_rxd0_n[i]);
2303
2304 val64 = readq(&bar0->prc_ctrl_n[i]);
2305 if (nic->rxd_mode == RXD_MODE_1)
2306 val64 |= PRC_CTRL_RC_ENABLED;
2307 else
2308 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2309 if (nic->device_type == XFRAME_II_DEVICE)
2310 val64 |= PRC_CTRL_GROUP_READS;
2311 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2312 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2313 writeq(val64, &bar0->prc_ctrl_n[i]);
2314 }
2315
2316 if (nic->rxd_mode == RXD_MODE_3B) {
2317 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2318 val64 = readq(&bar0->rx_pa_cfg);
2319 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2320 writeq(val64, &bar0->rx_pa_cfg);
2321 }
2322
2323 if (vlan_tag_strip == 0) {
2324 val64 = readq(&bar0->rx_pa_cfg);
2325 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2326 writeq(val64, &bar0->rx_pa_cfg);
2327 vlan_strip_flag = 0;
2328 }
2329
2330 /*
2331 * Enabling MC-RLDRAM. After enabling the device, we timeout
2332 * for around 100ms, which is approximately the time required
2333 * for the device to be ready for operation.
2334 */
2335 val64 = readq(&bar0->mc_rldram_mrs);
2336 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2337 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2338 val64 = readq(&bar0->mc_rldram_mrs);
2339
2340 msleep(100); /* Delay by around 100 ms. */
2341
2342 /* Enabling ECC Protection. */
2343 val64 = readq(&bar0->adapter_control);
2344 val64 &= ~ADAPTER_ECC_EN;
2345 writeq(val64, &bar0->adapter_control);
2346
2347 /*
2348 * Verify if the device is ready to be enabled, if so enable
2349 * it.
2350 */
2351 val64 = readq(&bar0->adapter_status);
2352 if (!verify_xena_quiescence(nic)) {
2353 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2354 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2355 (unsigned long long) val64);
2356 return FAILURE;
2357 }
2358
2359 /*
2360 * With some switches, link might be already up at this point.
2361 * Because of this weird behavior, when we enable laser,
2362 * we may not get link. We need to handle this. We cannot
2363 * figure out which switch is misbehaving. So we are forced to
2364 * make a global change.
2365 */
2366
2367 /* Enabling Laser. */
2368 val64 = readq(&bar0->adapter_control);
2369 val64 |= ADAPTER_EOI_TX_ON;
2370 writeq(val64, &bar0->adapter_control);
2371
2372 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2373 /*
2374 * Dont see link state interrupts initally on some switches,
2375 * so directly scheduling the link state task here.
2376 */
2377 schedule_work(&nic->set_link_task);
2378 }
2379 /* SXE-002: Initialize link and activity LED */
2380 subid = nic->pdev->subsystem_device;
2381 if (((subid & 0xFF) >= 0x07) &&
2382 (nic->device_type == XFRAME_I_DEVICE)) {
2383 val64 = readq(&bar0->gpio_control);
2384 val64 |= 0x0000800000000000ULL;
2385 writeq(val64, &bar0->gpio_control);
2386 val64 = 0x0411040400000000ULL;
2387 writeq(val64, (void __iomem *)bar0 + 0x2700);
2388 }
2389
2390 return SUCCESS;
2391 }
2392 /**
2393 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2394 */
2395 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2396 TxD *txdlp, int get_off)
2397 {
2398 struct s2io_nic *nic = fifo_data->nic;
2399 struct sk_buff *skb;
2400 struct TxD *txds;
2401 u16 j, frg_cnt;
2402
2403 txds = txdlp;
2404 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2405 pci_unmap_single(nic->pdev, (dma_addr_t)
2406 txds->Buffer_Pointer, sizeof(u64),
2407 PCI_DMA_TODEVICE);
2408 txds++;
2409 }
2410
2411 skb = (struct sk_buff *) ((unsigned long)
2412 txds->Host_Control);
2413 if (!skb) {
2414 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2415 return NULL;
2416 }
2417 pci_unmap_single(nic->pdev, (dma_addr_t)
2418 txds->Buffer_Pointer,
2419 skb->len - skb->data_len,
2420 PCI_DMA_TODEVICE);
2421 frg_cnt = skb_shinfo(skb)->nr_frags;
2422 if (frg_cnt) {
2423 txds++;
2424 for (j = 0; j < frg_cnt; j++, txds++) {
2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2426 if (!txds->Buffer_Pointer)
2427 break;
2428 pci_unmap_page(nic->pdev, (dma_addr_t)
2429 txds->Buffer_Pointer,
2430 frag->size, PCI_DMA_TODEVICE);
2431 }
2432 }
2433 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2434 return(skb);
2435 }
2436
2437 /**
2438 * free_tx_buffers - Free all queued Tx buffers
2439 * @nic : device private variable.
2440 * Description:
2441 * Free all queued Tx buffers.
2442 * Return Value: void
2443 */
2444
2445 static void free_tx_buffers(struct s2io_nic *nic)
2446 {
2447 struct net_device *dev = nic->dev;
2448 struct sk_buff *skb;
2449 struct TxD *txdp;
2450 int i, j;
2451 struct mac_info *mac_control;
2452 struct config_param *config;
2453 int cnt = 0;
2454
2455 mac_control = &nic->mac_control;
2456 config = &nic->config;
2457
2458 for (i = 0; i < config->tx_fifo_num; i++) {
2459 unsigned long flags;
2460 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2461 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2462 txdp = (struct TxD *) \
2463 mac_control->fifos[i].list_info[j].list_virt_addr;
2464 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2465 if (skb) {
2466 nic->mac_control.stats_info->sw_stat.mem_freed
2467 += skb->truesize;
2468 dev_kfree_skb(skb);
2469 cnt++;
2470 }
2471 }
2472 DBG_PRINT(INTR_DBG,
2473 "%s:forcibly freeing %d skbs on FIFO%d\n",
2474 dev->name, cnt, i);
2475 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2476 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2477 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2478 }
2479 }
2480
2481 /**
2482 * stop_nic - To stop the nic
2483 * @nic ; device private variable.
2484 * Description:
2485 * This function does exactly the opposite of what the start_nic()
2486 * function does. This function is called to stop the device.
2487 * Return Value:
2488 * void.
2489 */
2490
2491 static void stop_nic(struct s2io_nic *nic)
2492 {
2493 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2494 register u64 val64 = 0;
2495 u16 interruptible;
2496 struct mac_info *mac_control;
2497 struct config_param *config;
2498
2499 mac_control = &nic->mac_control;
2500 config = &nic->config;
2501
2502 /* Disable all interrupts */
2503 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2504 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2505 interruptible |= TX_PIC_INTR;
2506 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2507
2508 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2509 val64 = readq(&bar0->adapter_control);
2510 val64 &= ~(ADAPTER_CNTL_EN);
2511 writeq(val64, &bar0->adapter_control);
2512 }
2513
2514 /**
2515 * fill_rx_buffers - Allocates the Rx side skbs
2516 * @nic: device private variable
2517 * @ring_no: ring number
2518 * Description:
2519 * The function allocates Rx side skbs and puts the physical
2520 * address of these buffers into the RxD buffer pointers, so that the NIC
2521 * can DMA the received frame into these locations.
2522 * The NIC supports 3 receive modes, viz
2523 * 1. single buffer,
2524 * 2. three buffer and
2525 * 3. Five buffer modes.
2526 * Each mode defines how many fragments the received frame will be split
2527 * up into by the NIC. The frame is split into L3 header, L4 Header,
2528 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2529 * is split into 3 fragments. As of now only single buffer mode is
2530 * supported.
2531 * Return Value:
2532 * SUCCESS on success or an appropriate -ve value on failure.
2533 */
2534
2535 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2536 {
2537 struct net_device *dev = nic->dev;
2538 struct sk_buff *skb;
2539 struct RxD_t *rxdp;
2540 int off, off1, size, block_no, block_no1;
2541 u32 alloc_tab = 0;
2542 u32 alloc_cnt;
2543 struct mac_info *mac_control;
2544 struct config_param *config;
2545 u64 tmp;
2546 struct buffAdd *ba;
2547 unsigned long flags;
2548 struct RxD_t *first_rxdp = NULL;
2549 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2550 struct RxD1 *rxdp1;
2551 struct RxD3 *rxdp3;
2552 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2553
2554 mac_control = &nic->mac_control;
2555 config = &nic->config;
2556 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2557 atomic_read(&nic->rx_bufs_left[ring_no]);
2558
2559 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2560 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2561 while (alloc_tab < alloc_cnt) {
2562 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2563 block_index;
2564 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2565
2566 rxdp = mac_control->rings[ring_no].
2567 rx_blocks[block_no].rxds[off].virt_addr;
2568
2569 if ((block_no == block_no1) && (off == off1) &&
2570 (rxdp->Host_Control)) {
2571 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2572 dev->name);
2573 DBG_PRINT(INTR_DBG, " info equated\n");
2574 goto end;
2575 }
2576 if (off && (off == rxd_count[nic->rxd_mode])) {
2577 mac_control->rings[ring_no].rx_curr_put_info.
2578 block_index++;
2579 if (mac_control->rings[ring_no].rx_curr_put_info.
2580 block_index == mac_control->rings[ring_no].
2581 block_count)
2582 mac_control->rings[ring_no].rx_curr_put_info.
2583 block_index = 0;
2584 block_no = mac_control->rings[ring_no].
2585 rx_curr_put_info.block_index;
2586 if (off == rxd_count[nic->rxd_mode])
2587 off = 0;
2588 mac_control->rings[ring_no].rx_curr_put_info.
2589 offset = off;
2590 rxdp = mac_control->rings[ring_no].
2591 rx_blocks[block_no].block_virt_addr;
2592 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2593 dev->name, rxdp);
2594 }
2595 if(!napi) {
2596 spin_lock_irqsave(&nic->put_lock, flags);
2597 mac_control->rings[ring_no].put_pos =
2598 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2599 spin_unlock_irqrestore(&nic->put_lock, flags);
2600 } else {
2601 mac_control->rings[ring_no].put_pos =
2602 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2603 }
2604 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2605 ((nic->rxd_mode == RXD_MODE_3B) &&
2606 (rxdp->Control_2 & s2BIT(0)))) {
2607 mac_control->rings[ring_no].rx_curr_put_info.
2608 offset = off;
2609 goto end;
2610 }
2611 /* calculate size of skb based on ring mode */
2612 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2613 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2614 if (nic->rxd_mode == RXD_MODE_1)
2615 size += NET_IP_ALIGN;
2616 else
2617 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2618
2619 /* allocate skb */
2620 skb = dev_alloc_skb(size);
2621 if(!skb) {
2622 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2623 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2624 if (first_rxdp) {
2625 wmb();
2626 first_rxdp->Control_1 |= RXD_OWN_XENA;
2627 }
2628 nic->mac_control.stats_info->sw_stat. \
2629 mem_alloc_fail_cnt++;
2630 return -ENOMEM ;
2631 }
2632 nic->mac_control.stats_info->sw_stat.mem_allocated
2633 += skb->truesize;
2634 if (nic->rxd_mode == RXD_MODE_1) {
2635 /* 1 buffer mode - normal operation mode */
2636 rxdp1 = (struct RxD1*)rxdp;
2637 memset(rxdp, 0, sizeof(struct RxD1));
2638 skb_reserve(skb, NET_IP_ALIGN);
2639 rxdp1->Buffer0_ptr = pci_map_single
2640 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2641 PCI_DMA_FROMDEVICE);
2642 if( (rxdp1->Buffer0_ptr == 0) ||
2643 (rxdp1->Buffer0_ptr ==
2644 DMA_ERROR_CODE))
2645 goto pci_map_failed;
2646
2647 rxdp->Control_2 =
2648 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2649
2650 } else if (nic->rxd_mode == RXD_MODE_3B) {
2651 /*
2652 * 2 buffer mode -
2653 * 2 buffer mode provides 128
2654 * byte aligned receive buffers.
2655 */
2656
2657 rxdp3 = (struct RxD3*)rxdp;
2658 /* save buffer pointers to avoid frequent dma mapping */
2659 Buffer0_ptr = rxdp3->Buffer0_ptr;
2660 Buffer1_ptr = rxdp3->Buffer1_ptr;
2661 memset(rxdp, 0, sizeof(struct RxD3));
2662 /* restore the buffer pointers for dma sync*/
2663 rxdp3->Buffer0_ptr = Buffer0_ptr;
2664 rxdp3->Buffer1_ptr = Buffer1_ptr;
2665
2666 ba = &mac_control->rings[ring_no].ba[block_no][off];
2667 skb_reserve(skb, BUF0_LEN);
2668 tmp = (u64)(unsigned long) skb->data;
2669 tmp += ALIGN_SIZE;
2670 tmp &= ~ALIGN_SIZE;
2671 skb->data = (void *) (unsigned long)tmp;
2672 skb_reset_tail_pointer(skb);
2673
2674 if (!(rxdp3->Buffer0_ptr))
2675 rxdp3->Buffer0_ptr =
2676 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2677 PCI_DMA_FROMDEVICE);
2678 else
2679 pci_dma_sync_single_for_device(nic->pdev,
2680 (dma_addr_t) rxdp3->Buffer0_ptr,
2681 BUF0_LEN, PCI_DMA_FROMDEVICE);
2682 if( (rxdp3->Buffer0_ptr == 0) ||
2683 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2684 goto pci_map_failed;
2685
2686 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2687 if (nic->rxd_mode == RXD_MODE_3B) {
2688 /* Two buffer mode */
2689
2690 /*
2691 * Buffer2 will have L3/L4 header plus
2692 * L4 payload
2693 */
2694 rxdp3->Buffer2_ptr = pci_map_single
2695 (nic->pdev, skb->data, dev->mtu + 4,
2696 PCI_DMA_FROMDEVICE);
2697
2698 if( (rxdp3->Buffer2_ptr == 0) ||
2699 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2700 goto pci_map_failed;
2701
2702 rxdp3->Buffer1_ptr =
2703 pci_map_single(nic->pdev,
2704 ba->ba_1, BUF1_LEN,
2705 PCI_DMA_FROMDEVICE);
2706 if( (rxdp3->Buffer1_ptr == 0) ||
2707 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2708 pci_unmap_single
2709 (nic->pdev,
2710 (dma_addr_t)rxdp3->Buffer2_ptr,
2711 dev->mtu + 4,
2712 PCI_DMA_FROMDEVICE);
2713 goto pci_map_failed;
2714 }
2715 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2716 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2717 (dev->mtu + 4);
2718 }
2719 rxdp->Control_2 |= s2BIT(0);
2720 }
2721 rxdp->Host_Control = (unsigned long) (skb);
2722 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2723 rxdp->Control_1 |= RXD_OWN_XENA;
2724 off++;
2725 if (off == (rxd_count[nic->rxd_mode] + 1))
2726 off = 0;
2727 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2728
2729 rxdp->Control_2 |= SET_RXD_MARKER;
2730 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2731 if (first_rxdp) {
2732 wmb();
2733 first_rxdp->Control_1 |= RXD_OWN_XENA;
2734 }
2735 first_rxdp = rxdp;
2736 }
2737 atomic_inc(&nic->rx_bufs_left[ring_no]);
2738 alloc_tab++;
2739 }
2740
2741 end:
2742 /* Transfer ownership of first descriptor to adapter just before
2743 * exiting. Before that, use memory barrier so that ownership
2744 * and other fields are seen by adapter correctly.
2745 */
2746 if (first_rxdp) {
2747 wmb();
2748 first_rxdp->Control_1 |= RXD_OWN_XENA;
2749 }
2750
2751 return SUCCESS;
2752 pci_map_failed:
2753 stats->pci_map_fail_cnt++;
2754 stats->mem_freed += skb->truesize;
2755 dev_kfree_skb_irq(skb);
2756 return -ENOMEM;
2757 }
2758
2759 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2760 {
2761 struct net_device *dev = sp->dev;
2762 int j;
2763 struct sk_buff *skb;
2764 struct RxD_t *rxdp;
2765 struct mac_info *mac_control;
2766 struct buffAdd *ba;
2767 struct RxD1 *rxdp1;
2768 struct RxD3 *rxdp3;
2769
2770 mac_control = &sp->mac_control;
2771 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2772 rxdp = mac_control->rings[ring_no].
2773 rx_blocks[blk].rxds[j].virt_addr;
2774 skb = (struct sk_buff *)
2775 ((unsigned long) rxdp->Host_Control);
2776 if (!skb) {
2777 continue;
2778 }
2779 if (sp->rxd_mode == RXD_MODE_1) {
2780 rxdp1 = (struct RxD1*)rxdp;
2781 pci_unmap_single(sp->pdev, (dma_addr_t)
2782 rxdp1->Buffer0_ptr,
2783 dev->mtu +
2784 HEADER_ETHERNET_II_802_3_SIZE
2785 + HEADER_802_2_SIZE +
2786 HEADER_SNAP_SIZE,
2787 PCI_DMA_FROMDEVICE);
2788 memset(rxdp, 0, sizeof(struct RxD1));
2789 } else if(sp->rxd_mode == RXD_MODE_3B) {
2790 rxdp3 = (struct RxD3*)rxdp;
2791 ba = &mac_control->rings[ring_no].
2792 ba[blk][j];
2793 pci_unmap_single(sp->pdev, (dma_addr_t)
2794 rxdp3->Buffer0_ptr,
2795 BUF0_LEN,
2796 PCI_DMA_FROMDEVICE);
2797 pci_unmap_single(sp->pdev, (dma_addr_t)
2798 rxdp3->Buffer1_ptr,
2799 BUF1_LEN,
2800 PCI_DMA_FROMDEVICE);
2801 pci_unmap_single(sp->pdev, (dma_addr_t)
2802 rxdp3->Buffer2_ptr,
2803 dev->mtu + 4,
2804 PCI_DMA_FROMDEVICE);
2805 memset(rxdp, 0, sizeof(struct RxD3));
2806 }
2807 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2808 dev_kfree_skb(skb);
2809 atomic_dec(&sp->rx_bufs_left[ring_no]);
2810 }
2811 }
2812
2813 /**
2814 * free_rx_buffers - Frees all Rx buffers
2815 * @sp: device private variable.
2816 * Description:
2817 * This function will free all Rx buffers allocated by host.
2818 * Return Value:
2819 * NONE.
2820 */
2821
2822 static void free_rx_buffers(struct s2io_nic *sp)
2823 {
2824 struct net_device *dev = sp->dev;
2825 int i, blk = 0, buf_cnt = 0;
2826 struct mac_info *mac_control;
2827 struct config_param *config;
2828
2829 mac_control = &sp->mac_control;
2830 config = &sp->config;
2831
2832 for (i = 0; i < config->rx_ring_num; i++) {
2833 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2834 free_rxd_blk(sp,i,blk);
2835
2836 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2837 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2838 mac_control->rings[i].rx_curr_put_info.offset = 0;
2839 mac_control->rings[i].rx_curr_get_info.offset = 0;
2840 atomic_set(&sp->rx_bufs_left[i], 0);
2841 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2842 dev->name, buf_cnt, i);
2843 }
2844 }
2845
2846 /**
2847 * s2io_poll - Rx interrupt handler for NAPI support
2848 * @napi : pointer to the napi structure.
2849 * @budget : The number of packets that were budgeted to be processed
2850 * during one pass through the 'Poll" function.
2851 * Description:
2852 * Comes into picture only if NAPI support has been incorporated. It does
2853 * the same thing that rx_intr_handler does, but not in a interrupt context
2854 * also It will process only a given number of packets.
2855 * Return value:
2856 * 0 on success and 1 if there are No Rx packets to be processed.
2857 */
2858
2859 static int s2io_poll(struct napi_struct *napi, int budget)
2860 {
2861 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2862 struct net_device *dev = nic->dev;
2863 int pkt_cnt = 0, org_pkts_to_process;
2864 struct mac_info *mac_control;
2865 struct config_param *config;
2866 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2867 int i;
2868
2869 mac_control = &nic->mac_control;
2870 config = &nic->config;
2871
2872 nic->pkts_to_process = budget;
2873 org_pkts_to_process = nic->pkts_to_process;
2874
2875 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2876 readl(&bar0->rx_traffic_int);
2877
2878 for (i = 0; i < config->rx_ring_num; i++) {
2879 rx_intr_handler(&mac_control->rings[i]);
2880 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2881 if (!nic->pkts_to_process) {
2882 /* Quota for the current iteration has been met */
2883 goto no_rx;
2884 }
2885 }
2886
2887 netif_rx_complete(dev, napi);
2888
2889 for (i = 0; i < config->rx_ring_num; i++) {
2890 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2891 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2892 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2893 break;
2894 }
2895 }
2896 /* Re enable the Rx interrupts. */
2897 writeq(0x0, &bar0->rx_traffic_mask);
2898 readl(&bar0->rx_traffic_mask);
2899 return pkt_cnt;
2900
2901 no_rx:
2902 for (i = 0; i < config->rx_ring_num; i++) {
2903 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2904 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2905 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2906 break;
2907 }
2908 }
2909 return pkt_cnt;
2910 }
2911
2912 #ifdef CONFIG_NET_POLL_CONTROLLER
2913 /**
2914 * s2io_netpoll - netpoll event handler entry point
2915 * @dev : pointer to the device structure.
2916 * Description:
2917 * This function will be called by upper layer to check for events on the
2918 * interface in situations where interrupts are disabled. It is used for
2919 * specific in-kernel networking tasks, such as remote consoles and kernel
2920 * debugging over the network (example netdump in RedHat).
2921 */
2922 static void s2io_netpoll(struct net_device *dev)
2923 {
2924 struct s2io_nic *nic = dev->priv;
2925 struct mac_info *mac_control;
2926 struct config_param *config;
2927 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2928 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2929 int i;
2930
2931 if (pci_channel_offline(nic->pdev))
2932 return;
2933
2934 disable_irq(dev->irq);
2935
2936 mac_control = &nic->mac_control;
2937 config = &nic->config;
2938
2939 writeq(val64, &bar0->rx_traffic_int);
2940 writeq(val64, &bar0->tx_traffic_int);
2941
2942 /* we need to free up the transmitted skbufs or else netpoll will
2943 * run out of skbs and will fail and eventually netpoll application such
2944 * as netdump will fail.
2945 */
2946 for (i = 0; i < config->tx_fifo_num; i++)
2947 tx_intr_handler(&mac_control->fifos[i]);
2948
2949 /* check for received packet and indicate up to network */
2950 for (i = 0; i < config->rx_ring_num; i++)
2951 rx_intr_handler(&mac_control->rings[i]);
2952
2953 for (i = 0; i < config->rx_ring_num; i++) {
2954 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2955 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2956 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2957 break;
2958 }
2959 }
2960 enable_irq(dev->irq);
2961 return;
2962 }
2963 #endif
2964
2965 /**
2966 * rx_intr_handler - Rx interrupt handler
2967 * @nic: device private variable.
2968 * Description:
2969 * If the interrupt is because of a received frame or if the
2970 * receive ring contains fresh as yet un-processed frames,this function is
2971 * called. It picks out the RxD at which place the last Rx processing had
2972 * stopped and sends the skb to the OSM's Rx handler and then increments
2973 * the offset.
2974 * Return Value:
2975 * NONE.
