Merge master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 * rx_ring_num : This can be used to program the number of receive rings used
30 * in the driver.
31 * rx_ring_sz: This defines the number of descriptors each ring can have. This
32 * is also an array of size 8.
33 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
34 * values are 1, 2 and 3.
35 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
36 * tx_fifo_len: This too is an array of 8. Each element defines the number of
37 * Tx descriptors that can be associated with each corresponding FIFO.
38 ************************************************************************/
39
40 #include <linux/config.h>
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/pci.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/kernel.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/stddef.h>
54 #include <linux/ioctl.h>
55 #include <linux/timex.h>
56 #include <linux/sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/workqueue.h>
59 #include <linux/if_vlan.h>
60
61 #include <asm/system.h>
62 #include <asm/uaccess.h>
63 #include <asm/io.h>
64
65 /* local include */
66 #include "s2io.h"
67 #include "s2io-regs.h"
68
69 #define DRV_VERSION "Version 2.0.9.4"
70
71 /* S2io Driver name & version. */
72 static char s2io_driver_name[] = "Neterion";
73 static char s2io_driver_version[] = DRV_VERSION;
74
75 int rxd_size[4] = {32,48,48,64};
76 int rxd_count[4] = {127,85,85,63};
77
78 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
79 {
80 int ret;
81
82 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
83 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
84
85 return ret;
86 }
87
88 /*
89 * Cards with following subsystem_id have a link state indication
90 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
91 * macro below identifies these cards given the subsystem_id.
92 */
93 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
94 (dev_type == XFRAME_I_DEVICE) ? \
95 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
96 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
97
98 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
99 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
100 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
101 #define PANIC 1
102 #define LOW 2
103 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
104 {
105 int level = 0;
106 mac_info_t *mac_control;
107
108 mac_control = &sp->mac_control;
109 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
110 level = LOW;
111 if (rxb_size <= rxd_count[sp->rxd_mode]) {
112 level = PANIC;
113 }
114 }
115
116 return level;
117 }
118
119 /* Ethtool related variables and Macros. */
120 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
121 "Register test\t(offline)",
122 "Eeprom test\t(offline)",
123 "Link test\t(online)",
124 "RLDRAM test\t(offline)",
125 "BIST Test\t(offline)"
126 };
127
128 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
129 {"tmac_frms"},
130 {"tmac_data_octets"},
131 {"tmac_drop_frms"},
132 {"tmac_mcst_frms"},
133 {"tmac_bcst_frms"},
134 {"tmac_pause_ctrl_frms"},
135 {"tmac_any_err_frms"},
136 {"tmac_vld_ip_octets"},
137 {"tmac_vld_ip"},
138 {"tmac_drop_ip"},
139 {"tmac_icmp"},
140 {"tmac_rst_tcp"},
141 {"tmac_tcp"},
142 {"tmac_udp"},
143 {"rmac_vld_frms"},
144 {"rmac_data_octets"},
145 {"rmac_fcs_err_frms"},
146 {"rmac_drop_frms"},
147 {"rmac_vld_mcst_frms"},
148 {"rmac_vld_bcst_frms"},
149 {"rmac_in_rng_len_err_frms"},
150 {"rmac_long_frms"},
151 {"rmac_pause_ctrl_frms"},
152 {"rmac_discarded_frms"},
153 {"rmac_usized_frms"},
154 {"rmac_osized_frms"},
155 {"rmac_frag_frms"},
156 {"rmac_jabber_frms"},
157 {"rmac_ip"},
158 {"rmac_ip_octets"},
159 {"rmac_hdr_err_ip"},
160 {"rmac_drop_ip"},
161 {"rmac_icmp"},
162 {"rmac_tcp"},
163 {"rmac_udp"},
164 {"rmac_err_drp_udp"},
165 {"rmac_pause_cnt"},
166 {"rmac_accepted_ip"},
167 {"rmac_err_tcp"},
168 {"\n DRIVER STATISTICS"},
169 {"single_bit_ecc_errs"},
170 {"double_bit_ecc_errs"},
171 };
172
173 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
174 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
175
176 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
177 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
178
179 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
180 init_timer(&timer); \
181 timer.function = handle; \
182 timer.data = (unsigned long) arg; \
183 mod_timer(&timer, (jiffies + exp)) \
184
185 /* Add the vlan */
186 static void s2io_vlan_rx_register(struct net_device *dev,
187 struct vlan_group *grp)
188 {
189 nic_t *nic = dev->priv;
190 unsigned long flags;
191
192 spin_lock_irqsave(&nic->tx_lock, flags);
193 nic->vlgrp = grp;
194 spin_unlock_irqrestore(&nic->tx_lock, flags);
195 }
196
197 /* Unregister the vlan */
198 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
199 {
200 nic_t *nic = dev->priv;
201 unsigned long flags;
202
203 spin_lock_irqsave(&nic->tx_lock, flags);
204 if (nic->vlgrp)
205 nic->vlgrp->vlan_devices[vid] = NULL;
206 spin_unlock_irqrestore(&nic->tx_lock, flags);
207 }
208
209 /*
210 * Constants to be programmed into the Xena's registers, to configure
211 * the XAUI.
212 */
213
214 #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
215 #define END_SIGN 0x0
216
217 static u64 herc_act_dtx_cfg[] = {
218 /* Set address */
219 0x8000051536750000ULL, 0x80000515367500E0ULL,
220 /* Write data */
221 0x8000051536750004ULL, 0x80000515367500E4ULL,
222 /* Set address */
223 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
224 /* Write data */
225 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
226 /* Set address */
227 0x801205150D440000ULL, 0x801205150D4400E0ULL,
228 /* Write data */
229 0x801205150D440004ULL, 0x801205150D4400E4ULL,
230 /* Set address */
231 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
232 /* Write data */
233 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
234 /* Done */
235 END_SIGN
236 };
237
238 static u64 xena_mdio_cfg[] = {
239 /* Reset PMA PLL */
240 0xC001010000000000ULL, 0xC0010100000000E0ULL,
241 0xC0010100008000E4ULL,
242 /* Remove Reset from PMA PLL */
243 0xC001010000000000ULL, 0xC0010100000000E0ULL,
244 0xC0010100000000E4ULL,
245 END_SIGN
246 };
247
248 static u64 xena_dtx_cfg[] = {
249 0x8000051500000000ULL, 0x80000515000000E0ULL,
250 0x80000515D93500E4ULL, 0x8001051500000000ULL,
251 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
252 0x8002051500000000ULL, 0x80020515000000E0ULL,
253 0x80020515F21000E4ULL,
254 /* Set PADLOOPBACKN */
255 0x8002051500000000ULL, 0x80020515000000E0ULL,
256 0x80020515B20000E4ULL, 0x8003051500000000ULL,
257 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
258 0x8004051500000000ULL, 0x80040515000000E0ULL,
259 0x80040515B20000E4ULL, 0x8005051500000000ULL,
260 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
261 SWITCH_SIGN,
262 /* Remove PADLOOPBACKN */
263 0x8002051500000000ULL, 0x80020515000000E0ULL,
264 0x80020515F20000E4ULL, 0x8003051500000000ULL,
265 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
266 0x8004051500000000ULL, 0x80040515000000E0ULL,
267 0x80040515F20000E4ULL, 0x8005051500000000ULL,
268 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
269 END_SIGN
270 };
271
272 /*
273 * Constants for Fixing the MacAddress problem seen mostly on
274 * Alpha machines.
275 */
276 static u64 fix_mac[] = {
277 0x0060000000000000ULL, 0x0060600000000000ULL,
278 0x0040600000000000ULL, 0x0000600000000000ULL,
279 0x0020600000000000ULL, 0x0060600000000000ULL,
280 0x0020600000000000ULL, 0x0060600000000000ULL,
281 0x0020600000000000ULL, 0x0060600000000000ULL,
282 0x0020600000000000ULL, 0x0060600000000000ULL,
283 0x0020600000000000ULL, 0x0060600000000000ULL,
284 0x0020600000000000ULL, 0x0060600000000000ULL,
285 0x0020600000000000ULL, 0x0060600000000000ULL,
286 0x0020600000000000ULL, 0x0060600000000000ULL,
287 0x0020600000000000ULL, 0x0060600000000000ULL,
288 0x0020600000000000ULL, 0x0060600000000000ULL,
289 0x0020600000000000ULL, 0x0000600000000000ULL,
290 0x0040600000000000ULL, 0x0060600000000000ULL,
291 END_SIGN
292 };
293
294 /* Module Loadable parameters. */
295 static unsigned int tx_fifo_num = 1;
296 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
297 {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
298 static unsigned int rx_ring_num = 1;
299 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
300 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
301 static unsigned int rts_frm_len[MAX_RX_RINGS] =
302 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
303 static unsigned int rx_ring_mode = 1;
304 static unsigned int use_continuous_tx_intrs = 1;
305 static unsigned int rmac_pause_time = 65535;
306 static unsigned int mc_pause_threshold_q0q3 = 187;
307 static unsigned int mc_pause_threshold_q4q7 = 187;
308 static unsigned int shared_splits;
309 static unsigned int tmac_util_period = 5;
310 static unsigned int rmac_util_period = 5;
311 static unsigned int bimodal = 0;
312 static unsigned int l3l4hdr_size = 128;
313 #ifndef CONFIG_S2IO_NAPI
314 static unsigned int indicate_max_pkts;
315 #endif
316 /* Frequency of Rx desc syncs expressed as power of 2 */
317 static unsigned int rxsync_frequency = 3;
318 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
319 static unsigned int intr_type = 0;
320
321 /*
322 * S2IO device table.
323 * This table lists all the devices that this driver supports.
324 */
325 static struct pci_device_id s2io_tbl[] __devinitdata = {
326 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
327 PCI_ANY_ID, PCI_ANY_ID},
328 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
329 PCI_ANY_ID, PCI_ANY_ID},
330 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
331 PCI_ANY_ID, PCI_ANY_ID},
332 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
333 PCI_ANY_ID, PCI_ANY_ID},
334 {0,}
335 };
336
337 MODULE_DEVICE_TABLE(pci, s2io_tbl);
338
339 static struct pci_driver s2io_driver = {
340 .name = "S2IO",
341 .id_table = s2io_tbl,
342 .probe = s2io_init_nic,
343 .remove = __devexit_p(s2io_rem_nic),
344 };
345
346 /* A simplifier macro used both by init and free shared_mem Fns(). */
347 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
348
349 /**
350 * init_shared_mem - Allocation and Initialization of Memory
351 * @nic: Device private variable.
352 * Description: The function allocates all the memory areas shared
353 * between the NIC and the driver. This includes Tx descriptors,
354 * Rx descriptors and the statistics block.
355 */
356
357 static int init_shared_mem(struct s2io_nic *nic)
358 {
359 u32 size;
360 void *tmp_v_addr, *tmp_v_addr_next;
361 dma_addr_t tmp_p_addr, tmp_p_addr_next;
362 RxD_block_t *pre_rxd_blk = NULL;
363 int i, j, blk_cnt, rx_sz, tx_sz;
364 int lst_size, lst_per_page;
365 struct net_device *dev = nic->dev;
366 unsigned long tmp;
367 buffAdd_t *ba;
368
369 mac_info_t *mac_control;
370 struct config_param *config;
371
372 mac_control = &nic->mac_control;
373 config = &nic->config;
374
375
376 /* Allocation and initialization of TXDLs in FIOFs */
377 size = 0;
378 for (i = 0; i < config->tx_fifo_num; i++) {
379 size += config->tx_cfg[i].fifo_len;
380 }
381 if (size > MAX_AVAILABLE_TXDS) {
382 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
383 __FUNCTION__);
384 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
385 return FAILURE;
386 }
387
388 lst_size = (sizeof(TxD_t) * config->max_txds);
389 tx_sz = lst_size * size;
390 lst_per_page = PAGE_SIZE / lst_size;
391
392 for (i = 0; i < config->tx_fifo_num; i++) {
393 int fifo_len = config->tx_cfg[i].fifo_len;
394 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
395 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
396 GFP_KERNEL);
397 if (!mac_control->fifos[i].list_info) {
398 DBG_PRINT(ERR_DBG,
399 "Malloc failed for list_info\n");
400 return -ENOMEM;
401 }
402 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
403 }
404 for (i = 0; i < config->tx_fifo_num; i++) {
405 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
406 lst_per_page);
407 mac_control->fifos[i].tx_curr_put_info.offset = 0;
408 mac_control->fifos[i].tx_curr_put_info.fifo_len =
409 config->tx_cfg[i].fifo_len - 1;
410 mac_control->fifos[i].tx_curr_get_info.offset = 0;
411 mac_control->fifos[i].tx_curr_get_info.fifo_len =
412 config->tx_cfg[i].fifo_len - 1;
413 mac_control->fifos[i].fifo_no = i;
414 mac_control->fifos[i].nic = nic;
415 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
416
417 for (j = 0; j < page_num; j++) {
418 int k = 0;
419 dma_addr_t tmp_p;
420 void *tmp_v;
421 tmp_v = pci_alloc_consistent(nic->pdev,
422 PAGE_SIZE, &tmp_p);
423 if (!tmp_v) {
424 DBG_PRINT(ERR_DBG,
425 "pci_alloc_consistent ");
426 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
427 return -ENOMEM;
428 }
429 /* If we got a zero DMA address(can happen on
430 * certain platforms like PPC), reallocate.
431 * Store virtual address of page we don't want,
432 * to be freed later.
433 */
434 if (!tmp_p) {
435 mac_control->zerodma_virt_addr = tmp_v;
436 DBG_PRINT(INIT_DBG,
437 "%s: Zero DMA address for TxDL. ", dev->name);
438 DBG_PRINT(INIT_DBG,
439 "Virtual address %p\n", tmp_v);
440 tmp_v = pci_alloc_consistent(nic->pdev,
441 PAGE_SIZE, &tmp_p);
442 if (!tmp_v) {
443 DBG_PRINT(ERR_DBG,
444 "pci_alloc_consistent ");
445 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
446 return -ENOMEM;
447 }
448 }
449 while (k < lst_per_page) {
450 int l = (j * lst_per_page) + k;
451 if (l == config->tx_cfg[i].fifo_len)
452 break;
453 mac_control->fifos[i].list_info[l].list_virt_addr =
454 tmp_v + (k * lst_size);
455 mac_control->fifos[i].list_info[l].list_phy_addr =
456 tmp_p + (k * lst_size);
457 k++;
458 }
459 }
460 }
461
462 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
463 if (!nic->ufo_in_band_v)
464 return -ENOMEM;
465
466 /* Allocation and initialization of RXDs in Rings */
467 size = 0;
468 for (i = 0; i < config->rx_ring_num; i++) {
469 if (config->rx_cfg[i].num_rxd %
470 (rxd_count[nic->rxd_mode] + 1)) {
471 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
472 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
473 i);
474 DBG_PRINT(ERR_DBG, "RxDs per Block");
475 return FAILURE;
476 }
477 size += config->rx_cfg[i].num_rxd;
478 mac_control->rings[i].block_count =
479 config->rx_cfg[i].num_rxd /
480 (rxd_count[nic->rxd_mode] + 1 );
481 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
482 mac_control->rings[i].block_count;
483 }
484 if (nic->rxd_mode == RXD_MODE_1)
485 size = (size * (sizeof(RxD1_t)));
486 else
487 size = (size * (sizeof(RxD3_t)));
488 rx_sz = size;
489
490 for (i = 0; i < config->rx_ring_num; i++) {
491 mac_control->rings[i].rx_curr_get_info.block_index = 0;
492 mac_control->rings[i].rx_curr_get_info.offset = 0;
493 mac_control->rings[i].rx_curr_get_info.ring_len =
494 config->rx_cfg[i].num_rxd - 1;
495 mac_control->rings[i].rx_curr_put_info.block_index = 0;
496 mac_control->rings[i].rx_curr_put_info.offset = 0;
497 mac_control->rings[i].rx_curr_put_info.ring_len =
498 config->rx_cfg[i].num_rxd - 1;
499 mac_control->rings[i].nic = nic;
500 mac_control->rings[i].ring_no = i;
501
502 blk_cnt = config->rx_cfg[i].num_rxd /
503 (rxd_count[nic->rxd_mode] + 1);
504 /* Allocating all the Rx blocks */
505 for (j = 0; j < blk_cnt; j++) {
506 rx_block_info_t *rx_blocks;
507 int l;
508
509 rx_blocks = &mac_control->rings[i].rx_blocks[j];
510 size = SIZE_OF_BLOCK; //size is always page size
511 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
512 &tmp_p_addr);
513 if (tmp_v_addr == NULL) {
514 /*
515 * In case of failure, free_shared_mem()
516 * is called, which should free any
517 * memory that was alloced till the
518 * failure happened.
519 */
520 rx_blocks->block_virt_addr = tmp_v_addr;
521 return -ENOMEM;
522 }
523 memset(tmp_v_addr, 0, size);
524 rx_blocks->block_virt_addr = tmp_v_addr;
525 rx_blocks->block_dma_addr = tmp_p_addr;
526 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
527 rxd_count[nic->rxd_mode],
528 GFP_KERNEL);
529 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
530 rx_blocks->rxds[l].virt_addr =
531 rx_blocks->block_virt_addr +
532 (rxd_size[nic->rxd_mode] * l);
533 rx_blocks->rxds[l].dma_addr =
534 rx_blocks->block_dma_addr +
535 (rxd_size[nic->rxd_mode] * l);
536 }
537
538 mac_control->rings[i].rx_blocks[j].block_virt_addr =
539 tmp_v_addr;
540 mac_control->rings[i].rx_blocks[j].block_dma_addr =
541 tmp_p_addr;
542 }
543 /* Interlinking all Rx Blocks */
544 for (j = 0; j < blk_cnt; j++) {
545 tmp_v_addr =
546 mac_control->rings[i].rx_blocks[j].block_virt_addr;
547 tmp_v_addr_next =
548 mac_control->rings[i].rx_blocks[(j + 1) %
549 blk_cnt].block_virt_addr;
550 tmp_p_addr =
551 mac_control->rings[i].rx_blocks[j].block_dma_addr;
552 tmp_p_addr_next =
553 mac_control->rings[i].rx_blocks[(j + 1) %
554 blk_cnt].block_dma_addr;
555
556 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
557 pre_rxd_blk->reserved_2_pNext_RxD_block =
558 (unsigned long) tmp_v_addr_next;
559 pre_rxd_blk->pNext_RxD_Blk_physical =
560 (u64) tmp_p_addr_next;
561 }
562 }
563 if (nic->rxd_mode >= RXD_MODE_3A) {
564 /*
565 * Allocation of Storages for buffer addresses in 2BUFF mode
566 * and the buffers as well.
567 */
568 for (i = 0; i < config->rx_ring_num; i++) {
569 blk_cnt = config->rx_cfg[i].num_rxd /
570 (rxd_count[nic->rxd_mode]+ 1);
571 mac_control->rings[i].ba =
572 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
573 GFP_KERNEL);
574 if (!mac_control->rings[i].ba)
575 return -ENOMEM;
576 for (j = 0; j < blk_cnt; j++) {
577 int k = 0;
578 mac_control->rings[i].ba[j] =
579 kmalloc((sizeof(buffAdd_t) *
580 (rxd_count[nic->rxd_mode] + 1)),
581 GFP_KERNEL);
582 if (!mac_control->rings[i].ba[j])
583 return -ENOMEM;
584 while (k != rxd_count[nic->rxd_mode]) {
585 ba = &mac_control->rings[i].ba[j][k];
586
587 ba->ba_0_org = (void *) kmalloc
588 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
589 if (!ba->ba_0_org)
590 return -ENOMEM;
591 tmp = (unsigned long)ba->ba_0_org;
592 tmp += ALIGN_SIZE;
593 tmp &= ~((unsigned long) ALIGN_SIZE);
594 ba->ba_0 = (void *) tmp;
595
596 ba->ba_1_org = (void *) kmalloc
597 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
598 if (!ba->ba_1_org)
599 return -ENOMEM;
600 tmp = (unsigned long) ba->ba_1_org;
601 tmp += ALIGN_SIZE;
602 tmp &= ~((unsigned long) ALIGN_SIZE);
603 ba->ba_1 = (void *) tmp;
604 k++;
605 }
606 }
607 }
608 }
609
610 /* Allocation and initialization of Statistics block */
611 size = sizeof(StatInfo_t);
612 mac_control->stats_mem = pci_alloc_consistent
613 (nic->pdev, size, &mac_control->stats_mem_phy);
614
615 if (!mac_control->stats_mem) {
616 /*
617 * In case of failure, free_shared_mem() is called, which
618 * should free any memory that was alloced till the
619 * failure happened.
620 */
621 return -ENOMEM;
622 }
623 mac_control->stats_mem_sz = size;
624
625 tmp_v_addr = mac_control->stats_mem;
626 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
627 memset(tmp_v_addr, 0, size);
628 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
629 (unsigned long long) tmp_p_addr);
630
631 return SUCCESS;
632 }
633
634 /**
635 * free_shared_mem - Free the allocated Memory
636 * @nic: Device private variable.
637 * Description: This function is to free all memory locations allocated by
638 * the init_shared_mem() function and return it to the kernel.
639 */
640
641 static void free_shared_mem(struct s2io_nic *nic)
642 {
643 int i, j, blk_cnt, size;
644 void *tmp_v_addr;
645 dma_addr_t tmp_p_addr;
646 mac_info_t *mac_control;
647 struct config_param *config;
648 int lst_size, lst_per_page;
649 struct net_device *dev = nic->dev;
650
651 if (!nic)
652 return;
653
654 mac_control = &nic->mac_control;
655 config = &nic->config;
656
657 lst_size = (sizeof(TxD_t) * config->max_txds);
658 lst_per_page = PAGE_SIZE / lst_size;
659
660 for (i = 0; i < config->tx_fifo_num; i++) {
661 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
662 lst_per_page);
663 for (j = 0; j < page_num; j++) {
664 int mem_blks = (j * lst_per_page);
665 if (!mac_control->fifos[i].list_info)
666 return;
667 if (!mac_control->fifos[i].list_info[mem_blks].
668 list_virt_addr)
669 break;
670 pci_free_consistent(nic->pdev, PAGE_SIZE,
671 mac_control->fifos[i].
672 list_info[mem_blks].
673 list_virt_addr,
674 mac_control->fifos[i].
675 list_info[mem_blks].
676 list_phy_addr);
677 }
678 /* If we got a zero DMA address during allocation,
679 * free the page now
680 */
681 if (mac_control->zerodma_virt_addr) {
682 pci_free_consistent(nic->pdev, PAGE_SIZE,
683 mac_control->zerodma_virt_addr,
684 (dma_addr_t)0);
685 DBG_PRINT(INIT_DBG,
686 "%s: Freeing TxDL with zero DMA addr. ",
687 dev->name);
688 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
689 mac_control->zerodma_virt_addr);
690 }
691 kfree(mac_control->fifos[i].list_info);
692 }
693
694 size = SIZE_OF_BLOCK;
695 for (i = 0; i < config->rx_ring_num; i++) {
696 blk_cnt = mac_control->rings[i].block_count;
697 for (j = 0; j < blk_cnt; j++) {
698 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
699 block_virt_addr;
700 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
701 block_dma_addr;
702 if (tmp_v_addr == NULL)
703 break;
704 pci_free_consistent(nic->pdev, size,
705 tmp_v_addr, tmp_p_addr);
706 kfree(mac_control->rings[i].rx_blocks[j].rxds);
707 }
708 }
709
710 if (nic->rxd_mode >= RXD_MODE_3A) {
711 /* Freeing buffer storage addresses in 2BUFF mode. */
712 for (i = 0; i < config->rx_ring_num; i++) {
713 blk_cnt = config->rx_cfg[i].num_rxd /
714 (rxd_count[nic->rxd_mode] + 1);
715 for (j = 0; j < blk_cnt; j++) {
716 int k = 0;
717 if (!mac_control->rings[i].ba[j])
718 continue;
719 while (k != rxd_count[nic->rxd_mode]) {
720 buffAdd_t *ba =
721 &mac_control->rings[i].ba[j][k];
722 kfree(ba->ba_0_org);
723 kfree(ba->ba_1_org);
724 k++;
725 }
726 kfree(mac_control->rings[i].ba[j]);
727 }
728 kfree(mac_control->rings[i].ba);
729 }
730 }
731
732 if (mac_control->stats_mem) {
733 pci_free_consistent(nic->pdev,
734 mac_control->stats_mem_sz,
735 mac_control->stats_mem,
736 mac_control->stats_mem_phy);
737 }
738 if (nic->ufo_in_band_v)
739 kfree(nic->ufo_in_band_v);
740 }
741
742 /**
743 * s2io_verify_pci_mode -
744 */
745
746 static int s2io_verify_pci_mode(nic_t *nic)
747 {
748 XENA_dev_config_t __iomem *bar0 = nic->bar0;
749 register u64 val64 = 0;
750 int mode;
751
752 val64 = readq(&bar0->pci_mode);
753 mode = (u8)GET_PCI_MODE(val64);
754
755 if ( val64 & PCI_MODE_UNKNOWN_MODE)
756 return -1; /* Unknown PCI mode */
757 return mode;
758 }
759
760
761 /**
762 * s2io_print_pci_mode -
763 */
764 static int s2io_print_pci_mode(nic_t *nic)
765 {
766 XENA_dev_config_t __iomem *bar0 = nic->bar0;
767 register u64 val64 = 0;
768 int mode;
769 struct config_param *config = &nic->config;
770
771 val64 = readq(&bar0->pci_mode);
772 mode = (u8)GET_PCI_MODE(val64);
773
774 if ( val64 & PCI_MODE_UNKNOWN_MODE)
775 return -1; /* Unknown PCI mode */
776
777 if (val64 & PCI_MODE_32_BITS) {
778 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
779 } else {
780 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
781 }
782
783 switch(mode) {
784 case PCI_MODE_PCI_33:
785 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
786 config->bus_speed = 33;
787 break;
788 case PCI_MODE_PCI_66:
789 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
790 config->bus_speed = 133;
791 break;
792 case PCI_MODE_PCIX_M1_66:
793 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
794 config->bus_speed = 133; /* Herc doubles the clock rate */
795 break;
796 case PCI_MODE_PCIX_M1_100:
797 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
798 config->bus_speed = 200;
799 break;
800 case PCI_MODE_PCIX_M1_133:
801 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
802 config->bus_speed = 266;
803 break;
804 case PCI_MODE_PCIX_M2_66:
805 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
806 config->bus_speed = 133;
807 break;
808 case PCI_MODE_PCIX_M2_100:
809 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
810 config->bus_speed = 200;
811 break;
812 case PCI_MODE_PCIX_M2_133:
813 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
814 config->bus_speed = 266;
815 break;
816 default:
817 return -1; /* Unsupported bus speed */
818 }
819
820 return mode;
821 }
822
823 /**
824 * init_nic - Initialization of hardware
825 * @nic: device peivate variable
826 * Description: The function sequentially configures every block
827 * of the H/W from their reset values.
