Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91
92 #define DRV_VERSION "2.0.26.28"
93
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107
108 return ret;
109 }
110
111 /*
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136 };
137
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
233 };
234
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
252 };
253
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
327 };
328
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
347
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358
359 /* Add the vlan */
360 static void s2io_vlan_rx_register(struct net_device *dev,
361 struct vlan_group *grp)
362 {
363 int i;
364 struct s2io_nic *nic = netdev_priv(dev);
365 unsigned long flags[MAX_TX_FIFOS];
366 struct config_param *config = &nic->config;
367 struct mac_info *mac_control = &nic->mac_control;
368
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
371
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
373 }
374
375 nic->vlgrp = grp;
376
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
379
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
381 }
382 }
383
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
386 {
387 int i;
388 struct s2io_nic *nic = netdev_priv(dev);
389 unsigned long flags[MAX_TX_FIFOS];
390 struct config_param *config = &nic->config;
391 struct mac_info *mac_control = &nic->mac_control;
392
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
395
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
397 }
398
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
401
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
404
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
406 }
407 }
408
409 /*
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
412 */
413
414 #define END_SIGN 0x0
415 static const u64 herc_act_dtx_cfg[] = {
416 /* Set address */
417 0x8000051536750000ULL, 0x80000515367500E0ULL,
418 /* Write data */
419 0x8000051536750004ULL, 0x80000515367500E4ULL,
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
434 };
435
436 static const u64 xena_dtx_cfg[] = {
437 /* Set address */
438 0x8000051500000000ULL, 0x80000515000000E0ULL,
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
446 0x8002051500000000ULL, 0x80020515000000E0ULL,
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
449 END_SIGN
450 };
451
452 /*
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
455 */
456 static const u64 fix_mac[] = {
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
472 };
473
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION);
476
477
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
480 S2IO_PARM_INT(rx_ring_num, 1);
481 S2IO_PARM_INT(multiq, 0);
482 S2IO_PARM_INT(rx_ring_mode, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484 S2IO_PARM_INT(rmac_pause_time, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487 S2IO_PARM_INT(shared_splits, 0);
488 S2IO_PARM_INT(tmac_util_period, 5);
489 S2IO_PARM_INT(rmac_util_period, 5);
490 S2IO_PARM_INT(l3l4hdr_size, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type, 2);
497 /* Large receive offload feature */
498
499 /* Max pkts to be aggregated by LRO at one time. If not specified,
500 * aggregation happens until we hit max IP pkt size(64K)
501 */
502 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
503 S2IO_PARM_INT(indicate_max_pkts, 0);
504
505 S2IO_PARM_INT(napi, 1);
506 S2IO_PARM_INT(ufo, 0);
507 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
508
509 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
510 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
511 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
512 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
513 static unsigned int rts_frm_len[MAX_RX_RINGS] =
514 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
515
516 module_param_array(tx_fifo_len, uint, NULL, 0);
517 module_param_array(rx_ring_sz, uint, NULL, 0);
518 module_param_array(rts_frm_len, uint, NULL, 0);
519
520 /*
521 * S2IO device table.
522 * This table lists all the devices that this driver supports.
523 */
524 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
525 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
526 PCI_ANY_ID, PCI_ANY_ID},
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {0,}
534 };
535
536 MODULE_DEVICE_TABLE(pci, s2io_tbl);
537
538 static struct pci_error_handlers s2io_err_handler = {
539 .error_detected = s2io_io_error_detected,
540 .slot_reset = s2io_io_slot_reset,
541 .resume = s2io_io_resume,
542 };
543
544 static struct pci_driver s2io_driver = {
545 .name = "S2IO",
546 .id_table = s2io_tbl,
547 .probe = s2io_init_nic,
548 .remove = __devexit_p(s2io_rem_nic),
549 .err_handler = &s2io_err_handler,
550 };
551
552 /* A simplifier macro used both by init and free shared_mem Fns(). */
553 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
554
555 /* netqueue manipulation helper functions */
556 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
557 {
558 if (!sp->config.multiq) {
559 int i;
560
561 for (i = 0; i < sp->config.tx_fifo_num; i++)
562 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
563 }
564 netif_tx_stop_all_queues(sp->dev);
565 }
566
567 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
568 {
569 if (!sp->config.multiq)
570 sp->mac_control.fifos[fifo_no].queue_state =
571 FIFO_QUEUE_STOP;
572
573 netif_tx_stop_all_queues(sp->dev);
574 }
575
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
577 {
578 if (!sp->config.multiq) {
579 int i;
580
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
583 }
584 netif_tx_start_all_queues(sp->dev);
585 }
586
587 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
588 {
589 if (!sp->config.multiq)
590 sp->mac_control.fifos[fifo_no].queue_state =
591 FIFO_QUEUE_START;
592
593 netif_tx_start_all_queues(sp->dev);
594 }
595
596 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
597 {
598 if (!sp->config.multiq) {
599 int i;
600
601 for (i = 0; i < sp->config.tx_fifo_num; i++)
602 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
603 }
604 netif_tx_wake_all_queues(sp->dev);
605 }
606
607 static inline void s2io_wake_tx_queue(
608 struct fifo_info *fifo, int cnt, u8 multiq)
609 {
610
611 if (multiq) {
612 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
613 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
614 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
615 if (netif_queue_stopped(fifo->dev)) {
616 fifo->queue_state = FIFO_QUEUE_START;
617 netif_wake_queue(fifo->dev);
618 }
619 }
620 }
621
622 /**
623 * init_shared_mem - Allocation and Initialization of Memory
624 * @nic: Device private variable.
625 * Description: The function allocates all the memory areas shared
626 * between the NIC and the driver. This includes Tx descriptors,
627 * Rx descriptors and the statistics block.
628 */
629
630 static int init_shared_mem(struct s2io_nic *nic)
631 {
632 u32 size;
633 void *tmp_v_addr, *tmp_v_addr_next;
634 dma_addr_t tmp_p_addr, tmp_p_addr_next;
635 struct RxD_block *pre_rxd_blk = NULL;
636 int i, j, blk_cnt;
637 int lst_size, lst_per_page;
638 struct net_device *dev = nic->dev;
639 unsigned long tmp;
640 struct buffAdd *ba;
641 struct config_param *config = &nic->config;
642 struct mac_info *mac_control = &nic->mac_control;
643 unsigned long long mem_allocated = 0;
644
645 /* Allocation and initialization of TXDLs in FIFOs */
646 size = 0;
647 for (i = 0; i < config->tx_fifo_num; i++) {
648 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
649
650 size += tx_cfg->fifo_len;
651 }
652 if (size > MAX_AVAILABLE_TXDS) {
653 DBG_PRINT(ERR_DBG,
654 "Too many TxDs requested: %d, max supported: %d\n",
655 size, MAX_AVAILABLE_TXDS);
656 return -EINVAL;
657 }
658
659 size = 0;
660 for (i = 0; i < config->tx_fifo_num; i++) {
661 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
662
663 size = tx_cfg->fifo_len;
664 /*
665 * Legal values are from 2 to 8192
666 */
667 if (size < 2) {
668 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
669 "Valid lengths are 2 through 8192\n",
670 i, size);
671 return -EINVAL;
672 }
673 }
674
675 lst_size = (sizeof(struct TxD) * config->max_txds);
676 lst_per_page = PAGE_SIZE / lst_size;
677
678 for (i = 0; i < config->tx_fifo_num; i++) {
679 struct fifo_info *fifo = &mac_control->fifos[i];
680 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
681 int fifo_len = tx_cfg->fifo_len;
682 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
683
684 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
685 if (!fifo->list_info) {
686 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
687 return -ENOMEM;
688 }
689 mem_allocated += list_holder_size;
690 }
691 for (i = 0; i < config->tx_fifo_num; i++) {
692 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
693 lst_per_page);
694 struct fifo_info *fifo = &mac_control->fifos[i];
695 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
696
697 fifo->tx_curr_put_info.offset = 0;
698 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
699 fifo->tx_curr_get_info.offset = 0;
700 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
701 fifo->fifo_no = i;
702 fifo->nic = nic;
703 fifo->max_txds = MAX_SKB_FRAGS + 2;
704 fifo->dev = dev;
705
706 for (j = 0; j < page_num; j++) {
707 int k = 0;
708 dma_addr_t tmp_p;
709 void *tmp_v;
710 tmp_v = pci_alloc_consistent(nic->pdev,
711 PAGE_SIZE, &tmp_p);
712 if (!tmp_v) {
713 DBG_PRINT(INFO_DBG,
714 "pci_alloc_consistent failed for TxDL\n");
715 return -ENOMEM;
716 }
717 /* If we got a zero DMA address(can happen on
718 * certain platforms like PPC), reallocate.
719 * Store virtual address of page we don't want,
720 * to be freed later.
721 */
722 if (!tmp_p) {
723 mac_control->zerodma_virt_addr = tmp_v;
724 DBG_PRINT(INIT_DBG,
725 "%s: Zero DMA address for TxDL. "
726 "Virtual address %p\n",
727 dev->name, tmp_v);
728 tmp_v = pci_alloc_consistent(nic->pdev,
729 PAGE_SIZE, &tmp_p);
730 if (!tmp_v) {
731 DBG_PRINT(INFO_DBG,
732 "pci_alloc_consistent failed for TxDL\n");
733 return -ENOMEM;
734 }
735 mem_allocated += PAGE_SIZE;
736 }
737 while (k < lst_per_page) {
738 int l = (j * lst_per_page) + k;
739 if (l == tx_cfg->fifo_len)
740 break;
741 fifo->list_info[l].list_virt_addr =
742 tmp_v + (k * lst_size);
743 fifo->list_info[l].list_phy_addr =
744 tmp_p + (k * lst_size);
745 k++;
746 }
747 }
748 }
749
750 for (i = 0; i < config->tx_fifo_num; i++) {
751 struct fifo_info *fifo = &mac_control->fifos[i];
752 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
753
754 size = tx_cfg->fifo_len;
755 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
756 if (!fifo->ufo_in_band_v)
757 return -ENOMEM;
758 mem_allocated += (size * sizeof(u64));
759 }
760
761 /* Allocation and initialization of RXDs in Rings */
762 size = 0;
763 for (i = 0; i < config->rx_ring_num; i++) {
764 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
765 struct ring_info *ring = &mac_control->rings[i];
766
767 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
768 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
769 "multiple of RxDs per Block\n",
770 dev->name, i);
771 return FAILURE;
772 }
773 size += rx_cfg->num_rxd;
774 ring->block_count = rx_cfg->num_rxd /
775 (rxd_count[nic->rxd_mode] + 1);
776 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
777 }
778 if (nic->rxd_mode == RXD_MODE_1)
779 size = (size * (sizeof(struct RxD1)));
780 else
781 size = (size * (sizeof(struct RxD3)));
782
783 for (i = 0; i < config->rx_ring_num; i++) {
784 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
785 struct ring_info *ring = &mac_control->rings[i];
786
787 ring->rx_curr_get_info.block_index = 0;
788 ring->rx_curr_get_info.offset = 0;
789 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
790 ring->rx_curr_put_info.block_index = 0;
791 ring->rx_curr_put_info.offset = 0;
792 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
793 ring->nic = nic;
794 ring->ring_no = i;
795
796 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
797 /* Allocating all the Rx blocks */
798 for (j = 0; j < blk_cnt; j++) {
799 struct rx_block_info *rx_blocks;
800 int l;
801
802 rx_blocks = &ring->rx_blocks[j];
803 size = SIZE_OF_BLOCK; /* size is always page size */
804 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
805 &tmp_p_addr);
806 if (tmp_v_addr == NULL) {
807 /*
808 * In case of failure, free_shared_mem()
809 * is called, which should free any
810 * memory that was alloced till the
811 * failure happened.
812 */
813 rx_blocks->block_virt_addr = tmp_v_addr;
814 return -ENOMEM;
815 }
816 mem_allocated += size;
817 memset(tmp_v_addr, 0, size);
818
819 size = sizeof(struct rxd_info) *
820 rxd_count[nic->rxd_mode];
821 rx_blocks->block_virt_addr = tmp_v_addr;
822 rx_blocks->block_dma_addr = tmp_p_addr;
823 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
824 if (!rx_blocks->rxds)
825 return -ENOMEM;
826 mem_allocated += size;
827 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
828 rx_blocks->rxds[l].virt_addr =
829 rx_blocks->block_virt_addr +
830 (rxd_size[nic->rxd_mode] * l);
831 rx_blocks->rxds[l].dma_addr =
832 rx_blocks->block_dma_addr +
833 (rxd_size[nic->rxd_mode] * l);
834 }
835 }
836 /* Interlinking all Rx Blocks */
837 for (j = 0; j < blk_cnt; j++) {
838 int next = (j + 1) % blk_cnt;
839 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
840 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
841 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
842 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
843
844 pre_rxd_blk = tmp_v_addr;
845 pre_rxd_blk->reserved_2_pNext_RxD_block =
846 (unsigned long)tmp_v_addr_next;
847 pre_rxd_blk->pNext_RxD_Blk_physical =
848 (u64)tmp_p_addr_next;
849 }
850 }
851 if (nic->rxd_mode == RXD_MODE_3B) {
852 /*
853 * Allocation of Storages for buffer addresses in 2BUFF mode
854 * and the buffers as well.
855 */
856 for (i = 0; i < config->rx_ring_num; i++) {
857 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
858 struct ring_info *ring = &mac_control->rings[i];
859
860 blk_cnt = rx_cfg->num_rxd /
861 (rxd_count[nic->rxd_mode] + 1);
862 size = sizeof(struct buffAdd *) * blk_cnt;
863 ring->ba = kmalloc(size, GFP_KERNEL);
864 if (!ring->ba)
865 return -ENOMEM;
866 mem_allocated += size;
867 for (j = 0; j < blk_cnt; j++) {
868 int k = 0;
869
870 size = sizeof(struct buffAdd) *
871 (rxd_count[nic->rxd_mode] + 1);
872 ring->ba[j] = kmalloc(size, GFP_KERNEL);
873 if (!ring->ba[j])
874 return -ENOMEM;
875 mem_allocated += size;
876 while (k != rxd_count[nic->rxd_mode]) {
877 ba = &ring->ba[j][k];
878 size = BUF0_LEN + ALIGN_SIZE;
879 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
880 if (!ba->ba_0_org)
881 return -ENOMEM;
882 mem_allocated += size;
883 tmp = (unsigned long)ba->ba_0_org;
884 tmp += ALIGN_SIZE;
885 tmp &= ~((unsigned long)ALIGN_SIZE);
886 ba->ba_0 = (void *)tmp;
887
888 size = BUF1_LEN + ALIGN_SIZE;
889 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
890 if (!ba->ba_1_org)
891 return -ENOMEM;
892 mem_allocated += size;
893 tmp = (unsigned long)ba->ba_1_org;
894 tmp += ALIGN_SIZE;
895 tmp &= ~((unsigned long)ALIGN_SIZE);
896 ba->ba_1 = (void *)tmp;
897 k++;
898 }
899 }
900 }
901 }
902
903 /* Allocation and initialization of Statistics block */
904 size = sizeof(struct stat_block);
905 mac_control->stats_mem =
906 pci_alloc_consistent(nic->pdev, size,
907 &mac_control->stats_mem_phy);
908
909 if (!mac_control->stats_mem) {
910 /*
911 * In case of failure, free_shared_mem() is called, which
912 * should free any memory that was alloced till the
913 * failure happened.
914 */
915 return -ENOMEM;
916 }
917 mem_allocated += size;
918 mac_control->stats_mem_sz = size;
919
920 tmp_v_addr = mac_control->stats_mem;
921 mac_control->stats_info = tmp_v_addr;
922 memset(tmp_v_addr, 0, size);
923 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
924 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
925 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
926 return SUCCESS;
927 }
928
929 /**
930 * free_shared_mem - Free the allocated Memory
931 * @nic: Device private variable.
932 * Description: This function is to free all memory locations allocated by
933 * the init_shared_mem() function and return it to the kernel.
934 */
935
936 static void free_shared_mem(struct s2io_nic *nic)
937 {
938 int i, j, blk_cnt, size;
939 void *tmp_v_addr;
940 dma_addr_t tmp_p_addr;
941 int lst_size, lst_per_page;
942 struct net_device *dev;
943 int page_num = 0;
944 struct config_param *config;
945 struct mac_info *mac_control;
946 struct stat_block *stats;
947 struct swStat *swstats;
948
949 if (!nic)
950 return;
951
952 dev = nic->dev;
953
954 config = &nic->config;
955 mac_control = &nic->mac_control;
956 stats = mac_control->stats_info;
957 swstats = &stats->sw_stat;
958
959 lst_size = sizeof(struct TxD) * config->max_txds;
960 lst_per_page = PAGE_SIZE / lst_size;
961
962 for (i = 0; i < config->tx_fifo_num; i++) {
963 struct fifo_info *fifo = &mac_control->fifos[i];
964 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
965
966 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
967 for (j = 0; j < page_num; j++) {
968 int mem_blks = (j * lst_per_page);
969 struct list_info_hold *fli;
970
971 if (!fifo->list_info)
972 return;
973
974 fli = &fifo->list_info[mem_blks];
975 if (!fli->list_virt_addr)
976 break;
977 pci_free_consistent(nic->pdev, PAGE_SIZE,
978 fli->list_virt_addr,
979 fli->list_phy_addr);
980 swstats->mem_freed += PAGE_SIZE;
981 }
982 /* If we got a zero DMA address during allocation,
983 * free the page now
984 */
985 if (mac_control->zerodma_virt_addr) {
986 pci_free_consistent(nic->pdev, PAGE_SIZE,
987 mac_control->zerodma_virt_addr,
988 (dma_addr_t)0);
989 DBG_PRINT(INIT_DBG,
990 "%s: Freeing TxDL with zero DMA address. "
991 "Virtual address %p\n",
992 dev->name, mac_control->zerodma_virt_addr);
993 swstats->mem_freed += PAGE_SIZE;
994 }
995 kfree(fifo->list_info);
996 swstats->mem_freed += tx_cfg->fifo_len *
997 sizeof(struct list_info_hold);
998 }
999
1000 size = SIZE_OF_BLOCK;
1001 for (i = 0; i < config->rx_ring_num; i++) {
1002 struct ring_info *ring = &mac_control->rings[i];
1003
1004 blk_cnt = ring->block_count;
1005 for (j = 0; j < blk_cnt; j++) {
1006 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1007 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1008 if (tmp_v_addr == NULL)
1009 break;
1010 pci_free_consistent(nic->pdev, size,
1011 tmp_v_addr, tmp_p_addr);
1012 swstats->mem_freed += size;
1013 kfree(ring->rx_blocks[j].rxds);
1014 swstats->mem_freed += sizeof(struct rxd_info) *
1015 rxd_count[nic->rxd_mode];
1016 }
1017 }
1018
1019 if (nic->rxd_mode == RXD_MODE_3B) {
1020 /* Freeing buffer storage addresses in 2BUFF mode. */
1021 for (i = 0; i < config->rx_ring_num; i++) {
1022 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1023 struct ring_info *ring = &mac_control->rings[i];
1024
1025 blk_cnt = rx_cfg->num_rxd /
1026 (rxd_count[nic->rxd_mode] + 1);
1027 for (j = 0; j < blk_cnt; j++) {
1028 int k = 0;
1029 if (!ring->ba[j])
1030 continue;
1031 while (k != rxd_count[nic->rxd_mode]) {
1032 struct buffAdd *ba = &ring->ba[j][k];
1033 kfree(ba->ba_0_org);
1034 swstats->mem_freed +=
1035 BUF0_LEN + ALIGN_SIZE;
1036 kfree(ba->ba_1_org);
1037 swstats->mem_freed +=
1038 BUF1_LEN + ALIGN_SIZE;
1039 k++;
1040 }
1041 kfree(ring->ba[j]);
1042 swstats->mem_freed += sizeof(struct buffAdd) *
1043 (rxd_count[nic->rxd_mode] + 1);
1044 }
1045 kfree(ring->ba);
1046 swstats->mem_freed += sizeof(struct buffAdd *) *
1047 blk_cnt;
1048 }
1049 }
1050
1051 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1052 struct fifo_info *fifo = &mac_control->fifos[i];
1053 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1054
1055 if (fifo->ufo_in_band_v) {
1056 swstats->mem_freed += tx_cfg->fifo_len *
1057 sizeof(u64);
1058 kfree(fifo->ufo_in_band_v);
1059 }
1060 }
1061
1062 if (mac_control->stats_mem) {
1063 swstats->mem_freed += mac_control->stats_mem_sz;
1064 pci_free_consistent(nic->pdev,
1065 mac_control->stats_mem_sz,
1066 mac_control->stats_mem,
1067 mac_control->stats_mem_phy);
1068 }
1069 }
1070
1071 /**
1072 * s2io_verify_pci_mode -
1073 */
1074
1075 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1076 {
1077 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1078 register u64 val64 = 0;
1079 int mode;
1080
1081 val64 = readq(&bar0->pci_mode);
1082 mode = (u8)GET_PCI_MODE(val64);
1083
1084 if (val64 & PCI_MODE_UNKNOWN_MODE)
1085 return -1; /* Unknown PCI mode */
1086 return mode;
1087 }
1088
1089 #define NEC_VENID 0x1033
1090 #define NEC_DEVID 0x0125
1091 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1092 {
1093 struct pci_dev *tdev = NULL;
1094 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1095 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1096 if (tdev->bus == s2io_pdev->bus->parent) {
1097 pci_dev_put(tdev);
1098 return 1;
1099 }
1100 }
1101 }
1102 return 0;
1103 }
1104
1105 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1106 /**
1107 * s2io_print_pci_mode -
1108 */
1109 static int s2io_print_pci_mode(struct s2io_nic *nic)
1110 {
1111 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1112 register u64 val64 = 0;
1113 int mode;
1114 struct config_param *config = &nic->config;
1115 const char *pcimode;
1116
1117 val64 = readq(&bar0->pci_mode);
1118 mode = (u8)GET_PCI_MODE(val64);
1119
1120 if (val64 & PCI_MODE_UNKNOWN_MODE)
1121 return -1; /* Unknown PCI mode */
1122
1123 config->bus_speed = bus_speed[mode];
1124
1125 if (s2io_on_nec_bridge(nic->pdev)) {
1126 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1127 nic->dev->name);
1128 return mode;
1129 }
1130
1131 switch (mode) {
1132 case PCI_MODE_PCI_33:
1133 pcimode = "33MHz PCI bus";
1134 break;
1135 case PCI_MODE_PCI_66:
1136 pcimode = "66MHz PCI bus";
1137 break;
1138 case PCI_MODE_PCIX_M1_66:
1139 pcimode = "66MHz PCIX(M1) bus";
1140 break;
1141 case PCI_MODE_PCIX_M1_100:
1142 pcimode = "100MHz PCIX(M1) bus";
1143 break;
1144 case PCI_MODE_PCIX_M1_133:
1145 pcimode = "133MHz PCIX(M1) bus";
1146 break;
1147 case PCI_MODE_PCIX_M2_66:
1148 pcimode = "133MHz PCIX(M2) bus";
1149 break;
1150 case PCI_MODE_PCIX_M2_100:
1151 pcimode = "200MHz PCIX(M2) bus";
1152 break;
1153 case PCI_MODE_PCIX_M2_133:
1154 pcimode = "266MHz PCIX(M2) bus";
1155 break;
1156 default:
1157 pcimode = "unsupported bus!";
1158 mode = -1;
1159 }
1160
1161 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1162 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1163
1164 return mode;
1165 }
1166
1167 /**
1168 * init_tti - Initialization transmit traffic interrupt scheme
1169 * @nic: device private variable
1170 * @link: link status (UP/DOWN) used to enable/disable continuous
1171 * transmit interrupts
1172 * Description: The function configures transmit traffic interrupts
1173 * Return Value: SUCCESS on success and
1174 * '-1' on failure
1175 */
1176
1177 static int init_tti(struct s2io_nic *nic, int link)
1178 {
1179 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1180 register u64 val64 = 0;
1181 int i;
1182 struct config_param *config = &nic->config;
1183
1184 for (i = 0; i < config->tx_fifo_num; i++) {
1185 /*
1186 * TTI Initialization. Default Tx timer gets us about
1187 * 250 interrupts per sec. Continuous interrupts are enabled
1188 * by default.
1189 */
1190 if (nic->device_type == XFRAME_II_DEVICE) {
1191 int count = (nic->config.bus_speed * 125)/2;
1192 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1193 } else
1194 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1195
1196 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1197 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1198 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1199 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1200 if (i == 0)
1201 if (use_continuous_tx_intrs && (link == LINK_UP))
1202 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1203 writeq(val64, &bar0->tti_data1_mem);
1204
1205 if (nic->config.intr_type == MSI_X) {
1206 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1207 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1208 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1209 TTI_DATA2_MEM_TX_UFC_D(0x300);
1210 } else {
1211 if ((nic->config.tx_steering_type ==
1212 TX_DEFAULT_STEERING) &&
1213 (config->tx_fifo_num > 1) &&
1214 (i >= nic->udp_fifo_idx) &&
1215 (i < (nic->udp_fifo_idx +
1216 nic->total_udp_fifos)))
1217 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1218 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1219 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1220 TTI_DATA2_MEM_TX_UFC_D(0x120);
1221 else
1222 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1223 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1224 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1225 TTI_DATA2_MEM_TX_UFC_D(0x80);
1226 }
1227
1228 writeq(val64, &bar0->tti_data2_mem);
1229
1230 val64 = TTI_CMD_MEM_WE |
1231 TTI_CMD_MEM_STROBE_NEW_CMD |
1232 TTI_CMD_MEM_OFFSET(i);
1233 writeq(val64, &bar0->tti_command_mem);
1234
1235 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1236 TTI_CMD_MEM_STROBE_NEW_CMD,
1237 S2IO_BIT_RESET) != SUCCESS)
1238 return FAILURE;
1239 }
1240
1241 return SUCCESS;
1242 }
1243
1244 /**
1245 * init_nic - Initialization of hardware
1246 * @nic: device private variable
1247 * Description: The function sequentially configures every block
1248 * of the H/W from their reset values.
1249 * Return Value: SUCCESS on success and
1250 * '-1' on failure (endian settings incorrect).
1251 */
1252
1253 static int init_nic(struct s2io_nic *nic)
1254 {
1255 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1256 struct net_device *dev = nic->dev;
1257 register u64 val64 = 0;
1258 void __iomem *add;
1259 u32 time;
1260 int i, j;
1261 int dtx_cnt = 0;
1262 unsigned long long mem_share;
1263 int mem_size;
1264 struct config_param *config = &nic->config;
1265 struct mac_info *mac_control = &nic->mac_control;
1266
1267 /* to set the swapper controle on the card */
1268 if (s2io_set_swapper(nic)) {
1269 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1270 return -EIO;
1271 }
1272
1273 /*
1274 * Herc requires EOI to be removed from reset before XGXS, so..
1275 */
1276 if (nic->device_type & XFRAME_II_DEVICE) {
1277 val64 = 0xA500000000ULL;
1278 writeq(val64, &bar0->sw_reset);
1279 msleep(500);
1280 val64 = readq(&bar0->sw_reset);
1281 }
1282
1283 /* Remove XGXS from reset state */
1284 val64 = 0;
1285 writeq(val64, &bar0->sw_reset);
1286 msleep(500);
1287 val64 = readq(&bar0->sw_reset);
1288
1289 /* Ensure that it's safe to access registers by checking
1290 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1291 */
1292 if (nic->device_type == XFRAME_II_DEVICE) {
1293 for (i = 0; i < 50; i++) {
1294 val64 = readq(&bar0->adapter_status);
1295 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1296 break;
1297 msleep(10);
1298 }
1299 if (i == 50)
1300 return -ENODEV;
1301 }
1302
1303 /* Enable Receiving broadcasts */
1304 add = &bar0->mac_cfg;
1305 val64 = readq(&bar0->mac_cfg);
1306 val64 |= MAC_RMAC_BCAST_ENABLE;
1307 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1308 writel((u32)val64, add);
1309 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1310 writel((u32) (val64 >> 32), (add + 4));
1311
1312 /* Read registers in all blocks */
1313 val64 = readq(&bar0->mac_int_mask);
1314 val64 = readq(&bar0->mc_int_mask);
1315 val64 = readq(&bar0->xgxs_int_mask);
1316
1317 /* Set MTU */
1318 val64 = dev->mtu;
1319 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1320
1321 if (nic->device_type & XFRAME_II_DEVICE) {
1322 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1323 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1324 &bar0->dtx_control, UF);
1325 if (dtx_cnt & 0x1)
1326 msleep(1); /* Necessary!! */
1327 dtx_cnt++;
1328 }
1329 } else {
1330 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1331 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1332 &bar0->dtx_control, UF);
1333 val64 = readq(&bar0->dtx_control);
1334 dtx_cnt++;
1335 }
1336 }
1337
1338 /* Tx DMA Initialization */
1339 val64 = 0;
1340 writeq(val64, &bar0->tx_fifo_partition_0);
1341 writeq(val64, &bar0->tx_fifo_partition_1);
1342 writeq(val64, &bar0->tx_fifo_partition_2);
1343 writeq(val64, &bar0->tx_fifo_partition_3);
1344
1345 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1346 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1347
1348 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1349 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1350
1351 if (i == (config->tx_fifo_num - 1)) {
1352 if (i % 2 == 0)
1353 i++;
1354 }
1355
1356 switch (i) {
1357 case 1:
1358 writeq(val64, &bar0->tx_fifo_partition_0);
1359 val64 = 0;
1360 j = 0;
1361 break;
1362 case 3:
1363 writeq(val64, &bar0->tx_fifo_partition_1);
1364 val64 = 0;
1365 j = 0;
1366 break;
1367 case 5:
1368 writeq(val64, &bar0->tx_fifo_partition_2);
1369 val64 = 0;
1370 j = 0;
1371 break;
1372 case 7:
1373 writeq(val64, &bar0->tx_fifo_partition_3);
1374 val64 = 0;
1375 j = 0;
1376 break;
1377 default:
1378 j++;
1379 break;
1380 }
1381 }
1382
1383 /*
1384 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1385 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1386 */
1387 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1388 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1389
1390 val64 = readq(&bar0->tx_fifo_partition_0);
1391 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1392 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1393
1394 /*
1395 * Initialization of Tx_PA_CONFIG register to ignore packet
1396 * integrity checking.
1397 */
1398 val64 = readq(&bar0->tx_pa_cfg);
1399 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1400 TX_PA_CFG_IGNORE_SNAP_OUI |
1401 TX_PA_CFG_IGNORE_LLC_CTRL |
1402 TX_PA_CFG_IGNORE_L2_ERR;
1403 writeq(val64, &bar0->tx_pa_cfg);
1404
1405 /* Rx DMA intialization. */
1406 val64 = 0;
1407 for (i = 0; i < config->rx_ring_num; i++) {
1408 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1409
1410 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1411 }
1412 writeq(val64, &bar0->rx_queue_priority);
1413
1414 /*
1415 * Allocating equal share of memory to all the
1416 * configured Rings.
