S2io: Support for vlan_rx_kill_vid entry point
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
78
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
84
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
88
89 #define DRV_VERSION "2.0.26.15-2"
90
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
94
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
97
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
99 {
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106 }
107
108 /*
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
117
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 #define PANIC 1
122 #define LOW 2
123 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
124 {
125 struct mac_info *mac_control;
126
127 mac_control = &sp->mac_control;
128 if (rxb_size <= rxd_count[sp->rxd_mode])
129 return PANIC;
130 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
131 return LOW;
132 return 0;
133 }
134
135 static inline int is_s2io_card_up(const struct s2io_nic * sp)
136 {
137 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 }
139
140 /* Ethtool related variables and Macros. */
141 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
142 "Register test\t(offline)",
143 "Eeprom test\t(offline)",
144 "Link test\t(online)",
145 "RLDRAM test\t(offline)",
146 "BIST Test\t(offline)"
147 };
148
149 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
150 {"tmac_frms"},
151 {"tmac_data_octets"},
152 {"tmac_drop_frms"},
153 {"tmac_mcst_frms"},
154 {"tmac_bcst_frms"},
155 {"tmac_pause_ctrl_frms"},
156 {"tmac_ttl_octets"},
157 {"tmac_ucst_frms"},
158 {"tmac_nucst_frms"},
159 {"tmac_any_err_frms"},
160 {"tmac_ttl_less_fb_octets"},
161 {"tmac_vld_ip_octets"},
162 {"tmac_vld_ip"},
163 {"tmac_drop_ip"},
164 {"tmac_icmp"},
165 {"tmac_rst_tcp"},
166 {"tmac_tcp"},
167 {"tmac_udp"},
168 {"rmac_vld_frms"},
169 {"rmac_data_octets"},
170 {"rmac_fcs_err_frms"},
171 {"rmac_drop_frms"},
172 {"rmac_vld_mcst_frms"},
173 {"rmac_vld_bcst_frms"},
174 {"rmac_in_rng_len_err_frms"},
175 {"rmac_out_rng_len_err_frms"},
176 {"rmac_long_frms"},
177 {"rmac_pause_ctrl_frms"},
178 {"rmac_unsup_ctrl_frms"},
179 {"rmac_ttl_octets"},
180 {"rmac_accepted_ucst_frms"},
181 {"rmac_accepted_nucst_frms"},
182 {"rmac_discarded_frms"},
183 {"rmac_drop_events"},
184 {"rmac_ttl_less_fb_octets"},
185 {"rmac_ttl_frms"},
186 {"rmac_usized_frms"},
187 {"rmac_osized_frms"},
188 {"rmac_frag_frms"},
189 {"rmac_jabber_frms"},
190 {"rmac_ttl_64_frms"},
191 {"rmac_ttl_65_127_frms"},
192 {"rmac_ttl_128_255_frms"},
193 {"rmac_ttl_256_511_frms"},
194 {"rmac_ttl_512_1023_frms"},
195 {"rmac_ttl_1024_1518_frms"},
196 {"rmac_ip"},
197 {"rmac_ip_octets"},
198 {"rmac_hdr_err_ip"},
199 {"rmac_drop_ip"},
200 {"rmac_icmp"},
201 {"rmac_tcp"},
202 {"rmac_udp"},
203 {"rmac_err_drp_udp"},
204 {"rmac_xgmii_err_sym"},
205 {"rmac_frms_q0"},
206 {"rmac_frms_q1"},
207 {"rmac_frms_q2"},
208 {"rmac_frms_q3"},
209 {"rmac_frms_q4"},
210 {"rmac_frms_q5"},
211 {"rmac_frms_q6"},
212 {"rmac_frms_q7"},
213 {"rmac_full_q0"},
214 {"rmac_full_q1"},
215 {"rmac_full_q2"},
216 {"rmac_full_q3"},
217 {"rmac_full_q4"},
218 {"rmac_full_q5"},
219 {"rmac_full_q6"},
220 {"rmac_full_q7"},
221 {"rmac_pause_cnt"},
222 {"rmac_xgmii_data_err_cnt"},
223 {"rmac_xgmii_ctrl_err_cnt"},
224 {"rmac_accepted_ip"},
225 {"rmac_err_tcp"},
226 {"rd_req_cnt"},
227 {"new_rd_req_cnt"},
228 {"new_rd_req_rtry_cnt"},
229 {"rd_rtry_cnt"},
230 {"wr_rtry_rd_ack_cnt"},
231 {"wr_req_cnt"},
232 {"new_wr_req_cnt"},
233 {"new_wr_req_rtry_cnt"},
234 {"wr_rtry_cnt"},
235 {"wr_disc_cnt"},
236 {"rd_rtry_wr_ack_cnt"},
237 {"txp_wr_cnt"},
238 {"txd_rd_cnt"},
239 {"txd_wr_cnt"},
240 {"rxd_rd_cnt"},
241 {"rxd_wr_cnt"},
242 {"txf_rd_cnt"},
243 {"rxf_wr_cnt"}
244 };
245
246 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
247 {"rmac_ttl_1519_4095_frms"},
248 {"rmac_ttl_4096_8191_frms"},
249 {"rmac_ttl_8192_max_frms"},
250 {"rmac_ttl_gt_max_frms"},
251 {"rmac_osized_alt_frms"},
252 {"rmac_jabber_alt_frms"},
253 {"rmac_gt_max_alt_frms"},
254 {"rmac_vlan_frms"},
255 {"rmac_len_discard"},
256 {"rmac_fcs_discard"},
257 {"rmac_pf_discard"},
258 {"rmac_da_discard"},
259 {"rmac_red_discard"},
260 {"rmac_rts_discard"},
261 {"rmac_ingm_full_discard"},
262 {"link_fault_cnt"}
263 };
264
265 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
266 {"\n DRIVER STATISTICS"},
267 {"single_bit_ecc_errs"},
268 {"double_bit_ecc_errs"},
269 {"parity_err_cnt"},
270 {"serious_err_cnt"},
271 {"soft_reset_cnt"},
272 {"fifo_full_cnt"},
273 {"ring_0_full_cnt"},
274 {"ring_1_full_cnt"},
275 {"ring_2_full_cnt"},
276 {"ring_3_full_cnt"},
277 {"ring_4_full_cnt"},
278 {"ring_5_full_cnt"},
279 {"ring_6_full_cnt"},
280 {"ring_7_full_cnt"},
281 {"alarm_transceiver_temp_high"},
282 {"alarm_transceiver_temp_low"},
283 {"alarm_laser_bias_current_high"},
284 {"alarm_laser_bias_current_low"},
285 {"alarm_laser_output_power_high"},
286 {"alarm_laser_output_power_low"},
287 {"warn_transceiver_temp_high"},
288 {"warn_transceiver_temp_low"},
289 {"warn_laser_bias_current_high"},
290 {"warn_laser_bias_current_low"},
291 {"warn_laser_output_power_high"},
292 {"warn_laser_output_power_low"},
293 {"lro_aggregated_pkts"},
294 {"lro_flush_both_count"},
295 {"lro_out_of_sequence_pkts"},
296 {"lro_flush_due_to_max_pkts"},
297 {"lro_avg_aggr_pkts"},
298 {"mem_alloc_fail_cnt"},
299 {"pci_map_fail_cnt"},
300 {"watchdog_timer_cnt"},
301 {"mem_allocated"},
302 {"mem_freed"},
303 {"link_up_cnt"},
304 {"link_down_cnt"},
305 {"link_up_time"},
306 {"link_down_time"},
307 {"tx_tcode_buf_abort_cnt"},
308 {"tx_tcode_desc_abort_cnt"},
309 {"tx_tcode_parity_err_cnt"},
310 {"tx_tcode_link_loss_cnt"},
311 {"tx_tcode_list_proc_err_cnt"},
312 {"rx_tcode_parity_err_cnt"},
313 {"rx_tcode_abort_cnt"},
314 {"rx_tcode_parity_abort_cnt"},
315 {"rx_tcode_rda_fail_cnt"},
316 {"rx_tcode_unkn_prot_cnt"},
317 {"rx_tcode_fcs_err_cnt"},
318 {"rx_tcode_buf_size_err_cnt"},
319 {"rx_tcode_rxd_corrupt_cnt"},
320 {"rx_tcode_unkn_err_cnt"},
321 {"tda_err_cnt"},
322 {"pfc_err_cnt"},
323 {"pcc_err_cnt"},
324 {"tti_err_cnt"},
325 {"tpa_err_cnt"},
326 {"sm_err_cnt"},
327 {"lso_err_cnt"},
328 {"mac_tmac_err_cnt"},
329 {"mac_rmac_err_cnt"},
330 {"xgxs_txgxs_err_cnt"},
331 {"xgxs_rxgxs_err_cnt"},
332 {"rc_err_cnt"},
333 {"prc_pcix_err_cnt"},
334 {"rpa_err_cnt"},
335 {"rda_err_cnt"},
336 {"rti_err_cnt"},
337 {"mc_err_cnt"}
338 };
339
340 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
341 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
342 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
343
344 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
345 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346
347 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
348 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
349
350 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
351 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352
353 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
354 init_timer(&timer); \
355 timer.function = handle; \
356 timer.data = (unsigned long) arg; \
357 mod_timer(&timer, (jiffies + exp)) \
358
359 /* copy mac addr to def_mac_addr array */
360 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
361 {
362 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
363 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
364 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
365 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
366 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
367 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
368 }
369 /* Add the vlan */
370 static void s2io_vlan_rx_register(struct net_device *dev,
371 struct vlan_group *grp)
372 {
373 int i;
374 struct s2io_nic *nic = dev->priv;
375 unsigned long flags[MAX_TX_FIFOS];
376 struct mac_info *mac_control = &nic->mac_control;
377 struct config_param *config = &nic->config;
378
379 for (i = 0; i < config->tx_fifo_num; i++)
380 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
381
382 nic->vlgrp = grp;
383 for (i = config->tx_fifo_num - 1; i >= 0; i--)
384 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
385 flags[i]);
386 }
387
388 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
389 static int vlan_strip_flag;
390
391 /* Unregister the vlan */
392 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
393 {
394 int i;
395 struct s2io_nic *nic = dev->priv;
396 unsigned long flags[MAX_TX_FIFOS];
397 struct mac_info *mac_control = &nic->mac_control;
398 struct config_param *config = &nic->config;
399
400 for (i = 0; i < config->tx_fifo_num; i++)
401 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
402
403 if (nic->vlgrp)
404 vlan_group_set_device(nic->vlgrp, vid, NULL);
405
406 for (i = config->tx_fifo_num - 1; i >= 0; i--)
407 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
408 flags[i]);
409 }
410
411 /*
412 * Constants to be programmed into the Xena's registers, to configure
413 * the XAUI.
414 */
415
416 #define END_SIGN 0x0
417 static const u64 herc_act_dtx_cfg[] = {
418 /* Set address */
419 0x8000051536750000ULL, 0x80000515367500E0ULL,
420 /* Write data */
421 0x8000051536750004ULL, 0x80000515367500E4ULL,
422 /* Set address */
423 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
424 /* Write data */
425 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
426 /* Set address */
427 0x801205150D440000ULL, 0x801205150D4400E0ULL,
428 /* Write data */
429 0x801205150D440004ULL, 0x801205150D4400E4ULL,
430 /* Set address */
431 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
432 /* Write data */
433 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
434 /* Done */
435 END_SIGN
436 };
437
438 static const u64 xena_dtx_cfg[] = {
439 /* Set address */
440 0x8000051500000000ULL, 0x80000515000000E0ULL,
441 /* Write data */
442 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
443 /* Set address */
444 0x8001051500000000ULL, 0x80010515000000E0ULL,
445 /* Write data */
446 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
447 /* Set address */
448 0x8002051500000000ULL, 0x80020515000000E0ULL,
449 /* Write data */
450 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
451 END_SIGN
452 };
453
454 /*
455 * Constants for Fixing the MacAddress problem seen mostly on
456 * Alpha machines.
457 */
458 static const u64 fix_mac[] = {
459 0x0060000000000000ULL, 0x0060600000000000ULL,
460 0x0040600000000000ULL, 0x0000600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0060600000000000ULL,
471 0x0020600000000000ULL, 0x0000600000000000ULL,
472 0x0040600000000000ULL, 0x0060600000000000ULL,
473 END_SIGN
474 };
475
476 MODULE_LICENSE("GPL");
477 MODULE_VERSION(DRV_VERSION);
478
479
480 /* Module Loadable parameters. */
481 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
482 S2IO_PARM_INT(rx_ring_num, 1);
483 S2IO_PARM_INT(multiq, 0);
484 S2IO_PARM_INT(rx_ring_mode, 1);
485 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
486 S2IO_PARM_INT(rmac_pause_time, 0x100);
487 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
488 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
489 S2IO_PARM_INT(shared_splits, 0);
490 S2IO_PARM_INT(tmac_util_period, 5);
491 S2IO_PARM_INT(rmac_util_period, 5);
492 S2IO_PARM_INT(l3l4hdr_size, 128);
493 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
494 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
495 /* Frequency of Rx desc syncs expressed as power of 2 */
496 S2IO_PARM_INT(rxsync_frequency, 3);
497 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
498 S2IO_PARM_INT(intr_type, 2);
499 /* Large receive offload feature */
500 static unsigned int lro_enable;
501 module_param_named(lro, lro_enable, uint, 0);
502
503 /* Max pkts to be aggregated by LRO at one time. If not specified,
504 * aggregation happens until we hit max IP pkt size(64K)
505 */
506 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
507 S2IO_PARM_INT(indicate_max_pkts, 0);
508
509 S2IO_PARM_INT(napi, 1);
510 S2IO_PARM_INT(ufo, 0);
511 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
512
513 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
514 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
515 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
517 static unsigned int rts_frm_len[MAX_RX_RINGS] =
518 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
519
520 module_param_array(tx_fifo_len, uint, NULL, 0);
521 module_param_array(rx_ring_sz, uint, NULL, 0);
522 module_param_array(rts_frm_len, uint, NULL, 0);
523
524 /*
525 * S2IO device table.
526 * This table lists all the devices that this driver supports.
527 */
528 static struct pci_device_id s2io_tbl[] __devinitdata = {
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
534 PCI_ANY_ID, PCI_ANY_ID},
535 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
536 PCI_ANY_ID, PCI_ANY_ID},
537 {0,}
538 };
539
540 MODULE_DEVICE_TABLE(pci, s2io_tbl);
541
542 static struct pci_error_handlers s2io_err_handler = {
543 .error_detected = s2io_io_error_detected,
544 .slot_reset = s2io_io_slot_reset,
545 .resume = s2io_io_resume,
546 };
547
548 static struct pci_driver s2io_driver = {
549 .name = "S2IO",
550 .id_table = s2io_tbl,
551 .probe = s2io_init_nic,
552 .remove = __devexit_p(s2io_rem_nic),
553 .err_handler = &s2io_err_handler,
554 };
555
556 /* A simplifier macro used both by init and free shared_mem Fns(). */
557 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
558
559 /* netqueue manipulation helper functions */
560 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
561 {
562 int i;
563 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
564 if (sp->config.multiq) {
565 for (i = 0; i < sp->config.tx_fifo_num; i++)
566 netif_stop_subqueue(sp->dev, i);
567 } else
568 #endif
569 {
570 for (i = 0; i < sp->config.tx_fifo_num; i++)
571 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
573 }
574 }
575
576 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
577 {
578 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
579 if (sp->config.multiq)
580 netif_stop_subqueue(sp->dev, fifo_no);
581 else
582 #endif
583 {
584 sp->mac_control.fifos[fifo_no].queue_state =
585 FIFO_QUEUE_STOP;
586 netif_stop_queue(sp->dev);
587 }
588 }
589
590 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
591 {
592 int i;
593 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
594 if (sp->config.multiq) {
595 for (i = 0; i < sp->config.tx_fifo_num; i++)
596 netif_start_subqueue(sp->dev, i);
597 } else
598 #endif
599 {
600 for (i = 0; i < sp->config.tx_fifo_num; i++)
601 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
603 }
604 }
605
606 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
607 {
608 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
609 if (sp->config.multiq)
610 netif_start_subqueue(sp->dev, fifo_no);
611 else
612 #endif
613 {
614 sp->mac_control.fifos[fifo_no].queue_state =
615 FIFO_QUEUE_START;
616 netif_start_queue(sp->dev);
617 }
618 }
619
620 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
621 {
622 int i;
623 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
624 if (sp->config.multiq) {
625 for (i = 0; i < sp->config.tx_fifo_num; i++)
626 netif_wake_subqueue(sp->dev, i);
627 } else
628 #endif
629 {
630 for (i = 0; i < sp->config.tx_fifo_num; i++)
631 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
632 netif_wake_queue(sp->dev);
633 }
634 }
635
636 static inline void s2io_wake_tx_queue(
637 struct fifo_info *fifo, int cnt, u8 multiq)
638 {
639
640 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
641 if (multiq) {
642 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
643 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
644 } else
645 #endif
646 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
647 if (netif_queue_stopped(fifo->dev)) {
648 fifo->queue_state = FIFO_QUEUE_START;
649 netif_wake_queue(fifo->dev);
650 }
651 }
652 }
653
654 /**
655 * init_shared_mem - Allocation and Initialization of Memory
656 * @nic: Device private variable.
657 * Description: The function allocates all the memory areas shared
658 * between the NIC and the driver. This includes Tx descriptors,
659 * Rx descriptors and the statistics block.
660 */
661
662 static int init_shared_mem(struct s2io_nic *nic)
663 {
664 u32 size;
665 void *tmp_v_addr, *tmp_v_addr_next;
666 dma_addr_t tmp_p_addr, tmp_p_addr_next;
667 struct RxD_block *pre_rxd_blk = NULL;
668 int i, j, blk_cnt;
669 int lst_size, lst_per_page;
670 struct net_device *dev = nic->dev;
671 unsigned long tmp;
672 struct buffAdd *ba;
673
674 struct mac_info *mac_control;
675 struct config_param *config;
676 unsigned long long mem_allocated = 0;
677
678 mac_control = &nic->mac_control;
679 config = &nic->config;
680
681
682 /* Allocation and initialization of TXDLs in FIOFs */
683 size = 0;
684 for (i = 0; i < config->tx_fifo_num; i++) {
685 size += config->tx_cfg[i].fifo_len;
686 }
687 if (size > MAX_AVAILABLE_TXDS) {
688 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
689 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
690 return -EINVAL;
691 }
692
693 size = 0;
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 size = config->tx_cfg[i].fifo_len;
696 /*
697 * Legal values are from 2 to 8192
698 */
699 if (size < 2) {
700 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
701 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
702 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
703 "are 2 to 8192\n");
704 return -EINVAL;
705 }
706 }
707
708 lst_size = (sizeof(struct TxD) * config->max_txds);
709 lst_per_page = PAGE_SIZE / lst_size;
710
711 for (i = 0; i < config->tx_fifo_num; i++) {
712 int fifo_len = config->tx_cfg[i].fifo_len;
713 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
714 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
715 GFP_KERNEL);
716 if (!mac_control->fifos[i].list_info) {
717 DBG_PRINT(INFO_DBG,
718 "Malloc failed for list_info\n");
719 return -ENOMEM;
720 }
721 mem_allocated += list_holder_size;
722 }
723 for (i = 0; i < config->tx_fifo_num; i++) {
724 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
725 lst_per_page);
726 mac_control->fifos[i].tx_curr_put_info.offset = 0;
727 mac_control->fifos[i].tx_curr_put_info.fifo_len =
728 config->tx_cfg[i].fifo_len - 1;
729 mac_control->fifos[i].tx_curr_get_info.offset = 0;
730 mac_control->fifos[i].tx_curr_get_info.fifo_len =
731 config->tx_cfg[i].fifo_len - 1;
732 mac_control->fifos[i].fifo_no = i;
733 mac_control->fifos[i].nic = nic;
734 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
735 mac_control->fifos[i].dev = dev;
736
737 for (j = 0; j < page_num; j++) {
738 int k = 0;
739 dma_addr_t tmp_p;
740 void *tmp_v;
741 tmp_v = pci_alloc_consistent(nic->pdev,
742 PAGE_SIZE, &tmp_p);
743 if (!tmp_v) {
744 DBG_PRINT(INFO_DBG,
745 "pci_alloc_consistent ");
746 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
747 return -ENOMEM;
748 }
749 /* If we got a zero DMA address(can happen on
750 * certain platforms like PPC), reallocate.
751 * Store virtual address of page we don't want,
752 * to be freed later.