828 * Return Value: SUCCESS on success and
829 * '-1' on failure (endian settings incorrect).
830 */
831
832 static int init_nic(struct s2io_nic *nic)
833 {
834 XENA_dev_config_t __iomem *bar0 = nic->bar0;
835 struct net_device *dev = nic->dev;
836 register u64 val64 = 0;
837 void __iomem *add;
838 u32 time;
839 int i, j;
840 mac_info_t *mac_control;
841 struct config_param *config;
842 int mdio_cnt = 0, dtx_cnt = 0;
843 unsigned long long mem_share;
844 int mem_size;
845
846 mac_control = &nic->mac_control;
847 config = &nic->config;
848
849 /* to set the swapper controle on the card */
850 if(s2io_set_swapper(nic)) {
851 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
852 return -1;
853 }
854
855 /*
856 * Herc requires EOI to be removed from reset before XGXS, so..
857 */
858 if (nic->device_type & XFRAME_II_DEVICE) {
859 val64 = 0xA500000000ULL;
860 writeq(val64, &bar0->sw_reset);
861 msleep(500);
862 val64 = readq(&bar0->sw_reset);
863 }
864
865 /* Remove XGXS from reset state */
866 val64 = 0;
867 writeq(val64, &bar0->sw_reset);
868 msleep(500);
869 val64 = readq(&bar0->sw_reset);
870
871 /* Enable Receiving broadcasts */
872 add = &bar0->mac_cfg;
873 val64 = readq(&bar0->mac_cfg);
874 val64 |= MAC_RMAC_BCAST_ENABLE;
875 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
876 writel((u32) val64, add);
877 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
878 writel((u32) (val64 >> 32), (add + 4));
879
880 /* Read registers in all blocks */
881 val64 = readq(&bar0->mac_int_mask);
882 val64 = readq(&bar0->mc_int_mask);
883 val64 = readq(&bar0->xgxs_int_mask);
884
885 /* Set MTU */
886 val64 = dev->mtu;
887 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
888
889 /*
890 * Configuring the XAUI Interface of Xena.
891 * ***************************************
892 * To Configure the Xena's XAUI, one has to write a series
893 * of 64 bit values into two registers in a particular
894 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
895 * which will be defined in the array of configuration values
896 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
897 * to switch writing from one regsiter to another. We continue
898 * writing these values until we encounter the 'END_SIGN' macro.
899 * For example, After making a series of 21 writes into
900 * dtx_control register the 'SWITCH_SIGN' appears and hence we
901 * start writing into mdio_control until we encounter END_SIGN.
902 */
903 if (nic->device_type & XFRAME_II_DEVICE) {
904 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
905 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
906 &bar0->dtx_control, UF);
907 if (dtx_cnt & 0x1)
908 msleep(1); /* Necessary!! */
909 dtx_cnt++;
910 }
911 } else {
912 while (1) {
913 dtx_cfg:
914 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
915 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
916 dtx_cnt++;
917 goto mdio_cfg;
918 }
919 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
920 &bar0->dtx_control, UF);
921 val64 = readq(&bar0->dtx_control);
922 dtx_cnt++;
923 }
924 mdio_cfg:
925 while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
926 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
927 mdio_cnt++;
928 goto dtx_cfg;
929 }
930 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
931 &bar0->mdio_control, UF);
932 val64 = readq(&bar0->mdio_control);
933 mdio_cnt++;
934 }
935 if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
936 (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
937 break;
938 } else {
939 goto dtx_cfg;
940 }
941 }
942 }
943
944 /* Tx DMA Initialization */
945 val64 = 0;
946 writeq(val64, &bar0->tx_fifo_partition_0);
947 writeq(val64, &bar0->tx_fifo_partition_1);
948 writeq(val64, &bar0->tx_fifo_partition_2);
949 writeq(val64, &bar0->tx_fifo_partition_3);
950
951
952 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
953 val64 |=
954 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
955 13) | vBIT(config->tx_cfg[i].fifo_priority,
956 ((i * 32) + 5), 3);
957
958 if (i == (config->tx_fifo_num - 1)) {
959 if (i % 2 == 0)
960 i++;
961 }
962
963 switch (i) {
964 case 1:
965 writeq(val64, &bar0->tx_fifo_partition_0);
966 val64 = 0;
967 break;
968 case 3:
969 writeq(val64, &bar0->tx_fifo_partition_1);
970 val64 = 0;
971 break;
972 case 5:
973 writeq(val64, &bar0->tx_fifo_partition_2);
974 val64 = 0;
975 break;
976 case 7:
977 writeq(val64, &bar0->tx_fifo_partition_3);
978 break;
979 }
980 }
981
982 /* Enable Tx FIFO partition 0. */
983 val64 = readq(&bar0->tx_fifo_partition_0);
984 val64 |= BIT(0); /* To enable the FIFO partition. */
985 writeq(val64, &bar0->tx_fifo_partition_0);
986
987 /*
988 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
989 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
990 */
991 if ((nic->device_type == XFRAME_I_DEVICE) &&
992 (get_xena_rev_id(nic->pdev) < 4))
993 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
994
995 val64 = readq(&bar0->tx_fifo_partition_0);
996 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
997 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
998
999 /*
1000 * Initialization of Tx_PA_CONFIG register to ignore packet
1001 * integrity checking.
1002 */
1003 val64 = readq(&bar0->tx_pa_cfg);
1004 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1005 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1006 writeq(val64, &bar0->tx_pa_cfg);
1007
1008 /* Rx DMA intialization. */
1009 val64 = 0;
1010 for (i = 0; i < config->rx_ring_num; i++) {
1011 val64 |=
1012 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1013 3);
1014 }
1015 writeq(val64, &bar0->rx_queue_priority);
1016
1017 /*
1018 * Allocating equal share of memory to all the
1019 * configured Rings.
1020 */
1021 val64 = 0;
1022 if (nic->device_type & XFRAME_II_DEVICE)
1023 mem_size = 32;
1024 else
1025 mem_size = 64;
1026
1027 for (i = 0; i < config->rx_ring_num; i++) {
1028 switch (i) {
1029 case 0:
1030 mem_share = (mem_size / config->rx_ring_num +
1031 mem_size % config->rx_ring_num);
1032 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1033 continue;
1034 case 1:
1035 mem_share = (mem_size / config->rx_ring_num);
1036 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1037 continue;
1038 case 2:
1039 mem_share = (mem_size / config->rx_ring_num);
1040 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1041 continue;
1042 case 3:
1043 mem_share = (mem_size / config->rx_ring_num);
1044 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1045 continue;
1046 case 4:
1047 mem_share = (mem_size / config->rx_ring_num);
1048 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1049 continue;
1050 case 5:
1051 mem_share = (mem_size / config->rx_ring_num);
1052 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1053 continue;
1054 case 6:
1055 mem_share = (mem_size / config->rx_ring_num);
1056 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1057 continue;
1058 case 7:
1059 mem_share = (mem_size / config->rx_ring_num);
1060 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1061 continue;
1062 }
1063 }
1064 writeq(val64, &bar0->rx_queue_cfg);
1065
1066 /*
1067 * Filling Tx round robin registers
1068 * as per the number of FIFOs
1069 */
1070 switch (config->tx_fifo_num) {
1071 case 1:
1072 val64 = 0x0000000000000000ULL;
1073 writeq(val64, &bar0->tx_w_round_robin_0);
1074 writeq(val64, &bar0->tx_w_round_robin_1);
1075 writeq(val64, &bar0->tx_w_round_robin_2);
1076 writeq(val64, &bar0->tx_w_round_robin_3);
1077 writeq(val64, &bar0->tx_w_round_robin_4);
1078 break;
1079 case 2:
1080 val64 = 0x0000010000010000ULL;
1081 writeq(val64, &bar0->tx_w_round_robin_0);
1082 val64 = 0x0100000100000100ULL;
1083 writeq(val64, &bar0->tx_w_round_robin_1);
1084 val64 = 0x0001000001000001ULL;
1085 writeq(val64, &bar0->tx_w_round_robin_2);
1086 val64 = 0x0000010000010000ULL;
1087 writeq(val64, &bar0->tx_w_round_robin_3);
1088 val64 = 0x0100000000000000ULL;
1089 writeq(val64, &bar0->tx_w_round_robin_4);
1090 break;
1091 case 3:
1092 val64 = 0x0001000102000001ULL;
1093 writeq(val64, &bar0->tx_w_round_robin_0);
1094 val64 = 0x0001020000010001ULL;
1095 writeq(val64, &bar0->tx_w_round_robin_1);
1096 val64 = 0x0200000100010200ULL;
1097 writeq(val64, &bar0->tx_w_round_robin_2);
1098 val64 = 0x0001000102000001ULL;
1099 writeq(val64, &bar0->tx_w_round_robin_3);
1100 val64 = 0x0001020000000000ULL;
1101 writeq(val64, &bar0->tx_w_round_robin_4);
1102 break;
1103 case 4:
1104 val64 = 0x0001020300010200ULL;
1105 writeq(val64, &bar0->tx_w_round_robin_0);
1106 val64 = 0x0100000102030001ULL;
1107 writeq(val64, &bar0->tx_w_round_robin_1);
1108 val64 = 0x0200010000010203ULL;
1109 writeq(val64, &bar0->tx_w_round_robin_2);
1110 val64 = 0x0001020001000001ULL;
1111 writeq(val64, &bar0->tx_w_round_robin_3);
1112 val64 = 0x0203000100000000ULL;
1113 writeq(val64, &bar0->tx_w_round_robin_4);
1114 break;
1115 case 5:
1116 val64 = 0x0001000203000102ULL;
1117 writeq(val64, &bar0->tx_w_round_robin_0);
1118 val64 = 0x0001020001030004ULL;
1119 writeq(val64, &bar0->tx_w_round_robin_1);
1120 val64 = 0x0001000203000102ULL;
1121 writeq(val64, &bar0->tx_w_round_robin_2);
1122 val64 = 0x0001020001030004ULL;
1123 writeq(val64, &bar0->tx_w_round_robin_3);
1124 val64 = 0x0001000000000000ULL;
1125 writeq(val64, &bar0->tx_w_round_robin_4);
1126 break;
1127 case 6:
1128 val64 = 0x0001020304000102ULL;
1129 writeq(val64, &bar0->tx_w_round_robin_0);
1130 val64 = 0x0304050001020001ULL;
1131 writeq(val64, &bar0->tx_w_round_robin_1);
1132 val64 = 0x0203000100000102ULL;
1133 writeq(val64, &bar0->tx_w_round_robin_2);
1134 val64 = 0x0304000102030405ULL;
1135 writeq(val64, &bar0->tx_w_round_robin_3);
1136 val64 = 0x0001000200000000ULL;
1137 writeq(val64, &bar0->tx_w_round_robin_4);
1138 break;
1139 case 7:
1140 val64 = 0x0001020001020300ULL;
1141 writeq(val64, &bar0->tx_w_round_robin_0);
1142 val64 = 0x0102030400010203ULL;
1143 writeq(val64, &bar0->tx_w_round_robin_1);
1144 val64 = 0x0405060001020001ULL;
1145 writeq(val64, &bar0->tx_w_round_robin_2);
1146 val64 = 0x0304050000010200ULL;
1147 writeq(val64, &bar0->tx_w_round_robin_3);
1148 val64 = 0x0102030000000000ULL;
1149 writeq(val64, &bar0->tx_w_round_robin_4);
1150 break;
1151 case 8:
1152 val64 = 0x0001020300040105ULL;
1153 writeq(val64, &bar0->tx_w_round_robin_0);
1154 val64 = 0x0200030106000204ULL;
1155 writeq(val64, &bar0->tx_w_round_robin_1);
1156 val64 = 0x0103000502010007ULL;
1157 writeq(val64, &bar0->tx_w_round_robin_2);
1158 val64 = 0x0304010002060500ULL;
1159 writeq(val64, &bar0->tx_w_round_robin_3);
1160 val64 = 0x0103020400000000ULL;
1161 writeq(val64, &bar0->tx_w_round_robin_4);
1162 break;
1163 }
1164
1165 /* Filling the Rx round robin registers as per the
1166 * number of Rings and steering based on QoS.
1167 */
1168 switch (config->rx_ring_num) {
1169 case 1:
1170 val64 = 0x8080808080808080ULL;
1171 writeq(val64, &bar0->rts_qos_steering);
1172 break;
1173 case 2:
1174 val64 = 0x0000010000010000ULL;
1175 writeq(val64, &bar0->rx_w_round_robin_0);
1176 val64 = 0x0100000100000100ULL;
1177 writeq(val64, &bar0->rx_w_round_robin_1);
1178 val64 = 0x0001000001000001ULL;
1179 writeq(val64, &bar0->rx_w_round_robin_2);
1180 val64 = 0x0000010000010000ULL;
1181 writeq(val64, &bar0->rx_w_round_robin_3);
1182 val64 = 0x0100000000000000ULL;
1183 writeq(val64, &bar0->rx_w_round_robin_4);
1184
1185 val64 = 0x8080808040404040ULL;
1186 writeq(val64, &bar0->rts_qos_steering);
1187 break;
1188 case 3:
1189 val64 = 0x0001000102000001ULL;
1190 writeq(val64, &bar0->rx_w_round_robin_0);
1191 val64 = 0x0001020000010001ULL;
1192 writeq(val64, &bar0->rx_w_round_robin_1);
1193 val64 = 0x0200000100010200ULL;
1194 writeq(val64, &bar0->rx_w_round_robin_2);
1195 val64 = 0x0001000102000001ULL;
1196 writeq(val64, &bar0->rx_w_round_robin_3);
1197 val64 = 0x0001020000000000ULL;
1198 writeq(val64, &bar0->rx_w_round_robin_4);
1199
1200 val64 = 0x8080804040402020ULL;
1201 writeq(val64, &bar0->rts_qos_steering);
1202 break;
1203 case 4:
1204 val64 = 0x0001020300010200ULL;
1205 writeq(val64, &bar0->rx_w_round_robin_0);
1206 val64 = 0x0100000102030001ULL;
1207 writeq(val64, &bar0->rx_w_round_robin_1);
1208 val64 = 0x0200010000010203ULL;
1209 writeq(val64, &bar0->rx_w_round_robin_2);
1210 val64 = 0x0001020001000001ULL;
1211 writeq(val64, &bar0->rx_w_round_robin_3);
1212 val64 = 0x0203000100000000ULL;
1213 writeq(val64, &bar0->rx_w_round_robin_4);
1214
1215 val64 = 0x8080404020201010ULL;
1216 writeq(val64, &bar0->rts_qos_steering);
1217 break;
1218 case 5:
1219 val64 = 0x0001000203000102ULL;
1220 writeq(val64, &bar0->rx_w_round_robin_0);
1221 val64 = 0x0001020001030004ULL;
1222 writeq(val64, &bar0->rx_w_round_robin_1);
1223 val64 = 0x0001000203000102ULL;
1224 writeq(val64, &bar0->rx_w_round_robin_2);
1225 val64 = 0x0001020001030004ULL;
1226 writeq(val64, &bar0->rx_w_round_robin_3);
1227 val64 = 0x0001000000000000ULL;
1228 writeq(val64, &bar0->rx_w_round_robin_4);
1229
1230 val64 = 0x8080404020201008ULL;
1231 writeq(val64, &bar0->rts_qos_steering);
1232 break;
1233 case 6:
1234 val64 = 0x0001020304000102ULL;
1235 writeq(val64, &bar0->rx_w_round_robin_0);
1236 val64 = 0x0304050001020001ULL;
1237 writeq(val64, &bar0->rx_w_round_robin_1);
1238 val64 = 0x0203000100000102ULL;
1239 writeq(val64, &bar0->rx_w_round_robin_2);
1240 val64 = 0x0304000102030405ULL;
1241 writeq(val64, &bar0->rx_w_round_robin_3);
1242 val64 = 0x0001000200000000ULL;
1243 writeq(val64, &bar0->rx_w_round_robin_4);
1244
1245 val64 = 0x8080404020100804ULL;
1246 writeq(val64, &bar0->rts_qos_steering);
1247 break;
1248 case 7:
1249 val64 = 0x0001020001020300ULL;
1250 writeq(val64, &bar0->rx_w_round_robin_0);
1251 val64 = 0x0102030400010203ULL;
1252 writeq(val64, &bar0->rx_w_round_robin_1);
1253 val64 = 0x0405060001020001ULL;
1254 writeq(val64, &bar0->rx_w_round_robin_2);
1255 val64 = 0x0304050000010200ULL;
1256 writeq(val64, &bar0->rx_w_round_robin_3);
1257 val64 = 0x0102030000000000ULL;
1258 writeq(val64, &bar0->rx_w_round_robin_4);
1259
1260 val64 = 0x8080402010080402ULL;
1261 writeq(val64, &bar0->rts_qos_steering);
1262 break;
1263 case 8:
1264 val64 = 0x0001020300040105ULL;
1265 writeq(val64, &bar0->rx_w_round_robin_0);
1266 val64 = 0x0200030106000204ULL;
1267 writeq(val64, &bar0->rx_w_round_robin_1);
1268 val64 = 0x0103000502010007ULL;
1269 writeq(val64, &bar0->rx_w_round_robin_2);
1270 val64 = 0x0304010002060500ULL;
1271 writeq(val64, &bar0->rx_w_round_robin_3);
1272 val64 = 0x0103020400000000ULL;
1273 writeq(val64, &bar0->rx_w_round_robin_4);
1274
1275 val64 = 0x8040201008040201ULL;
1276 writeq(val64, &bar0->rts_qos_steering);
1277 break;
1278 }
1279
1280 /* UDP Fix */
1281 val64 = 0;
1282 for (i = 0; i < 8; i++)
1283 writeq(val64, &bar0->rts_frm_len_n[i]);
1284
1285 /* Set the default rts frame length for the rings configured */
1286 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1287 for (i = 0 ; i < config->rx_ring_num ; i++)
1288 writeq(val64, &bar0->rts_frm_len_n[i]);
1289
1290 /* Set the frame length for the configured rings
1291 * desired by the user
1292 */
1293 for (i = 0; i < config->rx_ring_num; i++) {
1294 /* If rts_frm_len[i] == 0 then it is assumed that user not
1295 * specified frame length steering.
1296 * If the user provides the frame length then program
1297 * the rts_frm_len register for those values or else
1298 * leave it as it is.
1299 */
1300 if (rts_frm_len[i] != 0) {
1301 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1302 &bar0->rts_frm_len_n[i]);
1303 }
1304 }
1305
1306 /* Program statistics memory */
1307 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1308
1309 if (nic->device_type == XFRAME_II_DEVICE) {
1310 val64 = STAT_BC(0x320);
1311 writeq(val64, &bar0->stat_byte_cnt);
1312 }
1313
1314 /*
1315 * Initializing the sampling rate for the device to calculate the
1316 * bandwidth utilization.
1317 */
1318 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1319 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1320 writeq(val64, &bar0->mac_link_util);
1321
1322
1323 /*
1324 * Initializing the Transmit and Receive Traffic Interrupt
1325 * Scheme.
1326 */
1327 /*
1328 * TTI Initialization. Default Tx timer gets us about
1329 * 250 interrupts per sec. Continuous interrupts are enabled
1330 * by default.
1331 */
1332 if (nic->device_type == XFRAME_II_DEVICE) {
1333 int count = (nic->config.bus_speed * 125)/2;
1334 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1335 } else {
1336
1337 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1338 }
1339 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1340 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1341 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1342 if (use_continuous_tx_intrs)
1343 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1344 writeq(val64, &bar0->tti_data1_mem);
1345
1346 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1347 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1348 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1349 writeq(val64, &bar0->tti_data2_mem);
1350
1351 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1352 writeq(val64, &bar0->tti_command_mem);
1353
1354 /*
1355 * Once the operation completes, the Strobe bit of the command
1356 * register will be reset. We poll for this particular condition
1357 * We wait for a maximum of 500ms for the operation to complete,
1358 * if it's not complete by then we return error.
1359 */
1360 time = 0;
1361 while (TRUE) {
1362 val64 = readq(&bar0->tti_command_mem);
1363 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1364 break;
1365 }
1366 if (time > 10) {
1367 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1368 dev->name);
1369 return -1;
1370 }
1371 msleep(50);
1372 time++;
1373 }
1374
1375 if (nic->config.bimodal) {
1376 int k = 0;
1377 for (k = 0; k < config->rx_ring_num; k++) {
1378 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1379 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1380 writeq(val64, &bar0->tti_command_mem);
1381
1382 /*
1383 * Once the operation completes, the Strobe bit of the command
1384 * register will be reset. We poll for this particular condition
1385 * We wait for a maximum of 500ms for the operation to complete,
1386 * if it's not complete by then we return error.
1387 */
1388 time = 0;
1389 while (TRUE) {
1390 val64 = readq(&bar0->tti_command_mem);
1391 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1392 break;
1393 }
1394 if (time > 10) {
1395 DBG_PRINT(ERR_DBG,
1396 "%s: TTI init Failed\n",
1397 dev->name);
1398 return -1;
1399 }
1400 time++;
1401 msleep(50);
1402 }
1403 }
1404 } else {
1405
1406 /* RTI Initialization */
1407 if (nic->device_type == XFRAME_II_DEVICE) {
1408 /*
1409 * Programmed to generate Apprx 500 Intrs per
1410 * second
1411 */
1412 int count = (nic->config.bus_speed * 125)/4;
1413 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1414 } else {
1415 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1416 }
1417 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1418 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1419 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1420
1421 writeq(val64, &bar0->rti_data1_mem);
1422
1423 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1424 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1425 if (nic->intr_type == MSI_X)
1426 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1427 RTI_DATA2_MEM_RX_UFC_D(0x40));
1428 else
1429 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1430 RTI_DATA2_MEM_RX_UFC_D(0x80));
1431 writeq(val64, &bar0->rti_data2_mem);
1432
1433 for (i = 0; i < config->rx_ring_num; i++) {
1434 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1435 | RTI_CMD_MEM_OFFSET(i);
1436 writeq(val64, &bar0->rti_command_mem);
1437
1438 /*
1439 * Once the operation completes, the Strobe bit of the
1440 * command register will be reset. We poll for this
1441 * particular condition. We wait for a maximum of 500ms
1442 * for the operation to complete, if it's not complete
1443 * by then we return error.
1444 */
1445 time = 0;
1446 while (TRUE) {
1447 val64 = readq(&bar0->rti_command_mem);
1448 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1449 break;
1450 }
1451 if (time > 10) {
1452 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1453 dev->name);
1454 return -1;
1455 }
1456 time++;
1457 msleep(50);
1458 }
1459 }
1460 }
1461
1462 /*
1463 * Initializing proper values as Pause threshold into all
1464 * the 8 Queues on Rx side.
1465 */
1466 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1467 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1468
1469 /* Disable RMAC PAD STRIPPING */
1470 add = &bar0->mac_cfg;
1471 val64 = readq(&bar0->mac_cfg);
1472 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1473 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1474 writel((u32) (val64), add);
1475 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1476 writel((u32) (val64 >> 32), (add + 4));
1477 val64 = readq(&bar0->mac_cfg);
1478
1479 /*
1480 * Set the time value to be inserted in the pause frame
1481 * generated by xena.
1482 */
1483 val64 = readq(&bar0->rmac_pause_cfg);
1484 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1485 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1486 writeq(val64, &bar0->rmac_pause_cfg);
1487
1488 /*
1489 * Set the Threshold Limit for Generating the pause frame
1490 * If the amount of data in any Queue exceeds ratio of
1491 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1492 * pause frame is generated
1493 */
1494 val64 = 0;
1495 for (i = 0; i < 4; i++) {
1496 val64 |=
1497 (((u64) 0xFF00 | nic->mac_control.
1498 mc_pause_threshold_q0q3)
1499 << (i * 2 * 8));
1500 }
1501 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1502
1503 val64 = 0;
1504 for (i = 0; i < 4; i++) {
1505 val64 |=
1506 (((u64) 0xFF00 | nic->mac_control.
1507 mc_pause_threshold_q4q7)
1508 << (i * 2 * 8));
1509 }
1510 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1511
1512 /*
1513 * TxDMA will stop Read request if the number of read split has
1514 * exceeded the limit pointed by shared_splits
1515 */
1516 val64 = readq(&bar0->pic_control);
1517 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1518 writeq(val64, &bar0->pic_control);
1519
1520 /*
1521 * Programming the Herc to split every write transaction
1522 * that does not start on an ADB to reduce disconnects.
