Merge master.kernel.org:/pub/scm/linux/kernel/git/kyle/parisc-2.6
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.23.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[4] = {32,48,48,64};
94 static int rxd_count[4] = {127,85,85,63};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104 }
105
106 /*
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123 struct mac_info *mac_control;
124
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
214 {"rmac_pause_cnt"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
236 {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
255 {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 ("mem_alloc_fail_cnt"),
285 ("watchdog_timer_cnt"),
286 ("mem_allocated"),
287 ("mem_freed"),
288 ("link_up_cnt"),
289 ("link_down_cnt"),
290 ("link_up_time"),
291 ("link_down_time"),
292 ("tx_tcode_buf_abort_cnt"),
293 ("tx_tcode_desc_abort_cnt"),
294 ("tx_tcode_parity_err_cnt"),
295 ("tx_tcode_link_loss_cnt"),
296 ("tx_tcode_list_proc_err_cnt"),
297 ("rx_tcode_parity_err_cnt"),
298 ("rx_tcode_abort_cnt"),
299 ("rx_tcode_parity_abort_cnt"),
300 ("rx_tcode_rda_fail_cnt"),
301 ("rx_tcode_unkn_prot_cnt"),
302 ("rx_tcode_fcs_err_cnt"),
303 ("rx_tcode_buf_size_err_cnt"),
304 ("rx_tcode_rxd_corrupt_cnt"),
305 ("rx_tcode_unkn_err_cnt")
306 };
307
308 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
310 ETH_GSTRING_LEN
311 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
312
313 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
315
316 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
318
319 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
321
322 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
323 init_timer(&timer); \
324 timer.function = handle; \
325 timer.data = (unsigned long) arg; \
326 mod_timer(&timer, (jiffies + exp)) \
327
328 /* Add the vlan */
329 static void s2io_vlan_rx_register(struct net_device *dev,
330 struct vlan_group *grp)
331 {
332 struct s2io_nic *nic = dev->priv;
333 unsigned long flags;
334
335 spin_lock_irqsave(&nic->tx_lock, flags);
336 nic->vlgrp = grp;
337 spin_unlock_irqrestore(&nic->tx_lock, flags);
338 }
339
340 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
341 static int vlan_strip_flag;
342
343 /*
344 * Constants to be programmed into the Xena's registers, to configure
345 * the XAUI.
346 */
347
348 #define END_SIGN 0x0
349 static const u64 herc_act_dtx_cfg[] = {
350 /* Set address */
351 0x8000051536750000ULL, 0x80000515367500E0ULL,
352 /* Write data */
353 0x8000051536750004ULL, 0x80000515367500E4ULL,
354 /* Set address */
355 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
356 /* Write data */
357 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
358 /* Set address */
359 0x801205150D440000ULL, 0x801205150D4400E0ULL,
360 /* Write data */
361 0x801205150D440004ULL, 0x801205150D4400E4ULL,
362 /* Set address */
363 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
364 /* Write data */
365 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
366 /* Done */
367 END_SIGN
368 };
369
370 static const u64 xena_dtx_cfg[] = {
371 /* Set address */
372 0x8000051500000000ULL, 0x80000515000000E0ULL,
373 /* Write data */
374 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
375 /* Set address */
376 0x8001051500000000ULL, 0x80010515000000E0ULL,
377 /* Write data */
378 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
379 /* Set address */
380 0x8002051500000000ULL, 0x80020515000000E0ULL,
381 /* Write data */
382 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
383 END_SIGN
384 };
385
386 /*
387 * Constants for Fixing the MacAddress problem seen mostly on
388 * Alpha machines.
389 */
390 static const u64 fix_mac[] = {
391 0x0060000000000000ULL, 0x0060600000000000ULL,
392 0x0040600000000000ULL, 0x0000600000000000ULL,
393 0x0020600000000000ULL, 0x0060600000000000ULL,
394 0x0020600000000000ULL, 0x0060600000000000ULL,
395 0x0020600000000000ULL, 0x0060600000000000ULL,
396 0x0020600000000000ULL, 0x0060600000000000ULL,
397 0x0020600000000000ULL, 0x0060600000000000ULL,
398 0x0020600000000000ULL, 0x0060600000000000ULL,
399 0x0020600000000000ULL, 0x0060600000000000ULL,
400 0x0020600000000000ULL, 0x0060600000000000ULL,
401 0x0020600000000000ULL, 0x0060600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0000600000000000ULL,
404 0x0040600000000000ULL, 0x0060600000000000ULL,
405 END_SIGN
406 };
407
408 MODULE_LICENSE("GPL");
409 MODULE_VERSION(DRV_VERSION);
410
411
412 /* Module Loadable parameters. */
413 S2IO_PARM_INT(tx_fifo_num, 1);
414 S2IO_PARM_INT(rx_ring_num, 1);
415
416
417 S2IO_PARM_INT(rx_ring_mode, 1);
418 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
419 S2IO_PARM_INT(rmac_pause_time, 0x100);
420 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
421 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
422 S2IO_PARM_INT(shared_splits, 0);
423 S2IO_PARM_INT(tmac_util_period, 5);
424 S2IO_PARM_INT(rmac_util_period, 5);
425 S2IO_PARM_INT(bimodal, 0);
426 S2IO_PARM_INT(l3l4hdr_size, 128);
427 /* Frequency of Rx desc syncs expressed as power of 2 */
428 S2IO_PARM_INT(rxsync_frequency, 3);
429 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
430 S2IO_PARM_INT(intr_type, 0);
431 /* Large receive offload feature */
432 S2IO_PARM_INT(lro, 0);
433 /* Max pkts to be aggregated by LRO at one time. If not specified,
434 * aggregation happens until we hit max IP pkt size(64K)
435 */
436 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
437 S2IO_PARM_INT(indicate_max_pkts, 0);
438
439 S2IO_PARM_INT(napi, 1);
440 S2IO_PARM_INT(ufo, 0);
441 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
442
443 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
444 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
445 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
446 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
447 static unsigned int rts_frm_len[MAX_RX_RINGS] =
448 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
449
450 module_param_array(tx_fifo_len, uint, NULL, 0);
451 module_param_array(rx_ring_sz, uint, NULL, 0);
452 module_param_array(rts_frm_len, uint, NULL, 0);
453
454 /*
455 * S2IO device table.
456 * This table lists all the devices that this driver supports.
457 */
458 static struct pci_device_id s2io_tbl[] __devinitdata = {
459 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
460 PCI_ANY_ID, PCI_ANY_ID},
461 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
462 PCI_ANY_ID, PCI_ANY_ID},
463 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
464 PCI_ANY_ID, PCI_ANY_ID},
465 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
466 PCI_ANY_ID, PCI_ANY_ID},
467 {0,}
468 };
469
470 MODULE_DEVICE_TABLE(pci, s2io_tbl);
471
472 static struct pci_driver s2io_driver = {
473 .name = "S2IO",
474 .id_table = s2io_tbl,
475 .probe = s2io_init_nic,
476 .remove = __devexit_p(s2io_rem_nic),
477 };
478
479 /* A simplifier macro used both by init and free shared_mem Fns(). */
480 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
481
482 /**
483 * init_shared_mem - Allocation and Initialization of Memory
484 * @nic: Device private variable.
485 * Description: The function allocates all the memory areas shared
486 * between the NIC and the driver. This includes Tx descriptors,
487 * Rx descriptors and the statistics block.
488 */
489
490 static int init_shared_mem(struct s2io_nic *nic)
491 {
492 u32 size;
493 void *tmp_v_addr, *tmp_v_addr_next;
494 dma_addr_t tmp_p_addr, tmp_p_addr_next;
495 struct RxD_block *pre_rxd_blk = NULL;
496 int i, j, blk_cnt;
497 int lst_size, lst_per_page;
498 struct net_device *dev = nic->dev;
499 unsigned long tmp;
500 struct buffAdd *ba;
501
502 struct mac_info *mac_control;
503 struct config_param *config;
504 unsigned long long mem_allocated = 0;
505
506 mac_control = &nic->mac_control;
507 config = &nic->config;
508
509
510 /* Allocation and initialization of TXDLs in FIOFs */
511 size = 0;
512 for (i = 0; i < config->tx_fifo_num; i++) {
513 size += config->tx_cfg[i].fifo_len;
514 }
515 if (size > MAX_AVAILABLE_TXDS) {
516 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
517 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
518 return -EINVAL;
519 }
520
521 lst_size = (sizeof(struct TxD) * config->max_txds);
522 lst_per_page = PAGE_SIZE / lst_size;
523
524 for (i = 0; i < config->tx_fifo_num; i++) {
525 int fifo_len = config->tx_cfg[i].fifo_len;
526 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
527 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
528 GFP_KERNEL);
529 if (!mac_control->fifos[i].list_info) {
530 DBG_PRINT(INFO_DBG,
531 "Malloc failed for list_info\n");
532 return -ENOMEM;
533 }
534 mem_allocated += list_holder_size;
535 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
536 }
537 for (i = 0; i < config->tx_fifo_num; i++) {
538 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
539 lst_per_page);
540 mac_control->fifos[i].tx_curr_put_info.offset = 0;
541 mac_control->fifos[i].tx_curr_put_info.fifo_len =
542 config->tx_cfg[i].fifo_len - 1;
543 mac_control->fifos[i].tx_curr_get_info.offset = 0;
544 mac_control->fifos[i].tx_curr_get_info.fifo_len =
545 config->tx_cfg[i].fifo_len - 1;
546 mac_control->fifos[i].fifo_no = i;
547 mac_control->fifos[i].nic = nic;
548 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
549
550 for (j = 0; j < page_num; j++) {
551 int k = 0;
552 dma_addr_t tmp_p;
553 void *tmp_v;
554 tmp_v = pci_alloc_consistent(nic->pdev,
555 PAGE_SIZE, &tmp_p);
556 if (!tmp_v) {
557 DBG_PRINT(INFO_DBG,
558 "pci_alloc_consistent ");
559 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
560 return -ENOMEM;
561 }
562 /* If we got a zero DMA address(can happen on
563 * certain platforms like PPC), reallocate.
564 * Store virtual address of page we don't want,
565 * to be freed later.
566 */
567 if (!tmp_p) {
568 mac_control->zerodma_virt_addr = tmp_v;
569 DBG_PRINT(INIT_DBG,
570 "%s: Zero DMA address for TxDL. ", dev->name);
571 DBG_PRINT(INIT_DBG,
572 "Virtual address %p\n", tmp_v);
573 tmp_v = pci_alloc_consistent(nic->pdev,
574 PAGE_SIZE, &tmp_p);
575 if (!tmp_v) {
576 DBG_PRINT(INFO_DBG,
577 "pci_alloc_consistent ");
578 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
579 return -ENOMEM;
580 }
581 mem_allocated += PAGE_SIZE;
582 }
583 while (k < lst_per_page) {
584 int l = (j * lst_per_page) + k;
585 if (l == config->tx_cfg[i].fifo_len)
586 break;
587 mac_control->fifos[i].list_info[l].list_virt_addr =
588 tmp_v + (k * lst_size);
589 mac_control->fifos[i].list_info[l].list_phy_addr =
590 tmp_p + (k * lst_size);
591 k++;
592 }
593 }
594 }
595
596 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
597 if (!nic->ufo_in_band_v)
598 return -ENOMEM;
599 mem_allocated += (size * sizeof(u64));
600
601 /* Allocation and initialization of RXDs in Rings */
602 size = 0;
603 for (i = 0; i < config->rx_ring_num; i++) {
604 if (config->rx_cfg[i].num_rxd %
605 (rxd_count[nic->rxd_mode] + 1)) {
606 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
607 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
608 i);
609 DBG_PRINT(ERR_DBG, "RxDs per Block");
610 return FAILURE;
611 }
612 size += config->rx_cfg[i].num_rxd;
613 mac_control->rings[i].block_count =
614 config->rx_cfg[i].num_rxd /
615 (rxd_count[nic->rxd_mode] + 1 );
616 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
617 mac_control->rings[i].block_count;
618 }
619 if (nic->rxd_mode == RXD_MODE_1)
620 size = (size * (sizeof(struct RxD1)));
621 else
622 size = (size * (sizeof(struct RxD3)));
623
624 for (i = 0; i < config->rx_ring_num; i++) {
625 mac_control->rings[i].rx_curr_get_info.block_index = 0;
626 mac_control->rings[i].rx_curr_get_info.offset = 0;
627 mac_control->rings[i].rx_curr_get_info.ring_len =
628 config->rx_cfg[i].num_rxd - 1;
629 mac_control->rings[i].rx_curr_put_info.block_index = 0;
630 mac_control->rings[i].rx_curr_put_info.offset = 0;
631 mac_control->rings[i].rx_curr_put_info.ring_len =
632 config->rx_cfg[i].num_rxd - 1;
633 mac_control->rings[i].nic = nic;
634 mac_control->rings[i].ring_no = i;
635
636 blk_cnt = config->rx_cfg[i].num_rxd /
637 (rxd_count[nic->rxd_mode] + 1);
638 /* Allocating all the Rx blocks */
639 for (j = 0; j < blk_cnt; j++) {
640 struct rx_block_info *rx_blocks;
641 int l;
642
643 rx_blocks = &mac_control->rings[i].rx_blocks[j];
644 size = SIZE_OF_BLOCK; //size is always page size
645 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
646 &tmp_p_addr);
647 if (tmp_v_addr == NULL) {
648 /*
649 * In case of failure, free_shared_mem()
650 * is called, which should free any
651 * memory that was alloced till the
652 * failure happened.
653 */
654 rx_blocks->block_virt_addr = tmp_v_addr;
655 return -ENOMEM;
656 }
657 mem_allocated += size;
658 memset(tmp_v_addr, 0, size);
659 rx_blocks->block_virt_addr = tmp_v_addr;
660 rx_blocks->block_dma_addr = tmp_p_addr;
661 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
662 rxd_count[nic->rxd_mode],
663 GFP_KERNEL);
664 if (!rx_blocks->rxds)
665 return -ENOMEM;
666 mem_allocated +=
667 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
668 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
669 rx_blocks->rxds[l].virt_addr =
670 rx_blocks->block_virt_addr +
671 (rxd_size[nic->rxd_mode] * l);
672 rx_blocks->rxds[l].dma_addr =
673 rx_blocks->block_dma_addr +
674 (rxd_size[nic->rxd_mode] * l);
675 }
676 }
677 /* Interlinking all Rx Blocks */
678 for (j = 0; j < blk_cnt; j++) {
679 tmp_v_addr =
680 mac_control->rings[i].rx_blocks[j].block_virt_addr;
681 tmp_v_addr_next =
682 mac_control->rings[i].rx_blocks[(j + 1) %
683 blk_cnt].block_virt_addr;
684 tmp_p_addr =
685 mac_control->rings[i].rx_blocks[j].block_dma_addr;
686 tmp_p_addr_next =
687 mac_control->rings[i].rx_blocks[(j + 1) %
688 blk_cnt].block_dma_addr;
689
690 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
691 pre_rxd_blk->reserved_2_pNext_RxD_block =
692 (unsigned long) tmp_v_addr_next;
693 pre_rxd_blk->pNext_RxD_Blk_physical =
694 (u64) tmp_p_addr_next;
695 }
696 }
697 if (nic->rxd_mode >= RXD_MODE_3A) {
698 /*
699 * Allocation of Storages for buffer addresses in 2BUFF mode
700 * and the buffers as well.
701 */
702 for (i = 0; i < config->rx_ring_num; i++) {
703 blk_cnt = config->rx_cfg[i].num_rxd /
704 (rxd_count[nic->rxd_mode]+ 1);
705 mac_control->rings[i].ba =
706 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
707 GFP_KERNEL);
708 if (!mac_control->rings[i].ba)
709 return -ENOMEM;
710 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
711 for (j = 0; j < blk_cnt; j++) {
712 int k = 0;
713 mac_control->rings[i].ba[j] =
714 kmalloc((sizeof(struct buffAdd) *
715 (rxd_count[nic->rxd_mode] + 1)),
716 GFP_KERNEL);
717 if (!mac_control->rings[i].ba[j])
718 return -ENOMEM;
719 mem_allocated += (sizeof(struct buffAdd) * \
720 (rxd_count[nic->rxd_mode] + 1));
721 while (k != rxd_count[nic->rxd_mode]) {
722 ba = &mac_control->rings[i].ba[j][k];
723
724 ba->ba_0_org = (void *) kmalloc
725 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
726 if (!ba->ba_0_org)
727 return -ENOMEM;
728 mem_allocated +=
729 (BUF0_LEN + ALIGN_SIZE);
730 tmp = (unsigned long)ba->ba_0_org;
731 tmp += ALIGN_SIZE;
732 tmp &= ~((unsigned long) ALIGN_SIZE);
733 ba->ba_0 = (void *) tmp;
734
735 ba->ba_1_org = (void *) kmalloc
736 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
737 if (!ba->ba_1_org)
738 return -ENOMEM;
739 mem_allocated
740 += (BUF1_LEN + ALIGN_SIZE);
741 tmp = (unsigned long) ba->ba_1_org;
742 tmp += ALIGN_SIZE;
743 tmp &= ~((unsigned long) ALIGN_SIZE);
744 ba->ba_1 = (void *) tmp;
745 k++;
746 }
747 }
748 }
749 }
750
751 /* Allocation and initialization of Statistics block */
752 size = sizeof(struct stat_block);
753 mac_control->stats_mem = pci_alloc_consistent
754 (nic->pdev, size, &mac_control->stats_mem_phy);
755
756 if (!mac_control->stats_mem) {
757 /*
758 * In case of failure, free_shared_mem() is called, which
759 * should free any memory that was alloced till the
760 * failure happened.
761 */
762 return -ENOMEM;
763 }
764 mem_allocated += size;
765 mac_control->stats_mem_sz = size;
766
767 tmp_v_addr = mac_control->stats_mem;
768 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
769 memset(tmp_v_addr, 0, size);
770 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
771 (unsigned long long) tmp_p_addr);
772 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
773 return SUCCESS;
774 }
775
776 /**
777 * free_shared_mem - Free the allocated Memory
778 * @nic: Device private variable.
779 * Description: This function is to free all memory locations allocated by
780 * the init_shared_mem() function and return it to the kernel.
781 */
782
783 static void free_shared_mem(struct s2io_nic *nic)
784 {
785 int i, j, blk_cnt, size;
786 u32 ufo_size = 0;
787 void *tmp_v_addr;
788 dma_addr_t tmp_p_addr;
789 struct mac_info *mac_control;
790 struct config_param *config;
791 int lst_size, lst_per_page;
792 struct net_device *dev = nic->dev;
793 int page_num = 0;
794
795 if (!nic)
796 return;
797
798 mac_control = &nic->mac_control;
799 config = &nic->config;
800
801 lst_size = (sizeof(struct TxD) * config->max_txds);
802 lst_per_page = PAGE_SIZE / lst_size;
803
804 for (i = 0; i < config->tx_fifo_num; i++) {
805 ufo_size += config->tx_cfg[i].fifo_len;
806 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
807 lst_per_page);
808 for (j = 0; j < page_num; j++) {
809 int mem_blks = (j * lst_per_page);
810 if (!mac_control->fifos[i].list_info)
811 return;
812 if (!mac_control->fifos[i].list_info[mem_blks].
813 list_virt_addr)
814 break;
815 pci_free_consistent(nic->pdev, PAGE_SIZE,
816 mac_control->fifos[i].
817 list_info[mem_blks].
818 list_virt_addr,
819 mac_control->fifos[i].
820 list_info[mem_blks].
821 list_phy_addr);
822 nic->mac_control.stats_info->sw_stat.mem_freed
823 += PAGE_SIZE;
824 }
825 /* If we got a zero DMA address during allocation,
826 * free the page now
827 */
828 if (mac_control->zerodma_virt_addr) {
829 pci_free_consistent(nic->pdev, PAGE_SIZE,
830 mac_control->zerodma_virt_addr,
831 (dma_addr_t)0);
832 DBG_PRINT(INIT_DBG,
833 "%s: Freeing TxDL with zero DMA addr. ",
834 dev->name);
835 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
836 mac_control->zerodma_virt_addr);
837 nic->mac_control.stats_info->sw_stat.mem_freed
838 += PAGE_SIZE;
839 }
840 kfree(mac_control->fifos[i].list_info);
841 nic->mac_control.stats_info->sw_stat.mem_freed +=
842 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
843 }
844
845 size = SIZE_OF_BLOCK;
846 for (i = 0; i < config->rx_ring_num; i++) {
847 blk_cnt = mac_control->rings[i].block_count;
848 for (j = 0; j < blk_cnt; j++) {
849 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
850 block_virt_addr;
851 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
852 block_dma_addr;
853 if (tmp_v_addr == NULL)
854 break;
855 pci_free_consistent(nic->pdev, size,
856 tmp_v_addr, tmp_p_addr);
857 nic->mac_control.stats_info->sw_stat.mem_freed += size;
858 kfree(mac_control->rings[i].rx_blocks[j].rxds);
859 nic->mac_control.stats_info->sw_stat.mem_freed +=
860 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
861 }
862 }
863
864 if (nic->rxd_mode >= RXD_MODE_3A) {
865 /* Freeing buffer storage addresses in 2BUFF mode. */
866 for (i = 0; i < config->rx_ring_num; i++) {
867 blk_cnt = config->rx_cfg[i].num_rxd /
868 (rxd_count[nic->rxd_mode] + 1);
869 for (j = 0; j < blk_cnt; j++) {
870 int k = 0;
871 if (!mac_control->rings[i].ba[j])
872 continue;
873 while (k != rxd_count[nic->rxd_mode]) {
874 struct buffAdd *ba =
875 &mac_control->rings[i].ba[j][k];
876 kfree(ba->ba_0_org);
877 nic->mac_control.stats_info->sw_stat.\
878 mem_freed += (BUF0_LEN + ALIGN_SIZE);
879 kfree(ba->ba_1_org);
880 nic->mac_control.stats_info->sw_stat.\
881 mem_freed += (BUF1_LEN + ALIGN_SIZE);
882 k++;
883 }
884 kfree(mac_control->rings[i].ba[j]);
885 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
886 (rxd_count[nic->rxd_mode] + 1));
887 }
888 kfree(mac_control->rings[i].ba);
889 nic->mac_control.stats_info->sw_stat.mem_freed +=
890 (sizeof(struct buffAdd *) * blk_cnt);
891 }
892 }
893
894 if (mac_control->stats_mem) {
895 pci_free_consistent(nic->pdev,
896 mac_control->stats_mem_sz,
897 mac_control->stats_mem,
898 mac_control->stats_mem_phy);
899 nic->mac_control.stats_info->sw_stat.mem_freed +=
900 mac_control->stats_mem_sz;
901 }
902 if (nic->ufo_in_band_v) {
903 kfree(nic->ufo_in_band_v);
904 nic->mac_control.stats_info->sw_stat.mem_freed
905 += (ufo_size * sizeof(u64));
906 }
907 }
908
909 /**
910 * s2io_verify_pci_mode -
911 */
912
913 static int s2io_verify_pci_mode(struct s2io_nic *nic)
914 {
915 struct XENA_dev_config __iomem *bar0 = nic->bar0;
916 register u64 val64 = 0;
917 int mode;
918
919 val64 = readq(&bar0->pci_mode);
920 mode = (u8)GET_PCI_MODE(val64);
921
922 if ( val64 & PCI_MODE_UNKNOWN_MODE)
923 return -1; /* Unknown PCI mode */
924 return mode;
925 }
926
927 #define NEC_VENID 0x1033
928 #define NEC_DEVID 0x0125
929 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
930 {
931 struct pci_dev *tdev = NULL;
932 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
933 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
934 if (tdev->bus == s2io_pdev->bus->parent)
935 pci_dev_put(tdev);
936 return 1;
937 }
938 }
939 return 0;
940 }
941
942 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
943 /**
944 * s2io_print_pci_mode -
945 */
946 static int s2io_print_pci_mode(struct s2io_nic *nic)
947 {
948 struct XENA_dev_config __iomem *bar0 = nic->bar0;
949 register u64 val64 = 0;
950 int mode;
951 struct config_param *config = &nic->config;
952
953 val64 = readq(&bar0->pci_mode);
954 mode = (u8)GET_PCI_MODE(val64);
955
956 if ( val64 & PCI_MODE_UNKNOWN_MODE)
957 return -1; /* Unknown PCI mode */
958
959 config->bus_speed = bus_speed[mode];
960
961 if (s2io_on_nec_bridge(nic->pdev)) {
962 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
963 nic->dev->name);
964 return mode;
965 }
966
967 if (val64 & PCI_MODE_32_BITS) {
968 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
969 } else {
970 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
971 }
972
973 switch(mode) {
974 case PCI_MODE_PCI_33:
975 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
976 break;
977 case PCI_MODE_PCI_66:
978 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
979 break;
980 case PCI_MODE_PCIX_M1_66:
981 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
982 break;
983 case PCI_MODE_PCIX_M1_100:
984 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
985 break;
986 case PCI_MODE_PCIX_M1_133:
987 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
988 break;
989 case PCI_MODE_PCIX_M2_66:
990 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
991 break;
992 case PCI_MODE_PCIX_M2_100:
993 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
994 break;
995 case PCI_MODE_PCIX_M2_133:
996 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
997 break;
998 default:
999 return -1; /* Unsupported bus speed */
1000 }
1001
1002 return mode;
1003 }
1004
1005 /**
1006 * init_nic - Initialization of hardware
1007 * @nic: device peivate variable
1008 * Description: The function sequentially configures every block
1009 * of the H/W from their reset values.
1010 * Return Value: SUCCESS on success and
1011 * '-1' on failure (endian settings incorrect).
1012 */
1013
1014 static int init_nic(struct s2io_nic *nic)
1015 {
1016 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1017 struct net_device *dev = nic->dev;
1018 register u64 val64 = 0;
1019 void __iomem *add;
1020 u32 time;
1021 int i, j;
1022 struct mac_info *mac_control;
1023 struct config_param *config;
1024 int dtx_cnt = 0;
1025 unsigned long long mem_share;
1026 int mem_size;
1027
1028 mac_control = &nic->mac_control;
1029 config = &nic->config;
1030
1031 /* to set the swapper controle on the card */
1032 if(s2io_set_swapper(nic)) {
1033 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1034 return -1;
1035 }
1036
1037 /*
1038 * Herc requires EOI to be removed from reset before XGXS, so..
1039 */
1040 if (nic->device_type & XFRAME_II_DEVICE) {
1041 val64 = 0xA500000000ULL;
1042 writeq(val64, &bar0->sw_reset);
1043 msleep(500);
1044 val64 = readq(&bar0->sw_reset);
1045 }
1046
1047 /* Remove XGXS from reset state */
1048 val64 = 0;
1049 writeq(val64, &bar0->sw_reset);
1050 msleep(500);
1051 val64 = readq(&bar0->sw_reset);
1052
1053 /* Enable Receiving broadcasts */
1054 add = &bar0->mac_cfg;
1055 val64 = readq(&bar0->mac_cfg);
1056 val64 |= MAC_RMAC_BCAST_ENABLE;
1057 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1058 writel((u32) val64, add);
1059 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1060 writel((u32) (val64 >> 32), (add + 4));
1061
1062 /* Read registers in all blocks */
1063 val64 = readq(&bar0->mac_int_mask);
1064 val64 = readq(&bar0->mc_int_mask);
1065 val64 = readq(&bar0->xgxs_int_mask);
1066
1067 /* Set MTU */
1068 val64 = dev->mtu;
1069 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1070
1071 if (nic->device_type & XFRAME_II_DEVICE) {
1072 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1073 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1074 &bar0->dtx_control, UF);
1075 if (dtx_cnt & 0x1)
1076 msleep(1); /* Necessary!! */
1077 dtx_cnt++;
1078 }
1079 } else {
1080 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1081 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1082 &bar0->dtx_control, UF);
1083 val64 = readq(&bar0->dtx_control);
1084 dtx_cnt++;
1085 }
1086 }
1087
1088 /* Tx DMA Initialization */
1089 val64 = 0;
1090 writeq(val64, &bar0->tx_fifo_partition_0);
1091 writeq(val64, &bar0->tx_fifo_partition_1);
1092 writeq(val64, &bar0->tx_fifo_partition_2);
1093 writeq(val64, &bar0->tx_fifo_partition_3);
1094
1095
1096 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1097 val64 |=
1098 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1099 13) | vBIT(config->tx_cfg[i].fifo_priority,
1100 ((i * 32) + 5), 3);
1101
1102 if (i == (config->tx_fifo_num - 1)) {
1103 if (i % 2 == 0)
1104 i++;
1105 }
1106
1107 switch (i) {
1108 case 1:
1109 writeq(val64, &bar0->tx_fifo_partition_0);
1110 val64 = 0;
1111 break;
1112 case 3:
1113 writeq(val64, &bar0->tx_fifo_partition_1);
1114 val64 = 0;
1115 break;
1116 case 5:
1117 writeq(val64, &bar0->tx_fifo_partition_2);
1118 val64 = 0;
1119 break;
1120 case 7:
1121 writeq(val64, &bar0->tx_fifo_partition_3);
1122 break;
1123 }
1124 }
1125
1126 /*
1127 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1128 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1129 */
1130 if ((nic->device_type == XFRAME_I_DEVICE) &&
1131 (get_xena_rev_id(nic->pdev) < 4))
1132 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1133
1134 val64 = readq(&bar0->tx_fifo_partition_0);
1135 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1136 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1137
1138 /*
1139 * Initialization of Tx_PA_CONFIG register to ignore packet
1140 * integrity checking.
1141 */
1142 val64 = readq(&bar0->tx_pa_cfg);
1143 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1144 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1145 writeq(val64, &bar0->tx_pa_cfg);
1146
1147 /* Rx DMA intialization. */
1148 val64 = 0;
1149 for (i = 0; i < config->rx_ring_num; i++) {
1150 val64 |=
1151 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1152 3);
1153 }
1154 writeq(val64, &bar0->rx_queue_priority);
1155
1156 /*
1157 * Allocating equal share of memory to all the
1158 * configured Rings.