753 */
754 if (!tmp_p) {
755 mac_control->zerodma_virt_addr = tmp_v;
756 DBG_PRINT(INIT_DBG,
757 "%s: Zero DMA address for TxDL. ", dev->name);
758 DBG_PRINT(INIT_DBG,
759 "Virtual address %p\n", tmp_v);
760 tmp_v = pci_alloc_consistent(nic->pdev,
761 PAGE_SIZE, &tmp_p);
762 if (!tmp_v) {
763 DBG_PRINT(INFO_DBG,
764 "pci_alloc_consistent ");
765 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
766 return -ENOMEM;
767 }
768 mem_allocated += PAGE_SIZE;
769 }
770 while (k < lst_per_page) {
771 int l = (j * lst_per_page) + k;
772 if (l == config->tx_cfg[i].fifo_len)
773 break;
774 mac_control->fifos[i].list_info[l].list_virt_addr =
775 tmp_v + (k * lst_size);
776 mac_control->fifos[i].list_info[l].list_phy_addr =
777 tmp_p + (k * lst_size);
778 k++;
779 }
780 }
781 }
782
783 for (i = 0; i < config->tx_fifo_num; i++) {
784 size = config->tx_cfg[i].fifo_len;
785 mac_control->fifos[i].ufo_in_band_v
786 = kcalloc(size, sizeof(u64), GFP_KERNEL);
787 if (!mac_control->fifos[i].ufo_in_band_v)
788 return -ENOMEM;
789 mem_allocated += (size * sizeof(u64));
790 }
791
792 /* Allocation and initialization of RXDs in Rings */
793 size = 0;
794 for (i = 0; i < config->rx_ring_num; i++) {
795 if (config->rx_cfg[i].num_rxd %
796 (rxd_count[nic->rxd_mode] + 1)) {
797 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
798 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
799 i);
800 DBG_PRINT(ERR_DBG, "RxDs per Block");
801 return FAILURE;
802 }
803 size += config->rx_cfg[i].num_rxd;
804 mac_control->rings[i].block_count =
805 config->rx_cfg[i].num_rxd /
806 (rxd_count[nic->rxd_mode] + 1 );
807 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
808 mac_control->rings[i].block_count;
809 }
810 if (nic->rxd_mode == RXD_MODE_1)
811 size = (size * (sizeof(struct RxD1)));
812 else
813 size = (size * (sizeof(struct RxD3)));
814
815 for (i = 0; i < config->rx_ring_num; i++) {
816 mac_control->rings[i].rx_curr_get_info.block_index = 0;
817 mac_control->rings[i].rx_curr_get_info.offset = 0;
818 mac_control->rings[i].rx_curr_get_info.ring_len =
819 config->rx_cfg[i].num_rxd - 1;
820 mac_control->rings[i].rx_curr_put_info.block_index = 0;
821 mac_control->rings[i].rx_curr_put_info.offset = 0;
822 mac_control->rings[i].rx_curr_put_info.ring_len =
823 config->rx_cfg[i].num_rxd - 1;
824 mac_control->rings[i].nic = nic;
825 mac_control->rings[i].ring_no = i;
826
827 blk_cnt = config->rx_cfg[i].num_rxd /
828 (rxd_count[nic->rxd_mode] + 1);
829 /* Allocating all the Rx blocks */
830 for (j = 0; j < blk_cnt; j++) {
831 struct rx_block_info *rx_blocks;
832 int l;
833
834 rx_blocks = &mac_control->rings[i].rx_blocks[j];
835 size = SIZE_OF_BLOCK; //size is always page size
836 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
837 &tmp_p_addr);
838 if (tmp_v_addr == NULL) {
839 /*
840 * In case of failure, free_shared_mem()
841 * is called, which should free any
842 * memory that was alloced till the
843 * failure happened.
844 */
845 rx_blocks->block_virt_addr = tmp_v_addr;
846 return -ENOMEM;
847 }
848 mem_allocated += size;
849 memset(tmp_v_addr, 0, size);
850 rx_blocks->block_virt_addr = tmp_v_addr;
851 rx_blocks->block_dma_addr = tmp_p_addr;
852 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
853 rxd_count[nic->rxd_mode],
854 GFP_KERNEL);
855 if (!rx_blocks->rxds)
856 return -ENOMEM;
857 mem_allocated +=
858 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
859 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
860 rx_blocks->rxds[l].virt_addr =
861 rx_blocks->block_virt_addr +
862 (rxd_size[nic->rxd_mode] * l);
863 rx_blocks->rxds[l].dma_addr =
864 rx_blocks->block_dma_addr +
865 (rxd_size[nic->rxd_mode] * l);
866 }
867 }
868 /* Interlinking all Rx Blocks */
869 for (j = 0; j < blk_cnt; j++) {
870 tmp_v_addr =
871 mac_control->rings[i].rx_blocks[j].block_virt_addr;
872 tmp_v_addr_next =
873 mac_control->rings[i].rx_blocks[(j + 1) %
874 blk_cnt].block_virt_addr;
875 tmp_p_addr =
876 mac_control->rings[i].rx_blocks[j].block_dma_addr;
877 tmp_p_addr_next =
878 mac_control->rings[i].rx_blocks[(j + 1) %
879 blk_cnt].block_dma_addr;
880
881 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
882 pre_rxd_blk->reserved_2_pNext_RxD_block =
883 (unsigned long) tmp_v_addr_next;
884 pre_rxd_blk->pNext_RxD_Blk_physical =
885 (u64) tmp_p_addr_next;
886 }
887 }
888 if (nic->rxd_mode == RXD_MODE_3B) {
889 /*
890 * Allocation of Storages for buffer addresses in 2BUFF mode
891 * and the buffers as well.
892 */
893 for (i = 0; i < config->rx_ring_num; i++) {
894 blk_cnt = config->rx_cfg[i].num_rxd /
895 (rxd_count[nic->rxd_mode]+ 1);
896 mac_control->rings[i].ba =
897 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
898 GFP_KERNEL);
899 if (!mac_control->rings[i].ba)
900 return -ENOMEM;
901 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
902 for (j = 0; j < blk_cnt; j++) {
903 int k = 0;
904 mac_control->rings[i].ba[j] =
905 kmalloc((sizeof(struct buffAdd) *
906 (rxd_count[nic->rxd_mode] + 1)),
907 GFP_KERNEL);
908 if (!mac_control->rings[i].ba[j])
909 return -ENOMEM;
910 mem_allocated += (sizeof(struct buffAdd) * \
911 (rxd_count[nic->rxd_mode] + 1));
912 while (k != rxd_count[nic->rxd_mode]) {
913 ba = &mac_control->rings[i].ba[j][k];
914
915 ba->ba_0_org = (void *) kmalloc
916 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
917 if (!ba->ba_0_org)
918 return -ENOMEM;
919 mem_allocated +=
920 (BUF0_LEN + ALIGN_SIZE);
921 tmp = (unsigned long)ba->ba_0_org;
922 tmp += ALIGN_SIZE;
923 tmp &= ~((unsigned long) ALIGN_SIZE);
924 ba->ba_0 = (void *) tmp;
925
926 ba->ba_1_org = (void *) kmalloc
927 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
928 if (!ba->ba_1_org)
929 return -ENOMEM;
930 mem_allocated
931 += (BUF1_LEN + ALIGN_SIZE);
932 tmp = (unsigned long) ba->ba_1_org;
933 tmp += ALIGN_SIZE;
934 tmp &= ~((unsigned long) ALIGN_SIZE);
935 ba->ba_1 = (void *) tmp;
936 k++;
937 }
938 }
939 }
940 }
941
942 /* Allocation and initialization of Statistics block */
943 size = sizeof(struct stat_block);
944 mac_control->stats_mem = pci_alloc_consistent
945 (nic->pdev, size, &mac_control->stats_mem_phy);
946
947 if (!mac_control->stats_mem) {
948 /*
949 * In case of failure, free_shared_mem() is called, which
950 * should free any memory that was alloced till the
951 * failure happened.
952 */
953 return -ENOMEM;
954 }
955 mem_allocated += size;
956 mac_control->stats_mem_sz = size;
957
958 tmp_v_addr = mac_control->stats_mem;
959 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
960 memset(tmp_v_addr, 0, size);
961 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
962 (unsigned long long) tmp_p_addr);
963 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
964 return SUCCESS;
965 }
966
967 /**
968 * free_shared_mem - Free the allocated Memory
969 * @nic: Device private variable.
970 * Description: This function is to free all memory locations allocated by
971 * the init_shared_mem() function and return it to the kernel.
972 */
973
974 static void free_shared_mem(struct s2io_nic *nic)
975 {
976 int i, j, blk_cnt, size;
977 void *tmp_v_addr;
978 dma_addr_t tmp_p_addr;
979 struct mac_info *mac_control;
980 struct config_param *config;
981 int lst_size, lst_per_page;
982 struct net_device *dev;
983 int page_num = 0;
984
985 if (!nic)
986 return;
987
988 dev = nic->dev;
989
990 mac_control = &nic->mac_control;
991 config = &nic->config;
992
993 lst_size = (sizeof(struct TxD) * config->max_txds);
994 lst_per_page = PAGE_SIZE / lst_size;
995
996 for (i = 0; i < config->tx_fifo_num; i++) {
997 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
998 lst_per_page);
999 for (j = 0; j < page_num; j++) {
1000 int mem_blks = (j * lst_per_page);
1001 if (!mac_control->fifos[i].list_info)
1002 return;
1003 if (!mac_control->fifos[i].list_info[mem_blks].
1004 list_virt_addr)
1005 break;
1006 pci_free_consistent(nic->pdev, PAGE_SIZE,
1007 mac_control->fifos[i].
1008 list_info[mem_blks].
1009 list_virt_addr,
1010 mac_control->fifos[i].
1011 list_info[mem_blks].
1012 list_phy_addr);
1013 nic->mac_control.stats_info->sw_stat.mem_freed
1014 += PAGE_SIZE;
1015 }
1016 /* If we got a zero DMA address during allocation,
1017 * free the page now
1018 */
1019 if (mac_control->zerodma_virt_addr) {
1020 pci_free_consistent(nic->pdev, PAGE_SIZE,
1021 mac_control->zerodma_virt_addr,
1022 (dma_addr_t)0);
1023 DBG_PRINT(INIT_DBG,
1024 "%s: Freeing TxDL with zero DMA addr. ",
1025 dev->name);
1026 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1027 mac_control->zerodma_virt_addr);
1028 nic->mac_control.stats_info->sw_stat.mem_freed
1029 += PAGE_SIZE;
1030 }
1031 kfree(mac_control->fifos[i].list_info);
1032 nic->mac_control.stats_info->sw_stat.mem_freed +=
1033 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1034 }
1035
1036 size = SIZE_OF_BLOCK;
1037 for (i = 0; i < config->rx_ring_num; i++) {
1038 blk_cnt = mac_control->rings[i].block_count;
1039 for (j = 0; j < blk_cnt; j++) {
1040 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1041 block_virt_addr;
1042 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1043 block_dma_addr;
1044 if (tmp_v_addr == NULL)
1045 break;
1046 pci_free_consistent(nic->pdev, size,
1047 tmp_v_addr, tmp_p_addr);
1048 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1049 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1050 nic->mac_control.stats_info->sw_stat.mem_freed +=
1051 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1052 }
1053 }
1054
1055 if (nic->rxd_mode == RXD_MODE_3B) {
1056 /* Freeing buffer storage addresses in 2BUFF mode. */
1057 for (i = 0; i < config->rx_ring_num; i++) {
1058 blk_cnt = config->rx_cfg[i].num_rxd /
1059 (rxd_count[nic->rxd_mode] + 1);
1060 for (j = 0; j < blk_cnt; j++) {
1061 int k = 0;
1062 if (!mac_control->rings[i].ba[j])
1063 continue;
1064 while (k != rxd_count[nic->rxd_mode]) {
1065 struct buffAdd *ba =
1066 &mac_control->rings[i].ba[j][k];
1067 kfree(ba->ba_0_org);
1068 nic->mac_control.stats_info->sw_stat.\
1069 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1070 kfree(ba->ba_1_org);
1071 nic->mac_control.stats_info->sw_stat.\
1072 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1073 k++;
1074 }
1075 kfree(mac_control->rings[i].ba[j]);
1076 nic->mac_control.stats_info->sw_stat.mem_freed +=
1077 (sizeof(struct buffAdd) *
1078 (rxd_count[nic->rxd_mode] + 1));
1079 }
1080 kfree(mac_control->rings[i].ba);
1081 nic->mac_control.stats_info->sw_stat.mem_freed +=
1082 (sizeof(struct buffAdd *) * blk_cnt);
1083 }
1084 }
1085
1086 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1087 if (mac_control->fifos[i].ufo_in_band_v) {
1088 nic->mac_control.stats_info->sw_stat.mem_freed
1089 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1090 kfree(mac_control->fifos[i].ufo_in_band_v);
1091 }
1092 }
1093
1094 if (mac_control->stats_mem) {
1095 nic->mac_control.stats_info->sw_stat.mem_freed +=
1096 mac_control->stats_mem_sz;
1097 pci_free_consistent(nic->pdev,
1098 mac_control->stats_mem_sz,
1099 mac_control->stats_mem,
1100 mac_control->stats_mem_phy);
1101 }
1102 }
1103
1104 /**
1105 * s2io_verify_pci_mode -
1106 */
1107
1108 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1109 {
1110 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111 register u64 val64 = 0;
1112 int mode;
1113
1114 val64 = readq(&bar0->pci_mode);
1115 mode = (u8)GET_PCI_MODE(val64);
1116
1117 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1118 return -1; /* Unknown PCI mode */
1119 return mode;
1120 }
1121
1122 #define NEC_VENID 0x1033
1123 #define NEC_DEVID 0x0125
1124 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1125 {
1126 struct pci_dev *tdev = NULL;
1127 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1128 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1129 if (tdev->bus == s2io_pdev->bus->parent)
1130 pci_dev_put(tdev);
1131 return 1;
1132 }
1133 }
1134 return 0;
1135 }
1136
1137 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1138 /**
1139 * s2io_print_pci_mode -
1140 */
1141 static int s2io_print_pci_mode(struct s2io_nic *nic)
1142 {
1143 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1144 register u64 val64 = 0;
1145 int mode;
1146 struct config_param *config = &nic->config;
1147
1148 val64 = readq(&bar0->pci_mode);
1149 mode = (u8)GET_PCI_MODE(val64);
1150
1151 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1152 return -1; /* Unknown PCI mode */
1153
1154 config->bus_speed = bus_speed[mode];
1155
1156 if (s2io_on_nec_bridge(nic->pdev)) {
1157 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1158 nic->dev->name);
1159 return mode;
1160 }
1161
1162 if (val64 & PCI_MODE_32_BITS) {
1163 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1164 } else {
1165 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1166 }
1167
1168 switch(mode) {
1169 case PCI_MODE_PCI_33:
1170 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1171 break;
1172 case PCI_MODE_PCI_66:
1173 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1174 break;
1175 case PCI_MODE_PCIX_M1_66:
1176 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1177 break;
1178 case PCI_MODE_PCIX_M1_100:
1179 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1180 break;
1181 case PCI_MODE_PCIX_M1_133:
1182 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1183 break;
1184 case PCI_MODE_PCIX_M2_66:
1185 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1186 break;
1187 case PCI_MODE_PCIX_M2_100:
1188 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1189 break;
1190 case PCI_MODE_PCIX_M2_133:
1191 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1192 break;
1193 default:
1194 return -1; /* Unsupported bus speed */
1195 }
1196
1197 return mode;
1198 }
1199
1200 /**
1201 * init_tti - Initialization transmit traffic interrupt scheme
1202 * @nic: device private variable
1203 * @link: link status (UP/DOWN) used to enable/disable continuous
1204 * transmit interrupts
1205 * Description: The function configures transmit traffic interrupts
1206 * Return Value: SUCCESS on success and
1207 * '-1' on failure
1208 */
1209
1210 static int init_tti(struct s2io_nic *nic, int link)
1211 {
1212 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1213 register u64 val64 = 0;
1214 int i;
1215 struct config_param *config;
1216
1217 config = &nic->config;
1218
1219 for (i = 0; i < config->tx_fifo_num; i++) {
1220 /*
1221 * TTI Initialization. Default Tx timer gets us about
1222 * 250 interrupts per sec. Continuous interrupts are enabled
1223 * by default.
1224 */
1225 if (nic->device_type == XFRAME_II_DEVICE) {
1226 int count = (nic->config.bus_speed * 125)/2;
1227 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1228 } else
1229 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1230
1231 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1232 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1233 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1234 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1235
1236 if (use_continuous_tx_intrs && (link == LINK_UP))
1237 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1238 writeq(val64, &bar0->tti_data1_mem);
1239
1240 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x80);
1244
1245 writeq(val64, &bar0->tti_data2_mem);
1246
1247 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1248 TTI_CMD_MEM_OFFSET(i);
1249 writeq(val64, &bar0->tti_command_mem);
1250
1251 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1252 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1253 return FAILURE;
1254 }
1255
1256 return SUCCESS;
1257 }
1258
1259 /**
1260 * init_nic - Initialization of hardware
1261 * @nic: device private variable
1262 * Description: The function sequentially configures every block
1263 * of the H/W from their reset values.
1264 * Return Value: SUCCESS on success and
1265 * '-1' on failure (endian settings incorrect).
1266 */
1267
1268 static int init_nic(struct s2io_nic *nic)
1269 {
1270 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1271 struct net_device *dev = nic->dev;
1272 register u64 val64 = 0;
1273 void __iomem *add;
1274 u32 time;
1275 int i, j;
1276 struct mac_info *mac_control;
1277 struct config_param *config;
1278 int dtx_cnt = 0;
1279 unsigned long long mem_share;
1280 int mem_size;
1281
1282 mac_control = &nic->mac_control;
1283 config = &nic->config;
1284
1285 /* to set the swapper controle on the card */
1286 if(s2io_set_swapper(nic)) {
1287 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1288 return -EIO;
1289 }
1290
1291 /*
1292 * Herc requires EOI to be removed from reset before XGXS, so..
1293 */
1294 if (nic->device_type & XFRAME_II_DEVICE) {
1295 val64 = 0xA500000000ULL;
1296 writeq(val64, &bar0->sw_reset);
1297 msleep(500);
1298 val64 = readq(&bar0->sw_reset);
1299 }
1300
1301 /* Remove XGXS from reset state */
1302 val64 = 0;
1303 writeq(val64, &bar0->sw_reset);
1304 msleep(500);
1305 val64 = readq(&bar0->sw_reset);
1306
1307 /* Ensure that it's safe to access registers by checking
1308 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1309 */
1310 if (nic->device_type == XFRAME_II_DEVICE) {
1311 for (i = 0; i < 50; i++) {
1312 val64 = readq(&bar0->adapter_status);
1313 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1314 break;
1315 msleep(10);
1316 }
1317 if (i == 50)
1318 return -ENODEV;
1319 }
1320
1321 /* Enable Receiving broadcasts */
1322 add = &bar0->mac_cfg;
1323 val64 = readq(&bar0->mac_cfg);
1324 val64 |= MAC_RMAC_BCAST_ENABLE;
1325 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1326 writel((u32) val64, add);
1327 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1328 writel((u32) (val64 >> 32), (add + 4));
1329
1330 /* Read registers in all blocks */
1331 val64 = readq(&bar0->mac_int_mask);
1332 val64 = readq(&bar0->mc_int_mask);
1333 val64 = readq(&bar0->xgxs_int_mask);
1334
1335 /* Set MTU */
1336 val64 = dev->mtu;
1337 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1338
1339 if (nic->device_type & XFRAME_II_DEVICE) {
1340 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1341 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1342 &bar0->dtx_control, UF);
1343 if (dtx_cnt & 0x1)
1344 msleep(1); /* Necessary!! */
1345 dtx_cnt++;
1346 }
1347 } else {
1348 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1349 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1350 &bar0->dtx_control, UF);
1351 val64 = readq(&bar0->dtx_control);
1352 dtx_cnt++;
1353 }
1354 }
1355
1356 /* Tx DMA Initialization */
1357 val64 = 0;
1358 writeq(val64, &bar0->tx_fifo_partition_0);
1359 writeq(val64, &bar0->tx_fifo_partition_1);
1360 writeq(val64, &bar0->tx_fifo_partition_2);
1361 writeq(val64, &bar0->tx_fifo_partition_3);
1362
1363
1364 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1365 val64 |=
1366 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1367 13) | vBIT(config->tx_cfg[i].fifo_priority,
1368 ((j * 32) + 5), 3);
1369
1370 if (i == (config->tx_fifo_num - 1)) {
1371 if (i % 2 == 0)
1372 i++;
1373 }
1374
1375 switch (i) {
1376 case 1:
1377 writeq(val64, &bar0->tx_fifo_partition_0);
1378 val64 = 0;
1379 j = 0;
1380 break;
1381 case 3:
1382 writeq(val64, &bar0->tx_fifo_partition_1);
1383 val64 = 0;
1384 j = 0;
1385 break;
1386 case 5:
1387 writeq(val64, &bar0->tx_fifo_partition_2);
1388 val64 = 0;
1389 j = 0;
1390 break;
1391 case 7:
1392 writeq(val64, &bar0->tx_fifo_partition_3);
1393 val64 = 0;
1394 j = 0;
1395 break;
1396 default:
1397 j++;
1398 break;
1399 }
1400 }
1401
1402 /*
1403 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1404 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1405 */
1406 if ((nic->device_type == XFRAME_I_DEVICE) &&
1407 (nic->pdev->revision < 4))
1408 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1409
1410 val64 = readq(&bar0->tx_fifo_partition_0);
1411 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1412 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1413
1414 /*
1415 * Initialization of Tx_PA_CONFIG register to ignore packet
1416 * integrity checking.
1417 */
1418 val64 = readq(&bar0->tx_pa_cfg);
1419 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1420 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1421 writeq(val64, &bar0->tx_pa_cfg);
1422
1423 /* Rx DMA intialization. */
1424 val64 = 0;
1425 for (i = 0; i < config->rx_ring_num; i++) {
1426 val64 |=
1427 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1428 3);
1429 }
1430 writeq(val64, &bar0->rx_queue_priority);
1431
1432 /*
1433 * Allocating equal share of memory to all the
1434 * configured Rings.