2976 */
2977 static void rx_intr_handler(struct ring_info *ring_data)
2978 {
2979 struct s2io_nic *nic = ring_data->nic;
2980 struct net_device *dev = (struct net_device *) nic->dev;
2981 int get_block, put_block, put_offset;
2982 struct rx_curr_get_info get_info, put_info;
2983 struct RxD_t *rxdp;
2984 struct sk_buff *skb;
2985 int pkt_cnt = 0;
2986 int i;
2987 struct RxD1* rxdp1;
2988 struct RxD3* rxdp3;
2989
2990 spin_lock(&nic->rx_lock);
2991
2992 get_info = ring_data->rx_curr_get_info;
2993 get_block = get_info.block_index;
2994 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2995 put_block = put_info.block_index;
2996 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2997 if (!napi) {
2998 spin_lock(&nic->put_lock);
2999 put_offset = ring_data->put_pos;
3000 spin_unlock(&nic->put_lock);
3001 } else
3002 put_offset = ring_data->put_pos;
3003
3004 while (RXD_IS_UP2DT(rxdp)) {
3005 /*
3006 * If your are next to put index then it's
3007 * FIFO full condition
3008 */
3009 if ((get_block == put_block) &&
3010 (get_info.offset + 1) == put_info.offset) {
3011 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
3012 break;
3013 }
3014 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
3015 if (skb == NULL) {
3016 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3017 dev->name);
3018 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3019 spin_unlock(&nic->rx_lock);
3020 return;
3021 }
3022 if (nic->rxd_mode == RXD_MODE_1) {
3023 rxdp1 = (struct RxD1*)rxdp;
3024 pci_unmap_single(nic->pdev, (dma_addr_t)
3025 rxdp1->Buffer0_ptr,
3026 dev->mtu +
3027 HEADER_ETHERNET_II_802_3_SIZE +
3028 HEADER_802_2_SIZE +
3029 HEADER_SNAP_SIZE,
3030 PCI_DMA_FROMDEVICE);
3031 } else if (nic->rxd_mode == RXD_MODE_3B) {
3032 rxdp3 = (struct RxD3*)rxdp;
3033 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
3034 rxdp3->Buffer0_ptr,
3035 BUF0_LEN, PCI_DMA_FROMDEVICE);
3036 pci_unmap_single(nic->pdev, (dma_addr_t)
3037 rxdp3->Buffer2_ptr,
3038 dev->mtu + 4,
3039 PCI_DMA_FROMDEVICE);
3040 }
3041 prefetch(skb->data);
3042 rx_osm_handler(ring_data, rxdp);
3043 get_info.offset++;
3044 ring_data->rx_curr_get_info.offset = get_info.offset;
3045 rxdp = ring_data->rx_blocks[get_block].
3046 rxds[get_info.offset].virt_addr;
3047 if (get_info.offset == rxd_count[nic->rxd_mode]) {
3048 get_info.offset = 0;
3049 ring_data->rx_curr_get_info.offset = get_info.offset;
3050 get_block++;
3051 if (get_block == ring_data->block_count)
3052 get_block = 0;
3053 ring_data->rx_curr_get_info.block_index = get_block;
3054 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3055 }
3056
3057 nic->pkts_to_process -= 1;
3058 if ((napi) && (!nic->pkts_to_process))
3059 break;
3060 pkt_cnt++;
3061 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3062 break;
3063 }
3064 if (nic->lro) {
3065 /* Clear all LRO sessions before exiting */
3066 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3067 struct lro *lro = &nic->lro0_n[i];
3068 if (lro->in_use) {
3069 update_L3L4_header(nic, lro);
3070 queue_rx_frame(lro->parent, lro->vlan_tag);
3071 clear_lro_session(lro);
3072 }
3073 }
3074 }
3075
3076 spin_unlock(&nic->rx_lock);
3077 }
3078
3079 /**
3080 * tx_intr_handler - Transmit interrupt handler
3081 * @nic : device private variable
3082 * Description:
3083 * If an interrupt was raised to indicate DMA complete of the
3084 * Tx packet, this function is called. It identifies the last TxD
3085 * whose buffer was freed and frees all skbs whose data have already
3086 * DMA'ed into the NICs internal memory.
3087 * Return Value:
3088 * NONE
3089 */
3090
3091 static void tx_intr_handler(struct fifo_info *fifo_data)
3092 {
3093 struct s2io_nic *nic = fifo_data->nic;
3094 struct tx_curr_get_info get_info, put_info;
3095 struct sk_buff *skb = NULL;
3096 struct TxD *txdlp;
3097 int pkt_cnt = 0;
3098 unsigned long flags = 0;
3099 u8 err_mask;
3100
3101 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3102 return;
3103
3104 get_info = fifo_data->tx_curr_get_info;
3105 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3106 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3107 list_virt_addr;
3108 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3109 (get_info.offset != put_info.offset) &&
3110 (txdlp->Host_Control)) {
3111 /* Check for TxD errors */
3112 if (txdlp->Control_1 & TXD_T_CODE) {
3113 unsigned long long err;
3114 err = txdlp->Control_1 & TXD_T_CODE;
3115 if (err & 0x1) {
3116 nic->mac_control.stats_info->sw_stat.
3117 parity_err_cnt++;
3118 }
3119
3120 /* update t_code statistics */
3121 err_mask = err >> 48;
3122 switch(err_mask) {
3123 case 2:
3124 nic->mac_control.stats_info->sw_stat.
3125 tx_buf_abort_cnt++;
3126 break;
3127
3128 case 3:
3129 nic->mac_control.stats_info->sw_stat.
3130 tx_desc_abort_cnt++;
3131 break;
3132
3133 case 7:
3134 nic->mac_control.stats_info->sw_stat.
3135 tx_parity_err_cnt++;
3136 break;
3137
3138 case 10:
3139 nic->mac_control.stats_info->sw_stat.
3140 tx_link_loss_cnt++;
3141 break;
3142
3143 case 15:
3144 nic->mac_control.stats_info->sw_stat.
3145 tx_list_proc_err_cnt++;
3146 break;
3147 }
3148 }
3149
3150 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3151 if (skb == NULL) {
3152 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3153 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3154 __FUNCTION__);
3155 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3156 return;
3157 }
3158 pkt_cnt++;
3159
3160 /* Updating the statistics block */
3161 nic->stats.tx_bytes += skb->len;
3162 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3163 dev_kfree_skb_irq(skb);
3164
3165 get_info.offset++;
3166 if (get_info.offset == get_info.fifo_len + 1)
3167 get_info.offset = 0;
3168 txdlp = (struct TxD *) fifo_data->list_info
3169 [get_info.offset].list_virt_addr;
3170 fifo_data->tx_curr_get_info.offset =
3171 get_info.offset;
3172 }
3173
3174 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3175
3176 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3177 }
3178
3179 /**
3180 * s2io_mdio_write - Function to write in to MDIO registers
3181 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3182 * @addr : address value
3183 * @value : data value
3184 * @dev : pointer to net_device structure
3185 * Description:
3186 * This function is used to write values to the MDIO registers
3187 * NONE
3188 */
3189 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3190 {
3191 u64 val64 = 0x0;
3192 struct s2io_nic *sp = dev->priv;
3193 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3194
3195 //address transaction
3196 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3197 | MDIO_MMD_DEV_ADDR(mmd_type)
3198 | MDIO_MMS_PRT_ADDR(0x0);
3199 writeq(val64, &bar0->mdio_control);
3200 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3201 writeq(val64, &bar0->mdio_control);
3202 udelay(100);
3203
3204 //Data transaction
3205 val64 = 0x0;
3206 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3207 | MDIO_MMD_DEV_ADDR(mmd_type)
3208 | MDIO_MMS_PRT_ADDR(0x0)
3209 | MDIO_MDIO_DATA(value)
3210 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3211 writeq(val64, &bar0->mdio_control);
3212 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64, &bar0->mdio_control);
3214 udelay(100);
3215
3216 val64 = 0x0;
3217 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3218 | MDIO_MMD_DEV_ADDR(mmd_type)
3219 | MDIO_MMS_PRT_ADDR(0x0)
3220 | MDIO_OP(MDIO_OP_READ_TRANS);
3221 writeq(val64, &bar0->mdio_control);
3222 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64, &bar0->mdio_control);
3224 udelay(100);
3225
3226 }
3227
3228 /**
3229 * s2io_mdio_read - Function to write in to MDIO registers
3230 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3231 * @addr : address value
3232 * @dev : pointer to net_device structure
3233 * Description:
3234 * This function is used to read values to the MDIO registers
3235 * NONE
3236 */
3237 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3238 {
3239 u64 val64 = 0x0;
3240 u64 rval64 = 0x0;
3241 struct s2io_nic *sp = dev->priv;
3242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3243
3244 /* address transaction */
3245 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3246 | MDIO_MMD_DEV_ADDR(mmd_type)
3247 | MDIO_MMS_PRT_ADDR(0x0);
3248 writeq(val64, &bar0->mdio_control);
3249 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3250 writeq(val64, &bar0->mdio_control);
3251 udelay(100);
3252
3253 /* Data transaction */
3254 val64 = 0x0;
3255 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3256 | MDIO_MMD_DEV_ADDR(mmd_type)
3257 | MDIO_MMS_PRT_ADDR(0x0)
3258 | MDIO_OP(MDIO_OP_READ_TRANS);
3259 writeq(val64, &bar0->mdio_control);
3260 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3261 writeq(val64, &bar0->mdio_control);
3262 udelay(100);
3263
3264 /* Read the value from regs */
3265 rval64 = readq(&bar0->mdio_control);
3266 rval64 = rval64 & 0xFFFF0000;
3267 rval64 = rval64 >> 16;
3268 return rval64;
3269 }
3270 /**
3271 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3272 * @counter : couter value to be updated
3273 * @flag : flag to indicate the status
3274 * @type : counter type
3275 * Description:
3276 * This function is to check the status of the xpak counters value
3277 * NONE
3278 */
3279
3280 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3281 {
3282 u64 mask = 0x3;
3283 u64 val64;
3284 int i;
3285 for(i = 0; i <index; i++)
3286 mask = mask << 0x2;
3287
3288 if(flag > 0)
3289 {
3290 *counter = *counter + 1;
3291 val64 = *regs_stat & mask;
3292 val64 = val64 >> (index * 0x2);
3293 val64 = val64 + 1;
3294 if(val64 == 3)
3295 {
3296 switch(type)
3297 {
3298 case 1:
3299 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3300 "service. Excessive temperatures may "
3301 "result in premature transceiver "
3302 "failure \n");
3303 break;
3304 case 2:
3305 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3306 "service Excessive bias currents may "
3307 "indicate imminent laser diode "
3308 "failure \n");
3309 break;
3310 case 3:
3311 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3312 "service Excessive laser output "
3313 "power may saturate far-end "
3314 "receiver\n");
3315 break;
3316 default:
3317 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3318 "type \n");
3319 }
3320 val64 = 0x0;
3321 }
3322 val64 = val64 << (index * 0x2);
3323 *regs_stat = (*regs_stat & (~mask)) | (val64);
3324
3325 } else {
3326 *regs_stat = *regs_stat & (~mask);
3327 }
3328 }
3329
3330 /**
3331 * s2io_updt_xpak_counter - Function to update the xpak counters
3332 * @dev : pointer to net_device struct
3333 * Description:
3334 * This function is to upate the status of the xpak counters value
3335 * NONE
3336 */
3337 static void s2io_updt_xpak_counter(struct net_device *dev)
3338 {
3339 u16 flag = 0x0;
3340 u16 type = 0x0;
3341 u16 val16 = 0x0;
3342 u64 val64 = 0x0;
3343 u64 addr = 0x0;
3344
3345 struct s2io_nic *sp = dev->priv;
3346 struct stat_block *stat_info = sp->mac_control.stats_info;
3347
3348 /* Check the communication with the MDIO slave */
3349 addr = 0x0000;
3350 val64 = 0x0;
3351 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3352 if((val64 == 0xFFFF) || (val64 == 0x0000))
3353 {
3354 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3355 "Returned %llx\n", (unsigned long long)val64);
3356 return;
3357 }
3358
3359 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3360 if(val64 != 0x2040)
3361 {
3362 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3363 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3364 (unsigned long long)val64);
3365 return;
3366 }
3367
3368 /* Loading the DOM register to MDIO register */
3369 addr = 0xA100;
3370 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3371 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3372
3373 /* Reading the Alarm flags */
3374 addr = 0xA070;
3375 val64 = 0x0;
3376 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3377
3378 flag = CHECKBIT(val64, 0x7);
3379 type = 1;
3380 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3381 &stat_info->xpak_stat.xpak_regs_stat,
3382 0x0, flag, type);
3383
3384 if(CHECKBIT(val64, 0x6))
3385 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3386
3387 flag = CHECKBIT(val64, 0x3);
3388 type = 2;
3389 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3390 &stat_info->xpak_stat.xpak_regs_stat,
3391 0x2, flag, type);
3392
3393 if(CHECKBIT(val64, 0x2))
3394 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3395
3396 flag = CHECKBIT(val64, 0x1);
3397 type = 3;
3398 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3399 &stat_info->xpak_stat.xpak_regs_stat,
3400 0x4, flag, type);
3401
3402 if(CHECKBIT(val64, 0x0))
3403 stat_info->xpak_stat.alarm_laser_output_power_low++;
3404
3405 /* Reading the Warning flags */
3406 addr = 0xA074;
3407 val64 = 0x0;
3408 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3409
3410 if(CHECKBIT(val64, 0x7))
3411 stat_info->xpak_stat.warn_transceiver_temp_high++;
3412
3413 if(CHECKBIT(val64, 0x6))
3414 stat_info->xpak_stat.warn_transceiver_temp_low++;
3415
3416 if(CHECKBIT(val64, 0x3))
3417 stat_info->xpak_stat.warn_laser_bias_current_high++;
3418
3419 if(CHECKBIT(val64, 0x2))
3420 stat_info->xpak_stat.warn_laser_bias_current_low++;
3421
3422 if(CHECKBIT(val64, 0x1))
3423 stat_info->xpak_stat.warn_laser_output_power_high++;
3424
3425 if(CHECKBIT(val64, 0x0))
3426 stat_info->xpak_stat.warn_laser_output_power_low++;
3427 }
3428
3429 /**
3430 * wait_for_cmd_complete - waits for a command to complete.
3431 * @sp : private member of the device structure, which is a pointer to the
3432 * s2io_nic structure.
3433 * Description: Function that waits for a command to Write into RMAC
3434 * ADDR DATA registers to be completed and returns either success or
3435 * error depending on whether the command was complete or not.
3436 * Return value:
3437 * SUCCESS on success and FAILURE on failure.
3438 */
3439
3440 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3441 int bit_state)
3442 {
3443 int ret = FAILURE, cnt = 0, delay = 1;
3444 u64 val64;
3445
3446 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3447 return FAILURE;
3448
3449 do {
3450 val64 = readq(addr);
3451 if (bit_state == S2IO_BIT_RESET) {
3452 if (!(val64 & busy_bit)) {
3453 ret = SUCCESS;
3454 break;
3455 }
3456 } else {
3457 if (!(val64 & busy_bit)) {
3458 ret = SUCCESS;
3459 break;
3460 }
3461 }
3462
3463 if(in_interrupt())
3464 mdelay(delay);
3465 else
3466 msleep(delay);
3467
3468 if (++cnt >= 10)
3469 delay = 50;
3470 } while (cnt < 20);
3471 return ret;
3472 }
3473 /*
3474 * check_pci_device_id - Checks if the device id is supported
3475 * @id : device id
3476 * Description: Function to check if the pci device id is supported by driver.
3477 * Return value: Actual device id if supported else PCI_ANY_ID
3478 */
3479 static u16 check_pci_device_id(u16 id)
3480 {
3481 switch (id) {
3482 case PCI_DEVICE_ID_HERC_WIN:
3483 case PCI_DEVICE_ID_HERC_UNI:
3484 return XFRAME_II_DEVICE;
3485 case PCI_DEVICE_ID_S2IO_UNI:
3486 case PCI_DEVICE_ID_S2IO_WIN:
3487 return XFRAME_I_DEVICE;
3488 default:
3489 return PCI_ANY_ID;
3490 }
3491 }
3492
3493 /**
3494 * s2io_reset - Resets the card.
3495 * @sp : private member of the device structure.
3496 * Description: Function to Reset the card. This function then also
3497 * restores the previously saved PCI configuration space registers as
3498 * the card reset also resets the configuration space.
3499 * Return value:
3500 * void.
3501 */
3502
3503 static void s2io_reset(struct s2io_nic * sp)
3504 {
3505 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3506 u64 val64;
3507 u16 subid, pci_cmd;
3508 int i;
3509 u16 val16;
3510 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3511 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3512
3513 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3514 __FUNCTION__, sp->dev->name);
3515
3516 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3517 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3518
3519 val64 = SW_RESET_ALL;
3520 writeq(val64, &bar0->sw_reset);
3521 if (strstr(sp->product_name, "CX4")) {
3522 msleep(750);
3523 }
3524 msleep(250);
3525 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3526
3527 /* Restore the PCI state saved during initialization. */
3528 pci_restore_state(sp->pdev);
3529 pci_read_config_word(sp->pdev, 0x2, &val16);
3530 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3531 break;
3532 msleep(200);
3533 }
3534
3535 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3536 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3537 }
3538
3539 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3540
3541 s2io_init_pci(sp);
3542
3543 /* Set swapper to enable I/O register access */
3544 s2io_set_swapper(sp);
3545
3546 /* restore mac_addr entries */
3547 do_s2io_restore_unicast_mc(sp);
3548
3549 /* Restore the MSIX table entries from local variables */
3550 restore_xmsi_data(sp);
3551
3552 /* Clear certain PCI/PCI-X fields after reset */
3553 if (sp->device_type == XFRAME_II_DEVICE) {
3554 /* Clear "detected parity error" bit */
3555 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3556
3557 /* Clearing PCIX Ecc status register */
3558 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3559
3560 /* Clearing PCI_STATUS error reflected here */
3561 writeq(s2BIT(62), &bar0->txpic_int_reg);
3562 }
3563
3564 /* Reset device statistics maintained by OS */
3565 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3566
3567 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3568 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3569 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3570 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3571 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3572 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3573 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3574 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3575 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3576 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3577 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3578 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3579 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3580 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3581 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3582 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3583 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3584 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3585 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3586
3587 /* SXE-002: Configure link and activity LED to turn it off */
3588 subid = sp->pdev->subsystem_device;
3589 if (((subid & 0xFF) >= 0x07) &&
3590 (sp->device_type == XFRAME_I_DEVICE)) {
3591 val64 = readq(&bar0->gpio_control);
3592 val64 |= 0x0000800000000000ULL;
3593 writeq(val64, &bar0->gpio_control);
3594 val64 = 0x0411040400000000ULL;
3595 writeq(val64, (void __iomem *)bar0 + 0x2700);
3596 }
3597
3598 /*
3599 * Clear spurious ECC interrupts that would have occured on
3600 * XFRAME II cards after reset.
3601 */
3602 if (sp->device_type == XFRAME_II_DEVICE) {
3603 val64 = readq(&bar0->pcc_err_reg);
3604 writeq(val64, &bar0->pcc_err_reg);
3605 }
3606
3607 sp->device_enabled_once = FALSE;
3608 }
3609
3610 /**
3611 * s2io_set_swapper - to set the swapper controle on the card
3612 * @sp : private member of the device structure,
3613 * pointer to the s2io_nic structure.
3614 * Description: Function to set the swapper control on the card
3615 * correctly depending on the 'endianness' of the system.
3616 * Return value:
3617 * SUCCESS on success and FAILURE on failure.
3618 */
3619
3620 static int s2io_set_swapper(struct s2io_nic * sp)
3621 {
3622 struct net_device *dev = sp->dev;
3623 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3624 u64 val64, valt, valr;
3625
3626 /*
3627 * Set proper endian settings and verify the same by reading
3628 * the PIF Feed-back register.
3629 */
3630
3631 val64 = readq(&bar0->pif_rd_swapper_fb);
3632 if (val64 != 0x0123456789ABCDEFULL) {
3633 int i = 0;
3634 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3635 0x8100008181000081ULL, /* FE=1, SE=0 */
3636 0x4200004242000042ULL, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3638
3639 while(i<4) {
3640 writeq(value[i], &bar0->swapper_ctrl);
3641 val64 = readq(&bar0->pif_rd_swapper_fb);
3642 if (val64 == 0x0123456789ABCDEFULL)
3643 break;
3644 i++;
3645 }
3646 if (i == 4) {
3647 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3648 dev->name);
3649 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3650 (unsigned long long) val64);
3651 return FAILURE;
3652 }
3653 valr = value[i];
3654 } else {
3655 valr = readq(&bar0->swapper_ctrl);
3656 }
3657
3658 valt = 0x0123456789ABCDEFULL;
3659 writeq(valt, &bar0->xmsi_address);
3660 val64 = readq(&bar0->xmsi_address);
3661
3662 if(val64 != valt) {
3663 int i = 0;
3664 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3665 0x0081810000818100ULL, /* FE=1, SE=0 */
3666 0x0042420000424200ULL, /* FE=0, SE=1 */
3667 0}; /* FE=0, SE=0 */
3668
3669 while(i<4) {
3670 writeq((value[i] | valr), &bar0->swapper_ctrl);
3671 writeq(valt, &bar0->xmsi_address);
3672 val64 = readq(&bar0->xmsi_address);
3673 if(val64 == valt)
3674 break;
3675 i++;
3676 }
3677 if(i == 4) {
3678 unsigned long long x = val64;
3679 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3680 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3681 return FAILURE;
3682 }
3683 }
3684 val64 = readq(&bar0->swapper_ctrl);
3685 val64 &= 0xFFFF000000000000ULL;
3686
3687 #ifdef __BIG_ENDIAN
3688 /*
3689 * The device by default set to a big endian format, so a
3690 * big endian driver need not set anything.
3691 */
3692 val64 |= (SWAPPER_CTRL_TXP_FE |
3693 SWAPPER_CTRL_TXP_SE |
3694 SWAPPER_CTRL_TXD_R_FE |
3695 SWAPPER_CTRL_TXD_W_FE |
3696 SWAPPER_CTRL_TXF_R_FE |
3697 SWAPPER_CTRL_RXD_R_FE |
3698 SWAPPER_CTRL_RXD_W_FE |
3699 SWAPPER_CTRL_RXF_W_FE |
3700 SWAPPER_CTRL_XMSI_FE |
3701 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3702 if (sp->config.intr_type == INTA)
3703 val64 |= SWAPPER_CTRL_XMSI_SE;
3704 writeq(val64, &bar0->swapper_ctrl);
3705 #else
3706 /*
3707 * Initially we enable all bits to make it accessible by the
3708 * driver, then we selectively enable only those bits that
3709 * we want to set.
3710 */
3711 val64 |= (SWAPPER_CTRL_TXP_FE |
3712 SWAPPER_CTRL_TXP_SE |
3713 SWAPPER_CTRL_TXD_R_FE |
3714 SWAPPER_CTRL_TXD_R_SE |
3715 SWAPPER_CTRL_TXD_W_FE |
3716 SWAPPER_CTRL_TXD_W_SE |
3717 SWAPPER_CTRL_TXF_R_FE |
3718 SWAPPER_CTRL_RXD_R_FE |
3719 SWAPPER_CTRL_RXD_R_SE |
3720 SWAPPER_CTRL_RXD_W_FE |
3721 SWAPPER_CTRL_RXD_W_SE |
3722 SWAPPER_CTRL_RXF_W_FE |
3723 SWAPPER_CTRL_XMSI_FE |
3724 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3725 if (sp->config.intr_type == INTA)
3726 val64 |= SWAPPER_CTRL_XMSI_SE;
3727 writeq(val64, &bar0->swapper_ctrl);
3728 #endif
3729 val64 = readq(&bar0->swapper_ctrl);
3730
3731 /*
3732 * Verifying if endian settings are accurate by reading a
3733 * feedback register.