1523 */
1524 if (nic->device_type == XFRAME_II_DEVICE) {
1525 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1526 writeq(val64, &bar0->wreq_split_mask);
1527 }
1528
1529 /* Setting Link stability period to 64 ms */
1530 if (nic->device_type == XFRAME_II_DEVICE) {
1531 val64 = MISC_LINK_STABILITY_PRD(3);
1532 writeq(val64, &bar0->misc_control);
1533 }
1534
1535 return SUCCESS;
1536 }
1537 #define LINK_UP_DOWN_INTERRUPT 1
1538 #define MAC_RMAC_ERR_TIMER 2
1539
1540 static int s2io_link_fault_indication(nic_t *nic)
1541 {
1542 if (nic->intr_type != INTA)
1543 return MAC_RMAC_ERR_TIMER;
1544 if (nic->device_type == XFRAME_II_DEVICE)
1545 return LINK_UP_DOWN_INTERRUPT;
1546 else
1547 return MAC_RMAC_ERR_TIMER;
1548 }
1549
1550 /**
1551 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1552 * @nic: device private variable,
1553 * @mask: A mask indicating which Intr block must be modified and,
1554 * @flag: A flag indicating whether to enable or disable the Intrs.
1555 * Description: This function will either disable or enable the interrupts
1556 * depending on the flag argument. The mask argument can be used to
1557 * enable/disable any Intr block.
1558 * Return Value: NONE.
1559 */
1560
1561 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1562 {
1563 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1564 register u64 val64 = 0, temp64 = 0;
1565
1566 /* Top level interrupt classification */
1567 /* PIC Interrupts */
1568 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1569 /* Enable PIC Intrs in the general intr mask register */
1570 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1571 if (flag == ENABLE_INTRS) {
1572 temp64 = readq(&bar0->general_int_mask);
1573 temp64 &= ~((u64) val64);
1574 writeq(temp64, &bar0->general_int_mask);
1575 /*
1576 * If Hercules adapter enable GPIO otherwise
1577 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1578 * interrupts for now.
1579 * TODO
1580 */
1581 if (s2io_link_fault_indication(nic) ==
1582 LINK_UP_DOWN_INTERRUPT ) {
1583 temp64 = readq(&bar0->pic_int_mask);
1584 temp64 &= ~((u64) PIC_INT_GPIO);
1585 writeq(temp64, &bar0->pic_int_mask);
1586 temp64 = readq(&bar0->gpio_int_mask);
1587 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1588 writeq(temp64, &bar0->gpio_int_mask);
1589 } else {
1590 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1591 }
1592 /*
1593 * No MSI Support is available presently, so TTI and
1594 * RTI interrupts are also disabled.
1595 */
1596 } else if (flag == DISABLE_INTRS) {
1597 /*
1598 * Disable PIC Intrs in the general
1599 * intr mask register
1600 */
1601 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1602 temp64 = readq(&bar0->general_int_mask);
1603 val64 |= temp64;
1604 writeq(val64, &bar0->general_int_mask);
1605 }
1606 }
1607
1608 /* DMA Interrupts */
1609 /* Enabling/Disabling Tx DMA interrupts */
1610 if (mask & TX_DMA_INTR) {
1611 /* Enable TxDMA Intrs in the general intr mask register */
1612 val64 = TXDMA_INT_M;
1613 if (flag == ENABLE_INTRS) {
1614 temp64 = readq(&bar0->general_int_mask);
1615 temp64 &= ~((u64) val64);
1616 writeq(temp64, &bar0->general_int_mask);
1617 /*
1618 * Keep all interrupts other than PFC interrupt
1619 * and PCC interrupt disabled in DMA level.
1620 */
1621 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1622 TXDMA_PCC_INT_M);
1623 writeq(val64, &bar0->txdma_int_mask);
1624 /*
1625 * Enable only the MISC error 1 interrupt in PFC block
1626 */
1627 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1628 writeq(val64, &bar0->pfc_err_mask);
1629 /*
1630 * Enable only the FB_ECC error interrupt in PCC block
1631 */
1632 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1633 writeq(val64, &bar0->pcc_err_mask);
1634 } else if (flag == DISABLE_INTRS) {
1635 /*
1636 * Disable TxDMA Intrs in the general intr mask
1637 * register
1638 */
1639 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1640 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1641 temp64 = readq(&bar0->general_int_mask);
1642 val64 |= temp64;
1643 writeq(val64, &bar0->general_int_mask);
1644 }
1645 }
1646
1647 /* Enabling/Disabling Rx DMA interrupts */
1648 if (mask & RX_DMA_INTR) {
1649 /* Enable RxDMA Intrs in the general intr mask register */
1650 val64 = RXDMA_INT_M;
1651 if (flag == ENABLE_INTRS) {
1652 temp64 = readq(&bar0->general_int_mask);
1653 temp64 &= ~((u64) val64);
1654 writeq(temp64, &bar0->general_int_mask);
1655 /*
1656 * All RxDMA block interrupts are disabled for now
1657 * TODO
1658 */
1659 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1660 } else if (flag == DISABLE_INTRS) {
1661 /*
1662 * Disable RxDMA Intrs in the general intr mask
1663 * register
1664 */
1665 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1666 temp64 = readq(&bar0->general_int_mask);
1667 val64 |= temp64;
1668 writeq(val64, &bar0->general_int_mask);
1669 }
1670 }
1671
1672 /* MAC Interrupts */
1673 /* Enabling/Disabling MAC interrupts */
1674 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1675 val64 = TXMAC_INT_M | RXMAC_INT_M;
1676 if (flag == ENABLE_INTRS) {
1677 temp64 = readq(&bar0->general_int_mask);
1678 temp64 &= ~((u64) val64);
1679 writeq(temp64, &bar0->general_int_mask);
1680 /*
1681 * All MAC block error interrupts are disabled for now
1682 * TODO
1683 */
1684 } else if (flag == DISABLE_INTRS) {
1685 /*
1686 * Disable MAC Intrs in the general intr mask register
1687 */
1688 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1689 writeq(DISABLE_ALL_INTRS,
1690 &bar0->mac_rmac_err_mask);
1691
1692 temp64 = readq(&bar0->general_int_mask);
1693 val64 |= temp64;
1694 writeq(val64, &bar0->general_int_mask);
1695 }
1696 }
1697
1698 /* XGXS Interrupts */
1699 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1700 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1701 if (flag == ENABLE_INTRS) {
1702 temp64 = readq(&bar0->general_int_mask);
1703 temp64 &= ~((u64) val64);
1704 writeq(temp64, &bar0->general_int_mask);
1705 /*
1706 * All XGXS block error interrupts are disabled for now
1707 * TODO
1708 */
1709 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1710 } else if (flag == DISABLE_INTRS) {
1711 /*
1712 * Disable MC Intrs in the general intr mask register
1713 */
1714 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1715 temp64 = readq(&bar0->general_int_mask);
1716 val64 |= temp64;
1717 writeq(val64, &bar0->general_int_mask);
1718 }
1719 }
1720
1721 /* Memory Controller(MC) interrupts */
1722 if (mask & MC_INTR) {
1723 val64 = MC_INT_M;
1724 if (flag == ENABLE_INTRS) {
1725 temp64 = readq(&bar0->general_int_mask);
1726 temp64 &= ~((u64) val64);
1727 writeq(temp64, &bar0->general_int_mask);
1728 /*
1729 * Enable all MC Intrs.
1730 */
1731 writeq(0x0, &bar0->mc_int_mask);
1732 writeq(0x0, &bar0->mc_err_mask);
1733 } else if (flag == DISABLE_INTRS) {
1734 /*
1735 * Disable MC Intrs in the general intr mask register
1736 */
1737 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1738 temp64 = readq(&bar0->general_int_mask);
1739 val64 |= temp64;
1740 writeq(val64, &bar0->general_int_mask);
1741 }
1742 }
1743
1744
1745 /* Tx traffic interrupts */
1746 if (mask & TX_TRAFFIC_INTR) {
1747 val64 = TXTRAFFIC_INT_M;
1748 if (flag == ENABLE_INTRS) {
1749 temp64 = readq(&bar0->general_int_mask);
1750 temp64 &= ~((u64) val64);
1751 writeq(temp64, &bar0->general_int_mask);
1752 /*
1753 * Enable all the Tx side interrupts
1754 * writing 0 Enables all 64 TX interrupt levels
1755 */
1756 writeq(0x0, &bar0->tx_traffic_mask);
1757 } else if (flag == DISABLE_INTRS) {
1758 /*
1759 * Disable Tx Traffic Intrs in the general intr mask
1760 * register.
1761 */
1762 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1763 temp64 = readq(&bar0->general_int_mask);
1764 val64 |= temp64;
1765 writeq(val64, &bar0->general_int_mask);
1766 }
1767 }
1768
1769 /* Rx traffic interrupts */
1770 if (mask & RX_TRAFFIC_INTR) {
1771 val64 = RXTRAFFIC_INT_M;
1772 if (flag == ENABLE_INTRS) {
1773 temp64 = readq(&bar0->general_int_mask);
1774 temp64 &= ~((u64) val64);
1775 writeq(temp64, &bar0->general_int_mask);
1776 /* writing 0 Enables all 8 RX interrupt levels */
1777 writeq(0x0, &bar0->rx_traffic_mask);
1778 } else if (flag == DISABLE_INTRS) {
1779 /*
1780 * Disable Rx Traffic Intrs in the general intr mask
1781 * register.
1782 */
1783 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1784 temp64 = readq(&bar0->general_int_mask);
1785 val64 |= temp64;
1786 writeq(val64, &bar0->general_int_mask);
1787 }
1788 }
1789 }
1790
1791 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1792 {
1793 int ret = 0;
1794
1795 if (flag == FALSE) {
1796 if ((!herc && (rev_id >= 4)) || herc) {
1797 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1798 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1799 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1800 ret = 1;
1801 }
1802 }else {
1803 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1804 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1805 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1806 ret = 1;
1807 }
1808 }
1809 } else {
1810 if ((!herc && (rev_id >= 4)) || herc) {
1811 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1812 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1813 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1814 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1815 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1816 ret = 1;
1817 }
1818 } else {
1819 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1820 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1821 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1822 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1823 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1824 ret = 1;
1825 }
1826 }
1827 }
1828
1829 return ret;
1830 }
1831 /**
1832 * verify_xena_quiescence - Checks whether the H/W is ready
1833 * @val64 : Value read from adapter status register.
1834 * @flag : indicates if the adapter enable bit was ever written once
1835 * before.
1836 * Description: Returns whether the H/W is ready to go or not. Depending
1837 * on whether adapter enable bit was written or not the comparison
1838 * differs and the calling function passes the input argument flag to
1839 * indicate this.
1840 * Return: 1 If xena is quiescence
1841 * 0 If Xena is not quiescence
1842 */
1843
1844 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1845 {
1846 int ret = 0, herc;
1847 u64 tmp64 = ~((u64) val64);
1848 int rev_id = get_xena_rev_id(sp->pdev);
1849
1850 herc = (sp->device_type == XFRAME_II_DEVICE);
1851 if (!
1852 (tmp64 &
1853 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1854 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1855 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1856 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1857 ADAPTER_STATUS_P_PLL_LOCK))) {
1858 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1859 }
1860
1861 return ret;
1862 }
1863
1864 /**
1865 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1866 * @sp: Pointer to device specifc structure
1867 * Description :
1868 * New procedure to clear mac address reading problems on Alpha platforms
1869 *
1870 */
1871
1872 static void fix_mac_address(nic_t * sp)
1873 {
1874 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1875 u64 val64;
1876 int i = 0;
1877
1878 while (fix_mac[i] != END_SIGN) {
1879 writeq(fix_mac[i++], &bar0->gpio_control);
1880 udelay(10);
1881 val64 = readq(&bar0->gpio_control);
1882 }
1883 }
1884
1885 /**
1886 * start_nic - Turns the device on
1887 * @nic : device private variable.
1888 * Description:
1889 * This function actually turns the device on. Before this function is
1890 * called,all Registers are configured from their reset states
1891 * and shared memory is allocated but the NIC is still quiescent. On
1892 * calling this function, the device interrupts are cleared and the NIC is
1893 * literally switched on by writing into the adapter control register.
1894 * Return Value:
1895 * SUCCESS on success and -1 on failure.
1896 */
1897
1898 static int start_nic(struct s2io_nic *nic)
1899 {
1900 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1901 struct net_device *dev = nic->dev;
1902 register u64 val64 = 0;
1903 u16 interruptible;
1904 u16 subid, i;
1905 mac_info_t *mac_control;
1906 struct config_param *config;
1907
1908 mac_control = &nic->mac_control;
1909 config = &nic->config;
1910
1911 /* PRC Initialization and configuration */
1912 for (i = 0; i < config->rx_ring_num; i++) {
1913 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1914 &bar0->prc_rxd0_n[i]);
1915
1916 val64 = readq(&bar0->prc_ctrl_n[i]);
1917 if (nic->config.bimodal)
1918 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1919 if (nic->rxd_mode == RXD_MODE_1)
1920 val64 |= PRC_CTRL_RC_ENABLED;
1921 else
1922 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1923 writeq(val64, &bar0->prc_ctrl_n[i]);
1924 }
1925
1926 if (nic->rxd_mode == RXD_MODE_3B) {
1927 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1928 val64 = readq(&bar0->rx_pa_cfg);
1929 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1930 writeq(val64, &bar0->rx_pa_cfg);
1931 }
1932
1933 /*
1934 * Enabling MC-RLDRAM. After enabling the device, we timeout
1935 * for around 100ms, which is approximately the time required
1936 * for the device to be ready for operation.
1937 */
1938 val64 = readq(&bar0->mc_rldram_mrs);
1939 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1940 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1941 val64 = readq(&bar0->mc_rldram_mrs);
1942
1943 msleep(100); /* Delay by around 100 ms. */
1944
1945 /* Enabling ECC Protection. */
1946 val64 = readq(&bar0->adapter_control);
1947 val64 &= ~ADAPTER_ECC_EN;
1948 writeq(val64, &bar0->adapter_control);
1949
1950 /*
1951 * Clearing any possible Link state change interrupts that
1952 * could have popped up just before Enabling the card.
1953 */
1954 val64 = readq(&bar0->mac_rmac_err_reg);
1955 if (val64)
1956 writeq(val64, &bar0->mac_rmac_err_reg);
1957
1958 /*
1959 * Verify if the device is ready to be enabled, if so enable
1960 * it.
1961 */
1962 val64 = readq(&bar0->adapter_status);
1963 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1964 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1965 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1966 (unsigned long long) val64);
1967 return FAILURE;
1968 }
1969
1970 /* Enable select interrupts */
1971 if (nic->intr_type != INTA)
1972 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
1973 else {
1974 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
1975 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1976 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1977 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1978 }
1979
1980 /*
1981 * With some switches, link might be already up at this point.
1982 * Because of this weird behavior, when we enable laser,
1983 * we may not get link. We need to handle this. We cannot
1984 * figure out which switch is misbehaving. So we are forced to
1985 * make a global change.
1986 */
1987
1988 /* Enabling Laser. */
1989 val64 = readq(&bar0->adapter_control);
1990 val64 |= ADAPTER_EOI_TX_ON;
1991 writeq(val64, &bar0->adapter_control);
1992
1993 /* SXE-002: Initialize link and activity LED */
1994 subid = nic->pdev->subsystem_device;
1995 if (((subid & 0xFF) >= 0x07) &&
1996 (nic->device_type == XFRAME_I_DEVICE)) {
1997 val64 = readq(&bar0->gpio_control);
1998 val64 |= 0x0000800000000000ULL;
1999 writeq(val64, &bar0->gpio_control);
2000 val64 = 0x0411040400000000ULL;
2001 writeq(val64, (void __iomem *)bar0 + 0x2700);
2002 }
2003
2004 /*
2005 * Don't see link state interrupts on certain switches, so
2006 * directly scheduling a link state task from here.
2007 */
2008 schedule_work(&nic->set_link_task);
2009
2010 return SUCCESS;
2011 }
2012 /**
2013 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2014 */
2015 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2016 {
2017 nic_t *nic = fifo_data->nic;
2018 struct sk_buff *skb;
2019 TxD_t *txds;
2020 u16 j, frg_cnt;
2021
2022 txds = txdlp;
2023 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2024 pci_unmap_single(nic->pdev, (dma_addr_t)
2025 txds->Buffer_Pointer, sizeof(u64),
2026 PCI_DMA_TODEVICE);
2027 txds++;
2028 }
2029
2030 skb = (struct sk_buff *) ((unsigned long)
2031 txds->Host_Control);
2032 if (!skb) {
2033 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2034 return NULL;
2035 }
2036 pci_unmap_single(nic->pdev, (dma_addr_t)
2037 txds->Buffer_Pointer,
2038 skb->len - skb->data_len,
2039 PCI_DMA_TODEVICE);
2040 frg_cnt = skb_shinfo(skb)->nr_frags;
2041 if (frg_cnt) {
2042 txds++;
2043 for (j = 0; j < frg_cnt; j++, txds++) {
2044 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2045 if (!txds->Buffer_Pointer)
2046 break;
2047 pci_unmap_page(nic->pdev, (dma_addr_t)
2048 txds->Buffer_Pointer,
2049 frag->size, PCI_DMA_TODEVICE);
2050 }
2051 }
2052 txdlp->Host_Control = 0;
2053 return(skb);
2054 }
2055
2056 /**
2057 * free_tx_buffers - Free all queued Tx buffers
2058 * @nic : device private variable.
2059 * Description:
2060 * Free all queued Tx buffers.
2061 * Return Value: void
2062 */
2063
2064 static void free_tx_buffers(struct s2io_nic *nic)
2065 {
2066 struct net_device *dev = nic->dev;
2067 struct sk_buff *skb;
2068 TxD_t *txdp;
2069 int i, j;
2070 mac_info_t *mac_control;
2071 struct config_param *config;
2072 int cnt = 0;
2073
2074 mac_control = &nic->mac_control;
2075 config = &nic->config;
2076
2077 for (i = 0; i < config->tx_fifo_num; i++) {
2078 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2079 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2080 list_virt_addr;
2081 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2082 if (skb) {
2083 dev_kfree_skb(skb);
2084 cnt++;
2085 }
2086 }
2087 DBG_PRINT(INTR_DBG,
2088 "%s:forcibly freeing %d skbs on FIFO%d\n",
2089 dev->name, cnt, i);
2090 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2091 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2092 }
2093 }
2094
2095 /**
2096 * stop_nic - To stop the nic
2097 * @nic ; device private variable.
2098 * Description:
2099 * This function does exactly the opposite of what the start_nic()
2100 * function does. This function is called to stop the device.
2101 * Return Value:
2102 * void.
2103 */
2104
2105 static void stop_nic(struct s2io_nic *nic)
2106 {
2107 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2108 register u64 val64 = 0;
2109 u16 interruptible, i;
2110 mac_info_t *mac_control;
2111 struct config_param *config;
2112
2113 mac_control = &nic->mac_control;
2114 config = &nic->config;
2115
2116 /* Disable all interrupts */
2117 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2118 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2119 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2120 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2121
2122 /* Disable PRCs */
2123 for (i = 0; i < config->rx_ring_num; i++) {
2124 val64 = readq(&bar0->prc_ctrl_n[i]);
2125 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2126 writeq(val64, &bar0->prc_ctrl_n[i]);
2127 }
2128 }
2129
2130 int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2131 {
2132 struct net_device *dev = nic->dev;
2133 struct sk_buff *frag_list;
2134 void *tmp;
2135
2136 /* Buffer-1 receives L3/L4 headers */
2137 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2138 (nic->pdev, skb->data, l3l4hdr_size + 4,
2139 PCI_DMA_FROMDEVICE);
2140
2141 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2142 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2143 if (skb_shinfo(skb)->frag_list == NULL) {
2144 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2145 return -ENOMEM ;
2146 }
2147 frag_list = skb_shinfo(skb)->frag_list;
2148 frag_list->next = NULL;
2149 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2150 frag_list->data = tmp;
2151 frag_list->tail = tmp;
2152
2153 /* Buffer-2 receives L4 data payload */
2154 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2155 frag_list->data, dev->mtu,
2156 PCI_DMA_FROMDEVICE);
2157 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2158 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2159
2160 return SUCCESS;
2161 }
2162
2163 /**
2164 * fill_rx_buffers - Allocates the Rx side skbs
2165 * @nic: device private variable
2166 * @ring_no: ring number
2167 * Description:
2168 * The function allocates Rx side skbs and puts the physical
2169 * address of these buffers into the RxD buffer pointers, so that the NIC
2170 * can DMA the received frame into these locations.
2171 * The NIC supports 3 receive modes, viz
2172 * 1. single buffer,
2173 * 2. three buffer and
2174 * 3. Five buffer modes.
2175 * Each mode defines how many fragments the received frame will be split
2176 * up into by the NIC. The frame is split into L3 header, L4 Header,
2177 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2178 * is split into 3 fragments. As of now only single buffer mode is
2179 * supported.
2180 * Return Value:
2181 * SUCCESS on success or an appropriate -ve value on failure.
2182 */
2183
2184 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2185 {
2186 struct net_device *dev = nic->dev;
2187 struct sk_buff *skb;
2188 RxD_t *rxdp;
2189 int off, off1, size, block_no, block_no1;
2190 u32 alloc_tab = 0;
2191 u32 alloc_cnt;
2192 mac_info_t *mac_control;
2193 struct config_param *config;
2194 u64 tmp;
2195 buffAdd_t *ba;
2196 #ifndef CONFIG_S2IO_NAPI
2197 unsigned long flags;
2198 #endif
2199 RxD_t *first_rxdp = NULL;
2200
2201 mac_control = &nic->mac_control;
2202 config = &nic->config;
2203 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2204 atomic_read(&nic->rx_bufs_left[ring_no]);
2205
2206 while (alloc_tab < alloc_cnt) {
2207 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2208 block_index;
2209 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
2210 block_index;
2211 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2212 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2213
2214 rxdp = mac_control->rings[ring_no].
2215 rx_blocks[block_no].rxds[off].virt_addr;
2216
2217 if ((block_no == block_no1) && (off == off1) &&
2218 (rxdp->Host_Control)) {
2219 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2220 dev->name);
2221 DBG_PRINT(INTR_DBG, " info equated\n");
2222 goto end;
2223 }
2224 if (off && (off == rxd_count[nic->rxd_mode])) {
2225 mac_control->rings[ring_no].rx_curr_put_info.
2226 block_index++;
2227 if (mac_control->rings[ring_no].rx_curr_put_info.
2228 block_index == mac_control->rings[ring_no].
2229 block_count)
2230 mac_control->rings[ring_no].rx_curr_put_info.
2231 block_index = 0;
2232 block_no = mac_control->rings[ring_no].
2233 rx_curr_put_info.block_index;
2234 if (off == rxd_count[nic->rxd_mode])
2235 off = 0;
2236 mac_control->rings[ring_no].rx_curr_put_info.
2237 offset = off;
2238 rxdp = mac_control->rings[ring_no].
2239 rx_blocks[block_no].block_virt_addr;
2240 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2241 dev->name, rxdp);
2242 }
2243 #ifndef CONFIG_S2IO_NAPI
2244 spin_lock_irqsave(&nic->put_lock, flags);
2245 mac_control->rings[ring_no].put_pos =
2246 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2247 spin_unlock_irqrestore(&nic->put_lock, flags);
2248 #endif
2249 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2250 ((nic->rxd_mode >= RXD_MODE_3A) &&
2251 (rxdp->Control_2 & BIT(0)))) {
2252 mac_control->rings[ring_no].rx_curr_put_info.
2253 offset = off;
2254 goto end;
2255 }
2256 /* calculate size of skb based on ring mode */
2257 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2258 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2259 if (nic->rxd_mode == RXD_MODE_1)
2260 size += NET_IP_ALIGN;
2261 else if (nic->rxd_mode == RXD_MODE_3B)
2262 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2263 else
2264 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2265
2266 /* allocate skb */
2267 skb = dev_alloc_skb(size);
2268 if(!skb) {
2269 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2270 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2271 if (first_rxdp) {
2272 wmb();
2273 first_rxdp->Control_1 |= RXD_OWN_XENA;
2274 }
2275 return -ENOMEM ;
2276 }
2277 if (nic->rxd_mode == RXD_MODE_1) {
2278 /* 1 buffer mode - normal operation mode */
2279 memset(rxdp, 0, sizeof(RxD1_t));
2280 skb_reserve(skb, NET_IP_ALIGN);
2281 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2282 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2283 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
2284 rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
2285
2286 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2287 /*
2288 * 2 or 3 buffer mode -
2289 * Both 2 buffer mode and 3 buffer mode provides 128
2290 * byte aligned receive buffers.
2291 *
2292 * 3 buffer mode provides header separation where in
2293 * skb->data will have L3/L4 headers where as
2294 * skb_shinfo(skb)->frag_list will have the L4 data
2295 * payload
2296 */
2297
2298 memset(rxdp, 0, sizeof(RxD3_t));
2299 ba = &mac_control->rings[ring_no].ba[block_no][off];
2300 skb_reserve(skb, BUF0_LEN);
2301 tmp = (u64)(unsigned long) skb->data;
2302 tmp += ALIGN_SIZE;
2303 tmp &= ~ALIGN_SIZE;
2304 skb->data = (void *) (unsigned long)tmp;
2305 skb->tail = (void *) (unsigned long)tmp;
2306
2307 ((RxD3_t*)rxdp)->Buffer0_ptr =
2308 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2309 PCI_DMA_FROMDEVICE);
2310 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2311 if (nic->rxd_mode == RXD_MODE_3B) {
2312 /* Two buffer mode */
2313
2314 /*
2315 * Buffer2 will have L3/L4 header plus
2316 * L4 payload
2317 */
2318 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2319 (nic->pdev, skb->data, dev->mtu + 4,
2320 PCI_DMA_FROMDEVICE);
2321
2322 /* Buffer-1 will be dummy buffer not used */
2323 ((RxD3_t*)rxdp)->Buffer1_ptr =
2324 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2325 PCI_DMA_FROMDEVICE);
2326 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2327 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2328 (dev->mtu + 4);
2329 } else {
2330 /* 3 buffer mode */
2331 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2332 dev_kfree_skb_irq(skb);
2333 if (first_rxdp) {
2334 wmb();
2335 first_rxdp->Control_1 |=
2336 RXD_OWN_XENA;
2337 }
2338 return -ENOMEM ;
2339 }
2340 }
2341 rxdp->Control_2 |= BIT(0);
2342 }
2343 rxdp->Host_Control = (unsigned long) (skb);
2344 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2345 rxdp->Control_1 |= RXD_OWN_XENA;
2346 off++;
2347 if (off == (rxd_count[nic->rxd_mode] + 1))
2348 off = 0;
2349 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2350
2351 rxdp->Control_2 |= SET_RXD_MARKER;
2352 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2353 if (first_rxdp) {
2354 wmb();
2355 first_rxdp->Control_1 |= RXD_OWN_XENA;
2356 }
2357 first_rxdp = rxdp;
2358 }
2359 atomic_inc(&nic->rx_bufs_left[ring_no]);
2360 alloc_tab++;
2361 }
2362
2363 end:
2364 /* Transfer ownership of first descriptor to adapter just before
2365 * exiting. Before that, use memory barrier so that ownership
2366 * and other fields are seen by adapter correctly.