1159 */
1160 val64 = 0;
1161 if (nic->device_type & XFRAME_II_DEVICE)
1162 mem_size = 32;
1163 else
1164 mem_size = 64;
1165
1166 for (i = 0; i < config->rx_ring_num; i++) {
1167 switch (i) {
1168 case 0:
1169 mem_share = (mem_size / config->rx_ring_num +
1170 mem_size % config->rx_ring_num);
1171 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1172 continue;
1173 case 1:
1174 mem_share = (mem_size / config->rx_ring_num);
1175 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1176 continue;
1177 case 2:
1178 mem_share = (mem_size / config->rx_ring_num);
1179 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1180 continue;
1181 case 3:
1182 mem_share = (mem_size / config->rx_ring_num);
1183 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1184 continue;
1185 case 4:
1186 mem_share = (mem_size / config->rx_ring_num);
1187 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1188 continue;
1189 case 5:
1190 mem_share = (mem_size / config->rx_ring_num);
1191 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1192 continue;
1193 case 6:
1194 mem_share = (mem_size / config->rx_ring_num);
1195 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1196 continue;
1197 case 7:
1198 mem_share = (mem_size / config->rx_ring_num);
1199 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1200 continue;
1201 }
1202 }
1203 writeq(val64, &bar0->rx_queue_cfg);
1204
1205 /*
1206 * Filling Tx round robin registers
1207 * as per the number of FIFOs
1208 */
1209 switch (config->tx_fifo_num) {
1210 case 1:
1211 val64 = 0x0000000000000000ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_0);
1213 writeq(val64, &bar0->tx_w_round_robin_1);
1214 writeq(val64, &bar0->tx_w_round_robin_2);
1215 writeq(val64, &bar0->tx_w_round_robin_3);
1216 writeq(val64, &bar0->tx_w_round_robin_4);
1217 break;
1218 case 2:
1219 val64 = 0x0000010000010000ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_0);
1221 val64 = 0x0100000100000100ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_1);
1223 val64 = 0x0001000001000001ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_2);
1225 val64 = 0x0000010000010000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_3);
1227 val64 = 0x0100000000000000ULL;
1228 writeq(val64, &bar0->tx_w_round_robin_4);
1229 break;
1230 case 3:
1231 val64 = 0x0001000102000001ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_0);
1233 val64 = 0x0001020000010001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_1);
1235 val64 = 0x0200000100010200ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_2);
1237 val64 = 0x0001000102000001ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_3);
1239 val64 = 0x0001020000000000ULL;
1240 writeq(val64, &bar0->tx_w_round_robin_4);
1241 break;
1242 case 4:
1243 val64 = 0x0001020300010200ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_0);
1245 val64 = 0x0100000102030001ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_1);
1247 val64 = 0x0200010000010203ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_2);
1249 val64 = 0x0001020001000001ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_3);
1251 val64 = 0x0203000100000000ULL;
1252 writeq(val64, &bar0->tx_w_round_robin_4);
1253 break;
1254 case 5:
1255 val64 = 0x0001000203000102ULL;
1256 writeq(val64, &bar0->tx_w_round_robin_0);
1257 val64 = 0x0001020001030004ULL;
1258 writeq(val64, &bar0->tx_w_round_robin_1);
1259 val64 = 0x0001000203000102ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_2);
1261 val64 = 0x0001020001030004ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_3);
1263 val64 = 0x0001000000000000ULL;
1264 writeq(val64, &bar0->tx_w_round_robin_4);
1265 break;
1266 case 6:
1267 val64 = 0x0001020304000102ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_0);
1269 val64 = 0x0304050001020001ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_1);
1271 val64 = 0x0203000100000102ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_2);
1273 val64 = 0x0304000102030405ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_3);
1275 val64 = 0x0001000200000000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_4);
1277 break;
1278 case 7:
1279 val64 = 0x0001020001020300ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_0);
1281 val64 = 0x0102030400010203ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_1);
1283 val64 = 0x0405060001020001ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_2);
1285 val64 = 0x0304050000010200ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_3);
1287 val64 = 0x0102030000000000ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_4);
1289 break;
1290 case 8:
1291 val64 = 0x0001020300040105ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_0);
1293 val64 = 0x0200030106000204ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_1);
1295 val64 = 0x0103000502010007ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_2);
1297 val64 = 0x0304010002060500ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_3);
1299 val64 = 0x0103020400000000ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_4);
1301 break;
1302 }
1303
1304 /* Enable all configured Tx FIFO partitions */
1305 val64 = readq(&bar0->tx_fifo_partition_0);
1306 val64 |= (TX_FIFO_PARTITION_EN);
1307 writeq(val64, &bar0->tx_fifo_partition_0);
1308
1309 /* Filling the Rx round robin registers as per the
1310 * number of Rings and steering based on QoS.
1311 */
1312 switch (config->rx_ring_num) {
1313 case 1:
1314 val64 = 0x8080808080808080ULL;
1315 writeq(val64, &bar0->rts_qos_steering);
1316 break;
1317 case 2:
1318 val64 = 0x0000010000010000ULL;
1319 writeq(val64, &bar0->rx_w_round_robin_0);
1320 val64 = 0x0100000100000100ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_1);
1322 val64 = 0x0001000001000001ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_2);
1324 val64 = 0x0000010000010000ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_3);
1326 val64 = 0x0100000000000000ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_4);
1328
1329 val64 = 0x8080808040404040ULL;
1330 writeq(val64, &bar0->rts_qos_steering);
1331 break;
1332 case 3:
1333 val64 = 0x0001000102000001ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_0);
1335 val64 = 0x0001020000010001ULL;
1336 writeq(val64, &bar0->rx_w_round_robin_1);
1337 val64 = 0x0200000100010200ULL;
1338 writeq(val64, &bar0->rx_w_round_robin_2);
1339 val64 = 0x0001000102000001ULL;
1340 writeq(val64, &bar0->rx_w_round_robin_3);
1341 val64 = 0x0001020000000000ULL;
1342 writeq(val64, &bar0->rx_w_round_robin_4);
1343
1344 val64 = 0x8080804040402020ULL;
1345 writeq(val64, &bar0->rts_qos_steering);
1346 break;
1347 case 4:
1348 val64 = 0x0001020300010200ULL;
1349 writeq(val64, &bar0->rx_w_round_robin_0);
1350 val64 = 0x0100000102030001ULL;
1351 writeq(val64, &bar0->rx_w_round_robin_1);
1352 val64 = 0x0200010000010203ULL;
1353 writeq(val64, &bar0->rx_w_round_robin_2);
1354 val64 = 0x0001020001000001ULL;
1355 writeq(val64, &bar0->rx_w_round_robin_3);
1356 val64 = 0x0203000100000000ULL;
1357 writeq(val64, &bar0->rx_w_round_robin_4);
1358
1359 val64 = 0x8080404020201010ULL;
1360 writeq(val64, &bar0->rts_qos_steering);
1361 break;
1362 case 5:
1363 val64 = 0x0001000203000102ULL;
1364 writeq(val64, &bar0->rx_w_round_robin_0);
1365 val64 = 0x0001020001030004ULL;
1366 writeq(val64, &bar0->rx_w_round_robin_1);
1367 val64 = 0x0001000203000102ULL;
1368 writeq(val64, &bar0->rx_w_round_robin_2);
1369 val64 = 0x0001020001030004ULL;
1370 writeq(val64, &bar0->rx_w_round_robin_3);
1371 val64 = 0x0001000000000000ULL;
1372 writeq(val64, &bar0->rx_w_round_robin_4);
1373
1374 val64 = 0x8080404020201008ULL;
1375 writeq(val64, &bar0->rts_qos_steering);
1376 break;
1377 case 6:
1378 val64 = 0x0001020304000102ULL;
1379 writeq(val64, &bar0->rx_w_round_robin_0);
1380 val64 = 0x0304050001020001ULL;
1381 writeq(val64, &bar0->rx_w_round_robin_1);
1382 val64 = 0x0203000100000102ULL;
1383 writeq(val64, &bar0->rx_w_round_robin_2);
1384 val64 = 0x0304000102030405ULL;
1385 writeq(val64, &bar0->rx_w_round_robin_3);
1386 val64 = 0x0001000200000000ULL;
1387 writeq(val64, &bar0->rx_w_round_robin_4);
1388
1389 val64 = 0x8080404020100804ULL;
1390 writeq(val64, &bar0->rts_qos_steering);
1391 break;
1392 case 7:
1393 val64 = 0x0001020001020300ULL;
1394 writeq(val64, &bar0->rx_w_round_robin_0);
1395 val64 = 0x0102030400010203ULL;
1396 writeq(val64, &bar0->rx_w_round_robin_1);
1397 val64 = 0x0405060001020001ULL;
1398 writeq(val64, &bar0->rx_w_round_robin_2);
1399 val64 = 0x0304050000010200ULL;
1400 writeq(val64, &bar0->rx_w_round_robin_3);
1401 val64 = 0x0102030000000000ULL;
1402 writeq(val64, &bar0->rx_w_round_robin_4);
1403
1404 val64 = 0x8080402010080402ULL;
1405 writeq(val64, &bar0->rts_qos_steering);
1406 break;
1407 case 8:
1408 val64 = 0x0001020300040105ULL;
1409 writeq(val64, &bar0->rx_w_round_robin_0);
1410 val64 = 0x0200030106000204ULL;
1411 writeq(val64, &bar0->rx_w_round_robin_1);
1412 val64 = 0x0103000502010007ULL;
1413 writeq(val64, &bar0->rx_w_round_robin_2);
1414 val64 = 0x0304010002060500ULL;
1415 writeq(val64, &bar0->rx_w_round_robin_3);
1416 val64 = 0x0103020400000000ULL;
1417 writeq(val64, &bar0->rx_w_round_robin_4);
1418
1419 val64 = 0x8040201008040201ULL;
1420 writeq(val64, &bar0->rts_qos_steering);
1421 break;
1422 }
1423
1424 /* UDP Fix */
1425 val64 = 0;
1426 for (i = 0; i < 8; i++)
1427 writeq(val64, &bar0->rts_frm_len_n[i]);
1428
1429 /* Set the default rts frame length for the rings configured */
1430 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1431 for (i = 0 ; i < config->rx_ring_num ; i++)
1432 writeq(val64, &bar0->rts_frm_len_n[i]);
1433
1434 /* Set the frame length for the configured rings
1435 * desired by the user
1436 */
1437 for (i = 0; i < config->rx_ring_num; i++) {
1438 /* If rts_frm_len[i] == 0 then it is assumed that user not
1439 * specified frame length steering.
1440 * If the user provides the frame length then program
1441 * the rts_frm_len register for those values or else
1442 * leave it as it is.
1443 */
1444 if (rts_frm_len[i] != 0) {
1445 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1446 &bar0->rts_frm_len_n[i]);
1447 }
1448 }
1449
1450 /* Disable differentiated services steering logic */
1451 for (i = 0; i < 64; i++) {
1452 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1453 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1454 dev->name);
1455 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1456 return FAILURE;
1457 }
1458 }
1459
1460 /* Program statistics memory */
1461 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1462
1463 if (nic->device_type == XFRAME_II_DEVICE) {
1464 val64 = STAT_BC(0x320);
1465 writeq(val64, &bar0->stat_byte_cnt);
1466 }
1467
1468 /*
1469 * Initializing the sampling rate for the device to calculate the
1470 * bandwidth utilization.
1471 */
1472 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1473 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1474 writeq(val64, &bar0->mac_link_util);
1475
1476
1477 /*
1478 * Initializing the Transmit and Receive Traffic Interrupt
1479 * Scheme.
1480 */
1481 /*
1482 * TTI Initialization. Default Tx timer gets us about
1483 * 250 interrupts per sec. Continuous interrupts are enabled
1484 * by default.
1485 */
1486 if (nic->device_type == XFRAME_II_DEVICE) {
1487 int count = (nic->config.bus_speed * 125)/2;
1488 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1489 } else {
1490
1491 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1492 }
1493 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1494 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1495 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1496 if (use_continuous_tx_intrs)
1497 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1498 writeq(val64, &bar0->tti_data1_mem);
1499
1500 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1501 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1502 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1503 writeq(val64, &bar0->tti_data2_mem);
1504
1505 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1506 writeq(val64, &bar0->tti_command_mem);
1507
1508 /*
1509 * Once the operation completes, the Strobe bit of the command
1510 * register will be reset. We poll for this particular condition
1511 * We wait for a maximum of 500ms for the operation to complete,
1512 * if it's not complete by then we return error.
1513 */
1514 time = 0;
1515 while (TRUE) {
1516 val64 = readq(&bar0->tti_command_mem);
1517 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1518 break;
1519 }
1520 if (time > 10) {
1521 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1522 dev->name);
1523 return -1;
1524 }
1525 msleep(50);
1526 time++;
1527 }
1528
1529 if (nic->config.bimodal) {
1530 int k = 0;
1531 for (k = 0; k < config->rx_ring_num; k++) {
1532 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1533 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1534 writeq(val64, &bar0->tti_command_mem);
1535
1536 /*
1537 * Once the operation completes, the Strobe bit of the command
1538 * register will be reset. We poll for this particular condition
1539 * We wait for a maximum of 500ms for the operation to complete,
1540 * if it's not complete by then we return error.
1541 */
1542 time = 0;
1543 while (TRUE) {
1544 val64 = readq(&bar0->tti_command_mem);
1545 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1546 break;
1547 }
1548 if (time > 10) {
1549 DBG_PRINT(ERR_DBG,
1550 "%s: TTI init Failed\n",
1551 dev->name);
1552 return -1;
1553 }
1554 time++;
1555 msleep(50);
1556 }
1557 }
1558 } else {
1559
1560 /* RTI Initialization */
1561 if (nic->device_type == XFRAME_II_DEVICE) {
1562 /*
1563 * Programmed to generate Apprx 500 Intrs per
1564 * second
1565 */
1566 int count = (nic->config.bus_speed * 125)/4;
1567 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1568 } else {
1569 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1570 }
1571 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1572 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1573 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1574
1575 writeq(val64, &bar0->rti_data1_mem);
1576
1577 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1578 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1579 if (nic->intr_type == MSI_X)
1580 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1581 RTI_DATA2_MEM_RX_UFC_D(0x40));
1582 else
1583 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1584 RTI_DATA2_MEM_RX_UFC_D(0x80));
1585 writeq(val64, &bar0->rti_data2_mem);
1586
1587 for (i = 0; i < config->rx_ring_num; i++) {
1588 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1589 | RTI_CMD_MEM_OFFSET(i);
1590 writeq(val64, &bar0->rti_command_mem);
1591
1592 /*
1593 * Once the operation completes, the Strobe bit of the
1594 * command register will be reset. We poll for this
1595 * particular condition. We wait for a maximum of 500ms
1596 * for the operation to complete, if it's not complete
1597 * by then we return error.
1598 */
1599 time = 0;
1600 while (TRUE) {
1601 val64 = readq(&bar0->rti_command_mem);
1602 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1603 break;
1604 }
1605 if (time > 10) {
1606 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1607 dev->name);
1608 return -1;
1609 }
1610 time++;
1611 msleep(50);
1612 }
1613 }
1614 }
1615
1616 /*
1617 * Initializing proper values as Pause threshold into all
1618 * the 8 Queues on Rx side.
1619 */
1620 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1621 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1622
1623 /* Disable RMAC PAD STRIPPING */
1624 add = &bar0->mac_cfg;
1625 val64 = readq(&bar0->mac_cfg);
1626 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1627 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1628 writel((u32) (val64), add);
1629 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1630 writel((u32) (val64 >> 32), (add + 4));
1631 val64 = readq(&bar0->mac_cfg);
1632
1633 /* Enable FCS stripping by adapter */
1634 add = &bar0->mac_cfg;
1635 val64 = readq(&bar0->mac_cfg);
1636 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1637 if (nic->device_type == XFRAME_II_DEVICE)
1638 writeq(val64, &bar0->mac_cfg);
1639 else {
1640 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1641 writel((u32) (val64), add);
1642 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1643 writel((u32) (val64 >> 32), (add + 4));
1644 }
1645
1646 /*
1647 * Set the time value to be inserted in the pause frame
1648 * generated by xena.
1649 */
1650 val64 = readq(&bar0->rmac_pause_cfg);
1651 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1652 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1653 writeq(val64, &bar0->rmac_pause_cfg);
1654
1655 /*
1656 * Set the Threshold Limit for Generating the pause frame
1657 * If the amount of data in any Queue exceeds ratio of
1658 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1659 * pause frame is generated
1660 */
1661 val64 = 0;
1662 for (i = 0; i < 4; i++) {
1663 val64 |=
1664 (((u64) 0xFF00 | nic->mac_control.
1665 mc_pause_threshold_q0q3)
1666 << (i * 2 * 8));
1667 }
1668 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1669
1670 val64 = 0;
1671 for (i = 0; i < 4; i++) {
1672 val64 |=
1673 (((u64) 0xFF00 | nic->mac_control.
1674 mc_pause_threshold_q4q7)
1675 << (i * 2 * 8));
1676 }
1677 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1678
1679 /*
1680 * TxDMA will stop Read request if the number of read split has
1681 * exceeded the limit pointed by shared_splits
1682 */
1683 val64 = readq(&bar0->pic_control);
1684 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1685 writeq(val64, &bar0->pic_control);
1686
1687 if (nic->config.bus_speed == 266) {
1688 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1689 writeq(0x0, &bar0->read_retry_delay);
1690 writeq(0x0, &bar0->write_retry_delay);
1691 }
1692
1693 /*
1694 * Programming the Herc to split every write transaction
1695 * that does not start on an ADB to reduce disconnects.
1696 */
1697 if (nic->device_type == XFRAME_II_DEVICE) {
1698 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1699 MISC_LINK_STABILITY_PRD(3);
1700 writeq(val64, &bar0->misc_control);
1701 val64 = readq(&bar0->pic_control2);
1702 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1703 writeq(val64, &bar0->pic_control2);
1704 }
1705 if (strstr(nic->product_name, "CX4")) {
1706 val64 = TMAC_AVG_IPG(0x17);
1707 writeq(val64, &bar0->tmac_avg_ipg);
1708 }
1709
1710 return SUCCESS;
1711 }
1712 #define LINK_UP_DOWN_INTERRUPT 1
1713 #define MAC_RMAC_ERR_TIMER 2
1714
1715 static int s2io_link_fault_indication(struct s2io_nic *nic)
1716 {
1717 if (nic->intr_type != INTA)
1718 return MAC_RMAC_ERR_TIMER;
1719 if (nic->device_type == XFRAME_II_DEVICE)
1720 return LINK_UP_DOWN_INTERRUPT;
1721 else
1722 return MAC_RMAC_ERR_TIMER;
1723 }
1724
1725 /**
1726 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1727 * @nic: device private variable,
1728 * @mask: A mask indicating which Intr block must be modified and,
1729 * @flag: A flag indicating whether to enable or disable the Intrs.
1730 * Description: This function will either disable or enable the interrupts
1731 * depending on the flag argument. The mask argument can be used to
1732 * enable/disable any Intr block.
1733 * Return Value: NONE.
1734 */
1735
1736 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1737 {
1738 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1739 register u64 val64 = 0, temp64 = 0;
1740
1741 /* Top level interrupt classification */
1742 /* PIC Interrupts */
1743 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1744 /* Enable PIC Intrs in the general intr mask register */
1745 val64 = TXPIC_INT_M;
1746 if (flag == ENABLE_INTRS) {
1747 temp64 = readq(&bar0->general_int_mask);
1748 temp64 &= ~((u64) val64);
1749 writeq(temp64, &bar0->general_int_mask);
1750 /*
1751 * If Hercules adapter enable GPIO otherwise
1752 * disable all PCIX, Flash, MDIO, IIC and GPIO
1753 * interrupts for now.
1754 * TODO
1755 */
1756 if (s2io_link_fault_indication(nic) ==
1757 LINK_UP_DOWN_INTERRUPT ) {
1758 temp64 = readq(&bar0->pic_int_mask);
1759 temp64 &= ~((u64) PIC_INT_GPIO);
1760 writeq(temp64, &bar0->pic_int_mask);
1761 temp64 = readq(&bar0->gpio_int_mask);
1762 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1763 writeq(temp64, &bar0->gpio_int_mask);
1764 } else {
1765 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1766 }
1767 /*
1768 * No MSI Support is available presently, so TTI and
1769 * RTI interrupts are also disabled.
1770 */
1771 } else if (flag == DISABLE_INTRS) {
1772 /*
1773 * Disable PIC Intrs in the general
1774 * intr mask register
1775 */
1776 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1777 temp64 = readq(&bar0->general_int_mask);
1778 val64 |= temp64;
1779 writeq(val64, &bar0->general_int_mask);
1780 }
1781 }
1782
1783 /* MAC Interrupts */
1784 /* Enabling/Disabling MAC interrupts */
1785 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1786 val64 = TXMAC_INT_M | RXMAC_INT_M;
1787 if (flag == ENABLE_INTRS) {
1788 temp64 = readq(&bar0->general_int_mask);
1789 temp64 &= ~((u64) val64);
1790 writeq(temp64, &bar0->general_int_mask);
1791 /*
1792 * All MAC block error interrupts are disabled for now
1793 * TODO
1794 */
1795 } else if (flag == DISABLE_INTRS) {
1796 /*
1797 * Disable MAC Intrs in the general intr mask register
1798 */
1799 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1800 writeq(DISABLE_ALL_INTRS,
1801 &bar0->mac_rmac_err_mask);
1802
1803 temp64 = readq(&bar0->general_int_mask);
1804 val64 |= temp64;
1805 writeq(val64, &bar0->general_int_mask);
1806 }
1807 }
1808
1809 /* Tx traffic interrupts */
1810 if (mask & TX_TRAFFIC_INTR) {
1811 val64 = TXTRAFFIC_INT_M;
1812 if (flag == ENABLE_INTRS) {
1813 temp64 = readq(&bar0->general_int_mask);
1814 temp64 &= ~((u64) val64);
1815 writeq(temp64, &bar0->general_int_mask);
1816 /*
1817 * Enable all the Tx side interrupts
1818 * writing 0 Enables all 64 TX interrupt levels
1819 */
1820 writeq(0x0, &bar0->tx_traffic_mask);
1821 } else if (flag == DISABLE_INTRS) {
1822 /*
1823 * Disable Tx Traffic Intrs in the general intr mask
1824 * register.
1825 */
1826 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1827 temp64 = readq(&bar0->general_int_mask);
1828 val64 |= temp64;
1829 writeq(val64, &bar0->general_int_mask);
1830 }
1831 }
1832
1833 /* Rx traffic interrupts */
1834 if (mask & RX_TRAFFIC_INTR) {
1835 val64 = RXTRAFFIC_INT_M;
1836 if (flag == ENABLE_INTRS) {
1837 temp64 = readq(&bar0->general_int_mask);
1838 temp64 &= ~((u64) val64);
1839 writeq(temp64, &bar0->general_int_mask);
1840 /* writing 0 Enables all 8 RX interrupt levels */
1841 writeq(0x0, &bar0->rx_traffic_mask);
1842 } else if (flag == DISABLE_INTRS) {
1843 /*
1844 * Disable Rx Traffic Intrs in the general intr mask
1845 * register.
1846 */
1847 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1848 temp64 = readq(&bar0->general_int_mask);
1849 val64 |= temp64;
1850 writeq(val64, &bar0->general_int_mask);
1851 }
1852 }
1853 }
1854
1855 /**
1856 * verify_pcc_quiescent- Checks for PCC quiescent state
1857 * Return: 1 If PCC is quiescence
1858 * 0 If PCC is not quiescence
1859 */
1860 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1861 {
1862 int ret = 0, herc;
1863 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1864 u64 val64 = readq(&bar0->adapter_status);
1865
1866 herc = (sp->device_type == XFRAME_II_DEVICE);
1867
1868 if (flag == FALSE) {
1869 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1870 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1871 ret = 1;
1872 } else {
1873 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1874 ret = 1;
1875 }
1876 } else {
1877 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1878 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1879 ADAPTER_STATUS_RMAC_PCC_IDLE))
1880 ret = 1;
1881 } else {
1882 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1883 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1884 ret = 1;
1885 }
1886 }
1887
1888 return ret;
1889 }
1890 /**
1891 * verify_xena_quiescence - Checks whether the H/W is ready
1892 * Description: Returns whether the H/W is ready to go or not. Depending
1893 * on whether adapter enable bit was written or not the comparison
1894 * differs and the calling function passes the input argument flag to
1895 * indicate this.
1896 * Return: 1 If xena is quiescence
1897 * 0 If Xena is not quiescence
1898 */
1899
1900 static int verify_xena_quiescence(struct s2io_nic *sp)
1901 {
1902 int mode;
1903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1904 u64 val64 = readq(&bar0->adapter_status);
1905 mode = s2io_verify_pci_mode(sp);
1906
1907 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1908 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1909 return 0;
1910 }
1911 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1912 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1913 return 0;
1914 }
1915 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1916 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1917 return 0;
1918 }
1919 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1920 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1921 return 0;
1922 }
1923 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1924 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1925 return 0;
1926 }
1927 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1928 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1929 return 0;
1930 }
1931 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1932 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1933 return 0;
1934 }
1935 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1936 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1937 return 0;
1938 }
1939
1940 /*
1941 * In PCI 33 mode, the P_PLL is not used, and therefore,
1942 * the the P_PLL_LOCK bit in the adapter_status register will
1943 * not be asserted.
1944 */
1945 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1946 sp->device_type == XFRAME_II_DEVICE && mode !=
1947 PCI_MODE_PCI_33) {
1948 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1949 return 0;
1950 }
1951 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1952 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1953 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1954 return 0;
1955 }
1956 return 1;
1957 }
1958
1959 /**
1960 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1961 * @sp: Pointer to device specifc structure
1962 * Description :
1963 * New procedure to clear mac address reading problems on Alpha platforms
1964 *
1965 */
1966
1967 static void fix_mac_address(struct s2io_nic * sp)
1968 {
1969 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1970 u64 val64;
1971 int i = 0;
1972
1973 while (fix_mac[i] != END_SIGN) {
1974 writeq(fix_mac[i++], &bar0->gpio_control);
1975 udelay(10);
1976 val64 = readq(&bar0->gpio_control);
1977 }
1978 }
1979
1980 /**
1981 * start_nic - Turns the device on
1982 * @nic : device private variable.
1983 * Description:
1984 * This function actually turns the device on. Before this function is
1985 * called,all Registers are configured from their reset states
1986 * and shared memory is allocated but the NIC is still quiescent. On
1987 * calling this function, the device interrupts are cleared and the NIC is
1988 * literally switched on by writing into the adapter control register.
1989 * Return Value:
1990 * SUCCESS on success and -1 on failure.
1991 */
1992
1993 static int start_nic(struct s2io_nic *nic)
1994 {
1995 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1996 struct net_device *dev = nic->dev;
1997 register u64 val64 = 0;
1998 u16 subid, i;
1999 struct mac_info *mac_control;
2000 struct config_param *config;
2001
2002 mac_control = &nic->mac_control;
2003 config = &nic->config;
2004
2005 /* PRC Initialization and configuration */
2006 for (i = 0; i < config->rx_ring_num; i++) {
2007 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2008 &bar0->prc_rxd0_n[i]);
2009
2010 val64 = readq(&bar0->prc_ctrl_n[i]);
2011 if (nic->config.bimodal)
2012 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2013 if (nic->rxd_mode == RXD_MODE_1)
2014 val64 |= PRC_CTRL_RC_ENABLED;
2015 else
2016 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2017 if (nic->device_type == XFRAME_II_DEVICE)
2018 val64 |= PRC_CTRL_GROUP_READS;
2019 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2020 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2021 writeq(val64, &bar0->prc_ctrl_n[i]);
2022 }
2023
2024 if (nic->rxd_mode == RXD_MODE_3B) {
2025 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2026 val64 = readq(&bar0->rx_pa_cfg);
2027 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2028 writeq(val64, &bar0->rx_pa_cfg);
2029 }
2030
2031 if (vlan_tag_strip == 0) {
2032 val64 = readq(&bar0->rx_pa_cfg);
2033 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2034 writeq(val64, &bar0->rx_pa_cfg);
2035 vlan_strip_flag = 0;
2036 }
2037
2038 /*
2039 * Enabling MC-RLDRAM. After enabling the device, we timeout
2040 * for around 100ms, which is approximately the time required
2041 * for the device to be ready for operation.
2042 */
2043 val64 = readq(&bar0->mc_rldram_mrs);
2044 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2045 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2046 val64 = readq(&bar0->mc_rldram_mrs);
2047
2048 msleep(100); /* Delay by around 100 ms. */
2049
2050 /* Enabling ECC Protection. */
2051 val64 = readq(&bar0->adapter_control);
2052 val64 &= ~ADAPTER_ECC_EN;
2053 writeq(val64, &bar0->adapter_control);
2054
2055 /*
2056 * Clearing any possible Link state change interrupts that
2057 * could have popped up just before Enabling the card.
2058 */
2059 val64 = readq(&bar0->mac_rmac_err_reg);
2060 if (val64)
2061 writeq(val64, &bar0->mac_rmac_err_reg);
2062
2063 /*
2064 * Verify if the device is ready to be enabled, if so enable
2065 * it.
2066 */
2067 val64 = readq(&bar0->adapter_status);
2068 if (!verify_xena_quiescence(nic)) {
2069 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2070 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2071 (unsigned long long) val64);
2072 return FAILURE;
2073 }
2074
2075 /*
2076 * With some switches, link might be already up at this point.
2077 * Because of this weird behavior, when we enable laser,
2078 * we may not get link. We need to handle this. We cannot
2079 * figure out which switch is misbehaving. So we are forced to
2080 * make a global change.
2081 */
2082
2083 /* Enabling Laser. */
2084 val64 = readq(&bar0->adapter_control);
2085 val64 |= ADAPTER_EOI_TX_ON;
2086 writeq(val64, &bar0->adapter_control);
2087
2088 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2089 /*
2090 * Dont see link state interrupts initally on some switches,
2091 * so directly scheduling the link state task here.