1435 */
1436 val64 = 0;
1437 if (nic->device_type & XFRAME_II_DEVICE)
1438 mem_size = 32;
1439 else
1440 mem_size = 64;
1441
1442 for (i = 0; i < config->rx_ring_num; i++) {
1443 switch (i) {
1444 case 0:
1445 mem_share = (mem_size / config->rx_ring_num +
1446 mem_size % config->rx_ring_num);
1447 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1448 continue;
1449 case 1:
1450 mem_share = (mem_size / config->rx_ring_num);
1451 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1452 continue;
1453 case 2:
1454 mem_share = (mem_size / config->rx_ring_num);
1455 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1456 continue;
1457 case 3:
1458 mem_share = (mem_size / config->rx_ring_num);
1459 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1460 continue;
1461 case 4:
1462 mem_share = (mem_size / config->rx_ring_num);
1463 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1464 continue;
1465 case 5:
1466 mem_share = (mem_size / config->rx_ring_num);
1467 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1468 continue;
1469 case 6:
1470 mem_share = (mem_size / config->rx_ring_num);
1471 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1472 continue;
1473 case 7:
1474 mem_share = (mem_size / config->rx_ring_num);
1475 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1476 continue;
1477 }
1478 }
1479 writeq(val64, &bar0->rx_queue_cfg);
1480
1481 /*
1482 * Filling Tx round robin registers
1483 * as per the number of FIFOs for equal scheduling priority
1484 */
1485 switch (config->tx_fifo_num) {
1486 case 1:
1487 val64 = 0x0;
1488 writeq(val64, &bar0->tx_w_round_robin_0);
1489 writeq(val64, &bar0->tx_w_round_robin_1);
1490 writeq(val64, &bar0->tx_w_round_robin_2);
1491 writeq(val64, &bar0->tx_w_round_robin_3);
1492 writeq(val64, &bar0->tx_w_round_robin_4);
1493 break;
1494 case 2:
1495 val64 = 0x0001000100010001ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_0);
1497 writeq(val64, &bar0->tx_w_round_robin_1);
1498 writeq(val64, &bar0->tx_w_round_robin_2);
1499 writeq(val64, &bar0->tx_w_round_robin_3);
1500 val64 = 0x0001000100000000ULL;
1501 writeq(val64, &bar0->tx_w_round_robin_4);
1502 break;
1503 case 3:
1504 val64 = 0x0001020001020001ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_0);
1506 val64 = 0x0200010200010200ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_1);
1508 val64 = 0x0102000102000102ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_2);
1510 val64 = 0x0001020001020001ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_3);
1512 val64 = 0x0200010200000000ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_4);
1514 break;
1515 case 4:
1516 val64 = 0x0001020300010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_0);
1518 writeq(val64, &bar0->tx_w_round_robin_1);
1519 writeq(val64, &bar0->tx_w_round_robin_2);
1520 writeq(val64, &bar0->tx_w_round_robin_3);
1521 val64 = 0x0001020300000000ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 5:
1525 val64 = 0x0001020304000102ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_0);
1527 val64 = 0x0304000102030400ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_1);
1529 val64 = 0x0102030400010203ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_2);
1531 val64 = 0x0400010203040001ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_3);
1533 val64 = 0x0203040000000000ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 6:
1537 val64 = 0x0001020304050001ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_0);
1539 val64 = 0x0203040500010203ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_1);
1541 val64 = 0x0405000102030405ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_2);
1543 val64 = 0x0001020304050001ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_3);
1545 val64 = 0x0203040500000000ULL;
1546 writeq(val64, &bar0->tx_w_round_robin_4);
1547 break;
1548 case 7:
1549 val64 = 0x0001020304050600ULL;
1550 writeq(val64, &bar0->tx_w_round_robin_0);
1551 val64 = 0x0102030405060001ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_1);
1553 val64 = 0x0203040506000102ULL;
1554 writeq(val64, &bar0->tx_w_round_robin_2);
1555 val64 = 0x0304050600010203ULL;
1556 writeq(val64, &bar0->tx_w_round_robin_3);
1557 val64 = 0x0405060000000000ULL;
1558 writeq(val64, &bar0->tx_w_round_robin_4);
1559 break;
1560 case 8:
1561 val64 = 0x0001020304050607ULL;
1562 writeq(val64, &bar0->tx_w_round_robin_0);
1563 writeq(val64, &bar0->tx_w_round_robin_1);
1564 writeq(val64, &bar0->tx_w_round_robin_2);
1565 writeq(val64, &bar0->tx_w_round_robin_3);
1566 val64 = 0x0001020300000000ULL;
1567 writeq(val64, &bar0->tx_w_round_robin_4);
1568 break;
1569 }
1570
1571 /* Enable all configured Tx FIFO partitions */
1572 val64 = readq(&bar0->tx_fifo_partition_0);
1573 val64 |= (TX_FIFO_PARTITION_EN);
1574 writeq(val64, &bar0->tx_fifo_partition_0);
1575
1576 /* Filling the Rx round robin registers as per the
1577 * number of Rings and steering based on QoS.
1578 */
1579 switch (config->rx_ring_num) {
1580 case 1:
1581 val64 = 0x8080808080808080ULL;
1582 writeq(val64, &bar0->rts_qos_steering);
1583 break;
1584 case 2:
1585 val64 = 0x0000010000010000ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_0);
1587 val64 = 0x0100000100000100ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_1);
1589 val64 = 0x0001000001000001ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_2);
1591 val64 = 0x0000010000010000ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 val64 = 0x0100000000000000ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_4);
1595
1596 val64 = 0x8080808040404040ULL;
1597 writeq(val64, &bar0->rts_qos_steering);
1598 break;
1599 case 3:
1600 val64 = 0x0001000102000001ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_0);
1602 val64 = 0x0001020000010001ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_1);
1604 val64 = 0x0200000100010200ULL;
1605 writeq(val64, &bar0->rx_w_round_robin_2);
1606 val64 = 0x0001000102000001ULL;
1607 writeq(val64, &bar0->rx_w_round_robin_3);
1608 val64 = 0x0001020000000000ULL;
1609 writeq(val64, &bar0->rx_w_round_robin_4);
1610
1611 val64 = 0x8080804040402020ULL;
1612 writeq(val64, &bar0->rts_qos_steering);
1613 break;
1614 case 4:
1615 val64 = 0x0001020300010200ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_0);
1617 val64 = 0x0100000102030001ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_1);
1619 val64 = 0x0200010000010203ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_2);
1621 val64 = 0x0001020001000001ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_3);
1623 val64 = 0x0203000100000000ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_4);
1625
1626 val64 = 0x8080404020201010ULL;
1627 writeq(val64, &bar0->rts_qos_steering);
1628 break;
1629 case 5:
1630 val64 = 0x0001000203000102ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_0);
1632 val64 = 0x0001020001030004ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_1);
1634 val64 = 0x0001000203000102ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_2);
1636 val64 = 0x0001020001030004ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_3);
1638 val64 = 0x0001000000000000ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_4);
1640
1641 val64 = 0x8080404020201008ULL;
1642 writeq(val64, &bar0->rts_qos_steering);
1643 break;
1644 case 6:
1645 val64 = 0x0001020304000102ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_0);
1647 val64 = 0x0304050001020001ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_1);
1649 val64 = 0x0203000100000102ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_2);
1651 val64 = 0x0304000102030405ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_3);
1653 val64 = 0x0001000200000000ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_4);
1655
1656 val64 = 0x8080404020100804ULL;
1657 writeq(val64, &bar0->rts_qos_steering);
1658 break;
1659 case 7:
1660 val64 = 0x0001020001020300ULL;
1661 writeq(val64, &bar0->rx_w_round_robin_0);
1662 val64 = 0x0102030400010203ULL;
1663 writeq(val64, &bar0->rx_w_round_robin_1);
1664 val64 = 0x0405060001020001ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_2);
1666 val64 = 0x0304050000010200ULL;
1667 writeq(val64, &bar0->rx_w_round_robin_3);
1668 val64 = 0x0102030000000000ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671 val64 = 0x8080402010080402ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 case 8:
1675 val64 = 0x0001020300040105ULL;
1676 writeq(val64, &bar0->rx_w_round_robin_0);
1677 val64 = 0x0200030106000204ULL;
1678 writeq(val64, &bar0->rx_w_round_robin_1);
1679 val64 = 0x0103000502010007ULL;
1680 writeq(val64, &bar0->rx_w_round_robin_2);
1681 val64 = 0x0304010002060500ULL;
1682 writeq(val64, &bar0->rx_w_round_robin_3);
1683 val64 = 0x0103020400000000ULL;
1684 writeq(val64, &bar0->rx_w_round_robin_4);
1685
1686 val64 = 0x8040201008040201ULL;
1687 writeq(val64, &bar0->rts_qos_steering);
1688 break;
1689 }
1690
1691 /* UDP Fix */
1692 val64 = 0;
1693 for (i = 0; i < 8; i++)
1694 writeq(val64, &bar0->rts_frm_len_n[i]);
1695
1696 /* Set the default rts frame length for the rings configured */
1697 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1698 for (i = 0 ; i < config->rx_ring_num ; i++)
1699 writeq(val64, &bar0->rts_frm_len_n[i]);
1700
1701 /* Set the frame length for the configured rings
1702 * desired by the user
1703 */
1704 for (i = 0; i < config->rx_ring_num; i++) {
1705 /* If rts_frm_len[i] == 0 then it is assumed that user not
1706 * specified frame length steering.
1707 * If the user provides the frame length then program
1708 * the rts_frm_len register for those values or else
1709 * leave it as it is.
1710 */
1711 if (rts_frm_len[i] != 0) {
1712 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1713 &bar0->rts_frm_len_n[i]);
1714 }
1715 }
1716
1717 /* Disable differentiated services steering logic */
1718 for (i = 0; i < 64; i++) {
1719 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1720 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1721 dev->name);
1722 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1723 return -ENODEV;
1724 }
1725 }
1726
1727 /* Program statistics memory */
1728 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1729
1730 if (nic->device_type == XFRAME_II_DEVICE) {
1731 val64 = STAT_BC(0x320);
1732 writeq(val64, &bar0->stat_byte_cnt);
1733 }
1734
1735 /*
1736 * Initializing the sampling rate for the device to calculate the
1737 * bandwidth utilization.
1738 */
1739 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1740 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1741 writeq(val64, &bar0->mac_link_util);
1742
1743 /*
1744 * Initializing the Transmit and Receive Traffic Interrupt
1745 * Scheme.
1746 */
1747
1748 /* Initialize TTI */
1749 if (SUCCESS != init_tti(nic, nic->last_link_state))
1750 return -ENODEV;
1751
1752 /* RTI Initialization */
1753 if (nic->device_type == XFRAME_II_DEVICE) {
1754 /*
1755 * Programmed to generate Apprx 500 Intrs per
1756 * second
1757 */
1758 int count = (nic->config.bus_speed * 125)/4;
1759 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1760 } else
1761 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1762 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1763 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1764 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1765
1766 writeq(val64, &bar0->rti_data1_mem);
1767
1768 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1769 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1770 if (nic->config.intr_type == MSI_X)
1771 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1772 RTI_DATA2_MEM_RX_UFC_D(0x40));
1773 else
1774 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1775 RTI_DATA2_MEM_RX_UFC_D(0x80));
1776 writeq(val64, &bar0->rti_data2_mem);
1777
1778 for (i = 0; i < config->rx_ring_num; i++) {
1779 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1780 | RTI_CMD_MEM_OFFSET(i);
1781 writeq(val64, &bar0->rti_command_mem);
1782
1783 /*
1784 * Once the operation completes, the Strobe bit of the
1785 * command register will be reset. We poll for this
1786 * particular condition. We wait for a maximum of 500ms
1787 * for the operation to complete, if it's not complete
1788 * by then we return error.
1789 */
1790 time = 0;
1791 while (TRUE) {
1792 val64 = readq(&bar0->rti_command_mem);
1793 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1794 break;
1795
1796 if (time > 10) {
1797 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1798 dev->name);
1799 return -ENODEV;
1800 }
1801 time++;
1802 msleep(50);
1803 }
1804 }
1805
1806 /*
1807 * Initializing proper values as Pause threshold into all
1808 * the 8 Queues on Rx side.
1809 */
1810 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1811 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1812
1813 /* Disable RMAC PAD STRIPPING */
1814 add = &bar0->mac_cfg;
1815 val64 = readq(&bar0->mac_cfg);
1816 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818 writel((u32) (val64), add);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64 >> 32), (add + 4));
1821 val64 = readq(&bar0->mac_cfg);
1822
1823 /* Enable FCS stripping by adapter */
1824 add = &bar0->mac_cfg;
1825 val64 = readq(&bar0->mac_cfg);
1826 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1827 if (nic->device_type == XFRAME_II_DEVICE)
1828 writeq(val64, &bar0->mac_cfg);
1829 else {
1830 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1831 writel((u32) (val64), add);
1832 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1833 writel((u32) (val64 >> 32), (add + 4));
1834 }
1835
1836 /*
1837 * Set the time value to be inserted in the pause frame
1838 * generated by xena.
1839 */
1840 val64 = readq(&bar0->rmac_pause_cfg);
1841 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1842 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1843 writeq(val64, &bar0->rmac_pause_cfg);
1844
1845 /*
1846 * Set the Threshold Limit for Generating the pause frame
1847 * If the amount of data in any Queue exceeds ratio of
1848 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1849 * pause frame is generated
1850 */
1851 val64 = 0;
1852 for (i = 0; i < 4; i++) {
1853 val64 |=
1854 (((u64) 0xFF00 | nic->mac_control.
1855 mc_pause_threshold_q0q3)
1856 << (i * 2 * 8));
1857 }
1858 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1859
1860 val64 = 0;
1861 for (i = 0; i < 4; i++) {
1862 val64 |=
1863 (((u64) 0xFF00 | nic->mac_control.
1864 mc_pause_threshold_q4q7)
1865 << (i * 2 * 8));
1866 }
1867 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1868
1869 /*
1870 * TxDMA will stop Read request if the number of read split has
1871 * exceeded the limit pointed by shared_splits
1872 */
1873 val64 = readq(&bar0->pic_control);
1874 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1875 writeq(val64, &bar0->pic_control);
1876
1877 if (nic->config.bus_speed == 266) {
1878 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1879 writeq(0x0, &bar0->read_retry_delay);
1880 writeq(0x0, &bar0->write_retry_delay);
1881 }
1882
1883 /*
1884 * Programming the Herc to split every write transaction
1885 * that does not start on an ADB to reduce disconnects.
1886 */
1887 if (nic->device_type == XFRAME_II_DEVICE) {
1888 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1889 MISC_LINK_STABILITY_PRD(3);
1890 writeq(val64, &bar0->misc_control);
1891 val64 = readq(&bar0->pic_control2);
1892 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1893 writeq(val64, &bar0->pic_control2);
1894 }
1895 if (strstr(nic->product_name, "CX4")) {
1896 val64 = TMAC_AVG_IPG(0x17);
1897 writeq(val64, &bar0->tmac_avg_ipg);
1898 }
1899
1900 return SUCCESS;
1901 }
1902 #define LINK_UP_DOWN_INTERRUPT 1
1903 #define MAC_RMAC_ERR_TIMER 2
1904
1905 static int s2io_link_fault_indication(struct s2io_nic *nic)
1906 {
1907 if (nic->config.intr_type != INTA)
1908 return MAC_RMAC_ERR_TIMER;
1909 if (nic->device_type == XFRAME_II_DEVICE)
1910 return LINK_UP_DOWN_INTERRUPT;
1911 else
1912 return MAC_RMAC_ERR_TIMER;
1913 }
1914
1915 /**
1916 * do_s2io_write_bits - update alarm bits in alarm register
1917 * @value: alarm bits
1918 * @flag: interrupt status
1919 * @addr: address value
1920 * Description: update alarm bits in alarm register
1921 * Return Value:
1922 * NONE.
1923 */
1924 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1925 {
1926 u64 temp64;
1927
1928 temp64 = readq(addr);
1929
1930 if(flag == ENABLE_INTRS)
1931 temp64 &= ~((u64) value);
1932 else
1933 temp64 |= ((u64) value);
1934 writeq(temp64, addr);
1935 }
1936
1937 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1938 {
1939 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1940 register u64 gen_int_mask = 0;
1941
1942 if (mask & TX_DMA_INTR) {
1943
1944 gen_int_mask |= TXDMA_INT_M;
1945
1946 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1947 TXDMA_PCC_INT | TXDMA_TTI_INT |
1948 TXDMA_LSO_INT | TXDMA_TPA_INT |
1949 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1950
1951 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1952 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1953 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1954 &bar0->pfc_err_mask);
1955
1956 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1957 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1958 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1959
1960 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1961 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1962 PCC_N_SERR | PCC_6_COF_OV_ERR |
1963 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1964 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1965 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1966
1967 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1968 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1969
1970 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1971 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1972 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1973 flag, &bar0->lso_err_mask);
1974
1975 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1976 flag, &bar0->tpa_err_mask);
1977
1978 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1979
1980 }
1981
1982 if (mask & TX_MAC_INTR) {
1983 gen_int_mask |= TXMAC_INT_M;
1984 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1985 &bar0->mac_int_mask);
1986 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1987 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1988 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1989 flag, &bar0->mac_tmac_err_mask);
1990 }
1991
1992 if (mask & TX_XGXS_INTR) {
1993 gen_int_mask |= TXXGXS_INT_M;
1994 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1995 &bar0->xgxs_int_mask);
1996 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1997 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1998 flag, &bar0->xgxs_txgxs_err_mask);
1999 }
2000
2001 if (mask & RX_DMA_INTR) {
2002 gen_int_mask |= RXDMA_INT_M;
2003 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2004 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2005 flag, &bar0->rxdma_int_mask);
2006 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2007 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2008 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2009 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2010 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2011 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2012 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2013 &bar0->prc_pcix_err_mask);
2014 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2015 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2016 &bar0->rpa_err_mask);
2017 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2018 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2019 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2020 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2021 flag, &bar0->rda_err_mask);
2022 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2023 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2024 flag, &bar0->rti_err_mask);
2025 }
2026
2027 if (mask & RX_MAC_INTR) {
2028 gen_int_mask |= RXMAC_INT_M;
2029 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2030 &bar0->mac_int_mask);
2031 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2032 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2033 RMAC_DOUBLE_ECC_ERR |
2034 RMAC_LINK_STATE_CHANGE_INT,
2035 flag, &bar0->mac_rmac_err_mask);
2036 }
2037
2038 if (mask & RX_XGXS_INTR)
2039 {
2040 gen_int_mask |= RXXGXS_INT_M;
2041 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2042 &bar0->xgxs_int_mask);
2043 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2044 &bar0->xgxs_rxgxs_err_mask);
2045 }
2046
2047 if (mask & MC_INTR) {
2048 gen_int_mask |= MC_INT_M;
2049 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2050 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2051 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2052 &bar0->mc_err_mask);
2053 }
2054 nic->general_int_mask = gen_int_mask;
2055
2056 /* Remove this line when alarm interrupts are enabled */
2057 nic->general_int_mask = 0;
2058 }
2059 /**
2060 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2061 * @nic: device private variable,
2062 * @mask: A mask indicating which Intr block must be modified and,
2063 * @flag: A flag indicating whether to enable or disable the Intrs.
2064 * Description: This function will either disable or enable the interrupts
2065 * depending on the flag argument. The mask argument can be used to
2066 * enable/disable any Intr block.
2067 * Return Value: NONE.
2068 */
2069
2070 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2071 {
2072 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2073 register u64 temp64 = 0, intr_mask = 0;
2074
2075 intr_mask = nic->general_int_mask;
2076
2077 /* Top level interrupt classification */
2078 /* PIC Interrupts */
2079 if (mask & TX_PIC_INTR) {
2080 /* Enable PIC Intrs in the general intr mask register */
2081 intr_mask |= TXPIC_INT_M;
2082 if (flag == ENABLE_INTRS) {
2083 /*
2084 * If Hercules adapter enable GPIO otherwise
2085 * disable all PCIX, Flash, MDIO, IIC and GPIO
2086 * interrupts for now.
2087 * TODO
2088 */
2089 if (s2io_link_fault_indication(nic) ==
2090 LINK_UP_DOWN_INTERRUPT ) {
2091 do_s2io_write_bits(PIC_INT_GPIO, flag,
2092 &bar0->pic_int_mask);
2093 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2094 &bar0->gpio_int_mask);
2095 } else
2096 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2097 } else if (flag == DISABLE_INTRS) {
2098 /*
2099 * Disable PIC Intrs in the general
2100 * intr mask register
2101 */
2102 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2103 }
2104 }
2105
2106 /* Tx traffic interrupts */
2107 if (mask & TX_TRAFFIC_INTR) {
2108 intr_mask |= TXTRAFFIC_INT_M;
2109 if (flag == ENABLE_INTRS) {
2110 /*
2111 * Enable all the Tx side interrupts
2112 * writing 0 Enables all 64 TX interrupt levels
2113 */
2114 writeq(0x0, &bar0->tx_traffic_mask);
2115 } else if (flag == DISABLE_INTRS) {
2116 /*
2117 * Disable Tx Traffic Intrs in the general intr mask
2118 * register.
2119 */
2120 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2121 }
2122 }
2123
2124 /* Rx traffic interrupts */
2125 if (mask & RX_TRAFFIC_INTR) {
2126 intr_mask |= RXTRAFFIC_INT_M;
2127 if (flag == ENABLE_INTRS) {
2128 /* writing 0 Enables all 8 RX interrupt levels */
2129 writeq(0x0, &bar0->rx_traffic_mask);
2130 } else if (flag == DISABLE_INTRS) {
2131 /*
2132 * Disable Rx Traffic Intrs in the general intr mask
2133 * register.
2134 */
2135 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2136 }
2137 }
2138
2139 temp64 = readq(&bar0->general_int_mask);
2140 if (flag == ENABLE_INTRS)
2141 temp64 &= ~((u64) intr_mask);
2142 else
2143 temp64 = DISABLE_ALL_INTRS;
2144 writeq(temp64, &bar0->general_int_mask);
2145
2146 nic->general_int_mask = readq(&bar0->general_int_mask);
2147 }
2148
2149 /**
2150 * verify_pcc_quiescent- Checks for PCC quiescent state
2151 * Return: 1 If PCC is quiescence
2152 * 0 If PCC is not quiescence
2153 */
2154 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2155 {
2156 int ret = 0, herc;
2157 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2158 u64 val64 = readq(&bar0->adapter_status);
2159
2160 herc = (sp->device_type == XFRAME_II_DEVICE);
2161
2162 if (flag == FALSE) {
2163 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2164 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2165 ret = 1;
2166 } else {
2167 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2168 ret = 1;
2169 }
2170 } else {
2171 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2172 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2173 ADAPTER_STATUS_RMAC_PCC_IDLE))
2174 ret = 1;
2175 } else {
2176 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2177 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2178 ret = 1;
2179 }
2180 }
2181
2182 return ret;
2183 }
2184 /**
2185 * verify_xena_quiescence - Checks whether the H/W is ready
2186 * Description: Returns whether the H/W is ready to go or not. Depending
2187 * on whether adapter enable bit was written or not the comparison
2188 * differs and the calling function passes the input argument flag to
2189 * indicate this.