2367 */
2368 if (first_rxdp) {
2369 wmb();
2370 first_rxdp->Control_1 |= RXD_OWN_XENA;
2371 }
2372
2373 return SUCCESS;
2374 }
2375
2376 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2377 {
2378 struct net_device *dev = sp->dev;
2379 int j;
2380 struct sk_buff *skb;
2381 RxD_t *rxdp;
2382 mac_info_t *mac_control;
2383 buffAdd_t *ba;
2384
2385 mac_control = &sp->mac_control;
2386 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2387 rxdp = mac_control->rings[ring_no].
2388 rx_blocks[blk].rxds[j].virt_addr;
2389 skb = (struct sk_buff *)
2390 ((unsigned long) rxdp->Host_Control);
2391 if (!skb) {
2392 continue;
2393 }
2394 if (sp->rxd_mode == RXD_MODE_1) {
2395 pci_unmap_single(sp->pdev, (dma_addr_t)
2396 ((RxD1_t*)rxdp)->Buffer0_ptr,
2397 dev->mtu +
2398 HEADER_ETHERNET_II_802_3_SIZE
2399 + HEADER_802_2_SIZE +
2400 HEADER_SNAP_SIZE,
2401 PCI_DMA_FROMDEVICE);
2402 memset(rxdp, 0, sizeof(RxD1_t));
2403 } else if(sp->rxd_mode == RXD_MODE_3B) {
2404 ba = &mac_control->rings[ring_no].
2405 ba[blk][j];
2406 pci_unmap_single(sp->pdev, (dma_addr_t)
2407 ((RxD3_t*)rxdp)->Buffer0_ptr,
2408 BUF0_LEN,
2409 PCI_DMA_FROMDEVICE);
2410 pci_unmap_single(sp->pdev, (dma_addr_t)
2411 ((RxD3_t*)rxdp)->Buffer1_ptr,
2412 BUF1_LEN,
2413 PCI_DMA_FROMDEVICE);
2414 pci_unmap_single(sp->pdev, (dma_addr_t)
2415 ((RxD3_t*)rxdp)->Buffer2_ptr,
2416 dev->mtu + 4,
2417 PCI_DMA_FROMDEVICE);
2418 memset(rxdp, 0, sizeof(RxD3_t));
2419 } else {
2420 pci_unmap_single(sp->pdev, (dma_addr_t)
2421 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2422 PCI_DMA_FROMDEVICE);
2423 pci_unmap_single(sp->pdev, (dma_addr_t)
2424 ((RxD3_t*)rxdp)->Buffer1_ptr,
2425 l3l4hdr_size + 4,
2426 PCI_DMA_FROMDEVICE);
2427 pci_unmap_single(sp->pdev, (dma_addr_t)
2428 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2429 PCI_DMA_FROMDEVICE);
2430 memset(rxdp, 0, sizeof(RxD3_t));
2431 }
2432 dev_kfree_skb(skb);
2433 atomic_dec(&sp->rx_bufs_left[ring_no]);
2434 }
2435 }
2436
2437 /**
2438 * free_rx_buffers - Frees all Rx buffers
2439 * @sp: device private variable.
2440 * Description:
2441 * This function will free all Rx buffers allocated by host.
2442 * Return Value:
2443 * NONE.
2444 */
2445
2446 static void free_rx_buffers(struct s2io_nic *sp)
2447 {
2448 struct net_device *dev = sp->dev;
2449 int i, blk = 0, buf_cnt = 0;
2450 mac_info_t *mac_control;
2451 struct config_param *config;
2452
2453 mac_control = &sp->mac_control;
2454 config = &sp->config;
2455
2456 for (i = 0; i < config->rx_ring_num; i++) {
2457 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2458 free_rxd_blk(sp,i,blk);
2459
2460 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2461 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2462 mac_control->rings[i].rx_curr_put_info.offset = 0;
2463 mac_control->rings[i].rx_curr_get_info.offset = 0;
2464 atomic_set(&sp->rx_bufs_left[i], 0);
2465 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2466 dev->name, buf_cnt, i);
2467 }
2468 }
2469
2470 /**
2471 * s2io_poll - Rx interrupt handler for NAPI support
2472 * @dev : pointer to the device structure.
2473 * @budget : The number of packets that were budgeted to be processed
2474 * during one pass through the 'Poll" function.
2475 * Description:
2476 * Comes into picture only if NAPI support has been incorporated. It does
2477 * the same thing that rx_intr_handler does, but not in a interrupt context
2478 * also It will process only a given number of packets.
2479 * Return value:
2480 * 0 on success and 1 if there are No Rx packets to be processed.
2481 */
2482
2483 #if defined(CONFIG_S2IO_NAPI)
2484 static int s2io_poll(struct net_device *dev, int *budget)
2485 {
2486 nic_t *nic = dev->priv;
2487 int pkt_cnt = 0, org_pkts_to_process;
2488 mac_info_t *mac_control;
2489 struct config_param *config;
2490 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2491 u64 val64;
2492 int i;
2493
2494 atomic_inc(&nic->isr_cnt);
2495 mac_control = &nic->mac_control;
2496 config = &nic->config;
2497
2498 nic->pkts_to_process = *budget;
2499 if (nic->pkts_to_process > dev->quota)
2500 nic->pkts_to_process = dev->quota;
2501 org_pkts_to_process = nic->pkts_to_process;
2502
2503 val64 = readq(&bar0->rx_traffic_int);
2504 writeq(val64, &bar0->rx_traffic_int);
2505
2506 for (i = 0; i < config->rx_ring_num; i++) {
2507 rx_intr_handler(&mac_control->rings[i]);
2508 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2509 if (!nic->pkts_to_process) {
2510 /* Quota for the current iteration has been met */
2511 goto no_rx;
2512 }
2513 }
2514 if (!pkt_cnt)
2515 pkt_cnt = 1;
2516
2517 dev->quota -= pkt_cnt;
2518 *budget -= pkt_cnt;
2519 netif_rx_complete(dev);
2520
2521 for (i = 0; i < config->rx_ring_num; i++) {
2522 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2523 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2524 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2525 break;
2526 }
2527 }
2528 /* Re enable the Rx interrupts. */
2529 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
2530 atomic_dec(&nic->isr_cnt);
2531 return 0;
2532
2533 no_rx:
2534 dev->quota -= pkt_cnt;
2535 *budget -= pkt_cnt;
2536
2537 for (i = 0; i < config->rx_ring_num; i++) {
2538 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2539 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2540 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2541 break;
2542 }
2543 }
2544 atomic_dec(&nic->isr_cnt);
2545 return 1;
2546 }
2547 #endif
2548
2549 /**
2550 * rx_intr_handler - Rx interrupt handler
2551 * @nic: device private variable.
2552 * Description:
2553 * If the interrupt is because of a received frame or if the
2554 * receive ring contains fresh as yet un-processed frames,this function is
2555 * called. It picks out the RxD at which place the last Rx processing had
2556 * stopped and sends the skb to the OSM's Rx handler and then increments
2557 * the offset.
2558 * Return Value:
2559 * NONE.
2560 */
2561 static void rx_intr_handler(ring_info_t *ring_data)
2562 {
2563 nic_t *nic = ring_data->nic;
2564 struct net_device *dev = (struct net_device *) nic->dev;
2565 int get_block, put_block, put_offset;
2566 rx_curr_get_info_t get_info, put_info;
2567 RxD_t *rxdp;
2568 struct sk_buff *skb;
2569 #ifndef CONFIG_S2IO_NAPI
2570 int pkt_cnt = 0;
2571 #endif
2572 spin_lock(&nic->rx_lock);
2573 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2574 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2575 __FUNCTION__, dev->name);
2576 spin_unlock(&nic->rx_lock);
2577 return;
2578 }
2579
2580 get_info = ring_data->rx_curr_get_info;
2581 get_block = get_info.block_index;
2582 put_info = ring_data->rx_curr_put_info;
2583 put_block = put_info.block_index;
2584 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2585 #ifndef CONFIG_S2IO_NAPI
2586 spin_lock(&nic->put_lock);
2587 put_offset = ring_data->put_pos;
2588 spin_unlock(&nic->put_lock);
2589 #else
2590 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2591 put_info.offset;
2592 #endif
2593 while (RXD_IS_UP2DT(rxdp)) {
2594 /* If your are next to put index then it's FIFO full condition */
2595 if ((get_block == put_block) &&
2596 (get_info.offset + 1) == put_info.offset) {
2597 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2598 break;
2599 }
2600 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2601 if (skb == NULL) {
2602 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2603 dev->name);
2604 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2605 spin_unlock(&nic->rx_lock);
2606 return;
2607 }
2608 if (nic->rxd_mode == RXD_MODE_1) {
2609 pci_unmap_single(nic->pdev, (dma_addr_t)
2610 ((RxD1_t*)rxdp)->Buffer0_ptr,
2611 dev->mtu +
2612 HEADER_ETHERNET_II_802_3_SIZE +
2613 HEADER_802_2_SIZE +
2614 HEADER_SNAP_SIZE,
2615 PCI_DMA_FROMDEVICE);
2616 } else if (nic->rxd_mode == RXD_MODE_3B) {
2617 pci_unmap_single(nic->pdev, (dma_addr_t)
2618 ((RxD3_t*)rxdp)->Buffer0_ptr,
2619 BUF0_LEN, PCI_DMA_FROMDEVICE);
2620 pci_unmap_single(nic->pdev, (dma_addr_t)
2621 ((RxD3_t*)rxdp)->Buffer1_ptr,
2622 BUF1_LEN, PCI_DMA_FROMDEVICE);
2623 pci_unmap_single(nic->pdev, (dma_addr_t)
2624 ((RxD3_t*)rxdp)->Buffer2_ptr,
2625 dev->mtu + 4,
2626 PCI_DMA_FROMDEVICE);
2627 } else {
2628 pci_unmap_single(nic->pdev, (dma_addr_t)
2629 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2630 PCI_DMA_FROMDEVICE);
2631 pci_unmap_single(nic->pdev, (dma_addr_t)
2632 ((RxD3_t*)rxdp)->Buffer1_ptr,
2633 l3l4hdr_size + 4,
2634 PCI_DMA_FROMDEVICE);
2635 pci_unmap_single(nic->pdev, (dma_addr_t)
2636 ((RxD3_t*)rxdp)->Buffer2_ptr,
2637 dev->mtu, PCI_DMA_FROMDEVICE);
2638 }
2639 rx_osm_handler(ring_data, rxdp);
2640 get_info.offset++;
2641 ring_data->rx_curr_get_info.offset = get_info.offset;
2642 rxdp = ring_data->rx_blocks[get_block].
2643 rxds[get_info.offset].virt_addr;
2644 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2645 get_info.offset = 0;
2646 ring_data->rx_curr_get_info.offset = get_info.offset;
2647 get_block++;
2648 if (get_block == ring_data->block_count)
2649 get_block = 0;
2650 ring_data->rx_curr_get_info.block_index = get_block;
2651 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2652 }
2653
2654 #ifdef CONFIG_S2IO_NAPI
2655 nic->pkts_to_process -= 1;
2656 if (!nic->pkts_to_process)
2657 break;
2658 #else
2659 pkt_cnt++;
2660 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2661 break;
2662 #endif
2663 }
2664 spin_unlock(&nic->rx_lock);
2665 }
2666
2667 /**
2668 * tx_intr_handler - Transmit interrupt handler
2669 * @nic : device private variable
2670 * Description:
2671 * If an interrupt was raised to indicate DMA complete of the
2672 * Tx packet, this function is called. It identifies the last TxD
2673 * whose buffer was freed and frees all skbs whose data have already
2674 * DMA'ed into the NICs internal memory.
2675 * Return Value:
2676 * NONE
2677 */
2678
2679 static void tx_intr_handler(fifo_info_t *fifo_data)
2680 {
2681 nic_t *nic = fifo_data->nic;
2682 struct net_device *dev = (struct net_device *) nic->dev;
2683 tx_curr_get_info_t get_info, put_info;
2684 struct sk_buff *skb;
2685 TxD_t *txdlp;
2686
2687 get_info = fifo_data->tx_curr_get_info;
2688 put_info = fifo_data->tx_curr_put_info;
2689 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2690 list_virt_addr;
2691 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2692 (get_info.offset != put_info.offset) &&
2693 (txdlp->Host_Control)) {
2694 /* Check for TxD errors */
2695 if (txdlp->Control_1 & TXD_T_CODE) {
2696 unsigned long long err;
2697 err = txdlp->Control_1 & TXD_T_CODE;
2698 if ((err >> 48) == 0xA) {
2699 DBG_PRINT(TX_DBG, "TxD returned due \
2700 to loss of link\n");
2701 }
2702 else {
2703 DBG_PRINT(ERR_DBG, "***TxD error \
2704 %llx\n", err);
2705 }
2706 }
2707
2708 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2709 if (skb == NULL) {
2710 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2711 __FUNCTION__);
2712 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2713 return;
2714 }
2715
2716 /* Updating the statistics block */
2717 nic->stats.tx_bytes += skb->len;
2718 dev_kfree_skb_irq(skb);
2719
2720 get_info.offset++;
2721 get_info.offset %= get_info.fifo_len + 1;
2722 txdlp = (TxD_t *) fifo_data->list_info
2723 [get_info.offset].list_virt_addr;
2724 fifo_data->tx_curr_get_info.offset =
2725 get_info.offset;
2726 }
2727
2728 spin_lock(&nic->tx_lock);
2729 if (netif_queue_stopped(dev))
2730 netif_wake_queue(dev);
2731 spin_unlock(&nic->tx_lock);
2732 }
2733
2734 /**
2735 * alarm_intr_handler - Alarm Interrrupt handler
2736 * @nic: device private variable
2737 * Description: If the interrupt was neither because of Rx packet or Tx
2738 * complete, this function is called. If the interrupt was to indicate
2739 * a loss of link, the OSM link status handler is invoked for any other
2740 * alarm interrupt the block that raised the interrupt is displayed
2741 * and a H/W reset is issued.
2742 * Return Value:
2743 * NONE
2744 */
2745
2746 static void alarm_intr_handler(struct s2io_nic *nic)
2747 {
2748 struct net_device *dev = (struct net_device *) nic->dev;
2749 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2750 register u64 val64 = 0, err_reg = 0;
2751
2752 /* Handling link status change error Intr */
2753 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2754 err_reg = readq(&bar0->mac_rmac_err_reg);
2755 writeq(err_reg, &bar0->mac_rmac_err_reg);
2756 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2757 schedule_work(&nic->set_link_task);
2758 }
2759 }
2760
2761 /* Handling Ecc errors */
2762 val64 = readq(&bar0->mc_err_reg);
2763 writeq(val64, &bar0->mc_err_reg);
2764 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2765 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
2766 nic->mac_control.stats_info->sw_stat.
2767 double_ecc_errs++;
2768 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
2769 dev->name);
2770 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
2771 if (nic->device_type != XFRAME_II_DEVICE) {
2772 /* Reset XframeI only if critical error */
2773 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
2774 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2775 netif_stop_queue(dev);
2776 schedule_work(&nic->rst_timer_task);
2777 }
2778 }
2779 } else {
2780 nic->mac_control.stats_info->sw_stat.
2781 single_ecc_errs++;
2782 }
2783 }
2784
2785 /* In case of a serious error, the device will be Reset. */
2786 val64 = readq(&bar0->serr_source);
2787 if (val64 & SERR_SOURCE_ANY) {
2788 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2789 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
2790 (unsigned long long)val64);
2791 netif_stop_queue(dev);
2792 schedule_work(&nic->rst_timer_task);
2793 }
2794
2795 /*
2796 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2797 * Error occurs, the adapter will be recycled by disabling the
2798 * adapter enable bit and enabling it again after the device
2799 * becomes Quiescent.
2800 */
2801 val64 = readq(&bar0->pcc_err_reg);
2802 writeq(val64, &bar0->pcc_err_reg);
2803 if (val64 & PCC_FB_ECC_DB_ERR) {
2804 u64 ac = readq(&bar0->adapter_control);
2805 ac &= ~(ADAPTER_CNTL_EN);
2806 writeq(ac, &bar0->adapter_control);
2807 ac = readq(&bar0->adapter_control);
2808 schedule_work(&nic->set_link_task);
2809 }
2810
2811 /* Other type of interrupts are not being handled now, TODO */
2812 }
2813
2814 /**
2815 * wait_for_cmd_complete - waits for a command to complete.
2816 * @sp : private member of the device structure, which is a pointer to the
2817 * s2io_nic structure.
2818 * Description: Function that waits for a command to Write into RMAC
2819 * ADDR DATA registers to be completed and returns either success or
2820 * error depending on whether the command was complete or not.
2821 * Return value:
2822 * SUCCESS on success and FAILURE on failure.
2823 */
2824
2825 static int wait_for_cmd_complete(nic_t * sp)
2826 {
2827 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2828 int ret = FAILURE, cnt = 0;
2829 u64 val64;
2830
2831 while (TRUE) {
2832 val64 = readq(&bar0->rmac_addr_cmd_mem);
2833 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2834 ret = SUCCESS;
2835 break;
2836 }
2837 msleep(50);
2838 if (cnt++ > 10)
2839 break;
2840 }
2841
2842 return ret;
2843 }
2844
2845 /**
2846 * s2io_reset - Resets the card.
2847 * @sp : private member of the device structure.
2848 * Description: Function to Reset the card. This function then also
2849 * restores the previously saved PCI configuration space registers as
2850 * the card reset also resets the configuration space.
2851 * Return value:
2852 * void.
2853 */
2854
2855 void s2io_reset(nic_t * sp)
2856 {
2857 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2858 u64 val64;
2859 u16 subid, pci_cmd;
2860
2861 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
2862 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
2863
2864 val64 = SW_RESET_ALL;
2865 writeq(val64, &bar0->sw_reset);
2866
2867 /*
2868 * At this stage, if the PCI write is indeed completed, the
2869 * card is reset and so is the PCI Config space of the device.
2870 * So a read cannot be issued at this stage on any of the
2871 * registers to ensure the write into "sw_reset" register
2872 * has gone through.
2873 * Question: Is there any system call that will explicitly force
2874 * all the write commands still pending on the bus to be pushed
2875 * through?
2876 * As of now I'am just giving a 250ms delay and hoping that the
2877 * PCI write to sw_reset register is done by this time.
2878 */
2879 msleep(250);
2880
2881 /* Restore the PCI state saved during initialization. */
2882 pci_restore_state(sp->pdev);
2883 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
2884 pci_cmd);
2885 s2io_init_pci(sp);
2886
2887 msleep(250);
2888
2889 /* Set swapper to enable I/O register access */
2890 s2io_set_swapper(sp);
2891
2892 /* Restore the MSIX table entries from local variables */
2893 restore_xmsi_data(sp);
2894
2895 /* Clear certain PCI/PCI-X fields after reset */
2896 if (sp->device_type == XFRAME_II_DEVICE) {
2897 /* Clear parity err detect bit */
2898 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
2899
2900 /* Clearing PCIX Ecc status register */
2901 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
2902
2903 /* Clearing PCI_STATUS error reflected here */
2904 writeq(BIT(62), &bar0->txpic_int_reg);
2905 }
2906
2907 /* Reset device statistics maintained by OS */
2908 memset(&sp->stats, 0, sizeof (struct net_device_stats));
2909
2910 /* SXE-002: Configure link and activity LED to turn it off */
2911 subid = sp->pdev->subsystem_device;
2912 if (((subid & 0xFF) >= 0x07) &&
2913 (sp->device_type == XFRAME_I_DEVICE)) {
2914 val64 = readq(&bar0->gpio_control);
2915 val64 |= 0x0000800000000000ULL;
2916 writeq(val64, &bar0->gpio_control);
2917 val64 = 0x0411040400000000ULL;
2918 writeq(val64, (void __iomem *)bar0 + 0x2700);
2919 }
2920
2921 /*
2922 * Clear spurious ECC interrupts that would have occured on
2923 * XFRAME II cards after reset.
2924 */
2925 if (sp->device_type == XFRAME_II_DEVICE) {
2926 val64 = readq(&bar0->pcc_err_reg);
2927 writeq(val64, &bar0->pcc_err_reg);
2928 }
2929
2930 sp->device_enabled_once = FALSE;
2931 }
2932
2933 /**
2934 * s2io_set_swapper - to set the swapper controle on the card
2935 * @sp : private member of the device structure,
2936 * pointer to the s2io_nic structure.
2937 * Description: Function to set the swapper control on the card
2938 * correctly depending on the 'endianness' of the system.
2939 * Return value:
2940 * SUCCESS on success and FAILURE on failure.
2941 */
2942
2943 int s2io_set_swapper(nic_t * sp)
2944 {
2945 struct net_device *dev = sp->dev;
2946 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2947 u64 val64, valt, valr;
2948
2949 /*
2950 * Set proper endian settings and verify the same by reading
2951 * the PIF Feed-back register.
2952 */
2953
2954 val64 = readq(&bar0->pif_rd_swapper_fb);
2955 if (val64 != 0x0123456789ABCDEFULL) {
2956 int i = 0;
2957 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
2958 0x8100008181000081ULL, /* FE=1, SE=0 */
2959 0x4200004242000042ULL, /* FE=0, SE=1 */
2960 0}; /* FE=0, SE=0 */
2961
2962 while(i<4) {
2963 writeq(value[i], &bar0->swapper_ctrl);
2964 val64 = readq(&bar0->pif_rd_swapper_fb);
2965 if (val64 == 0x0123456789ABCDEFULL)
2966 break;
2967 i++;
2968 }
2969 if (i == 4) {
2970 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2971 dev->name);
2972 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2973 (unsigned long long) val64);
2974 return FAILURE;
2975 }
2976 valr = value[i];
2977 } else {
2978 valr = readq(&bar0->swapper_ctrl);
2979 }
2980
2981 valt = 0x0123456789ABCDEFULL;
2982 writeq(valt, &bar0->xmsi_address);
2983 val64 = readq(&bar0->xmsi_address);
2984
2985 if(val64 != valt) {
2986 int i = 0;
2987 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
2988 0x0081810000818100ULL, /* FE=1, SE=0 */
2989 0x0042420000424200ULL, /* FE=0, SE=1 */
2990 0}; /* FE=0, SE=0 */
2991
2992 while(i<4) {
2993 writeq((value[i] | valr), &bar0->swapper_ctrl);
2994 writeq(valt, &bar0->xmsi_address);
2995 val64 = readq(&bar0->xmsi_address);
2996 if(val64 == valt)
2997 break;
2998 i++;
2999 }
3000 if(i == 4) {
3001 unsigned long long x = val64;
3002 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3003 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3004 return FAILURE;
3005 }
3006 }
3007 val64 = readq(&bar0->swapper_ctrl);
3008 val64 &= 0xFFFF000000000000ULL;
3009
3010 #ifdef __BIG_ENDIAN
3011 /*
3012 * The device by default set to a big endian format, so a
3013 * big endian driver need not set anything.
3014 */
3015 val64 |= (SWAPPER_CTRL_TXP_FE |
3016 SWAPPER_CTRL_TXP_SE |
3017 SWAPPER_CTRL_TXD_R_FE |
3018 SWAPPER_CTRL_TXD_W_FE |
3019 SWAPPER_CTRL_TXF_R_FE |
3020 SWAPPER_CTRL_RXD_R_FE |
3021 SWAPPER_CTRL_RXD_W_FE |
3022 SWAPPER_CTRL_RXF_W_FE |
3023 SWAPPER_CTRL_XMSI_FE |
3024 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3025 if (sp->intr_type == INTA)
3026 val64 |= SWAPPER_CTRL_XMSI_SE;
3027 writeq(val64, &bar0->swapper_ctrl);
3028 #else
3029 /*
3030 * Initially we enable all bits to make it accessible by the
3031 * driver, then we selectively enable only those bits that
3032 * we want to set.
3033 */
3034 val64 |= (SWAPPER_CTRL_TXP_FE |
3035 SWAPPER_CTRL_TXP_SE |
3036 SWAPPER_CTRL_TXD_R_FE |
3037 SWAPPER_CTRL_TXD_R_SE |
3038 SWAPPER_CTRL_TXD_W_FE |
3039 SWAPPER_CTRL_TXD_W_SE |
3040 SWAPPER_CTRL_TXF_R_FE |
3041 SWAPPER_CTRL_RXD_R_FE |
3042 SWAPPER_CTRL_RXD_R_SE |
3043 SWAPPER_CTRL_RXD_W_FE |
3044 SWAPPER_CTRL_RXD_W_SE |
3045 SWAPPER_CTRL_RXF_W_FE |
3046 SWAPPER_CTRL_XMSI_FE |
3047 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3048 if (sp->intr_type == INTA)
3049 val64 |= SWAPPER_CTRL_XMSI_SE;
3050 writeq(val64, &bar0->swapper_ctrl);
3051 #endif
3052 val64 = readq(&bar0->swapper_ctrl);
3053
3054 /*
3055 * Verifying if endian settings are accurate by reading a
3056 * feedback register.