2092 */
2093 schedule_work(&nic->set_link_task);
2094 }
2095 /* SXE-002: Initialize link and activity LED */
2096 subid = nic->pdev->subsystem_device;
2097 if (((subid & 0xFF) >= 0x07) &&
2098 (nic->device_type == XFRAME_I_DEVICE)) {
2099 val64 = readq(&bar0->gpio_control);
2100 val64 |= 0x0000800000000000ULL;
2101 writeq(val64, &bar0->gpio_control);
2102 val64 = 0x0411040400000000ULL;
2103 writeq(val64, (void __iomem *)bar0 + 0x2700);
2104 }
2105
2106 return SUCCESS;
2107 }
2108 /**
2109 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2110 */
2111 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2112 TxD *txdlp, int get_off)
2113 {
2114 struct s2io_nic *nic = fifo_data->nic;
2115 struct sk_buff *skb;
2116 struct TxD *txds;
2117 u16 j, frg_cnt;
2118
2119 txds = txdlp;
2120 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2121 pci_unmap_single(nic->pdev, (dma_addr_t)
2122 txds->Buffer_Pointer, sizeof(u64),
2123 PCI_DMA_TODEVICE);
2124 txds++;
2125 }
2126
2127 skb = (struct sk_buff *) ((unsigned long)
2128 txds->Host_Control);
2129 if (!skb) {
2130 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2131 return NULL;
2132 }
2133 pci_unmap_single(nic->pdev, (dma_addr_t)
2134 txds->Buffer_Pointer,
2135 skb->len - skb->data_len,
2136 PCI_DMA_TODEVICE);
2137 frg_cnt = skb_shinfo(skb)->nr_frags;
2138 if (frg_cnt) {
2139 txds++;
2140 for (j = 0; j < frg_cnt; j++, txds++) {
2141 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2142 if (!txds->Buffer_Pointer)
2143 break;
2144 pci_unmap_page(nic->pdev, (dma_addr_t)
2145 txds->Buffer_Pointer,
2146 frag->size, PCI_DMA_TODEVICE);
2147 }
2148 }
2149 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2150 return(skb);
2151 }
2152
2153 /**
2154 * free_tx_buffers - Free all queued Tx buffers
2155 * @nic : device private variable.
2156 * Description:
2157 * Free all queued Tx buffers.
2158 * Return Value: void
2159 */
2160
2161 static void free_tx_buffers(struct s2io_nic *nic)
2162 {
2163 struct net_device *dev = nic->dev;
2164 struct sk_buff *skb;
2165 struct TxD *txdp;
2166 int i, j;
2167 struct mac_info *mac_control;
2168 struct config_param *config;
2169 int cnt = 0;
2170
2171 mac_control = &nic->mac_control;
2172 config = &nic->config;
2173
2174 for (i = 0; i < config->tx_fifo_num; i++) {
2175 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2176 txdp = (struct TxD *) \
2177 mac_control->fifos[i].list_info[j].list_virt_addr;
2178 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2179 if (skb) {
2180 nic->mac_control.stats_info->sw_stat.mem_freed
2181 += skb->truesize;
2182 dev_kfree_skb(skb);
2183 cnt++;
2184 }
2185 }
2186 DBG_PRINT(INTR_DBG,
2187 "%s:forcibly freeing %d skbs on FIFO%d\n",
2188 dev->name, cnt, i);
2189 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2190 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2191 }
2192 }
2193
2194 /**
2195 * stop_nic - To stop the nic
2196 * @nic ; device private variable.
2197 * Description:
2198 * This function does exactly the opposite of what the start_nic()
2199 * function does. This function is called to stop the device.
2200 * Return Value:
2201 * void.
2202 */
2203
2204 static void stop_nic(struct s2io_nic *nic)
2205 {
2206 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2207 register u64 val64 = 0;
2208 u16 interruptible;
2209 struct mac_info *mac_control;
2210 struct config_param *config;
2211
2212 mac_control = &nic->mac_control;
2213 config = &nic->config;
2214
2215 /* Disable all interrupts */
2216 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2217 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2218 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2219 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2220
2221 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2222 val64 = readq(&bar0->adapter_control);
2223 val64 &= ~(ADAPTER_CNTL_EN);
2224 writeq(val64, &bar0->adapter_control);
2225 }
2226
2227 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2228 sk_buff *skb)
2229 {
2230 struct net_device *dev = nic->dev;
2231 struct sk_buff *frag_list;
2232 void *tmp;
2233
2234 /* Buffer-1 receives L3/L4 headers */
2235 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2236 (nic->pdev, skb->data, l3l4hdr_size + 4,
2237 PCI_DMA_FROMDEVICE);
2238
2239 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2240 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2241 if (skb_shinfo(skb)->frag_list == NULL) {
2242 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
2243 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2244 return -ENOMEM ;
2245 }
2246 frag_list = skb_shinfo(skb)->frag_list;
2247 skb->truesize += frag_list->truesize;
2248 nic->mac_control.stats_info->sw_stat.mem_allocated
2249 += frag_list->truesize;
2250 frag_list->next = NULL;
2251 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2252 frag_list->data = tmp;
2253 skb_reset_tail_pointer(frag_list);
2254
2255 /* Buffer-2 receives L4 data payload */
2256 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2257 frag_list->data, dev->mtu,
2258 PCI_DMA_FROMDEVICE);
2259 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2260 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2261
2262 return SUCCESS;
2263 }
2264
2265 /**
2266 * fill_rx_buffers - Allocates the Rx side skbs
2267 * @nic: device private variable
2268 * @ring_no: ring number
2269 * Description:
2270 * The function allocates Rx side skbs and puts the physical
2271 * address of these buffers into the RxD buffer pointers, so that the NIC
2272 * can DMA the received frame into these locations.
2273 * The NIC supports 3 receive modes, viz
2274 * 1. single buffer,
2275 * 2. three buffer and
2276 * 3. Five buffer modes.
2277 * Each mode defines how many fragments the received frame will be split
2278 * up into by the NIC. The frame is split into L3 header, L4 Header,
2279 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2280 * is split into 3 fragments. As of now only single buffer mode is
2281 * supported.
2282 * Return Value:
2283 * SUCCESS on success or an appropriate -ve value on failure.
2284 */
2285
2286 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2287 {
2288 struct net_device *dev = nic->dev;
2289 struct sk_buff *skb;
2290 struct RxD_t *rxdp;
2291 int off, off1, size, block_no, block_no1;
2292 u32 alloc_tab = 0;
2293 u32 alloc_cnt;
2294 struct mac_info *mac_control;
2295 struct config_param *config;
2296 u64 tmp;
2297 struct buffAdd *ba;
2298 unsigned long flags;
2299 struct RxD_t *first_rxdp = NULL;
2300 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2301
2302 mac_control = &nic->mac_control;
2303 config = &nic->config;
2304 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2305 atomic_read(&nic->rx_bufs_left[ring_no]);
2306
2307 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2308 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2309 while (alloc_tab < alloc_cnt) {
2310 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2311 block_index;
2312 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2313
2314 rxdp = mac_control->rings[ring_no].
2315 rx_blocks[block_no].rxds[off].virt_addr;
2316
2317 if ((block_no == block_no1) && (off == off1) &&
2318 (rxdp->Host_Control)) {
2319 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2320 dev->name);
2321 DBG_PRINT(INTR_DBG, " info equated\n");
2322 goto end;
2323 }
2324 if (off && (off == rxd_count[nic->rxd_mode])) {
2325 mac_control->rings[ring_no].rx_curr_put_info.
2326 block_index++;
2327 if (mac_control->rings[ring_no].rx_curr_put_info.
2328 block_index == mac_control->rings[ring_no].
2329 block_count)
2330 mac_control->rings[ring_no].rx_curr_put_info.
2331 block_index = 0;
2332 block_no = mac_control->rings[ring_no].
2333 rx_curr_put_info.block_index;
2334 if (off == rxd_count[nic->rxd_mode])
2335 off = 0;
2336 mac_control->rings[ring_no].rx_curr_put_info.
2337 offset = off;
2338 rxdp = mac_control->rings[ring_no].
2339 rx_blocks[block_no].block_virt_addr;
2340 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2341 dev->name, rxdp);
2342 }
2343 if(!napi) {
2344 spin_lock_irqsave(&nic->put_lock, flags);
2345 mac_control->rings[ring_no].put_pos =
2346 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2347 spin_unlock_irqrestore(&nic->put_lock, flags);
2348 } else {
2349 mac_control->rings[ring_no].put_pos =
2350 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2351 }
2352 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2353 ((nic->rxd_mode >= RXD_MODE_3A) &&
2354 (rxdp->Control_2 & BIT(0)))) {
2355 mac_control->rings[ring_no].rx_curr_put_info.
2356 offset = off;
2357 goto end;
2358 }
2359 /* calculate size of skb based on ring mode */
2360 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2361 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2362 if (nic->rxd_mode == RXD_MODE_1)
2363 size += NET_IP_ALIGN;
2364 else if (nic->rxd_mode == RXD_MODE_3B)
2365 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2366 else
2367 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2368
2369 /* allocate skb */
2370 skb = dev_alloc_skb(size);
2371 if(!skb) {
2372 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2373 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2374 if (first_rxdp) {
2375 wmb();
2376 first_rxdp->Control_1 |= RXD_OWN_XENA;
2377 }
2378 nic->mac_control.stats_info->sw_stat. \
2379 mem_alloc_fail_cnt++;
2380 return -ENOMEM ;
2381 }
2382 nic->mac_control.stats_info->sw_stat.mem_allocated
2383 += skb->truesize;
2384 if (nic->rxd_mode == RXD_MODE_1) {
2385 /* 1 buffer mode - normal operation mode */
2386 memset(rxdp, 0, sizeof(struct RxD1));
2387 skb_reserve(skb, NET_IP_ALIGN);
2388 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2389 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2390 PCI_DMA_FROMDEVICE);
2391 rxdp->Control_2 =
2392 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2393
2394 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2395 /*
2396 * 2 or 3 buffer mode -
2397 * Both 2 buffer mode and 3 buffer mode provides 128
2398 * byte aligned receive buffers.
2399 *
2400 * 3 buffer mode provides header separation where in
2401 * skb->data will have L3/L4 headers where as
2402 * skb_shinfo(skb)->frag_list will have the L4 data
2403 * payload
2404 */
2405
2406 /* save buffer pointers to avoid frequent dma mapping */
2407 Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2408 Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
2409 memset(rxdp, 0, sizeof(struct RxD3));
2410 /* restore the buffer pointers for dma sync*/
2411 ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2412 ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2413
2414 ba = &mac_control->rings[ring_no].ba[block_no][off];
2415 skb_reserve(skb, BUF0_LEN);
2416 tmp = (u64)(unsigned long) skb->data;
2417 tmp += ALIGN_SIZE;
2418 tmp &= ~ALIGN_SIZE;
2419 skb->data = (void *) (unsigned long)tmp;
2420 skb_reset_tail_pointer(skb);
2421
2422 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2423 ((struct RxD3*)rxdp)->Buffer0_ptr =
2424 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2425 PCI_DMA_FROMDEVICE);
2426 else
2427 pci_dma_sync_single_for_device(nic->pdev,
2428 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2429 BUF0_LEN, PCI_DMA_FROMDEVICE);
2430 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2431 if (nic->rxd_mode == RXD_MODE_3B) {
2432 /* Two buffer mode */
2433
2434 /*
2435 * Buffer2 will have L3/L4 header plus
2436 * L4 payload
2437 */
2438 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2439 (nic->pdev, skb->data, dev->mtu + 4,
2440 PCI_DMA_FROMDEVICE);
2441
2442 /* Buffer-1 will be dummy buffer. Not used */
2443 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2444 ((struct RxD3*)rxdp)->Buffer1_ptr =
2445 pci_map_single(nic->pdev,
2446 ba->ba_1, BUF1_LEN,
2447 PCI_DMA_FROMDEVICE);
2448 }
2449 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2450 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2451 (dev->mtu + 4);
2452 } else {
2453 /* 3 buffer mode */
2454 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2455 nic->mac_control.stats_info->sw_stat.\
2456 mem_freed += skb->truesize;
2457 dev_kfree_skb_irq(skb);
2458 if (first_rxdp) {
2459 wmb();
2460 first_rxdp->Control_1 |=
2461 RXD_OWN_XENA;
2462 }
2463 return -ENOMEM ;
2464 }
2465 }
2466 rxdp->Control_2 |= BIT(0);
2467 }
2468 rxdp->Host_Control = (unsigned long) (skb);
2469 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2470 rxdp->Control_1 |= RXD_OWN_XENA;
2471 off++;
2472 if (off == (rxd_count[nic->rxd_mode] + 1))
2473 off = 0;
2474 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2475
2476 rxdp->Control_2 |= SET_RXD_MARKER;
2477 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2478 if (first_rxdp) {
2479 wmb();
2480 first_rxdp->Control_1 |= RXD_OWN_XENA;
2481 }
2482 first_rxdp = rxdp;
2483 }
2484 atomic_inc(&nic->rx_bufs_left[ring_no]);
2485 alloc_tab++;
2486 }
2487
2488 end:
2489 /* Transfer ownership of first descriptor to adapter just before
2490 * exiting. Before that, use memory barrier so that ownership
2491 * and other fields are seen by adapter correctly.
2492 */
2493 if (first_rxdp) {
2494 wmb();
2495 first_rxdp->Control_1 |= RXD_OWN_XENA;
2496 }
2497
2498 return SUCCESS;
2499 }
2500
2501 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2502 {
2503 struct net_device *dev = sp->dev;
2504 int j;
2505 struct sk_buff *skb;
2506 struct RxD_t *rxdp;
2507 struct mac_info *mac_control;
2508 struct buffAdd *ba;
2509
2510 mac_control = &sp->mac_control;
2511 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2512 rxdp = mac_control->rings[ring_no].
2513 rx_blocks[blk].rxds[j].virt_addr;
2514 skb = (struct sk_buff *)
2515 ((unsigned long) rxdp->Host_Control);
2516 if (!skb) {
2517 continue;
2518 }
2519 if (sp->rxd_mode == RXD_MODE_1) {
2520 pci_unmap_single(sp->pdev, (dma_addr_t)
2521 ((struct RxD1*)rxdp)->Buffer0_ptr,
2522 dev->mtu +
2523 HEADER_ETHERNET_II_802_3_SIZE
2524 + HEADER_802_2_SIZE +
2525 HEADER_SNAP_SIZE,
2526 PCI_DMA_FROMDEVICE);
2527 memset(rxdp, 0, sizeof(struct RxD1));
2528 } else if(sp->rxd_mode == RXD_MODE_3B) {
2529 ba = &mac_control->rings[ring_no].
2530 ba[blk][j];
2531 pci_unmap_single(sp->pdev, (dma_addr_t)
2532 ((struct RxD3*)rxdp)->Buffer0_ptr,
2533 BUF0_LEN,
2534 PCI_DMA_FROMDEVICE);
2535 pci_unmap_single(sp->pdev, (dma_addr_t)
2536 ((struct RxD3*)rxdp)->Buffer1_ptr,
2537 BUF1_LEN,
2538 PCI_DMA_FROMDEVICE);
2539 pci_unmap_single(sp->pdev, (dma_addr_t)
2540 ((struct RxD3*)rxdp)->Buffer2_ptr,
2541 dev->mtu + 4,
2542 PCI_DMA_FROMDEVICE);
2543 memset(rxdp, 0, sizeof(struct RxD3));
2544 } else {
2545 pci_unmap_single(sp->pdev, (dma_addr_t)
2546 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2547 PCI_DMA_FROMDEVICE);
2548 pci_unmap_single(sp->pdev, (dma_addr_t)
2549 ((struct RxD3*)rxdp)->Buffer1_ptr,
2550 l3l4hdr_size + 4,
2551 PCI_DMA_FROMDEVICE);
2552 pci_unmap_single(sp->pdev, (dma_addr_t)
2553 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2554 PCI_DMA_FROMDEVICE);
2555 memset(rxdp, 0, sizeof(struct RxD3));
2556 }
2557 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2558 dev_kfree_skb(skb);
2559 atomic_dec(&sp->rx_bufs_left[ring_no]);
2560 }
2561 }
2562
2563 /**
2564 * free_rx_buffers - Frees all Rx buffers
2565 * @sp: device private variable.
2566 * Description:
2567 * This function will free all Rx buffers allocated by host.
2568 * Return Value:
2569 * NONE.
2570 */
2571
2572 static void free_rx_buffers(struct s2io_nic *sp)
2573 {
2574 struct net_device *dev = sp->dev;
2575 int i, blk = 0, buf_cnt = 0;
2576 struct mac_info *mac_control;
2577 struct config_param *config;
2578
2579 mac_control = &sp->mac_control;
2580 config = &sp->config;
2581
2582 for (i = 0; i < config->rx_ring_num; i++) {
2583 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2584 free_rxd_blk(sp,i,blk);
2585
2586 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2587 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2588 mac_control->rings[i].rx_curr_put_info.offset = 0;
2589 mac_control->rings[i].rx_curr_get_info.offset = 0;
2590 atomic_set(&sp->rx_bufs_left[i], 0);
2591 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2592 dev->name, buf_cnt, i);
2593 }
2594 }
2595
2596 /**
2597 * s2io_poll - Rx interrupt handler for NAPI support
2598 * @dev : pointer to the device structure.
2599 * @budget : The number of packets that were budgeted to be processed
2600 * during one pass through the 'Poll" function.
2601 * Description:
2602 * Comes into picture only if NAPI support has been incorporated. It does
2603 * the same thing that rx_intr_handler does, but not in a interrupt context
2604 * also It will process only a given number of packets.
2605 * Return value:
2606 * 0 on success and 1 if there are No Rx packets to be processed.
2607 */
2608
2609 static int s2io_poll(struct net_device *dev, int *budget)
2610 {
2611 struct s2io_nic *nic = dev->priv;
2612 int pkt_cnt = 0, org_pkts_to_process;
2613 struct mac_info *mac_control;
2614 struct config_param *config;
2615 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2616 int i;
2617
2618 atomic_inc(&nic->isr_cnt);
2619 mac_control = &nic->mac_control;
2620 config = &nic->config;
2621
2622 nic->pkts_to_process = *budget;
2623 if (nic->pkts_to_process > dev->quota)
2624 nic->pkts_to_process = dev->quota;
2625 org_pkts_to_process = nic->pkts_to_process;
2626
2627 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2628 readl(&bar0->rx_traffic_int);
2629
2630 for (i = 0; i < config->rx_ring_num; i++) {
2631 rx_intr_handler(&mac_control->rings[i]);
2632 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2633 if (!nic->pkts_to_process) {
2634 /* Quota for the current iteration has been met */
2635 goto no_rx;
2636 }
2637 }
2638 if (!pkt_cnt)
2639 pkt_cnt = 1;
2640
2641 dev->quota -= pkt_cnt;
2642 *budget -= pkt_cnt;
2643 netif_rx_complete(dev);
2644
2645 for (i = 0; i < config->rx_ring_num; i++) {
2646 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2647 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2648 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2649 break;
2650 }
2651 }
2652 /* Re enable the Rx interrupts. */
2653 writeq(0x0, &bar0->rx_traffic_mask);
2654 readl(&bar0->rx_traffic_mask);
2655 atomic_dec(&nic->isr_cnt);
2656 return 0;
2657
2658 no_rx:
2659 dev->quota -= pkt_cnt;
2660 *budget -= pkt_cnt;
2661
2662 for (i = 0; i < config->rx_ring_num; i++) {
2663 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2664 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2665 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2666 break;
2667 }
2668 }
2669 atomic_dec(&nic->isr_cnt);
2670 return 1;
2671 }
2672
2673 #ifdef CONFIG_NET_POLL_CONTROLLER
2674 /**
2675 * s2io_netpoll - netpoll event handler entry point
2676 * @dev : pointer to the device structure.
2677 * Description:
2678 * This function will be called by upper layer to check for events on the
2679 * interface in situations where interrupts are disabled. It is used for
2680 * specific in-kernel networking tasks, such as remote consoles and kernel
2681 * debugging over the network (example netdump in RedHat).
2682 */
2683 static void s2io_netpoll(struct net_device *dev)
2684 {
2685 struct s2io_nic *nic = dev->priv;
2686 struct mac_info *mac_control;
2687 struct config_param *config;
2688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2689 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2690 int i;
2691
2692 disable_irq(dev->irq);
2693
2694 atomic_inc(&nic->isr_cnt);
2695 mac_control = &nic->mac_control;
2696 config = &nic->config;
2697
2698 writeq(val64, &bar0->rx_traffic_int);
2699 writeq(val64, &bar0->tx_traffic_int);
2700
2701 /* we need to free up the transmitted skbufs or else netpoll will
2702 * run out of skbs and will fail and eventually netpoll application such
2703 * as netdump will fail.
2704 */
2705 for (i = 0; i < config->tx_fifo_num; i++)
2706 tx_intr_handler(&mac_control->fifos[i]);
2707
2708 /* check for received packet and indicate up to network */
2709 for (i = 0; i < config->rx_ring_num; i++)
2710 rx_intr_handler(&mac_control->rings[i]);
2711
2712 for (i = 0; i < config->rx_ring_num; i++) {
2713 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2714 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2715 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2716 break;
2717 }
2718 }
2719 atomic_dec(&nic->isr_cnt);
2720 enable_irq(dev->irq);
2721 return;
2722 }
2723 #endif
2724
2725 /**
2726 * rx_intr_handler - Rx interrupt handler
2727 * @nic: device private variable.
2728 * Description:
2729 * If the interrupt is because of a received frame or if the
2730 * receive ring contains fresh as yet un-processed frames,this function is
2731 * called. It picks out the RxD at which place the last Rx processing had
2732 * stopped and sends the skb to the OSM's Rx handler and then increments
2733 * the offset.
2734 * Return Value:
2735 * NONE.
2736 */
2737 static void rx_intr_handler(struct ring_info *ring_data)
2738 {
2739 struct s2io_nic *nic = ring_data->nic;
2740 struct net_device *dev = (struct net_device *) nic->dev;
2741 int get_block, put_block, put_offset;
2742 struct rx_curr_get_info get_info, put_info;
2743 struct RxD_t *rxdp;
2744 struct sk_buff *skb;
2745 int pkt_cnt = 0;
2746 int i;
2747
2748 spin_lock(&nic->rx_lock);
2749 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2750 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2751 __FUNCTION__, dev->name);
2752 spin_unlock(&nic->rx_lock);
2753 return;
2754 }
2755
2756 get_info = ring_data->rx_curr_get_info;
2757 get_block = get_info.block_index;
2758 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2759 put_block = put_info.block_index;
2760 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2761 if (!napi) {
2762 spin_lock(&nic->put_lock);
2763 put_offset = ring_data->put_pos;
2764 spin_unlock(&nic->put_lock);
2765 } else
2766 put_offset = ring_data->put_pos;
2767
2768 while (RXD_IS_UP2DT(rxdp)) {
2769 /*
2770 * If your are next to put index then it's
2771 * FIFO full condition
2772 */
2773 if ((get_block == put_block) &&
2774 (get_info.offset + 1) == put_info.offset) {
2775 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2776 break;
2777 }
2778 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2779 if (skb == NULL) {
2780 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2781 dev->name);
2782 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2783 spin_unlock(&nic->rx_lock);
2784 return;
2785 }
2786 if (nic->rxd_mode == RXD_MODE_1) {
2787 pci_unmap_single(nic->pdev, (dma_addr_t)
2788 ((struct RxD1*)rxdp)->Buffer0_ptr,
2789 dev->mtu +
2790 HEADER_ETHERNET_II_802_3_SIZE +
2791 HEADER_802_2_SIZE +
2792 HEADER_SNAP_SIZE,
2793 PCI_DMA_FROMDEVICE);
2794 } else if (nic->rxd_mode == RXD_MODE_3B) {
2795 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2796 ((struct RxD3*)rxdp)->Buffer0_ptr,
2797 BUF0_LEN, PCI_DMA_FROMDEVICE);
2798 pci_unmap_single(nic->pdev, (dma_addr_t)
2799 ((struct RxD3*)rxdp)->Buffer2_ptr,
2800 dev->mtu + 4,
2801 PCI_DMA_FROMDEVICE);
2802 } else {
2803 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2804 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2805 PCI_DMA_FROMDEVICE);
2806 pci_unmap_single(nic->pdev, (dma_addr_t)
2807 ((struct RxD3*)rxdp)->Buffer1_ptr,
2808 l3l4hdr_size + 4,
2809 PCI_DMA_FROMDEVICE);
2810 pci_unmap_single(nic->pdev, (dma_addr_t)
2811 ((struct RxD3*)rxdp)->Buffer2_ptr,
2812 dev->mtu, PCI_DMA_FROMDEVICE);
2813 }
2814 prefetch(skb->data);
2815 rx_osm_handler(ring_data, rxdp);
2816 get_info.offset++;
2817 ring_data->rx_curr_get_info.offset = get_info.offset;
2818 rxdp = ring_data->rx_blocks[get_block].
2819 rxds[get_info.offset].virt_addr;
2820 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2821 get_info.offset = 0;
2822 ring_data->rx_curr_get_info.offset = get_info.offset;
2823 get_block++;
2824 if (get_block == ring_data->block_count)
2825 get_block = 0;
2826 ring_data->rx_curr_get_info.block_index = get_block;
2827 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2828 }
2829
2830 nic->pkts_to_process -= 1;
2831 if ((napi) && (!nic->pkts_to_process))
2832 break;
2833 pkt_cnt++;
2834 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2835 break;
2836 }
2837 if (nic->lro) {
2838 /* Clear all LRO sessions before exiting */
2839 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2840 struct lro *lro = &nic->lro0_n[i];
2841 if (lro->in_use) {
2842 update_L3L4_header(nic, lro);
2843 queue_rx_frame(lro->parent);
2844 clear_lro_session(lro);
2845 }
2846 }
2847 }
2848
2849 spin_unlock(&nic->rx_lock);
2850 }
2851
2852 /**
2853 * tx_intr_handler - Transmit interrupt handler
2854 * @nic : device private variable
2855 * Description:
2856 * If an interrupt was raised to indicate DMA complete of the
2857 * Tx packet, this function is called. It identifies the last TxD
2858 * whose buffer was freed and frees all skbs whose data have already
2859 * DMA'ed into the NICs internal memory.
2860 * Return Value:
2861 * NONE
2862 */
2863
2864 static void tx_intr_handler(struct fifo_info *fifo_data)
2865 {
2866 struct s2io_nic *nic = fifo_data->nic;
2867 struct net_device *dev = (struct net_device *) nic->dev;
2868 struct tx_curr_get_info get_info, put_info;
2869 struct sk_buff *skb;
2870 struct TxD *txdlp;
2871
2872 get_info = fifo_data->tx_curr_get_info;
2873 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2874 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2875 list_virt_addr;
2876 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2877 (get_info.offset != put_info.offset) &&
2878 (txdlp->Host_Control)) {
2879 /* Check for TxD errors */
2880 if (txdlp->Control_1 & TXD_T_CODE) {
2881 unsigned long long err;
2882 err = txdlp->Control_1 & TXD_T_CODE;
2883 if (err & 0x1) {
2884 nic->mac_control.stats_info->sw_stat.
2885 parity_err_cnt++;
2886 }
2887
2888 /* update t_code statistics */
2889 err >>= 48;
2890 switch(err) {
2891 case 2:
2892 nic->mac_control.stats_info->sw_stat.
2893 tx_buf_abort_cnt++;
2894 break;
2895
2896 case 3:
2897 nic->mac_control.stats_info->sw_stat.
2898 tx_desc_abort_cnt++;
2899 break;
2900
2901 case 7:
2902 nic->mac_control.stats_info->sw_stat.
2903 tx_parity_err_cnt++;
2904 break;
2905
2906 case 10:
2907 nic->mac_control.stats_info->sw_stat.
2908 tx_link_loss_cnt++;
2909 break;
2910
2911 case 15:
2912 nic->mac_control.stats_info->sw_stat.