1417 */
1418 val64 = 0;
1419 if (nic->device_type & XFRAME_II_DEVICE)
1420 mem_size = 32;
1421 else
1422 mem_size = 64;
1423
1424 for (i = 0; i < config->rx_ring_num; i++) {
1425 switch (i) {
1426 case 0:
1427 mem_share = (mem_size / config->rx_ring_num +
1428 mem_size % config->rx_ring_num);
1429 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1430 continue;
1431 case 1:
1432 mem_share = (mem_size / config->rx_ring_num);
1433 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1434 continue;
1435 case 2:
1436 mem_share = (mem_size / config->rx_ring_num);
1437 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1438 continue;
1439 case 3:
1440 mem_share = (mem_size / config->rx_ring_num);
1441 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1442 continue;
1443 case 4:
1444 mem_share = (mem_size / config->rx_ring_num);
1445 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1446 continue;
1447 case 5:
1448 mem_share = (mem_size / config->rx_ring_num);
1449 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1450 continue;
1451 case 6:
1452 mem_share = (mem_size / config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1454 continue;
1455 case 7:
1456 mem_share = (mem_size / config->rx_ring_num);
1457 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1458 continue;
1459 }
1460 }
1461 writeq(val64, &bar0->rx_queue_cfg);
1462
1463 /*
1464 * Filling Tx round robin registers
1465 * as per the number of FIFOs for equal scheduling priority
1466 */
1467 switch (config->tx_fifo_num) {
1468 case 1:
1469 val64 = 0x0;
1470 writeq(val64, &bar0->tx_w_round_robin_0);
1471 writeq(val64, &bar0->tx_w_round_robin_1);
1472 writeq(val64, &bar0->tx_w_round_robin_2);
1473 writeq(val64, &bar0->tx_w_round_robin_3);
1474 writeq(val64, &bar0->tx_w_round_robin_4);
1475 break;
1476 case 2:
1477 val64 = 0x0001000100010001ULL;
1478 writeq(val64, &bar0->tx_w_round_robin_0);
1479 writeq(val64, &bar0->tx_w_round_robin_1);
1480 writeq(val64, &bar0->tx_w_round_robin_2);
1481 writeq(val64, &bar0->tx_w_round_robin_3);
1482 val64 = 0x0001000100000000ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_4);
1484 break;
1485 case 3:
1486 val64 = 0x0001020001020001ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_0);
1488 val64 = 0x0200010200010200ULL;
1489 writeq(val64, &bar0->tx_w_round_robin_1);
1490 val64 = 0x0102000102000102ULL;
1491 writeq(val64, &bar0->tx_w_round_robin_2);
1492 val64 = 0x0001020001020001ULL;
1493 writeq(val64, &bar0->tx_w_round_robin_3);
1494 val64 = 0x0200010200000000ULL;
1495 writeq(val64, &bar0->tx_w_round_robin_4);
1496 break;
1497 case 4:
1498 val64 = 0x0001020300010203ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_0);
1500 writeq(val64, &bar0->tx_w_round_robin_1);
1501 writeq(val64, &bar0->tx_w_round_robin_2);
1502 writeq(val64, &bar0->tx_w_round_robin_3);
1503 val64 = 0x0001020300000000ULL;
1504 writeq(val64, &bar0->tx_w_round_robin_4);
1505 break;
1506 case 5:
1507 val64 = 0x0001020304000102ULL;
1508 writeq(val64, &bar0->tx_w_round_robin_0);
1509 val64 = 0x0304000102030400ULL;
1510 writeq(val64, &bar0->tx_w_round_robin_1);
1511 val64 = 0x0102030400010203ULL;
1512 writeq(val64, &bar0->tx_w_round_robin_2);
1513 val64 = 0x0400010203040001ULL;
1514 writeq(val64, &bar0->tx_w_round_robin_3);
1515 val64 = 0x0203040000000000ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_4);
1517 break;
1518 case 6:
1519 val64 = 0x0001020304050001ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_0);
1521 val64 = 0x0203040500010203ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_1);
1523 val64 = 0x0405000102030405ULL;
1524 writeq(val64, &bar0->tx_w_round_robin_2);
1525 val64 = 0x0001020304050001ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_3);
1527 val64 = 0x0203040500000000ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_4);
1529 break;
1530 case 7:
1531 val64 = 0x0001020304050600ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_0);
1533 val64 = 0x0102030405060001ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_1);
1535 val64 = 0x0203040506000102ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_2);
1537 val64 = 0x0304050600010203ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_3);
1539 val64 = 0x0405060000000000ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_4);
1541 break;
1542 case 8:
1543 val64 = 0x0001020304050607ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_0);
1545 writeq(val64, &bar0->tx_w_round_robin_1);
1546 writeq(val64, &bar0->tx_w_round_robin_2);
1547 writeq(val64, &bar0->tx_w_round_robin_3);
1548 val64 = 0x0001020300000000ULL;
1549 writeq(val64, &bar0->tx_w_round_robin_4);
1550 break;
1551 }
1552
1553 /* Enable all configured Tx FIFO partitions */
1554 val64 = readq(&bar0->tx_fifo_partition_0);
1555 val64 |= (TX_FIFO_PARTITION_EN);
1556 writeq(val64, &bar0->tx_fifo_partition_0);
1557
1558 /* Filling the Rx round robin registers as per the
1559 * number of Rings and steering based on QoS with
1560 * equal priority.
1561 */
1562 switch (config->rx_ring_num) {
1563 case 1:
1564 val64 = 0x0;
1565 writeq(val64, &bar0->rx_w_round_robin_0);
1566 writeq(val64, &bar0->rx_w_round_robin_1);
1567 writeq(val64, &bar0->rx_w_round_robin_2);
1568 writeq(val64, &bar0->rx_w_round_robin_3);
1569 writeq(val64, &bar0->rx_w_round_robin_4);
1570
1571 val64 = 0x8080808080808080ULL;
1572 writeq(val64, &bar0->rts_qos_steering);
1573 break;
1574 case 2:
1575 val64 = 0x0001000100010001ULL;
1576 writeq(val64, &bar0->rx_w_round_robin_0);
1577 writeq(val64, &bar0->rx_w_round_robin_1);
1578 writeq(val64, &bar0->rx_w_round_robin_2);
1579 writeq(val64, &bar0->rx_w_round_robin_3);
1580 val64 = 0x0001000100000000ULL;
1581 writeq(val64, &bar0->rx_w_round_robin_4);
1582
1583 val64 = 0x8080808040404040ULL;
1584 writeq(val64, &bar0->rts_qos_steering);
1585 break;
1586 case 3:
1587 val64 = 0x0001020001020001ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_0);
1589 val64 = 0x0200010200010200ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_1);
1591 val64 = 0x0102000102000102ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_2);
1593 val64 = 0x0001020001020001ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_3);
1595 val64 = 0x0200010200000000ULL;
1596 writeq(val64, &bar0->rx_w_round_robin_4);
1597
1598 val64 = 0x8080804040402020ULL;
1599 writeq(val64, &bar0->rts_qos_steering);
1600 break;
1601 case 4:
1602 val64 = 0x0001020300010203ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_0);
1604 writeq(val64, &bar0->rx_w_round_robin_1);
1605 writeq(val64, &bar0->rx_w_round_robin_2);
1606 writeq(val64, &bar0->rx_w_round_robin_3);
1607 val64 = 0x0001020300000000ULL;
1608 writeq(val64, &bar0->rx_w_round_robin_4);
1609
1610 val64 = 0x8080404020201010ULL;
1611 writeq(val64, &bar0->rts_qos_steering);
1612 break;
1613 case 5:
1614 val64 = 0x0001020304000102ULL;
1615 writeq(val64, &bar0->rx_w_round_robin_0);
1616 val64 = 0x0304000102030400ULL;
1617 writeq(val64, &bar0->rx_w_round_robin_1);
1618 val64 = 0x0102030400010203ULL;
1619 writeq(val64, &bar0->rx_w_round_robin_2);
1620 val64 = 0x0400010203040001ULL;
1621 writeq(val64, &bar0->rx_w_round_robin_3);
1622 val64 = 0x0203040000000000ULL;
1623 writeq(val64, &bar0->rx_w_round_robin_4);
1624
1625 val64 = 0x8080404020201008ULL;
1626 writeq(val64, &bar0->rts_qos_steering);
1627 break;
1628 case 6:
1629 val64 = 0x0001020304050001ULL;
1630 writeq(val64, &bar0->rx_w_round_robin_0);
1631 val64 = 0x0203040500010203ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_1);
1633 val64 = 0x0405000102030405ULL;
1634 writeq(val64, &bar0->rx_w_round_robin_2);
1635 val64 = 0x0001020304050001ULL;
1636 writeq(val64, &bar0->rx_w_round_robin_3);
1637 val64 = 0x0203040500000000ULL;
1638 writeq(val64, &bar0->rx_w_round_robin_4);
1639
1640 val64 = 0x8080404020100804ULL;
1641 writeq(val64, &bar0->rts_qos_steering);
1642 break;
1643 case 7:
1644 val64 = 0x0001020304050600ULL;
1645 writeq(val64, &bar0->rx_w_round_robin_0);
1646 val64 = 0x0102030405060001ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_1);
1648 val64 = 0x0203040506000102ULL;
1649 writeq(val64, &bar0->rx_w_round_robin_2);
1650 val64 = 0x0304050600010203ULL;
1651 writeq(val64, &bar0->rx_w_round_robin_3);
1652 val64 = 0x0405060000000000ULL;
1653 writeq(val64, &bar0->rx_w_round_robin_4);
1654
1655 val64 = 0x8080402010080402ULL;
1656 writeq(val64, &bar0->rts_qos_steering);
1657 break;
1658 case 8:
1659 val64 = 0x0001020304050607ULL;
1660 writeq(val64, &bar0->rx_w_round_robin_0);
1661 writeq(val64, &bar0->rx_w_round_robin_1);
1662 writeq(val64, &bar0->rx_w_round_robin_2);
1663 writeq(val64, &bar0->rx_w_round_robin_3);
1664 val64 = 0x0001020300000000ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_4);
1666
1667 val64 = 0x8040201008040201ULL;
1668 writeq(val64, &bar0->rts_qos_steering);
1669 break;
1670 }
1671
1672 /* UDP Fix */
1673 val64 = 0;
1674 for (i = 0; i < 8; i++)
1675 writeq(val64, &bar0->rts_frm_len_n[i]);
1676
1677 /* Set the default rts frame length for the rings configured */
1678 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1679 for (i = 0 ; i < config->rx_ring_num ; i++)
1680 writeq(val64, &bar0->rts_frm_len_n[i]);
1681
1682 /* Set the frame length for the configured rings
1683 * desired by the user
1684 */
1685 for (i = 0; i < config->rx_ring_num; i++) {
1686 /* If rts_frm_len[i] == 0 then it is assumed that user not
1687 * specified frame length steering.
1688 * If the user provides the frame length then program
1689 * the rts_frm_len register for those values or else
1690 * leave it as it is.
1691 */
1692 if (rts_frm_len[i] != 0) {
1693 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1694 &bar0->rts_frm_len_n[i]);
1695 }
1696 }
1697
1698 /* Disable differentiated services steering logic */
1699 for (i = 0; i < 64; i++) {
1700 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1701 DBG_PRINT(ERR_DBG,
1702 "%s: rts_ds_steer failed on codepoint %d\n",
1703 dev->name, i);
1704 return -ENODEV;
1705 }
1706 }
1707
1708 /* Program statistics memory */
1709 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1710
1711 if (nic->device_type == XFRAME_II_DEVICE) {
1712 val64 = STAT_BC(0x320);
1713 writeq(val64, &bar0->stat_byte_cnt);
1714 }
1715
1716 /*
1717 * Initializing the sampling rate for the device to calculate the
1718 * bandwidth utilization.
1719 */
1720 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1721 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1722 writeq(val64, &bar0->mac_link_util);
1723
1724 /*
1725 * Initializing the Transmit and Receive Traffic Interrupt
1726 * Scheme.
1727 */
1728
1729 /* Initialize TTI */
1730 if (SUCCESS != init_tti(nic, nic->last_link_state))
1731 return -ENODEV;
1732
1733 /* RTI Initialization */
1734 if (nic->device_type == XFRAME_II_DEVICE) {
1735 /*
1736 * Programmed to generate Apprx 500 Intrs per
1737 * second
1738 */
1739 int count = (nic->config.bus_speed * 125)/4;
1740 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1741 } else
1742 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1743 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1744 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1745 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1746 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1747
1748 writeq(val64, &bar0->rti_data1_mem);
1749
1750 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1751 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1752 if (nic->config.intr_type == MSI_X)
1753 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1754 RTI_DATA2_MEM_RX_UFC_D(0x40));
1755 else
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x80));
1758 writeq(val64, &bar0->rti_data2_mem);
1759
1760 for (i = 0; i < config->rx_ring_num; i++) {
1761 val64 = RTI_CMD_MEM_WE |
1762 RTI_CMD_MEM_STROBE_NEW_CMD |
1763 RTI_CMD_MEM_OFFSET(i);
1764 writeq(val64, &bar0->rti_command_mem);
1765
1766 /*
1767 * Once the operation completes, the Strobe bit of the
1768 * command register will be reset. We poll for this
1769 * particular condition. We wait for a maximum of 500ms
1770 * for the operation to complete, if it's not complete
1771 * by then we return error.
1772 */
1773 time = 0;
1774 while (true) {
1775 val64 = readq(&bar0->rti_command_mem);
1776 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1777 break;
1778
1779 if (time > 10) {
1780 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1781 dev->name);
1782 return -ENODEV;
1783 }
1784 time++;
1785 msleep(50);
1786 }
1787 }
1788
1789 /*
1790 * Initializing proper values as Pause threshold into all
1791 * the 8 Queues on Rx side.
1792 */
1793 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1794 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1795
1796 /* Disable RMAC PAD STRIPPING */
1797 add = &bar0->mac_cfg;
1798 val64 = readq(&bar0->mac_cfg);
1799 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1800 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1801 writel((u32) (val64), add);
1802 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1803 writel((u32) (val64 >> 32), (add + 4));
1804 val64 = readq(&bar0->mac_cfg);
1805
1806 /* Enable FCS stripping by adapter */
1807 add = &bar0->mac_cfg;
1808 val64 = readq(&bar0->mac_cfg);
1809 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1810 if (nic->device_type == XFRAME_II_DEVICE)
1811 writeq(val64, &bar0->mac_cfg);
1812 else {
1813 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1814 writel((u32) (val64), add);
1815 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1816 writel((u32) (val64 >> 32), (add + 4));
1817 }
1818
1819 /*
1820 * Set the time value to be inserted in the pause frame
1821 * generated by xena.
1822 */
1823 val64 = readq(&bar0->rmac_pause_cfg);
1824 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1825 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1826 writeq(val64, &bar0->rmac_pause_cfg);
1827
1828 /*
1829 * Set the Threshold Limit for Generating the pause frame
1830 * If the amount of data in any Queue exceeds ratio of
1831 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1832 * pause frame is generated
1833 */
1834 val64 = 0;
1835 for (i = 0; i < 4; i++) {
1836 val64 |= (((u64)0xFF00 |
1837 nic->mac_control.mc_pause_threshold_q0q3)
1838 << (i * 2 * 8));
1839 }
1840 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1841
1842 val64 = 0;
1843 for (i = 0; i < 4; i++) {
1844 val64 |= (((u64)0xFF00 |
1845 nic->mac_control.mc_pause_threshold_q4q7)
1846 << (i * 2 * 8));
1847 }
1848 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1849
1850 /*
1851 * TxDMA will stop Read request if the number of read split has
1852 * exceeded the limit pointed by shared_splits
1853 */
1854 val64 = readq(&bar0->pic_control);
1855 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1856 writeq(val64, &bar0->pic_control);
1857
1858 if (nic->config.bus_speed == 266) {
1859 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1860 writeq(0x0, &bar0->read_retry_delay);
1861 writeq(0x0, &bar0->write_retry_delay);
1862 }
1863
1864 /*
1865 * Programming the Herc to split every write transaction
1866 * that does not start on an ADB to reduce disconnects.
1867 */
1868 if (nic->device_type == XFRAME_II_DEVICE) {
1869 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1870 MISC_LINK_STABILITY_PRD(3);
1871 writeq(val64, &bar0->misc_control);
1872 val64 = readq(&bar0->pic_control2);
1873 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1874 writeq(val64, &bar0->pic_control2);
1875 }
1876 if (strstr(nic->product_name, "CX4")) {
1877 val64 = TMAC_AVG_IPG(0x17);
1878 writeq(val64, &bar0->tmac_avg_ipg);
1879 }
1880
1881 return SUCCESS;
1882 }
1883 #define LINK_UP_DOWN_INTERRUPT 1
1884 #define MAC_RMAC_ERR_TIMER 2
1885
1886 static int s2io_link_fault_indication(struct s2io_nic *nic)
1887 {
1888 if (nic->device_type == XFRAME_II_DEVICE)
1889 return LINK_UP_DOWN_INTERRUPT;
1890 else
1891 return MAC_RMAC_ERR_TIMER;
1892 }
1893
1894 /**
1895 * do_s2io_write_bits - update alarm bits in alarm register
1896 * @value: alarm bits
1897 * @flag: interrupt status
1898 * @addr: address value
1899 * Description: update alarm bits in alarm register
1900 * Return Value:
1901 * NONE.
1902 */
1903 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1904 {
1905 u64 temp64;
1906
1907 temp64 = readq(addr);
1908
1909 if (flag == ENABLE_INTRS)
1910 temp64 &= ~((u64)value);
1911 else
1912 temp64 |= ((u64)value);
1913 writeq(temp64, addr);
1914 }
1915
1916 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1917 {
1918 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1919 register u64 gen_int_mask = 0;
1920 u64 interruptible;
1921
1922 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1923 if (mask & TX_DMA_INTR) {
1924 gen_int_mask |= TXDMA_INT_M;
1925
1926 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1927 TXDMA_PCC_INT | TXDMA_TTI_INT |
1928 TXDMA_LSO_INT | TXDMA_TPA_INT |
1929 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1930
1931 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1932 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1933 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1934 &bar0->pfc_err_mask);
1935
1936 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1937 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1938 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1939
1940 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1941 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1942 PCC_N_SERR | PCC_6_COF_OV_ERR |
1943 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1944 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1945 PCC_TXB_ECC_SG_ERR,
1946 flag, &bar0->pcc_err_mask);
1947
1948 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1949 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1950
1951 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1952 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1953 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1954 flag, &bar0->lso_err_mask);
1955
1956 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1957 flag, &bar0->tpa_err_mask);
1958
1959 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1960 }
1961
1962 if (mask & TX_MAC_INTR) {
1963 gen_int_mask |= TXMAC_INT_M;
1964 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1965 &bar0->mac_int_mask);
1966 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1967 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1968 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1969 flag, &bar0->mac_tmac_err_mask);
1970 }
1971
1972 if (mask & TX_XGXS_INTR) {
1973 gen_int_mask |= TXXGXS_INT_M;
1974 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1975 &bar0->xgxs_int_mask);
1976 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1977 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1978 flag, &bar0->xgxs_txgxs_err_mask);
1979 }
1980
1981 if (mask & RX_DMA_INTR) {
1982 gen_int_mask |= RXDMA_INT_M;
1983 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1984 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1985 flag, &bar0->rxdma_int_mask);
1986 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1987 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1988 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1989 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1990 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1991 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1992 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1993 &bar0->prc_pcix_err_mask);
1994 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1995 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1996 &bar0->rpa_err_mask);
1997 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1998 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1999 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2000 RDA_FRM_ECC_SG_ERR |
2001 RDA_MISC_ERR|RDA_PCIX_ERR,
2002 flag, &bar0->rda_err_mask);
2003 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2004 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2005 flag, &bar0->rti_err_mask);
2006 }
2007
2008 if (mask & RX_MAC_INTR) {
2009 gen_int_mask |= RXMAC_INT_M;
2010 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2011 &bar0->mac_int_mask);
2012 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2013 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2014 RMAC_DOUBLE_ECC_ERR);
2015 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2016 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2017 do_s2io_write_bits(interruptible,
2018 flag, &bar0->mac_rmac_err_mask);
2019 }
2020
2021 if (mask & RX_XGXS_INTR) {
2022 gen_int_mask |= RXXGXS_INT_M;
2023 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2024 &bar0->xgxs_int_mask);
2025 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2026 &bar0->xgxs_rxgxs_err_mask);
2027 }
2028
2029 if (mask & MC_INTR) {
2030 gen_int_mask |= MC_INT_M;
2031 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2032 flag, &bar0->mc_int_mask);
2033 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2034 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2035 &bar0->mc_err_mask);
2036 }
2037 nic->general_int_mask = gen_int_mask;
2038
2039 /* Remove this line when alarm interrupts are enabled */
2040 nic->general_int_mask = 0;
2041 }
2042
2043 /**
2044 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2045 * @nic: device private variable,
2046 * @mask: A mask indicating which Intr block must be modified and,
2047 * @flag: A flag indicating whether to enable or disable the Intrs.
2048 * Description: This function will either disable or enable the interrupts
2049 * depending on the flag argument. The mask argument can be used to
2050 * enable/disable any Intr block.
2051 * Return Value: NONE.
2052 */
2053
2054 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2055 {
2056 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2057 register u64 temp64 = 0, intr_mask = 0;
2058
2059 intr_mask = nic->general_int_mask;
2060
2061 /* Top level interrupt classification */
2062 /* PIC Interrupts */
2063 if (mask & TX_PIC_INTR) {
2064 /* Enable PIC Intrs in the general intr mask register */
2065 intr_mask |= TXPIC_INT_M;
2066 if (flag == ENABLE_INTRS) {
2067 /*
2068 * If Hercules adapter enable GPIO otherwise
2069 * disable all PCIX, Flash, MDIO, IIC and GPIO
2070 * interrupts for now.
2071 * TODO
2072 */
2073 if (s2io_link_fault_indication(nic) ==
2074 LINK_UP_DOWN_INTERRUPT) {
2075 do_s2io_write_bits(PIC_INT_GPIO, flag,
2076 &bar0->pic_int_mask);
2077 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2078 &bar0->gpio_int_mask);
2079 } else
2080 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2081 } else if (flag == DISABLE_INTRS) {
2082 /*
2083 * Disable PIC Intrs in the general
2084 * intr mask register
2085 */
2086 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2087 }
2088 }
2089
2090 /* Tx traffic interrupts */
2091 if (mask & TX_TRAFFIC_INTR) {
2092 intr_mask |= TXTRAFFIC_INT_M;
2093 if (flag == ENABLE_INTRS) {
2094 /*
2095 * Enable all the Tx side interrupts
2096 * writing 0 Enables all 64 TX interrupt levels
2097 */
2098 writeq(0x0, &bar0->tx_traffic_mask);
2099 } else if (flag == DISABLE_INTRS) {
2100 /*
2101 * Disable Tx Traffic Intrs in the general intr mask
2102 * register.
2103 */
2104 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2105 }
2106 }
2107
2108 /* Rx traffic interrupts */
2109 if (mask & RX_TRAFFIC_INTR) {
2110 intr_mask |= RXTRAFFIC_INT_M;
2111 if (flag == ENABLE_INTRS) {
2112 /* writing 0 Enables all 8 RX interrupt levels */
2113 writeq(0x0, &bar0->rx_traffic_mask);
2114 } else if (flag == DISABLE_INTRS) {
2115 /*
2116 * Disable Rx Traffic Intrs in the general intr mask
2117 * register.
2118 */
2119 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2120 }
2121 }
2122
2123 temp64 = readq(&bar0->general_int_mask);
2124 if (flag == ENABLE_INTRS)
2125 temp64 &= ~((u64)intr_mask);
2126 else
2127 temp64 = DISABLE_ALL_INTRS;
2128 writeq(temp64, &bar0->general_int_mask);
2129
2130 nic->general_int_mask = readq(&bar0->general_int_mask);
2131 }
2132
2133 /**
2134 * verify_pcc_quiescent- Checks for PCC quiescent state
2135 * Return: 1 If PCC is quiescence
2136 * 0 If PCC is not quiescence
2137 */
2138 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2139 {
2140 int ret = 0, herc;
2141 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2142 u64 val64 = readq(&bar0->adapter_status);
2143
2144 herc = (sp->device_type == XFRAME_II_DEVICE);
2145
2146 if (flag == false) {
2147 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2148 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2149 ret = 1;
2150 } else {
2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2152 ret = 1;
2153 }
2154 } else {
2155 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2156 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2157 ADAPTER_STATUS_RMAC_PCC_IDLE))
2158 ret = 1;
2159 } else {
2160 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2161 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2162 ret = 1;
2163 }
2164 }
2165
2166 return ret;
2167 }
2168 /**
2169 * verify_xena_quiescence - Checks whether the H/W is ready
2170 * Description: Returns whether the H/W is ready to go or not. Depending
2171 * on whether adapter enable bit was written or not the comparison
2172 * differs and the calling function passes the input argument flag to
2173 * indicate this.
2174 * Return: 1 If xena is quiescence
2175 * 0 If Xena is not quiescence
2176 */
2177
2178 static int verify_xena_quiescence(struct s2io_nic *sp)
2179 {
2180 int mode;
2181 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2182 u64 val64 = readq(&bar0->adapter_status);
2183 mode = s2io_verify_pci_mode(sp);
2184
2185 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2186 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2187 return 0;
2188 }
2189 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2190 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2191 return 0;
2192 }
2193 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2194 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2195 return 0;
2196 }
2197 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2198 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2199 return 0;
2200 }
2201 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2202 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2206 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2210 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2214 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2215 return 0;
2216 }
2217
2218 /*
2219 * In PCI 33 mode, the P_PLL is not used, and therefore,
2220 * the the P_PLL_LOCK bit in the adapter_status register will
2221 * not be asserted.
2222 */
2223 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2224 sp->device_type == XFRAME_II_DEVICE &&
2225 mode != PCI_MODE_PCI_33) {
2226 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2227 return 0;
2228 }
2229 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2230 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2231 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2232 return 0;
2233 }
2234 return 1;
2235 }
2236
2237 /**
2238 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2239 * @sp: Pointer to device specifc structure
2240 * Description :
2241 * New procedure to clear mac address reading problems on Alpha platforms
2242 *
2243 */
2244
2245 static void fix_mac_address(struct s2io_nic *sp)
2246 {
2247 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2248 int i = 0;
2249
2250 while (fix_mac[i] != END_SIGN) {
2251 writeq(fix_mac[i++], &bar0->gpio_control);
2252 udelay(10);
2253 (void) readq(&bar0->gpio_control);
2254 }
2255 }
2256
2257 /**
2258 * start_nic - Turns the device on
2259 * @nic : device private variable.
2260 * Description:
2261 * This function actually turns the device on. Before this function is
2262 * called,all Registers are configured from their reset states
2263 * and shared memory is allocated but the NIC is still quiescent. On
2264 * calling this function, the device interrupts are cleared and the NIC is
2265 * literally switched on by writing into the adapter control register.
2266 * Return Value:
2267 * SUCCESS on success and -1 on failure.
2268 */
2269
2270 static int start_nic(struct s2io_nic *nic)
2271 {
2272 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2273 struct net_device *dev = nic->dev;
2274 register u64 val64 = 0;
2275 u16 subid, i;
2276 struct config_param *config = &nic->config;
2277 struct mac_info *mac_control = &nic->mac_control;
2278
2279 /* PRC Initialization and configuration */
2280 for (i = 0; i < config->rx_ring_num; i++) {
2281 struct ring_info *ring = &mac_control->rings[i];
2282
2283 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2284 &bar0->prc_rxd0_n[i]);
2285
2286 val64 = readq(&bar0->prc_ctrl_n[i]);
2287 if (nic->rxd_mode == RXD_MODE_1)
2288 val64 |= PRC_CTRL_RC_ENABLED;
2289 else
2290 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2291 if (nic->device_type == XFRAME_II_DEVICE)
2292 val64 |= PRC_CTRL_GROUP_READS;
2293 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295 writeq(val64, &bar0->prc_ctrl_n[i]);
2296 }
2297
2298 if (nic->rxd_mode == RXD_MODE_3B) {
2299 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300 val64 = readq(&bar0->rx_pa_cfg);
2301 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2302 writeq(val64, &bar0->rx_pa_cfg);
2303 }
2304
2305 if (vlan_tag_strip == 0) {
2306 val64 = readq(&bar0->rx_pa_cfg);
2307 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2308 writeq(val64, &bar0->rx_pa_cfg);
2309 nic->vlan_strip_flag = 0;
2310 }
2311
2312 /*
2313 * Enabling MC-RLDRAM. After enabling the device, we timeout
2314 * for around 100ms, which is approximately the time required
2315 * for the device to be ready for operation.
2316 */
2317 val64 = readq(&bar0->mc_rldram_mrs);
2318 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2319 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2320 val64 = readq(&bar0->mc_rldram_mrs);
2321
2322 msleep(100); /* Delay by around 100 ms. */
2323
2324 /* Enabling ECC Protection. */
2325 val64 = readq(&bar0->adapter_control);
2326 val64 &= ~ADAPTER_ECC_EN;
2327 writeq(val64, &bar0->adapter_control);
2328
2329 /*
2330 * Verify if the device is ready to be enabled, if so enable
2331 * it.
2332 */
2333 val64 = readq(&bar0->adapter_status);
2334 if (!verify_xena_quiescence(nic)) {
2335 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2336 "Adapter status reads: 0x%llx\n",
2337 dev->name, (unsigned long long)val64);
2338 return FAILURE;
2339 }
2340
2341 /*
2342 * With some switches, link might be already up at this point.
2343 * Because of this weird behavior, when we enable laser,
2344 * we may not get link. We need to handle this. We cannot
2345 * figure out which switch is misbehaving. So we are forced to
2346 * make a global change.
2347 */
2348
2349 /* Enabling Laser. */
2350 val64 = readq(&bar0->adapter_control);
2351 val64 |= ADAPTER_EOI_TX_ON;
2352 writeq(val64, &bar0->adapter_control);
2353
2354 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2355 /*
2356 * Dont see link state interrupts initially on some switches,
2357 * so directly scheduling the link state task here.
2358 */
2359 schedule_work(&nic->set_link_task);
2360 }
2361 /* SXE-002: Initialize link and activity LED */
2362 subid = nic->pdev->subsystem_device;
2363 if (((subid & 0xFF) >= 0x07) &&
2364 (nic->device_type == XFRAME_I_DEVICE)) {
2365 val64 = readq(&bar0->gpio_control);
2366 val64 |= 0x0000800000000000ULL;
2367 writeq(val64, &bar0->gpio_control);
2368 val64 = 0x0411040400000000ULL;
2369 writeq(val64, (void __iomem *)bar0 + 0x2700);
2370 }
2371
2372 return SUCCESS;
2373 }
2374 /**
2375 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2376 */
2377 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2378 struct TxD *txdlp, int get_off)
2379 {
2380 struct s2io_nic *nic = fifo_data->nic;
2381 struct sk_buff *skb;
2382 struct TxD *txds;
2383 u16 j, frg_cnt;
2384
2385 txds = txdlp;
2386 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2387 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2388 sizeof(u64), PCI_DMA_TODEVICE);
2389 txds++;
2390 }
2391
2392 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2393 if (!skb) {
2394 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2395 return NULL;
2396 }
2397 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2398 skb_headlen(skb), PCI_DMA_TODEVICE);
2399 frg_cnt = skb_shinfo(skb)->nr_frags;
2400 if (frg_cnt) {
2401 txds++;
2402 for (j = 0; j < frg_cnt; j++, txds++) {
2403 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404 if (!txds->Buffer_Pointer)
2405 break;
2406 pci_unmap_page(nic->pdev,
2407 (dma_addr_t)txds->Buffer_Pointer,
2408 frag->size, PCI_DMA_TODEVICE);
2409 }
2410 }
2411 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2412 return skb;
2413 }
2414
2415 /**
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2418 * Description:
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2421 */
2422
2423 static void free_tx_buffers(struct s2io_nic *nic)
2424 {
2425 struct net_device *dev = nic->dev;
2426 struct sk_buff *skb;
2427 struct TxD *txdp;
2428 int i, j;
2429 int cnt = 0;
2430 struct config_param *config = &nic->config;
2431 struct mac_info *mac_control = &nic->mac_control;
2432 struct stat_block *stats = mac_control->stats_info;
2433 struct swStat *swstats = &stats->sw_stat;
2434
2435 for (i = 0; i < config->tx_fifo_num; i++) {
2436 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2437 struct fifo_info *fifo = &mac_control->fifos[i];
2438 unsigned long flags;
2439
2440 spin_lock_irqsave(&fifo->tx_lock, flags);
2441 for (j = 0; j < tx_cfg->fifo_len; j++) {
2442 txdp = fifo->list_info[j].list_virt_addr;
2443 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444 if (skb) {
2445 swstats->mem_freed += skb->truesize;
2446 dev_kfree_skb(skb);
2447 cnt++;
2448 }
2449 }
2450 DBG_PRINT(INTR_DBG,
2451 "%s: forcibly freeing %d skbs on FIFO%d\n",
2452 dev->name, cnt, i);
2453 fifo->tx_curr_get_info.offset = 0;
2454 fifo->tx_curr_put_info.offset = 0;
2455 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2456 }
2457 }
2458
2459 /**
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2462 * Description:
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2465 * Return Value:
2466 * void.
2467 */
2468
2469 static void stop_nic(struct s2io_nic *nic)
2470 {
2471 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472 register u64 val64 = 0;
2473 u16 interruptible;
2474
2475 /* Disable all interrupts */
2476 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2477 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2478 interruptible |= TX_PIC_INTR;
2479 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2480
2481 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482 val64 = readq(&bar0->adapter_control);
2483 val64 &= ~(ADAPTER_CNTL_EN);
2484 writeq(val64, &bar0->adapter_control);
2485 }
2486
2487 /**
2488 * fill_rx_buffers - Allocates the Rx side skbs
2489 * @ring_info: per ring structure
2490 * @from_card_up: If this is true, we will map the buffer to get
2491 * the dma address for buf0 and buf1 to give it to the card.