3734 */
3735 val64 = readq(&bar0->pif_rd_swapper_fb);
3736 if (val64 != 0x0123456789ABCDEFULL) {
3737 /* Endian settings are incorrect, calls for another dekko. */
3738 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3739 dev->name);
3740 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3741 (unsigned long long) val64);
3742 return FAILURE;
3743 }
3744
3745 return SUCCESS;
3746 }
3747
3748 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3749 {
3750 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3751 u64 val64;
3752 int ret = 0, cnt = 0;
3753
3754 do {
3755 val64 = readq(&bar0->xmsi_access);
3756 if (!(val64 & s2BIT(15)))
3757 break;
3758 mdelay(1);
3759 cnt++;
3760 } while(cnt < 5);
3761 if (cnt == 5) {
3762 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3763 ret = 1;
3764 }
3765
3766 return ret;
3767 }
3768
3769 static void restore_xmsi_data(struct s2io_nic *nic)
3770 {
3771 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3772 u64 val64;
3773 int i;
3774
3775 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3776 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3777 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3778 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3779 writeq(val64, &bar0->xmsi_access);
3780 if (wait_for_msix_trans(nic, i)) {
3781 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3782 continue;
3783 }
3784 }
3785 }
3786
3787 static void store_xmsi_data(struct s2io_nic *nic)
3788 {
3789 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3790 u64 val64, addr, data;
3791 int i;
3792
3793 /* Store and display */
3794 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3795 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3796 writeq(val64, &bar0->xmsi_access);
3797 if (wait_for_msix_trans(nic, i)) {
3798 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3799 continue;
3800 }
3801 addr = readq(&bar0->xmsi_address);
3802 data = readq(&bar0->xmsi_data);
3803 if (addr && data) {
3804 nic->msix_info[i].addr = addr;
3805 nic->msix_info[i].data = data;
3806 }
3807 }
3808 }
3809
3810 static int s2io_enable_msi_x(struct s2io_nic *nic)
3811 {
3812 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3813 u64 tx_mat, rx_mat;
3814 u16 msi_control; /* Temp variable */
3815 int ret, i, j, msix_indx = 1;
3816
3817 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3818 GFP_KERNEL);
3819 if (!nic->entries) {
3820 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3821 __FUNCTION__);
3822 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3823 return -ENOMEM;
3824 }
3825 nic->mac_control.stats_info->sw_stat.mem_allocated
3826 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3827
3828 nic->s2io_entries =
3829 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3830 GFP_KERNEL);
3831 if (!nic->s2io_entries) {
3832 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3833 __FUNCTION__);
3834 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3835 kfree(nic->entries);
3836 nic->mac_control.stats_info->sw_stat.mem_freed
3837 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3838 return -ENOMEM;
3839 }
3840 nic->mac_control.stats_info->sw_stat.mem_allocated
3841 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3842
3843 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3844 nic->entries[i].entry = i;
3845 nic->s2io_entries[i].entry = i;
3846 nic->s2io_entries[i].arg = NULL;
3847 nic->s2io_entries[i].in_use = 0;
3848 }
3849
3850 tx_mat = readq(&bar0->tx_mat0_n[0]);
3851 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3852 tx_mat |= TX_MAT_SET(i, msix_indx);
3853 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3854 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3855 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3856 }
3857 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3858
3859 rx_mat = readq(&bar0->rx_mat);
3860 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3861 rx_mat |= RX_MAT_SET(j, msix_indx);
3862 nic->s2io_entries[msix_indx].arg
3863 = &nic->mac_control.rings[j];
3864 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3865 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3866 }
3867 writeq(rx_mat, &bar0->rx_mat);
3868
3869 nic->avail_msix_vectors = 0;
3870 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3871 /* We fail init if error or we get less vectors than min required */
3872 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3873 nic->avail_msix_vectors = ret;
3874 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3875 }
3876 if (ret) {
3877 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3878 kfree(nic->entries);
3879 nic->mac_control.stats_info->sw_stat.mem_freed
3880 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3881 kfree(nic->s2io_entries);
3882 nic->mac_control.stats_info->sw_stat.mem_freed
3883 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3884 nic->entries = NULL;
3885 nic->s2io_entries = NULL;
3886 nic->avail_msix_vectors = 0;
3887 return -ENOMEM;
3888 }
3889 if (!nic->avail_msix_vectors)
3890 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3891
3892 /*
3893 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3894 * in the herc NIC. (Temp change, needs to be removed later)
3895 */
3896 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3897 msi_control |= 0x1; /* Enable MSI */
3898 pci_write_config_word(nic->pdev, 0x42, msi_control);
3899
3900 return 0;
3901 }
3902
3903 /* Handle software interrupt used during MSI(X) test */
3904 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3905 {
3906 struct s2io_nic *sp = dev_id;
3907
3908 sp->msi_detected = 1;
3909 wake_up(&sp->msi_wait);
3910
3911 return IRQ_HANDLED;
3912 }
3913
3914 /* Test interrupt path by forcing a a software IRQ */
3915 static int s2io_test_msi(struct s2io_nic *sp)
3916 {
3917 struct pci_dev *pdev = sp->pdev;
3918 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3919 int err;
3920 u64 val64, saved64;
3921
3922 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3923 sp->name, sp);
3924 if (err) {
3925 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3926 sp->dev->name, pci_name(pdev), pdev->irq);
3927 return err;
3928 }
3929
3930 init_waitqueue_head (&sp->msi_wait);
3931 sp->msi_detected = 0;
3932
3933 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3934 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3935 val64 |= SCHED_INT_CTRL_TIMER_EN;
3936 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3937 writeq(val64, &bar0->scheduled_int_ctrl);
3938
3939 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3940
3941 if (!sp->msi_detected) {
3942 /* MSI(X) test failed, go back to INTx mode */
3943 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3944 "using MSI(X) during test\n", sp->dev->name,
3945 pci_name(pdev));
3946
3947 err = -EOPNOTSUPP;
3948 }
3949
3950 free_irq(sp->entries[1].vector, sp);
3951
3952 writeq(saved64, &bar0->scheduled_int_ctrl);
3953
3954 return err;
3955 }
3956
3957 static void remove_msix_isr(struct s2io_nic *sp)
3958 {
3959 int i;
3960 u16 msi_control;
3961
3962 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3963 if (sp->s2io_entries[i].in_use ==
3964 MSIX_REGISTERED_SUCCESS) {
3965 int vector = sp->entries[i].vector;
3966 void *arg = sp->s2io_entries[i].arg;
3967 free_irq(vector, arg);
3968 }
3969 }
3970
3971 kfree(sp->entries);
3972 kfree(sp->s2io_entries);
3973 sp->entries = NULL;
3974 sp->s2io_entries = NULL;
3975
3976 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3977 msi_control &= 0xFFFE; /* Disable MSI */
3978 pci_write_config_word(sp->pdev, 0x42, msi_control);
3979
3980 pci_disable_msix(sp->pdev);
3981 }
3982
3983 static void remove_inta_isr(struct s2io_nic *sp)
3984 {
3985 struct net_device *dev = sp->dev;
3986
3987 free_irq(sp->pdev->irq, dev);
3988 }
3989
3990 /* ********************************************************* *
3991 * Functions defined below concern the OS part of the driver *
3992 * ********************************************************* */
3993
3994 /**
3995 * s2io_open - open entry point of the driver
3996 * @dev : pointer to the device structure.
3997 * Description:
3998 * This function is the open entry point of the driver. It mainly calls a
3999 * function to allocate Rx buffers and inserts them into the buffer
4000 * descriptors and then enables the Rx part of the NIC.
4001 * Return value:
4002 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4003 * file on failure.
4004 */
4005
4006 static int s2io_open(struct net_device *dev)
4007 {
4008 struct s2io_nic *sp = dev->priv;
4009 int err = 0;
4010
4011 /*
4012 * Make sure you have link off by default every time
4013 * Nic is initialized
4014 */
4015 netif_carrier_off(dev);
4016 sp->last_link_state = 0;
4017
4018 if (sp->config.intr_type == MSI_X) {
4019 int ret = s2io_enable_msi_x(sp);
4020
4021 if (!ret) {
4022 ret = s2io_test_msi(sp);
4023 /* rollback MSI-X, will re-enable during add_isr() */
4024 remove_msix_isr(sp);
4025 }
4026 if (ret) {
4027
4028 DBG_PRINT(ERR_DBG,
4029 "%s: MSI-X requested but failed to enable\n",
4030 dev->name);
4031 sp->config.intr_type = INTA;
4032 }
4033 }
4034
4035 /* NAPI doesn't work well with MSI(X) */
4036 if (sp->config.intr_type != INTA) {
4037 if(sp->config.napi)
4038 sp->config.napi = 0;
4039 }
4040
4041 /* Initialize H/W and enable interrupts */
4042 err = s2io_card_up(sp);
4043 if (err) {
4044 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4045 dev->name);
4046 goto hw_init_failed;
4047 }
4048
4049 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4050 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4051 s2io_card_down(sp);
4052 err = -ENODEV;
4053 goto hw_init_failed;
4054 }
4055 s2io_start_all_tx_queue(sp);
4056 return 0;
4057
4058 hw_init_failed:
4059 if (sp->config.intr_type == MSI_X) {
4060 if (sp->entries) {
4061 kfree(sp->entries);
4062 sp->mac_control.stats_info->sw_stat.mem_freed
4063 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4064 }
4065 if (sp->s2io_entries) {
4066 kfree(sp->s2io_entries);
4067 sp->mac_control.stats_info->sw_stat.mem_freed
4068 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4069 }
4070 }
4071 return err;
4072 }
4073
4074 /**
4075 * s2io_close -close entry point of the driver
4076 * @dev : device pointer.
4077 * Description:
4078 * This is the stop entry point of the driver. It needs to undo exactly
4079 * whatever was done by the open entry point,thus it's usually referred to
4080 * as the close function.Among other things this function mainly stops the
4081 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4082 * Return value:
4083 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4084 * file on failure.
4085 */
4086
4087 static int s2io_close(struct net_device *dev)
4088 {
4089 struct s2io_nic *sp = dev->priv;
4090 struct config_param *config = &sp->config;
4091 u64 tmp64;
4092 int offset;
4093
4094 /* Return if the device is already closed *
4095 * Can happen when s2io_card_up failed in change_mtu *
4096 */
4097 if (!is_s2io_card_up(sp))
4098 return 0;
4099
4100 s2io_stop_all_tx_queue(sp);
4101 /* delete all populated mac entries */
4102 for (offset = 1; offset < config->max_mc_addr; offset++) {
4103 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4104 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4105 do_s2io_delete_unicast_mc(sp, tmp64);
4106 }
4107
4108 /* Reset card, kill tasklet and free Tx and Rx buffers. */
4109 s2io_card_down(sp);
4110
4111 return 0;
4112 }
4113
4114 /**
4115 * s2io_xmit - Tx entry point of te driver
4116 * @skb : the socket buffer containing the Tx data.
4117 * @dev : device pointer.
4118 * Description :
4119 * This function is the Tx entry point of the driver. S2IO NIC supports
4120 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4121 * NOTE: when device cant queue the pkt,just the trans_start variable will
4122 * not be upadted.
4123 * Return value:
4124 * 0 on success & 1 on failure.
4125 */
4126
4127 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4128 {
4129 struct s2io_nic *sp = dev->priv;
4130 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4131 register u64 val64;
4132 struct TxD *txdp;
4133 struct TxFIFO_element __iomem *tx_fifo;
4134 unsigned long flags = 0;
4135 u16 vlan_tag = 0;
4136 struct fifo_info *fifo = NULL;
4137 struct mac_info *mac_control;
4138 struct config_param *config;
4139 int do_spin_lock = 1;
4140 int offload_type;
4141 int enable_per_list_interrupt = 0;
4142 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4143
4144 mac_control = &sp->mac_control;
4145 config = &sp->config;
4146
4147 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4148
4149 if (unlikely(skb->len <= 0)) {
4150 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4151 dev_kfree_skb_any(skb);
4152 return 0;
4153 }
4154
4155 if (!is_s2io_card_up(sp)) {
4156 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4157 dev->name);
4158 dev_kfree_skb(skb);
4159 return 0;
4160 }
4161
4162 queue = 0;
4163 if (sp->vlgrp && vlan_tx_tag_present(skb))
4164 vlan_tag = vlan_tx_tag_get(skb);
4165 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4166 if (skb->protocol == htons(ETH_P_IP)) {
4167 struct iphdr *ip;
4168 struct tcphdr *th;
4169 ip = ip_hdr(skb);
4170
4171 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4172 th = (struct tcphdr *)(((unsigned char *)ip) +
4173 ip->ihl*4);
4174
4175 if (ip->protocol == IPPROTO_TCP) {
4176 queue_len = sp->total_tcp_fifos;
4177 queue = (ntohs(th->source) +
4178 ntohs(th->dest)) &
4179 sp->fifo_selector[queue_len - 1];
4180 if (queue >= queue_len)
4181 queue = queue_len - 1;
4182 } else if (ip->protocol == IPPROTO_UDP) {
4183 queue_len = sp->total_udp_fifos;
4184 queue = (ntohs(th->source) +
4185 ntohs(th->dest)) &
4186 sp->fifo_selector[queue_len - 1];
4187 if (queue >= queue_len)
4188 queue = queue_len - 1;
4189 queue += sp->udp_fifo_idx;
4190 if (skb->len > 1024)
4191 enable_per_list_interrupt = 1;
4192 do_spin_lock = 0;
4193 }
4194 }
4195 }
4196 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4197 /* get fifo number based on skb->priority value */
4198 queue = config->fifo_mapping
4199 [skb->priority & (MAX_TX_FIFOS - 1)];
4200 fifo = &mac_control->fifos[queue];
4201
4202 if (do_spin_lock)
4203 spin_lock_irqsave(&fifo->tx_lock, flags);
4204 else {
4205 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4206 return NETDEV_TX_LOCKED;
4207 }
4208
4209 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4210 if (sp->config.multiq) {
4211 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4212 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4213 return NETDEV_TX_BUSY;
4214 }
4215 } else
4216 #endif
4217 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4218 if (netif_queue_stopped(dev)) {
4219 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4220 return NETDEV_TX_BUSY;
4221 }
4222 }
4223
4224 put_off = (u16) fifo->tx_curr_put_info.offset;
4225 get_off = (u16) fifo->tx_curr_get_info.offset;
4226 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4227
4228 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4229 /* Avoid "put" pointer going beyond "get" pointer */
4230 if (txdp->Host_Control ||
4231 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4232 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4233 s2io_stop_tx_queue(sp, fifo->fifo_no);
4234 dev_kfree_skb(skb);
4235 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4236 return 0;
4237 }
4238
4239 offload_type = s2io_offload_type(skb);
4240 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4241 txdp->Control_1 |= TXD_TCP_LSO_EN;
4242 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4243 }
4244 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4245 txdp->Control_2 |=
4246 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4247 TXD_TX_CKO_UDP_EN);
4248 }
4249 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4250 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4251 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4252 if (enable_per_list_interrupt)
4253 if (put_off & (queue_len >> 5))
4254 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4255 if (vlan_tag) {
4256 txdp->Control_2 |= TXD_VLAN_ENABLE;
4257 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4258 }
4259
4260 frg_len = skb->len - skb->data_len;
4261 if (offload_type == SKB_GSO_UDP) {
4262 int ufo_size;
4263
4264 ufo_size = s2io_udp_mss(skb);
4265 ufo_size &= ~7;
4266 txdp->Control_1 |= TXD_UFO_EN;
4267 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4268 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4269 #ifdef __BIG_ENDIAN
4270 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4271 fifo->ufo_in_band_v[put_off] =
4272 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4273 #else
4274 fifo->ufo_in_band_v[put_off] =
4275 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4276 #endif
4277 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4278 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4279 fifo->ufo_in_band_v,
4280 sizeof(u64), PCI_DMA_TODEVICE);
4281 if((txdp->Buffer_Pointer == 0) ||
4282 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4283 goto pci_map_failed;
4284 txdp++;
4285 }
4286
4287 txdp->Buffer_Pointer = pci_map_single
4288 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4289 if((txdp->Buffer_Pointer == 0) ||
4290 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4291 goto pci_map_failed;
4292
4293 txdp->Host_Control = (unsigned long) skb;
4294 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4295 if (offload_type == SKB_GSO_UDP)
4296 txdp->Control_1 |= TXD_UFO_EN;
4297
4298 frg_cnt = skb_shinfo(skb)->nr_frags;
4299 /* For fragmented SKB. */
4300 for (i = 0; i < frg_cnt; i++) {
4301 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4302 /* A '0' length fragment will be ignored */
4303 if (!frag->size)
4304 continue;
4305 txdp++;
4306 txdp->Buffer_Pointer = (u64) pci_map_page
4307 (sp->pdev, frag->page, frag->page_offset,
4308 frag->size, PCI_DMA_TODEVICE);
4309 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4310 if (offload_type == SKB_GSO_UDP)
4311 txdp->Control_1 |= TXD_UFO_EN;
4312 }
4313 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4314
4315 if (offload_type == SKB_GSO_UDP)
4316 frg_cnt++; /* as Txd0 was used for inband header */
4317
4318 tx_fifo = mac_control->tx_FIFO_start[queue];
4319 val64 = fifo->list_info[put_off].list_phy_addr;
4320 writeq(val64, &tx_fifo->TxDL_Pointer);
4321
4322 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4323 TX_FIFO_LAST_LIST);
4324 if (offload_type)
4325 val64 |= TX_FIFO_SPECIAL_FUNC;
4326
4327 writeq(val64, &tx_fifo->List_Control);
4328
4329 mmiowb();
4330
4331 put_off++;
4332 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4333 put_off = 0;
4334 fifo->tx_curr_put_info.offset = put_off;
4335
4336 /* Avoid "put" pointer going beyond "get" pointer */
4337 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4338 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4339 DBG_PRINT(TX_DBG,
4340 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4341 put_off, get_off);
4342 s2io_stop_tx_queue(sp, fifo->fifo_no);
4343 }
4344 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4345 dev->trans_start = jiffies;
4346 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4347
4348 return 0;
4349 pci_map_failed:
4350 stats->pci_map_fail_cnt++;
4351 s2io_stop_tx_queue(sp, fifo->fifo_no);
4352 stats->mem_freed += skb->truesize;
4353 dev_kfree_skb(skb);
4354 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4355 return 0;
4356 }
4357
4358 static void
4359 s2io_alarm_handle(unsigned long data)
4360 {
4361 struct s2io_nic *sp = (struct s2io_nic *)data;
4362 struct net_device *dev = sp->dev;
4363
4364 s2io_handle_errors(dev);
4365 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4366 }
4367
4368 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4369 {
4370 int rxb_size, level;
4371
4372 if (!sp->lro) {
4373 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4374 level = rx_buffer_level(sp, rxb_size, rng_n);
4375
4376 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4377 int ret;
4378 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4379 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4380 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4381 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4382 __FUNCTION__);
4383 clear_bit(0, (&sp->tasklet_status));
4384 return -1;
4385 }
4386 clear_bit(0, (&sp->tasklet_status));
4387 } else if (level == LOW)
4388 tasklet_schedule(&sp->task);
4389
4390 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4391 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4392 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4393 }
4394 return 0;
4395 }
4396
4397 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4398 {
4399 struct ring_info *ring = (struct ring_info *)dev_id;
4400 struct s2io_nic *sp = ring->nic;
4401
4402 if (!is_s2io_card_up(sp))
4403 return IRQ_HANDLED;
4404
4405 rx_intr_handler(ring);
4406 s2io_chk_rx_buffers(sp, ring->ring_no);
4407
4408 return IRQ_HANDLED;
4409 }
4410
4411 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4412 {
4413 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4414 struct s2io_nic *sp = fifo->nic;
4415
4416 if (!is_s2io_card_up(sp))
4417 return IRQ_HANDLED;
4418
4419 tx_intr_handler(fifo);
4420 return IRQ_HANDLED;
4421 }
4422 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4423 {
4424 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4425 u64 val64;
4426
4427 val64 = readq(&bar0->pic_int_status);
4428 if (val64 & PIC_INT_GPIO) {
4429 val64 = readq(&bar0->gpio_int_reg);
4430 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4431 (val64 & GPIO_INT_REG_LINK_UP)) {
4432 /*
4433 * This is unstable state so clear both up/down
4434 * interrupt and adapter to re-evaluate the link state.
4435 */
4436 val64 |= GPIO_INT_REG_LINK_DOWN;
4437 val64 |= GPIO_INT_REG_LINK_UP;
4438 writeq(val64, &bar0->gpio_int_reg);
4439 val64 = readq(&bar0->gpio_int_mask);
4440 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4441 GPIO_INT_MASK_LINK_DOWN);
4442 writeq(val64, &bar0->gpio_int_mask);
4443 }
4444 else if (val64 & GPIO_INT_REG_LINK_UP) {
4445 val64 = readq(&bar0->adapter_status);
4446 /* Enable Adapter */
4447 val64 = readq(&bar0->adapter_control);
4448 val64 |= ADAPTER_CNTL_EN;
4449 writeq(val64, &bar0->adapter_control);
4450 val64 |= ADAPTER_LED_ON;
4451 writeq(val64, &bar0->adapter_control);
4452 if (!sp->device_enabled_once)
4453 sp->device_enabled_once = 1;
4454
4455 s2io_link(sp, LINK_UP);
4456 /*
4457 * unmask link down interrupt and mask link-up
4458 * intr
4459 */
4460 val64 = readq(&bar0->gpio_int_mask);
4461 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4462 val64 |= GPIO_INT_MASK_LINK_UP;
4463 writeq(val64, &bar0->gpio_int_mask);
4464
4465 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4466 val64 = readq(&bar0->adapter_status);
4467 s2io_link(sp, LINK_DOWN);
4468 /* Link is down so unmaks link up interrupt */
4469 val64 = readq(&bar0->gpio_int_mask);
4470 val64 &= ~GPIO_INT_MASK_LINK_UP;
4471 val64 |= GPIO_INT_MASK_LINK_DOWN;
4472 writeq(val64, &bar0->gpio_int_mask);
4473
4474 /* turn off LED */
4475 val64 = readq(&bar0->adapter_control);
4476 val64 = val64 &(~ADAPTER_LED_ON);
4477 writeq(val64, &bar0->adapter_control);
4478 }
4479 }
4480 val64 = readq(&bar0->gpio_int_mask);
4481 }
4482
4483 /**
4484 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4485 * @value: alarm bits
4486 * @addr: address value
4487 * @cnt: counter variable
4488 * Description: Check for alarm and increment the counter
4489 * Return Value:
4490 * 1 - if alarm bit set
4491 * 0 - if alarm bit is not set
4492 */
4493 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4494 unsigned long long *cnt)
4495 {
4496 u64 val64;
4497 val64 = readq(addr);
4498 if ( val64 & value ) {
4499 writeq(val64, addr);
4500 (*cnt)++;
4501 return 1;
4502 }
4503 return 0;
4504
4505 }
4506
4507 /**
4508 * s2io_handle_errors - Xframe error indication handler
4509 * @nic: device private variable
4510 * Description: Handle alarms such as loss of link, single or
4511 * double ECC errors, critical and serious errors.