2913 tx_list_proc_err_cnt++;
2914 break;
2915 }
2916 }
2917
2918 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2919 if (skb == NULL) {
2920 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2921 __FUNCTION__);
2922 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2923 return;
2924 }
2925
2926 /* Updating the statistics block */
2927 nic->stats.tx_bytes += skb->len;
2928 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2929 dev_kfree_skb_irq(skb);
2930
2931 get_info.offset++;
2932 if (get_info.offset == get_info.fifo_len + 1)
2933 get_info.offset = 0;
2934 txdlp = (struct TxD *) fifo_data->list_info
2935 [get_info.offset].list_virt_addr;
2936 fifo_data->tx_curr_get_info.offset =
2937 get_info.offset;
2938 }
2939
2940 spin_lock(&nic->tx_lock);
2941 if (netif_queue_stopped(dev))
2942 netif_wake_queue(dev);
2943 spin_unlock(&nic->tx_lock);
2944 }
2945
2946 /**
2947 * s2io_mdio_write - Function to write in to MDIO registers
2948 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2949 * @addr : address value
2950 * @value : data value
2951 * @dev : pointer to net_device structure
2952 * Description:
2953 * This function is used to write values to the MDIO registers
2954 * NONE
2955 */
2956 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2957 {
2958 u64 val64 = 0x0;
2959 struct s2io_nic *sp = dev->priv;
2960 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2961
2962 //address transaction
2963 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2964 | MDIO_MMD_DEV_ADDR(mmd_type)
2965 | MDIO_MMS_PRT_ADDR(0x0);
2966 writeq(val64, &bar0->mdio_control);
2967 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2968 writeq(val64, &bar0->mdio_control);
2969 udelay(100);
2970
2971 //Data transaction
2972 val64 = 0x0;
2973 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2974 | MDIO_MMD_DEV_ADDR(mmd_type)
2975 | MDIO_MMS_PRT_ADDR(0x0)
2976 | MDIO_MDIO_DATA(value)
2977 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2978 writeq(val64, &bar0->mdio_control);
2979 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2980 writeq(val64, &bar0->mdio_control);
2981 udelay(100);
2982
2983 val64 = 0x0;
2984 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985 | MDIO_MMD_DEV_ADDR(mmd_type)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_OP(MDIO_OP_READ_TRANS);
2988 writeq(val64, &bar0->mdio_control);
2989 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2990 writeq(val64, &bar0->mdio_control);
2991 udelay(100);
2992
2993 }
2994
2995 /**
2996 * s2io_mdio_read - Function to write in to MDIO registers
2997 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2998 * @addr : address value
2999 * @dev : pointer to net_device structure
3000 * Description:
3001 * This function is used to read values to the MDIO registers
3002 * NONE
3003 */
3004 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3005 {
3006 u64 val64 = 0x0;
3007 u64 rval64 = 0x0;
3008 struct s2io_nic *sp = dev->priv;
3009 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3010
3011 /* address transaction */
3012 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3013 | MDIO_MMD_DEV_ADDR(mmd_type)
3014 | MDIO_MMS_PRT_ADDR(0x0);
3015 writeq(val64, &bar0->mdio_control);
3016 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3017 writeq(val64, &bar0->mdio_control);
3018 udelay(100);
3019
3020 /* Data transaction */
3021 val64 = 0x0;
3022 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3023 | MDIO_MMD_DEV_ADDR(mmd_type)
3024 | MDIO_MMS_PRT_ADDR(0x0)
3025 | MDIO_OP(MDIO_OP_READ_TRANS);
3026 writeq(val64, &bar0->mdio_control);
3027 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3028 writeq(val64, &bar0->mdio_control);
3029 udelay(100);
3030
3031 /* Read the value from regs */
3032 rval64 = readq(&bar0->mdio_control);
3033 rval64 = rval64 & 0xFFFF0000;
3034 rval64 = rval64 >> 16;
3035 return rval64;
3036 }
3037 /**
3038 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3039 * @counter : couter value to be updated
3040 * @flag : flag to indicate the status
3041 * @type : counter type
3042 * Description:
3043 * This function is to check the status of the xpak counters value
3044 * NONE
3045 */
3046
3047 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3048 {
3049 u64 mask = 0x3;
3050 u64 val64;
3051 int i;
3052 for(i = 0; i <index; i++)
3053 mask = mask << 0x2;
3054
3055 if(flag > 0)
3056 {
3057 *counter = *counter + 1;
3058 val64 = *regs_stat & mask;
3059 val64 = val64 >> (index * 0x2);
3060 val64 = val64 + 1;
3061 if(val64 == 3)
3062 {
3063 switch(type)
3064 {
3065 case 1:
3066 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3067 "service. Excessive temperatures may "
3068 "result in premature transceiver "
3069 "failure \n");
3070 break;
3071 case 2:
3072 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3073 "service Excessive bias currents may "
3074 "indicate imminent laser diode "
3075 "failure \n");
3076 break;
3077 case 3:
3078 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3079 "service Excessive laser output "
3080 "power may saturate far-end "
3081 "receiver\n");
3082 break;
3083 default:
3084 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3085 "type \n");
3086 }
3087 val64 = 0x0;
3088 }
3089 val64 = val64 << (index * 0x2);
3090 *regs_stat = (*regs_stat & (~mask)) | (val64);
3091
3092 } else {
3093 *regs_stat = *regs_stat & (~mask);
3094 }
3095 }
3096
3097 /**
3098 * s2io_updt_xpak_counter - Function to update the xpak counters
3099 * @dev : pointer to net_device struct
3100 * Description:
3101 * This function is to upate the status of the xpak counters value
3102 * NONE
3103 */
3104 static void s2io_updt_xpak_counter(struct net_device *dev)
3105 {
3106 u16 flag = 0x0;
3107 u16 type = 0x0;
3108 u16 val16 = 0x0;
3109 u64 val64 = 0x0;
3110 u64 addr = 0x0;
3111
3112 struct s2io_nic *sp = dev->priv;
3113 struct stat_block *stat_info = sp->mac_control.stats_info;
3114
3115 /* Check the communication with the MDIO slave */
3116 addr = 0x0000;
3117 val64 = 0x0;
3118 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3119 if((val64 == 0xFFFF) || (val64 == 0x0000))
3120 {
3121 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3122 "Returned %llx\n", (unsigned long long)val64);
3123 return;
3124 }
3125
3126 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3127 if(val64 != 0x2040)
3128 {
3129 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3130 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3131 (unsigned long long)val64);
3132 return;
3133 }
3134
3135 /* Loading the DOM register to MDIO register */
3136 addr = 0xA100;
3137 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3138 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3139
3140 /* Reading the Alarm flags */
3141 addr = 0xA070;
3142 val64 = 0x0;
3143 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3144
3145 flag = CHECKBIT(val64, 0x7);
3146 type = 1;
3147 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3148 &stat_info->xpak_stat.xpak_regs_stat,
3149 0x0, flag, type);
3150
3151 if(CHECKBIT(val64, 0x6))
3152 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3153
3154 flag = CHECKBIT(val64, 0x3);
3155 type = 2;
3156 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3157 &stat_info->xpak_stat.xpak_regs_stat,
3158 0x2, flag, type);
3159
3160 if(CHECKBIT(val64, 0x2))
3161 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3162
3163 flag = CHECKBIT(val64, 0x1);
3164 type = 3;
3165 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3166 &stat_info->xpak_stat.xpak_regs_stat,
3167 0x4, flag, type);
3168
3169 if(CHECKBIT(val64, 0x0))
3170 stat_info->xpak_stat.alarm_laser_output_power_low++;
3171
3172 /* Reading the Warning flags */
3173 addr = 0xA074;
3174 val64 = 0x0;
3175 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3176
3177 if(CHECKBIT(val64, 0x7))
3178 stat_info->xpak_stat.warn_transceiver_temp_high++;
3179
3180 if(CHECKBIT(val64, 0x6))
3181 stat_info->xpak_stat.warn_transceiver_temp_low++;
3182
3183 if(CHECKBIT(val64, 0x3))
3184 stat_info->xpak_stat.warn_laser_bias_current_high++;
3185
3186 if(CHECKBIT(val64, 0x2))
3187 stat_info->xpak_stat.warn_laser_bias_current_low++;
3188
3189 if(CHECKBIT(val64, 0x1))
3190 stat_info->xpak_stat.warn_laser_output_power_high++;
3191
3192 if(CHECKBIT(val64, 0x0))
3193 stat_info->xpak_stat.warn_laser_output_power_low++;
3194 }
3195
3196 /**
3197 * alarm_intr_handler - Alarm Interrrupt handler
3198 * @nic: device private variable
3199 * Description: If the interrupt was neither because of Rx packet or Tx
3200 * complete, this function is called. If the interrupt was to indicate
3201 * a loss of link, the OSM link status handler is invoked for any other
3202 * alarm interrupt the block that raised the interrupt is displayed
3203 * and a H/W reset is issued.
3204 * Return Value:
3205 * NONE
3206 */
3207
3208 static void alarm_intr_handler(struct s2io_nic *nic)
3209 {
3210 struct net_device *dev = (struct net_device *) nic->dev;
3211 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3212 register u64 val64 = 0, err_reg = 0;
3213 u64 cnt;
3214 int i;
3215 if (atomic_read(&nic->card_state) == CARD_DOWN)
3216 return;
3217 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3218 /* Handling the XPAK counters update */
3219 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3220 /* waiting for an hour */
3221 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3222 } else {
3223 s2io_updt_xpak_counter(dev);
3224 /* reset the count to zero */
3225 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3226 }
3227
3228 /* Handling link status change error Intr */
3229 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3230 err_reg = readq(&bar0->mac_rmac_err_reg);
3231 writeq(err_reg, &bar0->mac_rmac_err_reg);
3232 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3233 schedule_work(&nic->set_link_task);
3234 }
3235 }
3236
3237 /* Handling Ecc errors */
3238 val64 = readq(&bar0->mc_err_reg);
3239 writeq(val64, &bar0->mc_err_reg);
3240 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3241 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3242 nic->mac_control.stats_info->sw_stat.
3243 double_ecc_errs++;
3244 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3245 dev->name);
3246 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3247 if (nic->device_type != XFRAME_II_DEVICE) {
3248 /* Reset XframeI only if critical error */
3249 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3250 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3251 netif_stop_queue(dev);
3252 schedule_work(&nic->rst_timer_task);
3253 nic->mac_control.stats_info->sw_stat.
3254 soft_reset_cnt++;
3255 }
3256 }
3257 } else {
3258 nic->mac_control.stats_info->sw_stat.
3259 single_ecc_errs++;
3260 }
3261 }
3262
3263 /* In case of a serious error, the device will be Reset. */
3264 val64 = readq(&bar0->serr_source);
3265 if (val64 & SERR_SOURCE_ANY) {
3266 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3267 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3268 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3269 (unsigned long long)val64);
3270 netif_stop_queue(dev);
3271 schedule_work(&nic->rst_timer_task);
3272 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3273 }
3274
3275 /*
3276 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3277 * Error occurs, the adapter will be recycled by disabling the
3278 * adapter enable bit and enabling it again after the device
3279 * becomes Quiescent.
3280 */
3281 val64 = readq(&bar0->pcc_err_reg);
3282 writeq(val64, &bar0->pcc_err_reg);
3283 if (val64 & PCC_FB_ECC_DB_ERR) {
3284 u64 ac = readq(&bar0->adapter_control);
3285 ac &= ~(ADAPTER_CNTL_EN);
3286 writeq(ac, &bar0->adapter_control);
3287 ac = readq(&bar0->adapter_control);
3288 schedule_work(&nic->set_link_task);
3289 }
3290 /* Check for data parity error */
3291 val64 = readq(&bar0->pic_int_status);
3292 if (val64 & PIC_INT_GPIO) {
3293 val64 = readq(&bar0->gpio_int_reg);
3294 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3295 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3296 schedule_work(&nic->rst_timer_task);
3297 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3298 }
3299 }
3300
3301 /* Check for ring full counter */
3302 if (nic->device_type & XFRAME_II_DEVICE) {
3303 val64 = readq(&bar0->ring_bump_counter1);
3304 for (i=0; i<4; i++) {
3305 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3306 cnt >>= 64 - ((i+1)*16);
3307 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3308 += cnt;
3309 }
3310
3311 val64 = readq(&bar0->ring_bump_counter2);
3312 for (i=0; i<4; i++) {
3313 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3314 cnt >>= 64 - ((i+1)*16);
3315 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3316 += cnt;
3317 }
3318 }
3319
3320 /* Other type of interrupts are not being handled now, TODO */
3321 }
3322
3323 /**
3324 * wait_for_cmd_complete - waits for a command to complete.
3325 * @sp : private member of the device structure, which is a pointer to the
3326 * s2io_nic structure.
3327 * Description: Function that waits for a command to Write into RMAC
3328 * ADDR DATA registers to be completed and returns either success or
3329 * error depending on whether the command was complete or not.
3330 * Return value:
3331 * SUCCESS on success and FAILURE on failure.
3332 */
3333
3334 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3335 int bit_state)
3336 {
3337 int ret = FAILURE, cnt = 0, delay = 1;
3338 u64 val64;
3339
3340 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3341 return FAILURE;
3342
3343 do {
3344 val64 = readq(addr);
3345 if (bit_state == S2IO_BIT_RESET) {
3346 if (!(val64 & busy_bit)) {
3347 ret = SUCCESS;
3348 break;
3349 }
3350 } else {
3351 if (!(val64 & busy_bit)) {
3352 ret = SUCCESS;
3353 break;
3354 }
3355 }
3356
3357 if(in_interrupt())
3358 mdelay(delay);
3359 else
3360 msleep(delay);
3361
3362 if (++cnt >= 10)
3363 delay = 50;
3364 } while (cnt < 20);
3365 return ret;
3366 }
3367 /*
3368 * check_pci_device_id - Checks if the device id is supported
3369 * @id : device id
3370 * Description: Function to check if the pci device id is supported by driver.
3371 * Return value: Actual device id if supported else PCI_ANY_ID
3372 */
3373 static u16 check_pci_device_id(u16 id)
3374 {
3375 switch (id) {
3376 case PCI_DEVICE_ID_HERC_WIN:
3377 case PCI_DEVICE_ID_HERC_UNI:
3378 return XFRAME_II_DEVICE;
3379 case PCI_DEVICE_ID_S2IO_UNI:
3380 case PCI_DEVICE_ID_S2IO_WIN:
3381 return XFRAME_I_DEVICE;
3382 default:
3383 return PCI_ANY_ID;
3384 }
3385 }
3386
3387 /**
3388 * s2io_reset - Resets the card.
3389 * @sp : private member of the device structure.
3390 * Description: Function to Reset the card. This function then also
3391 * restores the previously saved PCI configuration space registers as
3392 * the card reset also resets the configuration space.
3393 * Return value:
3394 * void.
3395 */
3396
3397 static void s2io_reset(struct s2io_nic * sp)
3398 {
3399 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3400 u64 val64;
3401 u16 subid, pci_cmd;
3402 int i;
3403 u16 val16;
3404 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3405 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3406
3407 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3408 __FUNCTION__, sp->dev->name);
3409
3410 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3411 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3412
3413 if (sp->device_type == XFRAME_II_DEVICE) {
3414 int ret;
3415 ret = pci_set_power_state(sp->pdev, 3);
3416 if (!ret)
3417 ret = pci_set_power_state(sp->pdev, 0);
3418 else {
3419 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3420 __FUNCTION__);
3421 goto old_way;
3422 }
3423 msleep(20);
3424 goto new_way;
3425 }
3426 old_way:
3427 val64 = SW_RESET_ALL;
3428 writeq(val64, &bar0->sw_reset);
3429 new_way:
3430 if (strstr(sp->product_name, "CX4")) {
3431 msleep(750);
3432 }
3433 msleep(250);
3434 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3435
3436 /* Restore the PCI state saved during initialization. */
3437 pci_restore_state(sp->pdev);
3438 pci_read_config_word(sp->pdev, 0x2, &val16);
3439 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440 break;
3441 msleep(200);
3442 }
3443
3444 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3445 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3446 }
3447
3448 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3449
3450 s2io_init_pci(sp);
3451
3452 /* Set swapper to enable I/O register access */
3453 s2io_set_swapper(sp);
3454
3455 /* Restore the MSIX table entries from local variables */
3456 restore_xmsi_data(sp);
3457
3458 /* Clear certain PCI/PCI-X fields after reset */
3459 if (sp->device_type == XFRAME_II_DEVICE) {
3460 /* Clear "detected parity error" bit */
3461 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3462
3463 /* Clearing PCIX Ecc status register */
3464 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3465
3466 /* Clearing PCI_STATUS error reflected here */
3467 writeq(BIT(62), &bar0->txpic_int_reg);
3468 }
3469
3470 /* Reset device statistics maintained by OS */
3471 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3472
3473 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3474 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3475 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3476 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3477 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3478 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3479 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3480 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3481 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3482 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3483 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3484 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3485 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3486 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3487 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3488 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3489 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3490 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3491 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3492
3493 /* SXE-002: Configure link and activity LED to turn it off */
3494 subid = sp->pdev->subsystem_device;
3495 if (((subid & 0xFF) >= 0x07) &&
3496 (sp->device_type == XFRAME_I_DEVICE)) {
3497 val64 = readq(&bar0->gpio_control);
3498 val64 |= 0x0000800000000000ULL;
3499 writeq(val64, &bar0->gpio_control);
3500 val64 = 0x0411040400000000ULL;
3501 writeq(val64, (void __iomem *)bar0 + 0x2700);
3502 }
3503
3504 /*
3505 * Clear spurious ECC interrupts that would have occured on
3506 * XFRAME II cards after reset.
3507 */
3508 if (sp->device_type == XFRAME_II_DEVICE) {
3509 val64 = readq(&bar0->pcc_err_reg);
3510 writeq(val64, &bar0->pcc_err_reg);
3511 }
3512
3513 /* restore the previously assigned mac address */
3514 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3515
3516 sp->device_enabled_once = FALSE;
3517 }
3518
3519 /**
3520 * s2io_set_swapper - to set the swapper controle on the card
3521 * @sp : private member of the device structure,
3522 * pointer to the s2io_nic structure.
3523 * Description: Function to set the swapper control on the card
3524 * correctly depending on the 'endianness' of the system.
3525 * Return value:
3526 * SUCCESS on success and FAILURE on failure.
3527 */
3528
3529 static int s2io_set_swapper(struct s2io_nic * sp)
3530 {
3531 struct net_device *dev = sp->dev;
3532 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3533 u64 val64, valt, valr;
3534
3535 /*
3536 * Set proper endian settings and verify the same by reading
3537 * the PIF Feed-back register.
3538 */
3539
3540 val64 = readq(&bar0->pif_rd_swapper_fb);
3541 if (val64 != 0x0123456789ABCDEFULL) {
3542 int i = 0;
3543 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3544 0x8100008181000081ULL, /* FE=1, SE=0 */
3545 0x4200004242000042ULL, /* FE=0, SE=1 */
3546 0}; /* FE=0, SE=0 */
3547
3548 while(i<4) {
3549 writeq(value[i], &bar0->swapper_ctrl);
3550 val64 = readq(&bar0->pif_rd_swapper_fb);
3551 if (val64 == 0x0123456789ABCDEFULL)
3552 break;
3553 i++;
3554 }
3555 if (i == 4) {
3556 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3557 dev->name);
3558 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3559 (unsigned long long) val64);
3560 return FAILURE;
3561 }
3562 valr = value[i];
3563 } else {
3564 valr = readq(&bar0->swapper_ctrl);
3565 }
3566
3567 valt = 0x0123456789ABCDEFULL;
3568 writeq(valt, &bar0->xmsi_address);
3569 val64 = readq(&bar0->xmsi_address);
3570
3571 if(val64 != valt) {
3572 int i = 0;
3573 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3574 0x0081810000818100ULL, /* FE=1, SE=0 */
3575 0x0042420000424200ULL, /* FE=0, SE=1 */
3576 0}; /* FE=0, SE=0 */
3577
3578 while(i<4) {
3579 writeq((value[i] | valr), &bar0->swapper_ctrl);
3580 writeq(valt, &bar0->xmsi_address);
3581 val64 = readq(&bar0->xmsi_address);
3582 if(val64 == valt)
3583 break;
3584 i++;
3585 }
3586 if(i == 4) {
3587 unsigned long long x = val64;
3588 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3589 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3590 return FAILURE;
3591 }
3592 }
3593 val64 = readq(&bar0->swapper_ctrl);
3594 val64 &= 0xFFFF000000000000ULL;
3595
3596 #ifdef __BIG_ENDIAN
3597 /*
3598 * The device by default set to a big endian format, so a
3599 * big endian driver need not set anything.
3600 */
3601 val64 |= (SWAPPER_CTRL_TXP_FE |
3602 SWAPPER_CTRL_TXP_SE |
3603 SWAPPER_CTRL_TXD_R_FE |
3604 SWAPPER_CTRL_TXD_W_FE |
3605 SWAPPER_CTRL_TXF_R_FE |
3606 SWAPPER_CTRL_RXD_R_FE |
3607 SWAPPER_CTRL_RXD_W_FE |
3608 SWAPPER_CTRL_RXF_W_FE |
3609 SWAPPER_CTRL_XMSI_FE |
3610 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3611 if (sp->intr_type == INTA)
3612 val64 |= SWAPPER_CTRL_XMSI_SE;
3613 writeq(val64, &bar0->swapper_ctrl);
3614 #else
3615 /*
3616 * Initially we enable all bits to make it accessible by the
3617 * driver, then we selectively enable only those bits that
3618 * we want to set.
3619 */
3620 val64 |= (SWAPPER_CTRL_TXP_FE |
3621 SWAPPER_CTRL_TXP_SE |
3622 SWAPPER_CTRL_TXD_R_FE |
3623 SWAPPER_CTRL_TXD_R_SE |
3624 SWAPPER_CTRL_TXD_W_FE |
3625 SWAPPER_CTRL_TXD_W_SE |
3626 SWAPPER_CTRL_TXF_R_FE |
3627 SWAPPER_CTRL_RXD_R_FE |
3628 SWAPPER_CTRL_RXD_R_SE |
3629 SWAPPER_CTRL_RXD_W_FE |
3630 SWAPPER_CTRL_RXD_W_SE |
3631 SWAPPER_CTRL_RXF_W_FE |
3632 SWAPPER_CTRL_XMSI_FE |
3633 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3634 if (sp->intr_type == INTA)
3635 val64 |= SWAPPER_CTRL_XMSI_SE;
3636 writeq(val64, &bar0->swapper_ctrl);
3637 #endif
3638 val64 = readq(&bar0->swapper_ctrl);
3639
3640 /*
3641 * Verifying if endian settings are accurate by reading a
3642 * feedback register.
3643 */
3644 val64 = readq(&bar0->pif_rd_swapper_fb);
3645 if (val64 != 0x0123456789ABCDEFULL) {
3646 /* Endian settings are incorrect, calls for another dekko. */
3647 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3648 dev->name);
3649 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3650 (unsigned long long) val64);
3651 return FAILURE;
3652 }
3653
3654 return SUCCESS;
3655 }
3656
3657 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3658 {
3659 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3660 u64 val64;
3661 int ret = 0, cnt = 0;
3662
3663 do {
3664 val64 = readq(&bar0->xmsi_access);
3665 if (!(val64 & BIT(15)))
3666 break;
3667 mdelay(1);
3668 cnt++;
3669 } while(cnt < 5);
3670 if (cnt == 5) {
3671 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3672 ret = 1;
3673 }
3674
3675 return ret;
3676 }
3677
3678 static void restore_xmsi_data(struct s2io_nic *nic)
3679 {
3680 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3681 u64 val64;
3682 int i;
3683
3684 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3685 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3686 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3687 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3688 writeq(val64, &bar0->xmsi_access);
3689 if (wait_for_msix_trans(nic, i)) {
3690 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3691 continue;
3692 }
3693 }
3694 }
3695
3696 static void store_xmsi_data(struct s2io_nic *nic)
3697 {
3698 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3699 u64 val64, addr, data;
3700 int i;
3701
3702 /* Store and display */
3703 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3704 val64 = (BIT(15) | vBIT(i, 26, 6));
3705 writeq(val64, &bar0->xmsi_access);
3706 if (wait_for_msix_trans(nic, i)) {
3707 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3708 continue;
3709 }
3710 addr = readq(&bar0->xmsi_address);
3711 data = readq(&bar0->xmsi_data);
3712 if (addr && data) {
3713 nic->msix_info[i].addr = addr;
3714 nic->msix_info[i].data = data;
3715 }
3716 }
3717 }
3718
3719 int s2io_enable_msi(struct s2io_nic *nic)
3720 {
3721 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3722 u16 msi_ctrl, msg_val;
3723 struct config_param *config = &nic->config;
3724 struct net_device *dev = nic->dev;
3725 u64 val64, tx_mat, rx_mat;
3726 int i, err;
3727
3728 val64 = readq(&bar0->pic_control);
3729 val64 &= ~BIT(1);
3730 writeq(val64, &bar0->pic_control);
3731
3732 err = pci_enable_msi(nic->pdev);
3733 if (err) {
3734 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3735 nic->dev->name);
3736 return err;
3737 }
3738
3739 /*
3740 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3741 * for interrupt handling.
3742 */
3743 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3744 msg_val ^= 0x1;
3745 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3746 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3747
3748 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3749 msi_ctrl |= 0x10;
3750 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3751
3752 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3753 tx_mat = readq(&bar0->tx_mat0_n[0]);
3754 for (i=0; i<config->tx_fifo_num; i++) {
3755 tx_mat |= TX_MAT_SET(i, 1);
3756 }
3757 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3758
3759 rx_mat = readq(&bar0->rx_mat);
3760 for (i=0; i<config->rx_ring_num; i++) {
3761 rx_mat |= RX_MAT_SET(i, 1);
3762 }
3763 writeq(rx_mat, &bar0->rx_mat);
3764
3765 dev->irq = nic->pdev->irq;
3766 return 0;
3767 }
3768
3769 static int s2io_enable_msi_x(struct s2io_nic *nic)
3770 {
3771 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3772 u64 tx_mat, rx_mat;
3773 u16 msi_control; /* Temp variable */
3774 int ret, i, j, msix_indx = 1;
3775
3776 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3777 GFP_KERNEL);
3778 if (nic->entries == NULL) {
3779 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3780 __FUNCTION__);
3781 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3782 return -ENOMEM;
3783 }
3784 nic->mac_control.stats_info->sw_stat.mem_allocated
3785 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3786 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3787
3788 nic->s2io_entries =
3789 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3790 GFP_KERNEL);
3791 if (nic->s2io_entries == NULL) {
3792 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3793 __FUNCTION__);
3794 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3795 kfree(nic->entries);
3796 nic->mac_control.stats_info->sw_stat.mem_freed
3797 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3798 return -ENOMEM;
3799 }
3800 nic->mac_control.stats_info->sw_stat.mem_allocated
3801 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3802 memset(nic->s2io_entries, 0,
3803 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3804
3805 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3806 nic->entries[i].entry = i;
3807 nic->s2io_entries[i].entry = i;
3808 nic->s2io_entries[i].arg = NULL;
3809 nic->s2io_entries[i].in_use = 0;
3810 }
3811
3812 tx_mat = readq(&bar0->tx_mat0_n[0]);
3813 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3814 tx_mat |= TX_MAT_SET(i, msix_indx);
3815 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3816 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3817 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3818 }
3819 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3820
3821 if (!nic->config.bimodal) {
3822 rx_mat = readq(&bar0->rx_mat);
3823 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3824 rx_mat |= RX_MAT_SET(j, msix_indx);
3825 nic->s2io_entries[msix_indx].arg
3826 = &nic->mac_control.rings[j];
3827 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3828 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3829 }
3830 writeq(rx_mat, &bar0->rx_mat);
3831 } else {
3832 tx_mat = readq(&bar0->tx_mat0_n[7]);
3833 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3834 tx_mat |= TX_MAT_SET(i, msix_indx);
3835 nic->s2io_entries[msix_indx].arg
3836 = &nic->mac_control.rings[j];
3837 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3838 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3839 }
3840 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3841 }
3842
3843 nic->avail_msix_vectors = 0;
3844 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3845 /* We fail init if error or we get less vectors than min required */
3846 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3847 nic->avail_msix_vectors = ret;
3848 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3849 }
3850 if (ret) {
3851 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3852 kfree(nic->entries);
3853 nic->mac_control.stats_info->sw_stat.mem_freed
3854 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3855 kfree(nic->s2io_entries);
3856 nic->mac_control.stats_info->sw_stat.mem_freed
3857 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3858 nic->entries = NULL;
3859 nic->s2io_entries = NULL;
3860 nic->avail_msix_vectors = 0;
3861 return -ENOMEM;
3862 }
3863 if (!nic->avail_msix_vectors)
3864 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3865
3866 /*
3867 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3868 * in the herc NIC. (Temp change, needs to be removed later)
3869 */
3870 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3871 msi_control |= 0x1; /* Enable MSI */
3872 pci_write_config_word(nic->pdev, 0x42, msi_control);
3873
3874 return 0;
3875 }
3876
3877 /* ********************************************************* *
3878 * Functions defined below concern the OS part of the driver *
3879 * ********************************************************* */
3880
3881 /**
3882 * s2io_open - open entry point of the driver
3883 * @dev : pointer to the device structure.
3884 * Description:
3885 * This function is the open entry point of the driver. It mainly calls a
3886 * function to allocate Rx buffers and inserts them into the buffer
3887 * descriptors and then enables the Rx part of the NIC.
3888 * Return value:
3889 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3890 * file on failure.
3891 */
3892
3893 static int s2io_open(struct net_device *dev)
3894 {
3895 struct s2io_nic *sp = dev->priv;
3896 int err = 0;
3897
3898 /*
3899 * Make sure you have link off by default every time
3900 * Nic is initialized
3901 */
3902 netif_carrier_off(dev);
3903 sp->last_link_state = 0;
3904
3905 /* Initialize H/W and enable interrupts */
3906 err = s2io_card_up(sp);
3907 if (err) {
3908 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3909 dev->name);
3910 goto hw_init_failed;
3911 }
3912
3913 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3914 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3915 s2io_card_down(sp);
3916 err = -ENODEV;
3917 goto hw_init_failed;
3918 }
3919
3920 netif_start_queue(dev);
3921 return 0;
3922
3923 hw_init_failed:
3924 if (sp->intr_type == MSI_X) {
3925 if (sp->entries) {
3926 kfree(sp->entries);
3927 sp->mac_control.stats_info->sw_stat.mem_freed
3928 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3929 }
3930 if (sp->s2io_entries) {
3931 kfree(sp->s2io_entries);
3932 sp->mac_control.stats_info->sw_stat.mem_freed
3933 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3934 }
3935 }
3936 return err;
3937 }
3938
3939 /**
3940 * s2io_close -close entry point of the driver
3941 * @dev : device pointer.
3942 * Description:
3943 * This is the stop entry point of the driver. It needs to undo exactly
3944 * whatever was done by the open entry point,thus it's usually referred to
3945 * as the close function.Among other things this function mainly stops the
3946 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3947 * Return value:
3948 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3949 * file on failure.
3950 */
3951
3952 static int s2io_close(struct net_device *dev)
3953 {
3954 struct s2io_nic *sp = dev->priv;
3955
3956 netif_stop_queue(dev);
3957 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3958 s2io_card_down(sp);
3959
3960 sp->device_close_flag = TRUE; /* Device is shut down. */
3961 return 0;
3962 }
3963
3964 /**
3965 * s2io_xmit - Tx entry point of te driver
3966 * @skb : the socket buffer containing the Tx data.
3967 * @dev : device pointer.
3968 * Description :
3969 * This function is the Tx entry point of the driver. S2IO NIC supports
3970 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3971 * NOTE: when device cant queue the pkt,just the trans_start variable will
3972 * not be upadted.
3973 * Return value:
3974 * 0 on success & 1 on failure.