2492 * Else we will sync the already mapped buffer to give it to the card.
2493 * Description:
2494 * The function allocates Rx side skbs and puts the physical
2495 * address of these buffers into the RxD buffer pointers, so that the NIC
2496 * can DMA the received frame into these locations.
2497 * The NIC supports 3 receive modes, viz
2498 * 1. single buffer,
2499 * 2. three buffer and
2500 * 3. Five buffer modes.
2501 * Each mode defines how many fragments the received frame will be split
2502 * up into by the NIC. The frame is split into L3 header, L4 Header,
2503 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504 * is split into 3 fragments. As of now only single buffer mode is
2505 * supported.
2506 * Return Value:
2507 * SUCCESS on success or an appropriate -ve value on failure.
2508 */
2509 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2510 int from_card_up)
2511 {
2512 struct sk_buff *skb;
2513 struct RxD_t *rxdp;
2514 int off, size, block_no, block_no1;
2515 u32 alloc_tab = 0;
2516 u32 alloc_cnt;
2517 u64 tmp;
2518 struct buffAdd *ba;
2519 struct RxD_t *first_rxdp = NULL;
2520 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2521 int rxd_index = 0;
2522 struct RxD1 *rxdp1;
2523 struct RxD3 *rxdp3;
2524 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2525
2526 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2527
2528 block_no1 = ring->rx_curr_get_info.block_index;
2529 while (alloc_tab < alloc_cnt) {
2530 block_no = ring->rx_curr_put_info.block_index;
2531
2532 off = ring->rx_curr_put_info.offset;
2533
2534 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2535
2536 rxd_index = off + 1;
2537 if (block_no)
2538 rxd_index += (block_no * ring->rxd_count);
2539
2540 if ((block_no == block_no1) &&
2541 (off == ring->rx_curr_get_info.offset) &&
2542 (rxdp->Host_Control)) {
2543 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2544 ring->dev->name);
2545 goto end;
2546 }
2547 if (off && (off == ring->rxd_count)) {
2548 ring->rx_curr_put_info.block_index++;
2549 if (ring->rx_curr_put_info.block_index ==
2550 ring->block_count)
2551 ring->rx_curr_put_info.block_index = 0;
2552 block_no = ring->rx_curr_put_info.block_index;
2553 off = 0;
2554 ring->rx_curr_put_info.offset = off;
2555 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2556 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2557 ring->dev->name, rxdp);
2558
2559 }
2560
2561 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2562 ((ring->rxd_mode == RXD_MODE_3B) &&
2563 (rxdp->Control_2 & s2BIT(0)))) {
2564 ring->rx_curr_put_info.offset = off;
2565 goto end;
2566 }
2567 /* calculate size of skb based on ring mode */
2568 size = ring->mtu +
2569 HEADER_ETHERNET_II_802_3_SIZE +
2570 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2571 if (ring->rxd_mode == RXD_MODE_1)
2572 size += NET_IP_ALIGN;
2573 else
2574 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2575
2576 /* allocate skb */
2577 skb = dev_alloc_skb(size);
2578 if (!skb) {
2579 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2580 ring->dev->name);
2581 if (first_rxdp) {
2582 wmb();
2583 first_rxdp->Control_1 |= RXD_OWN_XENA;
2584 }
2585 swstats->mem_alloc_fail_cnt++;
2586
2587 return -ENOMEM ;
2588 }
2589 swstats->mem_allocated += skb->truesize;
2590
2591 if (ring->rxd_mode == RXD_MODE_1) {
2592 /* 1 buffer mode - normal operation mode */
2593 rxdp1 = (struct RxD1 *)rxdp;
2594 memset(rxdp, 0, sizeof(struct RxD1));
2595 skb_reserve(skb, NET_IP_ALIGN);
2596 rxdp1->Buffer0_ptr =
2597 pci_map_single(ring->pdev, skb->data,
2598 size - NET_IP_ALIGN,
2599 PCI_DMA_FROMDEVICE);
2600 if (pci_dma_mapping_error(nic->pdev,
2601 rxdp1->Buffer0_ptr))
2602 goto pci_map_failed;
2603
2604 rxdp->Control_2 =
2605 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2606 rxdp->Host_Control = (unsigned long)skb;
2607 } else if (ring->rxd_mode == RXD_MODE_3B) {
2608 /*
2609 * 2 buffer mode -
2610 * 2 buffer mode provides 128
2611 * byte aligned receive buffers.
2612 */
2613
2614 rxdp3 = (struct RxD3 *)rxdp;
2615 /* save buffer pointers to avoid frequent dma mapping */
2616 Buffer0_ptr = rxdp3->Buffer0_ptr;
2617 Buffer1_ptr = rxdp3->Buffer1_ptr;
2618 memset(rxdp, 0, sizeof(struct RxD3));
2619 /* restore the buffer pointers for dma sync*/
2620 rxdp3->Buffer0_ptr = Buffer0_ptr;
2621 rxdp3->Buffer1_ptr = Buffer1_ptr;
2622
2623 ba = &ring->ba[block_no][off];
2624 skb_reserve(skb, BUF0_LEN);
2625 tmp = (u64)(unsigned long)skb->data;
2626 tmp += ALIGN_SIZE;
2627 tmp &= ~ALIGN_SIZE;
2628 skb->data = (void *) (unsigned long)tmp;
2629 skb_reset_tail_pointer(skb);
2630
2631 if (from_card_up) {
2632 rxdp3->Buffer0_ptr =
2633 pci_map_single(ring->pdev, ba->ba_0,
2634 BUF0_LEN,
2635 PCI_DMA_FROMDEVICE);
2636 if (pci_dma_mapping_error(nic->pdev,
2637 rxdp3->Buffer0_ptr))
2638 goto pci_map_failed;
2639 } else
2640 pci_dma_sync_single_for_device(ring->pdev,
2641 (dma_addr_t)rxdp3->Buffer0_ptr,
2642 BUF0_LEN,
2643 PCI_DMA_FROMDEVICE);
2644
2645 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2646 if (ring->rxd_mode == RXD_MODE_3B) {
2647 /* Two buffer mode */
2648
2649 /*
2650 * Buffer2 will have L3/L4 header plus
2651 * L4 payload
2652 */
2653 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2654 skb->data,
2655 ring->mtu + 4,
2656 PCI_DMA_FROMDEVICE);
2657
2658 if (pci_dma_mapping_error(nic->pdev,
2659 rxdp3->Buffer2_ptr))
2660 goto pci_map_failed;
2661
2662 if (from_card_up) {
2663 rxdp3->Buffer1_ptr =
2664 pci_map_single(ring->pdev,
2665 ba->ba_1,
2666 BUF1_LEN,
2667 PCI_DMA_FROMDEVICE);
2668
2669 if (pci_dma_mapping_error(nic->pdev,
2670 rxdp3->Buffer1_ptr)) {
2671 pci_unmap_single(ring->pdev,
2672 (dma_addr_t)(unsigned long)
2673 skb->data,
2674 ring->mtu + 4,
2675 PCI_DMA_FROMDEVICE);
2676 goto pci_map_failed;
2677 }
2678 }
2679 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681 (ring->mtu + 4);
2682 }
2683 rxdp->Control_2 |= s2BIT(0);
2684 rxdp->Host_Control = (unsigned long) (skb);
2685 }
2686 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687 rxdp->Control_1 |= RXD_OWN_XENA;
2688 off++;
2689 if (off == (ring->rxd_count + 1))
2690 off = 0;
2691 ring->rx_curr_put_info.offset = off;
2692
2693 rxdp->Control_2 |= SET_RXD_MARKER;
2694 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695 if (first_rxdp) {
2696 wmb();
2697 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698 }
2699 first_rxdp = rxdp;
2700 }
2701 ring->rx_bufs_left += 1;
2702 alloc_tab++;
2703 }
2704
2705 end:
2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2709 */
2710 if (first_rxdp) {
2711 wmb();
2712 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713 }
2714
2715 return SUCCESS;
2716
2717 pci_map_failed:
2718 swstats->pci_map_fail_cnt++;
2719 swstats->mem_freed += skb->truesize;
2720 dev_kfree_skb_irq(skb);
2721 return -ENOMEM;
2722 }
2723
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725 {
2726 struct net_device *dev = sp->dev;
2727 int j;
2728 struct sk_buff *skb;
2729 struct RxD_t *rxdp;
2730 struct RxD1 *rxdp1;
2731 struct RxD3 *rxdp3;
2732 struct mac_info *mac_control = &sp->mac_control;
2733 struct stat_block *stats = mac_control->stats_info;
2734 struct swStat *swstats = &stats->sw_stat;
2735
2736 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2737 rxdp = mac_control->rings[ring_no].
2738 rx_blocks[blk].rxds[j].virt_addr;
2739 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2740 if (!skb)
2741 continue;
2742 if (sp->rxd_mode == RXD_MODE_1) {
2743 rxdp1 = (struct RxD1 *)rxdp;
2744 pci_unmap_single(sp->pdev,
2745 (dma_addr_t)rxdp1->Buffer0_ptr,
2746 dev->mtu +
2747 HEADER_ETHERNET_II_802_3_SIZE +
2748 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2749 PCI_DMA_FROMDEVICE);
2750 memset(rxdp, 0, sizeof(struct RxD1));
2751 } else if (sp->rxd_mode == RXD_MODE_3B) {
2752 rxdp3 = (struct RxD3 *)rxdp;
2753 pci_unmap_single(sp->pdev,
2754 (dma_addr_t)rxdp3->Buffer0_ptr,
2755 BUF0_LEN,
2756 PCI_DMA_FROMDEVICE);
2757 pci_unmap_single(sp->pdev,
2758 (dma_addr_t)rxdp3->Buffer1_ptr,
2759 BUF1_LEN,
2760 PCI_DMA_FROMDEVICE);
2761 pci_unmap_single(sp->pdev,
2762 (dma_addr_t)rxdp3->Buffer2_ptr,
2763 dev->mtu + 4,
2764 PCI_DMA_FROMDEVICE);
2765 memset(rxdp, 0, sizeof(struct RxD3));
2766 }
2767 swstats->mem_freed += skb->truesize;
2768 dev_kfree_skb(skb);
2769 mac_control->rings[ring_no].rx_bufs_left -= 1;
2770 }
2771 }
2772
2773 /**
2774 * free_rx_buffers - Frees all Rx buffers
2775 * @sp: device private variable.
2776 * Description:
2777 * This function will free all Rx buffers allocated by host.
2778 * Return Value:
2779 * NONE.
2780 */
2781
2782 static void free_rx_buffers(struct s2io_nic *sp)
2783 {
2784 struct net_device *dev = sp->dev;
2785 int i, blk = 0, buf_cnt = 0;
2786 struct config_param *config = &sp->config;
2787 struct mac_info *mac_control = &sp->mac_control;
2788
2789 for (i = 0; i < config->rx_ring_num; i++) {
2790 struct ring_info *ring = &mac_control->rings[i];
2791
2792 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2793 free_rxd_blk(sp, i, blk);
2794
2795 ring->rx_curr_put_info.block_index = 0;
2796 ring->rx_curr_get_info.block_index = 0;
2797 ring->rx_curr_put_info.offset = 0;
2798 ring->rx_curr_get_info.offset = 0;
2799 ring->rx_bufs_left = 0;
2800 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2801 dev->name, buf_cnt, i);
2802 }
2803 }
2804
2805 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2806 {
2807 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2808 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2809 ring->dev->name);
2810 }
2811 return 0;
2812 }
2813
2814 /**
2815 * s2io_poll - Rx interrupt handler for NAPI support
2816 * @napi : pointer to the napi structure.
2817 * @budget : The number of packets that were budgeted to be processed
2818 * during one pass through the 'Poll" function.
2819 * Description:
2820 * Comes into picture only if NAPI support has been incorporated. It does
2821 * the same thing that rx_intr_handler does, but not in a interrupt context
2822 * also It will process only a given number of packets.
2823 * Return value:
2824 * 0 on success and 1 if there are No Rx packets to be processed.
2825 */
2826
2827 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2828 {
2829 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2830 struct net_device *dev = ring->dev;
2831 int pkts_processed = 0;
2832 u8 __iomem *addr = NULL;
2833 u8 val8 = 0;
2834 struct s2io_nic *nic = netdev_priv(dev);
2835 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2836 int budget_org = budget;
2837
2838 if (unlikely(!is_s2io_card_up(nic)))
2839 return 0;
2840
2841 pkts_processed = rx_intr_handler(ring, budget);
2842 s2io_chk_rx_buffers(nic, ring);
2843
2844 if (pkts_processed < budget_org) {
2845 napi_complete(napi);
2846 /*Re Enable MSI-Rx Vector*/
2847 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2848 addr += 7 - ring->ring_no;
2849 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2850 writeb(val8, addr);
2851 val8 = readb(addr);
2852 }
2853 return pkts_processed;
2854 }
2855
2856 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2857 {
2858 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2859 int pkts_processed = 0;
2860 int ring_pkts_processed, i;
2861 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2862 int budget_org = budget;
2863 struct config_param *config = &nic->config;
2864 struct mac_info *mac_control = &nic->mac_control;
2865
2866 if (unlikely(!is_s2io_card_up(nic)))
2867 return 0;
2868
2869 for (i = 0; i < config->rx_ring_num; i++) {
2870 struct ring_info *ring = &mac_control->rings[i];
2871 ring_pkts_processed = rx_intr_handler(ring, budget);
2872 s2io_chk_rx_buffers(nic, ring);
2873 pkts_processed += ring_pkts_processed;
2874 budget -= ring_pkts_processed;
2875 if (budget <= 0)
2876 break;
2877 }
2878 if (pkts_processed < budget_org) {
2879 napi_complete(napi);
2880 /* Re enable the Rx interrupts for the ring */
2881 writeq(0, &bar0->rx_traffic_mask);
2882 readl(&bar0->rx_traffic_mask);
2883 }
2884 return pkts_processed;
2885 }
2886
2887 #ifdef CONFIG_NET_POLL_CONTROLLER
2888 /**
2889 * s2io_netpoll - netpoll event handler entry point
2890 * @dev : pointer to the device structure.
2891 * Description:
2892 * This function will be called by upper layer to check for events on the
2893 * interface in situations where interrupts are disabled. It is used for
2894 * specific in-kernel networking tasks, such as remote consoles and kernel
2895 * debugging over the network (example netdump in RedHat).
2896 */
2897 static void s2io_netpoll(struct net_device *dev)
2898 {
2899 struct s2io_nic *nic = netdev_priv(dev);
2900 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2901 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2902 int i;
2903 struct config_param *config = &nic->config;
2904 struct mac_info *mac_control = &nic->mac_control;
2905
2906 if (pci_channel_offline(nic->pdev))
2907 return;
2908
2909 disable_irq(dev->irq);
2910
2911 writeq(val64, &bar0->rx_traffic_int);
2912 writeq(val64, &bar0->tx_traffic_int);
2913
2914 /* we need to free up the transmitted skbufs or else netpoll will
2915 * run out of skbs and will fail and eventually netpoll application such
2916 * as netdump will fail.
2917 */
2918 for (i = 0; i < config->tx_fifo_num; i++)
2919 tx_intr_handler(&mac_control->fifos[i]);
2920
2921 /* check for received packet and indicate up to network */
2922 for (i = 0; i < config->rx_ring_num; i++) {
2923 struct ring_info *ring = &mac_control->rings[i];
2924
2925 rx_intr_handler(ring, 0);
2926 }
2927
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2930
2931 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2932 DBG_PRINT(INFO_DBG,
2933 "%s: Out of memory in Rx Netpoll!!\n",
2934 dev->name);
2935 break;
2936 }
2937 }
2938 enable_irq(dev->irq);
2939 }
2940 #endif
2941
2942 /**
2943 * rx_intr_handler - Rx interrupt handler
2944 * @ring_info: per ring structure.
2945 * @budget: budget for napi processing.
2946 * Description:
2947 * If the interrupt is because of a received frame or if the
2948 * receive ring contains fresh as yet un-processed frames,this function is
2949 * called. It picks out the RxD at which place the last Rx processing had
2950 * stopped and sends the skb to the OSM's Rx handler and then increments
2951 * the offset.
2952 * Return Value:
2953 * No. of napi packets processed.
2954 */
2955 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2956 {
2957 int get_block, put_block;
2958 struct rx_curr_get_info get_info, put_info;
2959 struct RxD_t *rxdp;
2960 struct sk_buff *skb;
2961 int pkt_cnt = 0, napi_pkts = 0;
2962 int i;
2963 struct RxD1 *rxdp1;
2964 struct RxD3 *rxdp3;
2965
2966 get_info = ring_data->rx_curr_get_info;
2967 get_block = get_info.block_index;
2968 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2969 put_block = put_info.block_index;
2970 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2971
2972 while (RXD_IS_UP2DT(rxdp)) {
2973 /*
2974 * If your are next to put index then it's
2975 * FIFO full condition
2976 */
2977 if ((get_block == put_block) &&
2978 (get_info.offset + 1) == put_info.offset) {
2979 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2980 ring_data->dev->name);
2981 break;
2982 }
2983 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2984 if (skb == NULL) {
2985 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2986 ring_data->dev->name);
2987 return 0;
2988 }
2989 if (ring_data->rxd_mode == RXD_MODE_1) {
2990 rxdp1 = (struct RxD1 *)rxdp;
2991 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2992 rxdp1->Buffer0_ptr,
2993 ring_data->mtu +
2994 HEADER_ETHERNET_II_802_3_SIZE +
2995 HEADER_802_2_SIZE +
2996 HEADER_SNAP_SIZE,
2997 PCI_DMA_FROMDEVICE);
2998 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2999 rxdp3 = (struct RxD3 *)rxdp;
3000 pci_dma_sync_single_for_cpu(ring_data->pdev,
3001 (dma_addr_t)rxdp3->Buffer0_ptr,
3002 BUF0_LEN,
3003 PCI_DMA_FROMDEVICE);
3004 pci_unmap_single(ring_data->pdev,
3005 (dma_addr_t)rxdp3->Buffer2_ptr,
3006 ring_data->mtu + 4,
3007 PCI_DMA_FROMDEVICE);
3008 }
3009 prefetch(skb->data);
3010 rx_osm_handler(ring_data, rxdp);
3011 get_info.offset++;
3012 ring_data->rx_curr_get_info.offset = get_info.offset;
3013 rxdp = ring_data->rx_blocks[get_block].
3014 rxds[get_info.offset].virt_addr;
3015 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3016 get_info.offset = 0;
3017 ring_data->rx_curr_get_info.offset = get_info.offset;
3018 get_block++;
3019 if (get_block == ring_data->block_count)
3020 get_block = 0;
3021 ring_data->rx_curr_get_info.block_index = get_block;
3022 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3023 }
3024
3025 if (ring_data->nic->config.napi) {
3026 budget--;
3027 napi_pkts++;
3028 if (!budget)
3029 break;
3030 }
3031 pkt_cnt++;
3032 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3033 break;
3034 }
3035 if (ring_data->lro) {
3036 /* Clear all LRO sessions before exiting */
3037 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3038 struct lro *lro = &ring_data->lro0_n[i];
3039 if (lro->in_use) {
3040 update_L3L4_header(ring_data->nic, lro);
3041 queue_rx_frame(lro->parent, lro->vlan_tag);
3042 clear_lro_session(lro);
3043 }
3044 }
3045 }
3046 return napi_pkts;
3047 }
3048
3049 /**
3050 * tx_intr_handler - Transmit interrupt handler
3051 * @nic : device private variable
3052 * Description:
3053 * If an interrupt was raised to indicate DMA complete of the
3054 * Tx packet, this function is called. It identifies the last TxD
3055 * whose buffer was freed and frees all skbs whose data have already
3056 * DMA'ed into the NICs internal memory.
3057 * Return Value:
3058 * NONE
3059 */
3060
3061 static void tx_intr_handler(struct fifo_info *fifo_data)
3062 {
3063 struct s2io_nic *nic = fifo_data->nic;
3064 struct tx_curr_get_info get_info, put_info;
3065 struct sk_buff *skb = NULL;
3066 struct TxD *txdlp;
3067 int pkt_cnt = 0;
3068 unsigned long flags = 0;
3069 u8 err_mask;
3070 struct stat_block *stats = nic->mac_control.stats_info;
3071 struct swStat *swstats = &stats->sw_stat;
3072
3073 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3074 return;
3075
3076 get_info = fifo_data->tx_curr_get_info;
3077 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3078 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3079 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3080 (get_info.offset != put_info.offset) &&
3081 (txdlp->Host_Control)) {
3082 /* Check for TxD errors */
3083 if (txdlp->Control_1 & TXD_T_CODE) {
3084 unsigned long long err;
3085 err = txdlp->Control_1 & TXD_T_CODE;
3086 if (err & 0x1) {
3087 swstats->parity_err_cnt++;
3088 }
3089
3090 /* update t_code statistics */
3091 err_mask = err >> 48;
3092 switch (err_mask) {
3093 case 2:
3094 swstats->tx_buf_abort_cnt++;
3095 break;
3096
3097 case 3:
3098 swstats->tx_desc_abort_cnt++;
3099 break;
3100
3101 case 7:
3102 swstats->tx_parity_err_cnt++;
3103 break;
3104
3105 case 10:
3106 swstats->tx_link_loss_cnt++;
3107 break;
3108
3109 case 15:
3110 swstats->tx_list_proc_err_cnt++;
3111 break;
3112 }
3113 }
3114
3115 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3116 if (skb == NULL) {
3117 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3118 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3119 __func__);
3120 return;
3121 }
3122 pkt_cnt++;
3123
3124 /* Updating the statistics block */
3125 swstats->mem_freed += skb->truesize;
3126 dev_kfree_skb_irq(skb);
3127
3128 get_info.offset++;
3129 if (get_info.offset == get_info.fifo_len + 1)
3130 get_info.offset = 0;
3131 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3132 fifo_data->tx_curr_get_info.offset = get_info.offset;
3133 }
3134
3135 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3136
3137 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3138 }
3139
3140 /**
3141 * s2io_mdio_write - Function to write in to MDIO registers
3142 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3143 * @addr : address value
3144 * @value : data value
3145 * @dev : pointer to net_device structure
3146 * Description:
3147 * This function is used to write values to the MDIO registers
3148 * NONE
3149 */
3150 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3151 struct net_device *dev)
3152 {
3153 u64 val64;
3154 struct s2io_nic *sp = netdev_priv(dev);
3155 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3156
3157 /* address transaction */
3158 val64 = MDIO_MMD_INDX_ADDR(addr) |
3159 MDIO_MMD_DEV_ADDR(mmd_type) |
3160 MDIO_MMS_PRT_ADDR(0x0);
3161 writeq(val64, &bar0->mdio_control);
3162 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3163 writeq(val64, &bar0->mdio_control);
3164 udelay(100);
3165
3166 /* Data transaction */
3167 val64 = MDIO_MMD_INDX_ADDR(addr) |
3168 MDIO_MMD_DEV_ADDR(mmd_type) |
3169 MDIO_MMS_PRT_ADDR(0x0) |
3170 MDIO_MDIO_DATA(value) |
3171 MDIO_OP(MDIO_OP_WRITE_TRANS);
3172 writeq(val64, &bar0->mdio_control);
3173 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3174 writeq(val64, &bar0->mdio_control);
3175 udelay(100);
3176
3177 val64 = MDIO_MMD_INDX_ADDR(addr) |
3178 MDIO_MMD_DEV_ADDR(mmd_type) |
3179 MDIO_MMS_PRT_ADDR(0x0) |
3180 MDIO_OP(MDIO_OP_READ_TRANS);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3184 udelay(100);
3185 }
3186
3187 /**
3188 * s2io_mdio_read - Function to write in to MDIO registers
3189 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3190 * @addr : address value
3191 * @dev : pointer to net_device structure
3192 * Description:
3193 * This function is used to read values to the MDIO registers
3194 * NONE
3195 */
3196 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3197 {
3198 u64 val64 = 0x0;
3199 u64 rval64 = 0x0;
3200 struct s2io_nic *sp = netdev_priv(dev);
3201 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3202
3203 /* address transaction */
3204 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3205 | MDIO_MMD_DEV_ADDR(mmd_type)
3206 | MDIO_MMS_PRT_ADDR(0x0));
3207 writeq(val64, &bar0->mdio_control);
3208 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3209 writeq(val64, &bar0->mdio_control);
3210 udelay(100);
3211
3212 /* Data transaction */
3213 val64 = MDIO_MMD_INDX_ADDR(addr) |
3214 MDIO_MMD_DEV_ADDR(mmd_type) |
3215 MDIO_MMS_PRT_ADDR(0x0) |
3216 MDIO_OP(MDIO_OP_READ_TRANS);
3217 writeq(val64, &bar0->mdio_control);
3218 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64, &bar0->mdio_control);
3220 udelay(100);
3221
3222 /* Read the value from regs */
3223 rval64 = readq(&bar0->mdio_control);
3224 rval64 = rval64 & 0xFFFF0000;
3225 rval64 = rval64 >> 16;
3226 return rval64;
3227 }
3228
3229 /**
3230 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3231 * @counter : counter value to be updated
3232 * @flag : flag to indicate the status
3233 * @type : counter type
3234 * Description:
3235 * This function is to check the status of the xpak counters value
3236 * NONE
3237 */
3238
3239 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3240 u16 flag, u16 type)
3241 {
3242 u64 mask = 0x3;
3243 u64 val64;
3244 int i;
3245 for (i = 0; i < index; i++)
3246 mask = mask << 0x2;
3247
3248 if (flag > 0) {
3249 *counter = *counter + 1;
3250 val64 = *regs_stat & mask;
3251 val64 = val64 >> (index * 0x2);
3252 val64 = val64 + 1;
3253 if (val64 == 3) {
3254 switch (type) {
3255 case 1:
3256 DBG_PRINT(ERR_DBG,
3257 "Take Xframe NIC out of service.\n");
3258 DBG_PRINT(ERR_DBG,
3259 "Excessive temperatures may result in premature transceiver failure.\n");
3260 break;
3261 case 2:
3262 DBG_PRINT(ERR_DBG,
3263 "Take Xframe NIC out of service.\n");
3264 DBG_PRINT(ERR_DBG,
3265 "Excessive bias currents may indicate imminent laser diode failure.\n");
3266 break;
3267 case 3:
3268 DBG_PRINT(ERR_DBG,
3269 "Take Xframe NIC out of service.\n");
3270 DBG_PRINT(ERR_DBG,
3271 "Excessive laser output power may saturate far-end receiver.\n");
3272 break;
3273 default:
3274 DBG_PRINT(ERR_DBG,
3275 "Incorrect XPAK Alarm type\n");
3276 }
3277 val64 = 0x0;
3278 }
3279 val64 = val64 << (index * 0x2);
3280 *regs_stat = (*regs_stat & (~mask)) | (val64);
3281
3282 } else {
3283 *regs_stat = *regs_stat & (~mask);
3284 }
3285 }
3286
3287 /**
3288 * s2io_updt_xpak_counter - Function to update the xpak counters
3289 * @dev : pointer to net_device struct
3290 * Description:
3291 * This function is to upate the status of the xpak counters value
3292 * NONE
3293 */
3294 static void s2io_updt_xpak_counter(struct net_device *dev)
3295 {
3296 u16 flag = 0x0;
3297 u16 type = 0x0;
3298 u16 val16 = 0x0;
3299 u64 val64 = 0x0;
3300 u64 addr = 0x0;
3301
3302 struct s2io_nic *sp = netdev_priv(dev);
3303 struct stat_block *stats = sp->mac_control.stats_info;
3304 struct xpakStat *xstats = &stats->xpak_stat;
3305
3306 /* Check the communication with the MDIO slave */
3307 addr = MDIO_CTRL1;
3308 val64 = 0x0;
3309 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3310 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3311 DBG_PRINT(ERR_DBG,
3312 "ERR: MDIO slave access failed - Returned %llx\n",
3313 (unsigned long long)val64);
3314 return;
3315 }
3316
3317 /* Check for the expected value of control reg 1 */
3318 if (val64 != MDIO_CTRL1_SPEED10G) {
3319 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3320 "Returned: %llx- Expected: 0x%x\n",
3321 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3322 return;
3323 }
3324
3325 /* Loading the DOM register to MDIO register */
3326 addr = 0xA100;
3327 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3328 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3329
3330 /* Reading the Alarm flags */
3331 addr = 0xA070;
3332 val64 = 0x0;
3333 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3334
3335 flag = CHECKBIT(val64, 0x7);
3336 type = 1;
3337 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3338 &xstats->xpak_regs_stat,
3339 0x0, flag, type);
3340
3341 if (CHECKBIT(val64, 0x6))
3342 xstats->alarm_transceiver_temp_low++;
3343
3344 flag = CHECKBIT(val64, 0x3);
3345 type = 2;
3346 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3347 &xstats->xpak_regs_stat,
3348 0x2, flag, type);
3349
3350 if (CHECKBIT(val64, 0x2))
3351 xstats->alarm_laser_bias_current_low++;
3352
3353 flag = CHECKBIT(val64, 0x1);
3354 type = 3;
3355 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3356 &xstats->xpak_regs_stat,
3357 0x4, flag, type);
3358
3359 if (CHECKBIT(val64, 0x0))
3360 xstats->alarm_laser_output_power_low++;
3361
3362 /* Reading the Warning flags */
3363 addr = 0xA074;
3364 val64 = 0x0;
3365 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3366
3367 if (CHECKBIT(val64, 0x7))
3368 xstats->warn_transceiver_temp_high++;
3369
3370 if (CHECKBIT(val64, 0x6))
3371 xstats->warn_transceiver_temp_low++;
3372
3373 if (CHECKBIT(val64, 0x3))
3374 xstats->warn_laser_bias_current_high++;
3375
3376 if (CHECKBIT(val64, 0x2))
3377 xstats->warn_laser_bias_current_low++;
3378
3379 if (CHECKBIT(val64, 0x1))
3380 xstats->warn_laser_output_power_high++;
3381
3382 if (CHECKBIT(val64, 0x0))
3383 xstats->warn_laser_output_power_low++;
3384 }
3385
3386 /**
3387 * wait_for_cmd_complete - waits for a command to complete.
3388 * @sp : private member of the device structure, which is a pointer to the
3389 * s2io_nic structure.
3390 * Description: Function that waits for a command to Write into RMAC
3391 * ADDR DATA registers to be completed and returns either success or
3392 * error depending on whether the command was complete or not.
3393 * Return value:
3394 * SUCCESS on success and FAILURE on failure.
3395 */
3396
3397 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3398 int bit_state)
3399 {
3400 int ret = FAILURE, cnt = 0, delay = 1;
3401 u64 val64;
3402
3403 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3404 return FAILURE;
3405
3406 do {
3407 val64 = readq(addr);
3408 if (bit_state == S2IO_BIT_RESET) {
3409 if (!(val64 & busy_bit)) {
3410 ret = SUCCESS;
3411 break;
3412 }
3413 } else {
3414 if (val64 & busy_bit) {
3415 ret = SUCCESS;
3416 break;
3417 }
3418 }
3419
3420 if (in_interrupt())
3421 mdelay(delay);
3422 else
3423 msleep(delay);
3424
3425 if (++cnt >= 10)
3426 delay = 50;
3427 } while (cnt < 20);
3428 return ret;
3429 }
3430 /*
3431 * check_pci_device_id - Checks if the device id is supported
3432 * @id : device id
3433 * Description: Function to check if the pci device id is supported by driver.
3434 * Return value: Actual device id if supported else PCI_ANY_ID
3435 */
3436 static u16 check_pci_device_id(u16 id)
3437 {
3438 switch (id) {
3439 case PCI_DEVICE_ID_HERC_WIN:
3440 case PCI_DEVICE_ID_HERC_UNI:
3441 return XFRAME_II_DEVICE;
3442 case PCI_DEVICE_ID_S2IO_UNI:
3443 case PCI_DEVICE_ID_S2IO_WIN:
3444 return XFRAME_I_DEVICE;
3445 default:
3446 return PCI_ANY_ID;
3447 }
3448 }
3449
3450 /**
3451 * s2io_reset - Resets the card.
3452 * @sp : private member of the device structure.
3453 * Description: Function to Reset the card. This function then also
3454 * restores the previously saved PCI configuration space registers as
3455 * the card reset also resets the configuration space.
3456 * Return value:
3457 * void.