4512 * Return Value:
4513 * NONE
4514 */
4515 static void s2io_handle_errors(void * dev_id)
4516 {
4517 struct net_device *dev = (struct net_device *) dev_id;
4518 struct s2io_nic *sp = dev->priv;
4519 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4520 u64 temp64 = 0,val64=0;
4521 int i = 0;
4522
4523 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4524 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4525
4526 if (!is_s2io_card_up(sp))
4527 return;
4528
4529 if (pci_channel_offline(sp->pdev))
4530 return;
4531
4532 memset(&sw_stat->ring_full_cnt, 0,
4533 sizeof(sw_stat->ring_full_cnt));
4534
4535 /* Handling the XPAK counters update */
4536 if(stats->xpak_timer_count < 72000) {
4537 /* waiting for an hour */
4538 stats->xpak_timer_count++;
4539 } else {
4540 s2io_updt_xpak_counter(dev);
4541 /* reset the count to zero */
4542 stats->xpak_timer_count = 0;
4543 }
4544
4545 /* Handling link status change error Intr */
4546 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4547 val64 = readq(&bar0->mac_rmac_err_reg);
4548 writeq(val64, &bar0->mac_rmac_err_reg);
4549 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4550 schedule_work(&sp->set_link_task);
4551 }
4552
4553 /* In case of a serious error, the device will be Reset. */
4554 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4555 &sw_stat->serious_err_cnt))
4556 goto reset;
4557
4558 /* Check for data parity error */
4559 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4560 &sw_stat->parity_err_cnt))
4561 goto reset;
4562
4563 /* Check for ring full counter */
4564 if (sp->device_type == XFRAME_II_DEVICE) {
4565 val64 = readq(&bar0->ring_bump_counter1);
4566 for (i=0; i<4; i++) {
4567 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4568 temp64 >>= 64 - ((i+1)*16);
4569 sw_stat->ring_full_cnt[i] += temp64;
4570 }
4571
4572 val64 = readq(&bar0->ring_bump_counter2);
4573 for (i=0; i<4; i++) {
4574 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4575 temp64 >>= 64 - ((i+1)*16);
4576 sw_stat->ring_full_cnt[i+4] += temp64;
4577 }
4578 }
4579
4580 val64 = readq(&bar0->txdma_int_status);
4581 /*check for pfc_err*/
4582 if (val64 & TXDMA_PFC_INT) {
4583 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4584 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4585 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4586 &sw_stat->pfc_err_cnt))
4587 goto reset;
4588 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4589 &sw_stat->pfc_err_cnt);
4590 }
4591
4592 /*check for tda_err*/
4593 if (val64 & TXDMA_TDA_INT) {
4594 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4595 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4596 &sw_stat->tda_err_cnt))
4597 goto reset;
4598 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4599 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4600 }
4601 /*check for pcc_err*/
4602 if (val64 & TXDMA_PCC_INT) {
4603 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4604 | PCC_N_SERR | PCC_6_COF_OV_ERR
4605 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4606 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4607 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4608 &sw_stat->pcc_err_cnt))
4609 goto reset;
4610 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4611 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4612 }
4613
4614 /*check for tti_err*/
4615 if (val64 & TXDMA_TTI_INT) {
4616 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4617 &sw_stat->tti_err_cnt))
4618 goto reset;
4619 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4620 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4621 }
4622
4623 /*check for lso_err*/
4624 if (val64 & TXDMA_LSO_INT) {
4625 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4626 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4627 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4628 goto reset;
4629 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4630 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4631 }
4632
4633 /*check for tpa_err*/
4634 if (val64 & TXDMA_TPA_INT) {
4635 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4636 &sw_stat->tpa_err_cnt))
4637 goto reset;
4638 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4639 &sw_stat->tpa_err_cnt);
4640 }
4641
4642 /*check for sm_err*/
4643 if (val64 & TXDMA_SM_INT) {
4644 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4645 &sw_stat->sm_err_cnt))
4646 goto reset;
4647 }
4648
4649 val64 = readq(&bar0->mac_int_status);
4650 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4651 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4652 &bar0->mac_tmac_err_reg,
4653 &sw_stat->mac_tmac_err_cnt))
4654 goto reset;
4655 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4656 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4657 &bar0->mac_tmac_err_reg,
4658 &sw_stat->mac_tmac_err_cnt);
4659 }
4660
4661 val64 = readq(&bar0->xgxs_int_status);
4662 if (val64 & XGXS_INT_STATUS_TXGXS) {
4663 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4664 &bar0->xgxs_txgxs_err_reg,
4665 &sw_stat->xgxs_txgxs_err_cnt))
4666 goto reset;
4667 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4668 &bar0->xgxs_txgxs_err_reg,
4669 &sw_stat->xgxs_txgxs_err_cnt);
4670 }
4671
4672 val64 = readq(&bar0->rxdma_int_status);
4673 if (val64 & RXDMA_INT_RC_INT_M) {
4674 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4675 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4676 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4677 goto reset;
4678 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4679 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4680 &sw_stat->rc_err_cnt);
4681 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4682 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4683 &sw_stat->prc_pcix_err_cnt))
4684 goto reset;
4685 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4686 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4687 &sw_stat->prc_pcix_err_cnt);
4688 }
4689
4690 if (val64 & RXDMA_INT_RPA_INT_M) {
4691 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4692 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4693 goto reset;
4694 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4695 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4696 }
4697
4698 if (val64 & RXDMA_INT_RDA_INT_M) {
4699 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4700 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4701 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4702 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4703 goto reset;
4704 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4705 | RDA_MISC_ERR | RDA_PCIX_ERR,
4706 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4707 }
4708
4709 if (val64 & RXDMA_INT_RTI_INT_M) {
4710 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4711 &sw_stat->rti_err_cnt))
4712 goto reset;
4713 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4714 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4715 }
4716
4717 val64 = readq(&bar0->mac_int_status);
4718 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4719 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4720 &bar0->mac_rmac_err_reg,
4721 &sw_stat->mac_rmac_err_cnt))
4722 goto reset;
4723 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4724 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4725 &sw_stat->mac_rmac_err_cnt);
4726 }
4727
4728 val64 = readq(&bar0->xgxs_int_status);
4729 if (val64 & XGXS_INT_STATUS_RXGXS) {
4730 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4731 &bar0->xgxs_rxgxs_err_reg,
4732 &sw_stat->xgxs_rxgxs_err_cnt))
4733 goto reset;
4734 }
4735
4736 val64 = readq(&bar0->mc_int_status);
4737 if(val64 & MC_INT_STATUS_MC_INT) {
4738 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4739 &sw_stat->mc_err_cnt))
4740 goto reset;
4741
4742 /* Handling Ecc errors */
4743 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4744 writeq(val64, &bar0->mc_err_reg);
4745 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4746 sw_stat->double_ecc_errs++;
4747 if (sp->device_type != XFRAME_II_DEVICE) {
4748 /*
4749 * Reset XframeI only if critical error
4750 */
4751 if (val64 &
4752 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4753 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4754 goto reset;
4755 }
4756 } else
4757 sw_stat->single_ecc_errs++;
4758 }
4759 }
4760 return;
4761
4762 reset:
4763 s2io_stop_all_tx_queue(sp);
4764 schedule_work(&sp->rst_timer_task);
4765 sw_stat->soft_reset_cnt++;
4766 return;
4767 }
4768
4769 /**
4770 * s2io_isr - ISR handler of the device .
4771 * @irq: the irq of the device.
4772 * @dev_id: a void pointer to the dev structure of the NIC.
4773 * Description: This function is the ISR handler of the device. It
4774 * identifies the reason for the interrupt and calls the relevant
4775 * service routines. As a contongency measure, this ISR allocates the
4776 * recv buffers, if their numbers are below the panic value which is
4777 * presently set to 25% of the original number of rcv buffers allocated.
4778 * Return value:
4779 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4780 * IRQ_NONE: will be returned if interrupt is not from our device
4781 */
4782 static irqreturn_t s2io_isr(int irq, void *dev_id)
4783 {
4784 struct net_device *dev = (struct net_device *) dev_id;
4785 struct s2io_nic *sp = dev->priv;
4786 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4787 int i;
4788 u64 reason = 0;
4789 struct mac_info *mac_control;
4790 struct config_param *config;
4791
4792 /* Pretend we handled any irq's from a disconnected card */
4793 if (pci_channel_offline(sp->pdev))
4794 return IRQ_NONE;
4795
4796 if (!is_s2io_card_up(sp))
4797 return IRQ_NONE;
4798
4799 mac_control = &sp->mac_control;
4800 config = &sp->config;
4801
4802 /*
4803 * Identify the cause for interrupt and call the appropriate
4804 * interrupt handler. Causes for the interrupt could be;
4805 * 1. Rx of packet.
4806 * 2. Tx complete.
4807 * 3. Link down.
4808 */
4809 reason = readq(&bar0->general_int_status);
4810
4811 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4812 /* Nothing much can be done. Get out */
4813 return IRQ_HANDLED;
4814 }
4815
4816 if (reason & (GEN_INTR_RXTRAFFIC |
4817 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4818 {
4819 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4820
4821 if (config->napi) {
4822 if (reason & GEN_INTR_RXTRAFFIC) {
4823 if (likely(netif_rx_schedule_prep(dev,
4824 &sp->napi))) {
4825 __netif_rx_schedule(dev, &sp->napi);
4826 writeq(S2IO_MINUS_ONE,
4827 &bar0->rx_traffic_mask);
4828 } else
4829 writeq(S2IO_MINUS_ONE,
4830 &bar0->rx_traffic_int);
4831 }
4832 } else {
4833 /*
4834 * rx_traffic_int reg is an R1 register, writing all 1's
4835 * will ensure that the actual interrupt causing bit
4836 * get's cleared and hence a read can be avoided.
4837 */
4838 if (reason & GEN_INTR_RXTRAFFIC)
4839 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4840
4841 for (i = 0; i < config->rx_ring_num; i++)
4842 rx_intr_handler(&mac_control->rings[i]);
4843 }
4844
4845 /*
4846 * tx_traffic_int reg is an R1 register, writing all 1's
4847 * will ensure that the actual interrupt causing bit get's
4848 * cleared and hence a read can be avoided.
4849 */
4850 if (reason & GEN_INTR_TXTRAFFIC)
4851 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4852
4853 for (i = 0; i < config->tx_fifo_num; i++)
4854 tx_intr_handler(&mac_control->fifos[i]);
4855
4856 if (reason & GEN_INTR_TXPIC)
4857 s2io_txpic_intr_handle(sp);
4858
4859 /*
4860 * Reallocate the buffers from the interrupt handler itself.
4861 */
4862 if (!config->napi) {
4863 for (i = 0; i < config->rx_ring_num; i++)
4864 s2io_chk_rx_buffers(sp, i);
4865 }
4866 writeq(sp->general_int_mask, &bar0->general_int_mask);
4867 readl(&bar0->general_int_status);
4868
4869 return IRQ_HANDLED;
4870
4871 }
4872 else if (!reason) {
4873 /* The interrupt was not raised by us */
4874 return IRQ_NONE;
4875 }
4876
4877 return IRQ_HANDLED;
4878 }
4879
4880 /**
4881 * s2io_updt_stats -
4882 */
4883 static void s2io_updt_stats(struct s2io_nic *sp)
4884 {
4885 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4886 u64 val64;
4887 int cnt = 0;
4888
4889 if (is_s2io_card_up(sp)) {
4890 /* Apprx 30us on a 133 MHz bus */
4891 val64 = SET_UPDT_CLICKS(10) |
4892 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4893 writeq(val64, &bar0->stat_cfg);
4894 do {
4895 udelay(100);
4896 val64 = readq(&bar0->stat_cfg);
4897 if (!(val64 & s2BIT(0)))
4898 break;
4899 cnt++;
4900 if (cnt == 5)
4901 break; /* Updt failed */
4902 } while(1);
4903 }
4904 }
4905
4906 /**
4907 * s2io_get_stats - Updates the device statistics structure.
4908 * @dev : pointer to the device structure.
4909 * Description:
4910 * This function updates the device statistics structure in the s2io_nic
4911 * structure and returns a pointer to the same.
4912 * Return value:
4913 * pointer to the updated net_device_stats structure.
4914 */
4915
4916 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4917 {
4918 struct s2io_nic *sp = dev->priv;
4919 struct mac_info *mac_control;
4920 struct config_param *config;
4921
4922
4923 mac_control = &sp->mac_control;
4924 config = &sp->config;
4925
4926 /* Configure Stats for immediate updt */
4927 s2io_updt_stats(sp);
4928
4929 sp->stats.tx_packets =
4930 le32_to_cpu(mac_control->stats_info->tmac_frms);
4931 sp->stats.tx_errors =
4932 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4933 sp->stats.rx_errors =
4934 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4935 sp->stats.multicast =
4936 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4937 sp->stats.rx_length_errors =
4938 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4939
4940 return (&sp->stats);
4941 }
4942
4943 /**
4944 * s2io_set_multicast - entry point for multicast address enable/disable.
4945 * @dev : pointer to the device structure
4946 * Description:
4947 * This function is a driver entry point which gets called by the kernel
4948 * whenever multicast addresses must be enabled/disabled. This also gets
4949 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4950 * determine, if multicast address must be enabled or if promiscuous mode
4951 * is to be disabled etc.
4952 * Return value:
4953 * void.
4954 */
4955
4956 static void s2io_set_multicast(struct net_device *dev)
4957 {
4958 int i, j, prev_cnt;
4959 struct dev_mc_list *mclist;
4960 struct s2io_nic *sp = dev->priv;
4961 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4962 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4963 0xfeffffffffffULL;
4964 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4965 void __iomem *add;
4966 struct config_param *config = &sp->config;
4967
4968 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4969 /* Enable all Multicast addresses */
4970 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4971 &bar0->rmac_addr_data0_mem);
4972 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4973 &bar0->rmac_addr_data1_mem);
4974 val64 = RMAC_ADDR_CMD_MEM_WE |
4975 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4976 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4977 writeq(val64, &bar0->rmac_addr_cmd_mem);
4978 /* Wait till command completes */
4979 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4980 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4981 S2IO_BIT_RESET);
4982
4983 sp->m_cast_flg = 1;
4984 sp->all_multi_pos = config->max_mc_addr - 1;
4985 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4986 /* Disable all Multicast addresses */
4987 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4988 &bar0->rmac_addr_data0_mem);
4989 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4990 &bar0->rmac_addr_data1_mem);
4991 val64 = RMAC_ADDR_CMD_MEM_WE |
4992 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4993 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4994 writeq(val64, &bar0->rmac_addr_cmd_mem);
4995 /* Wait till command completes */
4996 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4997 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4998 S2IO_BIT_RESET);
4999
5000 sp->m_cast_flg = 0;
5001 sp->all_multi_pos = 0;
5002 }
5003
5004 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5005 /* Put the NIC into promiscuous mode */
5006 add = &bar0->mac_cfg;
5007 val64 = readq(&bar0->mac_cfg);
5008 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5009
5010 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5011 writel((u32) val64, add);
5012 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5013 writel((u32) (val64 >> 32), (add + 4));
5014
5015 if (vlan_tag_strip != 1) {
5016 val64 = readq(&bar0->rx_pa_cfg);
5017 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5018 writeq(val64, &bar0->rx_pa_cfg);
5019 vlan_strip_flag = 0;
5020 }
5021
5022 val64 = readq(&bar0->mac_cfg);
5023 sp->promisc_flg = 1;
5024 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5025 dev->name);
5026 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5027 /* Remove the NIC from promiscuous mode */
5028 add = &bar0->mac_cfg;
5029 val64 = readq(&bar0->mac_cfg);
5030 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5031
5032 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5033 writel((u32) val64, add);
5034 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5035 writel((u32) (val64 >> 32), (add + 4));
5036
5037 if (vlan_tag_strip != 0) {
5038 val64 = readq(&bar0->rx_pa_cfg);
5039 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5040 writeq(val64, &bar0->rx_pa_cfg);
5041 vlan_strip_flag = 1;
5042 }
5043
5044 val64 = readq(&bar0->mac_cfg);
5045 sp->promisc_flg = 0;
5046 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5047 dev->name);
5048 }
5049
5050 /* Update individual M_CAST address list */
5051 if ((!sp->m_cast_flg) && dev->mc_count) {
5052 if (dev->mc_count >
5053 (config->max_mc_addr - config->max_mac_addr)) {
5054 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5055 dev->name);
5056 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5057 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5058 return;
5059 }
5060
5061 prev_cnt = sp->mc_addr_count;
5062 sp->mc_addr_count = dev->mc_count;
5063
5064 /* Clear out the previous list of Mc in the H/W. */
5065 for (i = 0; i < prev_cnt; i++) {
5066 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5067 &bar0->rmac_addr_data0_mem);
5068 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5069 &bar0->rmac_addr_data1_mem);
5070 val64 = RMAC_ADDR_CMD_MEM_WE |
5071 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5072 RMAC_ADDR_CMD_MEM_OFFSET
5073 (config->mc_start_offset + i);
5074 writeq(val64, &bar0->rmac_addr_cmd_mem);
5075
5076 /* Wait for command completes */
5077 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5078 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5079 S2IO_BIT_RESET)) {
5080 DBG_PRINT(ERR_DBG, "%s: Adding ",
5081 dev->name);
5082 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5083 return;
5084 }
5085 }
5086
5087 /* Create the new Rx filter list and update the same in H/W. */
5088 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5089 i++, mclist = mclist->next) {
5090 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5091 ETH_ALEN);
5092 mac_addr = 0;
5093 for (j = 0; j < ETH_ALEN; j++) {
5094 mac_addr |= mclist->dmi_addr[j];
5095 mac_addr <<= 8;
5096 }
5097 mac_addr >>= 8;
5098 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5099 &bar0->rmac_addr_data0_mem);
5100 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5101 &bar0->rmac_addr_data1_mem);
5102 val64 = RMAC_ADDR_CMD_MEM_WE |
5103 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5104 RMAC_ADDR_CMD_MEM_OFFSET
5105 (i + config->mc_start_offset);
5106 writeq(val64, &bar0->rmac_addr_cmd_mem);
5107
5108 /* Wait for command completes */
5109 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5110 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5111 S2IO_BIT_RESET)) {
5112 DBG_PRINT(ERR_DBG, "%s: Adding ",
5113 dev->name);
5114 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5115 return;
5116 }
5117 }
5118 }
5119 }
5120
5121 /* read from CAM unicast & multicast addresses and store it in
5122 * def_mac_addr structure
5123 */
5124 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5125 {
5126 int offset;
5127 u64 mac_addr = 0x0;
5128 struct config_param *config = &sp->config;
5129
5130 /* store unicast & multicast mac addresses */
5131 for (offset = 0; offset < config->max_mc_addr; offset++) {
5132 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5133 /* if read fails disable the entry */
5134 if (mac_addr == FAILURE)
5135 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5136 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5137 }
5138 }
5139
5140 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5141 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5142 {
5143 int offset;
5144 struct config_param *config = &sp->config;
5145 /* restore unicast mac address */
5146 for (offset = 0; offset < config->max_mac_addr; offset++)
5147 do_s2io_prog_unicast(sp->dev,
5148 sp->def_mac_addr[offset].mac_addr);
5149
5150 /* restore multicast mac address */
5151 for (offset = config->mc_start_offset;
5152 offset < config->max_mc_addr; offset++)
5153 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5154 }
5155
5156 /* add a multicast MAC address to CAM */
5157 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5158 {
5159 int i;
5160 u64 mac_addr = 0;
5161 struct config_param *config = &sp->config;
5162
5163 for (i = 0; i < ETH_ALEN; i++) {
5164 mac_addr <<= 8;
5165 mac_addr |= addr[i];
5166 }
5167 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5168 return SUCCESS;
5169
5170 /* check if the multicast mac already preset in CAM */
5171 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5172 u64 tmp64;
5173 tmp64 = do_s2io_read_unicast_mc(sp, i);
5174 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5175 break;
5176
5177 if (tmp64 == mac_addr)
5178 return SUCCESS;
5179 }
5180 if (i == config->max_mc_addr) {
5181 DBG_PRINT(ERR_DBG,
5182 "CAM full no space left for multicast MAC\n");
5183 return FAILURE;
5184 }
5185 /* Update the internal structure with this new mac address */
5186 do_s2io_copy_mac_addr(sp, i, mac_addr);
5187
5188 return (do_s2io_add_mac(sp, mac_addr, i));
5189 }
5190
5191 /* add MAC address to CAM */
5192 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5193 {
5194 u64 val64;
5195 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5196
5197 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5198 &bar0->rmac_addr_data0_mem);
5199
5200 val64 =
5201 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5202 RMAC_ADDR_CMD_MEM_OFFSET(off);
5203 writeq(val64, &bar0->rmac_addr_cmd_mem);
5204
5205 /* Wait till command completes */
5206 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5207 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5208 S2IO_BIT_RESET)) {
5209 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5210 return FAILURE;
5211 }
5212 return SUCCESS;
5213 }
5214 /* deletes a specified unicast/multicast mac entry from CAM */
5215 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5216 {
5217 int offset;
5218 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5219 struct config_param *config = &sp->config;
5220
5221 for (offset = 1;
5222 offset < config->max_mc_addr; offset++) {
5223 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5224 if (tmp64 == addr) {
5225 /* disable the entry by writing 0xffffffffffffULL */
5226 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5227 return FAILURE;
5228 /* store the new mac list from CAM */
5229 do_s2io_store_unicast_mc(sp);
5230 return SUCCESS;
5231 }
5232 }
5233 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5234 (unsigned long long)addr);
5235 return FAILURE;
5236 }
5237
5238 /* read mac entries from CAM */
5239 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5240 {
5241 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5243
5244 /* read mac addr */
5245 val64 =
5246 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5247 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5248 writeq(val64, &bar0->rmac_addr_cmd_mem);
5249
5250 /* Wait till command completes */
5251 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5252 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5253 S2IO_BIT_RESET)) {
5254 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5255 return FAILURE;
5256 }
5257 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5258 return (tmp64 >> 16);
5259 }
5260
5261 /**
5262 * s2io_set_mac_addr driver entry point
5263 */
5264
5265 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5266 {
5267 struct sockaddr *addr = p;
5268
5269 if (!is_valid_ether_addr(addr->sa_data))
5270 return -EINVAL;
5271
5272 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5273
5274 /* store the MAC address in CAM */
5275 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5276 }
5277 /**
5278 * do_s2io_prog_unicast - Programs the Xframe mac address
5279 * @dev : pointer to the device structure.
5280 * @addr: a uchar pointer to the new mac address which is to be set.
5281 * Description : This procedure will program the Xframe to receive
5282 * frames with new Mac Address
5283 * Return value: SUCCESS on success and an appropriate (-)ve integer
5284 * as defined in errno.h file on failure.
5285 */
5286
5287 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5288 {
5289 struct s2io_nic *sp = dev->priv;
5290 register u64 mac_addr = 0, perm_addr = 0;
5291 int i;
5292 u64 tmp64;
5293 struct config_param *config = &sp->config;
5294
5295 /*
5296 * Set the new MAC address as the new unicast filter and reflect this
5297 * change on the device address registered with the OS. It will be
5298 * at offset 0.
5299 */
5300 for (i = 0; i < ETH_ALEN; i++) {
5301 mac_addr <<= 8;
5302 mac_addr |= addr[i];
5303 perm_addr <<= 8;
5304 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5305 }
5306
5307 /* check if the dev_addr is different than perm_addr */
5308 if (mac_addr == perm_addr)
5309 return SUCCESS;
5310
5311 /* check if the mac already preset in CAM */
5312 for (i = 1; i < config->max_mac_addr; i++) {
5313 tmp64 = do_s2io_read_unicast_mc(sp, i);
5314 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5315 break;
5316
5317 if (tmp64 == mac_addr) {
5318 DBG_PRINT(INFO_DBG,
5319 "MAC addr:0x%llx already present in CAM\n",
5320 (unsigned long long)mac_addr);
5321 return SUCCESS;
5322 }
5323 }
5324 if (i == config->max_mac_addr) {
5325 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5326 return FAILURE;
5327 }
5328 /* Update the internal structure with this new mac address */
5329 do_s2io_copy_mac_addr(sp, i, mac_addr);
5330 return (do_s2io_add_mac(sp, mac_addr, i));
5331 }
5332
5333 /**
5334 * s2io_ethtool_sset - Sets different link parameters.
5335 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5336 * @info: pointer to the structure with parameters given by ethtool to set
5337 * link information.
5338 * Description:
5339 * The function sets different link parameters provided by the user onto
5340 * the NIC.
5341 * Return value:
5342 * 0 on success.
5343 */
5344
5345 static int s2io_ethtool_sset(struct net_device *dev,
5346 struct ethtool_cmd *info)
5347 {
5348 struct s2io_nic *sp = dev->priv;
5349 if ((info->autoneg == AUTONEG_ENABLE) ||
5350 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5351 return -EINVAL;
5352 else {
5353 s2io_close(sp->dev);
5354 s2io_open(sp->dev);
5355 }
5356
5357 return 0;
5358 }
5359
5360 /**
5361 * s2io_ethtol_gset - Return link specific information.
5362 * @sp : private member of the device structure, pointer to the
5363 * s2io_nic structure.
5364 * @info : pointer to the structure with parameters given by ethtool
5365 * to return link information.
5366 * Description:
5367 * Returns link specific information like speed, duplex etc.. to ethtool.
5368 * Return value :
5369 * return 0 on success.
5370 */
5371
5372 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5373 {
5374 struct s2io_nic *sp = dev->priv;
5375 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5376 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5377 info->port = PORT_FIBRE;
5378
5379 /* info->transceiver */
5380 info->transceiver = XCVR_EXTERNAL;
5381
5382 if (netif_carrier_ok(sp->dev)) {
5383 info->speed = 10000;
5384 info->duplex = DUPLEX_FULL;
5385 } else {
5386 info->speed = -1;
5387 info->duplex = -1;
5388 }
5389
5390 info->autoneg = AUTONEG_DISABLE;
5391 return 0;
5392 }
5393
5394 /**
5395 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5396 * @sp : private member of the device structure, which is a pointer to the
5397 * s2io_nic structure.
5398 * @info : pointer to the structure with parameters given by ethtool to
5399 * return driver information.
5400 * Description:
5401 * Returns driver specefic information like name, version etc.. to ethtool.
5402 * Return value:
5403 * void
5404 */
5405
5406 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5407 struct ethtool_drvinfo *info)
5408 {
5409 struct s2io_nic *sp = dev->priv;
5410
5411 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5412 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5413 strncpy(info->fw_version, "", sizeof(info->fw_version));
5414 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5415 info->regdump_len = XENA_REG_SPACE;
5416 info->eedump_len = XENA_EEPROM_SPACE;
5417 }
5418
5419 /**
5420 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5421 * @sp: private member of the device structure, which is a pointer to the
5422 * s2io_nic structure.