2190 * Return: 1 If xena is quiescence
2191 * 0 If Xena is not quiescence
2192 */
2193
2194 static int verify_xena_quiescence(struct s2io_nic *sp)
2195 {
2196 int mode;
2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 u64 val64 = readq(&bar0->adapter_status);
2199 mode = s2io_verify_pci_mode(sp);
2200
2201 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2206 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2210 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2214 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2215 return 0;
2216 }
2217 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2218 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2219 return 0;
2220 }
2221 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2222 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2223 return 0;
2224 }
2225 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2226 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2227 return 0;
2228 }
2229 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2230 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2231 return 0;
2232 }
2233
2234 /*
2235 * In PCI 33 mode, the P_PLL is not used, and therefore,
2236 * the the P_PLL_LOCK bit in the adapter_status register will
2237 * not be asserted.
2238 */
2239 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2240 sp->device_type == XFRAME_II_DEVICE && mode !=
2241 PCI_MODE_PCI_33) {
2242 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2243 return 0;
2244 }
2245 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2246 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2247 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2248 return 0;
2249 }
2250 return 1;
2251 }
2252
2253 /**
2254 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2255 * @sp: Pointer to device specifc structure
2256 * Description :
2257 * New procedure to clear mac address reading problems on Alpha platforms
2258 *
2259 */
2260
2261 static void fix_mac_address(struct s2io_nic * sp)
2262 {
2263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2264 u64 val64;
2265 int i = 0;
2266
2267 while (fix_mac[i] != END_SIGN) {
2268 writeq(fix_mac[i++], &bar0->gpio_control);
2269 udelay(10);
2270 val64 = readq(&bar0->gpio_control);
2271 }
2272 }
2273
2274 /**
2275 * start_nic - Turns the device on
2276 * @nic : device private variable.
2277 * Description:
2278 * This function actually turns the device on. Before this function is
2279 * called,all Registers are configured from their reset states
2280 * and shared memory is allocated but the NIC is still quiescent. On
2281 * calling this function, the device interrupts are cleared and the NIC is
2282 * literally switched on by writing into the adapter control register.
2283 * Return Value:
2284 * SUCCESS on success and -1 on failure.
2285 */
2286
2287 static int start_nic(struct s2io_nic *nic)
2288 {
2289 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2290 struct net_device *dev = nic->dev;
2291 register u64 val64 = 0;
2292 u16 subid, i;
2293 struct mac_info *mac_control;
2294 struct config_param *config;
2295
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2298
2299 /* PRC Initialization and configuration */
2300 for (i = 0; i < config->rx_ring_num; i++) {
2301 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2302 &bar0->prc_rxd0_n[i]);
2303
2304 val64 = readq(&bar0->prc_ctrl_n[i]);
2305 if (nic->rxd_mode == RXD_MODE_1)
2306 val64 |= PRC_CTRL_RC_ENABLED;
2307 else
2308 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2309 if (nic->device_type == XFRAME_II_DEVICE)
2310 val64 |= PRC_CTRL_GROUP_READS;
2311 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2312 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2313 writeq(val64, &bar0->prc_ctrl_n[i]);
2314 }
2315
2316 if (nic->rxd_mode == RXD_MODE_3B) {
2317 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2318 val64 = readq(&bar0->rx_pa_cfg);
2319 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2320 writeq(val64, &bar0->rx_pa_cfg);
2321 }
2322
2323 if (vlan_tag_strip == 0) {
2324 val64 = readq(&bar0->rx_pa_cfg);
2325 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2326 writeq(val64, &bar0->rx_pa_cfg);
2327 vlan_strip_flag = 0;
2328 }
2329
2330 /*
2331 * Enabling MC-RLDRAM. After enabling the device, we timeout
2332 * for around 100ms, which is approximately the time required
2333 * for the device to be ready for operation.
2334 */
2335 val64 = readq(&bar0->mc_rldram_mrs);
2336 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2337 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2338 val64 = readq(&bar0->mc_rldram_mrs);
2339
2340 msleep(100); /* Delay by around 100 ms. */
2341
2342 /* Enabling ECC Protection. */
2343 val64 = readq(&bar0->adapter_control);
2344 val64 &= ~ADAPTER_ECC_EN;
2345 writeq(val64, &bar0->adapter_control);
2346
2347 /*
2348 * Verify if the device is ready to be enabled, if so enable
2349 * it.
2350 */
2351 val64 = readq(&bar0->adapter_status);
2352 if (!verify_xena_quiescence(nic)) {
2353 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2354 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2355 (unsigned long long) val64);
2356 return FAILURE;
2357 }
2358
2359 /*
2360 * With some switches, link might be already up at this point.
2361 * Because of this weird behavior, when we enable laser,
2362 * we may not get link. We need to handle this. We cannot
2363 * figure out which switch is misbehaving. So we are forced to
2364 * make a global change.
2365 */
2366
2367 /* Enabling Laser. */
2368 val64 = readq(&bar0->adapter_control);
2369 val64 |= ADAPTER_EOI_TX_ON;
2370 writeq(val64, &bar0->adapter_control);
2371
2372 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2373 /*
2374 * Dont see link state interrupts initally on some switches,
2375 * so directly scheduling the link state task here.
2376 */
2377 schedule_work(&nic->set_link_task);
2378 }
2379 /* SXE-002: Initialize link and activity LED */
2380 subid = nic->pdev->subsystem_device;
2381 if (((subid & 0xFF) >= 0x07) &&
2382 (nic->device_type == XFRAME_I_DEVICE)) {
2383 val64 = readq(&bar0->gpio_control);
2384 val64 |= 0x0000800000000000ULL;
2385 writeq(val64, &bar0->gpio_control);
2386 val64 = 0x0411040400000000ULL;
2387 writeq(val64, (void __iomem *)bar0 + 0x2700);
2388 }
2389
2390 return SUCCESS;
2391 }
2392 /**
2393 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2394 */
2395 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2396 TxD *txdlp, int get_off)
2397 {
2398 struct s2io_nic *nic = fifo_data->nic;
2399 struct sk_buff *skb;
2400 struct TxD *txds;
2401 u16 j, frg_cnt;
2402
2403 txds = txdlp;
2404 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2405 pci_unmap_single(nic->pdev, (dma_addr_t)
2406 txds->Buffer_Pointer, sizeof(u64),
2407 PCI_DMA_TODEVICE);
2408 txds++;
2409 }
2410
2411 skb = (struct sk_buff *) ((unsigned long)
2412 txds->Host_Control);
2413 if (!skb) {
2414 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2415 return NULL;
2416 }
2417 pci_unmap_single(nic->pdev, (dma_addr_t)
2418 txds->Buffer_Pointer,
2419 skb->len - skb->data_len,
2420 PCI_DMA_TODEVICE);
2421 frg_cnt = skb_shinfo(skb)->nr_frags;
2422 if (frg_cnt) {
2423 txds++;
2424 for (j = 0; j < frg_cnt; j++, txds++) {
2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2426 if (!txds->Buffer_Pointer)
2427 break;
2428 pci_unmap_page(nic->pdev, (dma_addr_t)
2429 txds->Buffer_Pointer,
2430 frag->size, PCI_DMA_TODEVICE);
2431 }
2432 }
2433 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2434 return(skb);
2435 }
2436
2437 /**
2438 * free_tx_buffers - Free all queued Tx buffers
2439 * @nic : device private variable.
2440 * Description:
2441 * Free all queued Tx buffers.
2442 * Return Value: void
2443 */
2444
2445 static void free_tx_buffers(struct s2io_nic *nic)
2446 {
2447 struct net_device *dev = nic->dev;
2448 struct sk_buff *skb;
2449 struct TxD *txdp;
2450 int i, j;
2451 struct mac_info *mac_control;
2452 struct config_param *config;
2453 int cnt = 0;
2454
2455 mac_control = &nic->mac_control;
2456 config = &nic->config;
2457
2458 for (i = 0; i < config->tx_fifo_num; i++) {
2459 unsigned long flags;
2460 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2461 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2462 txdp = (struct TxD *) \
2463 mac_control->fifos[i].list_info[j].list_virt_addr;
2464 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2465 if (skb) {
2466 nic->mac_control.stats_info->sw_stat.mem_freed
2467 += skb->truesize;
2468 dev_kfree_skb(skb);
2469 cnt++;
2470 }
2471 }
2472 DBG_PRINT(INTR_DBG,
2473 "%s:forcibly freeing %d skbs on FIFO%d\n",
2474 dev->name, cnt, i);
2475 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2476 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2477 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2478 }
2479 }
2480
2481 /**
2482 * stop_nic - To stop the nic
2483 * @nic ; device private variable.
2484 * Description:
2485 * This function does exactly the opposite of what the start_nic()
2486 * function does. This function is called to stop the device.
2487 * Return Value:
2488 * void.
2489 */
2490
2491 static void stop_nic(struct s2io_nic *nic)
2492 {
2493 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2494 register u64 val64 = 0;
2495 u16 interruptible;
2496 struct mac_info *mac_control;
2497 struct config_param *config;
2498
2499 mac_control = &nic->mac_control;
2500 config = &nic->config;
2501
2502 /* Disable all interrupts */
2503 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2504 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2505 interruptible |= TX_PIC_INTR;
2506 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2507
2508 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2509 val64 = readq(&bar0->adapter_control);
2510 val64 &= ~(ADAPTER_CNTL_EN);
2511 writeq(val64, &bar0->adapter_control);
2512 }
2513
2514 /**
2515 * fill_rx_buffers - Allocates the Rx side skbs
2516 * @nic: device private variable
2517 * @ring_no: ring number
2518 * Description:
2519 * The function allocates Rx side skbs and puts the physical
2520 * address of these buffers into the RxD buffer pointers, so that the NIC
2521 * can DMA the received frame into these locations.
2522 * The NIC supports 3 receive modes, viz
2523 * 1. single buffer,
2524 * 2. three buffer and
2525 * 3. Five buffer modes.
2526 * Each mode defines how many fragments the received frame will be split
2527 * up into by the NIC. The frame is split into L3 header, L4 Header,
2528 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2529 * is split into 3 fragments. As of now only single buffer mode is
2530 * supported.
2531 * Return Value:
2532 * SUCCESS on success or an appropriate -ve value on failure.
2533 */
2534
2535 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2536 {
2537 struct net_device *dev = nic->dev;
2538 struct sk_buff *skb;
2539 struct RxD_t *rxdp;
2540 int off, off1, size, block_no, block_no1;
2541 u32 alloc_tab = 0;
2542 u32 alloc_cnt;
2543 struct mac_info *mac_control;
2544 struct config_param *config;
2545 u64 tmp;
2546 struct buffAdd *ba;
2547 unsigned long flags;
2548 struct RxD_t *first_rxdp = NULL;
2549 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2550 struct RxD1 *rxdp1;
2551 struct RxD3 *rxdp3;
2552 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2553
2554 mac_control = &nic->mac_control;
2555 config = &nic->config;
2556 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2557 atomic_read(&nic->rx_bufs_left[ring_no]);
2558
2559 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2560 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2561 while (alloc_tab < alloc_cnt) {
2562 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2563 block_index;
2564 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2565
2566 rxdp = mac_control->rings[ring_no].
2567 rx_blocks[block_no].rxds[off].virt_addr;
2568
2569 if ((block_no == block_no1) && (off == off1) &&
2570 (rxdp->Host_Control)) {
2571 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2572 dev->name);
2573 DBG_PRINT(INTR_DBG, " info equated\n");
2574 goto end;
2575 }
2576 if (off && (off == rxd_count[nic->rxd_mode])) {
2577 mac_control->rings[ring_no].rx_curr_put_info.
2578 block_index++;
2579 if (mac_control->rings[ring_no].rx_curr_put_info.
2580 block_index == mac_control->rings[ring_no].
2581 block_count)
2582 mac_control->rings[ring_no].rx_curr_put_info.
2583 block_index = 0;
2584 block_no = mac_control->rings[ring_no].
2585 rx_curr_put_info.block_index;
2586 if (off == rxd_count[nic->rxd_mode])
2587 off = 0;
2588 mac_control->rings[ring_no].rx_curr_put_info.
2589 offset = off;
2590 rxdp = mac_control->rings[ring_no].
2591 rx_blocks[block_no].block_virt_addr;
2592 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2593 dev->name, rxdp);
2594 }
2595 if(!napi) {
2596 spin_lock_irqsave(&nic->put_lock, flags);
2597 mac_control->rings[ring_no].put_pos =
2598 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2599 spin_unlock_irqrestore(&nic->put_lock, flags);
2600 } else {
2601 mac_control->rings[ring_no].put_pos =
2602 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2603 }
2604 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2605 ((nic->rxd_mode == RXD_MODE_3B) &&
2606 (rxdp->Control_2 & s2BIT(0)))) {
2607 mac_control->rings[ring_no].rx_curr_put_info.
2608 offset = off;
2609 goto end;
2610 }
2611 /* calculate size of skb based on ring mode */
2612 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2613 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2614 if (nic->rxd_mode == RXD_MODE_1)
2615 size += NET_IP_ALIGN;
2616 else
2617 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2618
2619 /* allocate skb */
2620 skb = dev_alloc_skb(size);
2621 if(!skb) {
2622 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2623 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2624 if (first_rxdp) {
2625 wmb();
2626 first_rxdp->Control_1 |= RXD_OWN_XENA;
2627 }
2628 nic->mac_control.stats_info->sw_stat. \
2629 mem_alloc_fail_cnt++;
2630 return -ENOMEM ;
2631 }
2632 nic->mac_control.stats_info->sw_stat.mem_allocated
2633 += skb->truesize;
2634 if (nic->rxd_mode == RXD_MODE_1) {
2635 /* 1 buffer mode - normal operation mode */
2636 rxdp1 = (struct RxD1*)rxdp;
2637 memset(rxdp, 0, sizeof(struct RxD1));
2638 skb_reserve(skb, NET_IP_ALIGN);
2639 rxdp1->Buffer0_ptr = pci_map_single
2640 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2641 PCI_DMA_FROMDEVICE);
2642 if( (rxdp1->Buffer0_ptr == 0) ||
2643 (rxdp1->Buffer0_ptr ==
2644 DMA_ERROR_CODE))
2645 goto pci_map_failed;
2646
2647 rxdp->Control_2 =
2648 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2649
2650 } else if (nic->rxd_mode == RXD_MODE_3B) {
2651 /*
2652 * 2 buffer mode -
2653 * 2 buffer mode provides 128
2654 * byte aligned receive buffers.
2655 */
2656
2657 rxdp3 = (struct RxD3*)rxdp;
2658 /* save buffer pointers to avoid frequent dma mapping */
2659 Buffer0_ptr = rxdp3->Buffer0_ptr;
2660 Buffer1_ptr = rxdp3->Buffer1_ptr;
2661 memset(rxdp, 0, sizeof(struct RxD3));
2662 /* restore the buffer pointers for dma sync*/
2663 rxdp3->Buffer0_ptr = Buffer0_ptr;
2664 rxdp3->Buffer1_ptr = Buffer1_ptr;
2665
2666 ba = &mac_control->rings[ring_no].ba[block_no][off];
2667 skb_reserve(skb, BUF0_LEN);
2668 tmp = (u64)(unsigned long) skb->data;
2669 tmp += ALIGN_SIZE;
2670 tmp &= ~ALIGN_SIZE;
2671 skb->data = (void *) (unsigned long)tmp;
2672 skb_reset_tail_pointer(skb);
2673
2674 if (!(rxdp3->Buffer0_ptr))
2675 rxdp3->Buffer0_ptr =
2676 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2677 PCI_DMA_FROMDEVICE);
2678 else
2679 pci_dma_sync_single_for_device(nic->pdev,
2680 (dma_addr_t) rxdp3->Buffer0_ptr,
2681 BUF0_LEN, PCI_DMA_FROMDEVICE);
2682 if( (rxdp3->Buffer0_ptr == 0) ||
2683 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2684 goto pci_map_failed;
2685
2686 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2687 if (nic->rxd_mode == RXD_MODE_3B) {
2688 /* Two buffer mode */
2689
2690 /*
2691 * Buffer2 will have L3/L4 header plus
2692 * L4 payload
2693 */
2694 rxdp3->Buffer2_ptr = pci_map_single
2695 (nic->pdev, skb->data, dev->mtu + 4,
2696 PCI_DMA_FROMDEVICE);
2697
2698 if( (rxdp3->Buffer2_ptr == 0) ||
2699 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2700 goto pci_map_failed;
2701
2702 rxdp3->Buffer1_ptr =
2703 pci_map_single(nic->pdev,
2704 ba->ba_1, BUF1_LEN,
2705 PCI_DMA_FROMDEVICE);
2706 if( (rxdp3->Buffer1_ptr == 0) ||
2707 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2708 pci_unmap_single
2709 (nic->pdev,
2710 (dma_addr_t)rxdp3->Buffer2_ptr,
2711 dev->mtu + 4,
2712 PCI_DMA_FROMDEVICE);
2713 goto pci_map_failed;
2714 }
2715 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2716 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2717 (dev->mtu + 4);
2718 }
2719 rxdp->Control_2 |= s2BIT(0);
2720 }
2721 rxdp->Host_Control = (unsigned long) (skb);
2722 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2723 rxdp->Control_1 |= RXD_OWN_XENA;
2724 off++;
2725 if (off == (rxd_count[nic->rxd_mode] + 1))
2726 off = 0;
2727 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2728
2729 rxdp->Control_2 |= SET_RXD_MARKER;
2730 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2731 if (first_rxdp) {
2732 wmb();
2733 first_rxdp->Control_1 |= RXD_OWN_XENA;
2734 }
2735 first_rxdp = rxdp;
2736 }
2737 atomic_inc(&nic->rx_bufs_left[ring_no]);
2738 alloc_tab++;
2739 }
2740
2741 end:
2742 /* Transfer ownership of first descriptor to adapter just before
2743 * exiting. Before that, use memory barrier so that ownership
2744 * and other fields are seen by adapter correctly.
2745 */
2746 if (first_rxdp) {
2747 wmb();
2748 first_rxdp->Control_1 |= RXD_OWN_XENA;
2749 }
2750
2751 return SUCCESS;
2752 pci_map_failed:
2753 stats->pci_map_fail_cnt++;
2754 stats->mem_freed += skb->truesize;
2755 dev_kfree_skb_irq(skb);
2756 return -ENOMEM;
2757 }
2758
2759 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2760 {
2761 struct net_device *dev = sp->dev;
2762 int j;
2763 struct sk_buff *skb;
2764 struct RxD_t *rxdp;
2765 struct mac_info *mac_control;
2766 struct buffAdd *ba;
2767 struct RxD1 *rxdp1;
2768 struct RxD3 *rxdp3;
2769
2770 mac_control = &sp->mac_control;
2771 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2772 rxdp = mac_control->rings[ring_no].
2773 rx_blocks[blk].rxds[j].virt_addr;
2774 skb = (struct sk_buff *)
2775 ((unsigned long) rxdp->Host_Control);
2776 if (!skb) {
2777 continue;
2778 }
2779 if (sp->rxd_mode == RXD_MODE_1) {
2780 rxdp1 = (struct RxD1*)rxdp;
2781 pci_unmap_single(sp->pdev, (dma_addr_t)
2782 rxdp1->Buffer0_ptr,
2783 dev->mtu +
2784 HEADER_ETHERNET_II_802_3_SIZE
2785 + HEADER_802_2_SIZE +
2786 HEADER_SNAP_SIZE,
2787 PCI_DMA_FROMDEVICE);
2788 memset(rxdp, 0, sizeof(struct RxD1));
2789 } else if(sp->rxd_mode == RXD_MODE_3B) {
2790 rxdp3 = (struct RxD3*)rxdp;
2791 ba = &mac_control->rings[ring_no].
2792 ba[blk][j];
2793 pci_unmap_single(sp->pdev, (dma_addr_t)
2794 rxdp3->Buffer0_ptr,
2795 BUF0_LEN,
2796 PCI_DMA_FROMDEVICE);
2797 pci_unmap_single(sp->pdev, (dma_addr_t)
2798 rxdp3->Buffer1_ptr,
2799 BUF1_LEN,
2800 PCI_DMA_FROMDEVICE);
2801 pci_unmap_single(sp->pdev, (dma_addr_t)
2802 rxdp3->Buffer2_ptr,
2803 dev->mtu + 4,
2804 PCI_DMA_FROMDEVICE);
2805 memset(rxdp, 0, sizeof(struct RxD3));
2806 }
2807 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2808 dev_kfree_skb(skb);
2809 atomic_dec(&sp->rx_bufs_left[ring_no]);
2810 }
2811 }
2812
2813 /**
2814 * free_rx_buffers - Frees all Rx buffers
2815 * @sp: device private variable.
2816 * Description:
2817 * This function will free all Rx buffers allocated by host.
2818 * Return Value:
2819 * NONE.
2820 */
2821
2822 static void free_rx_buffers(struct s2io_nic *sp)
2823 {
2824 struct net_device *dev = sp->dev;
2825 int i, blk = 0, buf_cnt = 0;
2826 struct mac_info *mac_control;
2827 struct config_param *config;
2828
2829 mac_control = &sp->mac_control;
2830 config = &sp->config;
2831
2832 for (i = 0; i < config->rx_ring_num; i++) {
2833 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2834 free_rxd_blk(sp,i,blk);
2835
2836 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2837 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2838 mac_control->rings[i].rx_curr_put_info.offset = 0;
2839 mac_control->rings[i].rx_curr_get_info.offset = 0;
2840 atomic_set(&sp->rx_bufs_left[i], 0);
2841 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2842 dev->name, buf_cnt, i);
2843 }
2844 }
2845
2846 /**
2847 * s2io_poll - Rx interrupt handler for NAPI support
2848 * @napi : pointer to the napi structure.
2849 * @budget : The number of packets that were budgeted to be processed
2850 * during one pass through the 'Poll" function.
2851 * Description:
2852 * Comes into picture only if NAPI support has been incorporated. It does
2853 * the same thing that rx_intr_handler does, but not in a interrupt context
2854 * also It will process only a given number of packets.
2855 * Return value:
2856 * 0 on success and 1 if there are No Rx packets to be processed.