3057 */
3058 val64 = readq(&bar0->pif_rd_swapper_fb);
3059 if (val64 != 0x0123456789ABCDEFULL) {
3060 /* Endian settings are incorrect, calls for another dekko. */
3061 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3062 dev->name);
3063 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3064 (unsigned long long) val64);
3065 return FAILURE;
3066 }
3067
3068 return SUCCESS;
3069 }
3070
3071 static int wait_for_msix_trans(nic_t *nic, int i)
3072 {
3073 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3074 u64 val64;
3075 int ret = 0, cnt = 0;
3076
3077 do {
3078 val64 = readq(&bar0->xmsi_access);
3079 if (!(val64 & BIT(15)))
3080 break;
3081 mdelay(1);
3082 cnt++;
3083 } while(cnt < 5);
3084 if (cnt == 5) {
3085 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3086 ret = 1;
3087 }
3088
3089 return ret;
3090 }
3091
3092 void restore_xmsi_data(nic_t *nic)
3093 {
3094 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3095 u64 val64;
3096 int i;
3097
3098 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3099 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3100 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3101 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3102 writeq(val64, &bar0->xmsi_access);
3103 if (wait_for_msix_trans(nic, i)) {
3104 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3105 continue;
3106 }
3107 }
3108 }
3109
3110 static void store_xmsi_data(nic_t *nic)
3111 {
3112 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3113 u64 val64, addr, data;
3114 int i;
3115
3116 /* Store and display */
3117 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3118 val64 = (BIT(15) | vBIT(i, 26, 6));
3119 writeq(val64, &bar0->xmsi_access);
3120 if (wait_for_msix_trans(nic, i)) {
3121 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3122 continue;
3123 }
3124 addr = readq(&bar0->xmsi_address);
3125 data = readq(&bar0->xmsi_data);
3126 if (addr && data) {
3127 nic->msix_info[i].addr = addr;
3128 nic->msix_info[i].data = data;
3129 }
3130 }
3131 }
3132
3133 int s2io_enable_msi(nic_t *nic)
3134 {
3135 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3136 u16 msi_ctrl, msg_val;
3137 struct config_param *config = &nic->config;
3138 struct net_device *dev = nic->dev;
3139 u64 val64, tx_mat, rx_mat;
3140 int i, err;
3141
3142 val64 = readq(&bar0->pic_control);
3143 val64 &= ~BIT(1);
3144 writeq(val64, &bar0->pic_control);
3145
3146 err = pci_enable_msi(nic->pdev);
3147 if (err) {
3148 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3149 nic->dev->name);
3150 return err;
3151 }
3152
3153 /*
3154 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3155 * for interrupt handling.
3156 */
3157 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3158 msg_val ^= 0x1;
3159 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3160 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3161
3162 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3163 msi_ctrl |= 0x10;
3164 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3165
3166 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3167 tx_mat = readq(&bar0->tx_mat0_n[0]);
3168 for (i=0; i<config->tx_fifo_num; i++) {
3169 tx_mat |= TX_MAT_SET(i, 1);
3170 }
3171 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3172
3173 rx_mat = readq(&bar0->rx_mat);
3174 for (i=0; i<config->rx_ring_num; i++) {
3175 rx_mat |= RX_MAT_SET(i, 1);
3176 }
3177 writeq(rx_mat, &bar0->rx_mat);
3178
3179 dev->irq = nic->pdev->irq;
3180 return 0;
3181 }
3182
3183 int s2io_enable_msi_x(nic_t *nic)
3184 {
3185 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3186 u64 tx_mat, rx_mat;
3187 u16 msi_control; /* Temp variable */
3188 int ret, i, j, msix_indx = 1;
3189
3190 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3191 GFP_KERNEL);
3192 if (nic->entries == NULL) {
3193 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3194 return -ENOMEM;
3195 }
3196 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3197
3198 nic->s2io_entries =
3199 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3200 GFP_KERNEL);
3201 if (nic->s2io_entries == NULL) {
3202 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3203 kfree(nic->entries);
3204 return -ENOMEM;
3205 }
3206 memset(nic->s2io_entries, 0,
3207 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3208
3209 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3210 nic->entries[i].entry = i;
3211 nic->s2io_entries[i].entry = i;
3212 nic->s2io_entries[i].arg = NULL;
3213 nic->s2io_entries[i].in_use = 0;
3214 }
3215
3216 tx_mat = readq(&bar0->tx_mat0_n[0]);
3217 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3218 tx_mat |= TX_MAT_SET(i, msix_indx);
3219 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3220 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3221 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3222 }
3223 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3224
3225 if (!nic->config.bimodal) {
3226 rx_mat = readq(&bar0->rx_mat);
3227 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3228 rx_mat |= RX_MAT_SET(j, msix_indx);
3229 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3230 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3231 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3232 }
3233 writeq(rx_mat, &bar0->rx_mat);
3234 } else {
3235 tx_mat = readq(&bar0->tx_mat0_n[7]);
3236 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3237 tx_mat |= TX_MAT_SET(i, msix_indx);
3238 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3239 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3240 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3241 }
3242 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3243 }
3244
3245 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3246 if (ret) {
3247 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3248 kfree(nic->entries);
3249 kfree(nic->s2io_entries);
3250 nic->entries = NULL;
3251 nic->s2io_entries = NULL;
3252 return -ENOMEM;
3253 }
3254
3255 /*
3256 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3257 * in the herc NIC. (Temp change, needs to be removed later)
3258 */
3259 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3260 msi_control |= 0x1; /* Enable MSI */
3261 pci_write_config_word(nic->pdev, 0x42, msi_control);
3262
3263 return 0;
3264 }
3265
3266 /* ********************************************************* *
3267 * Functions defined below concern the OS part of the driver *
3268 * ********************************************************* */
3269
3270 /**
3271 * s2io_open - open entry point of the driver
3272 * @dev : pointer to the device structure.
3273 * Description:
3274 * This function is the open entry point of the driver. It mainly calls a
3275 * function to allocate Rx buffers and inserts them into the buffer
3276 * descriptors and then enables the Rx part of the NIC.
3277 * Return value:
3278 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3279 * file on failure.
3280 */
3281
3282 static int s2io_open(struct net_device *dev)
3283 {
3284 nic_t *sp = dev->priv;
3285 int err = 0;
3286 int i;
3287 u16 msi_control; /* Temp variable */
3288
3289 /*
3290 * Make sure you have link off by default every time
3291 * Nic is initialized
3292 */
3293 netif_carrier_off(dev);
3294 sp->last_link_state = 0;
3295
3296 /* Initialize H/W and enable interrupts */
3297 if (s2io_card_up(sp)) {
3298 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3299 dev->name);
3300 err = -ENODEV;
3301 goto hw_init_failed;
3302 }
3303
3304 /* Store the values of the MSIX table in the nic_t structure */
3305 store_xmsi_data(sp);
3306
3307 /* After proper initialization of H/W, register ISR */
3308 if (sp->intr_type == MSI) {
3309 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3310 SA_SHIRQ, sp->name, dev);
3311 if (err) {
3312 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3313 failed\n", dev->name);
3314 goto isr_registration_failed;
3315 }
3316 }
3317 if (sp->intr_type == MSI_X) {
3318 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3319 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3320 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3321 dev->name, i);
3322 err = request_irq(sp->entries[i].vector,
3323 s2io_msix_fifo_handle, 0, sp->desc1,
3324 sp->s2io_entries[i].arg);
3325 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3326 (unsigned long long)sp->msix_info[i].addr);
3327 } else {
3328 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3329 dev->name, i);
3330 err = request_irq(sp->entries[i].vector,
3331 s2io_msix_ring_handle, 0, sp->desc2,
3332 sp->s2io_entries[i].arg);
3333 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3334 (unsigned long long)sp->msix_info[i].addr);
3335 }
3336 if (err) {
3337 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3338 failed\n", dev->name, i);
3339 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3340 goto isr_registration_failed;
3341 }
3342 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3343 }
3344 }
3345 if (sp->intr_type == INTA) {
3346 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3347 sp->name, dev);
3348 if (err) {
3349 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3350 dev->name);
3351 goto isr_registration_failed;
3352 }
3353 }
3354
3355 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3356 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3357 err = -ENODEV;
3358 goto setting_mac_address_failed;
3359 }
3360
3361 netif_start_queue(dev);
3362 return 0;
3363
3364 setting_mac_address_failed:
3365 if (sp->intr_type != MSI_X)
3366 free_irq(sp->pdev->irq, dev);
3367 isr_registration_failed:
3368 del_timer_sync(&sp->alarm_timer);
3369 if (sp->intr_type == MSI_X) {
3370 if (sp->device_type == XFRAME_II_DEVICE) {
3371 for (i=1; (sp->s2io_entries[i].in_use ==
3372 MSIX_REGISTERED_SUCCESS); i++) {
3373 int vector = sp->entries[i].vector;
3374 void *arg = sp->s2io_entries[i].arg;
3375
3376 free_irq(vector, arg);
3377 }
3378 pci_disable_msix(sp->pdev);
3379
3380 /* Temp */
3381 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3382 msi_control &= 0xFFFE; /* Disable MSI */
3383 pci_write_config_word(sp->pdev, 0x42, msi_control);
3384 }
3385 }
3386 else if (sp->intr_type == MSI)
3387 pci_disable_msi(sp->pdev);
3388 s2io_reset(sp);
3389 hw_init_failed:
3390 if (sp->intr_type == MSI_X) {
3391 if (sp->entries)
3392 kfree(sp->entries);
3393 if (sp->s2io_entries)
3394 kfree(sp->s2io_entries);
3395 }
3396 return err;
3397 }
3398
3399 /**
3400 * s2io_close -close entry point of the driver
3401 * @dev : device pointer.
3402 * Description:
3403 * This is the stop entry point of the driver. It needs to undo exactly
3404 * whatever was done by the open entry point,thus it's usually referred to
3405 * as the close function.Among other things this function mainly stops the
3406 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3407 * Return value:
3408 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3409 * file on failure.
3410 */
3411
3412 static int s2io_close(struct net_device *dev)
3413 {
3414 nic_t *sp = dev->priv;
3415 int i;
3416 u16 msi_control;
3417
3418 flush_scheduled_work();
3419 netif_stop_queue(dev);
3420 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3421 s2io_card_down(sp);
3422
3423 if (sp->intr_type == MSI_X) {
3424 if (sp->device_type == XFRAME_II_DEVICE) {
3425 for (i=1; (sp->s2io_entries[i].in_use ==
3426 MSIX_REGISTERED_SUCCESS); i++) {
3427 int vector = sp->entries[i].vector;
3428 void *arg = sp->s2io_entries[i].arg;
3429
3430 free_irq(vector, arg);
3431 }
3432 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3433 msi_control &= 0xFFFE; /* Disable MSI */
3434 pci_write_config_word(sp->pdev, 0x42, msi_control);
3435
3436 pci_disable_msix(sp->pdev);
3437 }
3438 }
3439 else {
3440 free_irq(sp->pdev->irq, dev);
3441 if (sp->intr_type == MSI)
3442 pci_disable_msi(sp->pdev);
3443 }
3444 sp->device_close_flag = TRUE; /* Device is shut down. */
3445 return 0;
3446 }
3447
3448 /**
3449 * s2io_xmit - Tx entry point of te driver
3450 * @skb : the socket buffer containing the Tx data.
3451 * @dev : device pointer.
3452 * Description :
3453 * This function is the Tx entry point of the driver. S2IO NIC supports
3454 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3455 * NOTE: when device cant queue the pkt,just the trans_start variable will
3456 * not be upadted.
3457 * Return value:
3458 * 0 on success & 1 on failure.
3459 */
3460
3461 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3462 {
3463 nic_t *sp = dev->priv;
3464 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3465 register u64 val64;
3466 TxD_t *txdp;
3467 TxFIFO_element_t __iomem *tx_fifo;
3468 unsigned long flags;
3469 #ifdef NETIF_F_TSO
3470 int mss;
3471 #endif
3472 u16 vlan_tag = 0;
3473 int vlan_priority = 0;
3474 mac_info_t *mac_control;
3475 struct config_param *config;
3476
3477 mac_control = &sp->mac_control;
3478 config = &sp->config;
3479
3480 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3481 spin_lock_irqsave(&sp->tx_lock, flags);
3482 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3483 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3484 dev->name);
3485 spin_unlock_irqrestore(&sp->tx_lock, flags);
3486 dev_kfree_skb(skb);
3487 return 0;
3488 }
3489
3490 queue = 0;
3491
3492 /* Get Fifo number to Transmit based on vlan priority */
3493 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3494 vlan_tag = vlan_tx_tag_get(skb);
3495 vlan_priority = vlan_tag >> 13;
3496 queue = config->fifo_mapping[vlan_priority];
3497 }
3498
3499 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3500 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3501 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3502 list_virt_addr;
3503
3504 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3505 /* Avoid "put" pointer going beyond "get" pointer */
3506 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
3507 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3508 netif_stop_queue(dev);
3509 dev_kfree_skb(skb);
3510 spin_unlock_irqrestore(&sp->tx_lock, flags);
3511 return 0;
3512 }
3513
3514 /* A buffer with no data will be dropped */
3515 if (!skb->len) {
3516 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3517 dev_kfree_skb(skb);
3518 spin_unlock_irqrestore(&sp->tx_lock, flags);
3519 return 0;
3520 }
3521
3522 txdp->Control_1 = 0;
3523 txdp->Control_2 = 0;
3524 #ifdef NETIF_F_TSO
3525 mss = skb_shinfo(skb)->tso_size;
3526 if (mss) {
3527 txdp->Control_1 |= TXD_TCP_LSO_EN;
3528 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3529 }
3530 #endif
3531 if (skb->ip_summed == CHECKSUM_HW) {
3532 txdp->Control_2 |=
3533 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3534 TXD_TX_CKO_UDP_EN);
3535 }
3536 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3537 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3538 txdp->Control_2 |= config->tx_intr_type;
3539
3540 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3541 txdp->Control_2 |= TXD_VLAN_ENABLE;
3542 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3543 }
3544
3545 frg_len = skb->len - skb->data_len;
3546 if (skb_shinfo(skb)->ufo_size) {
3547 int ufo_size;
3548
3549 ufo_size = skb_shinfo(skb)->ufo_size;
3550 ufo_size &= ~7;
3551 txdp->Control_1 |= TXD_UFO_EN;
3552 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3553 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3554 #ifdef __BIG_ENDIAN
3555 sp->ufo_in_band_v[put_off] =
3556 (u64)skb_shinfo(skb)->ip6_frag_id;
3557 #else
3558 sp->ufo_in_band_v[put_off] =
3559 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3560 #endif
3561 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3562 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3563 sp->ufo_in_band_v,
3564 sizeof(u64), PCI_DMA_TODEVICE);
3565 txdp++;
3566 txdp->Control_1 = 0;
3567 txdp->Control_2 = 0;
3568 }
3569
3570 txdp->Buffer_Pointer = pci_map_single
3571 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3572 txdp->Host_Control = (unsigned long) skb;
3573 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3574
3575 if (skb_shinfo(skb)->ufo_size)
3576 txdp->Control_1 |= TXD_UFO_EN;
3577
3578 frg_cnt = skb_shinfo(skb)->nr_frags;
3579 /* For fragmented SKB. */
3580 for (i = 0; i < frg_cnt; i++) {
3581 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3582 /* A '0' length fragment will be ignored */
3583 if (!frag->size)
3584 continue;
3585 txdp++;
3586 txdp->Buffer_Pointer = (u64) pci_map_page
3587 (sp->pdev, frag->page, frag->page_offset,
3588 frag->size, PCI_DMA_TODEVICE);
3589 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3590 if (skb_shinfo(skb)->ufo_size)
3591 txdp->Control_1 |= TXD_UFO_EN;
3592 }
3593 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3594
3595 if (skb_shinfo(skb)->ufo_size)
3596 frg_cnt++; /* as Txd0 was used for inband header */
3597
3598 tx_fifo = mac_control->tx_FIFO_start[queue];
3599 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3600 writeq(val64, &tx_fifo->TxDL_Pointer);
3601
3602 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3603 TX_FIFO_LAST_LIST);
3604
3605 #ifdef NETIF_F_TSO
3606 if (mss)
3607 val64 |= TX_FIFO_SPECIAL_FUNC;
3608 #endif
3609 if (skb_shinfo(skb)->ufo_size)
3610 val64 |= TX_FIFO_SPECIAL_FUNC;
3611 writeq(val64, &tx_fifo->List_Control);
3612
3613 mmiowb();
3614
3615 put_off++;
3616 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3617 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3618
3619 /* Avoid "put" pointer going beyond "get" pointer */
3620 if (((put_off + 1) % queue_len) == get_off) {
3621 DBG_PRINT(TX_DBG,
3622 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3623 put_off, get_off);
3624 netif_stop_queue(dev);
3625 }
3626
3627 dev->trans_start = jiffies;
3628 spin_unlock_irqrestore(&sp->tx_lock, flags);
3629
3630 return 0;
3631 }
3632
3633 static void
3634 s2io_alarm_handle(unsigned long data)
3635 {
3636 nic_t *sp = (nic_t *)data;
3637
3638 alarm_intr_handler(sp);
3639 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3640 }
3641
3642 static irqreturn_t
3643 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3644 {
3645 struct net_device *dev = (struct net_device *) dev_id;
3646 nic_t *sp = dev->priv;
3647 int i;
3648 int ret;
3649 mac_info_t *mac_control;
3650 struct config_param *config;
3651
3652 atomic_inc(&sp->isr_cnt);
3653 mac_control = &sp->mac_control;
3654 config = &sp->config;
3655 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3656
3657 /* If Intr is because of Rx Traffic */
3658 for (i = 0; i < config->rx_ring_num; i++)
3659 rx_intr_handler(&mac_control->rings[i]);
3660
3661 /* If Intr is because of Tx Traffic */
3662 for (i = 0; i < config->tx_fifo_num; i++)
3663 tx_intr_handler(&mac_control->fifos[i]);
3664
3665 /*
3666 * If the Rx buffer count is below the panic threshold then
3667 * reallocate the buffers from the interrupt handler itself,
3668 * else schedule a tasklet to reallocate the buffers.
3669 */
3670 for (i = 0; i < config->rx_ring_num; i++) {
3671 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3672 int level = rx_buffer_level(sp, rxb_size, i);
3673
3674 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3675 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3676 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3677 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3678 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3679 dev->name);
3680 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3681 clear_bit(0, (&sp->tasklet_status));
3682 atomic_dec(&sp->isr_cnt);
3683 return IRQ_HANDLED;
3684 }
3685 clear_bit(0, (&sp->tasklet_status));
3686 } else if (level == LOW) {
3687 tasklet_schedule(&sp->task);
3688 }
3689 }
3690
3691 atomic_dec(&sp->isr_cnt);
3692 return IRQ_HANDLED;
3693 }
3694
3695 static irqreturn_t
3696 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
3697 {
3698 ring_info_t *ring = (ring_info_t *)dev_id;
3699 nic_t *sp = ring->nic;
3700 int rxb_size, level, rng_n;
3701
3702 atomic_inc(&sp->isr_cnt);
3703 rx_intr_handler(ring);
3704
3705 rng_n = ring->ring_no;
3706 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3707 level = rx_buffer_level(sp, rxb_size, rng_n);
3708
3709 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3710 int ret;
3711 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3712 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3713 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3714 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3715 __FUNCTION__);
3716 clear_bit(0, (&sp->tasklet_status));
3717 return IRQ_HANDLED;
3718 }
3719 clear_bit(0, (&sp->tasklet_status));
3720 } else if (level == LOW) {
3721 tasklet_schedule(&sp->task);
3722 }
3723 atomic_dec(&sp->isr_cnt);
3724
3725 return IRQ_HANDLED;
3726 }
3727
3728 static irqreturn_t
3729 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3730 {
3731 fifo_info_t *fifo = (fifo_info_t *)dev_id;
3732 nic_t *sp = fifo->nic;
3733
3734 atomic_inc(&sp->isr_cnt);
3735 tx_intr_handler(fifo);
3736 atomic_dec(&sp->isr_cnt);
3737 return IRQ_HANDLED;
3738 }
3739
3740 static void s2io_txpic_intr_handle(nic_t *sp)
3741 {
3742 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3743 u64 val64;
3744
3745 val64 = readq(&bar0->pic_int_status);
3746 if (val64 & PIC_INT_GPIO) {
3747 val64 = readq(&bar0->gpio_int_reg);
3748 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3749 (val64 & GPIO_INT_REG_LINK_UP)) {
3750 val64 |= GPIO_INT_REG_LINK_DOWN;
3751 val64 |= GPIO_INT_REG_LINK_UP;
3752 writeq(val64, &bar0->gpio_int_reg);
3753 goto masking;
3754 }
3755
3756 if (((sp->last_link_state == LINK_UP) &&
3757 (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3758 ((sp->last_link_state == LINK_DOWN) &&
3759 (val64 & GPIO_INT_REG_LINK_UP))) {
3760 val64 = readq(&bar0->gpio_int_mask);
3761 val64 |= GPIO_INT_MASK_LINK_DOWN;
3762 val64 |= GPIO_INT_MASK_LINK_UP;
3763 writeq(val64, &bar0->gpio_int_mask);
3764 s2io_set_link((unsigned long)sp);
3765 }
3766 masking:
3767 if (sp->last_link_state == LINK_UP) {
3768 /*enable down interrupt */
3769 val64 = readq(&bar0->gpio_int_mask);
3770 /* unmasks link down intr */
3771 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
3772 /* masks link up intr */
3773 val64 |= GPIO_INT_MASK_LINK_UP;
3774 writeq(val64, &bar0->gpio_int_mask);
3775 } else {
3776 /*enable UP Interrupt */
3777 val64 = readq(&bar0->gpio_int_mask);
3778 /* unmasks link up interrupt */
3779 val64 &= ~GPIO_INT_MASK_LINK_UP;
3780 /* masks link down interrupt */
3781 val64 |= GPIO_INT_MASK_LINK_DOWN;
3782 writeq(val64, &bar0->gpio_int_mask);
3783 }
3784 }
3785 }
3786
3787 /**
3788 * s2io_isr - ISR handler of the device .
3789 * @irq: the irq of the device.
3790 * @dev_id: a void pointer to the dev structure of the NIC.
3791 * @pt_regs: pointer to the registers pushed on the stack.
3792 * Description: This function is the ISR handler of the device. It
3793 * identifies the reason for the interrupt and calls the relevant
3794 * service routines. As a contongency measure, this ISR allocates the
3795 * recv buffers, if their numbers are below the panic value which is
3796 * presently set to 25% of the original number of rcv buffers allocated.
3797 * Return value:
3798 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
3799 * IRQ_NONE: will be returned if interrupt is not from our device
3800 */
3801 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3802 {
3803 struct net_device *dev = (struct net_device *) dev_id;
3804 nic_t *sp = dev->priv;
3805 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3806 int i;
3807 u64 reason = 0, val64;
3808 mac_info_t *mac_control;
3809 struct config_param *config;
3810
3811 atomic_inc(&sp->isr_cnt);
3812 mac_control = &sp->mac_control;
3813 config = &sp->config;
3814
3815 /*
3816 * Identify the cause for interrupt and call the appropriate
3817 * interrupt handler. Causes for the interrupt could be;
3818 * 1. Rx of packet.
3819 * 2. Tx complete.
3820 * 3. Link down.
3821 * 4. Error in any functional blocks of the NIC.
3822 */
3823 reason = readq(&bar0->general_int_status);
3824
3825 if (!reason) {
3826 /* The interrupt was not raised by Xena. */
3827 atomic_dec(&sp->isr_cnt);
3828 return IRQ_NONE;
3829 }
3830
3831 #ifdef CONFIG_S2IO_NAPI
3832 if (reason & GEN_INTR_RXTRAFFIC) {
3833 if (netif_rx_schedule_prep(dev)) {
3834 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3835 DISABLE_INTRS);
3836 __netif_rx_schedule(dev);
3837 }
3838 }
3839 #else
3840 /* If Intr is because of Rx Traffic */
3841 if (reason & GEN_INTR_RXTRAFFIC) {
3842 /*
3843 * rx_traffic_int reg is an R1 register, writing all 1's
3844 * will ensure that the actual interrupt causing bit get's
3845 * cleared and hence a read can be avoided.
3846 */
3847 val64 = 0xFFFFFFFFFFFFFFFFULL;
3848 writeq(val64, &bar0->rx_traffic_int);
3849 for (i = 0; i < config->rx_ring_num; i++) {
3850 rx_intr_handler(&mac_control->rings[i]);
3851 }
3852 }
3853 #endif
3854
3855 /* If Intr is because of Tx Traffic */
3856 if (reason & GEN_INTR_TXTRAFFIC) {
3857 /*
3858 * tx_traffic_int reg is an R1 register, writing all 1's
3859 * will ensure that the actual interrupt causing bit get's
3860 * cleared and hence a read can be avoided.
3861 */
3862 val64 = 0xFFFFFFFFFFFFFFFFULL;
3863 writeq(val64, &bar0->tx_traffic_int);
3864
3865 for (i = 0; i < config->tx_fifo_num; i++)
3866 tx_intr_handler(&mac_control->fifos[i]);
3867 }
3868
3869 if (reason & GEN_INTR_TXPIC)
3870 s2io_txpic_intr_handle(sp);
3871 /*
3872 * If the Rx buffer count is below the panic threshold then
3873 * reallocate the buffers from the interrupt handler itself,
3874 * else schedule a tasklet to reallocate the buffers.