5423 * @regs : pointer to the structure with parameters given by ethtool for
5424 * dumping the registers.
5425 * @reg_space: The input argumnet into which all the registers are dumped.
5426 * Description:
5427 * Dumps the entire register space of xFrame NIC into the user given
5428 * buffer area.
5429 * Return value :
5430 * void .
5431 */
5432
5433 static void s2io_ethtool_gregs(struct net_device *dev,
5434 struct ethtool_regs *regs, void *space)
5435 {
5436 int i;
5437 u64 reg;
5438 u8 *reg_space = (u8 *) space;
5439 struct s2io_nic *sp = dev->priv;
5440
5441 regs->len = XENA_REG_SPACE;
5442 regs->version = sp->pdev->subsystem_device;
5443
5444 for (i = 0; i < regs->len; i += 8) {
5445 reg = readq(sp->bar0 + i);
5446 memcpy((reg_space + i), &reg, 8);
5447 }
5448 }
5449
5450 /**
5451 * s2io_phy_id - timer function that alternates adapter LED.
5452 * @data : address of the private member of the device structure, which
5453 * is a pointer to the s2io_nic structure, provided as an u32.
5454 * Description: This is actually the timer function that alternates the
5455 * adapter LED bit of the adapter control bit to set/reset every time on
5456 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5457 * once every second.
5458 */
5459 static void s2io_phy_id(unsigned long data)
5460 {
5461 struct s2io_nic *sp = (struct s2io_nic *) data;
5462 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5463 u64 val64 = 0;
5464 u16 subid;
5465
5466 subid = sp->pdev->subsystem_device;
5467 if ((sp->device_type == XFRAME_II_DEVICE) ||
5468 ((subid & 0xFF) >= 0x07)) {
5469 val64 = readq(&bar0->gpio_control);
5470 val64 ^= GPIO_CTRL_GPIO_0;
5471 writeq(val64, &bar0->gpio_control);
5472 } else {
5473 val64 = readq(&bar0->adapter_control);
5474 val64 ^= ADAPTER_LED_ON;
5475 writeq(val64, &bar0->adapter_control);
5476 }
5477
5478 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5479 }
5480
5481 /**
5482 * s2io_ethtool_idnic - To physically identify the nic on the system.
5483 * @sp : private member of the device structure, which is a pointer to the
5484 * s2io_nic structure.
5485 * @id : pointer to the structure with identification parameters given by
5486 * ethtool.
5487 * Description: Used to physically identify the NIC on the system.
5488 * The Link LED will blink for a time specified by the user for
5489 * identification.
5490 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5491 * identification is possible only if it's link is up.
5492 * Return value:
5493 * int , returns 0 on success
5494 */
5495
5496 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5497 {
5498 u64 val64 = 0, last_gpio_ctrl_val;
5499 struct s2io_nic *sp = dev->priv;
5500 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5501 u16 subid;
5502
5503 subid = sp->pdev->subsystem_device;
5504 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5505 if ((sp->device_type == XFRAME_I_DEVICE) &&
5506 ((subid & 0xFF) < 0x07)) {
5507 val64 = readq(&bar0->adapter_control);
5508 if (!(val64 & ADAPTER_CNTL_EN)) {
5509 printk(KERN_ERR
5510 "Adapter Link down, cannot blink LED\n");
5511 return -EFAULT;
5512 }
5513 }
5514 if (sp->id_timer.function == NULL) {
5515 init_timer(&sp->id_timer);
5516 sp->id_timer.function = s2io_phy_id;
5517 sp->id_timer.data = (unsigned long) sp;
5518 }
5519 mod_timer(&sp->id_timer, jiffies);
5520 if (data)
5521 msleep_interruptible(data * HZ);
5522 else
5523 msleep_interruptible(MAX_FLICKER_TIME);
5524 del_timer_sync(&sp->id_timer);
5525
5526 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5527 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5528 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5529 }
5530
5531 return 0;
5532 }
5533
5534 static void s2io_ethtool_gringparam(struct net_device *dev,
5535 struct ethtool_ringparam *ering)
5536 {
5537 struct s2io_nic *sp = dev->priv;
5538 int i,tx_desc_count=0,rx_desc_count=0;
5539
5540 if (sp->rxd_mode == RXD_MODE_1)
5541 ering->rx_max_pending = MAX_RX_DESC_1;
5542 else if (sp->rxd_mode == RXD_MODE_3B)
5543 ering->rx_max_pending = MAX_RX_DESC_2;
5544
5545 ering->tx_max_pending = MAX_TX_DESC;
5546 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5547 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5548
5549 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5550 ering->tx_pending = tx_desc_count;
5551 rx_desc_count = 0;
5552 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5553 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5554
5555 ering->rx_pending = rx_desc_count;
5556
5557 ering->rx_mini_max_pending = 0;
5558 ering->rx_mini_pending = 0;
5559 if(sp->rxd_mode == RXD_MODE_1)
5560 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5561 else if (sp->rxd_mode == RXD_MODE_3B)
5562 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5563 ering->rx_jumbo_pending = rx_desc_count;
5564 }
5565
5566 /**
5567 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5568 * @sp : private member of the device structure, which is a pointer to the
5569 * s2io_nic structure.
5570 * @ep : pointer to the structure with pause parameters given by ethtool.
5571 * Description:
5572 * Returns the Pause frame generation and reception capability of the NIC.
5573 * Return value:
5574 * void
5575 */
5576 static void s2io_ethtool_getpause_data(struct net_device *dev,
5577 struct ethtool_pauseparam *ep)
5578 {
5579 u64 val64;
5580 struct s2io_nic *sp = dev->priv;
5581 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5582
5583 val64 = readq(&bar0->rmac_pause_cfg);
5584 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5585 ep->tx_pause = TRUE;
5586 if (val64 & RMAC_PAUSE_RX_ENABLE)
5587 ep->rx_pause = TRUE;
5588 ep->autoneg = FALSE;
5589 }
5590
5591 /**
5592 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5593 * @sp : private member of the device structure, which is a pointer to the
5594 * s2io_nic structure.
5595 * @ep : pointer to the structure with pause parameters given by ethtool.
5596 * Description:
5597 * It can be used to set or reset Pause frame generation or reception
5598 * support of the NIC.
5599 * Return value:
5600 * int, returns 0 on Success
5601 */
5602
5603 static int s2io_ethtool_setpause_data(struct net_device *dev,
5604 struct ethtool_pauseparam *ep)
5605 {
5606 u64 val64;
5607 struct s2io_nic *sp = dev->priv;
5608 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5609
5610 val64 = readq(&bar0->rmac_pause_cfg);
5611 if (ep->tx_pause)
5612 val64 |= RMAC_PAUSE_GEN_ENABLE;
5613 else
5614 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5615 if (ep->rx_pause)
5616 val64 |= RMAC_PAUSE_RX_ENABLE;
5617 else
5618 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5619 writeq(val64, &bar0->rmac_pause_cfg);
5620 return 0;
5621 }
5622
5623 /**
5624 * read_eeprom - reads 4 bytes of data from user given offset.
5625 * @sp : private member of the device structure, which is a pointer to the
5626 * s2io_nic structure.
5627 * @off : offset at which the data must be written
5628 * @data : Its an output parameter where the data read at the given
5629 * offset is stored.
5630 * Description:
5631 * Will read 4 bytes of data from the user given offset and return the
5632 * read data.
5633 * NOTE: Will allow to read only part of the EEPROM visible through the
5634 * I2C bus.
5635 * Return value:
5636 * -1 on failure and 0 on success.
5637 */
5638
5639 #define S2IO_DEV_ID 5
5640 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5641 {
5642 int ret = -1;
5643 u32 exit_cnt = 0;
5644 u64 val64;
5645 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5646
5647 if (sp->device_type == XFRAME_I_DEVICE) {
5648 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5649 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5650 I2C_CONTROL_CNTL_START;
5651 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5652
5653 while (exit_cnt < 5) {
5654 val64 = readq(&bar0->i2c_control);
5655 if (I2C_CONTROL_CNTL_END(val64)) {
5656 *data = I2C_CONTROL_GET_DATA(val64);
5657 ret = 0;
5658 break;
5659 }
5660 msleep(50);
5661 exit_cnt++;
5662 }
5663 }
5664
5665 if (sp->device_type == XFRAME_II_DEVICE) {
5666 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5667 SPI_CONTROL_BYTECNT(0x3) |
5668 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5669 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5670 val64 |= SPI_CONTROL_REQ;
5671 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5672 while (exit_cnt < 5) {
5673 val64 = readq(&bar0->spi_control);
5674 if (val64 & SPI_CONTROL_NACK) {
5675 ret = 1;
5676 break;
5677 } else if (val64 & SPI_CONTROL_DONE) {
5678 *data = readq(&bar0->spi_data);
5679 *data &= 0xffffff;
5680 ret = 0;
5681 break;
5682 }
5683 msleep(50);
5684 exit_cnt++;
5685 }
5686 }
5687 return ret;
5688 }
5689
5690 /**
5691 * write_eeprom - actually writes the relevant part of the data value.
5692 * @sp : private member of the device structure, which is a pointer to the
5693 * s2io_nic structure.
5694 * @off : offset at which the data must be written
5695 * @data : The data that is to be written
5696 * @cnt : Number of bytes of the data that are actually to be written into
5697 * the Eeprom. (max of 3)
5698 * Description:
5699 * Actually writes the relevant part of the data value into the Eeprom
5700 * through the I2C bus.
5701 * Return value:
5702 * 0 on success, -1 on failure.
5703 */
5704
5705 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5706 {
5707 int exit_cnt = 0, ret = -1;
5708 u64 val64;
5709 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5710
5711 if (sp->device_type == XFRAME_I_DEVICE) {
5712 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5713 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5714 I2C_CONTROL_CNTL_START;
5715 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5716
5717 while (exit_cnt < 5) {
5718 val64 = readq(&bar0->i2c_control);
5719 if (I2C_CONTROL_CNTL_END(val64)) {
5720 if (!(val64 & I2C_CONTROL_NACK))
5721 ret = 0;
5722 break;
5723 }
5724 msleep(50);
5725 exit_cnt++;
5726 }
5727 }
5728
5729 if (sp->device_type == XFRAME_II_DEVICE) {
5730 int write_cnt = (cnt == 8) ? 0 : cnt;
5731 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5732
5733 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5734 SPI_CONTROL_BYTECNT(write_cnt) |
5735 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5736 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5737 val64 |= SPI_CONTROL_REQ;
5738 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5739 while (exit_cnt < 5) {
5740 val64 = readq(&bar0->spi_control);
5741 if (val64 & SPI_CONTROL_NACK) {
5742 ret = 1;
5743 break;
5744 } else if (val64 & SPI_CONTROL_DONE) {
5745 ret = 0;
5746 break;
5747 }
5748 msleep(50);
5749 exit_cnt++;
5750 }
5751 }
5752 return ret;
5753 }
5754 static void s2io_vpd_read(struct s2io_nic *nic)
5755 {
5756 u8 *vpd_data;
5757 u8 data;
5758 int i=0, cnt, fail = 0;
5759 int vpd_addr = 0x80;
5760
5761 if (nic->device_type == XFRAME_II_DEVICE) {
5762 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5763 vpd_addr = 0x80;
5764 }
5765 else {
5766 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5767 vpd_addr = 0x50;
5768 }
5769 strcpy(nic->serial_num, "NOT AVAILABLE");
5770
5771 vpd_data = kmalloc(256, GFP_KERNEL);
5772 if (!vpd_data) {
5773 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5774 return;
5775 }
5776 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5777
5778 for (i = 0; i < 256; i +=4 ) {
5779 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5780 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5781 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5782 for (cnt = 0; cnt <5; cnt++) {
5783 msleep(2);
5784 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5785 if (data == 0x80)
5786 break;
5787 }
5788 if (cnt >= 5) {
5789 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5790 fail = 1;
5791 break;
5792 }
5793 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5794 (u32 *)&vpd_data[i]);
5795 }
5796
5797 if(!fail) {
5798 /* read serial number of adapter */
5799 for (cnt = 0; cnt < 256; cnt++) {
5800 if ((vpd_data[cnt] == 'S') &&
5801 (vpd_data[cnt+1] == 'N') &&
5802 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5803 memset(nic->serial_num, 0, VPD_STRING_LEN);
5804 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5805 vpd_data[cnt+2]);
5806 break;
5807 }
5808 }
5809 }
5810
5811 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5812 memset(nic->product_name, 0, vpd_data[1]);
5813 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5814 }
5815 kfree(vpd_data);
5816 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5817 }
5818
5819 /**
5820 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5821 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5822 * @eeprom : pointer to the user level structure provided by ethtool,
5823 * containing all relevant information.
5824 * @data_buf : user defined value to be written into Eeprom.
5825 * Description: Reads the values stored in the Eeprom at given offset
5826 * for a given length. Stores these values int the input argument data
5827 * buffer 'data_buf' and returns these to the caller (ethtool.)
5828 * Return value:
5829 * int 0 on success
5830 */
5831
5832 static int s2io_ethtool_geeprom(struct net_device *dev,
5833 struct ethtool_eeprom *eeprom, u8 * data_buf)
5834 {
5835 u32 i, valid;
5836 u64 data;
5837 struct s2io_nic *sp = dev->priv;
5838
5839 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5840
5841 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5842 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5843
5844 for (i = 0; i < eeprom->len; i += 4) {
5845 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5846 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5847 return -EFAULT;
5848 }
5849 valid = INV(data);
5850 memcpy((data_buf + i), &valid, 4);
5851 }
5852 return 0;
5853 }
5854
5855 /**
5856 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5857 * @sp : private member of the device structure, which is a pointer to the
5858 * s2io_nic structure.
5859 * @eeprom : pointer to the user level structure provided by ethtool,
5860 * containing all relevant information.
5861 * @data_buf ; user defined value to be written into Eeprom.
5862 * Description:
5863 * Tries to write the user provided value in the Eeprom, at the offset
5864 * given by the user.
5865 * Return value:
5866 * 0 on success, -EFAULT on failure.
5867 */
5868
5869 static int s2io_ethtool_seeprom(struct net_device *dev,
5870 struct ethtool_eeprom *eeprom,
5871 u8 * data_buf)
5872 {
5873 int len = eeprom->len, cnt = 0;
5874 u64 valid = 0, data;
5875 struct s2io_nic *sp = dev->priv;
5876
5877 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5878 DBG_PRINT(ERR_DBG,
5879 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5880 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5881 eeprom->magic);
5882 return -EFAULT;
5883 }
5884
5885 while (len) {
5886 data = (u32) data_buf[cnt] & 0x000000FF;
5887 if (data) {
5888 valid = (u32) (data << 24);
5889 } else
5890 valid = data;
5891
5892 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5893 DBG_PRINT(ERR_DBG,
5894 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5895 DBG_PRINT(ERR_DBG,
5896 "write into the specified offset\n");
5897 return -EFAULT;
5898 }
5899 cnt++;
5900 len--;
5901 }
5902
5903 return 0;
5904 }
5905
5906 /**
5907 * s2io_register_test - reads and writes into all clock domains.
5908 * @sp : private member of the device structure, which is a pointer to the
5909 * s2io_nic structure.
5910 * @data : variable that returns the result of each of the test conducted b
5911 * by the driver.
5912 * Description:
5913 * Read and write into all clock domains. The NIC has 3 clock domains,
5914 * see that registers in all the three regions are accessible.
5915 * Return value:
5916 * 0 on success.
5917 */
5918
5919 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5920 {
5921 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5922 u64 val64 = 0, exp_val;
5923 int fail = 0;
5924
5925 val64 = readq(&bar0->pif_rd_swapper_fb);
5926 if (val64 != 0x123456789abcdefULL) {
5927 fail = 1;
5928 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5929 }
5930
5931 val64 = readq(&bar0->rmac_pause_cfg);
5932 if (val64 != 0xc000ffff00000000ULL) {
5933 fail = 1;
5934 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5935 }
5936
5937 val64 = readq(&bar0->rx_queue_cfg);
5938 if (sp->device_type == XFRAME_II_DEVICE)
5939 exp_val = 0x0404040404040404ULL;
5940 else
5941 exp_val = 0x0808080808080808ULL;
5942 if (val64 != exp_val) {
5943 fail = 1;
5944 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5945 }
5946
5947 val64 = readq(&bar0->xgxs_efifo_cfg);
5948 if (val64 != 0x000000001923141EULL) {
5949 fail = 1;
5950 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5951 }
5952
5953 val64 = 0x5A5A5A5A5A5A5A5AULL;
5954 writeq(val64, &bar0->xmsi_data);
5955 val64 = readq(&bar0->xmsi_data);
5956 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5957 fail = 1;
5958 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5959 }
5960
5961 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5962 writeq(val64, &bar0->xmsi_data);
5963 val64 = readq(&bar0->xmsi_data);
5964 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5965 fail = 1;
5966 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5967 }
5968
5969 *data = fail;
5970 return fail;
5971 }
5972
5973 /**
5974 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5975 * @sp : private member of the device structure, which is a pointer to the
5976 * s2io_nic structure.
5977 * @data:variable that returns the result of each of the test conducted by
5978 * the driver.
5979 * Description:
5980 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5981 * register.
5982 * Return value:
5983 * 0 on success.
5984 */
5985
5986 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5987 {
5988 int fail = 0;
5989 u64 ret_data, org_4F0, org_7F0;
5990 u8 saved_4F0 = 0, saved_7F0 = 0;
5991 struct net_device *dev = sp->dev;
5992
5993 /* Test Write Error at offset 0 */
5994 /* Note that SPI interface allows write access to all areas
5995 * of EEPROM. Hence doing all negative testing only for Xframe I.
5996 */
5997 if (sp->device_type == XFRAME_I_DEVICE)
5998 if (!write_eeprom(sp, 0, 0, 3))
5999 fail = 1;
6000
6001 /* Save current values at offsets 0x4F0 and 0x7F0 */
6002 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6003 saved_4F0 = 1;
6004 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6005 saved_7F0 = 1;
6006
6007 /* Test Write at offset 4f0 */
6008 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6009 fail = 1;
6010 if (read_eeprom(sp, 0x4F0, &ret_data))
6011 fail = 1;
6012
6013 if (ret_data != 0x012345) {
6014 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6015 "Data written %llx Data read %llx\n",
6016 dev->name, (unsigned long long)0x12345,
6017 (unsigned long long)ret_data);
6018 fail = 1;
6019 }
6020
6021 /* Reset the EEPROM data go FFFF */
6022 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6023
6024 /* Test Write Request Error at offset 0x7c */
6025 if (sp->device_type == XFRAME_I_DEVICE)
6026 if (!write_eeprom(sp, 0x07C, 0, 3))
6027 fail = 1;
6028
6029 /* Test Write Request at offset 0x7f0 */
6030 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6031 fail = 1;
6032 if (read_eeprom(sp, 0x7F0, &ret_data))
6033 fail = 1;
6034
6035 if (ret_data != 0x012345) {
6036 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6037 "Data written %llx Data read %llx\n",
6038 dev->name, (unsigned long long)0x12345,
6039 (unsigned long long)ret_data);
6040 fail = 1;
6041 }
6042
6043 /* Reset the EEPROM data go FFFF */
6044 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6045
6046 if (sp->device_type == XFRAME_I_DEVICE) {
6047 /* Test Write Error at offset 0x80 */
6048 if (!write_eeprom(sp, 0x080, 0, 3))
6049 fail = 1;
6050
6051 /* Test Write Error at offset 0xfc */
6052 if (!write_eeprom(sp, 0x0FC, 0, 3))
6053 fail = 1;
6054
6055 /* Test Write Error at offset 0x100 */
6056 if (!write_eeprom(sp, 0x100, 0, 3))
6057 fail = 1;
6058
6059 /* Test Write Error at offset 4ec */
6060 if (!write_eeprom(sp, 0x4EC, 0, 3))
6061 fail = 1;
6062 }
6063
6064 /* Restore values at offsets 0x4F0 and 0x7F0 */
6065 if (saved_4F0)
6066 write_eeprom(sp, 0x4F0, org_4F0, 3);
6067 if (saved_7F0)
6068 write_eeprom(sp, 0x7F0, org_7F0, 3);
6069
6070 *data = fail;
6071 return fail;
6072 }
6073
6074 /**
6075 * s2io_bist_test - invokes the MemBist test of the card .
6076 * @sp : private member of the device structure, which is a pointer to the
6077 * s2io_nic structure.
6078 * @data:variable that returns the result of each of the test conducted by
6079 * the driver.
6080 * Description:
6081 * This invokes the MemBist test of the card. We give around
6082 * 2 secs time for the Test to complete. If it's still not complete
6083 * within this peiod, we consider that the test failed.
6084 * Return value:
6085 * 0 on success and -1 on failure.
6086 */
6087
6088 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6089 {
6090 u8 bist = 0;
6091 int cnt = 0, ret = -1;
6092
6093 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6094 bist |= PCI_BIST_START;
6095 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6096
6097 while (cnt < 20) {
6098 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6099 if (!(bist & PCI_BIST_START)) {
6100 *data = (bist & PCI_BIST_CODE_MASK);
6101 ret = 0;
6102 break;
6103 }
6104 msleep(100);
6105 cnt++;
6106 }
6107
6108 return ret;
6109 }
6110
6111 /**
6112 * s2io-link_test - verifies the link state of the nic
6113 * @sp ; private member of the device structure, which is a pointer to the
6114 * s2io_nic structure.
6115 * @data: variable that returns the result of each of the test conducted by
6116 * the driver.
6117 * Description:
6118 * The function verifies the link state of the NIC and updates the input
6119 * argument 'data' appropriately.
6120 * Return value:
6121 * 0 on success.
6122 */
6123
6124 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6125 {
6126 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6127 u64 val64;
6128
6129 val64 = readq(&bar0->adapter_status);
6130 if(!(LINK_IS_UP(val64)))
6131 *data = 1;
6132 else
6133 *data = 0;
6134
6135 return *data;
6136 }
6137
6138 /**
6139 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6140 * @sp - private member of the device structure, which is a pointer to the
6141 * s2io_nic structure.
6142 * @data - variable that returns the result of each of the test
6143 * conducted by the driver.
6144 * Description:
6145 * This is one of the offline test that tests the read and write
6146 * access to the RldRam chip on the NIC.
6147 * Return value:
6148 * 0 on success.
6149 */
6150
6151 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6152 {
6153 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6154 u64 val64;
6155 int cnt, iteration = 0, test_fail = 0;
6156
6157 val64 = readq(&bar0->adapter_control);
6158 val64 &= ~ADAPTER_ECC_EN;
6159 writeq(val64, &bar0->adapter_control);
6160
6161 val64 = readq(&bar0->mc_rldram_test_ctrl);
6162 val64 |= MC_RLDRAM_TEST_MODE;
6163 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6164
6165 val64 = readq(&bar0->mc_rldram_mrs);
6166 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6167 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6168
6169 val64 |= MC_RLDRAM_MRS_ENABLE;
6170 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6171
6172 while (iteration < 2) {
6173 val64 = 0x55555555aaaa0000ULL;
6174 if (iteration == 1) {
6175 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6176 }
6177 writeq(val64, &bar0->mc_rldram_test_d0);
6178
6179 val64 = 0xaaaa5a5555550000ULL;
6180 if (iteration == 1) {
6181 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6182 }
6183 writeq(val64, &bar0->mc_rldram_test_d1);
6184
6185 val64 = 0x55aaaaaaaa5a0000ULL;
6186 if (iteration == 1) {
6187 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6188 }
6189 writeq(val64, &bar0->mc_rldram_test_d2);
6190
6191 val64 = (u64) (0x0000003ffffe0100ULL);
6192 writeq(val64, &bar0->mc_rldram_test_add);
6193
6194 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6195 MC_RLDRAM_TEST_GO;
6196 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6197
6198 for (cnt = 0; cnt < 5; cnt++) {
6199 val64 = readq(&bar0->mc_rldram_test_ctrl);
6200 if (val64 & MC_RLDRAM_TEST_DONE)
6201 break;
6202 msleep(200);
6203 }
6204
6205 if (cnt == 5)
6206 break;
6207
6208 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6209 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6210
6211 for (cnt = 0; cnt < 5; cnt++) {
6212 val64 = readq(&bar0->mc_rldram_test_ctrl);
6213 if (val64 & MC_RLDRAM_TEST_DONE)
6214 break;
6215 msleep(500);
6216 }
6217
6218 if (cnt == 5)
6219 break;
6220
6221 val64 = readq(&bar0->mc_rldram_test_ctrl);
6222 if (!(val64 & MC_RLDRAM_TEST_PASS))
6223 test_fail = 1;
6224
6225 iteration++;
6226 }
6227
6228 *data = test_fail;
6229
6230 /* Bring the adapter out of test mode */
6231 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6232
6233 return test_fail;
6234 }
6235
6236 /**
6237 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6238 * @sp : private member of the device structure, which is a pointer to the
6239 * s2io_nic structure.