3458 */
3459
3460 static void s2io_reset(struct s2io_nic *sp)
3461 {
3462 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3463 u64 val64;
3464 u16 subid, pci_cmd;
3465 int i;
3466 u16 val16;
3467 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3468 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3469 struct stat_block *stats;
3470 struct swStat *swstats;
3471
3472 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3473 __func__, pci_name(sp->pdev));
3474
3475 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3476 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3477
3478 val64 = SW_RESET_ALL;
3479 writeq(val64, &bar0->sw_reset);
3480 if (strstr(sp->product_name, "CX4"))
3481 msleep(750);
3482 msleep(250);
3483 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3484
3485 /* Restore the PCI state saved during initialization. */
3486 pci_restore_state(sp->pdev);
3487 pci_save_state(sp->pdev);
3488 pci_read_config_word(sp->pdev, 0x2, &val16);
3489 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3490 break;
3491 msleep(200);
3492 }
3493
3494 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3495 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3496
3497 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3498
3499 s2io_init_pci(sp);
3500
3501 /* Set swapper to enable I/O register access */
3502 s2io_set_swapper(sp);
3503
3504 /* restore mac_addr entries */
3505 do_s2io_restore_unicast_mc(sp);
3506
3507 /* Restore the MSIX table entries from local variables */
3508 restore_xmsi_data(sp);
3509
3510 /* Clear certain PCI/PCI-X fields after reset */
3511 if (sp->device_type == XFRAME_II_DEVICE) {
3512 /* Clear "detected parity error" bit */
3513 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3514
3515 /* Clearing PCIX Ecc status register */
3516 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3517
3518 /* Clearing PCI_STATUS error reflected here */
3519 writeq(s2BIT(62), &bar0->txpic_int_reg);
3520 }
3521
3522 /* Reset device statistics maintained by OS */
3523 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3524
3525 stats = sp->mac_control.stats_info;
3526 swstats = &stats->sw_stat;
3527
3528 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3529 up_cnt = swstats->link_up_cnt;
3530 down_cnt = swstats->link_down_cnt;
3531 up_time = swstats->link_up_time;
3532 down_time = swstats->link_down_time;
3533 reset_cnt = swstats->soft_reset_cnt;
3534 mem_alloc_cnt = swstats->mem_allocated;
3535 mem_free_cnt = swstats->mem_freed;
3536 watchdog_cnt = swstats->watchdog_timer_cnt;
3537
3538 memset(stats, 0, sizeof(struct stat_block));
3539
3540 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3541 swstats->link_up_cnt = up_cnt;
3542 swstats->link_down_cnt = down_cnt;
3543 swstats->link_up_time = up_time;
3544 swstats->link_down_time = down_time;
3545 swstats->soft_reset_cnt = reset_cnt;
3546 swstats->mem_allocated = mem_alloc_cnt;
3547 swstats->mem_freed = mem_free_cnt;
3548 swstats->watchdog_timer_cnt = watchdog_cnt;
3549
3550 /* SXE-002: Configure link and activity LED to turn it off */
3551 subid = sp->pdev->subsystem_device;
3552 if (((subid & 0xFF) >= 0x07) &&
3553 (sp->device_type == XFRAME_I_DEVICE)) {
3554 val64 = readq(&bar0->gpio_control);
3555 val64 |= 0x0000800000000000ULL;
3556 writeq(val64, &bar0->gpio_control);
3557 val64 = 0x0411040400000000ULL;
3558 writeq(val64, (void __iomem *)bar0 + 0x2700);
3559 }
3560
3561 /*
3562 * Clear spurious ECC interrupts that would have occurred on
3563 * XFRAME II cards after reset.
3564 */
3565 if (sp->device_type == XFRAME_II_DEVICE) {
3566 val64 = readq(&bar0->pcc_err_reg);
3567 writeq(val64, &bar0->pcc_err_reg);
3568 }
3569
3570 sp->device_enabled_once = false;
3571 }
3572
3573 /**
3574 * s2io_set_swapper - to set the swapper controle on the card
3575 * @sp : private member of the device structure,
3576 * pointer to the s2io_nic structure.
3577 * Description: Function to set the swapper control on the card
3578 * correctly depending on the 'endianness' of the system.
3579 * Return value:
3580 * SUCCESS on success and FAILURE on failure.
3581 */
3582
3583 static int s2io_set_swapper(struct s2io_nic *sp)
3584 {
3585 struct net_device *dev = sp->dev;
3586 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3587 u64 val64, valt, valr;
3588
3589 /*
3590 * Set proper endian settings and verify the same by reading
3591 * the PIF Feed-back register.
3592 */
3593
3594 val64 = readq(&bar0->pif_rd_swapper_fb);
3595 if (val64 != 0x0123456789ABCDEFULL) {
3596 int i = 0;
3597 static const u64 value[] = {
3598 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3599 0x8100008181000081ULL, /* FE=1, SE=0 */
3600 0x4200004242000042ULL, /* FE=0, SE=1 */
3601 0 /* FE=0, SE=0 */
3602 };
3603
3604 while (i < 4) {
3605 writeq(value[i], &bar0->swapper_ctrl);
3606 val64 = readq(&bar0->pif_rd_swapper_fb);
3607 if (val64 == 0x0123456789ABCDEFULL)
3608 break;
3609 i++;
3610 }
3611 if (i == 4) {
3612 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3613 "feedback read %llx\n",
3614 dev->name, (unsigned long long)val64);
3615 return FAILURE;
3616 }
3617 valr = value[i];
3618 } else {
3619 valr = readq(&bar0->swapper_ctrl);
3620 }
3621
3622 valt = 0x0123456789ABCDEFULL;
3623 writeq(valt, &bar0->xmsi_address);
3624 val64 = readq(&bar0->xmsi_address);
3625
3626 if (val64 != valt) {
3627 int i = 0;
3628 static const u64 value[] = {
3629 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3630 0x0081810000818100ULL, /* FE=1, SE=0 */
3631 0x0042420000424200ULL, /* FE=0, SE=1 */
3632 0 /* FE=0, SE=0 */
3633 };
3634
3635 while (i < 4) {
3636 writeq((value[i] | valr), &bar0->swapper_ctrl);
3637 writeq(valt, &bar0->xmsi_address);
3638 val64 = readq(&bar0->xmsi_address);
3639 if (val64 == valt)
3640 break;
3641 i++;
3642 }
3643 if (i == 4) {
3644 unsigned long long x = val64;
3645 DBG_PRINT(ERR_DBG,
3646 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3647 return FAILURE;
3648 }
3649 }
3650 val64 = readq(&bar0->swapper_ctrl);
3651 val64 &= 0xFFFF000000000000ULL;
3652
3653 #ifdef __BIG_ENDIAN
3654 /*
3655 * The device by default set to a big endian format, so a
3656 * big endian driver need not set anything.
3657 */
3658 val64 |= (SWAPPER_CTRL_TXP_FE |
3659 SWAPPER_CTRL_TXP_SE |
3660 SWAPPER_CTRL_TXD_R_FE |
3661 SWAPPER_CTRL_TXD_W_FE |
3662 SWAPPER_CTRL_TXF_R_FE |
3663 SWAPPER_CTRL_RXD_R_FE |
3664 SWAPPER_CTRL_RXD_W_FE |
3665 SWAPPER_CTRL_RXF_W_FE |
3666 SWAPPER_CTRL_XMSI_FE |
3667 SWAPPER_CTRL_STATS_FE |
3668 SWAPPER_CTRL_STATS_SE);
3669 if (sp->config.intr_type == INTA)
3670 val64 |= SWAPPER_CTRL_XMSI_SE;
3671 writeq(val64, &bar0->swapper_ctrl);
3672 #else
3673 /*
3674 * Initially we enable all bits to make it accessible by the
3675 * driver, then we selectively enable only those bits that
3676 * we want to set.
3677 */
3678 val64 |= (SWAPPER_CTRL_TXP_FE |
3679 SWAPPER_CTRL_TXP_SE |
3680 SWAPPER_CTRL_TXD_R_FE |
3681 SWAPPER_CTRL_TXD_R_SE |
3682 SWAPPER_CTRL_TXD_W_FE |
3683 SWAPPER_CTRL_TXD_W_SE |
3684 SWAPPER_CTRL_TXF_R_FE |
3685 SWAPPER_CTRL_RXD_R_FE |
3686 SWAPPER_CTRL_RXD_R_SE |
3687 SWAPPER_CTRL_RXD_W_FE |
3688 SWAPPER_CTRL_RXD_W_SE |
3689 SWAPPER_CTRL_RXF_W_FE |
3690 SWAPPER_CTRL_XMSI_FE |
3691 SWAPPER_CTRL_STATS_FE |
3692 SWAPPER_CTRL_STATS_SE);
3693 if (sp->config.intr_type == INTA)
3694 val64 |= SWAPPER_CTRL_XMSI_SE;
3695 writeq(val64, &bar0->swapper_ctrl);
3696 #endif
3697 val64 = readq(&bar0->swapper_ctrl);
3698
3699 /*
3700 * Verifying if endian settings are accurate by reading a
3701 * feedback register.
3702 */
3703 val64 = readq(&bar0->pif_rd_swapper_fb);
3704 if (val64 != 0x0123456789ABCDEFULL) {
3705 /* Endian settings are incorrect, calls for another dekko. */
3706 DBG_PRINT(ERR_DBG,
3707 "%s: Endian settings are wrong, feedback read %llx\n",
3708 dev->name, (unsigned long long)val64);
3709 return FAILURE;
3710 }
3711
3712 return SUCCESS;
3713 }
3714
3715 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3716 {
3717 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3718 u64 val64;
3719 int ret = 0, cnt = 0;
3720
3721 do {
3722 val64 = readq(&bar0->xmsi_access);
3723 if (!(val64 & s2BIT(15)))
3724 break;
3725 mdelay(1);
3726 cnt++;
3727 } while (cnt < 5);
3728 if (cnt == 5) {
3729 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3730 ret = 1;
3731 }
3732
3733 return ret;
3734 }
3735
3736 static void restore_xmsi_data(struct s2io_nic *nic)
3737 {
3738 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3739 u64 val64;
3740 int i, msix_index;
3741
3742 if (nic->device_type == XFRAME_I_DEVICE)
3743 return;
3744
3745 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3746 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3747 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3748 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3749 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3750 writeq(val64, &bar0->xmsi_access);
3751 if (wait_for_msix_trans(nic, msix_index)) {
3752 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3753 __func__, msix_index);
3754 continue;
3755 }
3756 }
3757 }
3758
3759 static void store_xmsi_data(struct s2io_nic *nic)
3760 {
3761 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3762 u64 val64, addr, data;
3763 int i, msix_index;
3764
3765 if (nic->device_type == XFRAME_I_DEVICE)
3766 return;
3767
3768 /* Store and display */
3769 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3770 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3771 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3772 writeq(val64, &bar0->xmsi_access);
3773 if (wait_for_msix_trans(nic, msix_index)) {
3774 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3775 __func__, msix_index);
3776 continue;
3777 }
3778 addr = readq(&bar0->xmsi_address);
3779 data = readq(&bar0->xmsi_data);
3780 if (addr && data) {
3781 nic->msix_info[i].addr = addr;
3782 nic->msix_info[i].data = data;
3783 }
3784 }
3785 }
3786
3787 static int s2io_enable_msi_x(struct s2io_nic *nic)
3788 {
3789 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3790 u64 rx_mat;
3791 u16 msi_control; /* Temp variable */
3792 int ret, i, j, msix_indx = 1;
3793 int size;
3794 struct stat_block *stats = nic->mac_control.stats_info;
3795 struct swStat *swstats = &stats->sw_stat;
3796
3797 size = nic->num_entries * sizeof(struct msix_entry);
3798 nic->entries = kzalloc(size, GFP_KERNEL);
3799 if (!nic->entries) {
3800 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3801 __func__);
3802 swstats->mem_alloc_fail_cnt++;
3803 return -ENOMEM;
3804 }
3805 swstats->mem_allocated += size;
3806
3807 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3808 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3809 if (!nic->s2io_entries) {
3810 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3811 __func__);
3812 swstats->mem_alloc_fail_cnt++;
3813 kfree(nic->entries);
3814 swstats->mem_freed
3815 += (nic->num_entries * sizeof(struct msix_entry));
3816 return -ENOMEM;
3817 }
3818 swstats->mem_allocated += size;
3819
3820 nic->entries[0].entry = 0;
3821 nic->s2io_entries[0].entry = 0;
3822 nic->s2io_entries[0].in_use = MSIX_FLG;
3823 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3824 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3825
3826 for (i = 1; i < nic->num_entries; i++) {
3827 nic->entries[i].entry = ((i - 1) * 8) + 1;
3828 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3829 nic->s2io_entries[i].arg = NULL;
3830 nic->s2io_entries[i].in_use = 0;
3831 }
3832
3833 rx_mat = readq(&bar0->rx_mat);
3834 for (j = 0; j < nic->config.rx_ring_num; j++) {
3835 rx_mat |= RX_MAT_SET(j, msix_indx);
3836 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3837 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3838 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3839 msix_indx += 8;
3840 }
3841 writeq(rx_mat, &bar0->rx_mat);
3842 readq(&bar0->rx_mat);
3843
3844 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3845 /* We fail init if error or we get less vectors than min required */
3846 if (ret) {
3847 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3848 kfree(nic->entries);
3849 swstats->mem_freed += nic->num_entries *
3850 sizeof(struct msix_entry);
3851 kfree(nic->s2io_entries);
3852 swstats->mem_freed += nic->num_entries *
3853 sizeof(struct s2io_msix_entry);
3854 nic->entries = NULL;
3855 nic->s2io_entries = NULL;
3856 return -ENOMEM;
3857 }
3858
3859 /*
3860 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3861 * in the herc NIC. (Temp change, needs to be removed later)
3862 */
3863 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3864 msi_control |= 0x1; /* Enable MSI */
3865 pci_write_config_word(nic->pdev, 0x42, msi_control);
3866
3867 return 0;
3868 }
3869
3870 /* Handle software interrupt used during MSI(X) test */
3871 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3872 {
3873 struct s2io_nic *sp = dev_id;
3874
3875 sp->msi_detected = 1;
3876 wake_up(&sp->msi_wait);
3877
3878 return IRQ_HANDLED;
3879 }
3880
3881 /* Test interrupt path by forcing a a software IRQ */
3882 static int s2io_test_msi(struct s2io_nic *sp)
3883 {
3884 struct pci_dev *pdev = sp->pdev;
3885 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3886 int err;
3887 u64 val64, saved64;
3888
3889 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3890 sp->name, sp);
3891 if (err) {
3892 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3893 sp->dev->name, pci_name(pdev), pdev->irq);
3894 return err;
3895 }
3896
3897 init_waitqueue_head(&sp->msi_wait);
3898 sp->msi_detected = 0;
3899
3900 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3901 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3902 val64 |= SCHED_INT_CTRL_TIMER_EN;
3903 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3904 writeq(val64, &bar0->scheduled_int_ctrl);
3905
3906 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3907
3908 if (!sp->msi_detected) {
3909 /* MSI(X) test failed, go back to INTx mode */
3910 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3911 "using MSI(X) during test\n",
3912 sp->dev->name, pci_name(pdev));
3913
3914 err = -EOPNOTSUPP;
3915 }
3916
3917 free_irq(sp->entries[1].vector, sp);
3918
3919 writeq(saved64, &bar0->scheduled_int_ctrl);
3920
3921 return err;
3922 }
3923
3924 static void remove_msix_isr(struct s2io_nic *sp)
3925 {
3926 int i;
3927 u16 msi_control;
3928
3929 for (i = 0; i < sp->num_entries; i++) {
3930 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3931 int vector = sp->entries[i].vector;
3932 void *arg = sp->s2io_entries[i].arg;
3933 free_irq(vector, arg);
3934 }
3935 }
3936
3937 kfree(sp->entries);
3938 kfree(sp->s2io_entries);
3939 sp->entries = NULL;
3940 sp->s2io_entries = NULL;
3941
3942 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3943 msi_control &= 0xFFFE; /* Disable MSI */
3944 pci_write_config_word(sp->pdev, 0x42, msi_control);
3945
3946 pci_disable_msix(sp->pdev);
3947 }
3948
3949 static void remove_inta_isr(struct s2io_nic *sp)
3950 {
3951 struct net_device *dev = sp->dev;
3952
3953 free_irq(sp->pdev->irq, dev);
3954 }
3955
3956 /* ********************************************************* *
3957 * Functions defined below concern the OS part of the driver *
3958 * ********************************************************* */
3959
3960 /**
3961 * s2io_open - open entry point of the driver
3962 * @dev : pointer to the device structure.
3963 * Description:
3964 * This function is the open entry point of the driver. It mainly calls a
3965 * function to allocate Rx buffers and inserts them into the buffer
3966 * descriptors and then enables the Rx part of the NIC.
3967 * Return value:
3968 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3969 * file on failure.
3970 */
3971
3972 static int s2io_open(struct net_device *dev)
3973 {
3974 struct s2io_nic *sp = netdev_priv(dev);
3975 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3976 int err = 0;
3977
3978 /*
3979 * Make sure you have link off by default every time
3980 * Nic is initialized
3981 */
3982 netif_carrier_off(dev);
3983 sp->last_link_state = 0;
3984
3985 /* Initialize H/W and enable interrupts */
3986 err = s2io_card_up(sp);
3987 if (err) {
3988 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3989 dev->name);
3990 goto hw_init_failed;
3991 }
3992
3993 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3994 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3995 s2io_card_down(sp);
3996 err = -ENODEV;
3997 goto hw_init_failed;
3998 }
3999 s2io_start_all_tx_queue(sp);
4000 return 0;
4001
4002 hw_init_failed:
4003 if (sp->config.intr_type == MSI_X) {
4004 if (sp->entries) {
4005 kfree(sp->entries);
4006 swstats->mem_freed += sp->num_entries *
4007 sizeof(struct msix_entry);
4008 }
4009 if (sp->s2io_entries) {
4010 kfree(sp->s2io_entries);
4011 swstats->mem_freed += sp->num_entries *
4012 sizeof(struct s2io_msix_entry);
4013 }
4014 }
4015 return err;
4016 }
4017
4018 /**
4019 * s2io_close -close entry point of the driver
4020 * @dev : device pointer.
4021 * Description:
4022 * This is the stop entry point of the driver. It needs to undo exactly
4023 * whatever was done by the open entry point,thus it's usually referred to
4024 * as the close function.Among other things this function mainly stops the
4025 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4026 * Return value:
4027 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4028 * file on failure.
4029 */
4030
4031 static int s2io_close(struct net_device *dev)
4032 {
4033 struct s2io_nic *sp = netdev_priv(dev);
4034 struct config_param *config = &sp->config;
4035 u64 tmp64;
4036 int offset;
4037
4038 /* Return if the device is already closed *
4039 * Can happen when s2io_card_up failed in change_mtu *
4040 */
4041 if (!is_s2io_card_up(sp))
4042 return 0;
4043
4044 s2io_stop_all_tx_queue(sp);
4045 /* delete all populated mac entries */
4046 for (offset = 1; offset < config->max_mc_addr; offset++) {
4047 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4048 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4049 do_s2io_delete_unicast_mc(sp, tmp64);
4050 }
4051
4052 s2io_card_down(sp);
4053
4054 return 0;
4055 }
4056
4057 /**
4058 * s2io_xmit - Tx entry point of te driver
4059 * @skb : the socket buffer containing the Tx data.
4060 * @dev : device pointer.
4061 * Description :
4062 * This function is the Tx entry point of the driver. S2IO NIC supports
4063 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4064 * NOTE: when device can't queue the pkt,just the trans_start variable will
4065 * not be upadted.
4066 * Return value:
4067 * 0 on success & 1 on failure.
4068 */
4069
4070 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4071 {
4072 struct s2io_nic *sp = netdev_priv(dev);
4073 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4074 register u64 val64;
4075 struct TxD *txdp;
4076 struct TxFIFO_element __iomem *tx_fifo;
4077 unsigned long flags = 0;
4078 u16 vlan_tag = 0;
4079 struct fifo_info *fifo = NULL;
4080 int do_spin_lock = 1;
4081 int offload_type;
4082 int enable_per_list_interrupt = 0;
4083 struct config_param *config = &sp->config;
4084 struct mac_info *mac_control = &sp->mac_control;
4085 struct stat_block *stats = mac_control->stats_info;
4086 struct swStat *swstats = &stats->sw_stat;
4087
4088 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4089
4090 if (unlikely(skb->len <= 0)) {
4091 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4092 dev_kfree_skb_any(skb);
4093 return NETDEV_TX_OK;
4094 }
4095
4096 if (!is_s2io_card_up(sp)) {
4097 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4098 dev->name);
4099 dev_kfree_skb(skb);
4100 return NETDEV_TX_OK;
4101 }
4102
4103 queue = 0;
4104 if (vlan_tx_tag_present(skb))
4105 vlan_tag = vlan_tx_tag_get(skb);
4106 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4107 if (skb->protocol == htons(ETH_P_IP)) {
4108 struct iphdr *ip;
4109 struct tcphdr *th;
4110 ip = ip_hdr(skb);
4111
4112 if (!ip_is_fragment(ip)) {
4113 th = (struct tcphdr *)(((unsigned char *)ip) +
4114 ip->ihl*4);
4115
4116 if (ip->protocol == IPPROTO_TCP) {
4117 queue_len = sp->total_tcp_fifos;
4118 queue = (ntohs(th->source) +
4119 ntohs(th->dest)) &
4120 sp->fifo_selector[queue_len - 1];
4121 if (queue >= queue_len)
4122 queue = queue_len - 1;
4123 } else if (ip->protocol == IPPROTO_UDP) {
4124 queue_len = sp->total_udp_fifos;
4125 queue = (ntohs(th->source) +
4126 ntohs(th->dest)) &
4127 sp->fifo_selector[queue_len - 1];
4128 if (queue >= queue_len)
4129 queue = queue_len - 1;
4130 queue += sp->udp_fifo_idx;
4131 if (skb->len > 1024)
4132 enable_per_list_interrupt = 1;
4133 do_spin_lock = 0;
4134 }
4135 }
4136 }
4137 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4138 /* get fifo number based on skb->priority value */
4139 queue = config->fifo_mapping
4140 [skb->priority & (MAX_TX_FIFOS - 1)];
4141 fifo = &mac_control->fifos[queue];
4142
4143 if (do_spin_lock)
4144 spin_lock_irqsave(&fifo->tx_lock, flags);
4145 else {
4146 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4147 return NETDEV_TX_LOCKED;
4148 }
4149
4150 if (sp->config.multiq) {
4151 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4152 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4153 return NETDEV_TX_BUSY;
4154 }
4155 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4156 if (netif_queue_stopped(dev)) {
4157 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4158 return NETDEV_TX_BUSY;
4159 }
4160 }
4161
4162 put_off = (u16)fifo->tx_curr_put_info.offset;
4163 get_off = (u16)fifo->tx_curr_get_info.offset;
4164 txdp = fifo->list_info[put_off].list_virt_addr;
4165
4166 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4167 /* Avoid "put" pointer going beyond "get" pointer */
4168 if (txdp->Host_Control ||
4169 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4170 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4171 s2io_stop_tx_queue(sp, fifo->fifo_no);
4172 dev_kfree_skb(skb);
4173 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174 return NETDEV_TX_OK;
4175 }
4176
4177 offload_type = s2io_offload_type(skb);
4178 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4179 txdp->Control_1 |= TXD_TCP_LSO_EN;
4180 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4181 }
4182 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4183 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4184 TXD_TX_CKO_TCP_EN |
4185 TXD_TX_CKO_UDP_EN);
4186 }
4187 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4188 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4189 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4190 if (enable_per_list_interrupt)
4191 if (put_off & (queue_len >> 5))
4192 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4193 if (vlan_tag) {
4194 txdp->Control_2 |= TXD_VLAN_ENABLE;
4195 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4196 }
4197
4198 frg_len = skb_headlen(skb);
4199 if (offload_type == SKB_GSO_UDP) {
4200 int ufo_size;
4201
4202 ufo_size = s2io_udp_mss(skb);
4203 ufo_size &= ~7;
4204 txdp->Control_1 |= TXD_UFO_EN;
4205 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4206 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4207 #ifdef __BIG_ENDIAN
4208 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4209 fifo->ufo_in_band_v[put_off] =
4210 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4211 #else
4212 fifo->ufo_in_band_v[put_off] =
4213 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4214 #endif
4215 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4216 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4217 fifo->ufo_in_band_v,
4218 sizeof(u64),
4219 PCI_DMA_TODEVICE);
4220 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4221 goto pci_map_failed;
4222 txdp++;
4223 }
4224
4225 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4226 frg_len, PCI_DMA_TODEVICE);
4227 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4228 goto pci_map_failed;
4229
4230 txdp->Host_Control = (unsigned long)skb;
4231 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4232 if (offload_type == SKB_GSO_UDP)
4233 txdp->Control_1 |= TXD_UFO_EN;
4234
4235 frg_cnt = skb_shinfo(skb)->nr_frags;
4236 /* For fragmented SKB. */
4237 for (i = 0; i < frg_cnt; i++) {
4238 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4239 /* A '0' length fragment will be ignored */
4240 if (!frag->size)
4241 continue;
4242 txdp++;
4243 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4244 frag->page_offset,
4245 frag->size,
4246 PCI_DMA_TODEVICE);
4247 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4248 if (offload_type == SKB_GSO_UDP)
4249 txdp->Control_1 |= TXD_UFO_EN;
4250 }
4251 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4252
4253 if (offload_type == SKB_GSO_UDP)
4254 frg_cnt++; /* as Txd0 was used for inband header */
4255
4256 tx_fifo = mac_control->tx_FIFO_start[queue];
4257 val64 = fifo->list_info[put_off].list_phy_addr;
4258 writeq(val64, &tx_fifo->TxDL_Pointer);
4259
4260 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4261 TX_FIFO_LAST_LIST);
4262 if (offload_type)
4263 val64 |= TX_FIFO_SPECIAL_FUNC;
4264
4265 writeq(val64, &tx_fifo->List_Control);
4266
4267 mmiowb();
4268
4269 put_off++;
4270 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4271 put_off = 0;
4272 fifo->tx_curr_put_info.offset = put_off;
4273
4274 /* Avoid "put" pointer going beyond "get" pointer */
4275 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4276 swstats->fifo_full_cnt++;
4277 DBG_PRINT(TX_DBG,
4278 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4279 put_off, get_off);
4280 s2io_stop_tx_queue(sp, fifo->fifo_no);
4281 }
4282 swstats->mem_allocated += skb->truesize;
4283 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4284
4285 if (sp->config.intr_type == MSI_X)
4286 tx_intr_handler(fifo);
4287
4288 return NETDEV_TX_OK;
4289
4290 pci_map_failed:
4291 swstats->pci_map_fail_cnt++;
4292 s2io_stop_tx_queue(sp, fifo->fifo_no);
4293 swstats->mem_freed += skb->truesize;
4294 dev_kfree_skb(skb);
4295 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4296 return NETDEV_TX_OK;
4297 }
4298
4299 static void
4300 s2io_alarm_handle(unsigned long data)
4301 {
4302 struct s2io_nic *sp = (struct s2io_nic *)data;
4303 struct net_device *dev = sp->dev;
4304
4305 s2io_handle_errors(dev);
4306 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4307 }
4308
4309 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4310 {
4311 struct ring_info *ring = (struct ring_info *)dev_id;
4312 struct s2io_nic *sp = ring->nic;
4313 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4314
4315 if (unlikely(!is_s2io_card_up(sp)))
4316 return IRQ_HANDLED;
4317
4318 if (sp->config.napi) {
4319 u8 __iomem *addr = NULL;
4320 u8 val8 = 0;
4321
4322 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4323 addr += (7 - ring->ring_no);
4324 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4325 writeb(val8, addr);
4326 val8 = readb(addr);
4327 napi_schedule(&ring->napi);
4328 } else {
4329 rx_intr_handler(ring, 0);
4330 s2io_chk_rx_buffers(sp, ring);
4331 }
4332
4333 return IRQ_HANDLED;
4334 }
4335
4336 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4337 {
4338 int i;
4339 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4340 struct s2io_nic *sp = fifos->nic;
4341 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4342 struct config_param *config = &sp->config;
4343 u64 reason;
4344
4345 if (unlikely(!is_s2io_card_up(sp)))
4346 return IRQ_NONE;
4347
4348 reason = readq(&bar0->general_int_status);
4349 if (unlikely(reason == S2IO_MINUS_ONE))
4350 /* Nothing much can be done. Get out */
4351 return IRQ_HANDLED;
4352
4353 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4354 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4355
4356 if (reason & GEN_INTR_TXPIC)
4357 s2io_txpic_intr_handle(sp);
4358
4359 if (reason & GEN_INTR_TXTRAFFIC)
4360 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4361
4362 for (i = 0; i < config->tx_fifo_num; i++)
4363 tx_intr_handler(&fifos[i]);
4364
4365 writeq(sp->general_int_mask, &bar0->general_int_mask);
4366 readl(&bar0->general_int_status);
4367 return IRQ_HANDLED;
4368 }
4369 /* The interrupt was not raised by us */
4370 return IRQ_NONE;
4371 }
4372
4373 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4374 {
4375 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4376 u64 val64;
4377
4378 val64 = readq(&bar0->pic_int_status);
4379 if (val64 & PIC_INT_GPIO) {
4380 val64 = readq(&bar0->gpio_int_reg);
4381 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4382 (val64 & GPIO_INT_REG_LINK_UP)) {
4383 /*
4384 * This is unstable state so clear both up/down
4385 * interrupt and adapter to re-evaluate the link state.
4386 */
4387 val64 |= GPIO_INT_REG_LINK_DOWN;
4388 val64 |= GPIO_INT_REG_LINK_UP;
4389 writeq(val64, &bar0->gpio_int_reg);
4390 val64 = readq(&bar0->gpio_int_mask);
4391 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4392 GPIO_INT_MASK_LINK_DOWN);
4393 writeq(val64, &bar0->gpio_int_mask);
4394 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4395 val64 = readq(&bar0->adapter_status);
4396 /* Enable Adapter */
4397 val64 = readq(&bar0->adapter_control);
4398 val64 |= ADAPTER_CNTL_EN;
4399 writeq(val64, &bar0->adapter_control);
4400 val64 |= ADAPTER_LED_ON;
4401 writeq(val64, &bar0->adapter_control);
4402 if (!sp->device_enabled_once)
4403 sp->device_enabled_once = 1;
4404
4405 s2io_link(sp, LINK_UP);
4406 /*
4407 * unmask link down interrupt and mask link-up
4408 * intr
4409 */
4410 val64 = readq(&bar0->gpio_int_mask);
4411 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4412 val64 |= GPIO_INT_MASK_LINK_UP;
4413 writeq(val64, &bar0->gpio_int_mask);
4414
4415 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4416 val64 = readq(&bar0->adapter_status);
4417 s2io_link(sp, LINK_DOWN);
4418 /* Link is down so unmaks link up interrupt */
4419 val64 = readq(&bar0->gpio_int_mask);
4420 val64 &= ~GPIO_INT_MASK_LINK_UP;
4421 val64 |= GPIO_INT_MASK_LINK_DOWN;
4422 writeq(val64, &bar0->gpio_int_mask);
4423
4424 /* turn off LED */
4425 val64 = readq(&bar0->adapter_control);
4426 val64 = val64 & (~ADAPTER_LED_ON);
4427 writeq(val64, &bar0->adapter_control);
4428 }
4429 }
4430 val64 = readq(&bar0->gpio_int_mask);
4431 }
4432
4433 /**
4434 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4435 * @value: alarm bits
4436 * @addr: address value
4437 * @cnt: counter variable
4438 * Description: Check for alarm and increment the counter
4439 * Return Value:
4440 * 1 - if alarm bit set
4441 * 0 - if alarm bit is not set
4442 */
4443 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4444 unsigned long long *cnt)
4445 {
4446 u64 val64;
4447 val64 = readq(addr);
4448 if (val64 & value) {
4449 writeq(val64, addr);
4450 (*cnt)++;
4451 return 1;
4452 }
4453 return 0;
4454
4455 }
4456
4457 /**
4458 * s2io_handle_errors - Xframe error indication handler
4459 * @nic: device private variable
4460 * Description: Handle alarms such as loss of link, single or
4461 * double ECC errors, critical and serious errors.