3875 */
3876 #ifndef CONFIG_S2IO_NAPI
3877 for (i = 0; i < config->rx_ring_num; i++) {
3878 int ret;
3879 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3880 int level = rx_buffer_level(sp, rxb_size, i);
3881
3882 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3883 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3884 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3885 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3886 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3887 dev->name);
3888 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3889 clear_bit(0, (&sp->tasklet_status));
3890 atomic_dec(&sp->isr_cnt);
3891 return IRQ_HANDLED;
3892 }
3893 clear_bit(0, (&sp->tasklet_status));
3894 } else if (level == LOW) {
3895 tasklet_schedule(&sp->task);
3896 }
3897 }
3898 #endif
3899
3900 atomic_dec(&sp->isr_cnt);
3901 return IRQ_HANDLED;
3902 }
3903
3904 /**
3905 * s2io_updt_stats -
3906 */
3907 static void s2io_updt_stats(nic_t *sp)
3908 {
3909 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3910 u64 val64;
3911 int cnt = 0;
3912
3913 if (atomic_read(&sp->card_state) == CARD_UP) {
3914 /* Apprx 30us on a 133 MHz bus */
3915 val64 = SET_UPDT_CLICKS(10) |
3916 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3917 writeq(val64, &bar0->stat_cfg);
3918 do {
3919 udelay(100);
3920 val64 = readq(&bar0->stat_cfg);
3921 if (!(val64 & BIT(0)))
3922 break;
3923 cnt++;
3924 if (cnt == 5)
3925 break; /* Updt failed */
3926 } while(1);
3927 }
3928 }
3929
3930 /**
3931 * s2io_get_stats - Updates the device statistics structure.
3932 * @dev : pointer to the device structure.
3933 * Description:
3934 * This function updates the device statistics structure in the s2io_nic
3935 * structure and returns a pointer to the same.
3936 * Return value:
3937 * pointer to the updated net_device_stats structure.
3938 */
3939
3940 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
3941 {
3942 nic_t *sp = dev->priv;
3943 mac_info_t *mac_control;
3944 struct config_param *config;
3945
3946
3947 mac_control = &sp->mac_control;
3948 config = &sp->config;
3949
3950 /* Configure Stats for immediate updt */
3951 s2io_updt_stats(sp);
3952
3953 sp->stats.tx_packets =
3954 le32_to_cpu(mac_control->stats_info->tmac_frms);
3955 sp->stats.tx_errors =
3956 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3957 sp->stats.rx_errors =
3958 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3959 sp->stats.multicast =
3960 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
3961 sp->stats.rx_length_errors =
3962 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
3963
3964 return (&sp->stats);
3965 }
3966
3967 /**
3968 * s2io_set_multicast - entry point for multicast address enable/disable.
3969 * @dev : pointer to the device structure
3970 * Description:
3971 * This function is a driver entry point which gets called by the kernel
3972 * whenever multicast addresses must be enabled/disabled. This also gets
3973 * called to set/reset promiscuous mode. Depending on the deivce flag, we
3974 * determine, if multicast address must be enabled or if promiscuous mode
3975 * is to be disabled etc.
3976 * Return value:
3977 * void.
3978 */
3979
3980 static void s2io_set_multicast(struct net_device *dev)
3981 {
3982 int i, j, prev_cnt;
3983 struct dev_mc_list *mclist;
3984 nic_t *sp = dev->priv;
3985 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3986 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3987 0xfeffffffffffULL;
3988 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3989 void __iomem *add;
3990
3991 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3992 /* Enable all Multicast addresses */
3993 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3994 &bar0->rmac_addr_data0_mem);
3995 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3996 &bar0->rmac_addr_data1_mem);
3997 val64 = RMAC_ADDR_CMD_MEM_WE |
3998 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3999 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4000 writeq(val64, &bar0->rmac_addr_cmd_mem);
4001 /* Wait till command completes */
4002 wait_for_cmd_complete(sp);
4003
4004 sp->m_cast_flg = 1;
4005 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4006 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4007 /* Disable all Multicast addresses */
4008 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4009 &bar0->rmac_addr_data0_mem);
4010 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4011 &bar0->rmac_addr_data1_mem);
4012 val64 = RMAC_ADDR_CMD_MEM_WE |
4013 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4014 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4015 writeq(val64, &bar0->rmac_addr_cmd_mem);
4016 /* Wait till command completes */
4017 wait_for_cmd_complete(sp);
4018
4019 sp->m_cast_flg = 0;
4020 sp->all_multi_pos = 0;
4021 }
4022
4023 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4024 /* Put the NIC into promiscuous mode */
4025 add = &bar0->mac_cfg;
4026 val64 = readq(&bar0->mac_cfg);
4027 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4028
4029 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4030 writel((u32) val64, add);
4031 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4032 writel((u32) (val64 >> 32), (add + 4));
4033
4034 val64 = readq(&bar0->mac_cfg);
4035 sp->promisc_flg = 1;
4036 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4037 dev->name);
4038 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4039 /* Remove the NIC from promiscuous mode */
4040 add = &bar0->mac_cfg;
4041 val64 = readq(&bar0->mac_cfg);
4042 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4043
4044 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4045 writel((u32) val64, add);
4046 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4047 writel((u32) (val64 >> 32), (add + 4));
4048
4049 val64 = readq(&bar0->mac_cfg);
4050 sp->promisc_flg = 0;
4051 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4052 dev->name);
4053 }
4054
4055 /* Update individual M_CAST address list */
4056 if ((!sp->m_cast_flg) && dev->mc_count) {
4057 if (dev->mc_count >
4058 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4059 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4060 dev->name);
4061 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4062 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4063 return;
4064 }
4065
4066 prev_cnt = sp->mc_addr_count;
4067 sp->mc_addr_count = dev->mc_count;
4068
4069 /* Clear out the previous list of Mc in the H/W. */
4070 for (i = 0; i < prev_cnt; i++) {
4071 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4072 &bar0->rmac_addr_data0_mem);
4073 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4074 &bar0->rmac_addr_data1_mem);
4075 val64 = RMAC_ADDR_CMD_MEM_WE |
4076 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4077 RMAC_ADDR_CMD_MEM_OFFSET
4078 (MAC_MC_ADDR_START_OFFSET + i);
4079 writeq(val64, &bar0->rmac_addr_cmd_mem);
4080
4081 /* Wait for command completes */
4082 if (wait_for_cmd_complete(sp)) {
4083 DBG_PRINT(ERR_DBG, "%s: Adding ",
4084 dev->name);
4085 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4086 return;
4087 }
4088 }
4089
4090 /* Create the new Rx filter list and update the same in H/W. */
4091 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4092 i++, mclist = mclist->next) {
4093 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4094 ETH_ALEN);
4095 mac_addr = 0;
4096 for (j = 0; j < ETH_ALEN; j++) {
4097 mac_addr |= mclist->dmi_addr[j];
4098 mac_addr <<= 8;
4099 }
4100 mac_addr >>= 8;
4101 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4102 &bar0->rmac_addr_data0_mem);
4103 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4104 &bar0->rmac_addr_data1_mem);
4105 val64 = RMAC_ADDR_CMD_MEM_WE |
4106 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4107 RMAC_ADDR_CMD_MEM_OFFSET
4108 (i + MAC_MC_ADDR_START_OFFSET);
4109 writeq(val64, &bar0->rmac_addr_cmd_mem);
4110
4111 /* Wait for command completes */
4112 if (wait_for_cmd_complete(sp)) {
4113 DBG_PRINT(ERR_DBG, "%s: Adding ",
4114 dev->name);
4115 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4116 return;
4117 }
4118 }
4119 }
4120 }
4121
4122 /**
4123 * s2io_set_mac_addr - Programs the Xframe mac address
4124 * @dev : pointer to the device structure.
4125 * @addr: a uchar pointer to the new mac address which is to be set.
4126 * Description : This procedure will program the Xframe to receive
4127 * frames with new Mac Address
4128 * Return value: SUCCESS on success and an appropriate (-)ve integer
4129 * as defined in errno.h file on failure.
4130 */
4131
4132 int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4133 {
4134 nic_t *sp = dev->priv;
4135 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4136 register u64 val64, mac_addr = 0;
4137 int i;
4138
4139 /*
4140 * Set the new MAC address as the new unicast filter and reflect this
4141 * change on the device address registered with the OS. It will be
4142 * at offset 0.
4143 */
4144 for (i = 0; i < ETH_ALEN; i++) {
4145 mac_addr <<= 8;
4146 mac_addr |= addr[i];
4147 }
4148
4149 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4150 &bar0->rmac_addr_data0_mem);
4151
4152 val64 =
4153 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4154 RMAC_ADDR_CMD_MEM_OFFSET(0);
4155 writeq(val64, &bar0->rmac_addr_cmd_mem);
4156 /* Wait till command completes */
4157 if (wait_for_cmd_complete(sp)) {
4158 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4159 return FAILURE;
4160 }
4161
4162 return SUCCESS;
4163 }
4164
4165 /**
4166 * s2io_ethtool_sset - Sets different link parameters.
4167 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4168 * @info: pointer to the structure with parameters given by ethtool to set
4169 * link information.
4170 * Description:
4171 * The function sets different link parameters provided by the user onto
4172 * the NIC.
4173 * Return value:
4174 * 0 on success.
4175 */
4176
4177 static int s2io_ethtool_sset(struct net_device *dev,
4178 struct ethtool_cmd *info)
4179 {
4180 nic_t *sp = dev->priv;
4181 if ((info->autoneg == AUTONEG_ENABLE) ||
4182 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4183 return -EINVAL;
4184 else {
4185 s2io_close(sp->dev);
4186 s2io_open(sp->dev);
4187 }
4188
4189 return 0;
4190 }
4191
4192 /**
4193 * s2io_ethtol_gset - Return link specific information.
4194 * @sp : private member of the device structure, pointer to the
4195 * s2io_nic structure.
4196 * @info : pointer to the structure with parameters given by ethtool
4197 * to return link information.
4198 * Description:
4199 * Returns link specific information like speed, duplex etc.. to ethtool.
4200 * Return value :
4201 * return 0 on success.
4202 */
4203
4204 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4205 {
4206 nic_t *sp = dev->priv;
4207 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4208 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4209 info->port = PORT_FIBRE;
4210 /* info->transceiver?? TODO */
4211
4212 if (netif_carrier_ok(sp->dev)) {
4213 info->speed = 10000;
4214 info->duplex = DUPLEX_FULL;
4215 } else {
4216 info->speed = -1;
4217 info->duplex = -1;
4218 }
4219
4220 info->autoneg = AUTONEG_DISABLE;
4221 return 0;
4222 }
4223
4224 /**
4225 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4226 * @sp : private member of the device structure, which is a pointer to the
4227 * s2io_nic structure.
4228 * @info : pointer to the structure with parameters given by ethtool to
4229 * return driver information.
4230 * Description:
4231 * Returns driver specefic information like name, version etc.. to ethtool.
4232 * Return value:
4233 * void
4234 */
4235
4236 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4237 struct ethtool_drvinfo *info)
4238 {
4239 nic_t *sp = dev->priv;
4240
4241 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4242 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4243 strncpy(info->fw_version, "", sizeof(info->fw_version));
4244 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4245 info->regdump_len = XENA_REG_SPACE;
4246 info->eedump_len = XENA_EEPROM_SPACE;
4247 info->testinfo_len = S2IO_TEST_LEN;
4248 info->n_stats = S2IO_STAT_LEN;
4249 }
4250
4251 /**
4252 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4253 * @sp: private member of the device structure, which is a pointer to the
4254 * s2io_nic structure.
4255 * @regs : pointer to the structure with parameters given by ethtool for
4256 * dumping the registers.
4257 * @reg_space: The input argumnet into which all the registers are dumped.
4258 * Description:
4259 * Dumps the entire register space of xFrame NIC into the user given
4260 * buffer area.
4261 * Return value :
4262 * void .
4263 */
4264
4265 static void s2io_ethtool_gregs(struct net_device *dev,
4266 struct ethtool_regs *regs, void *space)
4267 {
4268 int i;
4269 u64 reg;
4270 u8 *reg_space = (u8 *) space;
4271 nic_t *sp = dev->priv;
4272
4273 regs->len = XENA_REG_SPACE;
4274 regs->version = sp->pdev->subsystem_device;
4275
4276 for (i = 0; i < regs->len; i += 8) {
4277 reg = readq(sp->bar0 + i);
4278 memcpy((reg_space + i), &reg, 8);
4279 }
4280 }
4281
4282 /**
4283 * s2io_phy_id - timer function that alternates adapter LED.
4284 * @data : address of the private member of the device structure, which
4285 * is a pointer to the s2io_nic structure, provided as an u32.
4286 * Description: This is actually the timer function that alternates the
4287 * adapter LED bit of the adapter control bit to set/reset every time on
4288 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4289 * once every second.
4290 */
4291 static void s2io_phy_id(unsigned long data)
4292 {
4293 nic_t *sp = (nic_t *) data;
4294 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4295 u64 val64 = 0;
4296 u16 subid;
4297
4298 subid = sp->pdev->subsystem_device;
4299 if ((sp->device_type == XFRAME_II_DEVICE) ||
4300 ((subid & 0xFF) >= 0x07)) {
4301 val64 = readq(&bar0->gpio_control);
4302 val64 ^= GPIO_CTRL_GPIO_0;
4303 writeq(val64, &bar0->gpio_control);
4304 } else {
4305 val64 = readq(&bar0->adapter_control);
4306 val64 ^= ADAPTER_LED_ON;
4307 writeq(val64, &bar0->adapter_control);
4308 }
4309
4310 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4311 }
4312
4313 /**
4314 * s2io_ethtool_idnic - To physically identify the nic on the system.
4315 * @sp : private member of the device structure, which is a pointer to the
4316 * s2io_nic structure.
4317 * @id : pointer to the structure with identification parameters given by
4318 * ethtool.
4319 * Description: Used to physically identify the NIC on the system.
4320 * The Link LED will blink for a time specified by the user for
4321 * identification.
4322 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4323 * identification is possible only if it's link is up.
4324 * Return value:
4325 * int , returns 0 on success
4326 */
4327
4328 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4329 {
4330 u64 val64 = 0, last_gpio_ctrl_val;
4331 nic_t *sp = dev->priv;
4332 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4333 u16 subid;
4334
4335 subid = sp->pdev->subsystem_device;
4336 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4337 if ((sp->device_type == XFRAME_I_DEVICE) &&
4338 ((subid & 0xFF) < 0x07)) {
4339 val64 = readq(&bar0->adapter_control);
4340 if (!(val64 & ADAPTER_CNTL_EN)) {
4341 printk(KERN_ERR
4342 "Adapter Link down, cannot blink LED\n");
4343 return -EFAULT;
4344 }
4345 }
4346 if (sp->id_timer.function == NULL) {
4347 init_timer(&sp->id_timer);
4348 sp->id_timer.function = s2io_phy_id;
4349 sp->id_timer.data = (unsigned long) sp;
4350 }
4351 mod_timer(&sp->id_timer, jiffies);
4352 if (data)
4353 msleep_interruptible(data * HZ);
4354 else
4355 msleep_interruptible(MAX_FLICKER_TIME);
4356 del_timer_sync(&sp->id_timer);
4357
4358 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4359 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4360 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4361 }
4362
4363 return 0;
4364 }
4365
4366 /**
4367 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4368 * @sp : private member of the device structure, which is a pointer to the
4369 * s2io_nic structure.
4370 * @ep : pointer to the structure with pause parameters given by ethtool.
4371 * Description:
4372 * Returns the Pause frame generation and reception capability of the NIC.
4373 * Return value:
4374 * void
4375 */
4376 static void s2io_ethtool_getpause_data(struct net_device *dev,
4377 struct ethtool_pauseparam *ep)
4378 {
4379 u64 val64;
4380 nic_t *sp = dev->priv;
4381 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4382
4383 val64 = readq(&bar0->rmac_pause_cfg);
4384 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4385 ep->tx_pause = TRUE;
4386 if (val64 & RMAC_PAUSE_RX_ENABLE)
4387 ep->rx_pause = TRUE;
4388 ep->autoneg = FALSE;
4389 }
4390
4391 /**
4392 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4393 * @sp : private member of the device structure, which is a pointer to the
4394 * s2io_nic structure.
4395 * @ep : pointer to the structure with pause parameters given by ethtool.
4396 * Description:
4397 * It can be used to set or reset Pause frame generation or reception
4398 * support of the NIC.
4399 * Return value:
4400 * int, returns 0 on Success
4401 */
4402
4403 static int s2io_ethtool_setpause_data(struct net_device *dev,
4404 struct ethtool_pauseparam *ep)
4405 {
4406 u64 val64;
4407 nic_t *sp = dev->priv;
4408 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4409
4410 val64 = readq(&bar0->rmac_pause_cfg);
4411 if (ep->tx_pause)
4412 val64 |= RMAC_PAUSE_GEN_ENABLE;
4413 else
4414 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4415 if (ep->rx_pause)
4416 val64 |= RMAC_PAUSE_RX_ENABLE;
4417 else
4418 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4419 writeq(val64, &bar0->rmac_pause_cfg);
4420 return 0;
4421 }
4422
4423 /**
4424 * read_eeprom - reads 4 bytes of data from user given offset.
4425 * @sp : private member of the device structure, which is a pointer to the
4426 * s2io_nic structure.
4427 * @off : offset at which the data must be written
4428 * @data : Its an output parameter where the data read at the given
4429 * offset is stored.
4430 * Description:
4431 * Will read 4 bytes of data from the user given offset and return the
4432 * read data.
4433 * NOTE: Will allow to read only part of the EEPROM visible through the
4434 * I2C bus.
4435 * Return value:
4436 * -1 on failure and 0 on success.
4437 */
4438
4439 #define S2IO_DEV_ID 5
4440 static int read_eeprom(nic_t * sp, int off, u64 * data)
4441 {
4442 int ret = -1;
4443 u32 exit_cnt = 0;
4444 u64 val64;
4445 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4446
4447 if (sp->device_type == XFRAME_I_DEVICE) {
4448 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4449 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4450 I2C_CONTROL_CNTL_START;
4451 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4452
4453 while (exit_cnt < 5) {
4454 val64 = readq(&bar0->i2c_control);
4455 if (I2C_CONTROL_CNTL_END(val64)) {
4456 *data = I2C_CONTROL_GET_DATA(val64);
4457 ret = 0;
4458 break;
4459 }
4460 msleep(50);
4461 exit_cnt++;
4462 }
4463 }
4464
4465 if (sp->device_type == XFRAME_II_DEVICE) {
4466 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4467 SPI_CONTROL_BYTECNT(0x3) |
4468 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4469 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4470 val64 |= SPI_CONTROL_REQ;
4471 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4472 while (exit_cnt < 5) {
4473 val64 = readq(&bar0->spi_control);
4474 if (val64 & SPI_CONTROL_NACK) {
4475 ret = 1;
4476 break;
4477 } else if (val64 & SPI_CONTROL_DONE) {
4478 *data = readq(&bar0->spi_data);
4479 *data &= 0xffffff;
4480 ret = 0;
4481 break;
4482 }
4483 msleep(50);
4484 exit_cnt++;
4485 }
4486 }
4487 return ret;
4488 }
4489
4490 /**
4491 * write_eeprom - actually writes the relevant part of the data value.
4492 * @sp : private member of the device structure, which is a pointer to the
4493 * s2io_nic structure.
4494 * @off : offset at which the data must be written
4495 * @data : The data that is to be written
4496 * @cnt : Number of bytes of the data that are actually to be written into
4497 * the Eeprom. (max of 3)
4498 * Description:
4499 * Actually writes the relevant part of the data value into the Eeprom
4500 * through the I2C bus.
4501 * Return value:
4502 * 0 on success, -1 on failure.
4503 */
4504
4505 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4506 {
4507 int exit_cnt = 0, ret = -1;
4508 u64 val64;
4509 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4510
4511 if (sp->device_type == XFRAME_I_DEVICE) {
4512 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4513 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4514 I2C_CONTROL_CNTL_START;
4515 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4516
4517 while (exit_cnt < 5) {
4518 val64 = readq(&bar0->i2c_control);
4519 if (I2C_CONTROL_CNTL_END(val64)) {
4520 if (!(val64 & I2C_CONTROL_NACK))
4521 ret = 0;
4522 break;
4523 }
4524 msleep(50);
4525 exit_cnt++;
4526 }
4527 }
4528
4529 if (sp->device_type == XFRAME_II_DEVICE) {
4530 int write_cnt = (cnt == 8) ? 0 : cnt;
4531 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4532
4533 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4534 SPI_CONTROL_BYTECNT(write_cnt) |
4535 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4536 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4537 val64 |= SPI_CONTROL_REQ;
4538 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4539 while (exit_cnt < 5) {
4540 val64 = readq(&bar0->spi_control);
4541 if (val64 & SPI_CONTROL_NACK) {
4542 ret = 1;
4543 break;
4544 } else if (val64 & SPI_CONTROL_DONE) {
4545 ret = 0;
4546 break;
4547 }
4548 msleep(50);
4549 exit_cnt++;
4550 }
4551 }
4552 return ret;
4553 }
4554
4555 /**
4556 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4557 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4558 * @eeprom : pointer to the user level structure provided by ethtool,
4559 * containing all relevant information.
4560 * @data_buf : user defined value to be written into Eeprom.
4561 * Description: Reads the values stored in the Eeprom at given offset
4562 * for a given length. Stores these values int the input argument data
4563 * buffer 'data_buf' and returns these to the caller (ethtool.)
4564 * Return value:
4565 * int 0 on success
4566 */
4567
4568 static int s2io_ethtool_geeprom(struct net_device *dev,
4569 struct ethtool_eeprom *eeprom, u8 * data_buf)
4570 {
4571 u32 i, valid;
4572 u64 data;
4573 nic_t *sp = dev->priv;
4574
4575 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4576
4577 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4578 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4579
4580 for (i = 0; i < eeprom->len; i += 4) {
4581 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4582 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4583 return -EFAULT;
4584 }
4585 valid = INV(data);
4586 memcpy((data_buf + i), &valid, 4);
4587 }
4588 return 0;
4589 }
4590
4591 /**
4592 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4593 * @sp : private member of the device structure, which is a pointer to the
4594 * s2io_nic structure.
4595 * @eeprom : pointer to the user level structure provided by ethtool,
4596 * containing all relevant information.
4597 * @data_buf ; user defined value to be written into Eeprom.
4598 * Description:
4599 * Tries to write the user provided value in the Eeprom, at the offset
4600 * given by the user.
4601 * Return value:
4602 * 0 on success, -EFAULT on failure.
4603 */
4604
4605 static int s2io_ethtool_seeprom(struct net_device *dev,
4606 struct ethtool_eeprom *eeprom,
4607 u8 * data_buf)
4608 {
4609 int len = eeprom->len, cnt = 0;
4610 u64 valid = 0, data;
4611 nic_t *sp = dev->priv;
4612
4613 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4614 DBG_PRINT(ERR_DBG,
4615 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4616 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4617 eeprom->magic);
4618 return -EFAULT;
4619 }
4620
4621 while (len) {
4622 data = (u32) data_buf[cnt] & 0x000000FF;
4623 if (data) {
4624 valid = (u32) (data << 24);
4625 } else
4626 valid = data;
4627
4628 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4629 DBG_PRINT(ERR_DBG,
4630 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4631 DBG_PRINT(ERR_DBG,
4632 "write into the specified offset\n");
4633 return -EFAULT;
4634 }
4635 cnt++;
4636 len--;
4637 }
4638
4639 return 0;
4640 }
4641
4642 /**
4643 * s2io_register_test - reads and writes into all clock domains.
4644 * @sp : private member of the device structure, which is a pointer to the
4645 * s2io_nic structure.
4646 * @data : variable that returns the result of each of the test conducted b
4647 * by the driver.
4648 * Description:
4649 * Read and write into all clock domains. The NIC has 3 clock domains,
4650 * see that registers in all the three regions are accessible.
4651 * Return value:
4652 * 0 on success.
4653 */
4654
4655 static int s2io_register_test(nic_t * sp, uint64_t * data)
4656 {
4657 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4658 u64 val64 = 0, exp_val;
4659 int fail = 0;
4660
4661 val64 = readq(&bar0->pif_rd_swapper_fb);
4662 if (val64 != 0x123456789abcdefULL) {
4663 fail = 1;
4664 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4665 }
4666
4667 val64 = readq(&bar0->rmac_pause_cfg);
4668 if (val64 != 0xc000ffff00000000ULL) {
4669 fail = 1;
4670 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4671 }
4672
4673 val64 = readq(&bar0->rx_queue_cfg);
4674 if (sp->device_type == XFRAME_II_DEVICE)
4675 exp_val = 0x0404040404040404ULL;
4676 else
4677 exp_val = 0x0808080808080808ULL;
4678 if (val64 != exp_val) {
4679 fail = 1;
4680 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4681 }
4682
4683 val64 = readq(&bar0->xgxs_efifo_cfg);
4684 if (val64 != 0x000000001923141EULL) {
4685 fail = 1;
4686 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4687 }
4688
4689 val64 = 0x5A5A5A5A5A5A5A5AULL;
4690 writeq(val64, &bar0->xmsi_data);
4691 val64 = readq(&bar0->xmsi_data);
4692 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4693 fail = 1;
4694 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4695 }
4696
4697 val64 = 0xA5A5A5A5A5A5A5A5ULL;
4698 writeq(val64, &bar0->xmsi_data);
4699 val64 = readq(&bar0->xmsi_data);
4700 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4701 fail = 1;
4702 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4703 }
4704
4705 *data = fail;
4706 return fail;
4707 }
4708
4709 /**
4710 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
4711 * @sp : private member of the device structure, which is a pointer to the
4712 * s2io_nic structure.
4713 * @data:variable that returns the result of each of the test conducted by
4714 * the driver.
4715 * Description:
4716 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
4717 * register.
4718 * Return value:
4719 * 0 on success.
4720 */
4721
4722 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4723 {
4724 int fail = 0;
4725 u64 ret_data, org_4F0, org_7F0;
4726 u8 saved_4F0 = 0, saved_7F0 = 0;
4727 struct net_device *dev = sp->dev;
4728
4729 /* Test Write Error at offset 0 */
4730 /* Note that SPI interface allows write access to all areas
4731 * of EEPROM. Hence doing all negative testing only for Xframe I.