2857 */
2858
2859 static int s2io_poll(struct napi_struct *napi, int budget)
2860 {
2861 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2862 struct net_device *dev = nic->dev;
2863 int pkt_cnt = 0, org_pkts_to_process;
2864 struct mac_info *mac_control;
2865 struct config_param *config;
2866 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2867 int i;
2868
2869 mac_control = &nic->mac_control;
2870 config = &nic->config;
2871
2872 nic->pkts_to_process = budget;
2873 org_pkts_to_process = nic->pkts_to_process;
2874
2875 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2876 readl(&bar0->rx_traffic_int);
2877
2878 for (i = 0; i < config->rx_ring_num; i++) {
2879 rx_intr_handler(&mac_control->rings[i]);
2880 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2881 if (!nic->pkts_to_process) {
2882 /* Quota for the current iteration has been met */
2883 goto no_rx;
2884 }
2885 }
2886
2887 netif_rx_complete(dev, napi);
2888
2889 for (i = 0; i < config->rx_ring_num; i++) {
2890 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2891 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2892 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2893 break;
2894 }
2895 }
2896 /* Re enable the Rx interrupts. */
2897 writeq(0x0, &bar0->rx_traffic_mask);
2898 readl(&bar0->rx_traffic_mask);
2899 return pkt_cnt;
2900
2901 no_rx:
2902 for (i = 0; i < config->rx_ring_num; i++) {
2903 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2904 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2905 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2906 break;
2907 }
2908 }
2909 return pkt_cnt;
2910 }
2911
2912 #ifdef CONFIG_NET_POLL_CONTROLLER
2913 /**
2914 * s2io_netpoll - netpoll event handler entry point
2915 * @dev : pointer to the device structure.
2916 * Description:
2917 * This function will be called by upper layer to check for events on the
2918 * interface in situations where interrupts are disabled. It is used for
2919 * specific in-kernel networking tasks, such as remote consoles and kernel
2920 * debugging over the network (example netdump in RedHat).
2921 */
2922 static void s2io_netpoll(struct net_device *dev)
2923 {
2924 struct s2io_nic *nic = dev->priv;
2925 struct mac_info *mac_control;
2926 struct config_param *config;
2927 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2928 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2929 int i;
2930
2931 if (pci_channel_offline(nic->pdev))
2932 return;
2933
2934 disable_irq(dev->irq);
2935
2936 mac_control = &nic->mac_control;
2937 config = &nic->config;
2938
2939 writeq(val64, &bar0->rx_traffic_int);
2940 writeq(val64, &bar0->tx_traffic_int);
2941
2942 /* we need to free up the transmitted skbufs or else netpoll will
2943 * run out of skbs and will fail and eventually netpoll application such
2944 * as netdump will fail.
2945 */
2946 for (i = 0; i < config->tx_fifo_num; i++)
2947 tx_intr_handler(&mac_control->fifos[i]);
2948
2949 /* check for received packet and indicate up to network */
2950 for (i = 0; i < config->rx_ring_num; i++)
2951 rx_intr_handler(&mac_control->rings[i]);
2952
2953 for (i = 0; i < config->rx_ring_num; i++) {
2954 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2955 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2956 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2957 break;
2958 }
2959 }
2960 enable_irq(dev->irq);
2961 return;
2962 }
2963 #endif
2964
2965 /**
2966 * rx_intr_handler - Rx interrupt handler
2967 * @nic: device private variable.
2968 * Description:
2969 * If the interrupt is because of a received frame or if the
2970 * receive ring contains fresh as yet un-processed frames,this function is
2971 * called. It picks out the RxD at which place the last Rx processing had
2972 * stopped and sends the skb to the OSM's Rx handler and then increments
2973 * the offset.
2974 * Return Value:
2975 * NONE.
2976 */
2977 static void rx_intr_handler(struct ring_info *ring_data)
2978 {
2979 struct s2io_nic *nic = ring_data->nic;
2980 struct net_device *dev = (struct net_device *) nic->dev;
2981 int get_block, put_block, put_offset;
2982 struct rx_curr_get_info get_info, put_info;
2983 struct RxD_t *rxdp;
2984 struct sk_buff *skb;
2985 int pkt_cnt = 0;
2986 int i;
2987 struct RxD1* rxdp1;
2988 struct RxD3* rxdp3;
2989
2990 spin_lock(&nic->rx_lock);
2991
2992 get_info = ring_data->rx_curr_get_info;
2993 get_block = get_info.block_index;
2994 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2995 put_block = put_info.block_index;
2996 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2997 if (!napi) {
2998 spin_lock(&nic->put_lock);
2999 put_offset = ring_data->put_pos;
3000 spin_unlock(&nic->put_lock);
3001 } else
3002 put_offset = ring_data->put_pos;
3003
3004 while (RXD_IS_UP2DT(rxdp)) {
3005 /*
3006 * If your are next to put index then it's
3007 * FIFO full condition
3008 */
3009 if ((get_block == put_block) &&
3010 (get_info.offset + 1) == put_info.offset) {
3011 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
3012 break;
3013 }
3014 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
3015 if (skb == NULL) {
3016 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3017 dev->name);
3018 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3019 spin_unlock(&nic->rx_lock);
3020 return;
3021 }
3022 if (nic->rxd_mode == RXD_MODE_1) {
3023 rxdp1 = (struct RxD1*)rxdp;
3024 pci_unmap_single(nic->pdev, (dma_addr_t)
3025 rxdp1->Buffer0_ptr,
3026 dev->mtu +
3027 HEADER_ETHERNET_II_802_3_SIZE +
3028 HEADER_802_2_SIZE +
3029 HEADER_SNAP_SIZE,
3030 PCI_DMA_FROMDEVICE);
3031 } else if (nic->rxd_mode == RXD_MODE_3B) {
3032 rxdp3 = (struct RxD3*)rxdp;
3033 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
3034 rxdp3->Buffer0_ptr,
3035 BUF0_LEN, PCI_DMA_FROMDEVICE);
3036 pci_unmap_single(nic->pdev, (dma_addr_t)
3037 rxdp3->Buffer2_ptr,
3038 dev->mtu + 4,
3039 PCI_DMA_FROMDEVICE);
3040 }
3041 prefetch(skb->data);
3042 rx_osm_handler(ring_data, rxdp);
3043 get_info.offset++;
3044 ring_data->rx_curr_get_info.offset = get_info.offset;
3045 rxdp = ring_data->rx_blocks[get_block].
3046 rxds[get_info.offset].virt_addr;
3047 if (get_info.offset == rxd_count[nic->rxd_mode]) {
3048 get_info.offset = 0;
3049 ring_data->rx_curr_get_info.offset = get_info.offset;
3050 get_block++;
3051 if (get_block == ring_data->block_count)
3052 get_block = 0;
3053 ring_data->rx_curr_get_info.block_index = get_block;
3054 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3055 }
3056
3057 nic->pkts_to_process -= 1;
3058 if ((napi) && (!nic->pkts_to_process))
3059 break;
3060 pkt_cnt++;
3061 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3062 break;
3063 }
3064 if (nic->lro) {
3065 /* Clear all LRO sessions before exiting */
3066 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3067 struct lro *lro = &nic->lro0_n[i];
3068 if (lro->in_use) {
3069 update_L3L4_header(nic, lro);
3070 queue_rx_frame(lro->parent, lro->vlan_tag);
3071 clear_lro_session(lro);
3072 }
3073 }
3074 }
3075
3076 spin_unlock(&nic->rx_lock);
3077 }
3078
3079 /**
3080 * tx_intr_handler - Transmit interrupt handler
3081 * @nic : device private variable
3082 * Description:
3083 * If an interrupt was raised to indicate DMA complete of the
3084 * Tx packet, this function is called. It identifies the last TxD
3085 * whose buffer was freed and frees all skbs whose data have already
3086 * DMA'ed into the NICs internal memory.
3087 * Return Value:
3088 * NONE
3089 */
3090
3091 static void tx_intr_handler(struct fifo_info *fifo_data)
3092 {
3093 struct s2io_nic *nic = fifo_data->nic;
3094 struct tx_curr_get_info get_info, put_info;
3095 struct sk_buff *skb = NULL;
3096 struct TxD *txdlp;
3097 int pkt_cnt = 0;
3098 unsigned long flags = 0;
3099 u8 err_mask;
3100
3101 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3102 return;
3103
3104 get_info = fifo_data->tx_curr_get_info;
3105 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3106 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3107 list_virt_addr;
3108 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3109 (get_info.offset != put_info.offset) &&
3110 (txdlp->Host_Control)) {
3111 /* Check for TxD errors */
3112 if (txdlp->Control_1 & TXD_T_CODE) {
3113 unsigned long long err;
3114 err = txdlp->Control_1 & TXD_T_CODE;
3115 if (err & 0x1) {
3116 nic->mac_control.stats_info->sw_stat.
3117 parity_err_cnt++;
3118 }
3119
3120 /* update t_code statistics */
3121 err_mask = err >> 48;
3122 switch(err_mask) {
3123 case 2:
3124 nic->mac_control.stats_info->sw_stat.
3125 tx_buf_abort_cnt++;
3126 break;
3127
3128 case 3:
3129 nic->mac_control.stats_info->sw_stat.
3130 tx_desc_abort_cnt++;
3131 break;
3132
3133 case 7:
3134 nic->mac_control.stats_info->sw_stat.
3135 tx_parity_err_cnt++;
3136 break;
3137
3138 case 10:
3139 nic->mac_control.stats_info->sw_stat.
3140 tx_link_loss_cnt++;
3141 break;
3142
3143 case 15:
3144 nic->mac_control.stats_info->sw_stat.
3145 tx_list_proc_err_cnt++;
3146 break;
3147 }
3148 }
3149
3150 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3151 if (skb == NULL) {
3152 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3153 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3154 __FUNCTION__);
3155 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3156 return;
3157 }
3158 pkt_cnt++;
3159
3160 /* Updating the statistics block */
3161 nic->stats.tx_bytes += skb->len;
3162 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3163 dev_kfree_skb_irq(skb);
3164
3165 get_info.offset++;
3166 if (get_info.offset == get_info.fifo_len + 1)
3167 get_info.offset = 0;
3168 txdlp = (struct TxD *) fifo_data->list_info
3169 [get_info.offset].list_virt_addr;
3170 fifo_data->tx_curr_get_info.offset =
3171 get_info.offset;
3172 }
3173
3174 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3175
3176 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3177 }
3178
3179 /**
3180 * s2io_mdio_write - Function to write in to MDIO registers
3181 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3182 * @addr : address value
3183 * @value : data value
3184 * @dev : pointer to net_device structure
3185 * Description:
3186 * This function is used to write values to the MDIO registers
3187 * NONE
3188 */
3189 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3190 {
3191 u64 val64 = 0x0;
3192 struct s2io_nic *sp = dev->priv;
3193 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3194
3195 //address transaction
3196 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3197 | MDIO_MMD_DEV_ADDR(mmd_type)
3198 | MDIO_MMS_PRT_ADDR(0x0);
3199 writeq(val64, &bar0->mdio_control);
3200 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3201 writeq(val64, &bar0->mdio_control);
3202 udelay(100);
3203
3204 //Data transaction
3205 val64 = 0x0;
3206 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3207 | MDIO_MMD_DEV_ADDR(mmd_type)
3208 | MDIO_MMS_PRT_ADDR(0x0)
3209 | MDIO_MDIO_DATA(value)
3210 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3211 writeq(val64, &bar0->mdio_control);
3212 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64, &bar0->mdio_control);
3214 udelay(100);
3215
3216 val64 = 0x0;
3217 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3218 | MDIO_MMD_DEV_ADDR(mmd_type)
3219 | MDIO_MMS_PRT_ADDR(0x0)
3220 | MDIO_OP(MDIO_OP_READ_TRANS);
3221 writeq(val64, &bar0->mdio_control);
3222 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64, &bar0->mdio_control);
3224 udelay(100);
3225
3226 }
3227
3228 /**
3229 * s2io_mdio_read - Function to write in to MDIO registers
3230 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3231 * @addr : address value
3232 * @dev : pointer to net_device structure
3233 * Description:
3234 * This function is used to read values to the MDIO registers
3235 * NONE
3236 */
3237 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3238 {
3239 u64 val64 = 0x0;
3240 u64 rval64 = 0x0;
3241 struct s2io_nic *sp = dev->priv;
3242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3243
3244 /* address transaction */
3245 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3246 | MDIO_MMD_DEV_ADDR(mmd_type)
3247 | MDIO_MMS_PRT_ADDR(0x0);
3248 writeq(val64, &bar0->mdio_control);
3249 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3250 writeq(val64, &bar0->mdio_control);
3251 udelay(100);
3252
3253 /* Data transaction */
3254 val64 = 0x0;
3255 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3256 | MDIO_MMD_DEV_ADDR(mmd_type)
3257 | MDIO_MMS_PRT_ADDR(0x0)
3258 | MDIO_OP(MDIO_OP_READ_TRANS);
3259 writeq(val64, &bar0->mdio_control);
3260 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3261 writeq(val64, &bar0->mdio_control);
3262 udelay(100);
3263
3264 /* Read the value from regs */
3265 rval64 = readq(&bar0->mdio_control);
3266 rval64 = rval64 & 0xFFFF0000;
3267 rval64 = rval64 >> 16;
3268 return rval64;
3269 }
3270 /**
3271 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3272 * @counter : couter value to be updated
3273 * @flag : flag to indicate the status
3274 * @type : counter type
3275 * Description:
3276 * This function is to check the status of the xpak counters value
3277 * NONE
3278 */
3279
3280 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3281 {
3282 u64 mask = 0x3;
3283 u64 val64;
3284 int i;
3285 for(i = 0; i <index; i++)
3286 mask = mask << 0x2;
3287
3288 if(flag > 0)
3289 {
3290 *counter = *counter + 1;
3291 val64 = *regs_stat & mask;
3292 val64 = val64 >> (index * 0x2);
3293 val64 = val64 + 1;
3294 if(val64 == 3)
3295 {
3296 switch(type)
3297 {
3298 case 1:
3299 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3300 "service. Excessive temperatures may "
3301 "result in premature transceiver "
3302 "failure \n");
3303 break;
3304 case 2:
3305 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3306 "service Excessive bias currents may "
3307 "indicate imminent laser diode "
3308 "failure \n");
3309 break;
3310 case 3:
3311 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3312 "service Excessive laser output "
3313 "power may saturate far-end "
3314 "receiver\n");
3315 break;
3316 default:
3317 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3318 "type \n");
3319 }
3320 val64 = 0x0;
3321 }
3322 val64 = val64 << (index * 0x2);
3323 *regs_stat = (*regs_stat & (~mask)) | (val64);
3324
3325 } else {
3326 *regs_stat = *regs_stat & (~mask);
3327 }
3328 }
3329
3330 /**
3331 * s2io_updt_xpak_counter - Function to update the xpak counters
3332 * @dev : pointer to net_device struct
3333 * Description:
3334 * This function is to upate the status of the xpak counters value
3335 * NONE
3336 */
3337 static void s2io_updt_xpak_counter(struct net_device *dev)
3338 {
3339 u16 flag = 0x0;
3340 u16 type = 0x0;
3341 u16 val16 = 0x0;
3342 u64 val64 = 0x0;
3343 u64 addr = 0x0;
3344
3345 struct s2io_nic *sp = dev->priv;
3346 struct stat_block *stat_info = sp->mac_control.stats_info;
3347
3348 /* Check the communication with the MDIO slave */
3349 addr = 0x0000;
3350 val64 = 0x0;
3351 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3352 if((val64 == 0xFFFF) || (val64 == 0x0000))
3353 {
3354 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3355 "Returned %llx\n", (unsigned long long)val64);
3356 return;
3357 }
3358
3359 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3360 if(val64 != 0x2040)
3361 {
3362 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3363 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3364 (unsigned long long)val64);
3365 return;
3366 }
3367
3368 /* Loading the DOM register to MDIO register */
3369 addr = 0xA100;
3370 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3371 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3372
3373 /* Reading the Alarm flags */
3374 addr = 0xA070;
3375 val64 = 0x0;
3376 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3377
3378 flag = CHECKBIT(val64, 0x7);
3379 type = 1;
3380 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3381 &stat_info->xpak_stat.xpak_regs_stat,
3382 0x0, flag, type);
3383
3384 if(CHECKBIT(val64, 0x6))
3385 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3386
3387 flag = CHECKBIT(val64, 0x3);
3388 type = 2;
3389 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3390 &stat_info->xpak_stat.xpak_regs_stat,
3391 0x2, flag, type);
3392
3393 if(CHECKBIT(val64, 0x2))
3394 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3395
3396 flag = CHECKBIT(val64, 0x1);
3397 type = 3;
3398 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3399 &stat_info->xpak_stat.xpak_regs_stat,
3400 0x4, flag, type);
3401
3402 if(CHECKBIT(val64, 0x0))
3403 stat_info->xpak_stat.alarm_laser_output_power_low++;
3404
3405 /* Reading the Warning flags */
3406 addr = 0xA074;
3407 val64 = 0x0;
3408 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3409
3410 if(CHECKBIT(val64, 0x7))
3411 stat_info->xpak_stat.warn_transceiver_temp_high++;
3412
3413 if(CHECKBIT(val64, 0x6))
3414 stat_info->xpak_stat.warn_transceiver_temp_low++;
3415
3416 if(CHECKBIT(val64, 0x3))
3417 stat_info->xpak_stat.warn_laser_bias_current_high++;
3418
3419 if(CHECKBIT(val64, 0x2))
3420 stat_info->xpak_stat.warn_laser_bias_current_low++;
3421
3422 if(CHECKBIT(val64, 0x1))
3423 stat_info->xpak_stat.warn_laser_output_power_high++;
3424
3425 if(CHECKBIT(val64, 0x0))
3426 stat_info->xpak_stat.warn_laser_output_power_low++;
3427 }
3428
3429 /**
3430 * wait_for_cmd_complete - waits for a command to complete.
3431 * @sp : private member of the device structure, which is a pointer to the
3432 * s2io_nic structure.
3433 * Description: Function that waits for a command to Write into RMAC
3434 * ADDR DATA registers to be completed and returns either success or
3435 * error depending on whether the command was complete or not.
3436 * Return value:
3437 * SUCCESS on success and FAILURE on failure.
3438 */
3439
3440 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3441 int bit_state)
3442 {
3443 int ret = FAILURE, cnt = 0, delay = 1;
3444 u64 val64;
3445
3446 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3447 return FAILURE;
3448
3449 do {
3450 val64 = readq(addr);
3451 if (bit_state == S2IO_BIT_RESET) {
3452 if (!(val64 & busy_bit)) {
3453 ret = SUCCESS;
3454 break;
3455 }
3456 } else {
3457 if (!(val64 & busy_bit)) {
3458 ret = SUCCESS;
3459 break;
3460 }
3461 }
3462
3463 if(in_interrupt())
3464 mdelay(delay);
3465 else
3466 msleep(delay);
3467
3468 if (++cnt >= 10)
3469 delay = 50;
3470 } while (cnt < 20);
3471 return ret;
3472 }
3473 /*
3474 * check_pci_device_id - Checks if the device id is supported
3475 * @id : device id
3476 * Description: Function to check if the pci device id is supported by driver.
3477 * Return value: Actual device id if supported else PCI_ANY_ID
3478 */
3479 static u16 check_pci_device_id(u16 id)
3480 {
3481 switch (id) {
3482 case PCI_DEVICE_ID_HERC_WIN:
3483 case PCI_DEVICE_ID_HERC_UNI:
3484 return XFRAME_II_DEVICE;
3485 case PCI_DEVICE_ID_S2IO_UNI:
3486 case PCI_DEVICE_ID_S2IO_WIN:
3487 return XFRAME_I_DEVICE;
3488 default:
3489 return PCI_ANY_ID;
3490 }
3491 }
3492
3493 /**
3494 * s2io_reset - Resets the card.
3495 * @sp : private member of the device structure.
3496 * Description: Function to Reset the card. This function then also
3497 * restores the previously saved PCI configuration space registers as
3498 * the card reset also resets the configuration space.
3499 * Return value:
3500 * void.
3501 */
3502
3503 static void s2io_reset(struct s2io_nic * sp)
3504 {
3505 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3506 u64 val64;
3507 u16 subid, pci_cmd;
3508 int i;
3509 u16 val16;
3510 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3511 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3512
3513 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3514 __FUNCTION__, sp->dev->name);
3515
3516 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3517 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3518
3519 val64 = SW_RESET_ALL;
3520 writeq(val64, &bar0->sw_reset);
3521 if (strstr(sp->product_name, "CX4")) {
3522 msleep(750);
3523 }
3524 msleep(250);
3525 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3526
3527 /* Restore the PCI state saved during initialization. */
3528 pci_restore_state(sp->pdev);
3529 pci_read_config_word(sp->pdev, 0x2, &val16);
3530 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3531 break;
3532 msleep(200);
3533 }
3534
3535 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3536 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3537 }
3538
3539 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3540
3541 s2io_init_pci(sp);
3542
3543 /* Set swapper to enable I/O register access */
3544 s2io_set_swapper(sp);
3545
3546 /* restore mac_addr entries */
3547 do_s2io_restore_unicast_mc(sp);
3548
3549 /* Restore the MSIX table entries from local variables */
3550 restore_xmsi_data(sp);
3551
3552 /* Clear certain PCI/PCI-X fields after reset */
3553 if (sp->device_type == XFRAME_II_DEVICE) {
3554 /* Clear "detected parity error" bit */
3555 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3556
3557 /* Clearing PCIX Ecc status register */
3558 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3559
3560 /* Clearing PCI_STATUS error reflected here */
3561 writeq(s2BIT(62), &bar0->txpic_int_reg);
3562 }
3563
3564 /* Reset device statistics maintained by OS */
3565 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3566
3567 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3568 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3569 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3570 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3571 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3572 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3573 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3574 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3575 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3576 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3577 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3578 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3579 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3580 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3581 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3582 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3583 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3584 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3585 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3586
3587 /* SXE-002: Configure link and activity LED to turn it off */
3588 subid = sp->pdev->subsystem_device;
3589 if (((subid & 0xFF) >= 0x07) &&
3590 (sp->device_type == XFRAME_I_DEVICE)) {
3591 val64 = readq(&bar0->gpio_control);
3592 val64 |= 0x0000800000000000ULL;
3593 writeq(val64, &bar0->gpio_control);
3594 val64 = 0x0411040400000000ULL;
3595 writeq(val64, (void __iomem *)bar0 + 0x2700);
3596 }
3597
3598 /*
3599 * Clear spurious ECC interrupts that would have occured on
3600 * XFRAME II cards after reset.