3975 */
3976
3977 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3978 {
3979 struct s2io_nic *sp = dev->priv;
3980 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3981 register u64 val64;
3982 struct TxD *txdp;
3983 struct TxFIFO_element __iomem *tx_fifo;
3984 unsigned long flags;
3985 u16 vlan_tag = 0;
3986 int vlan_priority = 0;
3987 struct mac_info *mac_control;
3988 struct config_param *config;
3989 int offload_type;
3990
3991 mac_control = &sp->mac_control;
3992 config = &sp->config;
3993
3994 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3995
3996 if (unlikely(skb->len <= 0)) {
3997 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3998 dev_kfree_skb_any(skb);
3999 return 0;
4000 }
4001
4002 spin_lock_irqsave(&sp->tx_lock, flags);
4003 if (atomic_read(&sp->card_state) == CARD_DOWN) {
4004 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4005 dev->name);
4006 spin_unlock_irqrestore(&sp->tx_lock, flags);
4007 dev_kfree_skb(skb);
4008 return 0;
4009 }
4010
4011 queue = 0;
4012 /* Get Fifo number to Transmit based on vlan priority */
4013 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4014 vlan_tag = vlan_tx_tag_get(skb);
4015 vlan_priority = vlan_tag >> 13;
4016 queue = config->fifo_mapping[vlan_priority];
4017 }
4018
4019 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4020 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4021 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4022 list_virt_addr;
4023
4024 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4025 /* Avoid "put" pointer going beyond "get" pointer */
4026 if (txdp->Host_Control ||
4027 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4028 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4029 netif_stop_queue(dev);
4030 dev_kfree_skb(skb);
4031 spin_unlock_irqrestore(&sp->tx_lock, flags);
4032 return 0;
4033 }
4034
4035 offload_type = s2io_offload_type(skb);
4036 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4037 txdp->Control_1 |= TXD_TCP_LSO_EN;
4038 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4039 }
4040 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4041 txdp->Control_2 |=
4042 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4043 TXD_TX_CKO_UDP_EN);
4044 }
4045 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4046 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4047 txdp->Control_2 |= config->tx_intr_type;
4048
4049 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4050 txdp->Control_2 |= TXD_VLAN_ENABLE;
4051 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4052 }
4053
4054 frg_len = skb->len - skb->data_len;
4055 if (offload_type == SKB_GSO_UDP) {
4056 int ufo_size;
4057
4058 ufo_size = s2io_udp_mss(skb);
4059 ufo_size &= ~7;
4060 txdp->Control_1 |= TXD_UFO_EN;
4061 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4062 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4063 #ifdef __BIG_ENDIAN
4064 sp->ufo_in_band_v[put_off] =
4065 (u64)skb_shinfo(skb)->ip6_frag_id;
4066 #else
4067 sp->ufo_in_band_v[put_off] =
4068 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4069 #endif
4070 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4071 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4072 sp->ufo_in_band_v,
4073 sizeof(u64), PCI_DMA_TODEVICE);
4074 txdp++;
4075 }
4076
4077 txdp->Buffer_Pointer = pci_map_single
4078 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4079 txdp->Host_Control = (unsigned long) skb;
4080 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4081 if (offload_type == SKB_GSO_UDP)
4082 txdp->Control_1 |= TXD_UFO_EN;
4083
4084 frg_cnt = skb_shinfo(skb)->nr_frags;
4085 /* For fragmented SKB. */
4086 for (i = 0; i < frg_cnt; i++) {
4087 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4088 /* A '0' length fragment will be ignored */
4089 if (!frag->size)
4090 continue;
4091 txdp++;
4092 txdp->Buffer_Pointer = (u64) pci_map_page
4093 (sp->pdev, frag->page, frag->page_offset,
4094 frag->size, PCI_DMA_TODEVICE);
4095 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4096 if (offload_type == SKB_GSO_UDP)
4097 txdp->Control_1 |= TXD_UFO_EN;
4098 }
4099 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4100
4101 if (offload_type == SKB_GSO_UDP)
4102 frg_cnt++; /* as Txd0 was used for inband header */
4103
4104 tx_fifo = mac_control->tx_FIFO_start[queue];
4105 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4106 writeq(val64, &tx_fifo->TxDL_Pointer);
4107
4108 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4109 TX_FIFO_LAST_LIST);
4110 if (offload_type)
4111 val64 |= TX_FIFO_SPECIAL_FUNC;
4112
4113 writeq(val64, &tx_fifo->List_Control);
4114
4115 mmiowb();
4116
4117 put_off++;
4118 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4119 put_off = 0;
4120 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4121
4122 /* Avoid "put" pointer going beyond "get" pointer */
4123 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4124 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4125 DBG_PRINT(TX_DBG,
4126 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4127 put_off, get_off);
4128 netif_stop_queue(dev);
4129 }
4130 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4131 dev->trans_start = jiffies;
4132 spin_unlock_irqrestore(&sp->tx_lock, flags);
4133
4134 return 0;
4135 }
4136
4137 static void
4138 s2io_alarm_handle(unsigned long data)
4139 {
4140 struct s2io_nic *sp = (struct s2io_nic *)data;
4141
4142 alarm_intr_handler(sp);
4143 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4144 }
4145
4146 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4147 {
4148 int rxb_size, level;
4149
4150 if (!sp->lro) {
4151 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4152 level = rx_buffer_level(sp, rxb_size, rng_n);
4153
4154 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4155 int ret;
4156 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4157 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4158 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4159 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4160 __FUNCTION__);
4161 clear_bit(0, (&sp->tasklet_status));
4162 return -1;
4163 }
4164 clear_bit(0, (&sp->tasklet_status));
4165 } else if (level == LOW)
4166 tasklet_schedule(&sp->task);
4167
4168 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4169 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4170 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4171 }
4172 return 0;
4173 }
4174
4175 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4176 {
4177 struct net_device *dev = (struct net_device *) dev_id;
4178 struct s2io_nic *sp = dev->priv;
4179 int i;
4180 struct mac_info *mac_control;
4181 struct config_param *config;
4182
4183 atomic_inc(&sp->isr_cnt);
4184 mac_control = &sp->mac_control;
4185 config = &sp->config;
4186 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4187
4188 /* If Intr is because of Rx Traffic */
4189 for (i = 0; i < config->rx_ring_num; i++)
4190 rx_intr_handler(&mac_control->rings[i]);
4191
4192 /* If Intr is because of Tx Traffic */
4193 for (i = 0; i < config->tx_fifo_num; i++)
4194 tx_intr_handler(&mac_control->fifos[i]);
4195
4196 /*
4197 * If the Rx buffer count is below the panic threshold then
4198 * reallocate the buffers from the interrupt handler itself,
4199 * else schedule a tasklet to reallocate the buffers.
4200 */
4201 for (i = 0; i < config->rx_ring_num; i++)
4202 s2io_chk_rx_buffers(sp, i);
4203
4204 atomic_dec(&sp->isr_cnt);
4205 return IRQ_HANDLED;
4206 }
4207
4208 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4209 {
4210 struct ring_info *ring = (struct ring_info *)dev_id;
4211 struct s2io_nic *sp = ring->nic;
4212
4213 atomic_inc(&sp->isr_cnt);
4214
4215 rx_intr_handler(ring);
4216 s2io_chk_rx_buffers(sp, ring->ring_no);
4217
4218 atomic_dec(&sp->isr_cnt);
4219 return IRQ_HANDLED;
4220 }
4221
4222 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4223 {
4224 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4225 struct s2io_nic *sp = fifo->nic;
4226
4227 atomic_inc(&sp->isr_cnt);
4228 tx_intr_handler(fifo);
4229 atomic_dec(&sp->isr_cnt);
4230 return IRQ_HANDLED;
4231 }
4232 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4233 {
4234 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4235 u64 val64;
4236
4237 val64 = readq(&bar0->pic_int_status);
4238 if (val64 & PIC_INT_GPIO) {
4239 val64 = readq(&bar0->gpio_int_reg);
4240 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4241 (val64 & GPIO_INT_REG_LINK_UP)) {
4242 /*
4243 * This is unstable state so clear both up/down
4244 * interrupt and adapter to re-evaluate the link state.
4245 */
4246 val64 |= GPIO_INT_REG_LINK_DOWN;
4247 val64 |= GPIO_INT_REG_LINK_UP;
4248 writeq(val64, &bar0->gpio_int_reg);
4249 val64 = readq(&bar0->gpio_int_mask);
4250 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4251 GPIO_INT_MASK_LINK_DOWN);
4252 writeq(val64, &bar0->gpio_int_mask);
4253 }
4254 else if (val64 & GPIO_INT_REG_LINK_UP) {
4255 val64 = readq(&bar0->adapter_status);
4256 /* Enable Adapter */
4257 val64 = readq(&bar0->adapter_control);
4258 val64 |= ADAPTER_CNTL_EN;
4259 writeq(val64, &bar0->adapter_control);
4260 val64 |= ADAPTER_LED_ON;
4261 writeq(val64, &bar0->adapter_control);
4262 if (!sp->device_enabled_once)
4263 sp->device_enabled_once = 1;
4264
4265 s2io_link(sp, LINK_UP);
4266 /*
4267 * unmask link down interrupt and mask link-up
4268 * intr
4269 */
4270 val64 = readq(&bar0->gpio_int_mask);
4271 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4272 val64 |= GPIO_INT_MASK_LINK_UP;
4273 writeq(val64, &bar0->gpio_int_mask);
4274
4275 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4276 val64 = readq(&bar0->adapter_status);
4277 s2io_link(sp, LINK_DOWN);
4278 /* Link is down so unmaks link up interrupt */
4279 val64 = readq(&bar0->gpio_int_mask);
4280 val64 &= ~GPIO_INT_MASK_LINK_UP;
4281 val64 |= GPIO_INT_MASK_LINK_DOWN;
4282 writeq(val64, &bar0->gpio_int_mask);
4283
4284 /* turn off LED */
4285 val64 = readq(&bar0->adapter_control);
4286 val64 = val64 &(~ADAPTER_LED_ON);
4287 writeq(val64, &bar0->adapter_control);
4288 }
4289 }
4290 val64 = readq(&bar0->gpio_int_mask);
4291 }
4292
4293 /**
4294 * s2io_isr - ISR handler of the device .
4295 * @irq: the irq of the device.
4296 * @dev_id: a void pointer to the dev structure of the NIC.
4297 * Description: This function is the ISR handler of the device. It
4298 * identifies the reason for the interrupt and calls the relevant
4299 * service routines. As a contongency measure, this ISR allocates the
4300 * recv buffers, if their numbers are below the panic value which is
4301 * presently set to 25% of the original number of rcv buffers allocated.
4302 * Return value:
4303 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4304 * IRQ_NONE: will be returned if interrupt is not from our device
4305 */
4306 static irqreturn_t s2io_isr(int irq, void *dev_id)
4307 {
4308 struct net_device *dev = (struct net_device *) dev_id;
4309 struct s2io_nic *sp = dev->priv;
4310 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4311 int i;
4312 u64 reason = 0;
4313 struct mac_info *mac_control;
4314 struct config_param *config;
4315
4316 atomic_inc(&sp->isr_cnt);
4317 mac_control = &sp->mac_control;
4318 config = &sp->config;
4319
4320 /*
4321 * Identify the cause for interrupt and call the appropriate
4322 * interrupt handler. Causes for the interrupt could be;
4323 * 1. Rx of packet.
4324 * 2. Tx complete.
4325 * 3. Link down.
4326 * 4. Error in any functional blocks of the NIC.
4327 */
4328 reason = readq(&bar0->general_int_status);
4329
4330 if (!reason) {
4331 /* The interrupt was not raised by us. */
4332 atomic_dec(&sp->isr_cnt);
4333 return IRQ_NONE;
4334 }
4335 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4336 /* Disable device and get out */
4337 atomic_dec(&sp->isr_cnt);
4338 return IRQ_NONE;
4339 }
4340
4341 if (napi) {
4342 if (reason & GEN_INTR_RXTRAFFIC) {
4343 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4344 __netif_rx_schedule(dev);
4345 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4346 }
4347 else
4348 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4349 }
4350 } else {
4351 /*
4352 * Rx handler is called by default, without checking for the
4353 * cause of interrupt.
4354 * rx_traffic_int reg is an R1 register, writing all 1's
4355 * will ensure that the actual interrupt causing bit get's
4356 * cleared and hence a read can be avoided.
4357 */
4358 if (reason & GEN_INTR_RXTRAFFIC)
4359 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4360
4361 for (i = 0; i < config->rx_ring_num; i++) {
4362 rx_intr_handler(&mac_control->rings[i]);
4363 }
4364 }
4365
4366 /*
4367 * tx_traffic_int reg is an R1 register, writing all 1's
4368 * will ensure that the actual interrupt causing bit get's
4369 * cleared and hence a read can be avoided.
4370 */
4371 if (reason & GEN_INTR_TXTRAFFIC)
4372 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4373
4374 for (i = 0; i < config->tx_fifo_num; i++)
4375 tx_intr_handler(&mac_control->fifos[i]);
4376
4377 if (reason & GEN_INTR_TXPIC)
4378 s2io_txpic_intr_handle(sp);
4379 /*
4380 * If the Rx buffer count is below the panic threshold then
4381 * reallocate the buffers from the interrupt handler itself,
4382 * else schedule a tasklet to reallocate the buffers.
4383 */
4384 if (!napi) {
4385 for (i = 0; i < config->rx_ring_num; i++)
4386 s2io_chk_rx_buffers(sp, i);
4387 }
4388
4389 writeq(0, &bar0->general_int_mask);
4390 readl(&bar0->general_int_status);
4391
4392 atomic_dec(&sp->isr_cnt);
4393 return IRQ_HANDLED;
4394 }
4395
4396 /**
4397 * s2io_updt_stats -
4398 */
4399 static void s2io_updt_stats(struct s2io_nic *sp)
4400 {
4401 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4402 u64 val64;
4403 int cnt = 0;
4404
4405 if (atomic_read(&sp->card_state) == CARD_UP) {
4406 /* Apprx 30us on a 133 MHz bus */
4407 val64 = SET_UPDT_CLICKS(10) |
4408 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4409 writeq(val64, &bar0->stat_cfg);
4410 do {
4411 udelay(100);
4412 val64 = readq(&bar0->stat_cfg);
4413 if (!(val64 & BIT(0)))
4414 break;
4415 cnt++;
4416 if (cnt == 5)
4417 break; /* Updt failed */
4418 } while(1);
4419 }
4420 }
4421
4422 /**
4423 * s2io_get_stats - Updates the device statistics structure.
4424 * @dev : pointer to the device structure.
4425 * Description:
4426 * This function updates the device statistics structure in the s2io_nic
4427 * structure and returns a pointer to the same.
4428 * Return value:
4429 * pointer to the updated net_device_stats structure.
4430 */
4431
4432 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4433 {
4434 struct s2io_nic *sp = dev->priv;
4435 struct mac_info *mac_control;
4436 struct config_param *config;
4437
4438
4439 mac_control = &sp->mac_control;
4440 config = &sp->config;
4441
4442 /* Configure Stats for immediate updt */
4443 s2io_updt_stats(sp);
4444
4445 sp->stats.tx_packets =
4446 le32_to_cpu(mac_control->stats_info->tmac_frms);
4447 sp->stats.tx_errors =
4448 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4449 sp->stats.rx_errors =
4450 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4451 sp->stats.multicast =
4452 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4453 sp->stats.rx_length_errors =
4454 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4455
4456 return (&sp->stats);
4457 }
4458
4459 /**
4460 * s2io_set_multicast - entry point for multicast address enable/disable.
4461 * @dev : pointer to the device structure
4462 * Description:
4463 * This function is a driver entry point which gets called by the kernel
4464 * whenever multicast addresses must be enabled/disabled. This also gets
4465 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4466 * determine, if multicast address must be enabled or if promiscuous mode
4467 * is to be disabled etc.
4468 * Return value:
4469 * void.
4470 */
4471
4472 static void s2io_set_multicast(struct net_device *dev)
4473 {
4474 int i, j, prev_cnt;
4475 struct dev_mc_list *mclist;
4476 struct s2io_nic *sp = dev->priv;
4477 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4478 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4479 0xfeffffffffffULL;
4480 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4481 void __iomem *add;
4482
4483 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4484 /* Enable all Multicast addresses */
4485 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4486 &bar0->rmac_addr_data0_mem);
4487 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4488 &bar0->rmac_addr_data1_mem);
4489 val64 = RMAC_ADDR_CMD_MEM_WE |
4490 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4491 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4492 writeq(val64, &bar0->rmac_addr_cmd_mem);
4493 /* Wait till command completes */
4494 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4495 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4496 S2IO_BIT_RESET);
4497
4498 sp->m_cast_flg = 1;
4499 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4500 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4501 /* Disable all Multicast addresses */
4502 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4503 &bar0->rmac_addr_data0_mem);
4504 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4505 &bar0->rmac_addr_data1_mem);
4506 val64 = RMAC_ADDR_CMD_MEM_WE |
4507 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4508 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4509 writeq(val64, &bar0->rmac_addr_cmd_mem);
4510 /* Wait till command completes */
4511 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4512 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4513 S2IO_BIT_RESET);
4514
4515 sp->m_cast_flg = 0;
4516 sp->all_multi_pos = 0;
4517 }
4518
4519 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4520 /* Put the NIC into promiscuous mode */
4521 add = &bar0->mac_cfg;
4522 val64 = readq(&bar0->mac_cfg);
4523 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4524
4525 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4526 writel((u32) val64, add);
4527 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4528 writel((u32) (val64 >> 32), (add + 4));
4529
4530 if (vlan_tag_strip != 1) {
4531 val64 = readq(&bar0->rx_pa_cfg);
4532 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4533 writeq(val64, &bar0->rx_pa_cfg);
4534 vlan_strip_flag = 0;
4535 }
4536
4537 val64 = readq(&bar0->mac_cfg);
4538 sp->promisc_flg = 1;
4539 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4540 dev->name);
4541 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4542 /* Remove the NIC from promiscuous mode */
4543 add = &bar0->mac_cfg;
4544 val64 = readq(&bar0->mac_cfg);
4545 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4546
4547 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4548 writel((u32) val64, add);
4549 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4550 writel((u32) (val64 >> 32), (add + 4));
4551
4552 if (vlan_tag_strip != 0) {
4553 val64 = readq(&bar0->rx_pa_cfg);
4554 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4555 writeq(val64, &bar0->rx_pa_cfg);
4556 vlan_strip_flag = 1;
4557 }
4558
4559 val64 = readq(&bar0->mac_cfg);
4560 sp->promisc_flg = 0;
4561 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4562 dev->name);
4563 }
4564
4565 /* Update individual M_CAST address list */
4566 if ((!sp->m_cast_flg) && dev->mc_count) {
4567 if (dev->mc_count >
4568 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4569 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4570 dev->name);
4571 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4572 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4573 return;
4574 }
4575
4576 prev_cnt = sp->mc_addr_count;
4577 sp->mc_addr_count = dev->mc_count;
4578
4579 /* Clear out the previous list of Mc in the H/W. */
4580 for (i = 0; i < prev_cnt; i++) {
4581 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4582 &bar0->rmac_addr_data0_mem);
4583 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4584 &bar0->rmac_addr_data1_mem);
4585 val64 = RMAC_ADDR_CMD_MEM_WE |
4586 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4587 RMAC_ADDR_CMD_MEM_OFFSET
4588 (MAC_MC_ADDR_START_OFFSET + i);
4589 writeq(val64, &bar0->rmac_addr_cmd_mem);
4590
4591 /* Wait for command completes */
4592 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4593 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4594 S2IO_BIT_RESET)) {
4595 DBG_PRINT(ERR_DBG, "%s: Adding ",
4596 dev->name);
4597 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4598 return;
4599 }
4600 }
4601
4602 /* Create the new Rx filter list and update the same in H/W. */
4603 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4604 i++, mclist = mclist->next) {
4605 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4606 ETH_ALEN);
4607 mac_addr = 0;
4608 for (j = 0; j < ETH_ALEN; j++) {
4609 mac_addr |= mclist->dmi_addr[j];
4610 mac_addr <<= 8;
4611 }
4612 mac_addr >>= 8;
4613 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4614 &bar0->rmac_addr_data0_mem);
4615 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4616 &bar0->rmac_addr_data1_mem);
4617 val64 = RMAC_ADDR_CMD_MEM_WE |
4618 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4619 RMAC_ADDR_CMD_MEM_OFFSET
4620 (i + MAC_MC_ADDR_START_OFFSET);
4621 writeq(val64, &bar0->rmac_addr_cmd_mem);
4622
4623 /* Wait for command completes */
4624 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4625 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4626 S2IO_BIT_RESET)) {
4627 DBG_PRINT(ERR_DBG, "%s: Adding ",
4628 dev->name);
4629 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4630 return;
4631 }
4632 }
4633 }
4634 }
4635
4636 /**
4637 * s2io_set_mac_addr - Programs the Xframe mac address
4638 * @dev : pointer to the device structure.
4639 * @addr: a uchar pointer to the new mac address which is to be set.
4640 * Description : This procedure will program the Xframe to receive
4641 * frames with new Mac Address
4642 * Return value: SUCCESS on success and an appropriate (-)ve integer
4643 * as defined in errno.h file on failure.
4644 */
4645
4646 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4647 {
4648 struct s2io_nic *sp = dev->priv;
4649 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4650 register u64 val64, mac_addr = 0;
4651 int i;
4652 u64 old_mac_addr = 0;
4653
4654 /*
4655 * Set the new MAC address as the new unicast filter and reflect this
4656 * change on the device address registered with the OS. It will be
4657 * at offset 0.
4658 */
4659 for (i = 0; i < ETH_ALEN; i++) {
4660 mac_addr <<= 8;
4661 mac_addr |= addr[i];
4662 old_mac_addr <<= 8;
4663 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4664 }
4665
4666 if(0 == mac_addr)
4667 return SUCCESS;
4668
4669 /* Update the internal structure with this new mac address */
4670 if(mac_addr != old_mac_addr) {
4671 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4672 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4673 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4674 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4675 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4676 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4677 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4678 }
4679
4680 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4681 &bar0->rmac_addr_data0_mem);
4682
4683 val64 =
4684 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4685 RMAC_ADDR_CMD_MEM_OFFSET(0);
4686 writeq(val64, &bar0->rmac_addr_cmd_mem);
4687 /* Wait till command completes */
4688 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4689 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4690 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4691 return FAILURE;
4692 }
4693
4694 return SUCCESS;
4695 }
4696
4697 /**
4698 * s2io_ethtool_sset - Sets different link parameters.
4699 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4700 * @info: pointer to the structure with parameters given by ethtool to set
4701 * link information.
4702 * Description:
4703 * The function sets different link parameters provided by the user onto
4704 * the NIC.
4705 * Return value:
4706 * 0 on success.
4707 */
4708
4709 static int s2io_ethtool_sset(struct net_device *dev,
4710 struct ethtool_cmd *info)
4711 {
4712 struct s2io_nic *sp = dev->priv;
4713 if ((info->autoneg == AUTONEG_ENABLE) ||
4714 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4715 return -EINVAL;
4716 else {
4717 s2io_close(sp->dev);
4718 s2io_open(sp->dev);
4719 }
4720
4721 return 0;
4722 }
4723
4724 /**
4725 * s2io_ethtol_gset - Return link specific information.
4726 * @sp : private member of the device structure, pointer to the
4727 * s2io_nic structure.
4728 * @info : pointer to the structure with parameters given by ethtool
4729 * to return link information.
4730 * Description:
4731 * Returns link specific information like speed, duplex etc.. to ethtool.
4732 * Return value :
4733 * return 0 on success.
4734 */
4735
4736 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4737 {
4738 struct s2io_nic *sp = dev->priv;
4739 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4740 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4741 info->port = PORT_FIBRE;
4742 /* info->transceiver?? TODO */
4743
4744 if (netif_carrier_ok(sp->dev)) {
4745 info->speed = 10000;
4746 info->duplex = DUPLEX_FULL;
4747 } else {
4748 info->speed = -1;
4749 info->duplex = -1;
4750 }
4751
4752 info->autoneg = AUTONEG_DISABLE;
4753 return 0;
4754 }
4755
4756 /**
4757 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4758 * @sp : private member of the device structure, which is a pointer to the
4759 * s2io_nic structure.
4760 * @info : pointer to the structure with parameters given by ethtool to
4761 * return driver information.
4762 * Description:
4763 * Returns driver specefic information like name, version etc.. to ethtool.
4764 * Return value:
4765 * void
4766 */
4767
4768 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4769 struct ethtool_drvinfo *info)
4770 {
4771 struct s2io_nic *sp = dev->priv;
4772
4773 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4774 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4775 strncpy(info->fw_version, "", sizeof(info->fw_version));
4776 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4777 info->regdump_len = XENA_REG_SPACE;
4778 info->eedump_len = XENA_EEPROM_SPACE;
4779 info->testinfo_len = S2IO_TEST_LEN;
4780
4781 if (sp->device_type == XFRAME_I_DEVICE)
4782 info->n_stats = XFRAME_I_STAT_LEN;
4783 else
4784 info->n_stats = XFRAME_II_STAT_LEN;
4785 }
4786
4787 /**
4788 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4789 * @sp: private member of the device structure, which is a pointer to the
4790 * s2io_nic structure.
4791 * @regs : pointer to the structure with parameters given by ethtool for
4792 * dumping the registers.
4793 * @reg_space: The input argumnet into which all the registers are dumped.
4794 * Description:
4795 * Dumps the entire register space of xFrame NIC into the user given
4796 * buffer area.
4797 * Return value :
4798 * void .
4799 */
4800
4801 static void s2io_ethtool_gregs(struct net_device *dev,
4802 struct ethtool_regs *regs, void *space)
4803 {
4804 int i;
4805 u64 reg;
4806 u8 *reg_space = (u8 *) space;
4807 struct s2io_nic *sp = dev->priv;
4808
4809 regs->len = XENA_REG_SPACE;
4810 regs->version = sp->pdev->subsystem_device;
4811
4812 for (i = 0; i < regs->len; i += 8) {
4813 reg = readq(sp->bar0 + i);
4814 memcpy((reg_space + i), &reg, 8);
4815 }
4816 }
4817
4818 /**
4819 * s2io_phy_id - timer function that alternates adapter LED.
4820 * @data : address of the private member of the device structure, which
4821 * is a pointer to the s2io_nic structure, provided as an u32.
4822 * Description: This is actually the timer function that alternates the
4823 * adapter LED bit of the adapter control bit to set/reset every time on
4824 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4825 * once every second.
4826 */
4827 static void s2io_phy_id(unsigned long data)
4828 {
4829 struct s2io_nic *sp = (struct s2io_nic *) data;
4830 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4831 u64 val64 = 0;
4832 u16 subid;
4833
4834 subid = sp->pdev->subsystem_device;
4835 if ((sp->device_type == XFRAME_II_DEVICE) ||
4836 ((subid & 0xFF) >= 0x07)) {
4837 val64 = readq(&bar0->gpio_control);
4838 val64 ^= GPIO_CTRL_GPIO_0;
4839 writeq(val64, &bar0->gpio_control);
4840 } else {
4841 val64 = readq(&bar0->adapter_control);
4842 val64 ^= ADAPTER_LED_ON;
4843 writeq(val64, &bar0->adapter_control);
4844 }
4845
4846 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4847 }
4848
4849 /**
4850 * s2io_ethtool_idnic - To physically identify the nic on the system.
4851 * @sp : private member of the device structure, which is a pointer to the
4852 * s2io_nic structure.
4853 * @id : pointer to the structure with identification parameters given by
4854 * ethtool.
4855 * Description: Used to physically identify the NIC on the system.
4856 * The Link LED will blink for a time specified by the user for
4857 * identification.
4858 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4859 * identification is possible only if it's link is up.
4860 * Return value:
4861 * int , returns 0 on success
4862 */
4863
4864 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4865 {
4866 u64 val64 = 0, last_gpio_ctrl_val;
4867 struct s2io_nic *sp = dev->priv;
4868 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4869 u16 subid;
4870
4871 subid = sp->pdev->subsystem_device;
4872 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4873 if ((sp->device_type == XFRAME_I_DEVICE) &&
4874 ((subid & 0xFF) < 0x07)) {
4875 val64 = readq(&bar0->adapter_control);
4876 if (!(val64 & ADAPTER_CNTL_EN)) {
4877 printk(KERN_ERR
4878 "Adapter Link down, cannot blink LED\n");
4879 return -EFAULT;
4880 }
4881 }
4882 if (sp->id_timer.function == NULL) {
4883 init_timer(&sp->id_timer);
4884 sp->id_timer.function = s2io_phy_id;
4885 sp->id_timer.data = (unsigned long) sp;
4886 }
4887 mod_timer(&sp->id_timer, jiffies);
4888 if (data)
4889 msleep_interruptible(data * HZ);
4890 else
4891 msleep_interruptible(MAX_FLICKER_TIME);
4892 del_timer_sync(&sp->id_timer);
4893
4894 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4895 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4896 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4897 }
4898
4899 return 0;
4900 }
4901
4902 static void s2io_ethtool_gringparam(struct net_device *dev,
4903 struct ethtool_ringparam *ering)
4904 {
4905 struct s2io_nic *sp = dev->priv;
4906 int i,tx_desc_count=0,rx_desc_count=0;
4907
4908 if (sp->rxd_mode == RXD_MODE_1)
4909 ering->rx_max_pending = MAX_RX_DESC_1;
4910 else if (sp->rxd_mode == RXD_MODE_3B)
4911 ering->rx_max_pending = MAX_RX_DESC_2;
4912 else if (sp->rxd_mode == RXD_MODE_3A)
4913 ering->rx_max_pending = MAX_RX_DESC_3;
4914
4915 ering->tx_max_pending = MAX_TX_DESC;
4916 for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4917 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4918 }
4919 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4920 ering->tx_pending = tx_desc_count;
4921 rx_desc_count = 0;
4922 for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4923 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4924 }
4925 ering->rx_pending = rx_desc_count;
4926
4927 ering->rx_mini_max_pending = 0;
4928 ering->rx_mini_pending = 0;
4929 if(sp->rxd_mode == RXD_MODE_1)
4930 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4931 else if (sp->rxd_mode == RXD_MODE_3B)
4932 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4933 ering->rx_jumbo_pending = rx_desc_count;
4934 }
4935
4936 /**
4937 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4938 * @sp : private member of the device structure, which is a pointer to the
4939 * s2io_nic structure.
4940 * @ep : pointer to the structure with pause parameters given by ethtool.
4941 * Description:
4942 * Returns the Pause frame generation and reception capability of the NIC.