6240 * @ethtest : pointer to a ethtool command specific structure that will be
6241 * returned to the user.
6242 * @data : variable that returns the result of each of the test
6243 * conducted by the driver.
6244 * Description:
6245 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6246 * the health of the card.
6247 * Return value:
6248 * void
6249 */
6250
6251 static void s2io_ethtool_test(struct net_device *dev,
6252 struct ethtool_test *ethtest,
6253 uint64_t * data)
6254 {
6255 struct s2io_nic *sp = dev->priv;
6256 int orig_state = netif_running(sp->dev);
6257
6258 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6259 /* Offline Tests. */
6260 if (orig_state)
6261 s2io_close(sp->dev);
6262
6263 if (s2io_register_test(sp, &data[0]))
6264 ethtest->flags |= ETH_TEST_FL_FAILED;
6265
6266 s2io_reset(sp);
6267
6268 if (s2io_rldram_test(sp, &data[3]))
6269 ethtest->flags |= ETH_TEST_FL_FAILED;
6270
6271 s2io_reset(sp);
6272
6273 if (s2io_eeprom_test(sp, &data[1]))
6274 ethtest->flags |= ETH_TEST_FL_FAILED;
6275
6276 if (s2io_bist_test(sp, &data[4]))
6277 ethtest->flags |= ETH_TEST_FL_FAILED;
6278
6279 if (orig_state)
6280 s2io_open(sp->dev);
6281
6282 data[2] = 0;
6283 } else {
6284 /* Online Tests. */
6285 if (!orig_state) {
6286 DBG_PRINT(ERR_DBG,
6287 "%s: is not up, cannot run test\n",
6288 dev->name);
6289 data[0] = -1;
6290 data[1] = -1;
6291 data[2] = -1;
6292 data[3] = -1;
6293 data[4] = -1;
6294 }
6295
6296 if (s2io_link_test(sp, &data[2]))
6297 ethtest->flags |= ETH_TEST_FL_FAILED;
6298
6299 data[0] = 0;
6300 data[1] = 0;
6301 data[3] = 0;
6302 data[4] = 0;
6303 }
6304 }
6305
6306 static void s2io_get_ethtool_stats(struct net_device *dev,
6307 struct ethtool_stats *estats,
6308 u64 * tmp_stats)
6309 {
6310 int i = 0, k;
6311 struct s2io_nic *sp = dev->priv;
6312 struct stat_block *stat_info = sp->mac_control.stats_info;
6313
6314 s2io_updt_stats(sp);
6315 tmp_stats[i++] =
6316 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6317 le32_to_cpu(stat_info->tmac_frms);
6318 tmp_stats[i++] =
6319 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6320 le32_to_cpu(stat_info->tmac_data_octets);
6321 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6322 tmp_stats[i++] =
6323 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6324 le32_to_cpu(stat_info->tmac_mcst_frms);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6327 le32_to_cpu(stat_info->tmac_bcst_frms);
6328 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6329 tmp_stats[i++] =
6330 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_ttl_octets);
6332 tmp_stats[i++] =
6333 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6334 le32_to_cpu(stat_info->tmac_ucst_frms);
6335 tmp_stats[i++] =
6336 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6337 le32_to_cpu(stat_info->tmac_nucst_frms);
6338 tmp_stats[i++] =
6339 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6340 le32_to_cpu(stat_info->tmac_any_err_frms);
6341 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6342 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6343 tmp_stats[i++] =
6344 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6345 le32_to_cpu(stat_info->tmac_vld_ip);
6346 tmp_stats[i++] =
6347 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6348 le32_to_cpu(stat_info->tmac_drop_ip);
6349 tmp_stats[i++] =
6350 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6351 le32_to_cpu(stat_info->tmac_icmp);
6352 tmp_stats[i++] =
6353 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6354 le32_to_cpu(stat_info->tmac_rst_tcp);
6355 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6356 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6357 le32_to_cpu(stat_info->tmac_udp);
6358 tmp_stats[i++] =
6359 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6360 le32_to_cpu(stat_info->rmac_vld_frms);
6361 tmp_stats[i++] =
6362 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6363 le32_to_cpu(stat_info->rmac_data_octets);
6364 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6366 tmp_stats[i++] =
6367 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6368 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6369 tmp_stats[i++] =
6370 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6371 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6372 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6373 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6374 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6375 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6376 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_ttl_octets);
6380 tmp_stats[i++] =
6381 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6382 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6383 tmp_stats[i++] =
6384 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6385 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6386 tmp_stats[i++] =
6387 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6388 le32_to_cpu(stat_info->rmac_discarded_frms);
6389 tmp_stats[i++] =
6390 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6391 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6392 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6393 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6396 le32_to_cpu(stat_info->rmac_usized_frms);
6397 tmp_stats[i++] =
6398 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6399 le32_to_cpu(stat_info->rmac_osized_frms);
6400 tmp_stats[i++] =
6401 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6402 le32_to_cpu(stat_info->rmac_frag_frms);
6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6405 le32_to_cpu(stat_info->rmac_jabber_frms);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6408 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6410 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6411 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6412 tmp_stats[i++] =
6413 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6414 le32_to_cpu(stat_info->rmac_ip);
6415 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6416 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6417 tmp_stats[i++] =
6418 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6419 le32_to_cpu(stat_info->rmac_drop_ip);
6420 tmp_stats[i++] =
6421 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6422 le32_to_cpu(stat_info->rmac_icmp);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6424 tmp_stats[i++] =
6425 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6426 le32_to_cpu(stat_info->rmac_udp);
6427 tmp_stats[i++] =
6428 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6429 le32_to_cpu(stat_info->rmac_err_drp_udp);
6430 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6431 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6432 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6438 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6439 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6440 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6441 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6442 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6443 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6444 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6445 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6446 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6447 tmp_stats[i++] =
6448 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6449 le32_to_cpu(stat_info->rmac_pause_cnt);
6450 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6451 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6452 tmp_stats[i++] =
6453 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6454 le32_to_cpu(stat_info->rmac_accepted_ip);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6474
6475 /* Enhanced statistics exist only for Hercules */
6476 if(sp->device_type == XFRAME_II_DEVICE) {
6477 tmp_stats[i++] =
6478 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6479 tmp_stats[i++] =
6480 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6481 tmp_stats[i++] =
6482 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6483 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6484 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6485 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6486 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6487 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6488 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6489 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6490 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6491 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6492 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6493 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6494 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6495 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6496 }
6497
6498 tmp_stats[i++] = 0;
6499 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6500 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6501 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6502 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6503 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6504 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6505 for (k = 0; k < MAX_RX_RINGS; k++)
6506 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6507 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6508 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6509 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6510 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6511 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6512 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6513 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6514 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6515 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6516 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6517 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6518 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6519 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6520 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6521 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6522 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6523 if (stat_info->sw_stat.num_aggregations) {
6524 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6525 int count = 0;
6526 /*
6527 * Since 64-bit divide does not work on all platforms,
6528 * do repeated subtraction.
6529 */
6530 while (tmp >= stat_info->sw_stat.num_aggregations) {
6531 tmp -= stat_info->sw_stat.num_aggregations;
6532 count++;
6533 }
6534 tmp_stats[i++] = count;
6535 }
6536 else
6537 tmp_stats[i++] = 0;
6538 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6539 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6542 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6543 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6546 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6547
6548 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6553
6554 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6572 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6573 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6574 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6575 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6576 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6577 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6578 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6579 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6580 }
6581
6582 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6583 {
6584 return (XENA_REG_SPACE);
6585 }
6586
6587
6588 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6589 {
6590 struct s2io_nic *sp = dev->priv;
6591
6592 return (sp->rx_csum);
6593 }
6594
6595 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6596 {
6597 struct s2io_nic *sp = dev->priv;
6598
6599 if (data)
6600 sp->rx_csum = 1;
6601 else
6602 sp->rx_csum = 0;
6603
6604 return 0;
6605 }
6606
6607 static int s2io_get_eeprom_len(struct net_device *dev)
6608 {
6609 return (XENA_EEPROM_SPACE);
6610 }
6611
6612 static int s2io_get_sset_count(struct net_device *dev, int sset)
6613 {
6614 struct s2io_nic *sp = dev->priv;
6615
6616 switch (sset) {
6617 case ETH_SS_TEST:
6618 return S2IO_TEST_LEN;
6619 case ETH_SS_STATS:
6620 switch(sp->device_type) {
6621 case XFRAME_I_DEVICE:
6622 return XFRAME_I_STAT_LEN;
6623 case XFRAME_II_DEVICE:
6624 return XFRAME_II_STAT_LEN;
6625 default:
6626 return 0;
6627 }
6628 default:
6629 return -EOPNOTSUPP;
6630 }
6631 }
6632
6633 static void s2io_ethtool_get_strings(struct net_device *dev,
6634 u32 stringset, u8 * data)
6635 {
6636 int stat_size = 0;
6637 struct s2io_nic *sp = dev->priv;
6638
6639 switch (stringset) {
6640 case ETH_SS_TEST:
6641 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6642 break;
6643 case ETH_SS_STATS:
6644 stat_size = sizeof(ethtool_xena_stats_keys);
6645 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6646 if(sp->device_type == XFRAME_II_DEVICE) {
6647 memcpy(data + stat_size,
6648 &ethtool_enhanced_stats_keys,
6649 sizeof(ethtool_enhanced_stats_keys));
6650 stat_size += sizeof(ethtool_enhanced_stats_keys);
6651 }
6652
6653 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6654 sizeof(ethtool_driver_stats_keys));
6655 }
6656 }
6657
6658 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6659 {
6660 if (data)
6661 dev->features |= NETIF_F_IP_CSUM;
6662 else
6663 dev->features &= ~NETIF_F_IP_CSUM;
6664
6665 return 0;
6666 }
6667
6668 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6669 {
6670 return (dev->features & NETIF_F_TSO) != 0;
6671 }
6672 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6673 {
6674 if (data)
6675 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6676 else
6677 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6678
6679 return 0;
6680 }
6681
6682 static const struct ethtool_ops netdev_ethtool_ops = {
6683 .get_settings = s2io_ethtool_gset,
6684 .set_settings = s2io_ethtool_sset,
6685 .get_drvinfo = s2io_ethtool_gdrvinfo,
6686 .get_regs_len = s2io_ethtool_get_regs_len,
6687 .get_regs = s2io_ethtool_gregs,
6688 .get_link = ethtool_op_get_link,
6689 .get_eeprom_len = s2io_get_eeprom_len,
6690 .get_eeprom = s2io_ethtool_geeprom,
6691 .set_eeprom = s2io_ethtool_seeprom,
6692 .get_ringparam = s2io_ethtool_gringparam,
6693 .get_pauseparam = s2io_ethtool_getpause_data,
6694 .set_pauseparam = s2io_ethtool_setpause_data,
6695 .get_rx_csum = s2io_ethtool_get_rx_csum,
6696 .set_rx_csum = s2io_ethtool_set_rx_csum,
6697 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6698 .set_sg = ethtool_op_set_sg,
6699 .get_tso = s2io_ethtool_op_get_tso,
6700 .set_tso = s2io_ethtool_op_set_tso,
6701 .set_ufo = ethtool_op_set_ufo,
6702 .self_test = s2io_ethtool_test,
6703 .get_strings = s2io_ethtool_get_strings,
6704 .phys_id = s2io_ethtool_idnic,
6705 .get_ethtool_stats = s2io_get_ethtool_stats,
6706 .get_sset_count = s2io_get_sset_count,
6707 };
6708
6709 /**
6710 * s2io_ioctl - Entry point for the Ioctl
6711 * @dev : Device pointer.
6712 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6713 * a proprietary structure used to pass information to the driver.
6714 * @cmd : This is used to distinguish between the different commands that
6715 * can be passed to the IOCTL functions.
6716 * Description:
6717 * Currently there are no special functionality supported in IOCTL, hence
6718 * function always return EOPNOTSUPPORTED
6719 */
6720
6721 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6722 {
6723 return -EOPNOTSUPP;
6724 }
6725
6726 /**
6727 * s2io_change_mtu - entry point to change MTU size for the device.
6728 * @dev : device pointer.
6729 * @new_mtu : the new MTU size for the device.
6730 * Description: A driver entry point to change MTU size for the device.
6731 * Before changing the MTU the device must be stopped.
6732 * Return value:
6733 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6734 * file on failure.
6735 */
6736
6737 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6738 {
6739 struct s2io_nic *sp = dev->priv;
6740 int ret = 0;
6741
6742 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6743 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6744 dev->name);
6745 return -EPERM;
6746 }
6747
6748 dev->mtu = new_mtu;
6749 if (netif_running(dev)) {
6750 s2io_stop_all_tx_queue(sp);
6751 s2io_card_down(sp);
6752 ret = s2io_card_up(sp);
6753 if (ret) {
6754 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6755 __FUNCTION__);
6756 return ret;
6757 }
6758 s2io_wake_all_tx_queue(sp);
6759 } else { /* Device is down */
6760 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6761 u64 val64 = new_mtu;
6762
6763 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6764 }
6765
6766 return ret;
6767 }
6768
6769 /**
6770 * s2io_tasklet - Bottom half of the ISR.
6771 * @dev_adr : address of the device structure in dma_addr_t format.
6772 * Description:
6773 * This is the tasklet or the bottom half of the ISR. This is
6774 * an extension of the ISR which is scheduled by the scheduler to be run
6775 * when the load on the CPU is low. All low priority tasks of the ISR can
6776 * be pushed into the tasklet. For now the tasklet is used only to
6777 * replenish the Rx buffers in the Rx buffer descriptors.
6778 * Return value:
6779 * void.
6780 */
6781
6782 static void s2io_tasklet(unsigned long dev_addr)
6783 {
6784 struct net_device *dev = (struct net_device *) dev_addr;
6785 struct s2io_nic *sp = dev->priv;
6786 int i, ret;
6787 struct mac_info *mac_control;
6788 struct config_param *config;
6789
6790 mac_control = &sp->mac_control;
6791 config = &sp->config;
6792
6793 if (!TASKLET_IN_USE) {
6794 for (i = 0; i < config->rx_ring_num; i++) {
6795 ret = fill_rx_buffers(sp, i);
6796 if (ret == -ENOMEM) {
6797 DBG_PRINT(INFO_DBG, "%s: Out of ",
6798 dev->name);
6799 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6800 break;
6801 } else if (ret == -EFILL) {
6802 DBG_PRINT(INFO_DBG,
6803 "%s: Rx Ring %d is full\n",
6804 dev->name, i);
6805 break;
6806 }
6807 }
6808 clear_bit(0, (&sp->tasklet_status));
6809 }
6810 }
6811
6812 /**
6813 * s2io_set_link - Set the LInk status
6814 * @data: long pointer to device private structue
6815 * Description: Sets the link status for the adapter
6816 */
6817
6818 static void s2io_set_link(struct work_struct *work)
6819 {
6820 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6821 struct net_device *dev = nic->dev;
6822 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6823 register u64 val64;
6824 u16 subid;
6825
6826 rtnl_lock();
6827
6828 if (!netif_running(dev))
6829 goto out_unlock;
6830
6831 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6832 /* The card is being reset, no point doing anything */
6833 goto out_unlock;
6834 }
6835
6836 subid = nic->pdev->subsystem_device;
6837 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6838 /*
6839 * Allow a small delay for the NICs self initiated
6840 * cleanup to complete.
6841 */
6842 msleep(100);
6843 }
6844
6845 val64 = readq(&bar0->adapter_status);
6846 if (LINK_IS_UP(val64)) {
6847 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6848 if (verify_xena_quiescence(nic)) {
6849 val64 = readq(&bar0->adapter_control);
6850 val64 |= ADAPTER_CNTL_EN;
6851 writeq(val64, &bar0->adapter_control);
6852 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6853 nic->device_type, subid)) {
6854 val64 = readq(&bar0->gpio_control);
6855 val64 |= GPIO_CTRL_GPIO_0;
6856 writeq(val64, &bar0->gpio_control);
6857 val64 = readq(&bar0->gpio_control);
6858 } else {
6859 val64 |= ADAPTER_LED_ON;
6860 writeq(val64, &bar0->adapter_control);
6861 }
6862 nic->device_enabled_once = TRUE;
6863 } else {
6864 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6865 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6866 s2io_stop_all_tx_queue(nic);
6867 }
6868 }
6869 val64 = readq(&bar0->adapter_control);
6870 val64 |= ADAPTER_LED_ON;
6871 writeq(val64, &bar0->adapter_control);
6872 s2io_link(nic, LINK_UP);
6873 } else {
6874 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6875 subid)) {
6876 val64 = readq(&bar0->gpio_control);
6877 val64 &= ~GPIO_CTRL_GPIO_0;
6878 writeq(val64, &bar0->gpio_control);
6879 val64 = readq(&bar0->gpio_control);
6880 }
6881 /* turn off LED */
6882 val64 = readq(&bar0->adapter_control);
6883 val64 = val64 &(~ADAPTER_LED_ON);
6884 writeq(val64, &bar0->adapter_control);
6885 s2io_link(nic, LINK_DOWN);
6886 }
6887 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6888
6889 out_unlock:
6890 rtnl_unlock();
6891 }
6892
6893 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6894 struct buffAdd *ba,
6895 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6896 u64 *temp2, int size)
6897 {
6898 struct net_device *dev = sp->dev;
6899 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6900
6901 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6902 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6903 /* allocate skb */
6904 if (*skb) {
6905 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6906 /*
6907 * As Rx frame are not going to be processed,
6908 * using same mapped address for the Rxd
6909 * buffer pointer
6910 */
6911 rxdp1->Buffer0_ptr = *temp0;
6912 } else {
6913 *skb = dev_alloc_skb(size);
6914 if (!(*skb)) {
6915 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6916 DBG_PRINT(INFO_DBG, "memory to allocate ");
6917 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6918 sp->mac_control.stats_info->sw_stat. \
6919 mem_alloc_fail_cnt++;
6920 return -ENOMEM ;
6921 }
6922 sp->mac_control.stats_info->sw_stat.mem_allocated
6923 += (*skb)->truesize;
6924 /* storing the mapped addr in a temp variable
6925 * such it will be used for next rxd whose
6926 * Host Control is NULL
6927 */
6928 rxdp1->Buffer0_ptr = *temp0 =
6929 pci_map_single( sp->pdev, (*skb)->data,
6930 size - NET_IP_ALIGN,
6931 PCI_DMA_FROMDEVICE);
6932 if( (rxdp1->Buffer0_ptr == 0) ||
6933 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6934 goto memalloc_failed;
6935 }
6936 rxdp->Host_Control = (unsigned long) (*skb);
6937 }
6938 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6939 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6940 /* Two buffer Mode */
6941 if (*skb) {
6942 rxdp3->Buffer2_ptr = *temp2;
6943 rxdp3->Buffer0_ptr = *temp0;
6944 rxdp3->Buffer1_ptr = *temp1;
6945 } else {
6946 *skb = dev_alloc_skb(size);
6947 if (!(*skb)) {
6948 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6949 DBG_PRINT(INFO_DBG, "memory to allocate ");
6950 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6951 sp->mac_control.stats_info->sw_stat. \
6952 mem_alloc_fail_cnt++;
6953 return -ENOMEM;
6954 }
6955 sp->mac_control.stats_info->sw_stat.mem_allocated
6956 += (*skb)->truesize;
6957 rxdp3->Buffer2_ptr = *temp2 =
6958 pci_map_single(sp->pdev, (*skb)->data,
6959 dev->mtu + 4,
6960 PCI_DMA_FROMDEVICE);
6961 if( (rxdp3->Buffer2_ptr == 0) ||
6962 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6963 goto memalloc_failed;
6964 }
6965 rxdp3->Buffer0_ptr = *temp0 =
6966 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6967 PCI_DMA_FROMDEVICE);
6968 if( (rxdp3->Buffer0_ptr == 0) ||
6969 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6970 pci_unmap_single (sp->pdev,
6971 (dma_addr_t)rxdp3->Buffer2_ptr,
6972 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6973 goto memalloc_failed;
6974 }
6975 rxdp->Host_Control = (unsigned long) (*skb);
6976
6977 /* Buffer-1 will be dummy buffer not used */
6978 rxdp3->Buffer1_ptr = *temp1 =
6979 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6980 PCI_DMA_FROMDEVICE);
6981 if( (rxdp3->Buffer1_ptr == 0) ||
6982 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6983 pci_unmap_single (sp->pdev,
6984 (dma_addr_t)rxdp3->Buffer0_ptr,
6985 BUF0_LEN, PCI_DMA_FROMDEVICE);
6986 pci_unmap_single (sp->pdev,
6987 (dma_addr_t)rxdp3->Buffer2_ptr,
6988 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6989 goto memalloc_failed;
6990 }
6991 }
6992 }
6993 return 0;
6994 memalloc_failed:
6995 stats->pci_map_fail_cnt++;
6996 stats->mem_freed += (*skb)->truesize;
6997 dev_kfree_skb(*skb);
6998 return -ENOMEM;
6999 }
7000
7001 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7002 int size)
7003 {
7004 struct net_device *dev = sp->dev;
7005 if (sp->rxd_mode == RXD_MODE_1) {
7006 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
7007 } else if (sp->rxd_mode == RXD_MODE_3B) {
7008 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7009 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7010 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
7011 }
7012 }
7013
7014 static int rxd_owner_bit_reset(struct s2io_nic *sp)
7015 {
7016 int i, j, k, blk_cnt = 0, size;
7017 struct mac_info * mac_control = &sp->mac_control;
7018 struct config_param *config = &sp->config;
7019 struct net_device *dev = sp->dev;
7020 struct RxD_t *rxdp = NULL;
7021 struct sk_buff *skb = NULL;
7022 struct buffAdd *ba = NULL;
7023 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7024
7025 /* Calculate the size based on ring mode */
7026 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7027 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7028 if (sp->rxd_mode == RXD_MODE_1)
7029 size += NET_IP_ALIGN;
7030 else if (sp->rxd_mode == RXD_MODE_3B)
7031 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7032
7033 for (i = 0; i < config->rx_ring_num; i++) {
7034 blk_cnt = config->rx_cfg[i].num_rxd /
7035 (rxd_count[sp->rxd_mode] +1);
7036
7037 for (j = 0; j < blk_cnt; j++) {
7038 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7039 rxdp = mac_control->rings[i].