3601 */
3602 if (sp->device_type == XFRAME_II_DEVICE) {
3603 val64 = readq(&bar0->pcc_err_reg);
3604 writeq(val64, &bar0->pcc_err_reg);
3605 }
3606
3607 sp->device_enabled_once = FALSE;
3608 }
3609
3610 /**
3611 * s2io_set_swapper - to set the swapper controle on the card
3612 * @sp : private member of the device structure,
3613 * pointer to the s2io_nic structure.
3614 * Description: Function to set the swapper control on the card
3615 * correctly depending on the 'endianness' of the system.
3616 * Return value:
3617 * SUCCESS on success and FAILURE on failure.
3618 */
3619
3620 static int s2io_set_swapper(struct s2io_nic * sp)
3621 {
3622 struct net_device *dev = sp->dev;
3623 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3624 u64 val64, valt, valr;
3625
3626 /*
3627 * Set proper endian settings and verify the same by reading
3628 * the PIF Feed-back register.
3629 */
3630
3631 val64 = readq(&bar0->pif_rd_swapper_fb);
3632 if (val64 != 0x0123456789ABCDEFULL) {
3633 int i = 0;
3634 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3635 0x8100008181000081ULL, /* FE=1, SE=0 */
3636 0x4200004242000042ULL, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3638
3639 while(i<4) {
3640 writeq(value[i], &bar0->swapper_ctrl);
3641 val64 = readq(&bar0->pif_rd_swapper_fb);
3642 if (val64 == 0x0123456789ABCDEFULL)
3643 break;
3644 i++;
3645 }
3646 if (i == 4) {
3647 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3648 dev->name);
3649 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3650 (unsigned long long) val64);
3651 return FAILURE;
3652 }
3653 valr = value[i];
3654 } else {
3655 valr = readq(&bar0->swapper_ctrl);
3656 }
3657
3658 valt = 0x0123456789ABCDEFULL;
3659 writeq(valt, &bar0->xmsi_address);
3660 val64 = readq(&bar0->xmsi_address);
3661
3662 if(val64 != valt) {
3663 int i = 0;
3664 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3665 0x0081810000818100ULL, /* FE=1, SE=0 */
3666 0x0042420000424200ULL, /* FE=0, SE=1 */
3667 0}; /* FE=0, SE=0 */
3668
3669 while(i<4) {
3670 writeq((value[i] | valr), &bar0->swapper_ctrl);
3671 writeq(valt, &bar0->xmsi_address);
3672 val64 = readq(&bar0->xmsi_address);
3673 if(val64 == valt)
3674 break;
3675 i++;
3676 }
3677 if(i == 4) {
3678 unsigned long long x = val64;
3679 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3680 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3681 return FAILURE;
3682 }
3683 }
3684 val64 = readq(&bar0->swapper_ctrl);
3685 val64 &= 0xFFFF000000000000ULL;
3686
3687 #ifdef __BIG_ENDIAN
3688 /*
3689 * The device by default set to a big endian format, so a
3690 * big endian driver need not set anything.
3691 */
3692 val64 |= (SWAPPER_CTRL_TXP_FE |
3693 SWAPPER_CTRL_TXP_SE |
3694 SWAPPER_CTRL_TXD_R_FE |
3695 SWAPPER_CTRL_TXD_W_FE |
3696 SWAPPER_CTRL_TXF_R_FE |
3697 SWAPPER_CTRL_RXD_R_FE |
3698 SWAPPER_CTRL_RXD_W_FE |
3699 SWAPPER_CTRL_RXF_W_FE |
3700 SWAPPER_CTRL_XMSI_FE |
3701 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3702 if (sp->config.intr_type == INTA)
3703 val64 |= SWAPPER_CTRL_XMSI_SE;
3704 writeq(val64, &bar0->swapper_ctrl);
3705 #else
3706 /*
3707 * Initially we enable all bits to make it accessible by the
3708 * driver, then we selectively enable only those bits that
3709 * we want to set.
3710 */
3711 val64 |= (SWAPPER_CTRL_TXP_FE |
3712 SWAPPER_CTRL_TXP_SE |
3713 SWAPPER_CTRL_TXD_R_FE |
3714 SWAPPER_CTRL_TXD_R_SE |
3715 SWAPPER_CTRL_TXD_W_FE |
3716 SWAPPER_CTRL_TXD_W_SE |
3717 SWAPPER_CTRL_TXF_R_FE |
3718 SWAPPER_CTRL_RXD_R_FE |
3719 SWAPPER_CTRL_RXD_R_SE |
3720 SWAPPER_CTRL_RXD_W_FE |
3721 SWAPPER_CTRL_RXD_W_SE |
3722 SWAPPER_CTRL_RXF_W_FE |
3723 SWAPPER_CTRL_XMSI_FE |
3724 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3725 if (sp->config.intr_type == INTA)
3726 val64 |= SWAPPER_CTRL_XMSI_SE;
3727 writeq(val64, &bar0->swapper_ctrl);
3728 #endif
3729 val64 = readq(&bar0->swapper_ctrl);
3730
3731 /*
3732 * Verifying if endian settings are accurate by reading a
3733 * feedback register.
3734 */
3735 val64 = readq(&bar0->pif_rd_swapper_fb);
3736 if (val64 != 0x0123456789ABCDEFULL) {
3737 /* Endian settings are incorrect, calls for another dekko. */
3738 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3739 dev->name);
3740 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3741 (unsigned long long) val64);
3742 return FAILURE;
3743 }
3744
3745 return SUCCESS;
3746 }
3747
3748 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3749 {
3750 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3751 u64 val64;
3752 int ret = 0, cnt = 0;
3753
3754 do {
3755 val64 = readq(&bar0->xmsi_access);
3756 if (!(val64 & s2BIT(15)))
3757 break;
3758 mdelay(1);
3759 cnt++;
3760 } while(cnt < 5);
3761 if (cnt == 5) {
3762 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3763 ret = 1;
3764 }
3765
3766 return ret;
3767 }
3768
3769 static void restore_xmsi_data(struct s2io_nic *nic)
3770 {
3771 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3772 u64 val64;
3773 int i;
3774
3775 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3776 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3777 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3778 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3779 writeq(val64, &bar0->xmsi_access);
3780 if (wait_for_msix_trans(nic, i)) {
3781 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3782 continue;
3783 }
3784 }
3785 }
3786
3787 static void store_xmsi_data(struct s2io_nic *nic)
3788 {
3789 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3790 u64 val64, addr, data;
3791 int i;
3792
3793 /* Store and display */
3794 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3795 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3796 writeq(val64, &bar0->xmsi_access);
3797 if (wait_for_msix_trans(nic, i)) {
3798 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3799 continue;
3800 }
3801 addr = readq(&bar0->xmsi_address);
3802 data = readq(&bar0->xmsi_data);
3803 if (addr && data) {
3804 nic->msix_info[i].addr = addr;
3805 nic->msix_info[i].data = data;
3806 }
3807 }
3808 }
3809
3810 static int s2io_enable_msi_x(struct s2io_nic *nic)
3811 {
3812 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3813 u64 tx_mat, rx_mat;
3814 u16 msi_control; /* Temp variable */
3815 int ret, i, j, msix_indx = 1;
3816
3817 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3818 GFP_KERNEL);
3819 if (!nic->entries) {
3820 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3821 __FUNCTION__);
3822 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3823 return -ENOMEM;
3824 }
3825 nic->mac_control.stats_info->sw_stat.mem_allocated
3826 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3827
3828 nic->s2io_entries =
3829 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3830 GFP_KERNEL);
3831 if (!nic->s2io_entries) {
3832 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3833 __FUNCTION__);
3834 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3835 kfree(nic->entries);
3836 nic->mac_control.stats_info->sw_stat.mem_freed
3837 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3838 return -ENOMEM;
3839 }
3840 nic->mac_control.stats_info->sw_stat.mem_allocated
3841 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3842
3843 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3844 nic->entries[i].entry = i;
3845 nic->s2io_entries[i].entry = i;
3846 nic->s2io_entries[i].arg = NULL;
3847 nic->s2io_entries[i].in_use = 0;
3848 }
3849
3850 tx_mat = readq(&bar0->tx_mat0_n[0]);
3851 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3852 tx_mat |= TX_MAT_SET(i, msix_indx);
3853 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3854 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3855 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3856 }
3857 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3858
3859 rx_mat = readq(&bar0->rx_mat);
3860 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3861 rx_mat |= RX_MAT_SET(j, msix_indx);
3862 nic->s2io_entries[msix_indx].arg
3863 = &nic->mac_control.rings[j];
3864 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3865 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3866 }
3867 writeq(rx_mat, &bar0->rx_mat);
3868
3869 nic->avail_msix_vectors = 0;
3870 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3871 /* We fail init if error or we get less vectors than min required */
3872 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3873 nic->avail_msix_vectors = ret;
3874 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3875 }
3876 if (ret) {
3877 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3878 kfree(nic->entries);
3879 nic->mac_control.stats_info->sw_stat.mem_freed
3880 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3881 kfree(nic->s2io_entries);
3882 nic->mac_control.stats_info->sw_stat.mem_freed
3883 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3884 nic->entries = NULL;
3885 nic->s2io_entries = NULL;
3886 nic->avail_msix_vectors = 0;
3887 return -ENOMEM;
3888 }
3889 if (!nic->avail_msix_vectors)
3890 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3891
3892 /*
3893 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3894 * in the herc NIC. (Temp change, needs to be removed later)
3895 */
3896 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3897 msi_control |= 0x1; /* Enable MSI */
3898 pci_write_config_word(nic->pdev, 0x42, msi_control);
3899
3900 return 0;
3901 }
3902
3903 /* Handle software interrupt used during MSI(X) test */
3904 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3905 {
3906 struct s2io_nic *sp = dev_id;
3907
3908 sp->msi_detected = 1;
3909 wake_up(&sp->msi_wait);
3910
3911 return IRQ_HANDLED;
3912 }
3913
3914 /* Test interrupt path by forcing a a software IRQ */
3915 static int s2io_test_msi(struct s2io_nic *sp)
3916 {
3917 struct pci_dev *pdev = sp->pdev;
3918 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3919 int err;
3920 u64 val64, saved64;
3921
3922 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3923 sp->name, sp);
3924 if (err) {
3925 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3926 sp->dev->name, pci_name(pdev), pdev->irq);
3927 return err;
3928 }
3929
3930 init_waitqueue_head (&sp->msi_wait);
3931 sp->msi_detected = 0;
3932
3933 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3934 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3935 val64 |= SCHED_INT_CTRL_TIMER_EN;
3936 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3937 writeq(val64, &bar0->scheduled_int_ctrl);
3938
3939 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3940
3941 if (!sp->msi_detected) {
3942 /* MSI(X) test failed, go back to INTx mode */
3943 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3944 "using MSI(X) during test\n", sp->dev->name,
3945 pci_name(pdev));
3946
3947 err = -EOPNOTSUPP;
3948 }
3949
3950 free_irq(sp->entries[1].vector, sp);
3951
3952 writeq(saved64, &bar0->scheduled_int_ctrl);
3953
3954 return err;
3955 }
3956
3957 static void remove_msix_isr(struct s2io_nic *sp)
3958 {
3959 int i;
3960 u16 msi_control;
3961
3962 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3963 if (sp->s2io_entries[i].in_use ==
3964 MSIX_REGISTERED_SUCCESS) {
3965 int vector = sp->entries[i].vector;
3966 void *arg = sp->s2io_entries[i].arg;
3967 free_irq(vector, arg);
3968 }
3969 }
3970
3971 kfree(sp->entries);
3972 kfree(sp->s2io_entries);
3973 sp->entries = NULL;
3974 sp->s2io_entries = NULL;
3975
3976 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3977 msi_control &= 0xFFFE; /* Disable MSI */
3978 pci_write_config_word(sp->pdev, 0x42, msi_control);
3979
3980 pci_disable_msix(sp->pdev);
3981 }
3982
3983 static void remove_inta_isr(struct s2io_nic *sp)
3984 {
3985 struct net_device *dev = sp->dev;
3986
3987 free_irq(sp->pdev->irq, dev);
3988 }
3989
3990 /* ********************************************************* *
3991 * Functions defined below concern the OS part of the driver *
3992 * ********************************************************* */
3993
3994 /**
3995 * s2io_open - open entry point of the driver
3996 * @dev : pointer to the device structure.
3997 * Description:
3998 * This function is the open entry point of the driver. It mainly calls a
3999 * function to allocate Rx buffers and inserts them into the buffer
4000 * descriptors and then enables the Rx part of the NIC.
4001 * Return value:
4002 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4003 * file on failure.
4004 */
4005
4006 static int s2io_open(struct net_device *dev)
4007 {
4008 struct s2io_nic *sp = dev->priv;
4009 int err = 0;
4010
4011 /*
4012 * Make sure you have link off by default every time
4013 * Nic is initialized
4014 */
4015 netif_carrier_off(dev);
4016 sp->last_link_state = 0;
4017
4018 if (sp->config.intr_type == MSI_X) {
4019 int ret = s2io_enable_msi_x(sp);
4020
4021 if (!ret) {
4022 ret = s2io_test_msi(sp);
4023 /* rollback MSI-X, will re-enable during add_isr() */
4024 remove_msix_isr(sp);
4025 }
4026 if (ret) {
4027
4028 DBG_PRINT(ERR_DBG,
4029 "%s: MSI-X requested but failed to enable\n",
4030 dev->name);
4031 sp->config.intr_type = INTA;
4032 }
4033 }
4034
4035 /* NAPI doesn't work well with MSI(X) */
4036 if (sp->config.intr_type != INTA) {
4037 if(sp->config.napi)
4038 sp->config.napi = 0;
4039 }
4040
4041 /* Initialize H/W and enable interrupts */
4042 err = s2io_card_up(sp);
4043 if (err) {
4044 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4045 dev->name);
4046 goto hw_init_failed;
4047 }
4048
4049 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4050 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4051 s2io_card_down(sp);
4052 err = -ENODEV;
4053 goto hw_init_failed;
4054 }
4055 s2io_start_all_tx_queue(sp);
4056 return 0;
4057
4058 hw_init_failed:
4059 if (sp->config.intr_type == MSI_X) {
4060 if (sp->entries) {
4061 kfree(sp->entries);
4062 sp->mac_control.stats_info->sw_stat.mem_freed
4063 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4064 }
4065 if (sp->s2io_entries) {
4066 kfree(sp->s2io_entries);
4067 sp->mac_control.stats_info->sw_stat.mem_freed
4068 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4069 }
4070 }
4071 return err;
4072 }
4073
4074 /**
4075 * s2io_close -close entry point of the driver
4076 * @dev : device pointer.
4077 * Description:
4078 * This is the stop entry point of the driver. It needs to undo exactly
4079 * whatever was done by the open entry point,thus it's usually referred to
4080 * as the close function.Among other things this function mainly stops the
4081 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4082 * Return value:
4083 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4084 * file on failure.
4085 */
4086
4087 static int s2io_close(struct net_device *dev)
4088 {
4089 struct s2io_nic *sp = dev->priv;
4090 struct config_param *config = &sp->config;
4091 u64 tmp64;
4092 int offset;
4093
4094 /* Return if the device is already closed *
4095 * Can happen when s2io_card_up failed in change_mtu *
4096 */
4097 if (!is_s2io_card_up(sp))
4098 return 0;
4099
4100 s2io_stop_all_tx_queue(sp);
4101 /* delete all populated mac entries */
4102 for (offset = 1; offset < config->max_mc_addr; offset++) {
4103 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4104 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4105 do_s2io_delete_unicast_mc(sp, tmp64);
4106 }
4107
4108 /* Reset card, kill tasklet and free Tx and Rx buffers. */
4109 s2io_card_down(sp);
4110
4111 return 0;
4112 }
4113
4114 /**
4115 * s2io_xmit - Tx entry point of te driver
4116 * @skb : the socket buffer containing the Tx data.
4117 * @dev : device pointer.
4118 * Description :
4119 * This function is the Tx entry point of the driver. S2IO NIC supports
4120 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4121 * NOTE: when device cant queue the pkt,just the trans_start variable will
4122 * not be upadted.
4123 * Return value:
4124 * 0 on success & 1 on failure.
4125 */
4126
4127 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4128 {
4129 struct s2io_nic *sp = dev->priv;
4130 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4131 register u64 val64;
4132 struct TxD *txdp;
4133 struct TxFIFO_element __iomem *tx_fifo;
4134 unsigned long flags = 0;
4135 u16 vlan_tag = 0;
4136 struct fifo_info *fifo = NULL;
4137 struct mac_info *mac_control;
4138 struct config_param *config;
4139 int do_spin_lock = 1;
4140 int offload_type;
4141 int enable_per_list_interrupt = 0;
4142 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4143
4144 mac_control = &sp->mac_control;
4145 config = &sp->config;
4146
4147 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4148
4149 if (unlikely(skb->len <= 0)) {
4150 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4151 dev_kfree_skb_any(skb);
4152 return 0;
4153 }
4154
4155 if (!is_s2io_card_up(sp)) {
4156 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4157 dev->name);
4158 dev_kfree_skb(skb);
4159 return 0;
4160 }
4161
4162 queue = 0;
4163 if (sp->vlgrp && vlan_tx_tag_present(skb))
4164 vlan_tag = vlan_tx_tag_get(skb);
4165 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4166 if (skb->protocol == htons(ETH_P_IP)) {
4167 struct iphdr *ip;
4168 struct tcphdr *th;
4169 ip = ip_hdr(skb);
4170
4171 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4172 th = (struct tcphdr *)(((unsigned char *)ip) +
4173 ip->ihl*4);
4174
4175 if (ip->protocol == IPPROTO_TCP) {
4176 queue_len = sp->total_tcp_fifos;
4177 queue = (ntohs(th->source) +
4178 ntohs(th->dest)) &
4179 sp->fifo_selector[queue_len - 1];
4180 if (queue >= queue_len)
4181 queue = queue_len - 1;
4182 } else if (ip->protocol == IPPROTO_UDP) {
4183 queue_len = sp->total_udp_fifos;
4184 queue = (ntohs(th->source) +
4185 ntohs(th->dest)) &
4186 sp->fifo_selector[queue_len - 1];
4187 if (queue >= queue_len)
4188 queue = queue_len - 1;
4189 queue += sp->udp_fifo_idx;
4190 if (skb->len > 1024)
4191 enable_per_list_interrupt = 1;
4192 do_spin_lock = 0;
4193 }
4194 }
4195 }
4196 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4197 /* get fifo number based on skb->priority value */
4198 queue = config->fifo_mapping
4199 [skb->priority & (MAX_TX_FIFOS - 1)];
4200 fifo = &mac_control->fifos[queue];
4201
4202 if (do_spin_lock)
4203 spin_lock_irqsave(&fifo->tx_lock, flags);
4204 else {
4205 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4206 return NETDEV_TX_LOCKED;
4207 }
4208
4209 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4210 if (sp->config.multiq) {
4211 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4212 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4213 return NETDEV_TX_BUSY;
4214 }
4215 } else
4216 #endif
4217 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4218 if (netif_queue_stopped(dev)) {
4219 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4220 return NETDEV_TX_BUSY;
4221 }
4222 }
4223
4224 put_off = (u16) fifo->tx_curr_put_info.offset;
4225 get_off = (u16) fifo->tx_curr_get_info.offset;
4226 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4227
4228 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4229 /* Avoid "put" pointer going beyond "get" pointer */
4230 if (txdp->Host_Control ||
4231 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4232 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4233 s2io_stop_tx_queue(sp, fifo->fifo_no);
4234 dev_kfree_skb(skb);
4235 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4236 return 0;
4237 }
4238
4239 offload_type = s2io_offload_type(skb);
4240 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4241 txdp->Control_1 |= TXD_TCP_LSO_EN;
4242 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4243 }
4244 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4245 txdp->Control_2 |=
4246 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4247 TXD_TX_CKO_UDP_EN);
4248 }
4249 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4250 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4251 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4252 if (enable_per_list_interrupt)
4253 if (put_off & (queue_len >> 5))
4254 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4255 if (vlan_tag) {
4256 txdp->Control_2 |= TXD_VLAN_ENABLE;
4257 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4258 }
4259
4260 frg_len = skb->len - skb->data_len;
4261 if (offload_type == SKB_GSO_UDP) {
4262 int ufo_size;
4263
4264 ufo_size = s2io_udp_mss(skb);
4265 ufo_size &= ~7;
4266 txdp->Control_1 |= TXD_UFO_EN;
4267 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4268 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4269 #ifdef __BIG_ENDIAN
4270 fifo->ufo_in_band_v[put_off] =
4271 (u64)skb_shinfo(skb)->ip6_frag_id;
4272 #else
4273 fifo->ufo_in_band_v[put_off] =
4274 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4275 #endif
4276 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4277 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4278 fifo->ufo_in_band_v,
4279 sizeof(u64), PCI_DMA_TODEVICE);
4280 if((txdp->Buffer_Pointer == 0) ||
4281 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4282 goto pci_map_failed;
4283 txdp++;
4284 }
4285
4286 txdp->Buffer_Pointer = pci_map_single
4287 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4288 if((txdp->Buffer_Pointer == 0) ||
4289 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4290 goto pci_map_failed;
4291
4292 txdp->Host_Control = (unsigned long) skb;
4293 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4294 if (offload_type == SKB_GSO_UDP)
4295 txdp->Control_1 |= TXD_UFO_EN;
4296
4297 frg_cnt = skb_shinfo(skb)->nr_frags;
4298 /* For fragmented SKB. */
4299 for (i = 0; i < frg_cnt; i++) {
4300 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4301 /* A '0' length fragment will be ignored */
4302 if (!frag->size)
4303 continue;
4304 txdp++;
4305 txdp->Buffer_Pointer = (u64) pci_map_page
4306 (sp->pdev, frag->page, frag->page_offset,
4307 frag->size, PCI_DMA_TODEVICE);
4308 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4309 if (offload_type == SKB_GSO_UDP)
4310 txdp->Control_1 |= TXD_UFO_EN;
4311 }
4312 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4313
4314 if (offload_type == SKB_GSO_UDP)
4315 frg_cnt++; /* as Txd0 was used for inband header */
4316
4317 tx_fifo = mac_control->tx_FIFO_start[queue];
4318 val64 = fifo->list_info[put_off].list_phy_addr;
4319 writeq(val64, &tx_fifo->TxDL_Pointer);
4320
4321 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4322 TX_FIFO_LAST_LIST);
4323 if (offload_type)
4324 val64 |= TX_FIFO_SPECIAL_FUNC;
4325
4326 writeq(val64, &tx_fifo->List_Control);
4327
4328 mmiowb();
4329
4330 put_off++;
4331 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4332 put_off = 0;
4333 fifo->tx_curr_put_info.offset = put_off;
4334
4335 /* Avoid "put" pointer going beyond "get" pointer */
4336 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4337 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4338 DBG_PRINT(TX_DBG,
4339 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4340 put_off, get_off);
4341 s2io_stop_tx_queue(sp, fifo->fifo_no);
4342 }
4343 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4344 dev->trans_start = jiffies;
4345 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4346
4347 return 0;
4348 pci_map_failed:
4349 stats->pci_map_fail_cnt++;
4350 s2io_stop_tx_queue(sp, fifo->fifo_no);
4351 stats->mem_freed += skb->truesize;
4352 dev_kfree_skb(skb);
4353 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4354 return 0;
4355 }
4356
4357 static void
4358 s2io_alarm_handle(unsigned long data)
4359 {
4360 struct s2io_nic *sp = (struct s2io_nic *)data;
4361 struct net_device *dev = sp->dev;
4362
4363 s2io_handle_errors(dev);
4364 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4365 }
4366
4367 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4368 {
4369 int rxb_size, level;
4370
4371 if (!sp->lro) {
4372 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4373 level = rx_buffer_level(sp, rxb_size, rng_n);
4374
4375 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4376 int ret;
4377 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4378 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4379 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4380 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4381 __FUNCTION__);
4382 clear_bit(0, (&sp->tasklet_status));
4383 return -1;
4384 }
4385 clear_bit(0, (&sp->tasklet_status));
4386 } else if (level == LOW)
4387 tasklet_schedule(&sp->task);
4388
4389 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4390 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4391 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4392 }
4393 return 0;
4394 }
4395
4396 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4397 {
4398 struct ring_info *ring = (struct ring_info *)dev_id;
4399 struct s2io_nic *sp = ring->nic;
4400
4401 if (!is_s2io_card_up(sp))
4402 return IRQ_HANDLED;
4403
4404 rx_intr_handler(ring);
4405 s2io_chk_rx_buffers(sp, ring->ring_no);
4406
4407 return IRQ_HANDLED;
4408 }
4409
4410 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4411 {
4412 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4413 struct s2io_nic *sp = fifo->nic;
4414
4415 if (!is_s2io_card_up(sp))
4416 return IRQ_HANDLED;
4417
4418 tx_intr_handler(fifo);
4419 return IRQ_HANDLED;
4420 }
4421 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4422 {
4423 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4424 u64 val64;
4425
4426 val64 = readq(&bar0->pic_int_status);
4427 if (val64 & PIC_INT_GPIO) {
4428 val64 = readq(&bar0->gpio_int_reg);
4429 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4430 (val64 & GPIO_INT_REG_LINK_UP)) {
4431 /*
4432 * This is unstable state so clear both up/down
4433 * interrupt and adapter to re-evaluate the link state.