4943 * Return value:
4944 * void
4945 */
4946 static void s2io_ethtool_getpause_data(struct net_device *dev,
4947 struct ethtool_pauseparam *ep)
4948 {
4949 u64 val64;
4950 struct s2io_nic *sp = dev->priv;
4951 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4952
4953 val64 = readq(&bar0->rmac_pause_cfg);
4954 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4955 ep->tx_pause = TRUE;
4956 if (val64 & RMAC_PAUSE_RX_ENABLE)
4957 ep->rx_pause = TRUE;
4958 ep->autoneg = FALSE;
4959 }
4960
4961 /**
4962 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4963 * @sp : private member of the device structure, which is a pointer to the
4964 * s2io_nic structure.
4965 * @ep : pointer to the structure with pause parameters given by ethtool.
4966 * Description:
4967 * It can be used to set or reset Pause frame generation or reception
4968 * support of the NIC.
4969 * Return value:
4970 * int, returns 0 on Success
4971 */
4972
4973 static int s2io_ethtool_setpause_data(struct net_device *dev,
4974 struct ethtool_pauseparam *ep)
4975 {
4976 u64 val64;
4977 struct s2io_nic *sp = dev->priv;
4978 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4979
4980 val64 = readq(&bar0->rmac_pause_cfg);
4981 if (ep->tx_pause)
4982 val64 |= RMAC_PAUSE_GEN_ENABLE;
4983 else
4984 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4985 if (ep->rx_pause)
4986 val64 |= RMAC_PAUSE_RX_ENABLE;
4987 else
4988 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4989 writeq(val64, &bar0->rmac_pause_cfg);
4990 return 0;
4991 }
4992
4993 /**
4994 * read_eeprom - reads 4 bytes of data from user given offset.
4995 * @sp : private member of the device structure, which is a pointer to the
4996 * s2io_nic structure.
4997 * @off : offset at which the data must be written
4998 * @data : Its an output parameter where the data read at the given
4999 * offset is stored.
5000 * Description:
5001 * Will read 4 bytes of data from the user given offset and return the
5002 * read data.
5003 * NOTE: Will allow to read only part of the EEPROM visible through the
5004 * I2C bus.
5005 * Return value:
5006 * -1 on failure and 0 on success.
5007 */
5008
5009 #define S2IO_DEV_ID 5
5010 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5011 {
5012 int ret = -1;
5013 u32 exit_cnt = 0;
5014 u64 val64;
5015 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5016
5017 if (sp->device_type == XFRAME_I_DEVICE) {
5018 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5019 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5020 I2C_CONTROL_CNTL_START;
5021 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5022
5023 while (exit_cnt < 5) {
5024 val64 = readq(&bar0->i2c_control);
5025 if (I2C_CONTROL_CNTL_END(val64)) {
5026 *data = I2C_CONTROL_GET_DATA(val64);
5027 ret = 0;
5028 break;
5029 }
5030 msleep(50);
5031 exit_cnt++;
5032 }
5033 }
5034
5035 if (sp->device_type == XFRAME_II_DEVICE) {
5036 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5037 SPI_CONTROL_BYTECNT(0x3) |
5038 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5039 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5040 val64 |= SPI_CONTROL_REQ;
5041 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5042 while (exit_cnt < 5) {
5043 val64 = readq(&bar0->spi_control);
5044 if (val64 & SPI_CONTROL_NACK) {
5045 ret = 1;
5046 break;
5047 } else if (val64 & SPI_CONTROL_DONE) {
5048 *data = readq(&bar0->spi_data);
5049 *data &= 0xffffff;
5050 ret = 0;
5051 break;
5052 }
5053 msleep(50);
5054 exit_cnt++;
5055 }
5056 }
5057 return ret;
5058 }
5059
5060 /**
5061 * write_eeprom - actually writes the relevant part of the data value.
5062 * @sp : private member of the device structure, which is a pointer to the
5063 * s2io_nic structure.
5064 * @off : offset at which the data must be written
5065 * @data : The data that is to be written
5066 * @cnt : Number of bytes of the data that are actually to be written into
5067 * the Eeprom. (max of 3)
5068 * Description:
5069 * Actually writes the relevant part of the data value into the Eeprom
5070 * through the I2C bus.
5071 * Return value:
5072 * 0 on success, -1 on failure.
5073 */
5074
5075 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5076 {
5077 int exit_cnt = 0, ret = -1;
5078 u64 val64;
5079 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5080
5081 if (sp->device_type == XFRAME_I_DEVICE) {
5082 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5083 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5084 I2C_CONTROL_CNTL_START;
5085 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5086
5087 while (exit_cnt < 5) {
5088 val64 = readq(&bar0->i2c_control);
5089 if (I2C_CONTROL_CNTL_END(val64)) {
5090 if (!(val64 & I2C_CONTROL_NACK))
5091 ret = 0;
5092 break;
5093 }
5094 msleep(50);
5095 exit_cnt++;
5096 }
5097 }
5098
5099 if (sp->device_type == XFRAME_II_DEVICE) {
5100 int write_cnt = (cnt == 8) ? 0 : cnt;
5101 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5102
5103 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5104 SPI_CONTROL_BYTECNT(write_cnt) |
5105 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5106 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5107 val64 |= SPI_CONTROL_REQ;
5108 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5109 while (exit_cnt < 5) {
5110 val64 = readq(&bar0->spi_control);
5111 if (val64 & SPI_CONTROL_NACK) {
5112 ret = 1;
5113 break;
5114 } else if (val64 & SPI_CONTROL_DONE) {
5115 ret = 0;
5116 break;
5117 }
5118 msleep(50);
5119 exit_cnt++;
5120 }
5121 }
5122 return ret;
5123 }
5124 static void s2io_vpd_read(struct s2io_nic *nic)
5125 {
5126 u8 *vpd_data;
5127 u8 data;
5128 int i=0, cnt, fail = 0;
5129 int vpd_addr = 0x80;
5130
5131 if (nic->device_type == XFRAME_II_DEVICE) {
5132 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5133 vpd_addr = 0x80;
5134 }
5135 else {
5136 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5137 vpd_addr = 0x50;
5138 }
5139 strcpy(nic->serial_num, "NOT AVAILABLE");
5140
5141 vpd_data = kmalloc(256, GFP_KERNEL);
5142 if (!vpd_data) {
5143 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5144 return;
5145 }
5146 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5147
5148 for (i = 0; i < 256; i +=4 ) {
5149 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5150 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5151 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5152 for (cnt = 0; cnt <5; cnt++) {
5153 msleep(2);
5154 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5155 if (data == 0x80)
5156 break;
5157 }
5158 if (cnt >= 5) {
5159 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5160 fail = 1;
5161 break;
5162 }
5163 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5164 (u32 *)&vpd_data[i]);
5165 }
5166
5167 if(!fail) {
5168 /* read serial number of adapter */
5169 for (cnt = 0; cnt < 256; cnt++) {
5170 if ((vpd_data[cnt] == 'S') &&
5171 (vpd_data[cnt+1] == 'N') &&
5172 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5173 memset(nic->serial_num, 0, VPD_STRING_LEN);
5174 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5175 vpd_data[cnt+2]);
5176 break;
5177 }
5178 }
5179 }
5180
5181 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5182 memset(nic->product_name, 0, vpd_data[1]);
5183 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5184 }
5185 kfree(vpd_data);
5186 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5187 }
5188
5189 /**
5190 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5191 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5192 * @eeprom : pointer to the user level structure provided by ethtool,
5193 * containing all relevant information.
5194 * @data_buf : user defined value to be written into Eeprom.
5195 * Description: Reads the values stored in the Eeprom at given offset
5196 * for a given length. Stores these values int the input argument data
5197 * buffer 'data_buf' and returns these to the caller (ethtool.)
5198 * Return value:
5199 * int 0 on success
5200 */
5201
5202 static int s2io_ethtool_geeprom(struct net_device *dev,
5203 struct ethtool_eeprom *eeprom, u8 * data_buf)
5204 {
5205 u32 i, valid;
5206 u64 data;
5207 struct s2io_nic *sp = dev->priv;
5208
5209 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5210
5211 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5212 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5213
5214 for (i = 0; i < eeprom->len; i += 4) {
5215 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5216 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5217 return -EFAULT;
5218 }
5219 valid = INV(data);
5220 memcpy((data_buf + i), &valid, 4);
5221 }
5222 return 0;
5223 }
5224
5225 /**
5226 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5227 * @sp : private member of the device structure, which is a pointer to the
5228 * s2io_nic structure.
5229 * @eeprom : pointer to the user level structure provided by ethtool,
5230 * containing all relevant information.
5231 * @data_buf ; user defined value to be written into Eeprom.
5232 * Description:
5233 * Tries to write the user provided value in the Eeprom, at the offset
5234 * given by the user.
5235 * Return value:
5236 * 0 on success, -EFAULT on failure.
5237 */
5238
5239 static int s2io_ethtool_seeprom(struct net_device *dev,
5240 struct ethtool_eeprom *eeprom,
5241 u8 * data_buf)
5242 {
5243 int len = eeprom->len, cnt = 0;
5244 u64 valid = 0, data;
5245 struct s2io_nic *sp = dev->priv;
5246
5247 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5248 DBG_PRINT(ERR_DBG,
5249 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5250 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5251 eeprom->magic);
5252 return -EFAULT;
5253 }
5254
5255 while (len) {
5256 data = (u32) data_buf[cnt] & 0x000000FF;
5257 if (data) {
5258 valid = (u32) (data << 24);
5259 } else
5260 valid = data;
5261
5262 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5263 DBG_PRINT(ERR_DBG,
5264 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5265 DBG_PRINT(ERR_DBG,
5266 "write into the specified offset\n");
5267 return -EFAULT;
5268 }
5269 cnt++;
5270 len--;
5271 }
5272
5273 return 0;
5274 }
5275
5276 /**
5277 * s2io_register_test - reads and writes into all clock domains.
5278 * @sp : private member of the device structure, which is a pointer to the
5279 * s2io_nic structure.
5280 * @data : variable that returns the result of each of the test conducted b
5281 * by the driver.
5282 * Description:
5283 * Read and write into all clock domains. The NIC has 3 clock domains,
5284 * see that registers in all the three regions are accessible.
5285 * Return value:
5286 * 0 on success.
5287 */
5288
5289 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5290 {
5291 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5292 u64 val64 = 0, exp_val;
5293 int fail = 0;
5294
5295 val64 = readq(&bar0->pif_rd_swapper_fb);
5296 if (val64 != 0x123456789abcdefULL) {
5297 fail = 1;
5298 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5299 }
5300
5301 val64 = readq(&bar0->rmac_pause_cfg);
5302 if (val64 != 0xc000ffff00000000ULL) {
5303 fail = 1;
5304 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5305 }
5306
5307 val64 = readq(&bar0->rx_queue_cfg);
5308 if (sp->device_type == XFRAME_II_DEVICE)
5309 exp_val = 0x0404040404040404ULL;
5310 else
5311 exp_val = 0x0808080808080808ULL;
5312 if (val64 != exp_val) {
5313 fail = 1;
5314 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5315 }
5316
5317 val64 = readq(&bar0->xgxs_efifo_cfg);
5318 if (val64 != 0x000000001923141EULL) {
5319 fail = 1;
5320 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5321 }
5322
5323 val64 = 0x5A5A5A5A5A5A5A5AULL;
5324 writeq(val64, &bar0->xmsi_data);
5325 val64 = readq(&bar0->xmsi_data);
5326 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5327 fail = 1;
5328 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5329 }
5330
5331 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5332 writeq(val64, &bar0->xmsi_data);
5333 val64 = readq(&bar0->xmsi_data);
5334 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5335 fail = 1;
5336 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5337 }
5338
5339 *data = fail;
5340 return fail;
5341 }
5342
5343 /**
5344 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5345 * @sp : private member of the device structure, which is a pointer to the
5346 * s2io_nic structure.
5347 * @data:variable that returns the result of each of the test conducted by
5348 * the driver.
5349 * Description:
5350 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5351 * register.
5352 * Return value:
5353 * 0 on success.
5354 */
5355
5356 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5357 {
5358 int fail = 0;
5359 u64 ret_data, org_4F0, org_7F0;
5360 u8 saved_4F0 = 0, saved_7F0 = 0;
5361 struct net_device *dev = sp->dev;
5362
5363 /* Test Write Error at offset 0 */
5364 /* Note that SPI interface allows write access to all areas
5365 * of EEPROM. Hence doing all negative testing only for Xframe I.
5366 */
5367 if (sp->device_type == XFRAME_I_DEVICE)
5368 if (!write_eeprom(sp, 0, 0, 3))
5369 fail = 1;
5370
5371 /* Save current values at offsets 0x4F0 and 0x7F0 */
5372 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5373 saved_4F0 = 1;
5374 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5375 saved_7F0 = 1;
5376
5377 /* Test Write at offset 4f0 */
5378 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5379 fail = 1;
5380 if (read_eeprom(sp, 0x4F0, &ret_data))
5381 fail = 1;
5382
5383 if (ret_data != 0x012345) {
5384 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5385 "Data written %llx Data read %llx\n",
5386 dev->name, (unsigned long long)0x12345,
5387 (unsigned long long)ret_data);
5388 fail = 1;
5389 }
5390
5391 /* Reset the EEPROM data go FFFF */
5392 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5393
5394 /* Test Write Request Error at offset 0x7c */
5395 if (sp->device_type == XFRAME_I_DEVICE)
5396 if (!write_eeprom(sp, 0x07C, 0, 3))
5397 fail = 1;
5398
5399 /* Test Write Request at offset 0x7f0 */
5400 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5401 fail = 1;
5402 if (read_eeprom(sp, 0x7F0, &ret_data))
5403 fail = 1;
5404
5405 if (ret_data != 0x012345) {
5406 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5407 "Data written %llx Data read %llx\n",
5408 dev->name, (unsigned long long)0x12345,
5409 (unsigned long long)ret_data);
5410 fail = 1;
5411 }
5412
5413 /* Reset the EEPROM data go FFFF */
5414 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5415
5416 if (sp->device_type == XFRAME_I_DEVICE) {
5417 /* Test Write Error at offset 0x80 */
5418 if (!write_eeprom(sp, 0x080, 0, 3))
5419 fail = 1;
5420
5421 /* Test Write Error at offset 0xfc */
5422 if (!write_eeprom(sp, 0x0FC, 0, 3))
5423 fail = 1;
5424
5425 /* Test Write Error at offset 0x100 */
5426 if (!write_eeprom(sp, 0x100, 0, 3))
5427 fail = 1;
5428
5429 /* Test Write Error at offset 4ec */
5430 if (!write_eeprom(sp, 0x4EC, 0, 3))
5431 fail = 1;
5432 }
5433
5434 /* Restore values at offsets 0x4F0 and 0x7F0 */
5435 if (saved_4F0)
5436 write_eeprom(sp, 0x4F0, org_4F0, 3);
5437 if (saved_7F0)
5438 write_eeprom(sp, 0x7F0, org_7F0, 3);
5439
5440 *data = fail;
5441 return fail;
5442 }
5443
5444 /**
5445 * s2io_bist_test - invokes the MemBist test of the card .
5446 * @sp : private member of the device structure, which is a pointer to the
5447 * s2io_nic structure.
5448 * @data:variable that returns the result of each of the test conducted by
5449 * the driver.
5450 * Description:
5451 * This invokes the MemBist test of the card. We give around
5452 * 2 secs time for the Test to complete. If it's still not complete
5453 * within this peiod, we consider that the test failed.
5454 * Return value:
5455 * 0 on success and -1 on failure.
5456 */
5457
5458 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5459 {
5460 u8 bist = 0;
5461 int cnt = 0, ret = -1;
5462
5463 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5464 bist |= PCI_BIST_START;
5465 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5466
5467 while (cnt < 20) {
5468 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5469 if (!(bist & PCI_BIST_START)) {
5470 *data = (bist & PCI_BIST_CODE_MASK);
5471 ret = 0;
5472 break;
5473 }
5474 msleep(100);
5475 cnt++;
5476 }
5477
5478 return ret;
5479 }
5480
5481 /**
5482 * s2io-link_test - verifies the link state of the nic
5483 * @sp ; private member of the device structure, which is a pointer to the
5484 * s2io_nic structure.
5485 * @data: variable that returns the result of each of the test conducted by
5486 * the driver.
5487 * Description:
5488 * The function verifies the link state of the NIC and updates the input
5489 * argument 'data' appropriately.
5490 * Return value:
5491 * 0 on success.
5492 */
5493
5494 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5495 {
5496 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5497 u64 val64;
5498
5499 val64 = readq(&bar0->adapter_status);
5500 if(!(LINK_IS_UP(val64)))
5501 *data = 1;
5502 else
5503 *data = 0;
5504
5505 return *data;
5506 }
5507
5508 /**
5509 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5510 * @sp - private member of the device structure, which is a pointer to the
5511 * s2io_nic structure.
5512 * @data - variable that returns the result of each of the test
5513 * conducted by the driver.
5514 * Description:
5515 * This is one of the offline test that tests the read and write
5516 * access to the RldRam chip on the NIC.
5517 * Return value:
5518 * 0 on success.
5519 */
5520
5521 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5522 {
5523 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5524 u64 val64;
5525 int cnt, iteration = 0, test_fail = 0;
5526
5527 val64 = readq(&bar0->adapter_control);
5528 val64 &= ~ADAPTER_ECC_EN;
5529 writeq(val64, &bar0->adapter_control);
5530
5531 val64 = readq(&bar0->mc_rldram_test_ctrl);
5532 val64 |= MC_RLDRAM_TEST_MODE;
5533 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5534
5535 val64 = readq(&bar0->mc_rldram_mrs);
5536 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5537 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5538
5539 val64 |= MC_RLDRAM_MRS_ENABLE;
5540 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5541
5542 while (iteration < 2) {
5543 val64 = 0x55555555aaaa0000ULL;
5544 if (iteration == 1) {
5545 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5546 }
5547 writeq(val64, &bar0->mc_rldram_test_d0);
5548
5549 val64 = 0xaaaa5a5555550000ULL;
5550 if (iteration == 1) {
5551 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5552 }
5553 writeq(val64, &bar0->mc_rldram_test_d1);
5554
5555 val64 = 0x55aaaaaaaa5a0000ULL;
5556 if (iteration == 1) {
5557 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5558 }
5559 writeq(val64, &bar0->mc_rldram_test_d2);
5560
5561 val64 = (u64) (0x0000003ffffe0100ULL);
5562 writeq(val64, &bar0->mc_rldram_test_add);
5563
5564 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5565 MC_RLDRAM_TEST_GO;
5566 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5567
5568 for (cnt = 0; cnt < 5; cnt++) {
5569 val64 = readq(&bar0->mc_rldram_test_ctrl);
5570 if (val64 & MC_RLDRAM_TEST_DONE)
5571 break;
5572 msleep(200);
5573 }
5574
5575 if (cnt == 5)
5576 break;
5577
5578 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5579 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5580
5581 for (cnt = 0; cnt < 5; cnt++) {
5582 val64 = readq(&bar0->mc_rldram_test_ctrl);
5583 if (val64 & MC_RLDRAM_TEST_DONE)
5584 break;
5585 msleep(500);
5586 }
5587
5588 if (cnt == 5)
5589 break;
5590
5591 val64 = readq(&bar0->mc_rldram_test_ctrl);
5592 if (!(val64 & MC_RLDRAM_TEST_PASS))
5593 test_fail = 1;
5594
5595 iteration++;
5596 }
5597
5598 *data = test_fail;
5599
5600 /* Bring the adapter out of test mode */
5601 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5602
5603 return test_fail;
5604 }
5605
5606 /**
5607 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5608 * @sp : private member of the device structure, which is a pointer to the
5609 * s2io_nic structure.
5610 * @ethtest : pointer to a ethtool command specific structure that will be
5611 * returned to the user.
5612 * @data : variable that returns the result of each of the test
5613 * conducted by the driver.
5614 * Description:
5615 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5616 * the health of the card.
5617 * Return value:
5618 * void
5619 */
5620
5621 static void s2io_ethtool_test(struct net_device *dev,
5622 struct ethtool_test *ethtest,
5623 uint64_t * data)
5624 {
5625 struct s2io_nic *sp = dev->priv;
5626 int orig_state = netif_running(sp->dev);
5627
5628 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5629 /* Offline Tests. */
5630 if (orig_state)
5631 s2io_close(sp->dev);
5632
5633 if (s2io_register_test(sp, &data[0]))
5634 ethtest->flags |= ETH_TEST_FL_FAILED;
5635
5636 s2io_reset(sp);
5637
5638 if (s2io_rldram_test(sp, &data[3]))
5639 ethtest->flags |= ETH_TEST_FL_FAILED;
5640
5641 s2io_reset(sp);
5642
5643 if (s2io_eeprom_test(sp, &data[1]))
5644 ethtest->flags |= ETH_TEST_FL_FAILED;
5645
5646 if (s2io_bist_test(sp, &data[4]))
5647 ethtest->flags |= ETH_TEST_FL_FAILED;
5648
5649 if (orig_state)
5650 s2io_open(sp->dev);
5651
5652 data[2] = 0;
5653 } else {
5654 /* Online Tests. */
5655 if (!orig_state) {
5656 DBG_PRINT(ERR_DBG,
5657 "%s: is not up, cannot run test\n",
5658 dev->name);
5659 data[0] = -1;
5660 data[1] = -1;
5661 data[2] = -1;
5662 data[3] = -1;
5663 data[4] = -1;
5664 }
5665
5666 if (s2io_link_test(sp, &data[2]))
5667 ethtest->flags |= ETH_TEST_FL_FAILED;
5668
5669 data[0] = 0;
5670 data[1] = 0;
5671 data[3] = 0;
5672 data[4] = 0;
5673 }
5674 }
5675
5676 static void s2io_get_ethtool_stats(struct net_device *dev,
5677 struct ethtool_stats *estats,
5678 u64 * tmp_stats)
5679 {
5680 int i = 0;
5681 struct s2io_nic *sp = dev->priv;
5682 struct stat_block *stat_info = sp->mac_control.stats_info;
5683
5684 s2io_updt_stats(sp);
5685 tmp_stats[i++] =
5686 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5687 le32_to_cpu(stat_info->tmac_frms);
5688 tmp_stats[i++] =
5689 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5690 le32_to_cpu(stat_info->tmac_data_octets);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5692 tmp_stats[i++] =
5693 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5694 le32_to_cpu(stat_info->tmac_mcst_frms);
5695 tmp_stats[i++] =
5696 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5697 le32_to_cpu(stat_info->tmac_bcst_frms);
5698 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5699 tmp_stats[i++] =
5700 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5701 le32_to_cpu(stat_info->tmac_ttl_octets);
5702 tmp_stats[i++] =
5703 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5704 le32_to_cpu(stat_info->tmac_ucst_frms);
5705 tmp_stats[i++] =
5706 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5707 le32_to_cpu(stat_info->tmac_nucst_frms);
5708 tmp_stats[i++] =
5709 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5710 le32_to_cpu(stat_info->tmac_any_err_frms);
5711 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5712 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5713 tmp_stats[i++] =
5714 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5715 le32_to_cpu(stat_info->tmac_vld_ip);
5716 tmp_stats[i++] =
5717 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5718 le32_to_cpu(stat_info->tmac_drop_ip);
5719 tmp_stats[i++] =
5720 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5721 le32_to_cpu(stat_info->tmac_icmp);
5722 tmp_stats[i++] =
5723 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5724 le32_to_cpu(stat_info->tmac_rst_tcp);
5725 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5726 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5727 le32_to_cpu(stat_info->tmac_udp);
5728 tmp_stats[i++] =
5729 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5730 le32_to_cpu(stat_info->rmac_vld_frms);
5731 tmp_stats[i++] =
5732 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5733 le32_to_cpu(stat_info->rmac_data_octets);
5734 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5735 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5736 tmp_stats[i++] =
5737 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5738 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5739 tmp_stats[i++] =
5740 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5741 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5742 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5743 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5744 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5745 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5746 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5747 tmp_stats[i++] =
5748 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5749 le32_to_cpu(stat_info->rmac_ttl_octets);
5750 tmp_stats[i++] =
5751 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5752 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5753 tmp_stats[i++] =
5754 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5755 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5756 tmp_stats[i++] =
5757 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5758 le32_to_cpu(stat_info->rmac_discarded_frms);
5759 tmp_stats[i++] =
5760 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5761 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5762 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5763 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5764 tmp_stats[i++] =
5765 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5766 le32_to_cpu(stat_info->rmac_usized_frms);
5767 tmp_stats[i++] =
5768 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5769 le32_to_cpu(stat_info->rmac_osized_frms);
5770 tmp_stats[i++] =
5771 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5772 le32_to_cpu(stat_info->rmac_frag_frms);
5773 tmp_stats[i++] =
5774 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5775 le32_to_cpu(stat_info->rmac_jabber_frms);
5776 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5777 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5778 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5779 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5780 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5781 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5782 tmp_stats[i++] =
5783 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5784 le32_to_cpu(stat_info->rmac_ip);
5785 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5786 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5787 tmp_stats[i++] =
5788 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5789 le32_to_cpu(stat_info->rmac_drop_ip);
5790 tmp_stats[i++] =
5791 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5792 le32_to_cpu(stat_info->rmac_icmp);
5793 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5794 tmp_stats[i++] =
5795 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5796 le32_to_cpu(stat_info->rmac_udp);
5797 tmp_stats[i++] =
5798 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5799 le32_to_cpu(stat_info->rmac_err_drp_udp);
5800 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5801 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5802 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5803 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5804 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5805 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5806 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5807 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5808 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5809 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5810 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5811 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5812 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5813 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5814 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5815 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5816 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5817 tmp_stats[i++] =
5818 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5819 le32_to_cpu(stat_info->rmac_pause_cnt);
5820 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5821 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5822 tmp_stats[i++] =
5823 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5824 le32_to_cpu(stat_info->rmac_accepted_ip);
5825 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5826 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5827 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5828 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5829 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5830 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5831 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5832 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5833 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5834 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5835 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5836 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5837 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5838 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5839 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5840 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5841 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5842 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5843 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5844
5845 /* Enhanced statistics exist only for Hercules */
5846 if(sp->device_type == XFRAME_II_DEVICE) {
5847 tmp_stats[i++] =
5848 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5849 tmp_stats[i++] =
5850 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5851 tmp_stats[i++] =
5852 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5853 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5854 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5855 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5856 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5857 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5858 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5859 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5860 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5861 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5862 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5863 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5864 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5865 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5866 }
5867
5868 tmp_stats[i++] = 0;
5869 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5870 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5871 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5872 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5873 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5874 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5875 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5876 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5877 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5878 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5879 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5880 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5881 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5882 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5883 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5884 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5885 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5886 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5887 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5888 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5889 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5890 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5891 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5892 if (stat_info->sw_stat.num_aggregations) {
5893 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5894 int count = 0;
5895 /*
5896 * Since 64-bit divide does not work on all platforms,
5897 * do repeated subtraction.
5898 */
5899 while (tmp >= stat_info->sw_stat.num_aggregations) {
5900 tmp -= stat_info->sw_stat.num_aggregations;
5901 count++;
5902 }
5903 tmp_stats[i++] = count;
5904 }
5905 else
5906 tmp_stats[i++] = 0;
5907 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5908 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5909 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5910 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5911 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5912 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5913 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5914 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5915
5916 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5917 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5918 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5919 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5920 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5921
5922 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5923 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5924 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5925 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5926 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5927 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5928 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5929 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5930 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5931 }
5932
5933 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5934 {
5935 return (XENA_REG_SPACE);
5936 }
5937
5938
5939 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5940 {
5941 struct s2io_nic *sp = dev->priv;
5942
5943 return (sp->rx_csum);
5944 }
5945
5946 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5947 {
5948 struct s2io_nic *sp = dev->priv;
5949
5950 if (data)
5951 sp->rx_csum = 1;
5952 else
5953 sp->rx_csum = 0;
5954
5955 return 0;
5956 }
5957
5958 static int s2io_get_eeprom_len(struct net_device *dev)
5959 {
5960 return (XENA_EEPROM_SPACE);
5961 }
5962
5963 static int s2io_ethtool_self_test_count(struct net_device *dev)
5964 {
5965 return (S2IO_TEST_LEN);
5966 }
5967
5968 static void s2io_ethtool_get_strings(struct net_device *dev,
5969 u32 stringset, u8 * data)
5970 {
5971 int stat_size = 0;
5972 struct s2io_nic *sp = dev->priv;
5973
5974 switch (stringset) {
5975 case ETH_SS_TEST:
5976 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5977 break;
5978 case ETH_SS_STATS:
5979 stat_size = sizeof(ethtool_xena_stats_keys);
5980 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5981 if(sp->device_type == XFRAME_II_DEVICE) {
5982 memcpy(data + stat_size,
5983 &ethtool_enhanced_stats_keys,
5984 sizeof(ethtool_enhanced_stats_keys));
5985 stat_size += sizeof(ethtool_enhanced_stats_keys);
5986 }
5987
5988 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5989 sizeof(ethtool_driver_stats_keys));
5990 }
5991 }
5992 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5993 {
5994 struct s2io_nic *sp = dev->priv;
5995 int stat_count = 0;
5996 switch(sp->device_type) {
5997 case XFRAME_I_DEVICE:
5998 stat_count = XFRAME_I_STAT_LEN;
5999 break;
6000
6001 case XFRAME_II_DEVICE:
6002 stat_count = XFRAME_II_STAT_LEN;
6003 break;
6004 }
6005
6006 return stat_count;
6007 }
6008
6009 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6010 {
6011 if (data)
6012 dev->features |= NETIF_F_IP_CSUM;
6013 else
6014 dev->features &= ~NETIF_F_IP_CSUM;
6015
6016 return 0;
6017 }
6018
6019 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6020 {
6021 return (dev->features & NETIF_F_TSO) != 0;
6022 }
6023 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6024 {
6025 if (data)
6026 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6027 else
6028 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6029
6030 return 0;
6031 }
6032
6033 static const struct ethtool_ops netdev_ethtool_ops = {
6034 .get_settings = s2io_ethtool_gset,
6035 .set_settings = s2io_ethtool_sset,
6036 .get_drvinfo = s2io_ethtool_gdrvinfo,
6037 .get_regs_len = s2io_ethtool_get_regs_len,
6038 .get_regs = s2io_ethtool_gregs,
6039 .get_link = ethtool_op_get_link,
6040 .get_eeprom_len = s2io_get_eeprom_len,
6041 .get_eeprom = s2io_ethtool_geeprom,
6042 .set_eeprom = s2io_ethtool_seeprom,
6043 .get_ringparam = s2io_ethtool_gringparam,
6044 .get_pauseparam = s2io_ethtool_getpause_data,
6045 .set_pauseparam = s2io_ethtool_setpause_data,
6046 .get_rx_csum = s2io_ethtool_get_rx_csum,
6047 .set_rx_csum = s2io_ethtool_set_rx_csum,
6048 .get_tx_csum = ethtool_op_get_tx_csum,
6049 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6050 .get_sg = ethtool_op_get_sg,
6051 .set_sg = ethtool_op_set_sg,
6052 .get_tso = s2io_ethtool_op_get_tso,
6053 .set_tso = s2io_ethtool_op_set_tso,
6054 .get_ufo = ethtool_op_get_ufo,
6055 .set_ufo = ethtool_op_set_ufo,
6056 .self_test_count = s2io_ethtool_self_test_count,
6057 .self_test = s2io_ethtool_test,
6058 .get_strings = s2io_ethtool_get_strings,
6059 .phys_id = s2io_ethtool_idnic,
6060 .get_stats_count = s2io_ethtool_get_stats_count,
6061 .get_ethtool_stats = s2io_get_ethtool_stats
6062 };
6063
6064 /**
6065 * s2io_ioctl - Entry point for the Ioctl
6066 * @dev : Device pointer.