4462 * Return Value:
4463 * NONE
4464 */
4465 static void s2io_handle_errors(void *dev_id)
4466 {
4467 struct net_device *dev = (struct net_device *)dev_id;
4468 struct s2io_nic *sp = netdev_priv(dev);
4469 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4470 u64 temp64 = 0, val64 = 0;
4471 int i = 0;
4472
4473 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4474 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4475
4476 if (!is_s2io_card_up(sp))
4477 return;
4478
4479 if (pci_channel_offline(sp->pdev))
4480 return;
4481
4482 memset(&sw_stat->ring_full_cnt, 0,
4483 sizeof(sw_stat->ring_full_cnt));
4484
4485 /* Handling the XPAK counters update */
4486 if (stats->xpak_timer_count < 72000) {
4487 /* waiting for an hour */
4488 stats->xpak_timer_count++;
4489 } else {
4490 s2io_updt_xpak_counter(dev);
4491 /* reset the count to zero */
4492 stats->xpak_timer_count = 0;
4493 }
4494
4495 /* Handling link status change error Intr */
4496 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4497 val64 = readq(&bar0->mac_rmac_err_reg);
4498 writeq(val64, &bar0->mac_rmac_err_reg);
4499 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4500 schedule_work(&sp->set_link_task);
4501 }
4502
4503 /* In case of a serious error, the device will be Reset. */
4504 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4505 &sw_stat->serious_err_cnt))
4506 goto reset;
4507
4508 /* Check for data parity error */
4509 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4510 &sw_stat->parity_err_cnt))
4511 goto reset;
4512
4513 /* Check for ring full counter */
4514 if (sp->device_type == XFRAME_II_DEVICE) {
4515 val64 = readq(&bar0->ring_bump_counter1);
4516 for (i = 0; i < 4; i++) {
4517 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4518 temp64 >>= 64 - ((i+1)*16);
4519 sw_stat->ring_full_cnt[i] += temp64;
4520 }
4521
4522 val64 = readq(&bar0->ring_bump_counter2);
4523 for (i = 0; i < 4; i++) {
4524 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4525 temp64 >>= 64 - ((i+1)*16);
4526 sw_stat->ring_full_cnt[i+4] += temp64;
4527 }
4528 }
4529
4530 val64 = readq(&bar0->txdma_int_status);
4531 /*check for pfc_err*/
4532 if (val64 & TXDMA_PFC_INT) {
4533 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4534 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4535 PFC_PCIX_ERR,
4536 &bar0->pfc_err_reg,
4537 &sw_stat->pfc_err_cnt))
4538 goto reset;
4539 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4540 &bar0->pfc_err_reg,
4541 &sw_stat->pfc_err_cnt);
4542 }
4543
4544 /*check for tda_err*/
4545 if (val64 & TXDMA_TDA_INT) {
4546 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4547 TDA_SM0_ERR_ALARM |
4548 TDA_SM1_ERR_ALARM,
4549 &bar0->tda_err_reg,
4550 &sw_stat->tda_err_cnt))
4551 goto reset;
4552 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4553 &bar0->tda_err_reg,
4554 &sw_stat->tda_err_cnt);
4555 }
4556 /*check for pcc_err*/
4557 if (val64 & TXDMA_PCC_INT) {
4558 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4559 PCC_N_SERR | PCC_6_COF_OV_ERR |
4560 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4561 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4562 PCC_TXB_ECC_DB_ERR,
4563 &bar0->pcc_err_reg,
4564 &sw_stat->pcc_err_cnt))
4565 goto reset;
4566 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4567 &bar0->pcc_err_reg,
4568 &sw_stat->pcc_err_cnt);
4569 }
4570
4571 /*check for tti_err*/
4572 if (val64 & TXDMA_TTI_INT) {
4573 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4574 &bar0->tti_err_reg,
4575 &sw_stat->tti_err_cnt))
4576 goto reset;
4577 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4578 &bar0->tti_err_reg,
4579 &sw_stat->tti_err_cnt);
4580 }
4581
4582 /*check for lso_err*/
4583 if (val64 & TXDMA_LSO_INT) {
4584 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4585 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4586 &bar0->lso_err_reg,
4587 &sw_stat->lso_err_cnt))
4588 goto reset;
4589 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4590 &bar0->lso_err_reg,
4591 &sw_stat->lso_err_cnt);
4592 }
4593
4594 /*check for tpa_err*/
4595 if (val64 & TXDMA_TPA_INT) {
4596 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4597 &bar0->tpa_err_reg,
4598 &sw_stat->tpa_err_cnt))
4599 goto reset;
4600 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4601 &bar0->tpa_err_reg,
4602 &sw_stat->tpa_err_cnt);
4603 }
4604
4605 /*check for sm_err*/
4606 if (val64 & TXDMA_SM_INT) {
4607 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4608 &bar0->sm_err_reg,
4609 &sw_stat->sm_err_cnt))
4610 goto reset;
4611 }
4612
4613 val64 = readq(&bar0->mac_int_status);
4614 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4615 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4616 &bar0->mac_tmac_err_reg,
4617 &sw_stat->mac_tmac_err_cnt))
4618 goto reset;
4619 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4620 TMAC_DESC_ECC_SG_ERR |
4621 TMAC_DESC_ECC_DB_ERR,
4622 &bar0->mac_tmac_err_reg,
4623 &sw_stat->mac_tmac_err_cnt);
4624 }
4625
4626 val64 = readq(&bar0->xgxs_int_status);
4627 if (val64 & XGXS_INT_STATUS_TXGXS) {
4628 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4629 &bar0->xgxs_txgxs_err_reg,
4630 &sw_stat->xgxs_txgxs_err_cnt))
4631 goto reset;
4632 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4633 &bar0->xgxs_txgxs_err_reg,
4634 &sw_stat->xgxs_txgxs_err_cnt);
4635 }
4636
4637 val64 = readq(&bar0->rxdma_int_status);
4638 if (val64 & RXDMA_INT_RC_INT_M) {
4639 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4640 RC_FTC_ECC_DB_ERR |
4641 RC_PRCn_SM_ERR_ALARM |
4642 RC_FTC_SM_ERR_ALARM,
4643 &bar0->rc_err_reg,
4644 &sw_stat->rc_err_cnt))
4645 goto reset;
4646 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4647 RC_FTC_ECC_SG_ERR |
4648 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4649 &sw_stat->rc_err_cnt);
4650 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4651 PRC_PCI_AB_WR_Rn |
4652 PRC_PCI_AB_F_WR_Rn,
4653 &bar0->prc_pcix_err_reg,
4654 &sw_stat->prc_pcix_err_cnt))
4655 goto reset;
4656 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4657 PRC_PCI_DP_WR_Rn |
4658 PRC_PCI_DP_F_WR_Rn,
4659 &bar0->prc_pcix_err_reg,
4660 &sw_stat->prc_pcix_err_cnt);
4661 }
4662
4663 if (val64 & RXDMA_INT_RPA_INT_M) {
4664 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4665 &bar0->rpa_err_reg,
4666 &sw_stat->rpa_err_cnt))
4667 goto reset;
4668 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4669 &bar0->rpa_err_reg,
4670 &sw_stat->rpa_err_cnt);
4671 }
4672
4673 if (val64 & RXDMA_INT_RDA_INT_M) {
4674 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4675 RDA_FRM_ECC_DB_N_AERR |
4676 RDA_SM1_ERR_ALARM |
4677 RDA_SM0_ERR_ALARM |
4678 RDA_RXD_ECC_DB_SERR,
4679 &bar0->rda_err_reg,
4680 &sw_stat->rda_err_cnt))
4681 goto reset;
4682 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4683 RDA_FRM_ECC_SG_ERR |
4684 RDA_MISC_ERR |
4685 RDA_PCIX_ERR,
4686 &bar0->rda_err_reg,
4687 &sw_stat->rda_err_cnt);
4688 }
4689
4690 if (val64 & RXDMA_INT_RTI_INT_M) {
4691 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4692 &bar0->rti_err_reg,
4693 &sw_stat->rti_err_cnt))
4694 goto reset;
4695 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4696 &bar0->rti_err_reg,
4697 &sw_stat->rti_err_cnt);
4698 }
4699
4700 val64 = readq(&bar0->mac_int_status);
4701 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4702 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4703 &bar0->mac_rmac_err_reg,
4704 &sw_stat->mac_rmac_err_cnt))
4705 goto reset;
4706 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4707 RMAC_SINGLE_ECC_ERR |
4708 RMAC_DOUBLE_ECC_ERR,
4709 &bar0->mac_rmac_err_reg,
4710 &sw_stat->mac_rmac_err_cnt);
4711 }
4712
4713 val64 = readq(&bar0->xgxs_int_status);
4714 if (val64 & XGXS_INT_STATUS_RXGXS) {
4715 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4716 &bar0->xgxs_rxgxs_err_reg,
4717 &sw_stat->xgxs_rxgxs_err_cnt))
4718 goto reset;
4719 }
4720
4721 val64 = readq(&bar0->mc_int_status);
4722 if (val64 & MC_INT_STATUS_MC_INT) {
4723 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4724 &bar0->mc_err_reg,
4725 &sw_stat->mc_err_cnt))
4726 goto reset;
4727
4728 /* Handling Ecc errors */
4729 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4730 writeq(val64, &bar0->mc_err_reg);
4731 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4732 sw_stat->double_ecc_errs++;
4733 if (sp->device_type != XFRAME_II_DEVICE) {
4734 /*
4735 * Reset XframeI only if critical error
4736 */
4737 if (val64 &
4738 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4739 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4740 goto reset;
4741 }
4742 } else
4743 sw_stat->single_ecc_errs++;
4744 }
4745 }
4746 return;
4747
4748 reset:
4749 s2io_stop_all_tx_queue(sp);
4750 schedule_work(&sp->rst_timer_task);
4751 sw_stat->soft_reset_cnt++;
4752 }
4753
4754 /**
4755 * s2io_isr - ISR handler of the device .
4756 * @irq: the irq of the device.
4757 * @dev_id: a void pointer to the dev structure of the NIC.
4758 * Description: This function is the ISR handler of the device. It
4759 * identifies the reason for the interrupt and calls the relevant
4760 * service routines. As a contongency measure, this ISR allocates the
4761 * recv buffers, if their numbers are below the panic value which is
4762 * presently set to 25% of the original number of rcv buffers allocated.
4763 * Return value:
4764 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4765 * IRQ_NONE: will be returned if interrupt is not from our device
4766 */
4767 static irqreturn_t s2io_isr(int irq, void *dev_id)
4768 {
4769 struct net_device *dev = (struct net_device *)dev_id;
4770 struct s2io_nic *sp = netdev_priv(dev);
4771 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4772 int i;
4773 u64 reason = 0;
4774 struct mac_info *mac_control;
4775 struct config_param *config;
4776
4777 /* Pretend we handled any irq's from a disconnected card */
4778 if (pci_channel_offline(sp->pdev))
4779 return IRQ_NONE;
4780
4781 if (!is_s2io_card_up(sp))
4782 return IRQ_NONE;
4783
4784 config = &sp->config;
4785 mac_control = &sp->mac_control;
4786
4787 /*
4788 * Identify the cause for interrupt and call the appropriate
4789 * interrupt handler. Causes for the interrupt could be;
4790 * 1. Rx of packet.
4791 * 2. Tx complete.
4792 * 3. Link down.
4793 */
4794 reason = readq(&bar0->general_int_status);
4795
4796 if (unlikely(reason == S2IO_MINUS_ONE))
4797 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4798
4799 if (reason &
4800 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4801 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4802
4803 if (config->napi) {
4804 if (reason & GEN_INTR_RXTRAFFIC) {
4805 napi_schedule(&sp->napi);
4806 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4807 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4808 readl(&bar0->rx_traffic_int);
4809 }
4810 } else {
4811 /*
4812 * rx_traffic_int reg is an R1 register, writing all 1's
4813 * will ensure that the actual interrupt causing bit
4814 * get's cleared and hence a read can be avoided.
4815 */
4816 if (reason & GEN_INTR_RXTRAFFIC)
4817 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4818
4819 for (i = 0; i < config->rx_ring_num; i++) {
4820 struct ring_info *ring = &mac_control->rings[i];
4821
4822 rx_intr_handler(ring, 0);
4823 }
4824 }
4825
4826 /*
4827 * tx_traffic_int reg is an R1 register, writing all 1's
4828 * will ensure that the actual interrupt causing bit get's
4829 * cleared and hence a read can be avoided.
4830 */
4831 if (reason & GEN_INTR_TXTRAFFIC)
4832 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4833
4834 for (i = 0; i < config->tx_fifo_num; i++)
4835 tx_intr_handler(&mac_control->fifos[i]);
4836
4837 if (reason & GEN_INTR_TXPIC)
4838 s2io_txpic_intr_handle(sp);
4839
4840 /*
4841 * Reallocate the buffers from the interrupt handler itself.
4842 */
4843 if (!config->napi) {
4844 for (i = 0; i < config->rx_ring_num; i++) {
4845 struct ring_info *ring = &mac_control->rings[i];
4846
4847 s2io_chk_rx_buffers(sp, ring);
4848 }
4849 }
4850 writeq(sp->general_int_mask, &bar0->general_int_mask);
4851 readl(&bar0->general_int_status);
4852
4853 return IRQ_HANDLED;
4854
4855 } else if (!reason) {
4856 /* The interrupt was not raised by us */
4857 return IRQ_NONE;
4858 }
4859
4860 return IRQ_HANDLED;
4861 }
4862
4863 /**
4864 * s2io_updt_stats -
4865 */
4866 static void s2io_updt_stats(struct s2io_nic *sp)
4867 {
4868 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4869 u64 val64;
4870 int cnt = 0;
4871
4872 if (is_s2io_card_up(sp)) {
4873 /* Apprx 30us on a 133 MHz bus */
4874 val64 = SET_UPDT_CLICKS(10) |
4875 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4876 writeq(val64, &bar0->stat_cfg);
4877 do {
4878 udelay(100);
4879 val64 = readq(&bar0->stat_cfg);
4880 if (!(val64 & s2BIT(0)))
4881 break;
4882 cnt++;
4883 if (cnt == 5)
4884 break; /* Updt failed */
4885 } while (1);
4886 }
4887 }
4888
4889 /**
4890 * s2io_get_stats - Updates the device statistics structure.
4891 * @dev : pointer to the device structure.
4892 * Description:
4893 * This function updates the device statistics structure in the s2io_nic
4894 * structure and returns a pointer to the same.
4895 * Return value:
4896 * pointer to the updated net_device_stats structure.
4897 */
4898 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4899 {
4900 struct s2io_nic *sp = netdev_priv(dev);
4901 struct mac_info *mac_control = &sp->mac_control;
4902 struct stat_block *stats = mac_control->stats_info;
4903 u64 delta;
4904
4905 /* Configure Stats for immediate updt */
4906 s2io_updt_stats(sp);
4907
4908 /* A device reset will cause the on-adapter statistics to be zero'ed.
4909 * This can be done while running by changing the MTU. To prevent the
4910 * system from having the stats zero'ed, the driver keeps a copy of the
4911 * last update to the system (which is also zero'ed on reset). This
4912 * enables the driver to accurately know the delta between the last
4913 * update and the current update.
4914 */
4915 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4916 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4917 sp->stats.rx_packets += delta;
4918 dev->stats.rx_packets += delta;
4919
4920 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4921 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4922 sp->stats.tx_packets += delta;
4923 dev->stats.tx_packets += delta;
4924
4925 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4926 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4927 sp->stats.rx_bytes += delta;
4928 dev->stats.rx_bytes += delta;
4929
4930 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4931 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4932 sp->stats.tx_bytes += delta;
4933 dev->stats.tx_bytes += delta;
4934
4935 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4936 sp->stats.rx_errors += delta;
4937 dev->stats.rx_errors += delta;
4938
4939 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4940 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4941 sp->stats.tx_errors += delta;
4942 dev->stats.tx_errors += delta;
4943
4944 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4945 sp->stats.rx_dropped += delta;
4946 dev->stats.rx_dropped += delta;
4947
4948 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4949 sp->stats.tx_dropped += delta;
4950 dev->stats.tx_dropped += delta;
4951
4952 /* The adapter MAC interprets pause frames as multicast packets, but
4953 * does not pass them up. This erroneously increases the multicast
4954 * packet count and needs to be deducted when the multicast frame count
4955 * is queried.
4956 */
4957 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4958 le32_to_cpu(stats->rmac_vld_mcst_frms);
4959 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4960 delta -= sp->stats.multicast;
4961 sp->stats.multicast += delta;
4962 dev->stats.multicast += delta;
4963
4964 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4965 le32_to_cpu(stats->rmac_usized_frms)) +
4966 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4967 sp->stats.rx_length_errors += delta;
4968 dev->stats.rx_length_errors += delta;
4969
4970 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4971 sp->stats.rx_crc_errors += delta;
4972 dev->stats.rx_crc_errors += delta;
4973
4974 return &dev->stats;
4975 }
4976
4977 /**
4978 * s2io_set_multicast - entry point for multicast address enable/disable.
4979 * @dev : pointer to the device structure
4980 * Description:
4981 * This function is a driver entry point which gets called by the kernel
4982 * whenever multicast addresses must be enabled/disabled. This also gets
4983 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4984 * determine, if multicast address must be enabled or if promiscuous mode
4985 * is to be disabled etc.
4986 * Return value:
4987 * void.
4988 */
4989
4990 static void s2io_set_multicast(struct net_device *dev)
4991 {
4992 int i, j, prev_cnt;
4993 struct netdev_hw_addr *ha;
4994 struct s2io_nic *sp = netdev_priv(dev);
4995 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4996 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4997 0xfeffffffffffULL;
4998 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4999 void __iomem *add;
5000 struct config_param *config = &sp->config;
5001
5002 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5003 /* Enable all Multicast addresses */
5004 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5005 &bar0->rmac_addr_data0_mem);
5006 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5007 &bar0->rmac_addr_data1_mem);
5008 val64 = RMAC_ADDR_CMD_MEM_WE |
5009 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5010 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5011 writeq(val64, &bar0->rmac_addr_cmd_mem);
5012 /* Wait till command completes */
5013 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5014 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5015 S2IO_BIT_RESET);
5016
5017 sp->m_cast_flg = 1;
5018 sp->all_multi_pos = config->max_mc_addr - 1;
5019 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5020 /* Disable all Multicast addresses */
5021 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5022 &bar0->rmac_addr_data0_mem);
5023 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5024 &bar0->rmac_addr_data1_mem);
5025 val64 = RMAC_ADDR_CMD_MEM_WE |
5026 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5027 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5028 writeq(val64, &bar0->rmac_addr_cmd_mem);
5029 /* Wait till command completes */
5030 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5031 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5032 S2IO_BIT_RESET);
5033
5034 sp->m_cast_flg = 0;
5035 sp->all_multi_pos = 0;
5036 }
5037
5038 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5039 /* Put the NIC into promiscuous mode */
5040 add = &bar0->mac_cfg;
5041 val64 = readq(&bar0->mac_cfg);
5042 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5043
5044 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5045 writel((u32)val64, add);
5046 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5047 writel((u32) (val64 >> 32), (add + 4));
5048
5049 if (vlan_tag_strip != 1) {
5050 val64 = readq(&bar0->rx_pa_cfg);
5051 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5052 writeq(val64, &bar0->rx_pa_cfg);
5053 sp->vlan_strip_flag = 0;
5054 }
5055
5056 val64 = readq(&bar0->mac_cfg);
5057 sp->promisc_flg = 1;
5058 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5059 dev->name);
5060 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5061 /* Remove the NIC from promiscuous mode */
5062 add = &bar0->mac_cfg;
5063 val64 = readq(&bar0->mac_cfg);
5064 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5065
5066 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5067 writel((u32)val64, add);
5068 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5069 writel((u32) (val64 >> 32), (add + 4));
5070
5071 if (vlan_tag_strip != 0) {
5072 val64 = readq(&bar0->rx_pa_cfg);
5073 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5074 writeq(val64, &bar0->rx_pa_cfg);
5075 sp->vlan_strip_flag = 1;
5076 }
5077
5078 val64 = readq(&bar0->mac_cfg);
5079 sp->promisc_flg = 0;
5080 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5081 }
5082
5083 /* Update individual M_CAST address list */
5084 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5085 if (netdev_mc_count(dev) >
5086 (config->max_mc_addr - config->max_mac_addr)) {
5087 DBG_PRINT(ERR_DBG,
5088 "%s: No more Rx filters can be added - "
5089 "please enable ALL_MULTI instead\n",
5090 dev->name);
5091 return;
5092 }
5093
5094 prev_cnt = sp->mc_addr_count;
5095 sp->mc_addr_count = netdev_mc_count(dev);
5096
5097 /* Clear out the previous list of Mc in the H/W. */
5098 for (i = 0; i < prev_cnt; i++) {
5099 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5100 &bar0->rmac_addr_data0_mem);
5101 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5102 &bar0->rmac_addr_data1_mem);
5103 val64 = RMAC_ADDR_CMD_MEM_WE |
5104 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5105 RMAC_ADDR_CMD_MEM_OFFSET
5106 (config->mc_start_offset + i);
5107 writeq(val64, &bar0->rmac_addr_cmd_mem);
5108
5109 /* Wait for command completes */
5110 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5111 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5112 S2IO_BIT_RESET)) {
5113 DBG_PRINT(ERR_DBG,
5114 "%s: Adding Multicasts failed\n",
5115 dev->name);
5116 return;
5117 }
5118 }
5119
5120 /* Create the new Rx filter list and update the same in H/W. */
5121 i = 0;
5122 netdev_for_each_mc_addr(ha, dev) {
5123 mac_addr = 0;
5124 for (j = 0; j < ETH_ALEN; j++) {
5125 mac_addr |= ha->addr[j];
5126 mac_addr <<= 8;
5127 }
5128 mac_addr >>= 8;
5129 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5130 &bar0->rmac_addr_data0_mem);
5131 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5132 &bar0->rmac_addr_data1_mem);
5133 val64 = RMAC_ADDR_CMD_MEM_WE |
5134 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5135 RMAC_ADDR_CMD_MEM_OFFSET
5136 (i + config->mc_start_offset);
5137 writeq(val64, &bar0->rmac_addr_cmd_mem);
5138
5139 /* Wait for command completes */
5140 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5141 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5142 S2IO_BIT_RESET)) {
5143 DBG_PRINT(ERR_DBG,
5144 "%s: Adding Multicasts failed\n",
5145 dev->name);
5146 return;
5147 }
5148 i++;
5149 }
5150 }
5151 }
5152
5153 /* read from CAM unicast & multicast addresses and store it in
5154 * def_mac_addr structure
5155 */
5156 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5157 {
5158 int offset;
5159 u64 mac_addr = 0x0;
5160 struct config_param *config = &sp->config;
5161
5162 /* store unicast & multicast mac addresses */
5163 for (offset = 0; offset < config->max_mc_addr; offset++) {
5164 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5165 /* if read fails disable the entry */
5166 if (mac_addr == FAILURE)
5167 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5168 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5169 }
5170 }
5171
5172 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5173 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5174 {
5175 int offset;
5176 struct config_param *config = &sp->config;
5177 /* restore unicast mac address */
5178 for (offset = 0; offset < config->max_mac_addr; offset++)
5179 do_s2io_prog_unicast(sp->dev,
5180 sp->def_mac_addr[offset].mac_addr);
5181
5182 /* restore multicast mac address */
5183 for (offset = config->mc_start_offset;
5184 offset < config->max_mc_addr; offset++)
5185 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5186 }
5187
5188 /* add a multicast MAC address to CAM */
5189 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5190 {
5191 int i;
5192 u64 mac_addr = 0;
5193 struct config_param *config = &sp->config;
5194
5195 for (i = 0; i < ETH_ALEN; i++) {
5196 mac_addr <<= 8;
5197 mac_addr |= addr[i];
5198 }
5199 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5200 return SUCCESS;
5201
5202 /* check if the multicast mac already preset in CAM */
5203 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5204 u64 tmp64;
5205 tmp64 = do_s2io_read_unicast_mc(sp, i);
5206 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5207 break;
5208
5209 if (tmp64 == mac_addr)
5210 return SUCCESS;
5211 }
5212 if (i == config->max_mc_addr) {
5213 DBG_PRINT(ERR_DBG,
5214 "CAM full no space left for multicast MAC\n");
5215 return FAILURE;
5216 }
5217 /* Update the internal structure with this new mac address */
5218 do_s2io_copy_mac_addr(sp, i, mac_addr);
5219
5220 return do_s2io_add_mac(sp, mac_addr, i);
5221 }
5222
5223 /* add MAC address to CAM */
5224 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5225 {
5226 u64 val64;
5227 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5228
5229 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5230 &bar0->rmac_addr_data0_mem);
5231
5232 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5233 RMAC_ADDR_CMD_MEM_OFFSET(off);
5234 writeq(val64, &bar0->rmac_addr_cmd_mem);
5235
5236 /* Wait till command completes */
5237 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5238 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5239 S2IO_BIT_RESET)) {
5240 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5241 return FAILURE;
5242 }
5243 return SUCCESS;
5244 }
5245 /* deletes a specified unicast/multicast mac entry from CAM */
5246 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5247 {
5248 int offset;
5249 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5250 struct config_param *config = &sp->config;
5251
5252 for (offset = 1;
5253 offset < config->max_mc_addr; offset++) {
5254 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5255 if (tmp64 == addr) {
5256 /* disable the entry by writing 0xffffffffffffULL */
5257 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5258 return FAILURE;
5259 /* store the new mac list from CAM */
5260 do_s2io_store_unicast_mc(sp);
5261 return SUCCESS;
5262 }
5263 }
5264 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5265 (unsigned long long)addr);
5266 return FAILURE;
5267 }
5268
5269 /* read mac entries from CAM */
5270 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5271 {
5272 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5273 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5274
5275 /* read mac addr */
5276 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5277 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5278 writeq(val64, &bar0->rmac_addr_cmd_mem);
5279
5280 /* Wait till command completes */
5281 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5282 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5283 S2IO_BIT_RESET)) {
5284 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5285 return FAILURE;
5286 }
5287 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5288
5289 return tmp64 >> 16;
5290 }
5291
5292 /**
5293 * s2io_set_mac_addr driver entry point
5294 */
5295
5296 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5297 {
5298 struct sockaddr *addr = p;
5299
5300 if (!is_valid_ether_addr(addr->sa_data))
5301 return -EINVAL;
5302
5303 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5304
5305 /* store the MAC address in CAM */
5306 return do_s2io_prog_unicast(dev, dev->dev_addr);
5307 }
5308 /**
5309 * do_s2io_prog_unicast - Programs the Xframe mac address
5310 * @dev : pointer to the device structure.
5311 * @addr: a uchar pointer to the new mac address which is to be set.
5312 * Description : This procedure will program the Xframe to receive
5313 * frames with new Mac Address
5314 * Return value: SUCCESS on success and an appropriate (-)ve integer
5315 * as defined in errno.h file on failure.
5316 */
5317
5318 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5319 {
5320 struct s2io_nic *sp = netdev_priv(dev);
5321 register u64 mac_addr = 0, perm_addr = 0;
5322 int i;
5323 u64 tmp64;
5324 struct config_param *config = &sp->config;
5325
5326 /*
5327 * Set the new MAC address as the new unicast filter and reflect this
5328 * change on the device address registered with the OS. It will be
5329 * at offset 0.
5330 */
5331 for (i = 0; i < ETH_ALEN; i++) {
5332 mac_addr <<= 8;
5333 mac_addr |= addr[i];
5334 perm_addr <<= 8;
5335 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5336 }
5337
5338 /* check if the dev_addr is different than perm_addr */
5339 if (mac_addr == perm_addr)
5340 return SUCCESS;
5341
5342 /* check if the mac already preset in CAM */
5343 for (i = 1; i < config->max_mac_addr; i++) {
5344 tmp64 = do_s2io_read_unicast_mc(sp, i);
5345 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5346 break;
5347
5348 if (tmp64 == mac_addr) {
5349 DBG_PRINT(INFO_DBG,
5350 "MAC addr:0x%llx already present in CAM\n",
5351 (unsigned long long)mac_addr);
5352 return SUCCESS;
5353 }
5354 }
5355 if (i == config->max_mac_addr) {
5356 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5357 return FAILURE;
5358 }
5359 /* Update the internal structure with this new mac address */
5360 do_s2io_copy_mac_addr(sp, i, mac_addr);
5361
5362 return do_s2io_add_mac(sp, mac_addr, i);
5363 }
5364
5365 /**
5366 * s2io_ethtool_sset - Sets different link parameters.
5367 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5368 * @info: pointer to the structure with parameters given by ethtool to set
5369 * link information.
5370 * Description:
5371 * The function sets different link parameters provided by the user onto
5372 * the NIC.
5373 * Return value:
5374 * 0 on success.
5375 */
5376
5377 static int s2io_ethtool_sset(struct net_device *dev,
5378 struct ethtool_cmd *info)
5379 {
5380 struct s2io_nic *sp = netdev_priv(dev);
5381 if ((info->autoneg == AUTONEG_ENABLE) ||
5382 (ethtool_cmd_speed(info) != SPEED_10000) ||
5383 (info->duplex != DUPLEX_FULL))
5384 return -EINVAL;
5385 else {
5386 s2io_close(sp->dev);
5387 s2io_open(sp->dev);
5388 }
5389
5390 return 0;
5391 }
5392
5393 /**
5394 * s2io_ethtol_gset - Return link specific information.
5395 * @sp : private member of the device structure, pointer to the
5396 * s2io_nic structure.
5397 * @info : pointer to the structure with parameters given by ethtool
5398 * to return link information.
5399 * Description:
5400 * Returns link specific information like speed, duplex etc.. to ethtool.
5401 * Return value :
5402 * return 0 on success.
5403 */
5404
5405 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5406 {
5407 struct s2io_nic *sp = netdev_priv(dev);
5408 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5409 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5410 info->port = PORT_FIBRE;
5411
5412 /* info->transceiver */
5413 info->transceiver = XCVR_EXTERNAL;
5414
5415 if (netif_carrier_ok(sp->dev)) {
5416 ethtool_cmd_speed_set(info, SPEED_10000);
5417 info->duplex = DUPLEX_FULL;
5418 } else {
5419 ethtool_cmd_speed_set(info, -1);
5420 info->duplex = -1;
5421 }
5422
5423 info->autoneg = AUTONEG_DISABLE;
5424 return 0;
5425 }
5426
5427 /**
5428 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5429 * @sp : private member of the device structure, which is a pointer to the
5430 * s2io_nic structure.
5431 * @info : pointer to the structure with parameters given by ethtool to
5432 * return driver information.
5433 * Description:
5434 * Returns driver specefic information like name, version etc.. to ethtool.
5435 * Return value:
5436 * void
5437 */
5438
5439 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5440 struct ethtool_drvinfo *info)
5441 {
5442 struct s2io_nic *sp = netdev_priv(dev);
5443
5444 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5445 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5446 strncpy(info->fw_version, "", sizeof(info->fw_version));
5447 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5448 info->regdump_len = XENA_REG_SPACE;
5449 info->eedump_len = XENA_EEPROM_SPACE;
5450 }
5451
5452 /**
5453 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5454 * @sp: private member of the device structure, which is a pointer to the
5455 * s2io_nic structure.
5456 * @regs : pointer to the structure with parameters given by ethtool for
5457 * dumping the registers.
5458 * @reg_space: The input argumnet into which all the registers are dumped.
5459 * Description:
5460 * Dumps the entire register space of xFrame NIC into the user given
5461 * buffer area.
5462 * Return value :
5463 * void .
5464 */
5465
5466 static void s2io_ethtool_gregs(struct net_device *dev,
5467 struct ethtool_regs *regs, void *space)
5468 {
5469 int i;
5470 u64 reg;
5471 u8 *reg_space = (u8 *)space;
5472 struct s2io_nic *sp = netdev_priv(dev);
5473
5474 regs->len = XENA_REG_SPACE;
5475 regs->version = sp->pdev->subsystem_device;
5476
5477 for (i = 0; i < regs->len; i += 8) {
5478 reg = readq(sp->bar0 + i);
5479 memcpy((reg_space + i), &reg, 8);
5480 }
5481 }
5482
5483 /*
5484 * s2io_set_led - control NIC led
5485 */
5486 static void s2io_set_led(struct s2io_nic *sp, bool on)
5487 {
5488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5489 u16 subid = sp->pdev->subsystem_device;
5490 u64 val64;
5491
5492 if ((sp->device_type == XFRAME_II_DEVICE) ||
5493 ((subid & 0xFF) >= 0x07)) {
5494 val64 = readq(&bar0->gpio_control);
5495 if (on)
5496 val64 |= GPIO_CTRL_GPIO_0;
5497 else
5498 val64 &= ~GPIO_CTRL_GPIO_0;
5499
5500 writeq(val64, &bar0->gpio_control);
5501 } else {
5502 val64 = readq(&bar0->adapter_control);
5503 if (on)
5504 val64 |= ADAPTER_LED_ON;
5505 else
5506 val64 &= ~ADAPTER_LED_ON;
5507
5508 writeq(val64, &bar0->adapter_control);
5509 }
5510
5511 }
5512
5513 /**
5514 * s2io_ethtool_set_led - To physically identify the nic on the system.