4434 */
4435 val64 |= GPIO_INT_REG_LINK_DOWN;
4436 val64 |= GPIO_INT_REG_LINK_UP;
4437 writeq(val64, &bar0->gpio_int_reg);
4438 val64 = readq(&bar0->gpio_int_mask);
4439 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4440 GPIO_INT_MASK_LINK_DOWN);
4441 writeq(val64, &bar0->gpio_int_mask);
4442 }
4443 else if (val64 & GPIO_INT_REG_LINK_UP) {
4444 val64 = readq(&bar0->adapter_status);
4445 /* Enable Adapter */
4446 val64 = readq(&bar0->adapter_control);
4447 val64 |= ADAPTER_CNTL_EN;
4448 writeq(val64, &bar0->adapter_control);
4449 val64 |= ADAPTER_LED_ON;
4450 writeq(val64, &bar0->adapter_control);
4451 if (!sp->device_enabled_once)
4452 sp->device_enabled_once = 1;
4453
4454 s2io_link(sp, LINK_UP);
4455 /*
4456 * unmask link down interrupt and mask link-up
4457 * intr
4458 */
4459 val64 = readq(&bar0->gpio_int_mask);
4460 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4461 val64 |= GPIO_INT_MASK_LINK_UP;
4462 writeq(val64, &bar0->gpio_int_mask);
4463
4464 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4465 val64 = readq(&bar0->adapter_status);
4466 s2io_link(sp, LINK_DOWN);
4467 /* Link is down so unmaks link up interrupt */
4468 val64 = readq(&bar0->gpio_int_mask);
4469 val64 &= ~GPIO_INT_MASK_LINK_UP;
4470 val64 |= GPIO_INT_MASK_LINK_DOWN;
4471 writeq(val64, &bar0->gpio_int_mask);
4472
4473 /* turn off LED */
4474 val64 = readq(&bar0->adapter_control);
4475 val64 = val64 &(~ADAPTER_LED_ON);
4476 writeq(val64, &bar0->adapter_control);
4477 }
4478 }
4479 val64 = readq(&bar0->gpio_int_mask);
4480 }
4481
4482 /**
4483 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4484 * @value: alarm bits
4485 * @addr: address value
4486 * @cnt: counter variable
4487 * Description: Check for alarm and increment the counter
4488 * Return Value:
4489 * 1 - if alarm bit set
4490 * 0 - if alarm bit is not set
4491 */
4492 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4493 unsigned long long *cnt)
4494 {
4495 u64 val64;
4496 val64 = readq(addr);
4497 if ( val64 & value ) {
4498 writeq(val64, addr);
4499 (*cnt)++;
4500 return 1;
4501 }
4502 return 0;
4503
4504 }
4505
4506 /**
4507 * s2io_handle_errors - Xframe error indication handler
4508 * @nic: device private variable
4509 * Description: Handle alarms such as loss of link, single or
4510 * double ECC errors, critical and serious errors.
4511 * Return Value:
4512 * NONE
4513 */
4514 static void s2io_handle_errors(void * dev_id)
4515 {
4516 struct net_device *dev = (struct net_device *) dev_id;
4517 struct s2io_nic *sp = dev->priv;
4518 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4519 u64 temp64 = 0,val64=0;
4520 int i = 0;
4521
4522 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4523 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4524
4525 if (!is_s2io_card_up(sp))
4526 return;
4527
4528 if (pci_channel_offline(sp->pdev))
4529 return;
4530
4531 memset(&sw_stat->ring_full_cnt, 0,
4532 sizeof(sw_stat->ring_full_cnt));
4533
4534 /* Handling the XPAK counters update */
4535 if(stats->xpak_timer_count < 72000) {
4536 /* waiting for an hour */
4537 stats->xpak_timer_count++;
4538 } else {
4539 s2io_updt_xpak_counter(dev);
4540 /* reset the count to zero */
4541 stats->xpak_timer_count = 0;
4542 }
4543
4544 /* Handling link status change error Intr */
4545 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4546 val64 = readq(&bar0->mac_rmac_err_reg);
4547 writeq(val64, &bar0->mac_rmac_err_reg);
4548 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4549 schedule_work(&sp->set_link_task);
4550 }
4551
4552 /* In case of a serious error, the device will be Reset. */
4553 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4554 &sw_stat->serious_err_cnt))
4555 goto reset;
4556
4557 /* Check for data parity error */
4558 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4559 &sw_stat->parity_err_cnt))
4560 goto reset;
4561
4562 /* Check for ring full counter */
4563 if (sp->device_type == XFRAME_II_DEVICE) {
4564 val64 = readq(&bar0->ring_bump_counter1);
4565 for (i=0; i<4; i++) {
4566 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4567 temp64 >>= 64 - ((i+1)*16);
4568 sw_stat->ring_full_cnt[i] += temp64;
4569 }
4570
4571 val64 = readq(&bar0->ring_bump_counter2);
4572 for (i=0; i<4; i++) {
4573 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4574 temp64 >>= 64 - ((i+1)*16);
4575 sw_stat->ring_full_cnt[i+4] += temp64;
4576 }
4577 }
4578
4579 val64 = readq(&bar0->txdma_int_status);
4580 /*check for pfc_err*/
4581 if (val64 & TXDMA_PFC_INT) {
4582 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4583 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4584 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4585 &sw_stat->pfc_err_cnt))
4586 goto reset;
4587 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4588 &sw_stat->pfc_err_cnt);
4589 }
4590
4591 /*check for tda_err*/
4592 if (val64 & TXDMA_TDA_INT) {
4593 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4594 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4595 &sw_stat->tda_err_cnt))
4596 goto reset;
4597 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4598 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4599 }
4600 /*check for pcc_err*/
4601 if (val64 & TXDMA_PCC_INT) {
4602 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4603 | PCC_N_SERR | PCC_6_COF_OV_ERR
4604 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4605 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4606 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4607 &sw_stat->pcc_err_cnt))
4608 goto reset;
4609 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4610 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4611 }
4612
4613 /*check for tti_err*/
4614 if (val64 & TXDMA_TTI_INT) {
4615 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4616 &sw_stat->tti_err_cnt))
4617 goto reset;
4618 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4619 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4620 }
4621
4622 /*check for lso_err*/
4623 if (val64 & TXDMA_LSO_INT) {
4624 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4625 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4626 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4627 goto reset;
4628 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4629 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4630 }
4631
4632 /*check for tpa_err*/
4633 if (val64 & TXDMA_TPA_INT) {
4634 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4635 &sw_stat->tpa_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4638 &sw_stat->tpa_err_cnt);
4639 }
4640
4641 /*check for sm_err*/
4642 if (val64 & TXDMA_SM_INT) {
4643 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4644 &sw_stat->sm_err_cnt))
4645 goto reset;
4646 }
4647
4648 val64 = readq(&bar0->mac_int_status);
4649 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4650 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4651 &bar0->mac_tmac_err_reg,
4652 &sw_stat->mac_tmac_err_cnt))
4653 goto reset;
4654 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4655 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4656 &bar0->mac_tmac_err_reg,
4657 &sw_stat->mac_tmac_err_cnt);
4658 }
4659
4660 val64 = readq(&bar0->xgxs_int_status);
4661 if (val64 & XGXS_INT_STATUS_TXGXS) {
4662 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4663 &bar0->xgxs_txgxs_err_reg,
4664 &sw_stat->xgxs_txgxs_err_cnt))
4665 goto reset;
4666 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4667 &bar0->xgxs_txgxs_err_reg,
4668 &sw_stat->xgxs_txgxs_err_cnt);
4669 }
4670
4671 val64 = readq(&bar0->rxdma_int_status);
4672 if (val64 & RXDMA_INT_RC_INT_M) {
4673 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4674 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4675 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4676 goto reset;
4677 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4678 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4679 &sw_stat->rc_err_cnt);
4680 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4681 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4682 &sw_stat->prc_pcix_err_cnt))
4683 goto reset;
4684 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4685 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4686 &sw_stat->prc_pcix_err_cnt);
4687 }
4688
4689 if (val64 & RXDMA_INT_RPA_INT_M) {
4690 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4691 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4692 goto reset;
4693 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4694 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4695 }
4696
4697 if (val64 & RXDMA_INT_RDA_INT_M) {
4698 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4699 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4700 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4701 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4702 goto reset;
4703 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4704 | RDA_MISC_ERR | RDA_PCIX_ERR,
4705 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4706 }
4707
4708 if (val64 & RXDMA_INT_RTI_INT_M) {
4709 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4710 &sw_stat->rti_err_cnt))
4711 goto reset;
4712 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4713 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4714 }
4715
4716 val64 = readq(&bar0->mac_int_status);
4717 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4718 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4719 &bar0->mac_rmac_err_reg,
4720 &sw_stat->mac_rmac_err_cnt))
4721 goto reset;
4722 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4723 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4724 &sw_stat->mac_rmac_err_cnt);
4725 }
4726
4727 val64 = readq(&bar0->xgxs_int_status);
4728 if (val64 & XGXS_INT_STATUS_RXGXS) {
4729 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4730 &bar0->xgxs_rxgxs_err_reg,
4731 &sw_stat->xgxs_rxgxs_err_cnt))
4732 goto reset;
4733 }
4734
4735 val64 = readq(&bar0->mc_int_status);
4736 if(val64 & MC_INT_STATUS_MC_INT) {
4737 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4738 &sw_stat->mc_err_cnt))
4739 goto reset;
4740
4741 /* Handling Ecc errors */
4742 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4743 writeq(val64, &bar0->mc_err_reg);
4744 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4745 sw_stat->double_ecc_errs++;
4746 if (sp->device_type != XFRAME_II_DEVICE) {
4747 /*
4748 * Reset XframeI only if critical error
4749 */
4750 if (val64 &
4751 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4752 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4753 goto reset;
4754 }
4755 } else
4756 sw_stat->single_ecc_errs++;
4757 }
4758 }
4759 return;
4760
4761 reset:
4762 s2io_stop_all_tx_queue(sp);
4763 schedule_work(&sp->rst_timer_task);
4764 sw_stat->soft_reset_cnt++;
4765 return;
4766 }
4767
4768 /**
4769 * s2io_isr - ISR handler of the device .
4770 * @irq: the irq of the device.
4771 * @dev_id: a void pointer to the dev structure of the NIC.
4772 * Description: This function is the ISR handler of the device. It
4773 * identifies the reason for the interrupt and calls the relevant
4774 * service routines. As a contongency measure, this ISR allocates the
4775 * recv buffers, if their numbers are below the panic value which is
4776 * presently set to 25% of the original number of rcv buffers allocated.
4777 * Return value:
4778 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4779 * IRQ_NONE: will be returned if interrupt is not from our device
4780 */
4781 static irqreturn_t s2io_isr(int irq, void *dev_id)
4782 {
4783 struct net_device *dev = (struct net_device *) dev_id;
4784 struct s2io_nic *sp = dev->priv;
4785 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4786 int i;
4787 u64 reason = 0;
4788 struct mac_info *mac_control;
4789 struct config_param *config;
4790
4791 /* Pretend we handled any irq's from a disconnected card */
4792 if (pci_channel_offline(sp->pdev))
4793 return IRQ_NONE;
4794
4795 if (!is_s2io_card_up(sp))
4796 return IRQ_NONE;
4797
4798 mac_control = &sp->mac_control;
4799 config = &sp->config;
4800
4801 /*
4802 * Identify the cause for interrupt and call the appropriate
4803 * interrupt handler. Causes for the interrupt could be;
4804 * 1. Rx of packet.
4805 * 2. Tx complete.
4806 * 3. Link down.
4807 */
4808 reason = readq(&bar0->general_int_status);
4809
4810 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4811 /* Nothing much can be done. Get out */
4812 return IRQ_HANDLED;
4813 }
4814
4815 if (reason & (GEN_INTR_RXTRAFFIC |
4816 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4817 {
4818 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4819
4820 if (config->napi) {
4821 if (reason & GEN_INTR_RXTRAFFIC) {
4822 if (likely(netif_rx_schedule_prep(dev,
4823 &sp->napi))) {
4824 __netif_rx_schedule(dev, &sp->napi);
4825 writeq(S2IO_MINUS_ONE,
4826 &bar0->rx_traffic_mask);
4827 } else
4828 writeq(S2IO_MINUS_ONE,
4829 &bar0->rx_traffic_int);
4830 }
4831 } else {
4832 /*
4833 * rx_traffic_int reg is an R1 register, writing all 1's
4834 * will ensure that the actual interrupt causing bit
4835 * get's cleared and hence a read can be avoided.
4836 */
4837 if (reason & GEN_INTR_RXTRAFFIC)
4838 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4839
4840 for (i = 0; i < config->rx_ring_num; i++)
4841 rx_intr_handler(&mac_control->rings[i]);
4842 }
4843
4844 /*
4845 * tx_traffic_int reg is an R1 register, writing all 1's
4846 * will ensure that the actual interrupt causing bit get's
4847 * cleared and hence a read can be avoided.
4848 */
4849 if (reason & GEN_INTR_TXTRAFFIC)
4850 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4851
4852 for (i = 0; i < config->tx_fifo_num; i++)
4853 tx_intr_handler(&mac_control->fifos[i]);
4854
4855 if (reason & GEN_INTR_TXPIC)
4856 s2io_txpic_intr_handle(sp);
4857
4858 /*
4859 * Reallocate the buffers from the interrupt handler itself.
4860 */
4861 if (!config->napi) {
4862 for (i = 0; i < config->rx_ring_num; i++)
4863 s2io_chk_rx_buffers(sp, i);
4864 }
4865 writeq(sp->general_int_mask, &bar0->general_int_mask);
4866 readl(&bar0->general_int_status);
4867
4868 return IRQ_HANDLED;
4869
4870 }
4871 else if (!reason) {
4872 /* The interrupt was not raised by us */
4873 return IRQ_NONE;
4874 }
4875
4876 return IRQ_HANDLED;
4877 }
4878
4879 /**
4880 * s2io_updt_stats -
4881 */
4882 static void s2io_updt_stats(struct s2io_nic *sp)
4883 {
4884 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4885 u64 val64;
4886 int cnt = 0;
4887
4888 if (is_s2io_card_up(sp)) {
4889 /* Apprx 30us on a 133 MHz bus */
4890 val64 = SET_UPDT_CLICKS(10) |
4891 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4892 writeq(val64, &bar0->stat_cfg);
4893 do {
4894 udelay(100);
4895 val64 = readq(&bar0->stat_cfg);
4896 if (!(val64 & s2BIT(0)))
4897 break;
4898 cnt++;
4899 if (cnt == 5)
4900 break; /* Updt failed */
4901 } while(1);
4902 }
4903 }
4904
4905 /**
4906 * s2io_get_stats - Updates the device statistics structure.
4907 * @dev : pointer to the device structure.
4908 * Description:
4909 * This function updates the device statistics structure in the s2io_nic
4910 * structure and returns a pointer to the same.
4911 * Return value:
4912 * pointer to the updated net_device_stats structure.
4913 */
4914
4915 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4916 {
4917 struct s2io_nic *sp = dev->priv;
4918 struct mac_info *mac_control;
4919 struct config_param *config;
4920
4921
4922 mac_control = &sp->mac_control;
4923 config = &sp->config;
4924
4925 /* Configure Stats for immediate updt */
4926 s2io_updt_stats(sp);
4927
4928 sp->stats.tx_packets =
4929 le32_to_cpu(mac_control->stats_info->tmac_frms);
4930 sp->stats.tx_errors =
4931 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4932 sp->stats.rx_errors =
4933 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4934 sp->stats.multicast =
4935 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4936 sp->stats.rx_length_errors =
4937 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4938
4939 return (&sp->stats);
4940 }
4941
4942 /**
4943 * s2io_set_multicast - entry point for multicast address enable/disable.
4944 * @dev : pointer to the device structure
4945 * Description:
4946 * This function is a driver entry point which gets called by the kernel
4947 * whenever multicast addresses must be enabled/disabled. This also gets
4948 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4949 * determine, if multicast address must be enabled or if promiscuous mode
4950 * is to be disabled etc.
4951 * Return value:
4952 * void.