4732 */
4733 if (sp->device_type == XFRAME_I_DEVICE)
4734 if (!write_eeprom(sp, 0, 0, 3))
4735 fail = 1;
4736
4737 /* Save current values at offsets 0x4F0 and 0x7F0 */
4738 if (!read_eeprom(sp, 0x4F0, &org_4F0))
4739 saved_4F0 = 1;
4740 if (!read_eeprom(sp, 0x7F0, &org_7F0))
4741 saved_7F0 = 1;
4742
4743 /* Test Write at offset 4f0 */
4744 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
4745 fail = 1;
4746 if (read_eeprom(sp, 0x4F0, &ret_data))
4747 fail = 1;
4748
4749 if (ret_data != 0x012345) {
4750 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
4751 "Data written %llx Data read %llx\n",
4752 dev->name, (unsigned long long)0x12345,
4753 (unsigned long long)ret_data);
4754 fail = 1;
4755 }
4756
4757 /* Reset the EEPROM data go FFFF */
4758 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
4759
4760 /* Test Write Request Error at offset 0x7c */
4761 if (sp->device_type == XFRAME_I_DEVICE)
4762 if (!write_eeprom(sp, 0x07C, 0, 3))
4763 fail = 1;
4764
4765 /* Test Write Request at offset 0x7f0 */
4766 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
4767 fail = 1;
4768 if (read_eeprom(sp, 0x7F0, &ret_data))
4769 fail = 1;
4770
4771 if (ret_data != 0x012345) {
4772 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
4773 "Data written %llx Data read %llx\n",
4774 dev->name, (unsigned long long)0x12345,
4775 (unsigned long long)ret_data);
4776 fail = 1;
4777 }
4778
4779 /* Reset the EEPROM data go FFFF */
4780 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
4781
4782 if (sp->device_type == XFRAME_I_DEVICE) {
4783 /* Test Write Error at offset 0x80 */
4784 if (!write_eeprom(sp, 0x080, 0, 3))
4785 fail = 1;
4786
4787 /* Test Write Error at offset 0xfc */
4788 if (!write_eeprom(sp, 0x0FC, 0, 3))
4789 fail = 1;
4790
4791 /* Test Write Error at offset 0x100 */
4792 if (!write_eeprom(sp, 0x100, 0, 3))
4793 fail = 1;
4794
4795 /* Test Write Error at offset 4ec */
4796 if (!write_eeprom(sp, 0x4EC, 0, 3))
4797 fail = 1;
4798 }
4799
4800 /* Restore values at offsets 0x4F0 and 0x7F0 */
4801 if (saved_4F0)
4802 write_eeprom(sp, 0x4F0, org_4F0, 3);
4803 if (saved_7F0)
4804 write_eeprom(sp, 0x7F0, org_7F0, 3);
4805
4806 *data = fail;
4807 return fail;
4808 }
4809
4810 /**
4811 * s2io_bist_test - invokes the MemBist test of the card .
4812 * @sp : private member of the device structure, which is a pointer to the
4813 * s2io_nic structure.
4814 * @data:variable that returns the result of each of the test conducted by
4815 * the driver.
4816 * Description:
4817 * This invokes the MemBist test of the card. We give around
4818 * 2 secs time for the Test to complete. If it's still not complete
4819 * within this peiod, we consider that the test failed.
4820 * Return value:
4821 * 0 on success and -1 on failure.
4822 */
4823
4824 static int s2io_bist_test(nic_t * sp, uint64_t * data)
4825 {
4826 u8 bist = 0;
4827 int cnt = 0, ret = -1;
4828
4829 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4830 bist |= PCI_BIST_START;
4831 pci_write_config_word(sp->pdev, PCI_BIST, bist);
4832
4833 while (cnt < 20) {
4834 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4835 if (!(bist & PCI_BIST_START)) {
4836 *data = (bist & PCI_BIST_CODE_MASK);
4837 ret = 0;
4838 break;
4839 }
4840 msleep(100);
4841 cnt++;
4842 }
4843
4844 return ret;
4845 }
4846
4847 /**
4848 * s2io-link_test - verifies the link state of the nic
4849 * @sp ; private member of the device structure, which is a pointer to the
4850 * s2io_nic structure.
4851 * @data: variable that returns the result of each of the test conducted by
4852 * the driver.
4853 * Description:
4854 * The function verifies the link state of the NIC and updates the input
4855 * argument 'data' appropriately.
4856 * Return value:
4857 * 0 on success.
4858 */
4859
4860 static int s2io_link_test(nic_t * sp, uint64_t * data)
4861 {
4862 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4863 u64 val64;
4864
4865 val64 = readq(&bar0->adapter_status);
4866 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4867 *data = 1;
4868
4869 return 0;
4870 }
4871
4872 /**
4873 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4874 * @sp - private member of the device structure, which is a pointer to the
4875 * s2io_nic structure.
4876 * @data - variable that returns the result of each of the test
4877 * conducted by the driver.
4878 * Description:
4879 * This is one of the offline test that tests the read and write
4880 * access to the RldRam chip on the NIC.
4881 * Return value:
4882 * 0 on success.
4883 */
4884
4885 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4886 {
4887 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4888 u64 val64;
4889 int cnt, iteration = 0, test_fail = 0;
4890
4891 val64 = readq(&bar0->adapter_control);
4892 val64 &= ~ADAPTER_ECC_EN;
4893 writeq(val64, &bar0->adapter_control);
4894
4895 val64 = readq(&bar0->mc_rldram_test_ctrl);
4896 val64 |= MC_RLDRAM_TEST_MODE;
4897 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4898
4899 val64 = readq(&bar0->mc_rldram_mrs);
4900 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4901 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4902
4903 val64 |= MC_RLDRAM_MRS_ENABLE;
4904 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4905
4906 while (iteration < 2) {
4907 val64 = 0x55555555aaaa0000ULL;
4908 if (iteration == 1) {
4909 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4910 }
4911 writeq(val64, &bar0->mc_rldram_test_d0);
4912
4913 val64 = 0xaaaa5a5555550000ULL;
4914 if (iteration == 1) {
4915 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4916 }
4917 writeq(val64, &bar0->mc_rldram_test_d1);
4918
4919 val64 = 0x55aaaaaaaa5a0000ULL;
4920 if (iteration == 1) {
4921 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4922 }
4923 writeq(val64, &bar0->mc_rldram_test_d2);
4924
4925 val64 = (u64) (0x0000003ffffe0100ULL);
4926 writeq(val64, &bar0->mc_rldram_test_add);
4927
4928 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4929 MC_RLDRAM_TEST_GO;
4930 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4931
4932 for (cnt = 0; cnt < 5; cnt++) {
4933 val64 = readq(&bar0->mc_rldram_test_ctrl);
4934 if (val64 & MC_RLDRAM_TEST_DONE)
4935 break;
4936 msleep(200);
4937 }
4938
4939 if (cnt == 5)
4940 break;
4941
4942 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4943 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4944
4945 for (cnt = 0; cnt < 5; cnt++) {
4946 val64 = readq(&bar0->mc_rldram_test_ctrl);
4947 if (val64 & MC_RLDRAM_TEST_DONE)
4948 break;
4949 msleep(500);
4950 }
4951
4952 if (cnt == 5)
4953 break;
4954
4955 val64 = readq(&bar0->mc_rldram_test_ctrl);
4956 if (!(val64 & MC_RLDRAM_TEST_PASS))
4957 test_fail = 1;
4958
4959 iteration++;
4960 }
4961
4962 *data = test_fail;
4963
4964 /* Bring the adapter out of test mode */
4965 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
4966
4967 return test_fail;
4968 }
4969
4970 /**
4971 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4972 * @sp : private member of the device structure, which is a pointer to the
4973 * s2io_nic structure.
4974 * @ethtest : pointer to a ethtool command specific structure that will be
4975 * returned to the user.
4976 * @data : variable that returns the result of each of the test
4977 * conducted by the driver.
4978 * Description:
4979 * This function conducts 6 tests ( 4 offline and 2 online) to determine
4980 * the health of the card.
4981 * Return value:
4982 * void
4983 */
4984
4985 static void s2io_ethtool_test(struct net_device *dev,
4986 struct ethtool_test *ethtest,
4987 uint64_t * data)
4988 {
4989 nic_t *sp = dev->priv;
4990 int orig_state = netif_running(sp->dev);
4991
4992 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4993 /* Offline Tests. */
4994 if (orig_state)
4995 s2io_close(sp->dev);
4996
4997 if (s2io_register_test(sp, &data[0]))
4998 ethtest->flags |= ETH_TEST_FL_FAILED;
4999
5000 s2io_reset(sp);
5001
5002 if (s2io_rldram_test(sp, &data[3]))
5003 ethtest->flags |= ETH_TEST_FL_FAILED;
5004
5005 s2io_reset(sp);
5006
5007 if (s2io_eeprom_test(sp, &data[1]))
5008 ethtest->flags |= ETH_TEST_FL_FAILED;
5009
5010 if (s2io_bist_test(sp, &data[4]))
5011 ethtest->flags |= ETH_TEST_FL_FAILED;
5012
5013 if (orig_state)
5014 s2io_open(sp->dev);
5015
5016 data[2] = 0;
5017 } else {
5018 /* Online Tests. */
5019 if (!orig_state) {
5020 DBG_PRINT(ERR_DBG,
5021 "%s: is not up, cannot run test\n",
5022 dev->name);
5023 data[0] = -1;
5024 data[1] = -1;
5025 data[2] = -1;
5026 data[3] = -1;
5027 data[4] = -1;
5028 }
5029
5030 if (s2io_link_test(sp, &data[2]))
5031 ethtest->flags |= ETH_TEST_FL_FAILED;
5032
5033 data[0] = 0;
5034 data[1] = 0;
5035 data[3] = 0;
5036 data[4] = 0;
5037 }
5038 }
5039
5040 static void s2io_get_ethtool_stats(struct net_device *dev,
5041 struct ethtool_stats *estats,
5042 u64 * tmp_stats)
5043 {
5044 int i = 0;
5045 nic_t *sp = dev->priv;
5046 StatInfo_t *stat_info = sp->mac_control.stats_info;
5047
5048 s2io_updt_stats(sp);
5049 tmp_stats[i++] =
5050 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5051 le32_to_cpu(stat_info->tmac_frms);
5052 tmp_stats[i++] =
5053 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5054 le32_to_cpu(stat_info->tmac_data_octets);
5055 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5056 tmp_stats[i++] =
5057 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5058 le32_to_cpu(stat_info->tmac_mcst_frms);
5059 tmp_stats[i++] =
5060 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5061 le32_to_cpu(stat_info->tmac_bcst_frms);
5062 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5063 tmp_stats[i++] =
5064 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5065 le32_to_cpu(stat_info->tmac_any_err_frms);
5066 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5067 tmp_stats[i++] =
5068 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5069 le32_to_cpu(stat_info->tmac_vld_ip);
5070 tmp_stats[i++] =
5071 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5072 le32_to_cpu(stat_info->tmac_drop_ip);
5073 tmp_stats[i++] =
5074 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5075 le32_to_cpu(stat_info->tmac_icmp);
5076 tmp_stats[i++] =
5077 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5078 le32_to_cpu(stat_info->tmac_rst_tcp);
5079 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5080 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5081 le32_to_cpu(stat_info->tmac_udp);
5082 tmp_stats[i++] =
5083 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5084 le32_to_cpu(stat_info->rmac_vld_frms);
5085 tmp_stats[i++] =
5086 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5087 le32_to_cpu(stat_info->rmac_data_octets);
5088 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5089 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5090 tmp_stats[i++] =
5091 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5092 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5093 tmp_stats[i++] =
5094 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5095 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5096 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5097 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5098 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5099 tmp_stats[i++] =
5100 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5101 le32_to_cpu(stat_info->rmac_discarded_frms);
5102 tmp_stats[i++] =
5103 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5104 le32_to_cpu(stat_info->rmac_usized_frms);
5105 tmp_stats[i++] =
5106 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5107 le32_to_cpu(stat_info->rmac_osized_frms);
5108 tmp_stats[i++] =
5109 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5110 le32_to_cpu(stat_info->rmac_frag_frms);
5111 tmp_stats[i++] =
5112 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5113 le32_to_cpu(stat_info->rmac_jabber_frms);
5114 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5115 le32_to_cpu(stat_info->rmac_ip);
5116 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5117 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5118 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5119 le32_to_cpu(stat_info->rmac_drop_ip);
5120 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5121 le32_to_cpu(stat_info->rmac_icmp);
5122 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5123 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5124 le32_to_cpu(stat_info->rmac_udp);
5125 tmp_stats[i++] =
5126 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5127 le32_to_cpu(stat_info->rmac_err_drp_udp);
5128 tmp_stats[i++] =
5129 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5130 le32_to_cpu(stat_info->rmac_pause_cnt);
5131 tmp_stats[i++] =
5132 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5133 le32_to_cpu(stat_info->rmac_accepted_ip);
5134 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5135 tmp_stats[i++] = 0;
5136 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5137 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5138 }
5139
5140 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5141 {
5142 return (XENA_REG_SPACE);
5143 }
5144
5145
5146 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5147 {
5148 nic_t *sp = dev->priv;
5149
5150 return (sp->rx_csum);
5151 }
5152
5153 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5154 {
5155 nic_t *sp = dev->priv;
5156
5157 if (data)
5158 sp->rx_csum = 1;
5159 else
5160 sp->rx_csum = 0;
5161
5162 return 0;
5163 }
5164
5165 static int s2io_get_eeprom_len(struct net_device *dev)
5166 {
5167 return (XENA_EEPROM_SPACE);
5168 }
5169
5170 static int s2io_ethtool_self_test_count(struct net_device *dev)
5171 {
5172 return (S2IO_TEST_LEN);
5173 }
5174
5175 static void s2io_ethtool_get_strings(struct net_device *dev,
5176 u32 stringset, u8 * data)
5177 {
5178 switch (stringset) {
5179 case ETH_SS_TEST:
5180 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5181 break;
5182 case ETH_SS_STATS:
5183 memcpy(data, &ethtool_stats_keys,
5184 sizeof(ethtool_stats_keys));
5185 }
5186 }
5187 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5188 {
5189 return (S2IO_STAT_LEN);
5190 }
5191
5192 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5193 {
5194 if (data)
5195 dev->features |= NETIF_F_IP_CSUM;
5196 else
5197 dev->features &= ~NETIF_F_IP_CSUM;
5198
5199 return 0;
5200 }
5201
5202
5203 static struct ethtool_ops netdev_ethtool_ops = {
5204 .get_settings = s2io_ethtool_gset,
5205 .set_settings = s2io_ethtool_sset,
5206 .get_drvinfo = s2io_ethtool_gdrvinfo,
5207 .get_regs_len = s2io_ethtool_get_regs_len,
5208 .get_regs = s2io_ethtool_gregs,
5209 .get_link = ethtool_op_get_link,
5210 .get_eeprom_len = s2io_get_eeprom_len,
5211 .get_eeprom = s2io_ethtool_geeprom,
5212 .set_eeprom = s2io_ethtool_seeprom,
5213 .get_pauseparam = s2io_ethtool_getpause_data,
5214 .set_pauseparam = s2io_ethtool_setpause_data,
5215 .get_rx_csum = s2io_ethtool_get_rx_csum,
5216 .set_rx_csum = s2io_ethtool_set_rx_csum,
5217 .get_tx_csum = ethtool_op_get_tx_csum,
5218 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5219 .get_sg = ethtool_op_get_sg,
5220 .set_sg = ethtool_op_set_sg,
5221 #ifdef NETIF_F_TSO
5222 .get_tso = ethtool_op_get_tso,
5223 .set_tso = ethtool_op_set_tso,
5224 #endif
5225 .get_ufo = ethtool_op_get_ufo,
5226 .set_ufo = ethtool_op_set_ufo,
5227 .self_test_count = s2io_ethtool_self_test_count,
5228 .self_test = s2io_ethtool_test,
5229 .get_strings = s2io_ethtool_get_strings,
5230 .phys_id = s2io_ethtool_idnic,
5231 .get_stats_count = s2io_ethtool_get_stats_count,
5232 .get_ethtool_stats = s2io_get_ethtool_stats
5233 };
5234
5235 /**
5236 * s2io_ioctl - Entry point for the Ioctl
5237 * @dev : Device pointer.
5238 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5239 * a proprietary structure used to pass information to the driver.
5240 * @cmd : This is used to distinguish between the different commands that
5241 * can be passed to the IOCTL functions.
5242 * Description:
5243 * Currently there are no special functionality supported in IOCTL, hence
5244 * function always return EOPNOTSUPPORTED
5245 */
5246
5247 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5248 {
5249 return -EOPNOTSUPP;
5250 }
5251
5252 /**
5253 * s2io_change_mtu - entry point to change MTU size for the device.
5254 * @dev : device pointer.
5255 * @new_mtu : the new MTU size for the device.
5256 * Description: A driver entry point to change MTU size for the device.
5257 * Before changing the MTU the device must be stopped.
5258 * Return value:
5259 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5260 * file on failure.
5261 */
5262
5263 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5264 {
5265 nic_t *sp = dev->priv;
5266
5267 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5268 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5269 dev->name);
5270 return -EPERM;
5271 }
5272
5273 dev->mtu = new_mtu;
5274 if (netif_running(dev)) {
5275 s2io_card_down(sp);
5276 netif_stop_queue(dev);
5277 if (s2io_card_up(sp)) {
5278 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5279 __FUNCTION__);
5280 }
5281 if (netif_queue_stopped(dev))
5282 netif_wake_queue(dev);
5283 } else { /* Device is down */
5284 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5285 u64 val64 = new_mtu;
5286
5287 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5288 }
5289
5290 return 0;
5291 }
5292
5293 /**
5294 * s2io_tasklet - Bottom half of the ISR.
5295 * @dev_adr : address of the device structure in dma_addr_t format.
5296 * Description:
5297 * This is the tasklet or the bottom half of the ISR. This is
5298 * an extension of the ISR which is scheduled by the scheduler to be run
5299 * when the load on the CPU is low. All low priority tasks of the ISR can
5300 * be pushed into the tasklet. For now the tasklet is used only to
5301 * replenish the Rx buffers in the Rx buffer descriptors.
5302 * Return value:
5303 * void.
5304 */
5305
5306 static void s2io_tasklet(unsigned long dev_addr)
5307 {
5308 struct net_device *dev = (struct net_device *) dev_addr;
5309 nic_t *sp = dev->priv;
5310 int i, ret;
5311 mac_info_t *mac_control;
5312 struct config_param *config;
5313
5314 mac_control = &sp->mac_control;
5315 config = &sp->config;
5316
5317 if (!TASKLET_IN_USE) {
5318 for (i = 0; i < config->rx_ring_num; i++) {
5319 ret = fill_rx_buffers(sp, i);
5320 if (ret == -ENOMEM) {
5321 DBG_PRINT(ERR_DBG, "%s: Out of ",
5322 dev->name);
5323 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5324 break;
5325 } else if (ret == -EFILL) {
5326 DBG_PRINT(ERR_DBG,
5327 "%s: Rx Ring %d is full\n",
5328 dev->name, i);
5329 break;
5330 }
5331 }
5332 clear_bit(0, (&sp->tasklet_status));
5333 }
5334 }
5335
5336 /**
5337 * s2io_set_link - Set the LInk status
5338 * @data: long pointer to device private structue
5339 * Description: Sets the link status for the adapter
5340 */
5341
5342 static void s2io_set_link(unsigned long data)
5343 {
5344 nic_t *nic = (nic_t *) data;
5345 struct net_device *dev = nic->dev;
5346 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5347 register u64 val64;
5348 u16 subid;
5349
5350 if (test_and_set_bit(0, &(nic->link_state))) {
5351 /* The card is being reset, no point doing anything */
5352 return;
5353 }
5354
5355 subid = nic->pdev->subsystem_device;
5356 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5357 /*
5358 * Allow a small delay for the NICs self initiated
5359 * cleanup to complete.
5360 */
5361 msleep(100);
5362 }
5363
5364 val64 = readq(&bar0->adapter_status);
5365 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5366 if (LINK_IS_UP(val64)) {
5367 val64 = readq(&bar0->adapter_control);
5368 val64 |= ADAPTER_CNTL_EN;
5369 writeq(val64, &bar0->adapter_control);
5370 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5371 subid)) {
5372 val64 = readq(&bar0->gpio_control);
5373 val64 |= GPIO_CTRL_GPIO_0;
5374 writeq(val64, &bar0->gpio_control);
5375 val64 = readq(&bar0->gpio_control);
5376 } else {
5377 val64 |= ADAPTER_LED_ON;
5378 writeq(val64, &bar0->adapter_control);
5379 }
5380 if (s2io_link_fault_indication(nic) ==
5381 MAC_RMAC_ERR_TIMER) {
5382 val64 = readq(&bar0->adapter_status);
5383 if (!LINK_IS_UP(val64)) {
5384 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5385 DBG_PRINT(ERR_DBG, " Link down");
5386 DBG_PRINT(ERR_DBG, "after ");
5387 DBG_PRINT(ERR_DBG, "enabling ");
5388 DBG_PRINT(ERR_DBG, "device \n");
5389 }
5390 }
5391 if (nic->device_enabled_once == FALSE) {
5392 nic->device_enabled_once = TRUE;
5393 }
5394 s2io_link(nic, LINK_UP);
5395 } else {
5396 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5397 subid)) {
5398 val64 = readq(&bar0->gpio_control);
5399 val64 &= ~GPIO_CTRL_GPIO_0;
5400 writeq(val64, &bar0->gpio_control);
5401 val64 = readq(&bar0->gpio_control);
5402 }
5403 s2io_link(nic, LINK_DOWN);
5404 }
5405 } else { /* NIC is not Quiescent. */
5406 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5407 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5408 netif_stop_queue(dev);
5409 }
5410 clear_bit(0, &(nic->link_state));
5411 }
5412
5413 static void s2io_card_down(nic_t * sp)
5414 {
5415 int cnt = 0;
5416 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5417 unsigned long flags;
5418 register u64 val64 = 0;
5419
5420 del_timer_sync(&sp->alarm_timer);
5421 /* If s2io_set_link task is executing, wait till it completes. */
5422 while (test_and_set_bit(0, &(sp->link_state))) {
5423 msleep(50);
5424 }
5425 atomic_set(&sp->card_state, CARD_DOWN);
5426
5427 /* disable Tx and Rx traffic on the NIC */
5428 stop_nic(sp);
5429
5430 /* Kill tasklet. */
5431 tasklet_kill(&sp->task);
5432
5433 /* Check if the device is Quiescent and then Reset the NIC */
5434 do {
5435 val64 = readq(&bar0->adapter_status);
5436 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
5437 break;
5438 }
5439
5440 msleep(50);
5441 cnt++;
5442 if (cnt == 10) {
5443 DBG_PRINT(ERR_DBG,
5444 "s2io_close:Device not Quiescent ");
5445 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
5446 (unsigned long long) val64);
5447 break;
5448 }
5449 } while (1);
5450 s2io_reset(sp);
5451
5452 /* Waiting till all Interrupt handlers are complete */
5453 cnt = 0;
5454 do {
5455 msleep(10);
5456 if (!atomic_read(&sp->isr_cnt))
5457 break;
5458 cnt++;
5459 } while(cnt < 5);
5460
5461 spin_lock_irqsave(&sp->tx_lock, flags);
5462 /* Free all Tx buffers */
5463 free_tx_buffers(sp);
5464 spin_unlock_irqrestore(&sp->tx_lock, flags);
5465
5466 /* Free all Rx buffers */
5467 spin_lock_irqsave(&sp->rx_lock, flags);
5468 free_rx_buffers(sp);
5469 spin_unlock_irqrestore(&sp->rx_lock, flags);
5470
5471 clear_bit(0, &(sp->link_state));
5472 }
5473
5474 static int s2io_card_up(nic_t * sp)
5475 {
5476 int i, ret = 0;
5477 mac_info_t *mac_control;
5478 struct config_param *config;
5479 struct net_device *dev = (struct net_device *) sp->dev;
5480
5481 /* Initialize the H/W I/O registers */
5482 if (init_nic(sp) != 0) {
5483 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
5484 dev->name);
5485 return -ENODEV;
5486 }
5487
5488 if (sp->intr_type == MSI)
5489 ret = s2io_enable_msi(sp);
5490 else if (sp->intr_type == MSI_X)
5491 ret = s2io_enable_msi_x(sp);
5492 if (ret) {
5493 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
5494 sp->intr_type = INTA;
5495 }
5496
5497 /*
5498 * Initializing the Rx buffers. For now we are considering only 1
5499 * Rx ring and initializing buffers into 30 Rx blocks
5500 */
5501 mac_control = &sp->mac_control;
5502 config = &sp->config;
5503
5504 for (i = 0; i < config->rx_ring_num; i++) {
5505 if ((ret = fill_rx_buffers(sp, i))) {
5506 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
5507 dev->name);
5508 s2io_reset(sp);
5509 free_rx_buffers(sp);
5510 return -ENOMEM;
5511 }
5512 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
5513 atomic_read(&sp->rx_bufs_left[i]));
5514 }
5515
5516 /* Setting its receive mode */
5517 s2io_set_multicast(dev);
5518
5519 /* Enable tasklet for the device */
5520 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
5521
5522 /* Enable Rx Traffic and interrupts on the NIC */
5523 if (start_nic(sp)) {
5524 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
5525 tasklet_kill(&sp->task);
5526 s2io_reset(sp);
5527 free_irq(dev->irq, dev);
5528 free_rx_buffers(sp);
5529 return -ENODEV;
5530 }
5531
5532 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
5533
5534 atomic_set(&sp->card_state, CARD_UP);
5535 return 0;
5536 }
5537
5538 /**
5539 * s2io_restart_nic - Resets the NIC.
5540 * @data : long pointer to the device private structure
5541 * Description:
5542 * This function is scheduled to be run by the s2io_tx_watchdog
5543 * function after 0.5 secs to reset the NIC. The idea is to reduce
5544 * the run time of the watch dog routine which is run holding a
5545 * spin lock.
5546 */
5547
5548 static void s2io_restart_nic(unsigned long data)
5549 {
5550 struct net_device *dev = (struct net_device *) data;
5551 nic_t *sp = dev->priv;
5552
5553 s2io_card_down(sp);
5554 if (s2io_card_up(sp)) {
5555 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5556 dev->name);
5557 }
5558 netif_wake_queue(dev);
5559 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
5560 dev->name);
5561
5562 }
5563
5564 /**
5565 * s2io_tx_watchdog - Watchdog for transmit side.