7040 rx_blocks[j].rxds[k].virt_addr;
7041 if(sp->rxd_mode == RXD_MODE_3B)
7042 ba = &mac_control->rings[i].ba[j][k];
7043 if (set_rxd_buffer_pointer(sp, rxdp, ba,
7044 &skb,(u64 *)&temp0_64,
7045 (u64 *)&temp1_64,
7046 (u64 *)&temp2_64,
7047 size) == ENOMEM) {
7048 return 0;
7049 }
7050
7051 set_rxd_buffer_size(sp, rxdp, size);
7052 wmb();
7053 /* flip the Ownership bit to Hardware */
7054 rxdp->Control_1 |= RXD_OWN_XENA;
7055 }
7056 }
7057 }
7058 return 0;
7059
7060 }
7061
7062 static int s2io_add_isr(struct s2io_nic * sp)
7063 {
7064 int ret = 0;
7065 struct net_device *dev = sp->dev;
7066 int err = 0;
7067
7068 if (sp->config.intr_type == MSI_X)
7069 ret = s2io_enable_msi_x(sp);
7070 if (ret) {
7071 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7072 sp->config.intr_type = INTA;
7073 }
7074
7075 /* Store the values of the MSIX table in the struct s2io_nic structure */
7076 store_xmsi_data(sp);
7077
7078 /* After proper initialization of H/W, register ISR */
7079 if (sp->config.intr_type == MSI_X) {
7080 int i, msix_tx_cnt=0,msix_rx_cnt=0;
7081
7082 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
7083 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
7084 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7085 dev->name, i);
7086 err = request_irq(sp->entries[i].vector,
7087 s2io_msix_fifo_handle, 0, sp->desc[i],
7088 sp->s2io_entries[i].arg);
7089 /* If either data or addr is zero print it */
7090 if(!(sp->msix_info[i].addr &&
7091 sp->msix_info[i].data)) {
7092 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7093 "Data:0x%llx\n",sp->desc[i],
7094 (unsigned long long)
7095 sp->msix_info[i].addr,
7096 (unsigned long long)
7097 sp->msix_info[i].data);
7098 } else {
7099 msix_tx_cnt++;
7100 }
7101 } else {
7102 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7103 dev->name, i);
7104 err = request_irq(sp->entries[i].vector,
7105 s2io_msix_ring_handle, 0, sp->desc[i],
7106 sp->s2io_entries[i].arg);
7107 /* If either data or addr is zero print it */
7108 if(!(sp->msix_info[i].addr &&
7109 sp->msix_info[i].data)) {
7110 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7111 "Data:0x%llx\n",sp->desc[i],
7112 (unsigned long long)
7113 sp->msix_info[i].addr,
7114 (unsigned long long)
7115 sp->msix_info[i].data);
7116 } else {
7117 msix_rx_cnt++;
7118 }
7119 }
7120 if (err) {
7121 remove_msix_isr(sp);
7122 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7123 "failed\n", dev->name, i);
7124 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7125 dev->name);
7126 sp->config.intr_type = INTA;
7127 break;
7128 }
7129 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7130 }
7131 if (!err) {
7132 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7133 msix_tx_cnt);
7134 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7135 msix_rx_cnt);
7136 }
7137 }
7138 if (sp->config.intr_type == INTA) {
7139 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7140 sp->name, dev);
7141 if (err) {
7142 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7143 dev->name);
7144 return -1;
7145 }
7146 }
7147 return 0;
7148 }
7149 static void s2io_rem_isr(struct s2io_nic * sp)
7150 {
7151 if (sp->config.intr_type == MSI_X)
7152 remove_msix_isr(sp);
7153 else
7154 remove_inta_isr(sp);
7155 }
7156
7157 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7158 {
7159 int cnt = 0;
7160 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7161 unsigned long flags;
7162 register u64 val64 = 0;
7163 struct config_param *config;
7164 config = &sp->config;
7165
7166 if (!is_s2io_card_up(sp))
7167 return;
7168
7169 del_timer_sync(&sp->alarm_timer);
7170 /* If s2io_set_link task is executing, wait till it completes. */
7171 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7172 msleep(50);
7173 }
7174 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7175
7176 /* Disable napi */
7177 if (config->napi)
7178 napi_disable(&sp->napi);
7179
7180 /* disable Tx and Rx traffic on the NIC */
7181 if (do_io)
7182 stop_nic(sp);
7183
7184 s2io_rem_isr(sp);
7185
7186 /* Kill tasklet. */
7187 tasklet_kill(&sp->task);
7188
7189 /* Check if the device is Quiescent and then Reset the NIC */
7190 while(do_io) {
7191 /* As per the HW requirement we need to replenish the
7192 * receive buffer to avoid the ring bump. Since there is
7193 * no intention of processing the Rx frame at this pointwe are
7194 * just settting the ownership bit of rxd in Each Rx
7195 * ring to HW and set the appropriate buffer size
7196 * based on the ring mode
7197 */
7198 rxd_owner_bit_reset(sp);
7199
7200 val64 = readq(&bar0->adapter_status);
7201 if (verify_xena_quiescence(sp)) {
7202 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7203 break;
7204 }
7205
7206 msleep(50);
7207 cnt++;
7208 if (cnt == 10) {
7209 DBG_PRINT(ERR_DBG,
7210 "s2io_close:Device not Quiescent ");
7211 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7212 (unsigned long long) val64);
7213 break;
7214 }
7215 }
7216 if (do_io)
7217 s2io_reset(sp);
7218
7219 /* Free all Tx buffers */
7220 free_tx_buffers(sp);
7221
7222 /* Free all Rx buffers */
7223 spin_lock_irqsave(&sp->rx_lock, flags);
7224 free_rx_buffers(sp);
7225 spin_unlock_irqrestore(&sp->rx_lock, flags);
7226
7227 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7228 }
7229
7230 static void s2io_card_down(struct s2io_nic * sp)
7231 {
7232 do_s2io_card_down(sp, 1);
7233 }
7234
7235 static int s2io_card_up(struct s2io_nic * sp)
7236 {
7237 int i, ret = 0;
7238 struct mac_info *mac_control;
7239 struct config_param *config;
7240 struct net_device *dev = (struct net_device *) sp->dev;
7241 u16 interruptible;
7242
7243 /* Initialize the H/W I/O registers */
7244 ret = init_nic(sp);
7245 if (ret != 0) {
7246 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7247 dev->name);
7248 if (ret != -EIO)
7249 s2io_reset(sp);
7250 return ret;
7251 }
7252
7253 /*
7254 * Initializing the Rx buffers. For now we are considering only 1
7255 * Rx ring and initializing buffers into 30 Rx blocks
7256 */
7257 mac_control = &sp->mac_control;
7258 config = &sp->config;
7259
7260 for (i = 0; i < config->rx_ring_num; i++) {
7261 if ((ret = fill_rx_buffers(sp, i))) {
7262 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7263 dev->name);
7264 s2io_reset(sp);
7265 free_rx_buffers(sp);
7266 return -ENOMEM;
7267 }
7268 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7269 atomic_read(&sp->rx_bufs_left[i]));
7270 }
7271
7272 /* Initialise napi */
7273 if (config->napi)
7274 napi_enable(&sp->napi);
7275
7276 /* Maintain the state prior to the open */
7277 if (sp->promisc_flg)
7278 sp->promisc_flg = 0;
7279 if (sp->m_cast_flg) {
7280 sp->m_cast_flg = 0;
7281 sp->all_multi_pos= 0;
7282 }
7283
7284 /* Setting its receive mode */
7285 s2io_set_multicast(dev);
7286
7287 if (sp->lro) {
7288 /* Initialize max aggregatable pkts per session based on MTU */
7289 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7290 /* Check if we can use(if specified) user provided value */
7291 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7292 sp->lro_max_aggr_per_sess = lro_max_pkts;
7293 }
7294
7295 /* Enable Rx Traffic and interrupts on the NIC */
7296 if (start_nic(sp)) {
7297 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7298 s2io_reset(sp);
7299 free_rx_buffers(sp);
7300 return -ENODEV;
7301 }
7302
7303 /* Add interrupt service routine */
7304 if (s2io_add_isr(sp) != 0) {
7305 if (sp->config.intr_type == MSI_X)
7306 s2io_rem_isr(sp);
7307 s2io_reset(sp);
7308 free_rx_buffers(sp);
7309 return -ENODEV;
7310 }
7311
7312 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7313
7314 /* Enable tasklet for the device */
7315 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7316
7317 /* Enable select interrupts */
7318 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7319 if (sp->config.intr_type != INTA)
7320 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7321 else {
7322 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7323 interruptible |= TX_PIC_INTR;
7324 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7325 }
7326
7327 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7328 return 0;
7329 }
7330
7331 /**
7332 * s2io_restart_nic - Resets the NIC.
7333 * @data : long pointer to the device private structure
7334 * Description:
7335 * This function is scheduled to be run by the s2io_tx_watchdog
7336 * function after 0.5 secs to reset the NIC. The idea is to reduce
7337 * the run time of the watch dog routine which is run holding a
7338 * spin lock.
7339 */
7340
7341 static void s2io_restart_nic(struct work_struct *work)
7342 {
7343 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7344 struct net_device *dev = sp->dev;
7345
7346 rtnl_lock();
7347
7348 if (!netif_running(dev))
7349 goto out_unlock;
7350
7351 s2io_card_down(sp);
7352 if (s2io_card_up(sp)) {
7353 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7354 dev->name);
7355 }
7356 s2io_wake_all_tx_queue(sp);
7357 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7358 dev->name);
7359 out_unlock:
7360 rtnl_unlock();
7361 }
7362
7363 /**
7364 * s2io_tx_watchdog - Watchdog for transmit side.
7365 * @dev : Pointer to net device structure
7366 * Description:
7367 * This function is triggered if the Tx Queue is stopped
7368 * for a pre-defined amount of time when the Interface is still up.
7369 * If the Interface is jammed in such a situation, the hardware is
7370 * reset (by s2io_close) and restarted again (by s2io_open) to
7371 * overcome any problem that might have been caused in the hardware.
7372 * Return value:
7373 * void
7374 */
7375
7376 static void s2io_tx_watchdog(struct net_device *dev)
7377 {
7378 struct s2io_nic *sp = dev->priv;
7379
7380 if (netif_carrier_ok(dev)) {
7381 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7382 schedule_work(&sp->rst_timer_task);
7383 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7384 }
7385 }
7386
7387 /**
7388 * rx_osm_handler - To perform some OS related operations on SKB.
7389 * @sp: private member of the device structure,pointer to s2io_nic structure.
7390 * @skb : the socket buffer pointer.
7391 * @len : length of the packet
7392 * @cksum : FCS checksum of the frame.
7393 * @ring_no : the ring from which this RxD was extracted.
7394 * Description:
7395 * This function is called by the Rx interrupt serivce routine to perform
7396 * some OS related operations on the SKB before passing it to the upper
7397 * layers. It mainly checks if the checksum is OK, if so adds it to the
7398 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7399 * to the upper layer. If the checksum is wrong, it increments the Rx
7400 * packet error count, frees the SKB and returns error.
7401 * Return value:
7402 * SUCCESS on success and -1 on failure.
7403 */
7404 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7405 {
7406 struct s2io_nic *sp = ring_data->nic;
7407 struct net_device *dev = (struct net_device *) sp->dev;
7408 struct sk_buff *skb = (struct sk_buff *)
7409 ((unsigned long) rxdp->Host_Control);
7410 int ring_no = ring_data->ring_no;
7411 u16 l3_csum, l4_csum;
7412 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7413 struct lro *lro;
7414 u8 err_mask;
7415
7416 skb->dev = dev;
7417
7418 if (err) {
7419 /* Check for parity error */
7420 if (err & 0x1) {
7421 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7422 }
7423 err_mask = err >> 48;
7424 switch(err_mask) {
7425 case 1:
7426 sp->mac_control.stats_info->sw_stat.
7427 rx_parity_err_cnt++;
7428 break;
7429
7430 case 2:
7431 sp->mac_control.stats_info->sw_stat.
7432 rx_abort_cnt++;
7433 break;
7434
7435 case 3:
7436 sp->mac_control.stats_info->sw_stat.
7437 rx_parity_abort_cnt++;
7438 break;
7439
7440 case 4:
7441 sp->mac_control.stats_info->sw_stat.
7442 rx_rda_fail_cnt++;
7443 break;
7444
7445 case 5:
7446 sp->mac_control.stats_info->sw_stat.
7447 rx_unkn_prot_cnt++;
7448 break;
7449
7450 case 6:
7451 sp->mac_control.stats_info->sw_stat.
7452 rx_fcs_err_cnt++;
7453 break;
7454
7455 case 7:
7456 sp->mac_control.stats_info->sw_stat.
7457 rx_buf_size_err_cnt++;
7458 break;
7459
7460 case 8:
7461 sp->mac_control.stats_info->sw_stat.
7462 rx_rxd_corrupt_cnt++;
7463 break;
7464
7465 case 15:
7466 sp->mac_control.stats_info->sw_stat.
7467 rx_unkn_err_cnt++;
7468 break;
7469 }
7470 /*
7471 * Drop the packet if bad transfer code. Exception being
7472 * 0x5, which could be due to unsupported IPv6 extension header.
7473 * In this case, we let stack handle the packet.
7474 * Note that in this case, since checksum will be incorrect,
7475 * stack will validate the same.
7476 */
7477 if (err_mask != 0x5) {
7478 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7479 dev->name, err_mask);
7480 sp->stats.rx_crc_errors++;
7481 sp->mac_control.stats_info->sw_stat.mem_freed
7482 += skb->truesize;
7483 dev_kfree_skb(skb);
7484 atomic_dec(&sp->rx_bufs_left[ring_no]);
7485 rxdp->Host_Control = 0;
7486 return 0;
7487 }
7488 }
7489
7490 /* Updating statistics */
7491 sp->stats.rx_packets++;
7492 rxdp->Host_Control = 0;
7493 if (sp->rxd_mode == RXD_MODE_1) {
7494 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7495
7496 sp->stats.rx_bytes += len;
7497 skb_put(skb, len);
7498
7499 } else if (sp->rxd_mode == RXD_MODE_3B) {
7500 int get_block = ring_data->rx_curr_get_info.block_index;
7501 int get_off = ring_data->rx_curr_get_info.offset;
7502 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7503 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7504 unsigned char *buff = skb_push(skb, buf0_len);
7505
7506 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7507 sp->stats.rx_bytes += buf0_len + buf2_len;
7508 memcpy(buff, ba->ba_0, buf0_len);
7509 skb_put(skb, buf2_len);
7510 }
7511
7512 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7513 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7514 (sp->rx_csum)) {
7515 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7516 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7517 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7518 /*
7519 * NIC verifies if the Checksum of the received
7520 * frame is Ok or not and accordingly returns
7521 * a flag in the RxD.
7522 */
7523 skb->ip_summed = CHECKSUM_UNNECESSARY;
7524 if (sp->lro) {
7525 u32 tcp_len;
7526 u8 *tcp;
7527 int ret = 0;
7528
7529 ret = s2io_club_tcp_session(skb->data, &tcp,
7530 &tcp_len, &lro,
7531 rxdp, sp);
7532 switch (ret) {
7533 case 3: /* Begin anew */
7534 lro->parent = skb;
7535 goto aggregate;
7536 case 1: /* Aggregate */
7537 {
7538 lro_append_pkt(sp, lro,
7539 skb, tcp_len);
7540 goto aggregate;
7541 }
7542 case 4: /* Flush session */
7543 {
7544 lro_append_pkt(sp, lro,
7545 skb, tcp_len);
7546 queue_rx_frame(lro->parent,
7547 lro->vlan_tag);
7548 clear_lro_session(lro);
7549 sp->mac_control.stats_info->
7550 sw_stat.flush_max_pkts++;
7551 goto aggregate;
7552 }
7553 case 2: /* Flush both */
7554 lro->parent->data_len =
7555 lro->frags_len;
7556 sp->mac_control.stats_info->
7557 sw_stat.sending_both++;
7558 queue_rx_frame(lro->parent,
7559 lro->vlan_tag);
7560 clear_lro_session(lro);
7561 goto send_up;
7562 case 0: /* sessions exceeded */
7563 case -1: /* non-TCP or not
7564 * L2 aggregatable
7565 */
7566 case 5: /*
7567 * First pkt in session not
7568 * L3/L4 aggregatable
7569 */
7570 break;
7571 default:
7572 DBG_PRINT(ERR_DBG,
7573 "%s: Samadhana!!\n",
7574 __FUNCTION__);
7575 BUG();
7576 }
7577 }
7578 } else {
7579 /*
7580 * Packet with erroneous checksum, let the
7581 * upper layers deal with it.
7582 */
7583 skb->ip_summed = CHECKSUM_NONE;
7584 }
7585 } else
7586 skb->ip_summed = CHECKSUM_NONE;
7587
7588 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7589 send_up:
7590 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7591 dev->last_rx = jiffies;
7592 aggregate:
7593 atomic_dec(&sp->rx_bufs_left[ring_no]);
7594 return SUCCESS;
7595 }
7596
7597 /**
7598 * s2io_link - stops/starts the Tx queue.
7599 * @sp : private member of the device structure, which is a pointer to the
7600 * s2io_nic structure.
7601 * @link : inidicates whether link is UP/DOWN.
7602 * Description:
7603 * This function stops/starts the Tx queue depending on whether the link
7604 * status of the NIC is is down or up. This is called by the Alarm
7605 * interrupt handler whenever a link change interrupt comes up.
7606 * Return value:
7607 * void.
7608 */
7609
7610 static void s2io_link(struct s2io_nic * sp, int link)
7611 {
7612 struct net_device *dev = (struct net_device *) sp->dev;
7613
7614 if (link != sp->last_link_state) {
7615 init_tti(sp, link);
7616 if (link == LINK_DOWN) {
7617 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7618 s2io_stop_all_tx_queue(sp);
7619 netif_carrier_off(dev);
7620 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7621 sp->mac_control.stats_info->sw_stat.link_up_time =
7622 jiffies - sp->start_time;
7623 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7624 } else {
7625 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7626 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7627 sp->mac_control.stats_info->sw_stat.link_down_time =
7628 jiffies - sp->start_time;
7629 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7630 netif_carrier_on(dev);
7631 s2io_wake_all_tx_queue(sp);
7632 }
7633 }
7634 sp->last_link_state = link;
7635 sp->start_time = jiffies;
7636 }
7637
7638 /**
7639 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7640 * @sp : private member of the device structure, which is a pointer to the
7641 * s2io_nic structure.
7642 * Description:
7643 * This function initializes a few of the PCI and PCI-X configuration registers
7644 * with recommended values.
7645 * Return value:
7646 * void
7647 */
7648
7649 static void s2io_init_pci(struct s2io_nic * sp)
7650 {
7651 u16 pci_cmd = 0, pcix_cmd = 0;
7652
7653 /* Enable Data Parity Error Recovery in PCI-X command register. */
7654 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7655 &(pcix_cmd));
7656 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7657 (pcix_cmd | 1));
7658 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7659 &(pcix_cmd));
7660
7661 /* Set the PErr Response bit in PCI command register. */
7662 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7663 pci_write_config_word(sp->pdev, PCI_COMMAND,
7664 (pci_cmd | PCI_COMMAND_PARITY));
7665 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7666 }
7667
7668 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7669 u8 *dev_multiq)
7670 {
7671 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7672 (tx_fifo_num < 1)) {
7673 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7674 "(%d) not supported\n", tx_fifo_num);
7675
7676 if (tx_fifo_num < 1)
7677 tx_fifo_num = 1;
7678 else
7679 tx_fifo_num = MAX_TX_FIFOS;
7680
7681 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7682 DBG_PRINT(ERR_DBG, "tx fifos\n");
7683 }
7684
7685 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7686 if (multiq) {
7687 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7688 multiq = 0;
7689 }
7690 #endif
7691 if (multiq)
7692 *dev_multiq = multiq;
7693
7694 if (tx_steering_type && (1 == tx_fifo_num)) {
7695 if (tx_steering_type != TX_DEFAULT_STEERING)
7696 DBG_PRINT(ERR_DBG,
7697 "s2io: Tx steering is not supported with "
7698 "one fifo. Disabling Tx steering.\n");
7699 tx_steering_type = NO_STEERING;
7700 }
7701
7702 if ((tx_steering_type < NO_STEERING) ||
7703 (tx_steering_type > TX_DEFAULT_STEERING)) {
7704 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7705 "supported\n");
7706 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7707 tx_steering_type = NO_STEERING;
7708 }
7709
7710 if ( rx_ring_num > 8) {
7711 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7712 "supported\n");
7713 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7714 rx_ring_num = 8;
7715 }
7716 if (*dev_intr_type != INTA)
7717 napi = 0;
7718
7719 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7720 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7721 "Defaulting to INTA\n");
7722 *dev_intr_type = INTA;
7723 }
7724
7725 if ((*dev_intr_type == MSI_X) &&
7726 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7727 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7728 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7729 "Defaulting to INTA\n");
7730 *dev_intr_type = INTA;
7731 }
7732
7733 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7734 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7735 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7736 rx_ring_mode = 1;
7737 }
7738 return SUCCESS;
7739 }
7740
7741 /**
7742 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7743 * or Traffic class respectively.
7744 * @nic: device private variable
7745 * Description: The function configures the receive steering to
7746 * desired receive ring.
7747 * Return Value: SUCCESS on success and
7748 * '-1' on failure (endian settings incorrect).
7749 */
7750 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7751 {
7752 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7753 register u64 val64 = 0;
7754
7755 if (ds_codepoint > 63)
7756 return FAILURE;
7757
7758 val64 = RTS_DS_MEM_DATA(ring);
7759 writeq(val64, &bar0->rts_ds_mem_data);
7760
7761 val64 = RTS_DS_MEM_CTRL_WE |
7762 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7763 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7764
7765 writeq(val64, &bar0->rts_ds_mem_ctrl);
7766
7767 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7768 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7769 S2IO_BIT_RESET);
7770 }
7771
7772 /**
7773 * s2io_init_nic - Initialization of the adapter .
7774 * @pdev : structure containing the PCI related information of the device.
7775 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7776 * Description:
7777 * The function initializes an adapter identified by the pci_dec structure.
7778 * All OS related initialization including memory and device structure and
7779 * initlaization of the device private variable is done. Also the swapper
7780 * control register is initialized to enable read and write into the I/O
7781 * registers of the device.
7782 * Return value:
7783 * returns 0 on success and negative on failure.
7784 */
7785
7786 static int __devinit
7787 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7788 {
7789 struct s2io_nic *sp;
7790 struct net_device *dev;
7791 int i, j, ret;
7792 int dma_flag = FALSE;
7793 u32 mac_up, mac_down;
7794 u64 val64 = 0, tmp64 = 0;
7795 struct XENA_dev_config __iomem *bar0 = NULL;
7796 u16 subid;
7797 struct mac_info *mac_control;
7798 struct config_param *config;
7799 int mode;
7800 u8 dev_intr_type = intr_type;
7801 u8 dev_multiq = 0;
7802 DECLARE_MAC_BUF(mac);
7803
7804 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7805 if (ret)
7806 return ret;
7807
7808 if ((ret = pci_enable_device(pdev))) {
7809 DBG_PRINT(ERR_DBG,
7810 "s2io_init_nic: pci_enable_device failed\n");
7811 return ret;
7812 }
7813
7814 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7815 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7816 dma_flag = TRUE;
7817 if (pci_set_consistent_dma_mask
7818 (pdev, DMA_64BIT_MASK)) {
7819 DBG_PRINT(ERR_DBG,
7820 "Unable to obtain 64bit DMA for \
7821 consistent allocations\n");
7822 pci_disable_device(pdev);
7823 return -ENOMEM;
7824 }
7825 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7826 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7827 } else {
7828 pci_disable_device(pdev);
7829 return -ENOMEM;
7830 }
7831 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7832 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7833 pci_disable_device(pdev);
7834 return -ENODEV;
7835 }
7836 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7837 if (dev_multiq)
7838 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7839 else
7840 #endif
7841 dev = alloc_etherdev(sizeof(struct s2io_nic));
7842 if (dev == NULL) {
7843 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7844 pci_disable_device(pdev);
7845 pci_release_regions(pdev);
7846 return -ENODEV;
7847 }
7848
7849 pci_set_master(pdev);
7850 pci_set_drvdata(pdev, dev);
7851 SET_NETDEV_DEV(dev, &pdev->dev);
7852
7853 /* Private member variable initialized to s2io NIC structure */
7854 sp = dev->priv;
7855 memset(sp, 0, sizeof(struct s2io_nic));
7856 sp->dev = dev;
7857 sp->pdev = pdev;
7858 sp->high_dma_flag = dma_flag;
7859 sp->device_enabled_once = FALSE;
7860 if (rx_ring_mode == 1)
7861 sp->rxd_mode = RXD_MODE_1;
7862 if (rx_ring_mode == 2)
7863 sp->rxd_mode = RXD_MODE_3B;
7864
7865 sp->config.intr_type = dev_intr_type;
7866
7867 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7868 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7869 sp->device_type = XFRAME_II_DEVICE;
7870 else
7871 sp->device_type = XFRAME_I_DEVICE;
7872
7873 sp->lro = lro_enable;
7874
7875 /* Initialize some PCI/PCI-X fields of the NIC. */
7876 s2io_init_pci(sp);
7877
7878 /*
7879 * Setting the device configuration parameters.
7880 * Most of these parameters can be specified by the user during
7881 * module insertion as they are module loadable parameters. If
7882 * these parameters are not not specified during load time, they
7883 * are initialized with default values.