6067 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6068 * a proprietary structure used to pass information to the driver.
6069 * @cmd : This is used to distinguish between the different commands that
6070 * can be passed to the IOCTL functions.
6071 * Description:
6072 * Currently there are no special functionality supported in IOCTL, hence
6073 * function always return EOPNOTSUPPORTED
6074 */
6075
6076 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6077 {
6078 return -EOPNOTSUPP;
6079 }
6080
6081 /**
6082 * s2io_change_mtu - entry point to change MTU size for the device.
6083 * @dev : device pointer.
6084 * @new_mtu : the new MTU size for the device.
6085 * Description: A driver entry point to change MTU size for the device.
6086 * Before changing the MTU the device must be stopped.
6087 * Return value:
6088 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6089 * file on failure.
6090 */
6091
6092 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6093 {
6094 struct s2io_nic *sp = dev->priv;
6095
6096 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6097 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6098 dev->name);
6099 return -EPERM;
6100 }
6101
6102 dev->mtu = new_mtu;
6103 if (netif_running(dev)) {
6104 s2io_card_down(sp);
6105 netif_stop_queue(dev);
6106 if (s2io_card_up(sp)) {
6107 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6108 __FUNCTION__);
6109 }
6110 if (netif_queue_stopped(dev))
6111 netif_wake_queue(dev);
6112 } else { /* Device is down */
6113 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6114 u64 val64 = new_mtu;
6115
6116 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6117 }
6118
6119 return 0;
6120 }
6121
6122 /**
6123 * s2io_tasklet - Bottom half of the ISR.
6124 * @dev_adr : address of the device structure in dma_addr_t format.
6125 * Description:
6126 * This is the tasklet or the bottom half of the ISR. This is
6127 * an extension of the ISR which is scheduled by the scheduler to be run
6128 * when the load on the CPU is low. All low priority tasks of the ISR can
6129 * be pushed into the tasklet. For now the tasklet is used only to
6130 * replenish the Rx buffers in the Rx buffer descriptors.
6131 * Return value:
6132 * void.
6133 */
6134
6135 static void s2io_tasklet(unsigned long dev_addr)
6136 {
6137 struct net_device *dev = (struct net_device *) dev_addr;
6138 struct s2io_nic *sp = dev->priv;
6139 int i, ret;
6140 struct mac_info *mac_control;
6141 struct config_param *config;
6142
6143 mac_control = &sp->mac_control;
6144 config = &sp->config;
6145
6146 if (!TASKLET_IN_USE) {
6147 for (i = 0; i < config->rx_ring_num; i++) {
6148 ret = fill_rx_buffers(sp, i);
6149 if (ret == -ENOMEM) {
6150 DBG_PRINT(INFO_DBG, "%s: Out of ",
6151 dev->name);
6152 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6153 break;
6154 } else if (ret == -EFILL) {
6155 DBG_PRINT(INFO_DBG,
6156 "%s: Rx Ring %d is full\n",
6157 dev->name, i);
6158 break;
6159 }
6160 }
6161 clear_bit(0, (&sp->tasklet_status));
6162 }
6163 }
6164
6165 /**
6166 * s2io_set_link - Set the LInk status
6167 * @data: long pointer to device private structue
6168 * Description: Sets the link status for the adapter
6169 */
6170
6171 static void s2io_set_link(struct work_struct *work)
6172 {
6173 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6174 struct net_device *dev = nic->dev;
6175 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6176 register u64 val64;
6177 u16 subid;
6178
6179 rtnl_lock();
6180
6181 if (!netif_running(dev))
6182 goto out_unlock;
6183
6184 if (test_and_set_bit(0, &(nic->link_state))) {
6185 /* The card is being reset, no point doing anything */
6186 goto out_unlock;
6187 }
6188
6189 subid = nic->pdev->subsystem_device;
6190 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6191 /*
6192 * Allow a small delay for the NICs self initiated
6193 * cleanup to complete.
6194 */
6195 msleep(100);
6196 }
6197
6198 val64 = readq(&bar0->adapter_status);
6199 if (LINK_IS_UP(val64)) {
6200 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6201 if (verify_xena_quiescence(nic)) {
6202 val64 = readq(&bar0->adapter_control);
6203 val64 |= ADAPTER_CNTL_EN;
6204 writeq(val64, &bar0->adapter_control);
6205 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6206 nic->device_type, subid)) {
6207 val64 = readq(&bar0->gpio_control);
6208 val64 |= GPIO_CTRL_GPIO_0;
6209 writeq(val64, &bar0->gpio_control);
6210 val64 = readq(&bar0->gpio_control);
6211 } else {
6212 val64 |= ADAPTER_LED_ON;
6213 writeq(val64, &bar0->adapter_control);
6214 }
6215 nic->device_enabled_once = TRUE;
6216 } else {
6217 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6218 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6219 netif_stop_queue(dev);
6220 }
6221 }
6222 val64 = readq(&bar0->adapter_status);
6223 if (!LINK_IS_UP(val64)) {
6224 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6225 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6226 DBG_PRINT(ERR_DBG, "device \n");
6227 } else
6228 s2io_link(nic, LINK_UP);
6229 } else {
6230 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6231 subid)) {
6232 val64 = readq(&bar0->gpio_control);
6233 val64 &= ~GPIO_CTRL_GPIO_0;
6234 writeq(val64, &bar0->gpio_control);
6235 val64 = readq(&bar0->gpio_control);
6236 }
6237 s2io_link(nic, LINK_DOWN);
6238 }
6239 clear_bit(0, &(nic->link_state));
6240
6241 out_unlock:
6242 rtnl_unlock();
6243 }
6244
6245 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6246 struct buffAdd *ba,
6247 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6248 u64 *temp2, int size)
6249 {
6250 struct net_device *dev = sp->dev;
6251 struct sk_buff *frag_list;
6252
6253 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6254 /* allocate skb */
6255 if (*skb) {
6256 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6257 /*
6258 * As Rx frame are not going to be processed,
6259 * using same mapped address for the Rxd
6260 * buffer pointer
6261 */
6262 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
6263 } else {
6264 *skb = dev_alloc_skb(size);
6265 if (!(*skb)) {
6266 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6267 DBG_PRINT(INFO_DBG, "memory to allocate ");
6268 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6269 sp->mac_control.stats_info->sw_stat. \
6270 mem_alloc_fail_cnt++;
6271 return -ENOMEM ;
6272 }
6273 sp->mac_control.stats_info->sw_stat.mem_allocated
6274 += (*skb)->truesize;
6275 /* storing the mapped addr in a temp variable
6276 * such it will be used for next rxd whose
6277 * Host Control is NULL
6278 */
6279 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
6280 pci_map_single( sp->pdev, (*skb)->data,
6281 size - NET_IP_ALIGN,
6282 PCI_DMA_FROMDEVICE);
6283 rxdp->Host_Control = (unsigned long) (*skb);
6284 }
6285 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6286 /* Two buffer Mode */
6287 if (*skb) {
6288 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6289 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6290 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6291 } else {
6292 *skb = dev_alloc_skb(size);
6293 if (!(*skb)) {
6294 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6295 DBG_PRINT(INFO_DBG, "memory to allocate ");
6296 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6297 sp->mac_control.stats_info->sw_stat. \
6298 mem_alloc_fail_cnt++;
6299 return -ENOMEM;
6300 }
6301 sp->mac_control.stats_info->sw_stat.mem_allocated
6302 += (*skb)->truesize;
6303 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6304 pci_map_single(sp->pdev, (*skb)->data,
6305 dev->mtu + 4,
6306 PCI_DMA_FROMDEVICE);
6307 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6308 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6309 PCI_DMA_FROMDEVICE);
6310 rxdp->Host_Control = (unsigned long) (*skb);
6311
6312 /* Buffer-1 will be dummy buffer not used */
6313 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6314 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6315 PCI_DMA_FROMDEVICE);
6316 }
6317 } else if ((rxdp->Host_Control == 0)) {
6318 /* Three buffer mode */
6319 if (*skb) {
6320 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6321 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6322 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6323 } else {
6324 *skb = dev_alloc_skb(size);
6325 if (!(*skb)) {
6326 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6327 DBG_PRINT(INFO_DBG, "memory to allocate ");
6328 DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
6329 sp->mac_control.stats_info->sw_stat. \
6330 mem_alloc_fail_cnt++;
6331 return -ENOMEM;
6332 }
6333 sp->mac_control.stats_info->sw_stat.mem_allocated
6334 += (*skb)->truesize;
6335 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6336 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6337 PCI_DMA_FROMDEVICE);
6338 /* Buffer-1 receives L3/L4 headers */
6339 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6340 pci_map_single( sp->pdev, (*skb)->data,
6341 l3l4hdr_size + 4,
6342 PCI_DMA_FROMDEVICE);
6343 /*
6344 * skb_shinfo(skb)->frag_list will have L4
6345 * data payload
6346 */
6347 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6348 ALIGN_SIZE);
6349 if (skb_shinfo(*skb)->frag_list == NULL) {
6350 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6351 failed\n ", dev->name);
6352 sp->mac_control.stats_info->sw_stat. \
6353 mem_alloc_fail_cnt++;
6354 return -ENOMEM ;
6355 }
6356 frag_list = skb_shinfo(*skb)->frag_list;
6357 frag_list->next = NULL;
6358 sp->mac_control.stats_info->sw_stat.mem_allocated
6359 += frag_list->truesize;
6360 /*
6361 * Buffer-2 receives L4 data payload
6362 */
6363 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6364 pci_map_single( sp->pdev, frag_list->data,
6365 dev->mtu, PCI_DMA_FROMDEVICE);
6366 }
6367 }
6368 return 0;
6369 }
6370 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6371 int size)
6372 {
6373 struct net_device *dev = sp->dev;
6374 if (sp->rxd_mode == RXD_MODE_1) {
6375 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6376 } else if (sp->rxd_mode == RXD_MODE_3B) {
6377 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6378 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6379 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6380 } else {
6381 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6382 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6383 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6384 }
6385 }
6386
6387 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6388 {
6389 int i, j, k, blk_cnt = 0, size;
6390 struct mac_info * mac_control = &sp->mac_control;
6391 struct config_param *config = &sp->config;
6392 struct net_device *dev = sp->dev;
6393 struct RxD_t *rxdp = NULL;
6394 struct sk_buff *skb = NULL;
6395 struct buffAdd *ba = NULL;
6396 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6397
6398 /* Calculate the size based on ring mode */
6399 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6400 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6401 if (sp->rxd_mode == RXD_MODE_1)
6402 size += NET_IP_ALIGN;
6403 else if (sp->rxd_mode == RXD_MODE_3B)
6404 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6405 else
6406 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6407
6408 for (i = 0; i < config->rx_ring_num; i++) {
6409 blk_cnt = config->rx_cfg[i].num_rxd /
6410 (rxd_count[sp->rxd_mode] +1);
6411
6412 for (j = 0; j < blk_cnt; j++) {
6413 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6414 rxdp = mac_control->rings[i].
6415 rx_blocks[j].rxds[k].virt_addr;
6416 if(sp->rxd_mode >= RXD_MODE_3A)
6417 ba = &mac_control->rings[i].ba[j][k];
6418 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6419 &skb,(u64 *)&temp0_64,
6420 (u64 *)&temp1_64,
6421 (u64 *)&temp2_64,
6422 size) == ENOMEM) {
6423 return 0;
6424 }
6425
6426 set_rxd_buffer_size(sp, rxdp, size);
6427 wmb();
6428 /* flip the Ownership bit to Hardware */
6429 rxdp->Control_1 |= RXD_OWN_XENA;
6430 }
6431 }
6432 }
6433 return 0;
6434
6435 }
6436
6437 static int s2io_add_isr(struct s2io_nic * sp)
6438 {
6439 int ret = 0;
6440 struct net_device *dev = sp->dev;
6441 int err = 0;
6442
6443 if (sp->intr_type == MSI)
6444 ret = s2io_enable_msi(sp);
6445 else if (sp->intr_type == MSI_X)
6446 ret = s2io_enable_msi_x(sp);
6447 if (ret) {
6448 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6449 sp->intr_type = INTA;
6450 }
6451
6452 /* Store the values of the MSIX table in the struct s2io_nic structure */
6453 store_xmsi_data(sp);
6454
6455 /* After proper initialization of H/W, register ISR */
6456 if (sp->intr_type == MSI) {
6457 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6458 IRQF_SHARED, sp->name, dev);
6459 if (err) {
6460 pci_disable_msi(sp->pdev);
6461 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6462 dev->name);
6463 return -1;
6464 }
6465 }
6466 if (sp->intr_type == MSI_X) {
6467 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6468
6469 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6470 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6471 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6472 dev->name, i);
6473 err = request_irq(sp->entries[i].vector,
6474 s2io_msix_fifo_handle, 0, sp->desc[i],
6475 sp->s2io_entries[i].arg);
6476 /* If either data or addr is zero print it */
6477 if(!(sp->msix_info[i].addr &&
6478 sp->msix_info[i].data)) {
6479 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6480 "Data:0x%lx\n",sp->desc[i],
6481 (unsigned long long)
6482 sp->msix_info[i].addr,
6483 (unsigned long)
6484 ntohl(sp->msix_info[i].data));
6485 } else {
6486 msix_tx_cnt++;
6487 }
6488 } else {
6489 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6490 dev->name, i);
6491 err = request_irq(sp->entries[i].vector,
6492 s2io_msix_ring_handle, 0, sp->desc[i],
6493 sp->s2io_entries[i].arg);
6494 /* If either data or addr is zero print it */
6495 if(!(sp->msix_info[i].addr &&
6496 sp->msix_info[i].data)) {
6497 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6498 "Data:0x%lx\n",sp->desc[i],
6499 (unsigned long long)
6500 sp->msix_info[i].addr,
6501 (unsigned long)
6502 ntohl(sp->msix_info[i].data));
6503 } else {
6504 msix_rx_cnt++;
6505 }
6506 }
6507 if (err) {
6508 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6509 "failed\n", dev->name, i);
6510 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6511 return -1;
6512 }
6513 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6514 }
6515 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6516 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6517 }
6518 if (sp->intr_type == INTA) {
6519 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6520 sp->name, dev);
6521 if (err) {
6522 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6523 dev->name);
6524 return -1;
6525 }
6526 }
6527 return 0;
6528 }
6529 static void s2io_rem_isr(struct s2io_nic * sp)
6530 {
6531 int cnt = 0;
6532 struct net_device *dev = sp->dev;
6533
6534 if (sp->intr_type == MSI_X) {
6535 int i;
6536 u16 msi_control;
6537
6538 for (i=1; (sp->s2io_entries[i].in_use ==
6539 MSIX_REGISTERED_SUCCESS); i++) {
6540 int vector = sp->entries[i].vector;
6541 void *arg = sp->s2io_entries[i].arg;
6542
6543 free_irq(vector, arg);
6544 }
6545 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6546 msi_control &= 0xFFFE; /* Disable MSI */
6547 pci_write_config_word(sp->pdev, 0x42, msi_control);
6548
6549 pci_disable_msix(sp->pdev);
6550 } else {
6551 free_irq(sp->pdev->irq, dev);
6552 if (sp->intr_type == MSI) {
6553 u16 val;
6554
6555 pci_disable_msi(sp->pdev);
6556 pci_read_config_word(sp->pdev, 0x4c, &val);
6557 val ^= 0x1;
6558 pci_write_config_word(sp->pdev, 0x4c, val);
6559 }
6560 }
6561 /* Waiting till all Interrupt handlers are complete */
6562 cnt = 0;
6563 do {
6564 msleep(10);
6565 if (!atomic_read(&sp->isr_cnt))
6566 break;
6567 cnt++;
6568 } while(cnt < 5);
6569 }
6570
6571 static void s2io_card_down(struct s2io_nic * sp)
6572 {
6573 int cnt = 0;
6574 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6575 unsigned long flags;
6576 register u64 val64 = 0;
6577
6578 del_timer_sync(&sp->alarm_timer);
6579 /* If s2io_set_link task is executing, wait till it completes. */
6580 while (test_and_set_bit(0, &(sp->link_state))) {
6581 msleep(50);
6582 }
6583 atomic_set(&sp->card_state, CARD_DOWN);
6584
6585 /* disable Tx and Rx traffic on the NIC */
6586 stop_nic(sp);
6587
6588 s2io_rem_isr(sp);
6589
6590 /* Kill tasklet. */
6591 tasklet_kill(&sp->task);
6592
6593 /* Check if the device is Quiescent and then Reset the NIC */
6594 do {
6595 /* As per the HW requirement we need to replenish the
6596 * receive buffer to avoid the ring bump. Since there is
6597 * no intention of processing the Rx frame at this pointwe are
6598 * just settting the ownership bit of rxd in Each Rx
6599 * ring to HW and set the appropriate buffer size
6600 * based on the ring mode
6601 */
6602 rxd_owner_bit_reset(sp);
6603
6604 val64 = readq(&bar0->adapter_status);
6605 if (verify_xena_quiescence(sp)) {
6606 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6607 break;
6608 }
6609
6610 msleep(50);
6611 cnt++;
6612 if (cnt == 10) {
6613 DBG_PRINT(ERR_DBG,
6614 "s2io_close:Device not Quiescent ");
6615 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6616 (unsigned long long) val64);
6617 break;
6618 }
6619 } while (1);
6620 s2io_reset(sp);
6621
6622 spin_lock_irqsave(&sp->tx_lock, flags);
6623 /* Free all Tx buffers */
6624 free_tx_buffers(sp);
6625 spin_unlock_irqrestore(&sp->tx_lock, flags);
6626
6627 /* Free all Rx buffers */
6628 spin_lock_irqsave(&sp->rx_lock, flags);
6629 free_rx_buffers(sp);
6630 spin_unlock_irqrestore(&sp->rx_lock, flags);
6631
6632 clear_bit(0, &(sp->link_state));
6633 }
6634
6635 static int s2io_card_up(struct s2io_nic * sp)
6636 {
6637 int i, ret = 0;
6638 struct mac_info *mac_control;
6639 struct config_param *config;
6640 struct net_device *dev = (struct net_device *) sp->dev;
6641 u16 interruptible;
6642
6643 /* Initialize the H/W I/O registers */
6644 if (init_nic(sp) != 0) {
6645 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6646 dev->name);
6647 s2io_reset(sp);
6648 return -ENODEV;
6649 }
6650
6651 /*
6652 * Initializing the Rx buffers. For now we are considering only 1
6653 * Rx ring and initializing buffers into 30 Rx blocks
6654 */
6655 mac_control = &sp->mac_control;
6656 config = &sp->config;
6657
6658 for (i = 0; i < config->rx_ring_num; i++) {
6659 if ((ret = fill_rx_buffers(sp, i))) {
6660 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6661 dev->name);
6662 s2io_reset(sp);
6663 free_rx_buffers(sp);
6664 return -ENOMEM;
6665 }
6666 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6667 atomic_read(&sp->rx_bufs_left[i]));
6668 }
6669 /* Maintain the state prior to the open */
6670 if (sp->promisc_flg)
6671 sp->promisc_flg = 0;
6672 if (sp->m_cast_flg) {
6673 sp->m_cast_flg = 0;
6674 sp->all_multi_pos= 0;
6675 }
6676
6677 /* Setting its receive mode */
6678 s2io_set_multicast(dev);
6679
6680 if (sp->lro) {
6681 /* Initialize max aggregatable pkts per session based on MTU */
6682 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6683 /* Check if we can use(if specified) user provided value */
6684 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6685 sp->lro_max_aggr_per_sess = lro_max_pkts;
6686 }
6687
6688 /* Enable Rx Traffic and interrupts on the NIC */
6689 if (start_nic(sp)) {
6690 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6691 s2io_reset(sp);
6692 free_rx_buffers(sp);
6693 return -ENODEV;
6694 }
6695
6696 /* Add interrupt service routine */
6697 if (s2io_add_isr(sp) != 0) {
6698 if (sp->intr_type == MSI_X)
6699 s2io_rem_isr(sp);
6700 s2io_reset(sp);
6701 free_rx_buffers(sp);
6702 return -ENODEV;
6703 }
6704
6705 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6706
6707 /* Enable tasklet for the device */
6708 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6709
6710 /* Enable select interrupts */
6711 if (sp->intr_type != INTA)
6712 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6713 else {
6714 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6715 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6716 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6717 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6718 }
6719
6720
6721 atomic_set(&sp->card_state, CARD_UP);
6722 return 0;
6723 }
6724
6725 /**
6726 * s2io_restart_nic - Resets the NIC.
6727 * @data : long pointer to the device private structure
6728 * Description:
6729 * This function is scheduled to be run by the s2io_tx_watchdog
6730 * function after 0.5 secs to reset the NIC. The idea is to reduce
6731 * the run time of the watch dog routine which is run holding a
6732 * spin lock.
6733 */
6734
6735 static void s2io_restart_nic(struct work_struct *work)
6736 {
6737 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6738 struct net_device *dev = sp->dev;
6739
6740 rtnl_lock();
6741
6742 if (!netif_running(dev))
6743 goto out_unlock;
6744
6745 s2io_card_down(sp);
6746 if (s2io_card_up(sp)) {
6747 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6748 dev->name);
6749 }
6750 netif_wake_queue(dev);
6751 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6752 dev->name);
6753 out_unlock:
6754 rtnl_unlock();
6755 }
6756
6757 /**
6758 * s2io_tx_watchdog - Watchdog for transmit side.
6759 * @dev : Pointer to net device structure
6760 * Description:
6761 * This function is triggered if the Tx Queue is stopped
6762 * for a pre-defined amount of time when the Interface is still up.
6763 * If the Interface is jammed in such a situation, the hardware is
6764 * reset (by s2io_close) and restarted again (by s2io_open) to
6765 * overcome any problem that might have been caused in the hardware.
6766 * Return value:
6767 * void
6768 */
6769
6770 static void s2io_tx_watchdog(struct net_device *dev)
6771 {
6772 struct s2io_nic *sp = dev->priv;
6773
6774 if (netif_carrier_ok(dev)) {
6775 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6776 schedule_work(&sp->rst_timer_task);
6777 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6778 }
6779 }
6780
6781 /**
6782 * rx_osm_handler - To perform some OS related operations on SKB.
6783 * @sp: private member of the device structure,pointer to s2io_nic structure.
6784 * @skb : the socket buffer pointer.
6785 * @len : length of the packet
6786 * @cksum : FCS checksum of the frame.
6787 * @ring_no : the ring from which this RxD was extracted.
6788 * Description:
6789 * This function is called by the Rx interrupt serivce routine to perform
6790 * some OS related operations on the SKB before passing it to the upper
6791 * layers. It mainly checks if the checksum is OK, if so adds it to the
6792 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6793 * to the upper layer. If the checksum is wrong, it increments the Rx
6794 * packet error count, frees the SKB and returns error.
6795 * Return value:
6796 * SUCCESS on success and -1 on failure.
6797 */
6798 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6799 {
6800 struct s2io_nic *sp = ring_data->nic;
6801 struct net_device *dev = (struct net_device *) sp->dev;
6802 struct sk_buff *skb = (struct sk_buff *)
6803 ((unsigned long) rxdp->Host_Control);
6804 int ring_no = ring_data->ring_no;
6805 u16 l3_csum, l4_csum;
6806 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6807 struct lro *lro;
6808
6809 skb->dev = dev;
6810
6811 if (err) {
6812 /* Check for parity error */
6813 if (err & 0x1) {
6814 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6815 }
6816 err >>= 48;
6817 switch(err) {
6818 case 1:
6819 sp->mac_control.stats_info->sw_stat.
6820 rx_parity_err_cnt++;
6821 break;
6822
6823 case 2:
6824 sp->mac_control.stats_info->sw_stat.
6825 rx_abort_cnt++;
6826 break;
6827
6828 case 3:
6829 sp->mac_control.stats_info->sw_stat.
6830 rx_parity_abort_cnt++;
6831 break;
6832
6833 case 4:
6834 sp->mac_control.stats_info->sw_stat.
6835 rx_rda_fail_cnt++;
6836 break;
6837
6838 case 5:
6839 sp->mac_control.stats_info->sw_stat.
6840 rx_unkn_prot_cnt++;
6841 break;
6842
6843 case 6:
6844 sp->mac_control.stats_info->sw_stat.
6845 rx_fcs_err_cnt++;
6846 break;
6847
6848 case 7:
6849 sp->mac_control.stats_info->sw_stat.
6850 rx_buf_size_err_cnt++;
6851 break;
6852
6853 case 8:
6854 sp->mac_control.stats_info->sw_stat.
6855 rx_rxd_corrupt_cnt++;
6856 break;
6857
6858 case 15:
6859 sp->mac_control.stats_info->sw_stat.
6860 rx_unkn_err_cnt++;
6861 break;
6862 }
6863 /*
6864 * Drop the packet if bad transfer code. Exception being
6865 * 0x5, which could be due to unsupported IPv6 extension header.
6866 * In this case, we let stack handle the packet.
6867 * Note that in this case, since checksum will be incorrect,
6868 * stack will validate the same.
6869 */
6870 if (err != 0x5) {
6871 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6872 dev->name, err);
6873 sp->stats.rx_crc_errors++;
6874 sp->mac_control.stats_info->sw_stat.mem_freed
6875 += skb->truesize;
6876 dev_kfree_skb(skb);
6877 atomic_dec(&sp->rx_bufs_left[ring_no]);
6878 rxdp->Host_Control = 0;
6879 return 0;
6880 }
6881 }
6882
6883 /* Updating statistics */
6884 rxdp->Host_Control = 0;
6885 if (sp->rxd_mode == RXD_MODE_1) {
6886 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6887
6888 sp->stats.rx_bytes += len;
6889 skb_put(skb, len);
6890
6891 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6892 int get_block = ring_data->rx_curr_get_info.block_index;
6893 int get_off = ring_data->rx_curr_get_info.offset;
6894 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6895 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6896 unsigned char *buff = skb_push(skb, buf0_len);
6897
6898 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6899 sp->stats.rx_bytes += buf0_len + buf2_len;
6900 memcpy(buff, ba->ba_0, buf0_len);
6901
6902 if (sp->rxd_mode == RXD_MODE_3A) {
6903 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6904
6905 skb_put(skb, buf1_len);
6906 skb->len += buf2_len;
6907 skb->data_len += buf2_len;
6908 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6909 sp->stats.rx_bytes += buf1_len;
6910
6911 } else
6912 skb_put(skb, buf2_len);
6913 }
6914
6915 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6916 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6917 (sp->rx_csum)) {
6918 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6919 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6920 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6921 /*
6922 * NIC verifies if the Checksum of the received
6923 * frame is Ok or not and accordingly returns
6924 * a flag in the RxD.
6925 */
6926 skb->ip_summed = CHECKSUM_UNNECESSARY;
6927 if (sp->lro) {
6928 u32 tcp_len;
6929 u8 *tcp;
6930 int ret = 0;
6931
6932 ret = s2io_club_tcp_session(skb->data, &tcp,
6933 &tcp_len, &lro, rxdp, sp);
6934 switch (ret) {
6935 case 3: /* Begin anew */
6936 lro->parent = skb;
6937 goto aggregate;
6938 case 1: /* Aggregate */
6939 {
6940 lro_append_pkt(sp, lro,
6941 skb, tcp_len);
6942 goto aggregate;
6943 }
6944 case 4: /* Flush session */
6945 {
6946 lro_append_pkt(sp, lro,
6947 skb, tcp_len);
6948 queue_rx_frame(lro->parent);
6949 clear_lro_session(lro);
6950 sp->mac_control.stats_info->
6951 sw_stat.flush_max_pkts++;
6952 goto aggregate;
6953 }
6954 case 2: /* Flush both */
6955 lro->parent->data_len =
6956 lro->frags_len;
6957 sp->mac_control.stats_info->
6958 sw_stat.sending_both++;
6959 queue_rx_frame(lro->parent);
6960 clear_lro_session(lro);
6961 goto send_up;
6962 case 0: /* sessions exceeded */
6963 case -1: /* non-TCP or not
6964 * L2 aggregatable
6965 */
6966 case 5: /*
6967 * First pkt in session not
6968 * L3/L4 aggregatable
6969 */
6970 break;
6971 default:
6972 DBG_PRINT(ERR_DBG,
6973 "%s: Samadhana!!\n",
6974 __FUNCTION__);
6975 BUG();
6976 }
6977 }
6978 } else {
6979 /*
6980 * Packet with erroneous checksum, let the
6981 * upper layers deal with it.