5566 * @dev : Pointer to net device structure
5567 * Description:
5568 * This function is triggered if the Tx Queue is stopped
5569 * for a pre-defined amount of time when the Interface is still up.
5570 * If the Interface is jammed in such a situation, the hardware is
5571 * reset (by s2io_close) and restarted again (by s2io_open) to
5572 * overcome any problem that might have been caused in the hardware.
5573 * Return value:
5574 * void
5575 */
5576
5577 static void s2io_tx_watchdog(struct net_device *dev)
5578 {
5579 nic_t *sp = dev->priv;
5580
5581 if (netif_carrier_ok(dev)) {
5582 schedule_work(&sp->rst_timer_task);
5583 }
5584 }
5585
5586 /**
5587 * rx_osm_handler - To perform some OS related operations on SKB.
5588 * @sp: private member of the device structure,pointer to s2io_nic structure.
5589 * @skb : the socket buffer pointer.
5590 * @len : length of the packet
5591 * @cksum : FCS checksum of the frame.
5592 * @ring_no : the ring from which this RxD was extracted.
5593 * Description:
5594 * This function is called by the Tx interrupt serivce routine to perform
5595 * some OS related operations on the SKB before passing it to the upper
5596 * layers. It mainly checks if the checksum is OK, if so adds it to the
5597 * SKBs cksum variable, increments the Rx packet count and passes the SKB
5598 * to the upper layer. If the checksum is wrong, it increments the Rx
5599 * packet error count, frees the SKB and returns error.
5600 * Return value:
5601 * SUCCESS on success and -1 on failure.
5602 */
5603 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
5604 {
5605 nic_t *sp = ring_data->nic;
5606 struct net_device *dev = (struct net_device *) sp->dev;
5607 struct sk_buff *skb = (struct sk_buff *)
5608 ((unsigned long) rxdp->Host_Control);
5609 int ring_no = ring_data->ring_no;
5610 u16 l3_csum, l4_csum;
5611
5612 skb->dev = dev;
5613 if (rxdp->Control_1 & RXD_T_CODE) {
5614 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5615 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
5616 dev->name, err);
5617 dev_kfree_skb(skb);
5618 sp->stats.rx_crc_errors++;
5619 atomic_dec(&sp->rx_bufs_left[ring_no]);
5620 rxdp->Host_Control = 0;
5621 return 0;
5622 }
5623
5624 /* Updating statistics */
5625 rxdp->Host_Control = 0;
5626 sp->rx_pkt_count++;
5627 sp->stats.rx_packets++;
5628 if (sp->rxd_mode == RXD_MODE_1) {
5629 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
5630
5631 sp->stats.rx_bytes += len;
5632 skb_put(skb, len);
5633
5634 } else if (sp->rxd_mode >= RXD_MODE_3A) {
5635 int get_block = ring_data->rx_curr_get_info.block_index;
5636 int get_off = ring_data->rx_curr_get_info.offset;
5637 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
5638 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
5639 unsigned char *buff = skb_push(skb, buf0_len);
5640
5641 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
5642 sp->stats.rx_bytes += buf0_len + buf2_len;
5643 memcpy(buff, ba->ba_0, buf0_len);
5644
5645 if (sp->rxd_mode == RXD_MODE_3A) {
5646 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
5647
5648 skb_put(skb, buf1_len);
5649 skb->len += buf2_len;
5650 skb->data_len += buf2_len;
5651 skb->truesize += buf2_len;
5652 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
5653 sp->stats.rx_bytes += buf1_len;
5654
5655 } else
5656 skb_put(skb, buf2_len);
5657 }
5658
5659 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5660 (sp->rx_csum)) {
5661 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
5662 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5663 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
5664 /*
5665 * NIC verifies if the Checksum of the received
5666 * frame is Ok or not and accordingly returns
5667 * a flag in the RxD.
5668 */
5669 skb->ip_summed = CHECKSUM_UNNECESSARY;
5670 } else {
5671 /*
5672 * Packet with erroneous checksum, let the
5673 * upper layers deal with it.
5674 */
5675 skb->ip_summed = CHECKSUM_NONE;
5676 }
5677 } else {
5678 skb->ip_summed = CHECKSUM_NONE;
5679 }
5680
5681 skb->protocol = eth_type_trans(skb, dev);
5682 #ifdef CONFIG_S2IO_NAPI
5683 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5684 /* Queueing the vlan frame to the upper layer */
5685 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5686 RXD_GET_VLAN_TAG(rxdp->Control_2));
5687 } else {
5688 netif_receive_skb(skb);
5689 }
5690 #else
5691 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5692 /* Queueing the vlan frame to the upper layer */
5693 vlan_hwaccel_rx(skb, sp->vlgrp,
5694 RXD_GET_VLAN_TAG(rxdp->Control_2));
5695 } else {
5696 netif_rx(skb);
5697 }
5698 #endif
5699 dev->last_rx = jiffies;
5700 atomic_dec(&sp->rx_bufs_left[ring_no]);
5701 return SUCCESS;
5702 }
5703
5704 /**
5705 * s2io_link - stops/starts the Tx queue.
5706 * @sp : private member of the device structure, which is a pointer to the
5707 * s2io_nic structure.
5708 * @link : inidicates whether link is UP/DOWN.
5709 * Description:
5710 * This function stops/starts the Tx queue depending on whether the link
5711 * status of the NIC is is down or up. This is called by the Alarm
5712 * interrupt handler whenever a link change interrupt comes up.
5713 * Return value:
5714 * void.
5715 */
5716
5717 void s2io_link(nic_t * sp, int link)
5718 {
5719 struct net_device *dev = (struct net_device *) sp->dev;
5720
5721 if (link != sp->last_link_state) {
5722 if (link == LINK_DOWN) {
5723 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5724 netif_carrier_off(dev);
5725 } else {
5726 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5727 netif_carrier_on(dev);
5728 }
5729 }
5730 sp->last_link_state = link;
5731 }
5732
5733 /**
5734 * get_xena_rev_id - to identify revision ID of xena.
5735 * @pdev : PCI Dev structure
5736 * Description:
5737 * Function to identify the Revision ID of xena.
5738 * Return value:
5739 * returns the revision ID of the device.
5740 */
5741
5742 int get_xena_rev_id(struct pci_dev *pdev)
5743 {
5744 u8 id = 0;
5745 int ret;
5746 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5747 return id;
5748 }
5749
5750 /**
5751 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5752 * @sp : private member of the device structure, which is a pointer to the
5753 * s2io_nic structure.
5754 * Description:
5755 * This function initializes a few of the PCI and PCI-X configuration registers
5756 * with recommended values.
5757 * Return value:
5758 * void
5759 */
5760
5761 static void s2io_init_pci(nic_t * sp)
5762 {
5763 u16 pci_cmd = 0, pcix_cmd = 0;
5764
5765 /* Enable Data Parity Error Recovery in PCI-X command register. */
5766 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5767 &(pcix_cmd));
5768 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5769 (pcix_cmd | 1));
5770 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5771 &(pcix_cmd));
5772
5773 /* Set the PErr Response bit in PCI command register. */
5774 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5775 pci_write_config_word(sp->pdev, PCI_COMMAND,
5776 (pci_cmd | PCI_COMMAND_PARITY));
5777 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5778
5779 /* Forcibly disabling relaxed ordering capability of the card. */
5780 pcix_cmd &= 0xfffd;
5781 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5782 pcix_cmd);
5783 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5784 &(pcix_cmd));
5785 }
5786
5787 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5788 MODULE_LICENSE("GPL");
5789 MODULE_VERSION(DRV_VERSION);
5790
5791 module_param(tx_fifo_num, int, 0);
5792 module_param(rx_ring_num, int, 0);
5793 module_param(rx_ring_mode, int, 0);
5794 module_param_array(tx_fifo_len, uint, NULL, 0);
5795 module_param_array(rx_ring_sz, uint, NULL, 0);
5796 module_param_array(rts_frm_len, uint, NULL, 0);
5797 module_param(use_continuous_tx_intrs, int, 1);
5798 module_param(rmac_pause_time, int, 0);
5799 module_param(mc_pause_threshold_q0q3, int, 0);
5800 module_param(mc_pause_threshold_q4q7, int, 0);
5801 module_param(shared_splits, int, 0);
5802 module_param(tmac_util_period, int, 0);
5803 module_param(rmac_util_period, int, 0);
5804 module_param(bimodal, bool, 0);
5805 module_param(l3l4hdr_size, int , 0);
5806 #ifndef CONFIG_S2IO_NAPI
5807 module_param(indicate_max_pkts, int, 0);
5808 #endif
5809 module_param(rxsync_frequency, int, 0);
5810 module_param(intr_type, int, 0);
5811
5812 /**
5813 * s2io_init_nic - Initialization of the adapter .
5814 * @pdev : structure containing the PCI related information of the device.
5815 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5816 * Description:
5817 * The function initializes an adapter identified by the pci_dec structure.
5818 * All OS related initialization including memory and device structure and
5819 * initlaization of the device private variable is done. Also the swapper
5820 * control register is initialized to enable read and write into the I/O
5821 * registers of the device.
5822 * Return value:
5823 * returns 0 on success and negative on failure.
5824 */
5825
5826 static int __devinit
5827 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5828 {
5829 nic_t *sp;
5830 struct net_device *dev;
5831 int i, j, ret;
5832 int dma_flag = FALSE;
5833 u32 mac_up, mac_down;
5834 u64 val64 = 0, tmp64 = 0;
5835 XENA_dev_config_t __iomem *bar0 = NULL;
5836 u16 subid;
5837 mac_info_t *mac_control;
5838 struct config_param *config;
5839 int mode;
5840 u8 dev_intr_type = intr_type;
5841
5842 #ifdef CONFIG_S2IO_NAPI
5843 if (dev_intr_type != INTA) {
5844 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5845 is enabled. Defaulting to INTA\n");
5846 dev_intr_type = INTA;
5847 }
5848 else
5849 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5850 #endif
5851
5852 if ((ret = pci_enable_device(pdev))) {
5853 DBG_PRINT(ERR_DBG,
5854 "s2io_init_nic: pci_enable_device failed\n");
5855 return ret;
5856 }
5857
5858 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5859 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5860 dma_flag = TRUE;
5861 if (pci_set_consistent_dma_mask
5862 (pdev, DMA_64BIT_MASK)) {
5863 DBG_PRINT(ERR_DBG,
5864 "Unable to obtain 64bit DMA for \
5865 consistent allocations\n");
5866 pci_disable_device(pdev);
5867 return -ENOMEM;
5868 }
5869 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
5870 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5871 } else {
5872 pci_disable_device(pdev);
5873 return -ENOMEM;
5874 }
5875
5876 if ((dev_intr_type == MSI_X) &&
5877 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
5878 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
5879 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
5880 Defaulting to INTA\n");
5881 dev_intr_type = INTA;
5882 }
5883 if (dev_intr_type != MSI_X) {
5884 if (pci_request_regions(pdev, s2io_driver_name)) {
5885 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5886 pci_disable_device(pdev);
5887 return -ENODEV;
5888 }
5889 }
5890 else {
5891 if (!(request_mem_region(pci_resource_start(pdev, 0),
5892 pci_resource_len(pdev, 0), s2io_driver_name))) {
5893 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
5894 pci_disable_device(pdev);
5895 return -ENODEV;
5896 }
5897 if (!(request_mem_region(pci_resource_start(pdev, 2),
5898 pci_resource_len(pdev, 2), s2io_driver_name))) {
5899 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
5900 release_mem_region(pci_resource_start(pdev, 0),
5901 pci_resource_len(pdev, 0));
5902 pci_disable_device(pdev);
5903 return -ENODEV;
5904 }
5905 }
5906
5907 dev = alloc_etherdev(sizeof(nic_t));
5908 if (dev == NULL) {
5909 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5910 pci_disable_device(pdev);
5911 pci_release_regions(pdev);
5912 return -ENODEV;
5913 }
5914
5915 pci_set_master(pdev);
5916 pci_set_drvdata(pdev, dev);
5917 SET_MODULE_OWNER(dev);
5918 SET_NETDEV_DEV(dev, &pdev->dev);
5919
5920 /* Private member variable initialized to s2io NIC structure */
5921 sp = dev->priv;
5922 memset(sp, 0, sizeof(nic_t));
5923 sp->dev = dev;
5924 sp->pdev = pdev;
5925 sp->high_dma_flag = dma_flag;
5926 sp->device_enabled_once = FALSE;
5927 if (rx_ring_mode == 1)
5928 sp->rxd_mode = RXD_MODE_1;
5929 if (rx_ring_mode == 2)
5930 sp->rxd_mode = RXD_MODE_3B;
5931 if (rx_ring_mode == 3)
5932 sp->rxd_mode = RXD_MODE_3A;
5933
5934 sp->intr_type = dev_intr_type;
5935
5936 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5937 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5938 sp->device_type = XFRAME_II_DEVICE;
5939 else
5940 sp->device_type = XFRAME_I_DEVICE;
5941
5942
5943 /* Initialize some PCI/PCI-X fields of the NIC. */
5944 s2io_init_pci(sp);
5945
5946 /*
5947 * Setting the device configuration parameters.
5948 * Most of these parameters can be specified by the user during
5949 * module insertion as they are module loadable parameters. If
5950 * these parameters are not not specified during load time, they
5951 * are initialized with default values.
5952 */
5953 mac_control = &sp->mac_control;
5954 config = &sp->config;
5955
5956 /* Tx side parameters. */
5957 if (tx_fifo_len[0] == 0)
5958 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
5959 config->tx_fifo_num = tx_fifo_num;
5960 for (i = 0; i < MAX_TX_FIFOS; i++) {
5961 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5962 config->tx_cfg[i].fifo_priority = i;
5963 }
5964
5965 /* mapping the QoS priority to the configured fifos */
5966 for (i = 0; i < MAX_TX_FIFOS; i++)
5967 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5968
5969 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5970 for (i = 0; i < config->tx_fifo_num; i++) {
5971 config->tx_cfg[i].f_no_snoop =
5972 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5973 if (config->tx_cfg[i].fifo_len < 65) {
5974 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5975 break;
5976 }
5977 }
5978 /* + 2 because one Txd for skb->data and one Txd for UFO */
5979 config->max_txds = MAX_SKB_FRAGS + 2;
5980
5981 /* Rx side parameters. */
5982 if (rx_ring_sz[0] == 0)
5983 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
5984 config->rx_ring_num = rx_ring_num;
5985 for (i = 0; i < MAX_RX_RINGS; i++) {
5986 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
5987 (rxd_count[sp->rxd_mode] + 1);
5988 config->rx_cfg[i].ring_priority = i;
5989 }
5990
5991 for (i = 0; i < rx_ring_num; i++) {
5992 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5993 config->rx_cfg[i].f_no_snoop =
5994 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5995 }
5996
5997 /* Setting Mac Control parameters */
5998 mac_control->rmac_pause_time = rmac_pause_time;
5999 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6000 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6001
6002
6003 /* Initialize Ring buffer parameters. */
6004 for (i = 0; i < config->rx_ring_num; i++)
6005 atomic_set(&sp->rx_bufs_left[i], 0);
6006
6007 /* Initialize the number of ISRs currently running */
6008 atomic_set(&sp->isr_cnt, 0);
6009
6010 /* initialize the shared memory used by the NIC and the host */
6011 if (init_shared_mem(sp)) {
6012 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6013 __FUNCTION__);
6014 ret = -ENOMEM;
6015 goto mem_alloc_failed;
6016 }
6017
6018 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6019 pci_resource_len(pdev, 0));
6020 if (!sp->bar0) {
6021 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6022 dev->name);
6023 ret = -ENOMEM;
6024 goto bar0_remap_failed;
6025 }
6026
6027 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6028 pci_resource_len(pdev, 2));
6029 if (!sp->bar1) {
6030 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6031 dev->name);
6032 ret = -ENOMEM;
6033 goto bar1_remap_failed;
6034 }
6035
6036 dev->irq = pdev->irq;
6037 dev->base_addr = (unsigned long) sp->bar0;
6038
6039 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6040 for (j = 0; j < MAX_TX_FIFOS; j++) {
6041 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6042 (sp->bar1 + (j * 0x00020000));
6043 }
6044
6045 /* Driver entry points */
6046 dev->open = &s2io_open;
6047 dev->stop = &s2io_close;
6048 dev->hard_start_xmit = &s2io_xmit;
6049 dev->get_stats = &s2io_get_stats;
6050 dev->set_multicast_list = &s2io_set_multicast;
6051 dev->do_ioctl = &s2io_ioctl;
6052 dev->change_mtu = &s2io_change_mtu;
6053 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6054 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6055 dev->vlan_rx_register = s2io_vlan_rx_register;
6056 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6057
6058 /*
6059 * will use eth_mac_addr() for dev->set_mac_address
6060 * mac address will be set every time dev->open() is called
6061 */
6062 #if defined(CONFIG_S2IO_NAPI)
6063 dev->poll = s2io_poll;
6064 dev->weight = 32;
6065 #endif
6066
6067 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6068 if (sp->high_dma_flag == TRUE)
6069 dev->features |= NETIF_F_HIGHDMA;
6070 #ifdef NETIF_F_TSO
6071 dev->features |= NETIF_F_TSO;
6072 #endif
6073 if (sp->device_type & XFRAME_II_DEVICE) {
6074 dev->features |= NETIF_F_UFO;
6075 dev->features |= NETIF_F_HW_CSUM;
6076 }
6077
6078 dev->tx_timeout = &s2io_tx_watchdog;
6079 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6080 INIT_WORK(&sp->rst_timer_task,
6081 (void (*)(void *)) s2io_restart_nic, dev);
6082 INIT_WORK(&sp->set_link_task,
6083 (void (*)(void *)) s2io_set_link, sp);
6084
6085 pci_save_state(sp->pdev);
6086
6087 /* Setting swapper control on the NIC, for proper reset operation */
6088 if (s2io_set_swapper(sp)) {
6089 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6090 dev->name);
6091 ret = -EAGAIN;
6092 goto set_swap_failed;
6093 }
6094
6095 /* Verify if the Herc works on the slot its placed into */
6096 if (sp->device_type & XFRAME_II_DEVICE) {
6097 mode = s2io_verify_pci_mode(sp);
6098 if (mode < 0) {
6099 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6100 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6101 ret = -EBADSLT;
6102 goto set_swap_failed;
6103 }
6104 }
6105
6106 /* Not needed for Herc */
6107 if (sp->device_type & XFRAME_I_DEVICE) {
6108 /*
6109 * Fix for all "FFs" MAC address problems observed on
6110 * Alpha platforms
6111 */
6112 fix_mac_address(sp);
6113 s2io_reset(sp);
6114 }
6115
6116 /*
6117 * MAC address initialization.
6118 * For now only one mac address will be read and used.
6119 */
6120 bar0 = sp->bar0;
6121 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6122 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6123 writeq(val64, &bar0->rmac_addr_cmd_mem);
6124 wait_for_cmd_complete(sp);
6125
6126 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6127 mac_down = (u32) tmp64;
6128 mac_up = (u32) (tmp64 >> 32);
6129
6130 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6131
6132 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6133 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6134 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6135 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6136 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6137 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6138
6139 /* Set the factory defined MAC address initially */
6140 dev->addr_len = ETH_ALEN;
6141 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6142
6143 /*
6144 * Initialize the tasklet status and link state flags
6145 * and the card state parameter
6146 */
6147 atomic_set(&(sp->card_state), 0);
6148 sp->tasklet_status = 0;
6149 sp->link_state = 0;
6150
6151 /* Initialize spinlocks */
6152 spin_lock_init(&sp->tx_lock);
6153 #ifndef CONFIG_S2IO_NAPI
6154 spin_lock_init(&sp->put_lock);
6155 #endif
6156 spin_lock_init(&sp->rx_lock);
6157
6158 /*
6159 * SXE-002: Configure link and activity LED to init state
6160 * on driver load.
6161 */
6162 subid = sp->pdev->subsystem_device;
6163 if ((subid & 0xFF) >= 0x07) {
6164 val64 = readq(&bar0->gpio_control);
6165 val64 |= 0x0000800000000000ULL;
6166 writeq(val64, &bar0->gpio_control);
6167 val64 = 0x0411040400000000ULL;
6168 writeq(val64, (void __iomem *) bar0 + 0x2700);
6169 val64 = readq(&bar0->gpio_control);
6170 }
6171
6172 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
6173
6174 if (register_netdev(dev)) {
6175 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6176 ret = -ENODEV;
6177 goto register_failed;
6178 }
6179
6180 if (sp->device_type & XFRAME_II_DEVICE) {
6181 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
6182 dev->name);
6183 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6184 get_xena_rev_id(sp->pdev),
6185 s2io_driver_version);
6186 switch(sp->intr_type) {
6187 case INTA:
6188 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6189 break;
6190 case MSI:
6191 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6192 break;
6193 case MSI_X:
6194 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6195 break;
6196 }
6197
6198 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6199 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6200 sp->def_mac_addr[0].mac_addr[0],
6201 sp->def_mac_addr[0].mac_addr[1],
6202 sp->def_mac_addr[0].mac_addr[2],
6203 sp->def_mac_addr[0].mac_addr[3],
6204 sp->def_mac_addr[0].mac_addr[4],
6205 sp->def_mac_addr[0].mac_addr[5]);
6206 mode = s2io_print_pci_mode(sp);
6207 if (mode < 0) {
6208 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
6209 ret = -EBADSLT;
6210 goto set_swap_failed;
6211 }
6212 } else {
6213 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6214 dev->name);
6215 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6216 get_xena_rev_id(sp->pdev),
6217 s2io_driver_version);
6218 switch(sp->intr_type) {
6219 case INTA:
6220 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6221 break;
6222 case MSI:
6223 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6224 break;
6225 case MSI_X:
6226 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6227 break;
6228 }
6229 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6230 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6231 sp->def_mac_addr[0].mac_addr[0],
6232 sp->def_mac_addr[0].mac_addr[1],
6233 sp->def_mac_addr[0].mac_addr[2],
6234 sp->def_mac_addr[0].mac_addr[3],
6235 sp->def_mac_addr[0].mac_addr[4],
6236 sp->def_mac_addr[0].mac_addr[5]);
6237 }
6238 if (sp->rxd_mode == RXD_MODE_3B)
6239 DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
6240 "enabled\n",dev->name);
6241 if (sp->rxd_mode == RXD_MODE_3A)
6242 DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
6243 "enabled\n",dev->name);
6244
6245 /* Initialize device name */
6246 strcpy(sp->name, dev->name);
6247 if (sp->device_type & XFRAME_II_DEVICE)
6248 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6249 else
6250 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
6251
6252 /* Initialize bimodal Interrupts */
6253 sp->config.bimodal = bimodal;
6254 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6255 sp->config.bimodal = 0;
6256 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6257 dev->name);
6258 }
6259
6260 /*
6261 * Make Link state as off at this point, when the Link change
6262 * interrupt comes the state will be automatically changed to
6263 * the right state.
6264 */
6265 netif_carrier_off(dev);
6266
6267 return 0;
6268
6269 register_failed:
6270 set_swap_failed:
6271 iounmap(sp->bar1);
6272 bar1_remap_failed:
6273 iounmap(sp->bar0);
6274 bar0_remap_failed:
6275 mem_alloc_failed:
6276 free_shared_mem(sp);
6277 pci_disable_device(pdev);
6278 if (dev_intr_type != MSI_X)
6279 pci_release_regions(pdev);
6280 else {
6281 release_mem_region(pci_resource_start(pdev, 0),
6282 pci_resource_len(pdev, 0));
6283 release_mem_region(pci_resource_start(pdev, 2),
6284 pci_resource_len(pdev, 2));
6285 }
6286 pci_set_drvdata(pdev, NULL);
6287 free_netdev(dev);
6288
6289 return ret;
6290 }
6291
6292 /**
6293 * s2io_rem_nic - Free the PCI device
6294 * @pdev: structure containing the PCI related information of the device.
6295 * Description: This function is called by the Pci subsystem to release a
6296 * PCI device and free up all resource held up by the device. This could
6297 * be in response to a Hot plug event or when the driver is to be removed
6298 * from memory.
6299 */
6300
6301 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
6302 {
6303 struct net_device *dev =
6304 (struct net_device *) pci_get_drvdata(pdev);
6305 nic_t *sp;
6306
6307 if (dev == NULL) {
6308 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
6309 return;
6310 }
6311
6312 sp = dev->priv;
6313 unregister_netdev(dev);
6314
6315 free_shared_mem(sp);
6316 iounmap(sp->bar0);
6317 iounmap(sp->bar1);
6318 pci_disable_device(pdev);
6319 if (sp->intr_type != MSI_X)
6320 pci_release_regions(pdev);
6321 else {
6322 release_mem_region(pci_resource_start(pdev, 0),
6323 pci_resource_len(pdev, 0));
6324 release_mem_region(pci_resource_start(pdev, 2),
6325 pci_resource_len(pdev, 2));
6326 }
6327 pci_set_drvdata(pdev, NULL);
6328 free_netdev(dev);
6329 }
6330
6331 /**
6332 * s2io_starter - Entry point for the driver
6333 * Description: This function is the entry point for the driver. It verifies
6334 * the module loadable parameters and initializes PCI configuration space.
6335 */
6336
6337 int __init s2io_starter(void)
6338 {
6339 return pci_module_init(&s2io_driver);
6340 }
6341
6342 /**
6343 * s2io_closer - Cleanup routine for the driver
6344 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
6345 */
6346
6347 void s2io_closer(void)
6348 {
6349 pci_unregister_driver(&s2io_driver);
6350 DBG_PRINT(INIT_DBG, "cleanup done\n");
6351 }
6352
6353 module_init(s2io_starter);
6354 module_exit(s2io_closer);
This page took 0.18513 seconds and 6 git commands to generate.