7884 */
7885 mac_control = &sp->mac_control;
7886 config = &sp->config;
7887
7888 config->napi = napi;
7889 config->tx_steering_type = tx_steering_type;
7890
7891 /* Tx side parameters. */
7892 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7893 config->tx_fifo_num = MAX_TX_FIFOS;
7894 else
7895 config->tx_fifo_num = tx_fifo_num;
7896
7897 /* Initialize the fifos used for tx steering */
7898 if (config->tx_fifo_num < 5) {
7899 if (config->tx_fifo_num == 1)
7900 sp->total_tcp_fifos = 1;
7901 else
7902 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7903 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7904 sp->total_udp_fifos = 1;
7905 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7906 } else {
7907 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7908 FIFO_OTHER_MAX_NUM);
7909 sp->udp_fifo_idx = sp->total_tcp_fifos;
7910 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7911 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7912 }
7913
7914 config->multiq = dev_multiq;
7915 for (i = 0; i < config->tx_fifo_num; i++) {
7916 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7917 config->tx_cfg[i].fifo_priority = i;
7918 }
7919
7920 /* mapping the QoS priority to the configured fifos */
7921 for (i = 0; i < MAX_TX_FIFOS; i++)
7922 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7923
7924 /* map the hashing selector table to the configured fifos */
7925 for (i = 0; i < config->tx_fifo_num; i++)
7926 sp->fifo_selector[i] = fifo_selector[i];
7927
7928
7929 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7930 for (i = 0; i < config->tx_fifo_num; i++) {
7931 config->tx_cfg[i].f_no_snoop =
7932 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7933 if (config->tx_cfg[i].fifo_len < 65) {
7934 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7935 break;
7936 }
7937 }
7938 /* + 2 because one Txd for skb->data and one Txd for UFO */
7939 config->max_txds = MAX_SKB_FRAGS + 2;
7940
7941 /* Rx side parameters. */
7942 config->rx_ring_num = rx_ring_num;
7943 for (i = 0; i < MAX_RX_RINGS; i++) {
7944 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7945 (rxd_count[sp->rxd_mode] + 1);
7946 config->rx_cfg[i].ring_priority = i;
7947 }
7948
7949 for (i = 0; i < rx_ring_num; i++) {
7950 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7951 config->rx_cfg[i].f_no_snoop =
7952 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7953 }
7954
7955 /* Setting Mac Control parameters */
7956 mac_control->rmac_pause_time = rmac_pause_time;
7957 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7958 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7959
7960
7961 /* Initialize Ring buffer parameters. */
7962 for (i = 0; i < config->rx_ring_num; i++)
7963 atomic_set(&sp->rx_bufs_left[i], 0);
7964
7965 /* initialize the shared memory used by the NIC and the host */
7966 if (init_shared_mem(sp)) {
7967 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7968 dev->name);
7969 ret = -ENOMEM;
7970 goto mem_alloc_failed;
7971 }
7972
7973 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7974 pci_resource_len(pdev, 0));
7975 if (!sp->bar0) {
7976 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7977 dev->name);
7978 ret = -ENOMEM;
7979 goto bar0_remap_failed;
7980 }
7981
7982 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7983 pci_resource_len(pdev, 2));
7984 if (!sp->bar1) {
7985 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7986 dev->name);
7987 ret = -ENOMEM;
7988 goto bar1_remap_failed;
7989 }
7990
7991 dev->irq = pdev->irq;
7992 dev->base_addr = (unsigned long) sp->bar0;
7993
7994 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7995 for (j = 0; j < MAX_TX_FIFOS; j++) {
7996 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7997 (sp->bar1 + (j * 0x00020000));
7998 }
7999
8000 /* Driver entry points */
8001 dev->open = &s2io_open;
8002 dev->stop = &s2io_close;
8003 dev->hard_start_xmit = &s2io_xmit;
8004 dev->get_stats = &s2io_get_stats;
8005 dev->set_multicast_list = &s2io_set_multicast;
8006 dev->do_ioctl = &s2io_ioctl;
8007 dev->set_mac_address = &s2io_set_mac_addr;
8008 dev->change_mtu = &s2io_change_mtu;
8009 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8010 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8011 dev->vlan_rx_register = s2io_vlan_rx_register;
8012 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
8013
8014 /*
8015 * will use eth_mac_addr() for dev->set_mac_address
8016 * mac address will be set every time dev->open() is called
8017 */
8018 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
8019
8020 #ifdef CONFIG_NET_POLL_CONTROLLER
8021 dev->poll_controller = s2io_netpoll;
8022 #endif
8023
8024 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8025 if (sp->high_dma_flag == TRUE)
8026 dev->features |= NETIF_F_HIGHDMA;
8027 dev->features |= NETIF_F_TSO;
8028 dev->features |= NETIF_F_TSO6;
8029 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
8030 dev->features |= NETIF_F_UFO;
8031 dev->features |= NETIF_F_HW_CSUM;
8032 }
8033 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
8034 if (config->multiq)
8035 dev->features |= NETIF_F_MULTI_QUEUE;
8036 #endif
8037 dev->tx_timeout = &s2io_tx_watchdog;
8038 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8039 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8040 INIT_WORK(&sp->set_link_task, s2io_set_link);
8041
8042 pci_save_state(sp->pdev);
8043
8044 /* Setting swapper control on the NIC, for proper reset operation */
8045 if (s2io_set_swapper(sp)) {
8046 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8047 dev->name);
8048 ret = -EAGAIN;
8049 goto set_swap_failed;
8050 }
8051
8052 /* Verify if the Herc works on the slot its placed into */
8053 if (sp->device_type & XFRAME_II_DEVICE) {
8054 mode = s2io_verify_pci_mode(sp);
8055 if (mode < 0) {
8056 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
8057 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8058 ret = -EBADSLT;
8059 goto set_swap_failed;
8060 }
8061 }
8062
8063 /* Not needed for Herc */
8064 if (sp->device_type & XFRAME_I_DEVICE) {
8065 /*
8066 * Fix for all "FFs" MAC address problems observed on
8067 * Alpha platforms
8068 */
8069 fix_mac_address(sp);
8070 s2io_reset(sp);
8071 }
8072
8073 /*
8074 * MAC address initialization.
8075 * For now only one mac address will be read and used.
8076 */
8077 bar0 = sp->bar0;
8078 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8079 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8080 writeq(val64, &bar0->rmac_addr_cmd_mem);
8081 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8082 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8083 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8084 mac_down = (u32) tmp64;
8085 mac_up = (u32) (tmp64 >> 32);
8086
8087 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8088 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8089 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8090 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8091 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8092 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8093
8094 /* Set the factory defined MAC address initially */
8095 dev->addr_len = ETH_ALEN;
8096 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8097 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8098
8099 /* initialize number of multicast & unicast MAC entries variables */
8100 if (sp->device_type == XFRAME_I_DEVICE) {
8101 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8102 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8103 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8104 } else if (sp->device_type == XFRAME_II_DEVICE) {
8105 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8106 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8107 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8108 }
8109
8110 /* store mac addresses from CAM to s2io_nic structure */
8111 do_s2io_store_unicast_mc(sp);
8112
8113 /* Store the values of the MSIX table in the s2io_nic structure */
8114 store_xmsi_data(sp);
8115 /* reset Nic and bring it to known state */
8116 s2io_reset(sp);
8117
8118 /*
8119 * Initialize the tasklet status and link state flags
8120 * and the card state parameter
8121 */
8122 sp->tasklet_status = 0;
8123 sp->state = 0;
8124
8125 /* Initialize spinlocks */
8126 for (i = 0; i < sp->config.tx_fifo_num; i++)
8127 spin_lock_init(&mac_control->fifos[i].tx_lock);
8128
8129 if (!napi)
8130 spin_lock_init(&sp->put_lock);
8131 spin_lock_init(&sp->rx_lock);
8132
8133 /*
8134 * SXE-002: Configure link and activity LED to init state
8135 * on driver load.
8136 */
8137 subid = sp->pdev->subsystem_device;
8138 if ((subid & 0xFF) >= 0x07) {
8139 val64 = readq(&bar0->gpio_control);
8140 val64 |= 0x0000800000000000ULL;
8141 writeq(val64, &bar0->gpio_control);
8142 val64 = 0x0411040400000000ULL;
8143 writeq(val64, (void __iomem *) bar0 + 0x2700);
8144 val64 = readq(&bar0->gpio_control);
8145 }
8146
8147 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8148
8149 if (register_netdev(dev)) {
8150 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8151 ret = -ENODEV;
8152 goto register_failed;
8153 }
8154 s2io_vpd_read(sp);
8155 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8156 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8157 sp->product_name, pdev->revision);
8158 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8159 s2io_driver_version);
8160 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8161 dev->name, print_mac(mac, dev->dev_addr));
8162 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8163 if (sp->device_type & XFRAME_II_DEVICE) {
8164 mode = s2io_print_pci_mode(sp);
8165 if (mode < 0) {
8166 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8167 ret = -EBADSLT;
8168 unregister_netdev(dev);
8169 goto set_swap_failed;
8170 }
8171 }
8172 switch(sp->rxd_mode) {
8173 case RXD_MODE_1:
8174 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8175 dev->name);
8176 break;
8177 case RXD_MODE_3B:
8178 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8179 dev->name);
8180 break;
8181 }
8182
8183 if (napi)
8184 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8185
8186 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8187 sp->config.tx_fifo_num);
8188
8189 switch(sp->config.intr_type) {
8190 case INTA:
8191 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8192 break;
8193 case MSI_X:
8194 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8195 break;
8196 }
8197 if (sp->config.multiq) {
8198 for (i = 0; i < sp->config.tx_fifo_num; i++)
8199 mac_control->fifos[i].multiq = config->multiq;
8200 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8201 dev->name);
8202 } else
8203 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8204 dev->name);
8205
8206 switch (sp->config.tx_steering_type) {
8207 case NO_STEERING:
8208 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8209 " transmit\n", dev->name);
8210 break;
8211 case TX_PRIORITY_STEERING:
8212 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8213 " transmit\n", dev->name);
8214 break;
8215 case TX_DEFAULT_STEERING:
8216 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8217 " transmit\n", dev->name);
8218 }
8219
8220 if (sp->lro)
8221 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8222 dev->name);
8223 if (ufo)
8224 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8225 " enabled\n", dev->name);
8226 /* Initialize device name */
8227 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8228
8229 /*
8230 * Make Link state as off at this point, when the Link change
8231 * interrupt comes the state will be automatically changed to
8232 * the right state.
8233 */
8234 netif_carrier_off(dev);
8235
8236 return 0;
8237
8238 register_failed:
8239 set_swap_failed:
8240 iounmap(sp->bar1);
8241 bar1_remap_failed:
8242 iounmap(sp->bar0);
8243 bar0_remap_failed:
8244 mem_alloc_failed:
8245 free_shared_mem(sp);
8246 pci_disable_device(pdev);
8247 pci_release_regions(pdev);
8248 pci_set_drvdata(pdev, NULL);
8249 free_netdev(dev);
8250
8251 return ret;
8252 }
8253
8254 /**
8255 * s2io_rem_nic - Free the PCI device
8256 * @pdev: structure containing the PCI related information of the device.
8257 * Description: This function is called by the Pci subsystem to release a
8258 * PCI device and free up all resource held up by the device. This could
8259 * be in response to a Hot plug event or when the driver is to be removed
8260 * from memory.
8261 */
8262
8263 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8264 {
8265 struct net_device *dev =
8266 (struct net_device *) pci_get_drvdata(pdev);
8267 struct s2io_nic *sp;
8268
8269 if (dev == NULL) {
8270 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8271 return;
8272 }
8273
8274 flush_scheduled_work();
8275
8276 sp = dev->priv;
8277 unregister_netdev(dev);
8278
8279 free_shared_mem(sp);
8280 iounmap(sp->bar0);
8281 iounmap(sp->bar1);
8282 pci_release_regions(pdev);
8283 pci_set_drvdata(pdev, NULL);
8284 free_netdev(dev);
8285 pci_disable_device(pdev);
8286 }
8287
8288 /**
8289 * s2io_starter - Entry point for the driver
8290 * Description: This function is the entry point for the driver. It verifies
8291 * the module loadable parameters and initializes PCI configuration space.
8292 */
8293
8294 static int __init s2io_starter(void)
8295 {
8296 return pci_register_driver(&s2io_driver);
8297 }
8298
8299 /**
8300 * s2io_closer - Cleanup routine for the driver
8301 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8302 */
8303
8304 static __exit void s2io_closer(void)
8305 {
8306 pci_unregister_driver(&s2io_driver);
8307 DBG_PRINT(INIT_DBG, "cleanup done\n");
8308 }
8309
8310 module_init(s2io_starter);
8311 module_exit(s2io_closer);
8312
8313 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8314 struct tcphdr **tcp, struct RxD_t *rxdp,
8315 struct s2io_nic *sp)
8316 {
8317 int ip_off;
8318 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8319
8320 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8321 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8322 __FUNCTION__);
8323 return -1;
8324 }
8325
8326 /* Checking for DIX type or DIX type with VLAN */
8327 if ((l2_type == 0)
8328 || (l2_type == 4)) {
8329 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8330 /*
8331 * If vlan stripping is disabled and the frame is VLAN tagged,
8332 * shift the offset by the VLAN header size bytes.
8333 */
8334 if ((!vlan_strip_flag) &&
8335 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8336 ip_off += HEADER_VLAN_SIZE;
8337 } else {
8338 /* LLC, SNAP etc are considered non-mergeable */
8339 return -1;
8340 }
8341
8342 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8343 ip_len = (u8)((*ip)->ihl);
8344 ip_len <<= 2;
8345 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8346
8347 return 0;
8348 }
8349
8350 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8351 struct tcphdr *tcp)
8352 {
8353 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8354 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8355 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8356 return -1;
8357 return 0;
8358 }
8359
8360 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8361 {
8362 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8363 }
8364
8365 static void initiate_new_session(struct lro *lro, u8 *l2h,
8366 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8367 {
8368 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8369 lro->l2h = l2h;
8370 lro->iph = ip;
8371 lro->tcph = tcp;
8372 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8373 lro->tcp_ack = tcp->ack_seq;
8374 lro->sg_num = 1;
8375 lro->total_len = ntohs(ip->tot_len);
8376 lro->frags_len = 0;
8377 lro->vlan_tag = vlan_tag;
8378 /*
8379 * check if we saw TCP timestamp. Other consistency checks have
8380 * already been done.
8381 */
8382 if (tcp->doff == 8) {
8383 __be32 *ptr;
8384 ptr = (__be32 *)(tcp+1);
8385 lro->saw_ts = 1;
8386 lro->cur_tsval = ntohl(*(ptr+1));
8387 lro->cur_tsecr = *(ptr+2);
8388 }
8389 lro->in_use = 1;
8390 }
8391
8392 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8393 {
8394 struct iphdr *ip = lro->iph;
8395 struct tcphdr *tcp = lro->tcph;
8396 __sum16 nchk;
8397 struct stat_block *statinfo = sp->mac_control.stats_info;
8398 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8399
8400 /* Update L3 header */
8401 ip->tot_len = htons(lro->total_len);
8402 ip->check = 0;
8403 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8404 ip->check = nchk;
8405
8406 /* Update L4 header */
8407 tcp->ack_seq = lro->tcp_ack;
8408 tcp->window = lro->window;
8409
8410 /* Update tsecr field if this session has timestamps enabled */
8411 if (lro->saw_ts) {
8412 __be32 *ptr = (__be32 *)(tcp + 1);
8413 *(ptr+2) = lro->cur_tsecr;
8414 }
8415
8416 /* Update counters required for calculation of
8417 * average no. of packets aggregated.
8418 */
8419 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8420 statinfo->sw_stat.num_aggregations++;
8421 }
8422
8423 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8424 struct tcphdr *tcp, u32 l4_pyld)
8425 {
8426 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8427 lro->total_len += l4_pyld;
8428 lro->frags_len += l4_pyld;
8429 lro->tcp_next_seq += l4_pyld;
8430 lro->sg_num++;
8431
8432 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8433 lro->tcp_ack = tcp->ack_seq;
8434 lro->window = tcp->window;
8435
8436 if (lro->saw_ts) {
8437 __be32 *ptr;
8438 /* Update tsecr and tsval from this packet */
8439 ptr = (__be32 *)(tcp+1);
8440 lro->cur_tsval = ntohl(*(ptr+1));
8441 lro->cur_tsecr = *(ptr + 2);
8442 }
8443 }
8444
8445 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8446 struct tcphdr *tcp, u32 tcp_pyld_len)
8447 {
8448 u8 *ptr;
8449
8450 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8451
8452 if (!tcp_pyld_len) {
8453 /* Runt frame or a pure ack */
8454 return -1;
8455 }
8456
8457 if (ip->ihl != 5) /* IP has options */
8458 return -1;
8459
8460 /* If we see CE codepoint in IP header, packet is not mergeable */
8461 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8462 return -1;
8463
8464 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8465 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8466 tcp->ece || tcp->cwr || !tcp->ack) {
8467 /*
8468 * Currently recognize only the ack control word and
8469 * any other control field being set would result in
8470 * flushing the LRO session
8471 */
8472 return -1;
8473 }
8474
8475 /*
8476 * Allow only one TCP timestamp option. Don't aggregate if
8477 * any other options are detected.
8478 */
8479 if (tcp->doff != 5 && tcp->doff != 8)
8480 return -1;
8481
8482 if (tcp->doff == 8) {
8483 ptr = (u8 *)(tcp + 1);
8484 while (*ptr == TCPOPT_NOP)
8485 ptr++;
8486 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8487 return -1;
8488
8489 /* Ensure timestamp value increases monotonically */
8490 if (l_lro)
8491 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8492 return -1;
8493
8494 /* timestamp echo reply should be non-zero */
8495 if (*((__be32 *)(ptr+6)) == 0)
8496 return -1;
8497 }
8498
8499 return 0;
8500 }
8501
8502 static int
8503 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8504 struct RxD_t *rxdp, struct s2io_nic *sp)
8505 {
8506 struct iphdr *ip;
8507 struct tcphdr *tcph;
8508 int ret = 0, i;
8509 u16 vlan_tag = 0;
8510
8511 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8512 rxdp, sp))) {
8513 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8514 ip->saddr, ip->daddr);
8515 } else
8516 return ret;
8517
8518 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8519 tcph = (struct tcphdr *)*tcp;
8520 *tcp_len = get_l4_pyld_length(ip, tcph);
8521 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8522 struct lro *l_lro = &sp->lro0_n[i];
8523 if (l_lro->in_use) {
8524 if (check_for_socket_match(l_lro, ip, tcph))
8525 continue;
8526 /* Sock pair matched */
8527 *lro = l_lro;
8528
8529 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8530 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8531 "0x%x, actual 0x%x\n", __FUNCTION__,
8532 (*lro)->tcp_next_seq,
8533 ntohl(tcph->seq));
8534
8535 sp->mac_control.stats_info->
8536 sw_stat.outof_sequence_pkts++;
8537 ret = 2;
8538 break;
8539 }
8540
8541 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8542 ret = 1; /* Aggregate */
8543 else
8544 ret = 2; /* Flush both */
8545 break;
8546 }
8547 }
8548
8549 if (ret == 0) {
8550 /* Before searching for available LRO objects,
8551 * check if the pkt is L3/L4 aggregatable. If not
8552 * don't create new LRO session. Just send this
8553 * packet up.
8554 */
8555 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8556 return 5;
8557 }
8558
8559 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8560 struct lro *l_lro = &sp->lro0_n[i];
8561 if (!(l_lro->in_use)) {
8562 *lro = l_lro;
8563 ret = 3; /* Begin anew */
8564 break;
8565 }
8566 }
8567 }
8568
8569 if (ret == 0) { /* sessions exceeded */
8570 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8571 __FUNCTION__);
8572 *lro = NULL;
8573 return ret;
8574 }
8575
8576 switch (ret) {
8577 case 3:
8578 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8579 vlan_tag);
8580 break;
8581 case 2:
8582 update_L3L4_header(sp, *lro);
8583 break;
8584 case 1:
8585 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8586 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8587 update_L3L4_header(sp, *lro);
8588 ret = 4; /* Flush the LRO */
8589 }
8590 break;
8591 default:
8592 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8593 __FUNCTION__);
8594 break;
8595 }
8596
8597 return ret;
8598 }
8599
8600 static void clear_lro_session(struct lro *lro)
8601 {
8602 static u16 lro_struct_size = sizeof(struct lro);
8603
8604 memset(lro, 0, lro_struct_size);
8605 }
8606
8607 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8608 {
8609 struct net_device *dev = skb->dev;
8610 struct s2io_nic *sp = dev->priv;
8611
8612 skb->protocol = eth_type_trans(skb, dev);
8613 if (sp->vlgrp && vlan_tag
8614 && (vlan_strip_flag)) {
8615 /* Queueing the vlan frame to the upper layer */
8616 if (sp->config.napi)
8617 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8618 else
8619 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8620 } else {
8621 if (sp->config.napi)
8622 netif_receive_skb(skb);
8623 else
8624 netif_rx(skb);
8625 }
8626 }
8627
8628 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8629 struct sk_buff *skb,
8630 u32 tcp_len)
8631 {
8632 struct sk_buff *first = lro->parent;
8633
8634 first->len += tcp_len;
8635 first->data_len = lro->frags_len;
8636 skb_pull(skb, (skb->len - tcp_len));
8637 if (skb_shinfo(first)->frag_list)
8638 lro->last_frag->next = skb;
8639 else
8640 skb_shinfo(first)->frag_list = skb;
8641 first->truesize += skb->truesize;
8642 lro->last_frag = skb;
8643 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8644 return;
8645 }
8646
8647 /**
8648 * s2io_io_error_detected - called when PCI error is detected
8649 * @pdev: Pointer to PCI device
8650 * @state: The current pci connection state
8651 *
8652 * This function is called after a PCI bus error affecting
8653 * this device has been detected.
8654 */
8655 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8656 pci_channel_state_t state)
8657 {
8658 struct net_device *netdev = pci_get_drvdata(pdev);
8659 struct s2io_nic *sp = netdev->priv;
8660
8661 netif_device_detach(netdev);
8662
8663 if (netif_running(netdev)) {
8664 /* Bring down the card, while avoiding PCI I/O */
8665 do_s2io_card_down(sp, 0);
8666 }
8667 pci_disable_device(pdev);
8668
8669 return PCI_ERS_RESULT_NEED_RESET;
8670 }
8671
8672 /**
8673 * s2io_io_slot_reset - called after the pci bus has been reset.
8674 * @pdev: Pointer to PCI device
8675 *
8676 * Restart the card from scratch, as if from a cold-boot.
8677 * At this point, the card has exprienced a hard reset,
8678 * followed by fixups by BIOS, and has its config space
8679 * set up identically to what it was at cold boot.
8680 */
8681 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8682 {
8683 struct net_device *netdev = pci_get_drvdata(pdev);
8684 struct s2io_nic *sp = netdev->priv;
8685
8686 if (pci_enable_device(pdev)) {
8687 printk(KERN_ERR "s2io: "
8688 "Cannot re-enable PCI device after reset.\n");
8689 return PCI_ERS_RESULT_DISCONNECT;
8690 }
8691
8692 pci_set_master(pdev);
8693 s2io_reset(sp);
8694
8695 return PCI_ERS_RESULT_RECOVERED;
8696 }
8697
8698 /**
8699 * s2io_io_resume - called when traffic can start flowing again.
8700 * @pdev: Pointer to PCI device
8701 *
8702 * This callback is called when the error recovery driver tells
8703 * us that its OK to resume normal operation.
8704 */
8705 static void s2io_io_resume(struct pci_dev *pdev)
8706 {
8707 struct net_device *netdev = pci_get_drvdata(pdev);
8708 struct s2io_nic *sp = netdev->priv;
8709
8710 if (netif_running(netdev)) {
8711 if (s2io_card_up(sp)) {
8712 printk(KERN_ERR "s2io: "
8713 "Can't bring device back up after reset.\n");
8714 return;
8715 }
8716
8717 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8718 s2io_card_down(sp);
8719 printk(KERN_ERR "s2io: "
8720 "Can't resetore mac addr after reset.\n");
8721 return;
8722 }
8723 }
8724
8725 netif_device_attach(netdev);
8726 netif_wake_queue(netdev);
8727 }
This page took 0.200416 seconds and 6 git commands to generate.