5515 * @dev : network device
5516 * @state: led setting
5517 *
5518 * Description: Used to physically identify the NIC on the system.
5519 * The Link LED will blink for a time specified by the user for
5520 * identification.
5521 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5522 * identification is possible only if it's link is up.
5523 */
5524
5525 static int s2io_ethtool_set_led(struct net_device *dev,
5526 enum ethtool_phys_id_state state)
5527 {
5528 struct s2io_nic *sp = netdev_priv(dev);
5529 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5530 u16 subid = sp->pdev->subsystem_device;
5531
5532 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5533 u64 val64 = readq(&bar0->adapter_control);
5534 if (!(val64 & ADAPTER_CNTL_EN)) {
5535 pr_err("Adapter Link down, cannot blink LED\n");
5536 return -EAGAIN;
5537 }
5538 }
5539
5540 switch (state) {
5541 case ETHTOOL_ID_ACTIVE:
5542 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5543 return 1; /* cycle on/off once per second */
5544
5545 case ETHTOOL_ID_ON:
5546 s2io_set_led(sp, true);
5547 break;
5548
5549 case ETHTOOL_ID_OFF:
5550 s2io_set_led(sp, false);
5551 break;
5552
5553 case ETHTOOL_ID_INACTIVE:
5554 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5555 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5556 }
5557
5558 return 0;
5559 }
5560
5561 static void s2io_ethtool_gringparam(struct net_device *dev,
5562 struct ethtool_ringparam *ering)
5563 {
5564 struct s2io_nic *sp = netdev_priv(dev);
5565 int i, tx_desc_count = 0, rx_desc_count = 0;
5566
5567 if (sp->rxd_mode == RXD_MODE_1) {
5568 ering->rx_max_pending = MAX_RX_DESC_1;
5569 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5570 } else {
5571 ering->rx_max_pending = MAX_RX_DESC_2;
5572 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5573 }
5574
5575 ering->rx_mini_max_pending = 0;
5576 ering->tx_max_pending = MAX_TX_DESC;
5577
5578 for (i = 0; i < sp->config.rx_ring_num; i++)
5579 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5580 ering->rx_pending = rx_desc_count;
5581 ering->rx_jumbo_pending = rx_desc_count;
5582 ering->rx_mini_pending = 0;
5583
5584 for (i = 0; i < sp->config.tx_fifo_num; i++)
5585 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5586 ering->tx_pending = tx_desc_count;
5587 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5588 }
5589
5590 /**
5591 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5592 * @sp : private member of the device structure, which is a pointer to the
5593 * s2io_nic structure.
5594 * @ep : pointer to the structure with pause parameters given by ethtool.
5595 * Description:
5596 * Returns the Pause frame generation and reception capability of the NIC.
5597 * Return value:
5598 * void
5599 */
5600 static void s2io_ethtool_getpause_data(struct net_device *dev,
5601 struct ethtool_pauseparam *ep)
5602 {
5603 u64 val64;
5604 struct s2io_nic *sp = netdev_priv(dev);
5605 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5606
5607 val64 = readq(&bar0->rmac_pause_cfg);
5608 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5609 ep->tx_pause = true;
5610 if (val64 & RMAC_PAUSE_RX_ENABLE)
5611 ep->rx_pause = true;
5612 ep->autoneg = false;
5613 }
5614
5615 /**
5616 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5617 * @sp : private member of the device structure, which is a pointer to the
5618 * s2io_nic structure.
5619 * @ep : pointer to the structure with pause parameters given by ethtool.
5620 * Description:
5621 * It can be used to set or reset Pause frame generation or reception
5622 * support of the NIC.
5623 * Return value:
5624 * int, returns 0 on Success
5625 */
5626
5627 static int s2io_ethtool_setpause_data(struct net_device *dev,
5628 struct ethtool_pauseparam *ep)
5629 {
5630 u64 val64;
5631 struct s2io_nic *sp = netdev_priv(dev);
5632 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5633
5634 val64 = readq(&bar0->rmac_pause_cfg);
5635 if (ep->tx_pause)
5636 val64 |= RMAC_PAUSE_GEN_ENABLE;
5637 else
5638 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5639 if (ep->rx_pause)
5640 val64 |= RMAC_PAUSE_RX_ENABLE;
5641 else
5642 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5643 writeq(val64, &bar0->rmac_pause_cfg);
5644 return 0;
5645 }
5646
5647 /**
5648 * read_eeprom - reads 4 bytes of data from user given offset.
5649 * @sp : private member of the device structure, which is a pointer to the
5650 * s2io_nic structure.
5651 * @off : offset at which the data must be written
5652 * @data : Its an output parameter where the data read at the given
5653 * offset is stored.
5654 * Description:
5655 * Will read 4 bytes of data from the user given offset and return the
5656 * read data.
5657 * NOTE: Will allow to read only part of the EEPROM visible through the
5658 * I2C bus.
5659 * Return value:
5660 * -1 on failure and 0 on success.
5661 */
5662
5663 #define S2IO_DEV_ID 5
5664 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5665 {
5666 int ret = -1;
5667 u32 exit_cnt = 0;
5668 u64 val64;
5669 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5670
5671 if (sp->device_type == XFRAME_I_DEVICE) {
5672 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5673 I2C_CONTROL_ADDR(off) |
5674 I2C_CONTROL_BYTE_CNT(0x3) |
5675 I2C_CONTROL_READ |
5676 I2C_CONTROL_CNTL_START;
5677 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5678
5679 while (exit_cnt < 5) {
5680 val64 = readq(&bar0->i2c_control);
5681 if (I2C_CONTROL_CNTL_END(val64)) {
5682 *data = I2C_CONTROL_GET_DATA(val64);
5683 ret = 0;
5684 break;
5685 }
5686 msleep(50);
5687 exit_cnt++;
5688 }
5689 }
5690
5691 if (sp->device_type == XFRAME_II_DEVICE) {
5692 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5693 SPI_CONTROL_BYTECNT(0x3) |
5694 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5695 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5696 val64 |= SPI_CONTROL_REQ;
5697 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5698 while (exit_cnt < 5) {
5699 val64 = readq(&bar0->spi_control);
5700 if (val64 & SPI_CONTROL_NACK) {
5701 ret = 1;
5702 break;
5703 } else if (val64 & SPI_CONTROL_DONE) {
5704 *data = readq(&bar0->spi_data);
5705 *data &= 0xffffff;
5706 ret = 0;
5707 break;
5708 }
5709 msleep(50);
5710 exit_cnt++;
5711 }
5712 }
5713 return ret;
5714 }
5715
5716 /**
5717 * write_eeprom - actually writes the relevant part of the data value.
5718 * @sp : private member of the device structure, which is a pointer to the
5719 * s2io_nic structure.
5720 * @off : offset at which the data must be written
5721 * @data : The data that is to be written
5722 * @cnt : Number of bytes of the data that are actually to be written into
5723 * the Eeprom. (max of 3)
5724 * Description:
5725 * Actually writes the relevant part of the data value into the Eeprom
5726 * through the I2C bus.
5727 * Return value:
5728 * 0 on success, -1 on failure.
5729 */
5730
5731 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5732 {
5733 int exit_cnt = 0, ret = -1;
5734 u64 val64;
5735 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5736
5737 if (sp->device_type == XFRAME_I_DEVICE) {
5738 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5739 I2C_CONTROL_ADDR(off) |
5740 I2C_CONTROL_BYTE_CNT(cnt) |
5741 I2C_CONTROL_SET_DATA((u32)data) |
5742 I2C_CONTROL_CNTL_START;
5743 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5744
5745 while (exit_cnt < 5) {
5746 val64 = readq(&bar0->i2c_control);
5747 if (I2C_CONTROL_CNTL_END(val64)) {
5748 if (!(val64 & I2C_CONTROL_NACK))
5749 ret = 0;
5750 break;
5751 }
5752 msleep(50);
5753 exit_cnt++;
5754 }
5755 }
5756
5757 if (sp->device_type == XFRAME_II_DEVICE) {
5758 int write_cnt = (cnt == 8) ? 0 : cnt;
5759 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5760
5761 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5762 SPI_CONTROL_BYTECNT(write_cnt) |
5763 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5764 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5765 val64 |= SPI_CONTROL_REQ;
5766 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5767 while (exit_cnt < 5) {
5768 val64 = readq(&bar0->spi_control);
5769 if (val64 & SPI_CONTROL_NACK) {
5770 ret = 1;
5771 break;
5772 } else if (val64 & SPI_CONTROL_DONE) {
5773 ret = 0;
5774 break;
5775 }
5776 msleep(50);
5777 exit_cnt++;
5778 }
5779 }
5780 return ret;
5781 }
5782 static void s2io_vpd_read(struct s2io_nic *nic)
5783 {
5784 u8 *vpd_data;
5785 u8 data;
5786 int i = 0, cnt, len, fail = 0;
5787 int vpd_addr = 0x80;
5788 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5789
5790 if (nic->device_type == XFRAME_II_DEVICE) {
5791 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5792 vpd_addr = 0x80;
5793 } else {
5794 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5795 vpd_addr = 0x50;
5796 }
5797 strcpy(nic->serial_num, "NOT AVAILABLE");
5798
5799 vpd_data = kmalloc(256, GFP_KERNEL);
5800 if (!vpd_data) {
5801 swstats->mem_alloc_fail_cnt++;
5802 return;
5803 }
5804 swstats->mem_allocated += 256;
5805
5806 for (i = 0; i < 256; i += 4) {
5807 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5808 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5809 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5810 for (cnt = 0; cnt < 5; cnt++) {
5811 msleep(2);
5812 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5813 if (data == 0x80)
5814 break;
5815 }
5816 if (cnt >= 5) {
5817 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5818 fail = 1;
5819 break;
5820 }
5821 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5822 (u32 *)&vpd_data[i]);
5823 }
5824
5825 if (!fail) {
5826 /* read serial number of adapter */
5827 for (cnt = 0; cnt < 252; cnt++) {
5828 if ((vpd_data[cnt] == 'S') &&
5829 (vpd_data[cnt+1] == 'N')) {
5830 len = vpd_data[cnt+2];
5831 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5832 memcpy(nic->serial_num,
5833 &vpd_data[cnt + 3],
5834 len);
5835 memset(nic->serial_num+len,
5836 0,
5837 VPD_STRING_LEN-len);
5838 break;
5839 }
5840 }
5841 }
5842 }
5843
5844 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5845 len = vpd_data[1];
5846 memcpy(nic->product_name, &vpd_data[3], len);
5847 nic->product_name[len] = 0;
5848 }
5849 kfree(vpd_data);
5850 swstats->mem_freed += 256;
5851 }
5852
5853 /**
5854 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5855 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5856 * @eeprom : pointer to the user level structure provided by ethtool,
5857 * containing all relevant information.
5858 * @data_buf : user defined value to be written into Eeprom.
5859 * Description: Reads the values stored in the Eeprom at given offset
5860 * for a given length. Stores these values int the input argument data
5861 * buffer 'data_buf' and returns these to the caller (ethtool.)
5862 * Return value:
5863 * int 0 on success
5864 */
5865
5866 static int s2io_ethtool_geeprom(struct net_device *dev,
5867 struct ethtool_eeprom *eeprom, u8 * data_buf)
5868 {
5869 u32 i, valid;
5870 u64 data;
5871 struct s2io_nic *sp = netdev_priv(dev);
5872
5873 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5874
5875 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5876 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5877
5878 for (i = 0; i < eeprom->len; i += 4) {
5879 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5880 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5881 return -EFAULT;
5882 }
5883 valid = INV(data);
5884 memcpy((data_buf + i), &valid, 4);
5885 }
5886 return 0;
5887 }
5888
5889 /**
5890 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5891 * @sp : private member of the device structure, which is a pointer to the
5892 * s2io_nic structure.
5893 * @eeprom : pointer to the user level structure provided by ethtool,
5894 * containing all relevant information.
5895 * @data_buf ; user defined value to be written into Eeprom.
5896 * Description:
5897 * Tries to write the user provided value in the Eeprom, at the offset
5898 * given by the user.
5899 * Return value:
5900 * 0 on success, -EFAULT on failure.
5901 */
5902
5903 static int s2io_ethtool_seeprom(struct net_device *dev,
5904 struct ethtool_eeprom *eeprom,
5905 u8 *data_buf)
5906 {
5907 int len = eeprom->len, cnt = 0;
5908 u64 valid = 0, data;
5909 struct s2io_nic *sp = netdev_priv(dev);
5910
5911 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5912 DBG_PRINT(ERR_DBG,
5913 "ETHTOOL_WRITE_EEPROM Err: "
5914 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5915 (sp->pdev->vendor | (sp->pdev->device << 16)),
5916 eeprom->magic);
5917 return -EFAULT;
5918 }
5919
5920 while (len) {
5921 data = (u32)data_buf[cnt] & 0x000000FF;
5922 if (data)
5923 valid = (u32)(data << 24);
5924 else
5925 valid = data;
5926
5927 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5928 DBG_PRINT(ERR_DBG,
5929 "ETHTOOL_WRITE_EEPROM Err: "
5930 "Cannot write into the specified offset\n");
5931 return -EFAULT;
5932 }
5933 cnt++;
5934 len--;
5935 }
5936
5937 return 0;
5938 }
5939
5940 /**
5941 * s2io_register_test - reads and writes into all clock domains.
5942 * @sp : private member of the device structure, which is a pointer to the
5943 * s2io_nic structure.
5944 * @data : variable that returns the result of each of the test conducted b
5945 * by the driver.
5946 * Description:
5947 * Read and write into all clock domains. The NIC has 3 clock domains,
5948 * see that registers in all the three regions are accessible.
5949 * Return value:
5950 * 0 on success.
5951 */
5952
5953 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5954 {
5955 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5956 u64 val64 = 0, exp_val;
5957 int fail = 0;
5958
5959 val64 = readq(&bar0->pif_rd_swapper_fb);
5960 if (val64 != 0x123456789abcdefULL) {
5961 fail = 1;
5962 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5963 }
5964
5965 val64 = readq(&bar0->rmac_pause_cfg);
5966 if (val64 != 0xc000ffff00000000ULL) {
5967 fail = 1;
5968 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5969 }
5970
5971 val64 = readq(&bar0->rx_queue_cfg);
5972 if (sp->device_type == XFRAME_II_DEVICE)
5973 exp_val = 0x0404040404040404ULL;
5974 else
5975 exp_val = 0x0808080808080808ULL;
5976 if (val64 != exp_val) {
5977 fail = 1;
5978 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5979 }
5980
5981 val64 = readq(&bar0->xgxs_efifo_cfg);
5982 if (val64 != 0x000000001923141EULL) {
5983 fail = 1;
5984 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5985 }
5986
5987 val64 = 0x5A5A5A5A5A5A5A5AULL;
5988 writeq(val64, &bar0->xmsi_data);
5989 val64 = readq(&bar0->xmsi_data);
5990 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5991 fail = 1;
5992 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5993 }
5994
5995 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5996 writeq(val64, &bar0->xmsi_data);
5997 val64 = readq(&bar0->xmsi_data);
5998 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5999 fail = 1;
6000 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6001 }
6002
6003 *data = fail;
6004 return fail;
6005 }
6006
6007 /**
6008 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6009 * @sp : private member of the device structure, which is a pointer to the
6010 * s2io_nic structure.
6011 * @data:variable that returns the result of each of the test conducted by
6012 * the driver.
6013 * Description:
6014 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6015 * register.
6016 * Return value:
6017 * 0 on success.
6018 */
6019
6020 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6021 {
6022 int fail = 0;
6023 u64 ret_data, org_4F0, org_7F0;
6024 u8 saved_4F0 = 0, saved_7F0 = 0;
6025 struct net_device *dev = sp->dev;
6026
6027 /* Test Write Error at offset 0 */
6028 /* Note that SPI interface allows write access to all areas
6029 * of EEPROM. Hence doing all negative testing only for Xframe I.
6030 */
6031 if (sp->device_type == XFRAME_I_DEVICE)
6032 if (!write_eeprom(sp, 0, 0, 3))
6033 fail = 1;
6034
6035 /* Save current values at offsets 0x4F0 and 0x7F0 */
6036 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6037 saved_4F0 = 1;
6038 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6039 saved_7F0 = 1;
6040
6041 /* Test Write at offset 4f0 */
6042 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6043 fail = 1;
6044 if (read_eeprom(sp, 0x4F0, &ret_data))
6045 fail = 1;
6046
6047 if (ret_data != 0x012345) {
6048 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6049 "Data written %llx Data read %llx\n",
6050 dev->name, (unsigned long long)0x12345,
6051 (unsigned long long)ret_data);
6052 fail = 1;
6053 }
6054
6055 /* Reset the EEPROM data go FFFF */
6056 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6057
6058 /* Test Write Request Error at offset 0x7c */
6059 if (sp->device_type == XFRAME_I_DEVICE)
6060 if (!write_eeprom(sp, 0x07C, 0, 3))
6061 fail = 1;
6062
6063 /* Test Write Request at offset 0x7f0 */
6064 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6065 fail = 1;
6066 if (read_eeprom(sp, 0x7F0, &ret_data))
6067 fail = 1;
6068
6069 if (ret_data != 0x012345) {
6070 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6071 "Data written %llx Data read %llx\n",
6072 dev->name, (unsigned long long)0x12345,
6073 (unsigned long long)ret_data);
6074 fail = 1;
6075 }
6076
6077 /* Reset the EEPROM data go FFFF */
6078 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6079
6080 if (sp->device_type == XFRAME_I_DEVICE) {
6081 /* Test Write Error at offset 0x80 */
6082 if (!write_eeprom(sp, 0x080, 0, 3))
6083 fail = 1;
6084
6085 /* Test Write Error at offset 0xfc */
6086 if (!write_eeprom(sp, 0x0FC, 0, 3))
6087 fail = 1;
6088
6089 /* Test Write Error at offset 0x100 */
6090 if (!write_eeprom(sp, 0x100, 0, 3))
6091 fail = 1;
6092
6093 /* Test Write Error at offset 4ec */
6094 if (!write_eeprom(sp, 0x4EC, 0, 3))
6095 fail = 1;
6096 }
6097
6098 /* Restore values at offsets 0x4F0 and 0x7F0 */
6099 if (saved_4F0)
6100 write_eeprom(sp, 0x4F0, org_4F0, 3);
6101 if (saved_7F0)
6102 write_eeprom(sp, 0x7F0, org_7F0, 3);
6103
6104 *data = fail;
6105 return fail;
6106 }
6107
6108 /**
6109 * s2io_bist_test - invokes the MemBist test of the card .
6110 * @sp : private member of the device structure, which is a pointer to the
6111 * s2io_nic structure.
6112 * @data:variable that returns the result of each of the test conducted by
6113 * the driver.
6114 * Description:
6115 * This invokes the MemBist test of the card. We give around
6116 * 2 secs time for the Test to complete. If it's still not complete
6117 * within this peiod, we consider that the test failed.
6118 * Return value:
6119 * 0 on success and -1 on failure.
6120 */
6121
6122 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6123 {
6124 u8 bist = 0;
6125 int cnt = 0, ret = -1;
6126
6127 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6128 bist |= PCI_BIST_START;
6129 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6130
6131 while (cnt < 20) {
6132 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6133 if (!(bist & PCI_BIST_START)) {
6134 *data = (bist & PCI_BIST_CODE_MASK);
6135 ret = 0;
6136 break;
6137 }
6138 msleep(100);
6139 cnt++;
6140 }
6141
6142 return ret;
6143 }
6144
6145 /**
6146 * s2io-link_test - verifies the link state of the nic
6147 * @sp ; private member of the device structure, which is a pointer to the
6148 * s2io_nic structure.
6149 * @data: variable that returns the result of each of the test conducted by
6150 * the driver.
6151 * Description:
6152 * The function verifies the link state of the NIC and updates the input
6153 * argument 'data' appropriately.
6154 * Return value:
6155 * 0 on success.
6156 */
6157
6158 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6159 {
6160 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6161 u64 val64;
6162
6163 val64 = readq(&bar0->adapter_status);
6164 if (!(LINK_IS_UP(val64)))
6165 *data = 1;
6166 else
6167 *data = 0;
6168
6169 return *data;
6170 }
6171
6172 /**
6173 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6174 * @sp - private member of the device structure, which is a pointer to the
6175 * s2io_nic structure.
6176 * @data - variable that returns the result of each of the test
6177 * conducted by the driver.
6178 * Description:
6179 * This is one of the offline test that tests the read and write
6180 * access to the RldRam chip on the NIC.
6181 * Return value:
6182 * 0 on success.
6183 */
6184
6185 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6186 {
6187 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6188 u64 val64;
6189 int cnt, iteration = 0, test_fail = 0;
6190
6191 val64 = readq(&bar0->adapter_control);
6192 val64 &= ~ADAPTER_ECC_EN;
6193 writeq(val64, &bar0->adapter_control);
6194
6195 val64 = readq(&bar0->mc_rldram_test_ctrl);
6196 val64 |= MC_RLDRAM_TEST_MODE;
6197 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6198
6199 val64 = readq(&bar0->mc_rldram_mrs);
6200 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6201 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6202
6203 val64 |= MC_RLDRAM_MRS_ENABLE;
6204 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6205
6206 while (iteration < 2) {
6207 val64 = 0x55555555aaaa0000ULL;
6208 if (iteration == 1)
6209 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6210 writeq(val64, &bar0->mc_rldram_test_d0);
6211
6212 val64 = 0xaaaa5a5555550000ULL;
6213 if (iteration == 1)
6214 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6215 writeq(val64, &bar0->mc_rldram_test_d1);
6216
6217 val64 = 0x55aaaaaaaa5a0000ULL;
6218 if (iteration == 1)
6219 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6220 writeq(val64, &bar0->mc_rldram_test_d2);
6221
6222 val64 = (u64) (0x0000003ffffe0100ULL);
6223 writeq(val64, &bar0->mc_rldram_test_add);
6224
6225 val64 = MC_RLDRAM_TEST_MODE |
6226 MC_RLDRAM_TEST_WRITE |
6227 MC_RLDRAM_TEST_GO;
6228 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6229
6230 for (cnt = 0; cnt < 5; cnt++) {
6231 val64 = readq(&bar0->mc_rldram_test_ctrl);
6232 if (val64 & MC_RLDRAM_TEST_DONE)
6233 break;
6234 msleep(200);
6235 }
6236
6237 if (cnt == 5)
6238 break;
6239
6240 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6241 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6242
6243 for (cnt = 0; cnt < 5; cnt++) {
6244 val64 = readq(&bar0->mc_rldram_test_ctrl);
6245 if (val64 & MC_RLDRAM_TEST_DONE)
6246 break;
6247 msleep(500);
6248 }
6249
6250 if (cnt == 5)
6251 break;
6252
6253 val64 = readq(&bar0->mc_rldram_test_ctrl);
6254 if (!(val64 & MC_RLDRAM_TEST_PASS))
6255 test_fail = 1;
6256
6257 iteration++;
6258 }
6259
6260 *data = test_fail;
6261
6262 /* Bring the adapter out of test mode */
6263 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6264
6265 return test_fail;
6266 }
6267
6268 /**
6269 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6270 * @sp : private member of the device structure, which is a pointer to the
6271 * s2io_nic structure.
6272 * @ethtest : pointer to a ethtool command specific structure that will be
6273 * returned to the user.
6274 * @data : variable that returns the result of each of the test
6275 * conducted by the driver.
6276 * Description:
6277 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6278 * the health of the card.
6279 * Return value:
6280 * void
6281 */
6282
6283 static void s2io_ethtool_test(struct net_device *dev,
6284 struct ethtool_test *ethtest,
6285 uint64_t *data)
6286 {
6287 struct s2io_nic *sp = netdev_priv(dev);
6288 int orig_state = netif_running(sp->dev);
6289
6290 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6291 /* Offline Tests. */
6292 if (orig_state)
6293 s2io_close(sp->dev);
6294
6295 if (s2io_register_test(sp, &data[0]))
6296 ethtest->flags |= ETH_TEST_FL_FAILED;
6297
6298 s2io_reset(sp);
6299
6300 if (s2io_rldram_test(sp, &data[3]))
6301 ethtest->flags |= ETH_TEST_FL_FAILED;
6302
6303 s2io_reset(sp);
6304
6305 if (s2io_eeprom_test(sp, &data[1]))
6306 ethtest->flags |= ETH_TEST_FL_FAILED;
6307
6308 if (s2io_bist_test(sp, &data[4]))
6309 ethtest->flags |= ETH_TEST_FL_FAILED;
6310
6311 if (orig_state)
6312 s2io_open(sp->dev);
6313
6314 data[2] = 0;
6315 } else {
6316 /* Online Tests. */
6317 if (!orig_state) {
6318 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6319 dev->name);
6320 data[0] = -1;
6321 data[1] = -1;
6322 data[2] = -1;
6323 data[3] = -1;
6324 data[4] = -1;
6325 }
6326
6327 if (s2io_link_test(sp, &data[2]))
6328 ethtest->flags |= ETH_TEST_FL_FAILED;
6329
6330 data[0] = 0;
6331 data[1] = 0;
6332 data[3] = 0;
6333 data[4] = 0;
6334 }
6335 }
6336
6337 static void s2io_get_ethtool_stats(struct net_device *dev,
6338 struct ethtool_stats *estats,
6339 u64 *tmp_stats)
6340 {
6341 int i = 0, k;
6342 struct s2io_nic *sp = netdev_priv(dev);
6343 struct stat_block *stats = sp->mac_control.stats_info;
6344 struct swStat *swstats = &stats->sw_stat;
6345 struct xpakStat *xstats = &stats->xpak_stat;
6346
6347 s2io_updt_stats(sp);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6350 le32_to_cpu(stats->tmac_frms);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6353 le32_to_cpu(stats->tmac_data_octets);
6354 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6355 tmp_stats[i++] =
6356 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6357 le32_to_cpu(stats->tmac_mcst_frms);
6358 tmp_stats[i++] =
6359 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6360 le32_to_cpu(stats->tmac_bcst_frms);
6361 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6362 tmp_stats[i++] =
6363 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6364 le32_to_cpu(stats->tmac_ttl_octets);
6365 tmp_stats[i++] =
6366 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6367 le32_to_cpu(stats->tmac_ucst_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6370 le32_to_cpu(stats->tmac_nucst_frms);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6373 le32_to_cpu(stats->tmac_any_err_frms);
6374 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6375 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6378 le32_to_cpu(stats->tmac_vld_ip);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6381 le32_to_cpu(stats->tmac_drop_ip);
6382 tmp_stats[i++] =
6383 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6384 le32_to_cpu(stats->tmac_icmp);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6387 le32_to_cpu(stats->tmac_rst_tcp);
6388 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6389 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6390 le32_to_cpu(stats->tmac_udp);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6393 le32_to_cpu(stats->rmac_vld_frms);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6396 le32_to_cpu(stats->rmac_data_octets);
6397 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6398 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6401 le32_to_cpu(stats->rmac_vld_mcst_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6404 le32_to_cpu(stats->rmac_vld_bcst_frms);
6405 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6406 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6407 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6408 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6410 tmp_stats[i++] =
6411 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6412 le32_to_cpu(stats->rmac_ttl_octets);
6413 tmp_stats[i++] =
6414 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6415 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6416 tmp_stats[i++] =
6417 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6418 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6419 tmp_stats[i++] =
6420 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6421 le32_to_cpu(stats->rmac_discarded_frms);
6422 tmp_stats[i++] =
6423 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6424 << 32 | le32_to_cpu(stats->rmac_drop_events);
6425 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6426 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6427 tmp_stats[i++] =
6428 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6429 le32_to_cpu(stats->rmac_usized_frms);
6430 tmp_stats[i++] =
6431 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6432 le32_to_cpu(stats->rmac_osized_frms);
6433 tmp_stats[i++] =
6434 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6435 le32_to_cpu(stats->rmac_frag_frms);
6436 tmp_stats[i++] =
6437 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6438 le32_to_cpu(stats->rmac_jabber_frms);
6439 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6440 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6445 tmp_stats[i++] =
6446 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6447 le32_to_cpu(stats->rmac_ip);
6448 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6449 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6450 tmp_stats[i++] =
6451 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6452 le32_to_cpu(stats->rmac_drop_ip);
6453 tmp_stats[i++] =
6454 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6455 le32_to_cpu(stats->rmac_icmp);
6456 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6457 tmp_stats[i++] =
6458 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6459 le32_to_cpu(stats->rmac_udp);
6460 tmp_stats[i++] =
6461 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6462 le32_to_cpu(stats->rmac_err_drp_udp);
6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6466 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6467 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6468 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6469 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6470 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6471 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6472 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6473 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6474 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6475 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6476 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6477 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6478 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6479 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6480 tmp_stats[i++] =
6481 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6482 le32_to_cpu(stats->rmac_pause_cnt);
6483 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6484 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6485 tmp_stats[i++] =
6486 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6487 le32_to_cpu(stats->rmac_accepted_ip);
6488 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6489 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6490 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6491 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6492 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6493 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6494 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6495 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6496 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6497 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6498 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6499 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6500 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6501 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6502 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6507
6508 /* Enhanced statistics exist only for Hercules */
6509 if (sp->device_type == XFRAME_II_DEVICE) {
6510 tmp_stats[i++] =
6511 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6512 tmp_stats[i++] =
6513 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6514 tmp_stats[i++] =
6515 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6516 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6517 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6518 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6519 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6520 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6521 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6522 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6523 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6524 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6525 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6526 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6527 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6528 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6529 }
6530
6531 tmp_stats[i++] = 0;
6532 tmp_stats[i++] = swstats->single_ecc_errs;
6533 tmp_stats[i++] = swstats->double_ecc_errs;
6534 tmp_stats[i++] = swstats->parity_err_cnt;
6535 tmp_stats[i++] = swstats->serious_err_cnt;
6536 tmp_stats[i++] = swstats->soft_reset_cnt;
6537 tmp_stats[i++] = swstats->fifo_full_cnt;
6538 for (k = 0; k < MAX_RX_RINGS; k++)
6539 tmp_stats[i++] = swstats->ring_full_cnt[k];
6540 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6541 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6542 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6543 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6544 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6545 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6546 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6547 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6548 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6549 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6550 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6551 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6552 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6553 tmp_stats[i++] = swstats->sending_both;
6554 tmp_stats[i++] = swstats->outof_sequence_pkts;
6555 tmp_stats[i++] = swstats->flush_max_pkts;
6556 if (swstats->num_aggregations) {
6557 u64 tmp = swstats->sum_avg_pkts_aggregated;
6558 int count = 0;
6559 /*
6560 * Since 64-bit divide does not work on all platforms,
6561 * do repeated subtraction.