6982 */
6983 skb->ip_summed = CHECKSUM_NONE;
6984 }
6985 } else {
6986 skb->ip_summed = CHECKSUM_NONE;
6987 }
6988 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
6989 if (!sp->lro) {
6990 skb->protocol = eth_type_trans(skb, dev);
6991 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6992 vlan_strip_flag)) {
6993 /* Queueing the vlan frame to the upper layer */
6994 if (napi)
6995 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6996 RXD_GET_VLAN_TAG(rxdp->Control_2));
6997 else
6998 vlan_hwaccel_rx(skb, sp->vlgrp,
6999 RXD_GET_VLAN_TAG(rxdp->Control_2));
7000 } else {
7001 if (napi)
7002 netif_receive_skb(skb);
7003 else
7004 netif_rx(skb);
7005 }
7006 } else {
7007 send_up:
7008 queue_rx_frame(skb);
7009 }
7010 dev->last_rx = jiffies;
7011 aggregate:
7012 atomic_dec(&sp->rx_bufs_left[ring_no]);
7013 return SUCCESS;
7014 }
7015
7016 /**
7017 * s2io_link - stops/starts the Tx queue.
7018 * @sp : private member of the device structure, which is a pointer to the
7019 * s2io_nic structure.
7020 * @link : inidicates whether link is UP/DOWN.
7021 * Description:
7022 * This function stops/starts the Tx queue depending on whether the link
7023 * status of the NIC is is down or up. This is called by the Alarm
7024 * interrupt handler whenever a link change interrupt comes up.
7025 * Return value:
7026 * void.
7027 */
7028
7029 static void s2io_link(struct s2io_nic * sp, int link)
7030 {
7031 struct net_device *dev = (struct net_device *) sp->dev;
7032
7033 if (link != sp->last_link_state) {
7034 if (link == LINK_DOWN) {
7035 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7036 netif_carrier_off(dev);
7037 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7038 sp->mac_control.stats_info->sw_stat.link_up_time =
7039 jiffies - sp->start_time;
7040 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7041 } else {
7042 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7043 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7044 sp->mac_control.stats_info->sw_stat.link_down_time =
7045 jiffies - sp->start_time;
7046 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7047 netif_carrier_on(dev);
7048 }
7049 }
7050 sp->last_link_state = link;
7051 sp->start_time = jiffies;
7052 }
7053
7054 /**
7055 * get_xena_rev_id - to identify revision ID of xena.
7056 * @pdev : PCI Dev structure
7057 * Description:
7058 * Function to identify the Revision ID of xena.
7059 * Return value:
7060 * returns the revision ID of the device.
7061 */
7062
7063 static int get_xena_rev_id(struct pci_dev *pdev)
7064 {
7065 u8 id = 0;
7066 int ret;
7067 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
7068 return id;
7069 }
7070
7071 /**
7072 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7073 * @sp : private member of the device structure, which is a pointer to the
7074 * s2io_nic structure.
7075 * Description:
7076 * This function initializes a few of the PCI and PCI-X configuration registers
7077 * with recommended values.
7078 * Return value:
7079 * void
7080 */
7081
7082 static void s2io_init_pci(struct s2io_nic * sp)
7083 {
7084 u16 pci_cmd = 0, pcix_cmd = 0;
7085
7086 /* Enable Data Parity Error Recovery in PCI-X command register. */
7087 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7088 &(pcix_cmd));
7089 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7090 (pcix_cmd | 1));
7091 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7092 &(pcix_cmd));
7093
7094 /* Set the PErr Response bit in PCI command register. */
7095 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7096 pci_write_config_word(sp->pdev, PCI_COMMAND,
7097 (pci_cmd | PCI_COMMAND_PARITY));
7098 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7099 }
7100
7101 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7102 {
7103 if ( tx_fifo_num > 8) {
7104 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7105 "supported\n");
7106 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7107 tx_fifo_num = 8;
7108 }
7109 if ( rx_ring_num > 8) {
7110 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7111 "supported\n");
7112 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7113 rx_ring_num = 8;
7114 }
7115 if (*dev_intr_type != INTA)
7116 napi = 0;
7117
7118 #ifndef CONFIG_PCI_MSI
7119 if (*dev_intr_type != INTA) {
7120 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7121 "MSI/MSI-X. Defaulting to INTA\n");
7122 *dev_intr_type = INTA;
7123 }
7124 #else
7125 if (*dev_intr_type > MSI_X) {
7126 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7127 "Defaulting to INTA\n");
7128 *dev_intr_type = INTA;
7129 }
7130 #endif
7131 if ((*dev_intr_type == MSI_X) &&
7132 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7133 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7134 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7135 "Defaulting to INTA\n");
7136 *dev_intr_type = INTA;
7137 }
7138
7139 if (rx_ring_mode > 3) {
7140 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7141 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
7142 rx_ring_mode = 3;
7143 }
7144 return SUCCESS;
7145 }
7146
7147 /**
7148 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7149 * or Traffic class respectively.
7150 * @nic: device peivate variable
7151 * Description: The function configures the receive steering to
7152 * desired receive ring.
7153 * Return Value: SUCCESS on success and
7154 * '-1' on failure (endian settings incorrect).
7155 */
7156 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7157 {
7158 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7159 register u64 val64 = 0;
7160
7161 if (ds_codepoint > 63)
7162 return FAILURE;
7163
7164 val64 = RTS_DS_MEM_DATA(ring);
7165 writeq(val64, &bar0->rts_ds_mem_data);
7166
7167 val64 = RTS_DS_MEM_CTRL_WE |
7168 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7169 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7170
7171 writeq(val64, &bar0->rts_ds_mem_ctrl);
7172
7173 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7174 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7175 S2IO_BIT_RESET);
7176 }
7177
7178 /**
7179 * s2io_init_nic - Initialization of the adapter .
7180 * @pdev : structure containing the PCI related information of the device.
7181 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7182 * Description:
7183 * The function initializes an adapter identified by the pci_dec structure.
7184 * All OS related initialization including memory and device structure and
7185 * initlaization of the device private variable is done. Also the swapper
7186 * control register is initialized to enable read and write into the I/O
7187 * registers of the device.
7188 * Return value:
7189 * returns 0 on success and negative on failure.
7190 */
7191
7192 static int __devinit
7193 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7194 {
7195 struct s2io_nic *sp;
7196 struct net_device *dev;
7197 int i, j, ret;
7198 int dma_flag = FALSE;
7199 u32 mac_up, mac_down;
7200 u64 val64 = 0, tmp64 = 0;
7201 struct XENA_dev_config __iomem *bar0 = NULL;
7202 u16 subid;
7203 struct mac_info *mac_control;
7204 struct config_param *config;
7205 int mode;
7206 u8 dev_intr_type = intr_type;
7207
7208 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7209 return ret;
7210
7211 if ((ret = pci_enable_device(pdev))) {
7212 DBG_PRINT(ERR_DBG,
7213 "s2io_init_nic: pci_enable_device failed\n");
7214 return ret;
7215 }
7216
7217 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7218 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7219 dma_flag = TRUE;
7220 if (pci_set_consistent_dma_mask
7221 (pdev, DMA_64BIT_MASK)) {
7222 DBG_PRINT(ERR_DBG,
7223 "Unable to obtain 64bit DMA for \
7224 consistent allocations\n");
7225 pci_disable_device(pdev);
7226 return -ENOMEM;
7227 }
7228 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7229 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7230 } else {
7231 pci_disable_device(pdev);
7232 return -ENOMEM;
7233 }
7234 if (dev_intr_type != MSI_X) {
7235 if (pci_request_regions(pdev, s2io_driver_name)) {
7236 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7237 pci_disable_device(pdev);
7238 return -ENODEV;
7239 }
7240 }
7241 else {
7242 if (!(request_mem_region(pci_resource_start(pdev, 0),
7243 pci_resource_len(pdev, 0), s2io_driver_name))) {
7244 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7245 pci_disable_device(pdev);
7246 return -ENODEV;
7247 }
7248 if (!(request_mem_region(pci_resource_start(pdev, 2),
7249 pci_resource_len(pdev, 2), s2io_driver_name))) {
7250 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7251 release_mem_region(pci_resource_start(pdev, 0),
7252 pci_resource_len(pdev, 0));
7253 pci_disable_device(pdev);
7254 return -ENODEV;
7255 }
7256 }
7257
7258 dev = alloc_etherdev(sizeof(struct s2io_nic));
7259 if (dev == NULL) {
7260 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7261 pci_disable_device(pdev);
7262 pci_release_regions(pdev);
7263 return -ENODEV;
7264 }
7265
7266 pci_set_master(pdev);
7267 pci_set_drvdata(pdev, dev);
7268 SET_MODULE_OWNER(dev);
7269 SET_NETDEV_DEV(dev, &pdev->dev);
7270
7271 /* Private member variable initialized to s2io NIC structure */
7272 sp = dev->priv;
7273 memset(sp, 0, sizeof(struct s2io_nic));
7274 sp->dev = dev;
7275 sp->pdev = pdev;
7276 sp->high_dma_flag = dma_flag;
7277 sp->device_enabled_once = FALSE;
7278 if (rx_ring_mode == 1)
7279 sp->rxd_mode = RXD_MODE_1;
7280 if (rx_ring_mode == 2)
7281 sp->rxd_mode = RXD_MODE_3B;
7282 if (rx_ring_mode == 3)
7283 sp->rxd_mode = RXD_MODE_3A;
7284
7285 sp->intr_type = dev_intr_type;
7286
7287 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7288 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7289 sp->device_type = XFRAME_II_DEVICE;
7290 else
7291 sp->device_type = XFRAME_I_DEVICE;
7292
7293 sp->lro = lro;
7294
7295 /* Initialize some PCI/PCI-X fields of the NIC. */
7296 s2io_init_pci(sp);
7297
7298 /*
7299 * Setting the device configuration parameters.
7300 * Most of these parameters can be specified by the user during
7301 * module insertion as they are module loadable parameters. If
7302 * these parameters are not not specified during load time, they
7303 * are initialized with default values.
7304 */
7305 mac_control = &sp->mac_control;
7306 config = &sp->config;
7307
7308 /* Tx side parameters. */
7309 config->tx_fifo_num = tx_fifo_num;
7310 for (i = 0; i < MAX_TX_FIFOS; i++) {
7311 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7312 config->tx_cfg[i].fifo_priority = i;
7313 }
7314
7315 /* mapping the QoS priority to the configured fifos */
7316 for (i = 0; i < MAX_TX_FIFOS; i++)
7317 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7318
7319 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7320 for (i = 0; i < config->tx_fifo_num; i++) {
7321 config->tx_cfg[i].f_no_snoop =
7322 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7323 if (config->tx_cfg[i].fifo_len < 65) {
7324 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7325 break;
7326 }
7327 }
7328 /* + 2 because one Txd for skb->data and one Txd for UFO */
7329 config->max_txds = MAX_SKB_FRAGS + 2;
7330
7331 /* Rx side parameters. */
7332 config->rx_ring_num = rx_ring_num;
7333 for (i = 0; i < MAX_RX_RINGS; i++) {
7334 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7335 (rxd_count[sp->rxd_mode] + 1);
7336 config->rx_cfg[i].ring_priority = i;
7337 }
7338
7339 for (i = 0; i < rx_ring_num; i++) {
7340 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7341 config->rx_cfg[i].f_no_snoop =
7342 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7343 }
7344
7345 /* Setting Mac Control parameters */
7346 mac_control->rmac_pause_time = rmac_pause_time;
7347 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7348 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7349
7350
7351 /* Initialize Ring buffer parameters. */
7352 for (i = 0; i < config->rx_ring_num; i++)
7353 atomic_set(&sp->rx_bufs_left[i], 0);
7354
7355 /* Initialize the number of ISRs currently running */
7356 atomic_set(&sp->isr_cnt, 0);
7357
7358 /* initialize the shared memory used by the NIC and the host */
7359 if (init_shared_mem(sp)) {
7360 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7361 dev->name);
7362 ret = -ENOMEM;
7363 goto mem_alloc_failed;
7364 }
7365
7366 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7367 pci_resource_len(pdev, 0));
7368 if (!sp->bar0) {
7369 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7370 dev->name);
7371 ret = -ENOMEM;
7372 goto bar0_remap_failed;
7373 }
7374
7375 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7376 pci_resource_len(pdev, 2));
7377 if (!sp->bar1) {
7378 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7379 dev->name);
7380 ret = -ENOMEM;
7381 goto bar1_remap_failed;
7382 }
7383
7384 dev->irq = pdev->irq;
7385 dev->base_addr = (unsigned long) sp->bar0;
7386
7387 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7388 for (j = 0; j < MAX_TX_FIFOS; j++) {
7389 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7390 (sp->bar1 + (j * 0x00020000));
7391 }
7392
7393 /* Driver entry points */
7394 dev->open = &s2io_open;
7395 dev->stop = &s2io_close;
7396 dev->hard_start_xmit = &s2io_xmit;
7397 dev->get_stats = &s2io_get_stats;
7398 dev->set_multicast_list = &s2io_set_multicast;
7399 dev->do_ioctl = &s2io_ioctl;
7400 dev->change_mtu = &s2io_change_mtu;
7401 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7402 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7403 dev->vlan_rx_register = s2io_vlan_rx_register;
7404
7405 /*
7406 * will use eth_mac_addr() for dev->set_mac_address
7407 * mac address will be set every time dev->open() is called
7408 */
7409 dev->poll = s2io_poll;
7410 dev->weight = 32;
7411
7412 #ifdef CONFIG_NET_POLL_CONTROLLER
7413 dev->poll_controller = s2io_netpoll;
7414 #endif
7415
7416 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7417 if (sp->high_dma_flag == TRUE)
7418 dev->features |= NETIF_F_HIGHDMA;
7419 dev->features |= NETIF_F_TSO;
7420 dev->features |= NETIF_F_TSO6;
7421 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7422 dev->features |= NETIF_F_UFO;
7423 dev->features |= NETIF_F_HW_CSUM;
7424 }
7425
7426 dev->tx_timeout = &s2io_tx_watchdog;
7427 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7428 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7429 INIT_WORK(&sp->set_link_task, s2io_set_link);
7430
7431 pci_save_state(sp->pdev);
7432
7433 /* Setting swapper control on the NIC, for proper reset operation */
7434 if (s2io_set_swapper(sp)) {
7435 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7436 dev->name);
7437 ret = -EAGAIN;
7438 goto set_swap_failed;
7439 }
7440
7441 /* Verify if the Herc works on the slot its placed into */
7442 if (sp->device_type & XFRAME_II_DEVICE) {
7443 mode = s2io_verify_pci_mode(sp);
7444 if (mode < 0) {
7445 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7446 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7447 ret = -EBADSLT;
7448 goto set_swap_failed;
7449 }
7450 }
7451
7452 /* Not needed for Herc */
7453 if (sp->device_type & XFRAME_I_DEVICE) {
7454 /*
7455 * Fix for all "FFs" MAC address problems observed on
7456 * Alpha platforms
7457 */
7458 fix_mac_address(sp);
7459 s2io_reset(sp);
7460 }
7461
7462 /*
7463 * MAC address initialization.
7464 * For now only one mac address will be read and used.
7465 */
7466 bar0 = sp->bar0;
7467 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7468 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7469 writeq(val64, &bar0->rmac_addr_cmd_mem);
7470 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7471 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7472 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7473 mac_down = (u32) tmp64;
7474 mac_up = (u32) (tmp64 >> 32);
7475
7476 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7477 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7478 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7479 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7480 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7481 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7482
7483 /* Set the factory defined MAC address initially */
7484 dev->addr_len = ETH_ALEN;
7485 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7486
7487 /* reset Nic and bring it to known state */
7488 s2io_reset(sp);
7489
7490 /*
7491 * Initialize the tasklet status and link state flags
7492 * and the card state parameter
7493 */
7494 atomic_set(&(sp->card_state), 0);
7495 sp->tasklet_status = 0;
7496 sp->link_state = 0;
7497
7498 /* Initialize spinlocks */
7499 spin_lock_init(&sp->tx_lock);
7500
7501 if (!napi)
7502 spin_lock_init(&sp->put_lock);
7503 spin_lock_init(&sp->rx_lock);
7504
7505 /*
7506 * SXE-002: Configure link and activity LED to init state
7507 * on driver load.
7508 */
7509 subid = sp->pdev->subsystem_device;
7510 if ((subid & 0xFF) >= 0x07) {
7511 val64 = readq(&bar0->gpio_control);
7512 val64 |= 0x0000800000000000ULL;
7513 writeq(val64, &bar0->gpio_control);
7514 val64 = 0x0411040400000000ULL;
7515 writeq(val64, (void __iomem *) bar0 + 0x2700);
7516 val64 = readq(&bar0->gpio_control);
7517 }
7518
7519 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7520
7521 if (register_netdev(dev)) {
7522 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7523 ret = -ENODEV;
7524 goto register_failed;
7525 }
7526 s2io_vpd_read(sp);
7527 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7528 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7529 sp->product_name, get_xena_rev_id(sp->pdev));
7530 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7531 s2io_driver_version);
7532 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7533 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7534 sp->def_mac_addr[0].mac_addr[0],
7535 sp->def_mac_addr[0].mac_addr[1],
7536 sp->def_mac_addr[0].mac_addr[2],
7537 sp->def_mac_addr[0].mac_addr[3],
7538 sp->def_mac_addr[0].mac_addr[4],
7539 sp->def_mac_addr[0].mac_addr[5]);
7540 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7541 if (sp->device_type & XFRAME_II_DEVICE) {
7542 mode = s2io_print_pci_mode(sp);
7543 if (mode < 0) {
7544 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7545 ret = -EBADSLT;
7546 unregister_netdev(dev);
7547 goto set_swap_failed;
7548 }
7549 }
7550 switch(sp->rxd_mode) {
7551 case RXD_MODE_1:
7552 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7553 dev->name);
7554 break;
7555 case RXD_MODE_3B:
7556 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7557 dev->name);
7558 break;
7559 case RXD_MODE_3A:
7560 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7561 dev->name);
7562 break;
7563 }
7564
7565 if (napi)
7566 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7567 switch(sp->intr_type) {
7568 case INTA:
7569 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7570 break;
7571 case MSI:
7572 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7573 break;
7574 case MSI_X:
7575 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7576 break;
7577 }
7578 if (sp->lro)
7579 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7580 dev->name);
7581 if (ufo)
7582 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7583 " enabled\n", dev->name);
7584 /* Initialize device name */
7585 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7586
7587 /* Initialize bimodal Interrupts */
7588 sp->config.bimodal = bimodal;
7589 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7590 sp->config.bimodal = 0;
7591 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7592 dev->name);
7593 }
7594
7595 /*
7596 * Make Link state as off at this point, when the Link change
7597 * interrupt comes the state will be automatically changed to
7598 * the right state.
7599 */
7600 netif_carrier_off(dev);
7601
7602 return 0;
7603
7604 register_failed:
7605 set_swap_failed:
7606 iounmap(sp->bar1);
7607 bar1_remap_failed:
7608 iounmap(sp->bar0);
7609 bar0_remap_failed:
7610 mem_alloc_failed:
7611 free_shared_mem(sp);
7612 pci_disable_device(pdev);
7613 if (dev_intr_type != MSI_X)
7614 pci_release_regions(pdev);
7615 else {
7616 release_mem_region(pci_resource_start(pdev, 0),
7617 pci_resource_len(pdev, 0));
7618 release_mem_region(pci_resource_start(pdev, 2),
7619 pci_resource_len(pdev, 2));
7620 }
7621 pci_set_drvdata(pdev, NULL);
7622 free_netdev(dev);
7623
7624 return ret;
7625 }
7626
7627 /**
7628 * s2io_rem_nic - Free the PCI device
7629 * @pdev: structure containing the PCI related information of the device.
7630 * Description: This function is called by the Pci subsystem to release a
7631 * PCI device and free up all resource held up by the device. This could
7632 * be in response to a Hot plug event or when the driver is to be removed
7633 * from memory.
7634 */
7635
7636 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7637 {
7638 struct net_device *dev =
7639 (struct net_device *) pci_get_drvdata(pdev);
7640 struct s2io_nic *sp;
7641
7642 if (dev == NULL) {
7643 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7644 return;
7645 }
7646
7647 flush_scheduled_work();
7648
7649 sp = dev->priv;
7650 unregister_netdev(dev);
7651
7652 free_shared_mem(sp);
7653 iounmap(sp->bar0);
7654 iounmap(sp->bar1);
7655 if (sp->intr_type != MSI_X)
7656 pci_release_regions(pdev);
7657 else {
7658 release_mem_region(pci_resource_start(pdev, 0),
7659 pci_resource_len(pdev, 0));
7660 release_mem_region(pci_resource_start(pdev, 2),
7661 pci_resource_len(pdev, 2));
7662 }
7663 pci_set_drvdata(pdev, NULL);
7664 free_netdev(dev);
7665 pci_disable_device(pdev);
7666 }
7667
7668 /**
7669 * s2io_starter - Entry point for the driver
7670 * Description: This function is the entry point for the driver. It verifies
7671 * the module loadable parameters and initializes PCI configuration space.
7672 */
7673
7674 int __init s2io_starter(void)
7675 {
7676 return pci_register_driver(&s2io_driver);
7677 }
7678
7679 /**
7680 * s2io_closer - Cleanup routine for the driver
7681 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7682 */
7683
7684 static __exit void s2io_closer(void)
7685 {
7686 pci_unregister_driver(&s2io_driver);
7687 DBG_PRINT(INIT_DBG, "cleanup done\n");
7688 }
7689
7690 module_init(s2io_starter);
7691 module_exit(s2io_closer);
7692
7693 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7694 struct tcphdr **tcp, struct RxD_t *rxdp)
7695 {
7696 int ip_off;
7697 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7698
7699 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7700 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7701 __FUNCTION__);
7702 return -1;
7703 }
7704
7705 /* TODO:
7706 * By default the VLAN field in the MAC is stripped by the card, if this
7707 * feature is turned off in rx_pa_cfg register, then the ip_off field
7708 * has to be shifted by a further 2 bytes
7709 */
7710 switch (l2_type) {
7711 case 0: /* DIX type */
7712 case 4: /* DIX type with VLAN */
7713 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7714 break;
7715 /* LLC, SNAP etc are considered non-mergeable */
7716 default:
7717 return -1;
7718 }
7719
7720 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7721 ip_len = (u8)((*ip)->ihl);
7722 ip_len <<= 2;
7723 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7724
7725 return 0;
7726 }
7727
7728 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7729 struct tcphdr *tcp)
7730 {
7731 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7732 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7733 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7734 return -1;
7735 return 0;
7736 }
7737
7738 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7739 {
7740 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7741 }
7742
7743 static void initiate_new_session(struct lro *lro, u8 *l2h,
7744 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7745 {
7746 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7747 lro->l2h = l2h;
7748 lro->iph = ip;
7749 lro->tcph = tcp;
7750 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7751 lro->tcp_ack = ntohl(tcp->ack_seq);
7752 lro->sg_num = 1;
7753 lro->total_len = ntohs(ip->tot_len);
7754 lro->frags_len = 0;
7755 /*
7756 * check if we saw TCP timestamp. Other consistency checks have
7757 * already been done.
7758 */
7759 if (tcp->doff == 8) {
7760 u32 *ptr;
7761 ptr = (u32 *)(tcp+1);
7762 lro->saw_ts = 1;
7763 lro->cur_tsval = *(ptr+1);
7764 lro->cur_tsecr = *(ptr+2);
7765 }
7766 lro->in_use = 1;
7767 }
7768
7769 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7770 {
7771 struct iphdr *ip = lro->iph;
7772 struct tcphdr *tcp = lro->tcph;
7773 __sum16 nchk;
7774 struct stat_block *statinfo = sp->mac_control.stats_info;
7775 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7776
7777 /* Update L3 header */
7778 ip->tot_len = htons(lro->total_len);
7779 ip->check = 0;
7780 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7781 ip->check = nchk;
7782
7783 /* Update L4 header */
7784 tcp->ack_seq = lro->tcp_ack;
7785 tcp->window = lro->window;
7786
7787 /* Update tsecr field if this session has timestamps enabled */
7788 if (lro->saw_ts) {
7789 u32 *ptr = (u32 *)(tcp + 1);
7790 *(ptr+2) = lro->cur_tsecr;
7791 }
7792
7793 /* Update counters required for calculation of
7794 * average no. of packets aggregated.
7795 */
7796 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7797 statinfo->sw_stat.num_aggregations++;
7798 }
7799
7800 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7801 struct tcphdr *tcp, u32 l4_pyld)
7802 {
7803 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7804 lro->total_len += l4_pyld;
7805 lro->frags_len += l4_pyld;
7806 lro->tcp_next_seq += l4_pyld;
7807 lro->sg_num++;
7808
7809 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7810 lro->tcp_ack = tcp->ack_seq;
7811 lro->window = tcp->window;
7812
7813 if (lro->saw_ts) {
7814 u32 *ptr;
7815 /* Update tsecr and tsval from this packet */
7816 ptr = (u32 *) (tcp + 1);
7817 lro->cur_tsval = *(ptr + 1);
7818 lro->cur_tsecr = *(ptr + 2);
7819 }
7820 }
7821
7822 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7823 struct tcphdr *tcp, u32 tcp_pyld_len)
7824 {
7825 u8 *ptr;
7826
7827 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7828
7829 if (!tcp_pyld_len) {
7830 /* Runt frame or a pure ack */
7831 return -1;
7832 }
7833
7834 if (ip->ihl != 5) /* IP has options */
7835 return -1;
7836
7837 /* If we see CE codepoint in IP header, packet is not mergeable */
7838 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7839 return -1;
7840
7841 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7842 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7843 tcp->ece || tcp->cwr || !tcp->ack) {
7844 /*
7845 * Currently recognize only the ack control word and
7846 * any other control field being set would result in
7847 * flushing the LRO session
7848 */
7849 return -1;
7850 }
7851
7852 /*
7853 * Allow only one TCP timestamp option. Don't aggregate if
7854 * any other options are detected.
7855 */
7856 if (tcp->doff != 5 && tcp->doff != 8)
7857 return -1;
7858
7859 if (tcp->doff == 8) {
7860 ptr = (u8 *)(tcp + 1);
7861 while (*ptr == TCPOPT_NOP)
7862 ptr++;
7863 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7864 return -1;
7865
7866 /* Ensure timestamp value increases monotonically */
7867 if (l_lro)
7868 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7869 return -1;
7870
7871 /* timestamp echo reply should be non-zero */
7872 if (*((u32 *)(ptr+6)) == 0)
7873 return -1;
7874 }
7875
7876 return 0;
7877 }
7878
7879 static int
7880 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7881 struct RxD_t *rxdp, struct s2io_nic *sp)
7882 {
7883 struct iphdr *ip;
7884 struct tcphdr *tcph;
7885 int ret = 0, i;
7886
7887 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7888 rxdp))) {
7889 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7890 ip->saddr, ip->daddr);
7891 } else {
7892 return ret;
7893 }
7894
7895 tcph = (struct tcphdr *)*tcp;
7896 *tcp_len = get_l4_pyld_length(ip, tcph);
7897 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7898 struct lro *l_lro = &sp->lro0_n[i];
7899 if (l_lro->in_use) {
7900 if (check_for_socket_match(l_lro, ip, tcph))
7901 continue;
7902 /* Sock pair matched */
7903 *lro = l_lro;
7904
7905 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7906 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7907 "0x%x, actual 0x%x\n", __FUNCTION__,
7908 (*lro)->tcp_next_seq,
7909 ntohl(tcph->seq));
7910
7911 sp->mac_control.stats_info->
7912 sw_stat.outof_sequence_pkts++;
7913 ret = 2;
7914 break;
7915 }
7916
7917 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7918 ret = 1; /* Aggregate */
7919 else
7920 ret = 2; /* Flush both */
7921 break;
7922 }
7923 }
7924
7925 if (ret == 0) {
7926 /* Before searching for available LRO objects,
7927 * check if the pkt is L3/L4 aggregatable. If not
7928 * don't create new LRO session. Just send this
7929 * packet up.
7930 */
7931 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7932 return 5;
7933 }
7934
7935 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7936 struct lro *l_lro = &sp->lro0_n[i];
7937 if (!(l_lro->in_use)) {
7938 *lro = l_lro;
7939 ret = 3; /* Begin anew */
7940 break;
7941 }
7942 }
7943 }
7944
7945 if (ret == 0) { /* sessions exceeded */
7946 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7947 __FUNCTION__);
7948 *lro = NULL;
7949 return ret;
7950 }
7951
7952 switch (ret) {
7953 case 3:
7954 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7955 break;
7956 case 2:
7957 update_L3L4_header(sp, *lro);
7958 break;
7959 case 1:
7960 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7961 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7962 update_L3L4_header(sp, *lro);
7963 ret = 4; /* Flush the LRO */
7964 }
7965 break;
7966 default:
7967 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7968 __FUNCTION__);
7969 break;
7970 }
7971
7972 return ret;
7973 }
7974
7975 static void clear_lro_session(struct lro *lro)
7976 {
7977 static u16 lro_struct_size = sizeof(struct lro);
7978
7979 memset(lro, 0, lro_struct_size);
7980 }
7981
7982 static void queue_rx_frame(struct sk_buff *skb)
7983 {
7984 struct net_device *dev = skb->dev;
7985
7986 skb->protocol = eth_type_trans(skb, dev);
7987 if (napi)
7988 netif_receive_skb(skb);
7989 else
7990 netif_rx(skb);
7991 }
7992
7993 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7994 struct sk_buff *skb,
7995 u32 tcp_len)
7996 {
7997 struct sk_buff *first = lro->parent;
7998
7999 first->len += tcp_len;
8000 first->data_len = lro->frags_len;
8001 skb_pull(skb, (skb->len - tcp_len));
8002 if (skb_shinfo(first)->frag_list)
8003 lro->last_frag->next = skb;
8004 else
8005 skb_shinfo(first)->frag_list = skb;
8006 first->truesize += skb->truesize;
8007 lro->last_frag = skb;
8008 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8009 return;
8010 }
This page took 0.333139 seconds and 6 git commands to generate.