6562 */
6563 while (tmp >= swstats->num_aggregations) {
6564 tmp -= swstats->num_aggregations;
6565 count++;
6566 }
6567 tmp_stats[i++] = count;
6568 } else
6569 tmp_stats[i++] = 0;
6570 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6571 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6572 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6573 tmp_stats[i++] = swstats->mem_allocated;
6574 tmp_stats[i++] = swstats->mem_freed;
6575 tmp_stats[i++] = swstats->link_up_cnt;
6576 tmp_stats[i++] = swstats->link_down_cnt;
6577 tmp_stats[i++] = swstats->link_up_time;
6578 tmp_stats[i++] = swstats->link_down_time;
6579
6580 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6581 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6582 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6583 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6584 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6585
6586 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6587 tmp_stats[i++] = swstats->rx_abort_cnt;
6588 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6589 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6590 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6591 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6592 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6593 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6594 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6595 tmp_stats[i++] = swstats->tda_err_cnt;
6596 tmp_stats[i++] = swstats->pfc_err_cnt;
6597 tmp_stats[i++] = swstats->pcc_err_cnt;
6598 tmp_stats[i++] = swstats->tti_err_cnt;
6599 tmp_stats[i++] = swstats->tpa_err_cnt;
6600 tmp_stats[i++] = swstats->sm_err_cnt;
6601 tmp_stats[i++] = swstats->lso_err_cnt;
6602 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6603 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6604 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6605 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6606 tmp_stats[i++] = swstats->rc_err_cnt;
6607 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6608 tmp_stats[i++] = swstats->rpa_err_cnt;
6609 tmp_stats[i++] = swstats->rda_err_cnt;
6610 tmp_stats[i++] = swstats->rti_err_cnt;
6611 tmp_stats[i++] = swstats->mc_err_cnt;
6612 }
6613
6614 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6615 {
6616 return XENA_REG_SPACE;
6617 }
6618
6619
6620 static int s2io_get_eeprom_len(struct net_device *dev)
6621 {
6622 return XENA_EEPROM_SPACE;
6623 }
6624
6625 static int s2io_get_sset_count(struct net_device *dev, int sset)
6626 {
6627 struct s2io_nic *sp = netdev_priv(dev);
6628
6629 switch (sset) {
6630 case ETH_SS_TEST:
6631 return S2IO_TEST_LEN;
6632 case ETH_SS_STATS:
6633 switch (sp->device_type) {
6634 case XFRAME_I_DEVICE:
6635 return XFRAME_I_STAT_LEN;
6636 case XFRAME_II_DEVICE:
6637 return XFRAME_II_STAT_LEN;
6638 default:
6639 return 0;
6640 }
6641 default:
6642 return -EOPNOTSUPP;
6643 }
6644 }
6645
6646 static void s2io_ethtool_get_strings(struct net_device *dev,
6647 u32 stringset, u8 *data)
6648 {
6649 int stat_size = 0;
6650 struct s2io_nic *sp = netdev_priv(dev);
6651
6652 switch (stringset) {
6653 case ETH_SS_TEST:
6654 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6655 break;
6656 case ETH_SS_STATS:
6657 stat_size = sizeof(ethtool_xena_stats_keys);
6658 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6659 if (sp->device_type == XFRAME_II_DEVICE) {
6660 memcpy(data + stat_size,
6661 &ethtool_enhanced_stats_keys,
6662 sizeof(ethtool_enhanced_stats_keys));
6663 stat_size += sizeof(ethtool_enhanced_stats_keys);
6664 }
6665
6666 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6667 sizeof(ethtool_driver_stats_keys));
6668 }
6669 }
6670
6671 static int s2io_set_features(struct net_device *dev, u32 features)
6672 {
6673 struct s2io_nic *sp = netdev_priv(dev);
6674 u32 changed = (features ^ dev->features) & NETIF_F_LRO;
6675
6676 if (changed && netif_running(dev)) {
6677 int rc;
6678
6679 s2io_stop_all_tx_queue(sp);
6680 s2io_card_down(sp);
6681 dev->features = features;
6682 rc = s2io_card_up(sp);
6683 if (rc)
6684 s2io_reset(sp);
6685 else
6686 s2io_start_all_tx_queue(sp);
6687
6688 return rc ? rc : 1;
6689 }
6690
6691 return 0;
6692 }
6693
6694 static const struct ethtool_ops netdev_ethtool_ops = {
6695 .get_settings = s2io_ethtool_gset,
6696 .set_settings = s2io_ethtool_sset,
6697 .get_drvinfo = s2io_ethtool_gdrvinfo,
6698 .get_regs_len = s2io_ethtool_get_regs_len,
6699 .get_regs = s2io_ethtool_gregs,
6700 .get_link = ethtool_op_get_link,
6701 .get_eeprom_len = s2io_get_eeprom_len,
6702 .get_eeprom = s2io_ethtool_geeprom,
6703 .set_eeprom = s2io_ethtool_seeprom,
6704 .get_ringparam = s2io_ethtool_gringparam,
6705 .get_pauseparam = s2io_ethtool_getpause_data,
6706 .set_pauseparam = s2io_ethtool_setpause_data,
6707 .self_test = s2io_ethtool_test,
6708 .get_strings = s2io_ethtool_get_strings,
6709 .set_phys_id = s2io_ethtool_set_led,
6710 .get_ethtool_stats = s2io_get_ethtool_stats,
6711 .get_sset_count = s2io_get_sset_count,
6712 };
6713
6714 /**
6715 * s2io_ioctl - Entry point for the Ioctl
6716 * @dev : Device pointer.
6717 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6718 * a proprietary structure used to pass information to the driver.
6719 * @cmd : This is used to distinguish between the different commands that
6720 * can be passed to the IOCTL functions.
6721 * Description:
6722 * Currently there are no special functionality supported in IOCTL, hence
6723 * function always return EOPNOTSUPPORTED
6724 */
6725
6726 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6727 {
6728 return -EOPNOTSUPP;
6729 }
6730
6731 /**
6732 * s2io_change_mtu - entry point to change MTU size for the device.
6733 * @dev : device pointer.
6734 * @new_mtu : the new MTU size for the device.
6735 * Description: A driver entry point to change MTU size for the device.
6736 * Before changing the MTU the device must be stopped.
6737 * Return value:
6738 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6739 * file on failure.
6740 */
6741
6742 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6743 {
6744 struct s2io_nic *sp = netdev_priv(dev);
6745 int ret = 0;
6746
6747 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6748 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6749 return -EPERM;
6750 }
6751
6752 dev->mtu = new_mtu;
6753 if (netif_running(dev)) {
6754 s2io_stop_all_tx_queue(sp);
6755 s2io_card_down(sp);
6756 ret = s2io_card_up(sp);
6757 if (ret) {
6758 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6759 __func__);
6760 return ret;
6761 }
6762 s2io_wake_all_tx_queue(sp);
6763 } else { /* Device is down */
6764 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6765 u64 val64 = new_mtu;
6766
6767 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6768 }
6769
6770 return ret;
6771 }
6772
6773 /**
6774 * s2io_set_link - Set the LInk status
6775 * @data: long pointer to device private structue
6776 * Description: Sets the link status for the adapter
6777 */
6778
6779 static void s2io_set_link(struct work_struct *work)
6780 {
6781 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6782 set_link_task);
6783 struct net_device *dev = nic->dev;
6784 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6785 register u64 val64;
6786 u16 subid;
6787
6788 rtnl_lock();
6789
6790 if (!netif_running(dev))
6791 goto out_unlock;
6792
6793 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6794 /* The card is being reset, no point doing anything */
6795 goto out_unlock;
6796 }
6797
6798 subid = nic->pdev->subsystem_device;
6799 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6800 /*
6801 * Allow a small delay for the NICs self initiated
6802 * cleanup to complete.
6803 */
6804 msleep(100);
6805 }
6806
6807 val64 = readq(&bar0->adapter_status);
6808 if (LINK_IS_UP(val64)) {
6809 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6810 if (verify_xena_quiescence(nic)) {
6811 val64 = readq(&bar0->adapter_control);
6812 val64 |= ADAPTER_CNTL_EN;
6813 writeq(val64, &bar0->adapter_control);
6814 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6815 nic->device_type, subid)) {
6816 val64 = readq(&bar0->gpio_control);
6817 val64 |= GPIO_CTRL_GPIO_0;
6818 writeq(val64, &bar0->gpio_control);
6819 val64 = readq(&bar0->gpio_control);
6820 } else {
6821 val64 |= ADAPTER_LED_ON;
6822 writeq(val64, &bar0->adapter_control);
6823 }
6824 nic->device_enabled_once = true;
6825 } else {
6826 DBG_PRINT(ERR_DBG,
6827 "%s: Error: device is not Quiescent\n",
6828 dev->name);
6829 s2io_stop_all_tx_queue(nic);
6830 }
6831 }
6832 val64 = readq(&bar0->adapter_control);
6833 val64 |= ADAPTER_LED_ON;
6834 writeq(val64, &bar0->adapter_control);
6835 s2io_link(nic, LINK_UP);
6836 } else {
6837 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6838 subid)) {
6839 val64 = readq(&bar0->gpio_control);
6840 val64 &= ~GPIO_CTRL_GPIO_0;
6841 writeq(val64, &bar0->gpio_control);
6842 val64 = readq(&bar0->gpio_control);
6843 }
6844 /* turn off LED */
6845 val64 = readq(&bar0->adapter_control);
6846 val64 = val64 & (~ADAPTER_LED_ON);
6847 writeq(val64, &bar0->adapter_control);
6848 s2io_link(nic, LINK_DOWN);
6849 }
6850 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6851
6852 out_unlock:
6853 rtnl_unlock();
6854 }
6855
6856 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6857 struct buffAdd *ba,
6858 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6859 u64 *temp2, int size)
6860 {
6861 struct net_device *dev = sp->dev;
6862 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6863
6864 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6865 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6866 /* allocate skb */
6867 if (*skb) {
6868 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6869 /*
6870 * As Rx frame are not going to be processed,
6871 * using same mapped address for the Rxd
6872 * buffer pointer
6873 */
6874 rxdp1->Buffer0_ptr = *temp0;
6875 } else {
6876 *skb = dev_alloc_skb(size);
6877 if (!(*skb)) {
6878 DBG_PRINT(INFO_DBG,
6879 "%s: Out of memory to allocate %s\n",
6880 dev->name, "1 buf mode SKBs");
6881 stats->mem_alloc_fail_cnt++;
6882 return -ENOMEM ;
6883 }
6884 stats->mem_allocated += (*skb)->truesize;
6885 /* storing the mapped addr in a temp variable
6886 * such it will be used for next rxd whose
6887 * Host Control is NULL
6888 */
6889 rxdp1->Buffer0_ptr = *temp0 =
6890 pci_map_single(sp->pdev, (*skb)->data,
6891 size - NET_IP_ALIGN,
6892 PCI_DMA_FROMDEVICE);
6893 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6894 goto memalloc_failed;
6895 rxdp->Host_Control = (unsigned long) (*skb);
6896 }
6897 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6898 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6899 /* Two buffer Mode */
6900 if (*skb) {
6901 rxdp3->Buffer2_ptr = *temp2;
6902 rxdp3->Buffer0_ptr = *temp0;
6903 rxdp3->Buffer1_ptr = *temp1;
6904 } else {
6905 *skb = dev_alloc_skb(size);
6906 if (!(*skb)) {
6907 DBG_PRINT(INFO_DBG,
6908 "%s: Out of memory to allocate %s\n",
6909 dev->name,
6910 "2 buf mode SKBs");
6911 stats->mem_alloc_fail_cnt++;
6912 return -ENOMEM;
6913 }
6914 stats->mem_allocated += (*skb)->truesize;
6915 rxdp3->Buffer2_ptr = *temp2 =
6916 pci_map_single(sp->pdev, (*skb)->data,
6917 dev->mtu + 4,
6918 PCI_DMA_FROMDEVICE);
6919 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6920 goto memalloc_failed;
6921 rxdp3->Buffer0_ptr = *temp0 =
6922 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6923 PCI_DMA_FROMDEVICE);
6924 if (pci_dma_mapping_error(sp->pdev,
6925 rxdp3->Buffer0_ptr)) {
6926 pci_unmap_single(sp->pdev,
6927 (dma_addr_t)rxdp3->Buffer2_ptr,
6928 dev->mtu + 4,
6929 PCI_DMA_FROMDEVICE);
6930 goto memalloc_failed;
6931 }
6932 rxdp->Host_Control = (unsigned long) (*skb);
6933
6934 /* Buffer-1 will be dummy buffer not used */
6935 rxdp3->Buffer1_ptr = *temp1 =
6936 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6937 PCI_DMA_FROMDEVICE);
6938 if (pci_dma_mapping_error(sp->pdev,
6939 rxdp3->Buffer1_ptr)) {
6940 pci_unmap_single(sp->pdev,
6941 (dma_addr_t)rxdp3->Buffer0_ptr,
6942 BUF0_LEN, PCI_DMA_FROMDEVICE);
6943 pci_unmap_single(sp->pdev,
6944 (dma_addr_t)rxdp3->Buffer2_ptr,
6945 dev->mtu + 4,
6946 PCI_DMA_FROMDEVICE);
6947 goto memalloc_failed;
6948 }
6949 }
6950 }
6951 return 0;
6952
6953 memalloc_failed:
6954 stats->pci_map_fail_cnt++;
6955 stats->mem_freed += (*skb)->truesize;
6956 dev_kfree_skb(*skb);
6957 return -ENOMEM;
6958 }
6959
6960 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6961 int size)
6962 {
6963 struct net_device *dev = sp->dev;
6964 if (sp->rxd_mode == RXD_MODE_1) {
6965 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6966 } else if (sp->rxd_mode == RXD_MODE_3B) {
6967 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6968 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6969 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6970 }
6971 }
6972
6973 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6974 {
6975 int i, j, k, blk_cnt = 0, size;
6976 struct config_param *config = &sp->config;
6977 struct mac_info *mac_control = &sp->mac_control;
6978 struct net_device *dev = sp->dev;
6979 struct RxD_t *rxdp = NULL;
6980 struct sk_buff *skb = NULL;
6981 struct buffAdd *ba = NULL;
6982 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6983
6984 /* Calculate the size based on ring mode */
6985 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6986 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6987 if (sp->rxd_mode == RXD_MODE_1)
6988 size += NET_IP_ALIGN;
6989 else if (sp->rxd_mode == RXD_MODE_3B)
6990 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6991
6992 for (i = 0; i < config->rx_ring_num; i++) {
6993 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6994 struct ring_info *ring = &mac_control->rings[i];
6995
6996 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6997
6998 for (j = 0; j < blk_cnt; j++) {
6999 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7000 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7001 if (sp->rxd_mode == RXD_MODE_3B)
7002 ba = &ring->ba[j][k];
7003 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7004 (u64 *)&temp0_64,
7005 (u64 *)&temp1_64,
7006 (u64 *)&temp2_64,
7007 size) == -ENOMEM) {
7008 return 0;
7009 }
7010
7011 set_rxd_buffer_size(sp, rxdp, size);
7012 wmb();
7013 /* flip the Ownership bit to Hardware */
7014 rxdp->Control_1 |= RXD_OWN_XENA;
7015 }
7016 }
7017 }
7018 return 0;
7019
7020 }
7021
7022 static int s2io_add_isr(struct s2io_nic *sp)
7023 {
7024 int ret = 0;
7025 struct net_device *dev = sp->dev;
7026 int err = 0;
7027
7028 if (sp->config.intr_type == MSI_X)
7029 ret = s2io_enable_msi_x(sp);
7030 if (ret) {
7031 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7032 sp->config.intr_type = INTA;
7033 }
7034
7035 /*
7036 * Store the values of the MSIX table in
7037 * the struct s2io_nic structure
7038 */
7039 store_xmsi_data(sp);
7040
7041 /* After proper initialization of H/W, register ISR */
7042 if (sp->config.intr_type == MSI_X) {
7043 int i, msix_rx_cnt = 0;
7044
7045 for (i = 0; i < sp->num_entries; i++) {
7046 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7047 if (sp->s2io_entries[i].type ==
7048 MSIX_RING_TYPE) {
7049 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7050 dev->name, i);
7051 err = request_irq(sp->entries[i].vector,
7052 s2io_msix_ring_handle,
7053 0,
7054 sp->desc[i],
7055 sp->s2io_entries[i].arg);
7056 } else if (sp->s2io_entries[i].type ==
7057 MSIX_ALARM_TYPE) {
7058 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7059 dev->name, i);
7060 err = request_irq(sp->entries[i].vector,
7061 s2io_msix_fifo_handle,
7062 0,
7063 sp->desc[i],
7064 sp->s2io_entries[i].arg);
7065
7066 }
7067 /* if either data or addr is zero print it. */
7068 if (!(sp->msix_info[i].addr &&
7069 sp->msix_info[i].data)) {
7070 DBG_PRINT(ERR_DBG,
7071 "%s @Addr:0x%llx Data:0x%llx\n",
7072 sp->desc[i],
7073 (unsigned long long)
7074 sp->msix_info[i].addr,
7075 (unsigned long long)
7076 ntohl(sp->msix_info[i].data));
7077 } else
7078 msix_rx_cnt++;
7079 if (err) {
7080 remove_msix_isr(sp);
7081
7082 DBG_PRINT(ERR_DBG,
7083 "%s:MSI-X-%d registration "
7084 "failed\n", dev->name, i);
7085
7086 DBG_PRINT(ERR_DBG,
7087 "%s: Defaulting to INTA\n",
7088 dev->name);
7089 sp->config.intr_type = INTA;
7090 break;
7091 }
7092 sp->s2io_entries[i].in_use =
7093 MSIX_REGISTERED_SUCCESS;
7094 }
7095 }
7096 if (!err) {
7097 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7098 DBG_PRINT(INFO_DBG,
7099 "MSI-X-TX entries enabled through alarm vector\n");
7100 }
7101 }
7102 if (sp->config.intr_type == INTA) {
7103 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7104 sp->name, dev);
7105 if (err) {
7106 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7107 dev->name);
7108 return -1;
7109 }
7110 }
7111 return 0;
7112 }
7113
7114 static void s2io_rem_isr(struct s2io_nic *sp)
7115 {
7116 if (sp->config.intr_type == MSI_X)
7117 remove_msix_isr(sp);
7118 else
7119 remove_inta_isr(sp);
7120 }
7121
7122 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7123 {
7124 int cnt = 0;
7125 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7126 register u64 val64 = 0;
7127 struct config_param *config;
7128 config = &sp->config;
7129
7130 if (!is_s2io_card_up(sp))
7131 return;
7132
7133 del_timer_sync(&sp->alarm_timer);
7134 /* If s2io_set_link task is executing, wait till it completes. */
7135 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7136 msleep(50);
7137 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7138
7139 /* Disable napi */
7140 if (sp->config.napi) {
7141 int off = 0;
7142 if (config->intr_type == MSI_X) {
7143 for (; off < sp->config.rx_ring_num; off++)
7144 napi_disable(&sp->mac_control.rings[off].napi);
7145 }
7146 else
7147 napi_disable(&sp->napi);
7148 }
7149
7150 /* disable Tx and Rx traffic on the NIC */
7151 if (do_io)
7152 stop_nic(sp);
7153
7154 s2io_rem_isr(sp);
7155
7156 /* stop the tx queue, indicate link down */
7157 s2io_link(sp, LINK_DOWN);
7158
7159 /* Check if the device is Quiescent and then Reset the NIC */
7160 while (do_io) {
7161 /* As per the HW requirement we need to replenish the
7162 * receive buffer to avoid the ring bump. Since there is
7163 * no intention of processing the Rx frame at this pointwe are
7164 * just setting the ownership bit of rxd in Each Rx
7165 * ring to HW and set the appropriate buffer size
7166 * based on the ring mode
7167 */
7168 rxd_owner_bit_reset(sp);
7169
7170 val64 = readq(&bar0->adapter_status);
7171 if (verify_xena_quiescence(sp)) {
7172 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7173 break;
7174 }
7175
7176 msleep(50);
7177 cnt++;
7178 if (cnt == 10) {
7179 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7180 "adapter status reads 0x%llx\n",
7181 (unsigned long long)val64);
7182 break;
7183 }
7184 }
7185 if (do_io)
7186 s2io_reset(sp);
7187
7188 /* Free all Tx buffers */
7189 free_tx_buffers(sp);
7190
7191 /* Free all Rx buffers */
7192 free_rx_buffers(sp);
7193
7194 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7195 }
7196
7197 static void s2io_card_down(struct s2io_nic *sp)
7198 {
7199 do_s2io_card_down(sp, 1);
7200 }
7201
7202 static int s2io_card_up(struct s2io_nic *sp)
7203 {
7204 int i, ret = 0;
7205 struct config_param *config;
7206 struct mac_info *mac_control;
7207 struct net_device *dev = (struct net_device *)sp->dev;
7208 u16 interruptible;
7209
7210 /* Initialize the H/W I/O registers */
7211 ret = init_nic(sp);
7212 if (ret != 0) {
7213 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7214 dev->name);
7215 if (ret != -EIO)
7216 s2io_reset(sp);
7217 return ret;
7218 }
7219
7220 /*
7221 * Initializing the Rx buffers. For now we are considering only 1
7222 * Rx ring and initializing buffers into 30 Rx blocks
7223 */
7224 config = &sp->config;
7225 mac_control = &sp->mac_control;
7226
7227 for (i = 0; i < config->rx_ring_num; i++) {
7228 struct ring_info *ring = &mac_control->rings[i];
7229
7230 ring->mtu = dev->mtu;
7231 ring->lro = !!(dev->features & NETIF_F_LRO);
7232 ret = fill_rx_buffers(sp, ring, 1);
7233 if (ret) {
7234 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7235 dev->name);
7236 s2io_reset(sp);
7237 free_rx_buffers(sp);
7238 return -ENOMEM;
7239 }
7240 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7241 ring->rx_bufs_left);
7242 }
7243
7244 /* Initialise napi */
7245 if (config->napi) {
7246 if (config->intr_type == MSI_X) {
7247 for (i = 0; i < sp->config.rx_ring_num; i++)
7248 napi_enable(&sp->mac_control.rings[i].napi);
7249 } else {
7250 napi_enable(&sp->napi);
7251 }
7252 }
7253
7254 /* Maintain the state prior to the open */
7255 if (sp->promisc_flg)
7256 sp->promisc_flg = 0;
7257 if (sp->m_cast_flg) {
7258 sp->m_cast_flg = 0;
7259 sp->all_multi_pos = 0;
7260 }
7261
7262 /* Setting its receive mode */
7263 s2io_set_multicast(dev);
7264
7265 if (dev->features & NETIF_F_LRO) {
7266 /* Initialize max aggregatable pkts per session based on MTU */
7267 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7268 /* Check if we can use (if specified) user provided value */
7269 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7270 sp->lro_max_aggr_per_sess = lro_max_pkts;
7271 }
7272
7273 /* Enable Rx Traffic and interrupts on the NIC */
7274 if (start_nic(sp)) {
7275 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7276 s2io_reset(sp);
7277 free_rx_buffers(sp);
7278 return -ENODEV;
7279 }
7280
7281 /* Add interrupt service routine */
7282 if (s2io_add_isr(sp) != 0) {
7283 if (sp->config.intr_type == MSI_X)
7284 s2io_rem_isr(sp);
7285 s2io_reset(sp);
7286 free_rx_buffers(sp);
7287 return -ENODEV;
7288 }
7289
7290 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7291
7292 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7293
7294 /* Enable select interrupts */
7295 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7296 if (sp->config.intr_type != INTA) {
7297 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7298 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7299 } else {
7300 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7301 interruptible |= TX_PIC_INTR;
7302 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7303 }
7304
7305 return 0;
7306 }
7307
7308 /**
7309 * s2io_restart_nic - Resets the NIC.
7310 * @data : long pointer to the device private structure
7311 * Description:
7312 * This function is scheduled to be run by the s2io_tx_watchdog
7313 * function after 0.5 secs to reset the NIC. The idea is to reduce
7314 * the run time of the watch dog routine which is run holding a
7315 * spin lock.
7316 */
7317
7318 static void s2io_restart_nic(struct work_struct *work)
7319 {
7320 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7321 struct net_device *dev = sp->dev;
7322
7323 rtnl_lock();
7324
7325 if (!netif_running(dev))
7326 goto out_unlock;
7327
7328 s2io_card_down(sp);
7329 if (s2io_card_up(sp)) {
7330 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7331 }
7332 s2io_wake_all_tx_queue(sp);
7333 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7334 out_unlock:
7335 rtnl_unlock();
7336 }
7337
7338 /**
7339 * s2io_tx_watchdog - Watchdog for transmit side.
7340 * @dev : Pointer to net device structure
7341 * Description:
7342 * This function is triggered if the Tx Queue is stopped
7343 * for a pre-defined amount of time when the Interface is still up.
7344 * If the Interface is jammed in such a situation, the hardware is
7345 * reset (by s2io_close) and restarted again (by s2io_open) to
7346 * overcome any problem that might have been caused in the hardware.
7347 * Return value:
7348 * void
7349 */
7350
7351 static void s2io_tx_watchdog(struct net_device *dev)
7352 {
7353 struct s2io_nic *sp = netdev_priv(dev);
7354 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7355
7356 if (netif_carrier_ok(dev)) {
7357 swstats->watchdog_timer_cnt++;
7358 schedule_work(&sp->rst_timer_task);
7359 swstats->soft_reset_cnt++;
7360 }
7361 }
7362
7363 /**
7364 * rx_osm_handler - To perform some OS related operations on SKB.
7365 * @sp: private member of the device structure,pointer to s2io_nic structure.
7366 * @skb : the socket buffer pointer.
7367 * @len : length of the packet
7368 * @cksum : FCS checksum of the frame.
7369 * @ring_no : the ring from which this RxD was extracted.
7370 * Description:
7371 * This function is called by the Rx interrupt serivce routine to perform
7372 * some OS related operations on the SKB before passing it to the upper
7373 * layers. It mainly checks if the checksum is OK, if so adds it to the
7374 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7375 * to the upper layer. If the checksum is wrong, it increments the Rx
7376 * packet error count, frees the SKB and returns error.
7377 * Return value:
7378 * SUCCESS on success and -1 on failure.
7379 */
7380 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7381 {
7382 struct s2io_nic *sp = ring_data->nic;
7383 struct net_device *dev = (struct net_device *)ring_data->dev;
7384 struct sk_buff *skb = (struct sk_buff *)
7385 ((unsigned long)rxdp->Host_Control);
7386 int ring_no = ring_data->ring_no;
7387 u16 l3_csum, l4_csum;
7388 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7389 struct lro *uninitialized_var(lro);
7390 u8 err_mask;
7391 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7392
7393 skb->dev = dev;
7394
7395 if (err) {
7396 /* Check for parity error */
7397 if (err & 0x1)
7398 swstats->parity_err_cnt++;
7399
7400 err_mask = err >> 48;
7401 switch (err_mask) {
7402 case 1:
7403 swstats->rx_parity_err_cnt++;
7404 break;
7405
7406 case 2:
7407 swstats->rx_abort_cnt++;
7408 break;
7409
7410 case 3:
7411 swstats->rx_parity_abort_cnt++;
7412 break;
7413
7414 case 4:
7415 swstats->rx_rda_fail_cnt++;
7416 break;
7417
7418 case 5:
7419 swstats->rx_unkn_prot_cnt++;
7420 break;
7421
7422 case 6:
7423 swstats->rx_fcs_err_cnt++;
7424 break;
7425
7426 case 7:
7427 swstats->rx_buf_size_err_cnt++;
7428 break;
7429
7430 case 8:
7431 swstats->rx_rxd_corrupt_cnt++;
7432 break;
7433
7434 case 15:
7435 swstats->rx_unkn_err_cnt++;
7436 break;
7437 }
7438 /*
7439 * Drop the packet if bad transfer code. Exception being
7440 * 0x5, which could be due to unsupported IPv6 extension header.
7441 * In this case, we let stack handle the packet.
7442 * Note that in this case, since checksum will be incorrect,
7443 * stack will validate the same.
7444 */
7445 if (err_mask != 0x5) {
7446 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7447 dev->name, err_mask);
7448 dev->stats.rx_crc_errors++;
7449 swstats->mem_freed
7450 += skb->truesize;
7451 dev_kfree_skb(skb);
7452 ring_data->rx_bufs_left -= 1;
7453 rxdp->Host_Control = 0;
7454 return 0;
7455 }
7456 }
7457
7458 rxdp->Host_Control = 0;
7459 if (sp->rxd_mode == RXD_MODE_1) {
7460 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7461
7462 skb_put(skb, len);
7463 } else if (sp->rxd_mode == RXD_MODE_3B) {
7464 int get_block = ring_data->rx_curr_get_info.block_index;
7465 int get_off = ring_data->rx_curr_get_info.offset;
7466 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7467 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7468 unsigned char *buff = skb_push(skb, buf0_len);
7469
7470 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7471 memcpy(buff, ba->ba_0, buf0_len);
7472 skb_put(skb, buf2_len);
7473 }
7474
7475 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7476 ((!ring_data->lro) ||
7477 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7478 (dev->features & NETIF_F_RXCSUM)) {
7479 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7480 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7481 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7482 /*
7483 * NIC verifies if the Checksum of the received
7484 * frame is Ok or not and accordingly returns
7485 * a flag in the RxD.
7486 */
7487 skb->ip_summed = CHECKSUM_UNNECESSARY;
7488 if (ring_data->lro) {
7489 u32 tcp_len = 0;
7490 u8 *tcp;
7491 int ret = 0;
7492
7493 ret = s2io_club_tcp_session(ring_data,
7494 skb->data, &tcp,
7495 &tcp_len, &lro,
7496 rxdp, sp);
7497 switch (ret) {
7498 case 3: /* Begin anew */
7499 lro->parent = skb;
7500 goto aggregate;
7501 case 1: /* Aggregate */
7502 lro_append_pkt(sp, lro, skb, tcp_len);
7503 goto aggregate;
7504 case 4: /* Flush session */
7505 lro_append_pkt(sp, lro, skb, tcp_len);
7506 queue_rx_frame(lro->parent,
7507 lro->vlan_tag);
7508 clear_lro_session(lro);
7509 swstats->flush_max_pkts++;
7510 goto aggregate;
7511 case 2: /* Flush both */
7512 lro->parent->data_len = lro->frags_len;
7513 swstats->sending_both++;
7514 queue_rx_frame(lro->parent,
7515 lro->vlan_tag);
7516 clear_lro_session(lro);
7517 goto send_up;
7518 case 0: /* sessions exceeded */
7519 case -1: /* non-TCP or not L2 aggregatable */
7520 case 5: /*
7521 * First pkt in session not
7522 * L3/L4 aggregatable
7523 */
7524 break;
7525 default:
7526 DBG_PRINT(ERR_DBG,
7527 "%s: Samadhana!!\n",
7528 __func__);
7529 BUG();
7530 }
7531 }
7532 } else {
7533 /*
7534 * Packet with erroneous checksum, let the
7535 * upper layers deal with it.
7536 */
7537 skb_checksum_none_assert(skb);
7538 }
7539 } else
7540 skb_checksum_none_assert(skb);
7541
7542 swstats->mem_freed += skb->truesize;
7543 send_up:
7544 skb_record_rx_queue(skb, ring_no);
7545 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7546 aggregate:
7547 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7548 return SUCCESS;
7549 }
7550
7551 /**
7552 * s2io_link - stops/starts the Tx queue.
7553 * @sp : private member of the device structure, which is a pointer to the
7554 * s2io_nic structure.
7555 * @link : inidicates whether link is UP/DOWN.
7556 * Description:
7557 * This function stops/starts the Tx queue depending on whether the link
7558 * status of the NIC is is down or up. This is called by the Alarm
7559 * interrupt handler whenever a link change interrupt comes up.
7560 * Return value:
7561 * void.
7562 */
7563
7564 static void s2io_link(struct s2io_nic *sp, int link)
7565 {
7566 struct net_device *dev = (struct net_device *)sp->dev;
7567 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7568
7569 if (link != sp->last_link_state) {
7570 init_tti(sp, link);
7571 if (link == LINK_DOWN) {
7572 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7573 s2io_stop_all_tx_queue(sp);
7574 netif_carrier_off(dev);
7575 if (swstats->link_up_cnt)
7576 swstats->link_up_time =
7577 jiffies - sp->start_time;
7578 swstats->link_down_cnt++;
7579 } else {
7580 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7581 if (swstats->link_down_cnt)
7582 swstats->link_down_time =
7583 jiffies - sp->start_time;
7584 swstats->link_up_cnt++;
7585 netif_carrier_on(dev);
7586 s2io_wake_all_tx_queue(sp);
7587 }
7588 }
7589 sp->last_link_state = link;
7590 sp->start_time = jiffies;
7591 }
7592
7593 /**
7594 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7595 * @sp : private member of the device structure, which is a pointer to the
7596 * s2io_nic structure.
7597 * Description:
7598 * This function initializes a few of the PCI and PCI-X configuration registers
7599 * with recommended values.
7600 * Return value:
7601 * void
7602 */
7603
7604 static void s2io_init_pci(struct s2io_nic *sp)
7605 {
7606 u16 pci_cmd = 0, pcix_cmd = 0;
7607
7608 /* Enable Data Parity Error Recovery in PCI-X command register. */
7609 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7610 &(pcix_cmd));
7611 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7612 (pcix_cmd | 1));
7613 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7614 &(pcix_cmd));
7615
7616 /* Set the PErr Response bit in PCI command register. */
7617 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7618 pci_write_config_word(sp->pdev, PCI_COMMAND,
7619 (pci_cmd | PCI_COMMAND_PARITY));
7620 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7621 }
7622
7623 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7624 u8 *dev_multiq)
7625 {
7626 int i;
7627
7628 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7629 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7630 "(%d) not supported\n", tx_fifo_num);
7631
7632 if (tx_fifo_num < 1)
7633 tx_fifo_num = 1;
7634 else
7635 tx_fifo_num = MAX_TX_FIFOS;
7636
7637 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7638 }
7639
7640 if (multiq)
7641 *dev_multiq = multiq;
7642
7643 if (tx_steering_type && (1 == tx_fifo_num)) {
7644 if (tx_steering_type != TX_DEFAULT_STEERING)
7645 DBG_PRINT(ERR_DBG,
7646 "Tx steering is not supported with "
7647 "one fifo. Disabling Tx steering.\n");
7648 tx_steering_type = NO_STEERING;
7649 }
7650
7651 if ((tx_steering_type < NO_STEERING) ||
7652 (tx_steering_type > TX_DEFAULT_STEERING)) {
7653 DBG_PRINT(ERR_DBG,
7654 "Requested transmit steering not supported\n");
7655 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7656 tx_steering_type = NO_STEERING;
7657 }
7658
7659 if (rx_ring_num > MAX_RX_RINGS) {
7660 DBG_PRINT(ERR_DBG,
7661 "Requested number of rx rings not supported\n");
7662 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7663 MAX_RX_RINGS);
7664 rx_ring_num = MAX_RX_RINGS;
7665 }
7666
7667 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7668 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7669 "Defaulting to INTA\n");
7670 *dev_intr_type = INTA;
7671 }
7672
7673 if ((*dev_intr_type == MSI_X) &&
7674 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7675 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7676 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7677 "Defaulting to INTA\n");
7678 *dev_intr_type = INTA;
7679 }
7680
7681 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7682 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7683 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7684 rx_ring_mode = 1;
7685 }
7686
7687 for (i = 0; i < MAX_RX_RINGS; i++)
7688 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7689 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7690 "supported\nDefaulting to %d\n",
7691 MAX_RX_BLOCKS_PER_RING);
7692 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7693 }
7694
7695 return SUCCESS;
7696 }
7697
7698 /**
7699 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7700 * or Traffic class respectively.
7701 * @nic: device private variable
7702 * Description: The function configures the receive steering to
7703 * desired receive ring.
7704 * Return Value: SUCCESS on success and
7705 * '-1' on failure (endian settings incorrect).
7706 */
7707 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7708 {
7709 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7710 register u64 val64 = 0;
7711
7712 if (ds_codepoint > 63)
7713 return FAILURE;
7714
7715 val64 = RTS_DS_MEM_DATA(ring);
7716 writeq(val64, &bar0->rts_ds_mem_data);
7717
7718 val64 = RTS_DS_MEM_CTRL_WE |
7719 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7720 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7721
7722 writeq(val64, &bar0->rts_ds_mem_ctrl);
7723
7724 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7725 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7726 S2IO_BIT_RESET);
7727 }
7728
7729 static const struct net_device_ops s2io_netdev_ops = {
7730 .ndo_open = s2io_open,
7731 .ndo_stop = s2io_close,
7732 .ndo_get_stats = s2io_get_stats,
7733 .ndo_start_xmit = s2io_xmit,
7734 .ndo_validate_addr = eth_validate_addr,
7735 .ndo_set_multicast_list = s2io_set_multicast,
7736 .ndo_do_ioctl = s2io_ioctl,
7737 .ndo_set_mac_address = s2io_set_mac_addr,
7738 .ndo_change_mtu = s2io_change_mtu,
7739 .ndo_set_features = s2io_set_features,
7740 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7741 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7742 .ndo_tx_timeout = s2io_tx_watchdog,
7743 #ifdef CONFIG_NET_POLL_CONTROLLER
7744 .ndo_poll_controller = s2io_netpoll,
7745 #endif
7746 };
7747
7748 /**
7749 * s2io_init_nic - Initialization of the adapter .
7750 * @pdev : structure containing the PCI related information of the device.
7751 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7752 * Description:
7753 * The function initializes an adapter identified by the pci_dec structure.
7754 * All OS related initialization including memory and device structure and
7755 * initlaization of the device private variable is done. Also the swapper
7756 * control register is initialized to enable read and write into the I/O
7757 * registers of the device.
7758 * Return value:
7759 * returns 0 on success and negative on failure.
7760 */
7761
7762 static int __devinit
7763 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7764 {
7765 struct s2io_nic *sp;
7766 struct net_device *dev;
7767 int i, j, ret;
7768 int dma_flag = false;
7769 u32 mac_up, mac_down;
7770 u64 val64 = 0, tmp64 = 0;
7771 struct XENA_dev_config __iomem *bar0 = NULL;
7772 u16 subid;
7773 struct config_param *config;
7774 struct mac_info *mac_control;
7775 int mode;
7776 u8 dev_intr_type = intr_type;
7777 u8 dev_multiq = 0;
7778
7779 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7780 if (ret)
7781 return ret;
7782
7783 ret = pci_enable_device(pdev);
7784 if (ret) {
7785 DBG_PRINT(ERR_DBG,
7786 "%s: pci_enable_device failed\n", __func__);
7787 return ret;
7788 }
7789
7790 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7791 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7792 dma_flag = true;
7793 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7794 DBG_PRINT(ERR_DBG,
7795 "Unable to obtain 64bit DMA "
7796 "for consistent allocations\n");
7797 pci_disable_device(pdev);
7798 return -ENOMEM;
7799 }
7800 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7801 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7802 } else {
7803 pci_disable_device(pdev);
7804 return -ENOMEM;
7805 }
7806 ret = pci_request_regions(pdev, s2io_driver_name);
7807 if (ret) {
7808 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7809 __func__, ret);
7810 pci_disable_device(pdev);
7811 return -ENODEV;
7812 }
7813 if (dev_multiq)
7814 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7815 else
7816 dev = alloc_etherdev(sizeof(struct s2io_nic));
7817 if (dev == NULL) {
7818 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7819 pci_disable_device(pdev);
7820 pci_release_regions(pdev);
7821 return -ENODEV;
7822 }
7823
7824 pci_set_master(pdev);
7825 pci_set_drvdata(pdev, dev);
7826 SET_NETDEV_DEV(dev, &pdev->dev);
7827
7828 /* Private member variable initialized to s2io NIC structure */
7829 sp = netdev_priv(dev);
7830 sp->dev = dev;
7831 sp->pdev = pdev;
7832 sp->high_dma_flag = dma_flag;
7833 sp->device_enabled_once = false;
7834 if (rx_ring_mode == 1)
7835 sp->rxd_mode = RXD_MODE_1;
7836 if (rx_ring_mode == 2)
7837 sp->rxd_mode = RXD_MODE_3B;
7838
7839 sp->config.intr_type = dev_intr_type;
7840
7841 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7842 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7843 sp->device_type = XFRAME_II_DEVICE;
7844 else
7845 sp->device_type = XFRAME_I_DEVICE;
7846
7847
7848 /* Initialize some PCI/PCI-X fields of the NIC. */
7849 s2io_init_pci(sp);
7850
7851 /*
7852 * Setting the device configuration parameters.
7853 * Most of these parameters can be specified by the user during
7854 * module insertion as they are module loadable parameters. If
7855 * these parameters are not not specified during load time, they
7856 * are initialized with default values.
7857 */
7858 config = &sp->config;
7859 mac_control = &sp->mac_control;
7860
7861 config->napi = napi;
7862 config->tx_steering_type = tx_steering_type;
7863
7864 /* Tx side parameters. */
7865 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7866 config->tx_fifo_num = MAX_TX_FIFOS;
7867 else
7868 config->tx_fifo_num = tx_fifo_num;
7869
7870 /* Initialize the fifos used for tx steering */
7871 if (config->tx_fifo_num < 5) {
7872 if (config->tx_fifo_num == 1)
7873 sp->total_tcp_fifos = 1;
7874 else
7875 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7876 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7877 sp->total_udp_fifos = 1;
7878 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7879 } else {
7880 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7881 FIFO_OTHER_MAX_NUM);
7882 sp->udp_fifo_idx = sp->total_tcp_fifos;
7883 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7884 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7885 }
7886
7887 config->multiq = dev_multiq;
7888 for (i = 0; i < config->tx_fifo_num; i++) {
7889 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7890
7891 tx_cfg->fifo_len = tx_fifo_len[i];
7892 tx_cfg->fifo_priority = i;
7893 }
7894
7895 /* mapping the QoS priority to the configured fifos */
7896 for (i = 0; i < MAX_TX_FIFOS; i++)
7897 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7898
7899 /* map the hashing selector table to the configured fifos */
7900 for (i = 0; i < config->tx_fifo_num; i++)
7901 sp->fifo_selector[i] = fifo_selector[i];
7902
7903
7904 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7905 for (i = 0; i < config->tx_fifo_num; i++) {
7906 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7907
7908 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7909 if (tx_cfg->fifo_len < 65) {
7910 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7911 break;
7912 }
7913 }
7914 /* + 2 because one Txd for skb->data and one Txd for UFO */
7915 config->max_txds = MAX_SKB_FRAGS + 2;
7916
7917 /* Rx side parameters. */
7918 config->rx_ring_num = rx_ring_num;
7919 for (i = 0; i < config->rx_ring_num; i++) {
7920 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7921 struct ring_info *ring = &mac_control->rings[i];
7922
7923 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7924 rx_cfg->ring_priority = i;
7925 ring->rx_bufs_left = 0;
7926 ring->rxd_mode = sp->rxd_mode;
7927 ring->rxd_count = rxd_count[sp->rxd_mode];
7928 ring->pdev = sp->pdev;
7929 ring->dev = sp->dev;
7930 }
7931
7932 for (i = 0; i < rx_ring_num; i++) {
7933 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7934
7935 rx_cfg->ring_org = RING_ORG_BUFF1;
7936 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7937 }
7938
7939 /* Setting Mac Control parameters */
7940 mac_control->rmac_pause_time = rmac_pause_time;
7941 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7942 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7943
7944
7945 /* initialize the shared memory used by the NIC and the host */
7946 if (init_shared_mem(sp)) {
7947 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7948 ret = -ENOMEM;
7949 goto mem_alloc_failed;
7950 }
7951
7952 sp->bar0 = pci_ioremap_bar(pdev, 0);
7953 if (!sp->bar0) {
7954 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7955 dev->name);
7956 ret = -ENOMEM;
7957 goto bar0_remap_failed;
7958 }
7959
7960 sp->bar1 = pci_ioremap_bar(pdev, 2);
7961 if (!sp->bar1) {
7962 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7963 dev->name);
7964 ret = -ENOMEM;
7965 goto bar1_remap_failed;
7966 }
7967
7968 dev->irq = pdev->irq;
7969 dev->base_addr = (unsigned long)sp->bar0;
7970
7971 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7972 for (j = 0; j < MAX_TX_FIFOS; j++) {
7973 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7974 }
7975
7976 /* Driver entry points */
7977 dev->netdev_ops = &s2io_netdev_ops;
7978 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7979 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7980 NETIF_F_TSO | NETIF_F_TSO6 |
7981 NETIF_F_RXCSUM | NETIF_F_LRO;
7982 dev->features |= dev->hw_features |
7983 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7984 if (sp->device_type & XFRAME_II_DEVICE) {
7985 dev->hw_features |= NETIF_F_UFO;
7986 if (ufo)
7987 dev->features |= NETIF_F_UFO;
7988 }
7989 if (sp->high_dma_flag == true)
7990 dev->features |= NETIF_F_HIGHDMA;
7991 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7992 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7993 INIT_WORK(&sp->set_link_task, s2io_set_link);
7994
7995 pci_save_state(sp->pdev);
7996
7997 /* Setting swapper control on the NIC, for proper reset operation */
7998 if (s2io_set_swapper(sp)) {
7999 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8000 dev->name);
8001 ret = -EAGAIN;
8002 goto set_swap_failed;
8003 }
8004
8005 /* Verify if the Herc works on the slot its placed into */
8006 if (sp->device_type & XFRAME_II_DEVICE) {
8007 mode = s2io_verify_pci_mode(sp);
8008 if (mode < 0) {
8009 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8010 __func__);
8011 ret = -EBADSLT;
8012 goto set_swap_failed;
8013 }
8014 }
8015
8016 if (sp->config.intr_type == MSI_X) {
8017 sp->num_entries = config->rx_ring_num + 1;
8018 ret = s2io_enable_msi_x(sp);
8019
8020 if (!ret) {
8021 ret = s2io_test_msi(sp);
8022 /* rollback MSI-X, will re-enable during add_isr() */
8023 remove_msix_isr(sp);
8024 }
8025 if (ret) {
8026
8027 DBG_PRINT(ERR_DBG,
8028 "MSI-X requested but failed to enable\n");
8029 sp->config.intr_type = INTA;
8030 }
8031 }
8032
8033 if (config->intr_type == MSI_X) {
8034 for (i = 0; i < config->rx_ring_num ; i++) {
8035 struct ring_info *ring = &mac_control->rings[i];
8036
8037 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8038 }
8039 } else {
8040 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8041 }
8042
8043 /* Not needed for Herc */
8044 if (sp->device_type & XFRAME_I_DEVICE) {
8045 /*
8046 * Fix for all "FFs" MAC address problems observed on
8047 * Alpha platforms
8048 */
8049 fix_mac_address(sp);
8050 s2io_reset(sp);
8051 }
8052
8053 /*
8054 * MAC address initialization.
8055 * For now only one mac address will be read and used.
8056 */
8057 bar0 = sp->bar0;
8058 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8059 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8060 writeq(val64, &bar0->rmac_addr_cmd_mem);
8061 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8062 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8063 S2IO_BIT_RESET);
8064 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8065 mac_down = (u32)tmp64;
8066 mac_up = (u32) (tmp64 >> 32);
8067
8068 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8069 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8070 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8071 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8072 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8073 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8074
8075 /* Set the factory defined MAC address initially */
8076 dev->addr_len = ETH_ALEN;
8077 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8078 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8079
8080 /* initialize number of multicast & unicast MAC entries variables */
8081 if (sp->device_type == XFRAME_I_DEVICE) {
8082 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8083 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8084 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8085 } else if (sp->device_type == XFRAME_II_DEVICE) {
8086 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8087 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8088 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8089 }
8090
8091 /* store mac addresses from CAM to s2io_nic structure */
8092 do_s2io_store_unicast_mc(sp);
8093
8094 /* Configure MSIX vector for number of rings configured plus one */
8095 if ((sp->device_type == XFRAME_II_DEVICE) &&
8096 (config->intr_type == MSI_X))
8097 sp->num_entries = config->rx_ring_num + 1;
8098
8099 /* Store the values of the MSIX table in the s2io_nic structure */
8100 store_xmsi_data(sp);
8101 /* reset Nic and bring it to known state */
8102 s2io_reset(sp);
8103
8104 /*
8105 * Initialize link state flags
8106 * and the card state parameter
8107 */
8108 sp->state = 0;
8109
8110 /* Initialize spinlocks */
8111 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8112 struct fifo_info *fifo = &mac_control->fifos[i];
8113
8114 spin_lock_init(&fifo->tx_lock);
8115 }
8116
8117 /*
8118 * SXE-002: Configure link and activity LED to init state
8119 * on driver load.
8120 */
8121 subid = sp->pdev->subsystem_device;
8122 if ((subid & 0xFF) >= 0x07) {
8123 val64 = readq(&bar0->gpio_control);
8124 val64 |= 0x0000800000000000ULL;
8125 writeq(val64, &bar0->gpio_control);
8126 val64 = 0x0411040400000000ULL;
8127 writeq(val64, (void __iomem *)bar0 + 0x2700);
8128 val64 = readq(&bar0->gpio_control);
8129 }
8130
8131 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8132
8133 if (register_netdev(dev)) {
8134 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8135 ret = -ENODEV;
8136 goto register_failed;
8137 }
8138 s2io_vpd_read(sp);
8139 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8140 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8141 sp->product_name, pdev->revision);
8142 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8143 s2io_driver_version);
8144 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8145 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8146 if (sp->device_type & XFRAME_II_DEVICE) {
8147 mode = s2io_print_pci_mode(sp);
8148 if (mode < 0) {
8149 ret = -EBADSLT;
8150 unregister_netdev(dev);
8151 goto set_swap_failed;
8152 }
8153 }
8154 switch (sp->rxd_mode) {
8155 case RXD_MODE_1:
8156 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8157 dev->name);
8158 break;
8159 case RXD_MODE_3B:
8160 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8161 dev->name);
8162 break;
8163 }
8164
8165 switch (sp->config.napi) {
8166 case 0:
8167 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8168 break;
8169 case 1:
8170 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8171 break;
8172 }
8173
8174 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8175 sp->config.tx_fifo_num);
8176
8177 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8178 sp->config.rx_ring_num);
8179
8180 switch (sp->config.intr_type) {
8181 case INTA:
8182 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8183 break;
8184 case MSI_X:
8185 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8186 break;
8187 }
8188 if (sp->config.multiq) {
8189 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8190 struct fifo_info *fifo = &mac_control->fifos[i];
8191
8192 fifo->multiq = config->multiq;
8193 }
8194 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8195 dev->name);
8196 } else
8197 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8198 dev->name);
8199
8200 switch (sp->config.tx_steering_type) {
8201 case NO_STEERING:
8202 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8203 dev->name);
8204 break;
8205 case TX_PRIORITY_STEERING:
8206 DBG_PRINT(ERR_DBG,
8207 "%s: Priority steering enabled for transmit\n",
8208 dev->name);
8209 break;
8210 case TX_DEFAULT_STEERING:
8211 DBG_PRINT(ERR_DBG,
8212 "%s: Default steering enabled for transmit\n",
8213 dev->name);
8214 }
8215
8216 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8217 dev->name);
8218 if (ufo)
8219 DBG_PRINT(ERR_DBG,
8220 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8221 dev->name);
8222 /* Initialize device name */
8223 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8224
8225 if (vlan_tag_strip)
8226 sp->vlan_strip_flag = 1;
8227 else
8228 sp->vlan_strip_flag = 0;
8229
8230 /*
8231 * Make Link state as off at this point, when the Link change
8232 * interrupt comes the state will be automatically changed to
8233 * the right state.
8234 */
8235 netif_carrier_off(dev);
8236
8237 return 0;
8238
8239 register_failed:
8240 set_swap_failed:
8241 iounmap(sp->bar1);
8242 bar1_remap_failed:
8243 iounmap(sp->bar0);
8244 bar0_remap_failed:
8245 mem_alloc_failed:
8246 free_shared_mem(sp);
8247 pci_disable_device(pdev);
8248 pci_release_regions(pdev);
8249 pci_set_drvdata(pdev, NULL);
8250 free_netdev(dev);
8251
8252 return ret;
8253 }
8254
8255 /**
8256 * s2io_rem_nic - Free the PCI device
8257 * @pdev: structure containing the PCI related information of the device.
8258 * Description: This function is called by the Pci subsystem to release a
8259 * PCI device and free up all resource held up by the device. This could
8260 * be in response to a Hot plug event or when the driver is to be removed
8261 * from memory.
8262 */
8263
8264 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8265 {
8266 struct net_device *dev = pci_get_drvdata(pdev);
8267 struct s2io_nic *sp;
8268
8269 if (dev == NULL) {
8270 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8271 return;
8272 }
8273
8274 sp = netdev_priv(dev);
8275
8276 cancel_work_sync(&sp->rst_timer_task);
8277 cancel_work_sync(&sp->set_link_task);
8278
8279 unregister_netdev(dev);
8280
8281 free_shared_mem(sp);
8282 iounmap(sp->bar0);
8283 iounmap(sp->bar1);
8284 pci_release_regions(pdev);
8285 pci_set_drvdata(pdev, NULL);
8286 free_netdev(dev);
8287 pci_disable_device(pdev);
8288 }
8289
8290 /**
8291 * s2io_starter - Entry point for the driver
8292 * Description: This function is the entry point for the driver. It verifies
8293 * the module loadable parameters and initializes PCI configuration space.
8294 */
8295
8296 static int __init s2io_starter(void)
8297 {
8298 return pci_register_driver(&s2io_driver);
8299 }
8300
8301 /**
8302 * s2io_closer - Cleanup routine for the driver
8303 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8304 */
8305
8306 static __exit void s2io_closer(void)
8307 {
8308 pci_unregister_driver(&s2io_driver);
8309 DBG_PRINT(INIT_DBG, "cleanup done\n");
8310 }
8311
8312 module_init(s2io_starter);
8313 module_exit(s2io_closer);
8314
8315 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8316 struct tcphdr **tcp, struct RxD_t *rxdp,
8317 struct s2io_nic *sp)
8318 {
8319 int ip_off;
8320 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8321
8322 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8323 DBG_PRINT(INIT_DBG,
8324 "%s: Non-TCP frames not supported for LRO\n",
8325 __func__);
8326 return -1;
8327 }
8328
8329 /* Checking for DIX type or DIX type with VLAN */
8330 if ((l2_type == 0) || (l2_type == 4)) {
8331 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8332 /*
8333 * If vlan stripping is disabled and the frame is VLAN tagged,
8334 * shift the offset by the VLAN header size bytes.
8335 */
8336 if ((!sp->vlan_strip_flag) &&
8337 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8338 ip_off += HEADER_VLAN_SIZE;
8339 } else {
8340 /* LLC, SNAP etc are considered non-mergeable */
8341 return -1;
8342 }
8343
8344 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8345 ip_len = (u8)((*ip)->ihl);
8346 ip_len <<= 2;
8347 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8348
8349 return 0;
8350 }
8351
8352 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8353 struct tcphdr *tcp)
8354 {
8355 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8356 if ((lro->iph->saddr != ip->saddr) ||
8357 (lro->iph->daddr != ip->daddr) ||
8358 (lro->tcph->source != tcp->source) ||
8359 (lro->tcph->dest != tcp->dest))
8360 return -1;
8361 return 0;
8362 }
8363
8364 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8365 {
8366 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8367 }
8368
8369 static void initiate_new_session(struct lro *lro, u8 *l2h,
8370 struct iphdr *ip, struct tcphdr *tcp,
8371 u32 tcp_pyld_len, u16 vlan_tag)
8372 {
8373 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8374 lro->l2h = l2h;
8375 lro->iph = ip;
8376 lro->tcph = tcp;
8377 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8378 lro->tcp_ack = tcp->ack_seq;
8379 lro->sg_num = 1;
8380 lro->total_len = ntohs(ip->tot_len);
8381 lro->frags_len = 0;
8382 lro->vlan_tag = vlan_tag;
8383 /*
8384 * Check if we saw TCP timestamp.
8385 * Other consistency checks have already been done.
8386 */
8387 if (tcp->doff == 8) {
8388 __be32 *ptr;
8389 ptr = (__be32 *)(tcp+1);
8390 lro->saw_ts = 1;
8391 lro->cur_tsval = ntohl(*(ptr+1));
8392 lro->cur_tsecr = *(ptr+2);
8393 }
8394 lro->in_use = 1;
8395 }
8396
8397 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8398 {
8399 struct iphdr *ip = lro->iph;
8400 struct tcphdr *tcp = lro->tcph;
8401 __sum16 nchk;
8402 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8403
8404 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8405
8406 /* Update L3 header */
8407 ip->tot_len = htons(lro->total_len);
8408 ip->check = 0;
8409 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8410 ip->check = nchk;
8411
8412 /* Update L4 header */
8413 tcp->ack_seq = lro->tcp_ack;
8414 tcp->window = lro->window;
8415
8416 /* Update tsecr field if this session has timestamps enabled */
8417 if (lro->saw_ts) {
8418 __be32 *ptr = (__be32 *)(tcp + 1);
8419 *(ptr+2) = lro->cur_tsecr;
8420 }
8421
8422 /* Update counters required for calculation of
8423 * average no. of packets aggregated.
8424 */
8425 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8426 swstats->num_aggregations++;
8427 }
8428
8429 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8430 struct tcphdr *tcp, u32 l4_pyld)
8431 {
8432 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8433 lro->total_len += l4_pyld;
8434 lro->frags_len += l4_pyld;
8435 lro->tcp_next_seq += l4_pyld;
8436 lro->sg_num++;
8437
8438 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8439 lro->tcp_ack = tcp->ack_seq;
8440 lro->window = tcp->window;
8441
8442 if (lro->saw_ts) {
8443 __be32 *ptr;
8444 /* Update tsecr and tsval from this packet */
8445 ptr = (__be32 *)(tcp+1);
8446 lro->cur_tsval = ntohl(*(ptr+1));
8447 lro->cur_tsecr = *(ptr + 2);
8448 }
8449 }
8450
8451 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8452 struct tcphdr *tcp, u32 tcp_pyld_len)
8453 {
8454 u8 *ptr;
8455
8456 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8457
8458 if (!tcp_pyld_len) {
8459 /* Runt frame or a pure ack */
8460 return -1;
8461 }
8462
8463 if (ip->ihl != 5) /* IP has options */
8464 return -1;
8465
8466 /* If we see CE codepoint in IP header, packet is not mergeable */
8467 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8468 return -1;
8469
8470 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8471 if (tcp->urg || tcp->psh || tcp->rst ||
8472 tcp->syn || tcp->fin ||
8473 tcp->ece || tcp->cwr || !tcp->ack) {
8474 /*
8475 * Currently recognize only the ack control word and
8476 * any other control field being set would result in
8477 * flushing the LRO session
8478 */
8479 return -1;
8480 }
8481
8482 /*
8483 * Allow only one TCP timestamp option. Don't aggregate if
8484 * any other options are detected.
8485 */
8486 if (tcp->doff != 5 && tcp->doff != 8)
8487 return -1;
8488
8489 if (tcp->doff == 8) {
8490 ptr = (u8 *)(tcp + 1);
8491 while (*ptr == TCPOPT_NOP)
8492 ptr++;
8493 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8494 return -1;
8495
8496 /* Ensure timestamp value increases monotonically */
8497 if (l_lro)
8498 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8499 return -1;
8500
8501 /* timestamp echo reply should be non-zero */
8502 if (*((__be32 *)(ptr+6)) == 0)
8503 return -1;
8504 }
8505
8506 return 0;
8507 }
8508
8509 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8510 u8 **tcp, u32 *tcp_len, struct lro **lro,
8511 struct RxD_t *rxdp, struct s2io_nic *sp)
8512 {
8513 struct iphdr *ip;
8514 struct tcphdr *tcph;
8515 int ret = 0, i;
8516 u16 vlan_tag = 0;
8517 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8518
8519 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8520 rxdp, sp);
8521 if (ret)
8522 return ret;
8523
8524 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8525
8526 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8527 tcph = (struct tcphdr *)*tcp;
8528 *tcp_len = get_l4_pyld_length(ip, tcph);
8529 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8530 struct lro *l_lro = &ring_data->lro0_n[i];
8531 if (l_lro->in_use) {
8532 if (check_for_socket_match(l_lro, ip, tcph))
8533 continue;
8534 /* Sock pair matched */
8535 *lro = l_lro;
8536
8537 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8538 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8539 "expected 0x%x, actual 0x%x\n",
8540 __func__,
8541 (*lro)->tcp_next_seq,
8542 ntohl(tcph->seq));
8543
8544 swstats->outof_sequence_pkts++;
8545 ret = 2;
8546 break;
8547 }
8548
8549 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8550 *tcp_len))
8551 ret = 1; /* Aggregate */
8552 else
8553 ret = 2; /* Flush both */
8554 break;
8555 }
8556 }
8557
8558 if (ret == 0) {
8559 /* Before searching for available LRO objects,
8560 * check if the pkt is L3/L4 aggregatable. If not
8561 * don't create new LRO session. Just send this
8562 * packet up.
8563 */
8564 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8565 return 5;
8566
8567 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8568 struct lro *l_lro = &ring_data->lro0_n[i];
8569 if (!(l_lro->in_use)) {
8570 *lro = l_lro;
8571 ret = 3; /* Begin anew */
8572 break;
8573 }
8574 }
8575 }
8576
8577 if (ret == 0) { /* sessions exceeded */
8578 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8579 __func__);
8580 *lro = NULL;
8581 return ret;
8582 }
8583
8584 switch (ret) {
8585 case 3:
8586 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8587 vlan_tag);
8588 break;
8589 case 2:
8590 update_L3L4_header(sp, *lro);
8591 break;
8592 case 1:
8593 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8594 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8595 update_L3L4_header(sp, *lro);
8596 ret = 4; /* Flush the LRO */
8597 }
8598 break;
8599 default:
8600 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8601 break;
8602 }
8603
8604 return ret;
8605 }
8606
8607 static void clear_lro_session(struct lro *lro)
8608 {
8609 static u16 lro_struct_size = sizeof(struct lro);
8610
8611 memset(lro, 0, lro_struct_size);
8612 }
8613
8614 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8615 {
8616 struct net_device *dev = skb->dev;
8617 struct s2io_nic *sp = netdev_priv(dev);
8618
8619 skb->protocol = eth_type_trans(skb, dev);
8620 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8621 /* Queueing the vlan frame to the upper layer */
8622 if (sp->config.napi)
8623 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8624 else
8625 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8626 } else {
8627 if (sp->config.napi)
8628 netif_receive_skb(skb);
8629 else
8630 netif_rx(skb);
8631 }
8632 }
8633
8634 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8635 struct sk_buff *skb, u32 tcp_len)
8636 {
8637 struct sk_buff *first = lro->parent;
8638 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8639
8640 first->len += tcp_len;
8641 first->data_len = lro->frags_len;
8642 skb_pull(skb, (skb->len - tcp_len));
8643 if (skb_shinfo(first)->frag_list)
8644 lro->last_frag->next = skb;
8645 else
8646 skb_shinfo(first)->frag_list = skb;
8647 first->truesize += skb->truesize;
8648 lro->last_frag = skb;
8649 swstats->clubbed_frms_cnt++;
8650 }
8651
8652 /**
8653 * s2io_io_error_detected - called when PCI error is detected
8654 * @pdev: Pointer to PCI device
8655 * @state: The current pci connection state
8656 *
8657 * This function is called after a PCI bus error affecting
8658 * this device has been detected.
8659 */
8660 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8661 pci_channel_state_t state)
8662 {
8663 struct net_device *netdev = pci_get_drvdata(pdev);
8664 struct s2io_nic *sp = netdev_priv(netdev);
8665
8666 netif_device_detach(netdev);
8667
8668 if (state == pci_channel_io_perm_failure)
8669 return PCI_ERS_RESULT_DISCONNECT;
8670
8671 if (netif_running(netdev)) {
8672 /* Bring down the card, while avoiding PCI I/O */
8673 do_s2io_card_down(sp, 0);
8674 }
8675 pci_disable_device(pdev);
8676
8677 return PCI_ERS_RESULT_NEED_RESET;
8678 }
8679
8680 /**
8681 * s2io_io_slot_reset - called after the pci bus has been reset.
8682 * @pdev: Pointer to PCI device
8683 *
8684 * Restart the card from scratch, as if from a cold-boot.
8685 * At this point, the card has exprienced a hard reset,
8686 * followed by fixups by BIOS, and has its config space
8687 * set up identically to what it was at cold boot.
8688 */
8689 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8690 {
8691 struct net_device *netdev = pci_get_drvdata(pdev);
8692 struct s2io_nic *sp = netdev_priv(netdev);
8693
8694 if (pci_enable_device(pdev)) {
8695 pr_err("Cannot re-enable PCI device after reset.\n");
8696 return PCI_ERS_RESULT_DISCONNECT;
8697 }
8698
8699 pci_set_master(pdev);
8700 s2io_reset(sp);
8701
8702 return PCI_ERS_RESULT_RECOVERED;
8703 }
8704
8705 /**
8706 * s2io_io_resume - called when traffic can start flowing again.
8707 * @pdev: Pointer to PCI device
8708 *
8709 * This callback is called when the error recovery driver tells
8710 * us that its OK to resume normal operation.
8711 */
8712 static void s2io_io_resume(struct pci_dev *pdev)
8713 {
8714 struct net_device *netdev = pci_get_drvdata(pdev);
8715 struct s2io_nic *sp = netdev_priv(netdev);
8716
8717 if (netif_running(netdev)) {
8718 if (s2io_card_up(sp)) {
8719 pr_err("Can't bring device back up after reset.\n");
8720 return;
8721 }
8722
8723 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8724 s2io_card_down(sp);
8725 pr_err("Can't restore mac addr after reset.\n");
8726 return;
8727 }
8728 }
8729
8730 netif_device_attach(netdev);
8731 netif_tx_wake_all_queues(netdev);
8732 }
This page took 0.246536 seconds and 6 git commands to generate.