4953 */
4954
4955 static void s2io_set_multicast(struct net_device *dev)
4956 {
4957 int i, j, prev_cnt;
4958 struct dev_mc_list *mclist;
4959 struct s2io_nic *sp = dev->priv;
4960 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4961 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4962 0xfeffffffffffULL;
4963 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4964 void __iomem *add;
4965 struct config_param *config = &sp->config;
4966
4967 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4968 /* Enable all Multicast addresses */
4969 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4970 &bar0->rmac_addr_data0_mem);
4971 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4972 &bar0->rmac_addr_data1_mem);
4973 val64 = RMAC_ADDR_CMD_MEM_WE |
4974 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4975 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4976 writeq(val64, &bar0->rmac_addr_cmd_mem);
4977 /* Wait till command completes */
4978 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4979 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4980 S2IO_BIT_RESET);
4981
4982 sp->m_cast_flg = 1;
4983 sp->all_multi_pos = config->max_mc_addr - 1;
4984 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4985 /* Disable all Multicast addresses */
4986 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4987 &bar0->rmac_addr_data0_mem);
4988 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4989 &bar0->rmac_addr_data1_mem);
4990 val64 = RMAC_ADDR_CMD_MEM_WE |
4991 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4992 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4993 writeq(val64, &bar0->rmac_addr_cmd_mem);
4994 /* Wait till command completes */
4995 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4996 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4997 S2IO_BIT_RESET);
4998
4999 sp->m_cast_flg = 0;
5000 sp->all_multi_pos = 0;
5001 }
5002
5003 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5004 /* Put the NIC into promiscuous mode */
5005 add = &bar0->mac_cfg;
5006 val64 = readq(&bar0->mac_cfg);
5007 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5008
5009 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5010 writel((u32) val64, add);
5011 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5012 writel((u32) (val64 >> 32), (add + 4));
5013
5014 if (vlan_tag_strip != 1) {
5015 val64 = readq(&bar0->rx_pa_cfg);
5016 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5017 writeq(val64, &bar0->rx_pa_cfg);
5018 vlan_strip_flag = 0;
5019 }
5020
5021 val64 = readq(&bar0->mac_cfg);
5022 sp->promisc_flg = 1;
5023 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5024 dev->name);
5025 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5026 /* Remove the NIC from promiscuous mode */
5027 add = &bar0->mac_cfg;
5028 val64 = readq(&bar0->mac_cfg);
5029 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5030
5031 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5032 writel((u32) val64, add);
5033 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5034 writel((u32) (val64 >> 32), (add + 4));
5035
5036 if (vlan_tag_strip != 0) {
5037 val64 = readq(&bar0->rx_pa_cfg);
5038 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5039 writeq(val64, &bar0->rx_pa_cfg);
5040 vlan_strip_flag = 1;
5041 }
5042
5043 val64 = readq(&bar0->mac_cfg);
5044 sp->promisc_flg = 0;
5045 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5046 dev->name);
5047 }
5048
5049 /* Update individual M_CAST address list */
5050 if ((!sp->m_cast_flg) && dev->mc_count) {
5051 if (dev->mc_count >
5052 (config->max_mc_addr - config->max_mac_addr)) {
5053 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5054 dev->name);
5055 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5056 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5057 return;
5058 }
5059
5060 prev_cnt = sp->mc_addr_count;
5061 sp->mc_addr_count = dev->mc_count;
5062
5063 /* Clear out the previous list of Mc in the H/W. */
5064 for (i = 0; i < prev_cnt; i++) {
5065 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5066 &bar0->rmac_addr_data0_mem);
5067 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5068 &bar0->rmac_addr_data1_mem);
5069 val64 = RMAC_ADDR_CMD_MEM_WE |
5070 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5071 RMAC_ADDR_CMD_MEM_OFFSET
5072 (config->mc_start_offset + i);
5073 writeq(val64, &bar0->rmac_addr_cmd_mem);
5074
5075 /* Wait for command completes */
5076 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5077 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5078 S2IO_BIT_RESET)) {
5079 DBG_PRINT(ERR_DBG, "%s: Adding ",
5080 dev->name);
5081 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5082 return;
5083 }
5084 }
5085
5086 /* Create the new Rx filter list and update the same in H/W. */
5087 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5088 i++, mclist = mclist->next) {
5089 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5090 ETH_ALEN);
5091 mac_addr = 0;
5092 for (j = 0; j < ETH_ALEN; j++) {
5093 mac_addr |= mclist->dmi_addr[j];
5094 mac_addr <<= 8;
5095 }
5096 mac_addr >>= 8;
5097 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5098 &bar0->rmac_addr_data0_mem);
5099 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5100 &bar0->rmac_addr_data1_mem);
5101 val64 = RMAC_ADDR_CMD_MEM_WE |
5102 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5103 RMAC_ADDR_CMD_MEM_OFFSET
5104 (i + config->mc_start_offset);
5105 writeq(val64, &bar0->rmac_addr_cmd_mem);
5106
5107 /* Wait for command completes */
5108 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5109 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5110 S2IO_BIT_RESET)) {
5111 DBG_PRINT(ERR_DBG, "%s: Adding ",
5112 dev->name);
5113 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5114 return;
5115 }
5116 }
5117 }
5118 }
5119
5120 /* read from CAM unicast & multicast addresses and store it in
5121 * def_mac_addr structure
5122 */
5123 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5124 {
5125 int offset;
5126 u64 mac_addr = 0x0;
5127 struct config_param *config = &sp->config;
5128
5129 /* store unicast & multicast mac addresses */
5130 for (offset = 0; offset < config->max_mc_addr; offset++) {
5131 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5132 /* if read fails disable the entry */
5133 if (mac_addr == FAILURE)
5134 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5135 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5136 }
5137 }
5138
5139 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5140 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5141 {
5142 int offset;
5143 struct config_param *config = &sp->config;
5144 /* restore unicast mac address */
5145 for (offset = 0; offset < config->max_mac_addr; offset++)
5146 do_s2io_prog_unicast(sp->dev,
5147 sp->def_mac_addr[offset].mac_addr);
5148
5149 /* restore multicast mac address */
5150 for (offset = config->mc_start_offset;
5151 offset < config->max_mc_addr; offset++)
5152 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5153 }
5154
5155 /* add a multicast MAC address to CAM */
5156 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5157 {
5158 int i;
5159 u64 mac_addr = 0;
5160 struct config_param *config = &sp->config;
5161
5162 for (i = 0; i < ETH_ALEN; i++) {
5163 mac_addr <<= 8;
5164 mac_addr |= addr[i];
5165 }
5166 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5167 return SUCCESS;
5168
5169 /* check if the multicast mac already preset in CAM */
5170 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5171 u64 tmp64;
5172 tmp64 = do_s2io_read_unicast_mc(sp, i);
5173 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5174 break;
5175
5176 if (tmp64 == mac_addr)
5177 return SUCCESS;
5178 }
5179 if (i == config->max_mc_addr) {
5180 DBG_PRINT(ERR_DBG,
5181 "CAM full no space left for multicast MAC\n");
5182 return FAILURE;
5183 }
5184 /* Update the internal structure with this new mac address */
5185 do_s2io_copy_mac_addr(sp, i, mac_addr);
5186
5187 return (do_s2io_add_mac(sp, mac_addr, i));
5188 }
5189
5190 /* add MAC address to CAM */
5191 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5192 {
5193 u64 val64;
5194 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5195
5196 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5197 &bar0->rmac_addr_data0_mem);
5198
5199 val64 =
5200 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5201 RMAC_ADDR_CMD_MEM_OFFSET(off);
5202 writeq(val64, &bar0->rmac_addr_cmd_mem);
5203
5204 /* Wait till command completes */
5205 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5206 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5207 S2IO_BIT_RESET)) {
5208 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5209 return FAILURE;
5210 }
5211 return SUCCESS;
5212 }
5213 /* deletes a specified unicast/multicast mac entry from CAM */
5214 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5215 {
5216 int offset;
5217 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5218 struct config_param *config = &sp->config;
5219
5220 for (offset = 1;
5221 offset < config->max_mc_addr; offset++) {
5222 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5223 if (tmp64 == addr) {
5224 /* disable the entry by writing 0xffffffffffffULL */
5225 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5226 return FAILURE;
5227 /* store the new mac list from CAM */
5228 do_s2io_store_unicast_mc(sp);
5229 return SUCCESS;
5230 }
5231 }
5232 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5233 (unsigned long long)addr);
5234 return FAILURE;
5235 }
5236
5237 /* read mac entries from CAM */
5238 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5239 {
5240 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5241 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5242
5243 /* read mac addr */
5244 val64 =
5245 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5246 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5247 writeq(val64, &bar0->rmac_addr_cmd_mem);
5248
5249 /* Wait till command completes */
5250 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5251 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5252 S2IO_BIT_RESET)) {
5253 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5254 return FAILURE;
5255 }
5256 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5257 return (tmp64 >> 16);
5258 }
5259
5260 /**
5261 * s2io_set_mac_addr driver entry point
5262 */
5263
5264 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5265 {
5266 struct sockaddr *addr = p;
5267
5268 if (!is_valid_ether_addr(addr->sa_data))
5269 return -EINVAL;
5270
5271 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5272
5273 /* store the MAC address in CAM */
5274 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5275 }
5276 /**
5277 * do_s2io_prog_unicast - Programs the Xframe mac address
5278 * @dev : pointer to the device structure.
5279 * @addr: a uchar pointer to the new mac address which is to be set.
5280 * Description : This procedure will program the Xframe to receive
5281 * frames with new Mac Address
5282 * Return value: SUCCESS on success and an appropriate (-)ve integer
5283 * as defined in errno.h file on failure.
5284 */
5285
5286 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5287 {
5288 struct s2io_nic *sp = dev->priv;
5289 register u64 mac_addr = 0, perm_addr = 0;
5290 int i;
5291 u64 tmp64;
5292 struct config_param *config = &sp->config;
5293
5294 /*
5295 * Set the new MAC address as the new unicast filter and reflect this
5296 * change on the device address registered with the OS. It will be
5297 * at offset 0.
5298 */
5299 for (i = 0; i < ETH_ALEN; i++) {
5300 mac_addr <<= 8;
5301 mac_addr |= addr[i];
5302 perm_addr <<= 8;
5303 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5304 }
5305
5306 /* check if the dev_addr is different than perm_addr */
5307 if (mac_addr == perm_addr)
5308 return SUCCESS;
5309
5310 /* check if the mac already preset in CAM */
5311 for (i = 1; i < config->max_mac_addr; i++) {
5312 tmp64 = do_s2io_read_unicast_mc(sp, i);
5313 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5314 break;
5315
5316 if (tmp64 == mac_addr) {
5317 DBG_PRINT(INFO_DBG,
5318 "MAC addr:0x%llx already present in CAM\n",
5319 (unsigned long long)mac_addr);
5320 return SUCCESS;
5321 }
5322 }
5323 if (i == config->max_mac_addr) {
5324 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5325 return FAILURE;
5326 }
5327 /* Update the internal structure with this new mac address */
5328 do_s2io_copy_mac_addr(sp, i, mac_addr);
5329 return (do_s2io_add_mac(sp, mac_addr, i));
5330 }
5331
5332 /**
5333 * s2io_ethtool_sset - Sets different link parameters.
5334 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5335 * @info: pointer to the structure with parameters given by ethtool to set
5336 * link information.
5337 * Description:
5338 * The function sets different link parameters provided by the user onto
5339 * the NIC.
5340 * Return value:
5341 * 0 on success.
5342 */
5343
5344 static int s2io_ethtool_sset(struct net_device *dev,
5345 struct ethtool_cmd *info)
5346 {
5347 struct s2io_nic *sp = dev->priv;
5348 if ((info->autoneg == AUTONEG_ENABLE) ||
5349 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5350 return -EINVAL;
5351 else {
5352 s2io_close(sp->dev);
5353 s2io_open(sp->dev);
5354 }
5355
5356 return 0;
5357 }
5358
5359 /**
5360 * s2io_ethtol_gset - Return link specific information.
5361 * @sp : private member of the device structure, pointer to the
5362 * s2io_nic structure.
5363 * @info : pointer to the structure with parameters given by ethtool
5364 * to return link information.
5365 * Description:
5366 * Returns link specific information like speed, duplex etc.. to ethtool.
5367 * Return value :
5368 * return 0 on success.
5369 */
5370
5371 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5372 {
5373 struct s2io_nic *sp = dev->priv;
5374 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5375 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5376 info->port = PORT_FIBRE;
5377
5378 /* info->transceiver */
5379 info->transceiver = XCVR_EXTERNAL;
5380
5381 if (netif_carrier_ok(sp->dev)) {
5382 info->speed = 10000;
5383 info->duplex = DUPLEX_FULL;
5384 } else {
5385 info->speed = -1;
5386 info->duplex = -1;
5387 }
5388
5389 info->autoneg = AUTONEG_DISABLE;
5390 return 0;
5391 }
5392
5393 /**
5394 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5395 * @sp : private member of the device structure, which is a pointer to the
5396 * s2io_nic structure.
5397 * @info : pointer to the structure with parameters given by ethtool to
5398 * return driver information.
5399 * Description:
5400 * Returns driver specefic information like name, version etc.. to ethtool.
5401 * Return value:
5402 * void
5403 */
5404
5405 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5406 struct ethtool_drvinfo *info)
5407 {
5408 struct s2io_nic *sp = dev->priv;
5409
5410 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5411 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5412 strncpy(info->fw_version, "", sizeof(info->fw_version));
5413 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5414 info->regdump_len = XENA_REG_SPACE;
5415 info->eedump_len = XENA_EEPROM_SPACE;
5416 }
5417
5418 /**
5419 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5420 * @sp: private member of the device structure, which is a pointer to the
5421 * s2io_nic structure.
5422 * @regs : pointer to the structure with parameters given by ethtool for
5423 * dumping the registers.
5424 * @reg_space: The input argumnet into which all the registers are dumped.
5425 * Description:
5426 * Dumps the entire register space of xFrame NIC into the user given
5427 * buffer area.
5428 * Return value :
5429 * void .
5430 */
5431
5432 static void s2io_ethtool_gregs(struct net_device *dev,
5433 struct ethtool_regs *regs, void *space)
5434 {
5435 int i;
5436 u64 reg;
5437 u8 *reg_space = (u8 *) space;
5438 struct s2io_nic *sp = dev->priv;
5439
5440 regs->len = XENA_REG_SPACE;
5441 regs->version = sp->pdev->subsystem_device;
5442
5443 for (i = 0; i < regs->len; i += 8) {
5444 reg = readq(sp->bar0 + i);
5445 memcpy((reg_space + i), &reg, 8);
5446 }
5447 }
5448
5449 /**
5450 * s2io_phy_id - timer function that alternates adapter LED.
5451 * @data : address of the private member of the device structure, which
5452 * is a pointer to the s2io_nic structure, provided as an u32.
5453 * Description: This is actually the timer function that alternates the
5454 * adapter LED bit of the adapter control bit to set/reset every time on
5455 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5456 * once every second.
5457 */
5458 static void s2io_phy_id(unsigned long data)
5459 {
5460 struct s2io_nic *sp = (struct s2io_nic *) data;
5461 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5462 u64 val64 = 0;
5463 u16 subid;
5464
5465 subid = sp->pdev->subsystem_device;
5466 if ((sp->device_type == XFRAME_II_DEVICE) ||
5467 ((subid & 0xFF) >= 0x07)) {
5468 val64 = readq(&bar0->gpio_control);
5469 val64 ^= GPIO_CTRL_GPIO_0;
5470 writeq(val64, &bar0->gpio_control);
5471 } else {
5472 val64 = readq(&bar0->adapter_control);
5473 val64 ^= ADAPTER_LED_ON;
5474 writeq(val64, &bar0->adapter_control);
5475 }
5476
5477 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5478 }
5479
5480 /**
5481 * s2io_ethtool_idnic - To physically identify the nic on the system.
5482 * @sp : private member of the device structure, which is a pointer to the
5483 * s2io_nic structure.
5484 * @id : pointer to the structure with identification parameters given by
5485 * ethtool.
5486 * Description: Used to physically identify the NIC on the system.
5487 * The Link LED will blink for a time specified by the user for
5488 * identification.
5489 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5490 * identification is possible only if it's link is up.
5491 * Return value:
5492 * int , returns 0 on success
5493 */
5494
5495 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5496 {
5497 u64 val64 = 0, last_gpio_ctrl_val;
5498 struct s2io_nic *sp = dev->priv;
5499 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5500 u16 subid;
5501
5502 subid = sp->pdev->subsystem_device;
5503 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5504 if ((sp->device_type == XFRAME_I_DEVICE) &&
5505 ((subid & 0xFF) < 0x07)) {
5506 val64 = readq(&bar0->adapter_control);
5507 if (!(val64 & ADAPTER_CNTL_EN)) {
5508 printk(KERN_ERR
5509 "Adapter Link down, cannot blink LED\n");
5510 return -EFAULT;
5511 }
5512 }
5513 if (sp->id_timer.function == NULL) {
5514 init_timer(&sp->id_timer);
5515 sp->id_timer.function = s2io_phy_id;
5516 sp->id_timer.data = (unsigned long) sp;
5517 }
5518 mod_timer(&sp->id_timer, jiffies);
5519 if (data)
5520 msleep_interruptible(data * HZ);
5521 else
5522 msleep_interruptible(MAX_FLICKER_TIME);
5523 del_timer_sync(&sp->id_timer);
5524
5525 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5526 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5527 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5528 }
5529
5530 return 0;
5531 }
5532
5533 static void s2io_ethtool_gringparam(struct net_device *dev,
5534 struct ethtool_ringparam *ering)
5535 {
5536 struct s2io_nic *sp = dev->priv;
5537 int i,tx_desc_count=0,rx_desc_count=0;
5538
5539 if (sp->rxd_mode == RXD_MODE_1)
5540 ering->rx_max_pending = MAX_RX_DESC_1;
5541 else if (sp->rxd_mode == RXD_MODE_3B)
5542 ering->rx_max_pending = MAX_RX_DESC_2;
5543
5544 ering->tx_max_pending = MAX_TX_DESC;
5545 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5546 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5547
5548 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5549 ering->tx_pending = tx_desc_count;
5550 rx_desc_count = 0;
5551 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5552 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5553
5554 ering->rx_pending = rx_desc_count;
5555
5556 ering->rx_mini_max_pending = 0;
5557 ering->rx_mini_pending = 0;
5558 if(sp->rxd_mode == RXD_MODE_1)
5559 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5560 else if (sp->rxd_mode == RXD_MODE_3B)
5561 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5562 ering->rx_jumbo_pending = rx_desc_count;
5563 }
5564
5565 /**
5566 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5567 * @sp : private member of the device structure, which is a pointer to the
5568 * s2io_nic structure.
5569 * @ep : pointer to the structure with pause parameters given by ethtool.
5570 * Description:
5571 * Returns the Pause frame generation and reception capability of the NIC.
5572 * Return value:
5573 * void
5574 */
5575 static void s2io_ethtool_getpause_data(struct net_device *dev,
5576 struct ethtool_pauseparam *ep)
5577 {
5578 u64 val64;
5579 struct s2io_nic *sp = dev->priv;
5580 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5581
5582 val64 = readq(&bar0->rmac_pause_cfg);
5583 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5584 ep->tx_pause = TRUE;
5585 if (val64 & RMAC_PAUSE_RX_ENABLE)
5586 ep->rx_pause = TRUE;
5587 ep->autoneg = FALSE;
5588 }
5589
5590 /**
5591 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5592 * @sp : private member of the device structure, which is a pointer to the
5593 * s2io_nic structure.
5594 * @ep : pointer to the structure with pause parameters given by ethtool.
5595 * Description:
5596 * It can be used to set or reset Pause frame generation or reception
5597 * support of the NIC.
5598 * Return value:
5599 * int, returns 0 on Success
5600 */
5601
5602 static int s2io_ethtool_setpause_data(struct net_device *dev,
5603 struct ethtool_pauseparam *ep)
5604 {
5605 u64 val64;
5606 struct s2io_nic *sp = dev->priv;
5607 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5608
5609 val64 = readq(&bar0->rmac_pause_cfg);
5610 if (ep->tx_pause)
5611 val64 |= RMAC_PAUSE_GEN_ENABLE;
5612 else
5613 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5614 if (ep->rx_pause)
5615 val64 |= RMAC_PAUSE_RX_ENABLE;
5616 else
5617 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5618 writeq(val64, &bar0->rmac_pause_cfg);
5619 return 0;
5620 }
5621
5622 /**
5623 * read_eeprom - reads 4 bytes of data from user given offset.
5624 * @sp : private member of the device structure, which is a pointer to the
5625 * s2io_nic structure.
5626 * @off : offset at which the data must be written
5627 * @data : Its an output parameter where the data read at the given
5628 * offset is stored.
5629 * Description:
5630 * Will read 4 bytes of data from the user given offset and return the
5631 * read data.
5632 * NOTE: Will allow to read only part of the EEPROM visible through the
5633 * I2C bus.
5634 * Return value:
5635 * -1 on failure and 0 on success.
5636 */
5637
5638 #define S2IO_DEV_ID 5
5639 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5640 {
5641 int ret = -1;
5642 u32 exit_cnt = 0;
5643 u64 val64;
5644 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5645
5646 if (sp->device_type == XFRAME_I_DEVICE) {
5647 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5648 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5649 I2C_CONTROL_CNTL_START;
5650 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5651
5652 while (exit_cnt < 5) {
5653 val64 = readq(&bar0->i2c_control);
5654 if (I2C_CONTROL_CNTL_END(val64)) {
5655 *data = I2C_CONTROL_GET_DATA(val64);
5656 ret = 0;
5657 break;
5658 }
5659 msleep(50);
5660 exit_cnt++;
5661 }
5662 }
5663
5664 if (sp->device_type == XFRAME_II_DEVICE) {
5665 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5666 SPI_CONTROL_BYTECNT(0x3) |
5667 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5668 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5669 val64 |= SPI_CONTROL_REQ;
5670 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5671 while (exit_cnt < 5) {
5672 val64 = readq(&bar0->spi_control);
5673 if (val64 & SPI_CONTROL_NACK) {
5674 ret = 1;
5675 break;
5676 } else if (val64 & SPI_CONTROL_DONE) {
5677 *data = readq(&bar0->spi_data);
5678 *data &= 0xffffff;
5679 ret = 0;
5680 break;
5681 }
5682 msleep(50);
5683 exit_cnt++;
5684 }
5685 }
5686 return ret;
5687 }
5688
5689 /**
5690 * write_eeprom - actually writes the relevant part of the data value.
5691 * @sp : private member of the device structure, which is a pointer to the
5692 * s2io_nic structure.
5693 * @off : offset at which the data must be written
5694 * @data : The data that is to be written
5695 * @cnt : Number of bytes of the data that are actually to be written into
5696 * the Eeprom. (max of 3)
5697 * Description:
5698 * Actually writes the relevant part of the data value into the Eeprom
5699 * through the I2C bus.
5700 * Return value:
5701 * 0 on success, -1 on failure.
5702 */
5703
5704 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5705 {
5706 int exit_cnt = 0, ret = -1;
5707 u64 val64;
5708 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5709
5710 if (sp->device_type == XFRAME_I_DEVICE) {
5711 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5712 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5713 I2C_CONTROL_CNTL_START;
5714 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5715
5716 while (exit_cnt < 5) {
5717 val64 = readq(&bar0->i2c_control);
5718 if (I2C_CONTROL_CNTL_END(val64)) {
5719 if (!(val64 & I2C_CONTROL_NACK))
5720 ret = 0;
5721 break;
5722 }
5723 msleep(50);
5724 exit_cnt++;
5725 }
5726 }
5727
5728 if (sp->device_type == XFRAME_II_DEVICE) {
5729 int write_cnt = (cnt == 8) ? 0 : cnt;
5730 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5731
5732 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5733 SPI_CONTROL_BYTECNT(write_cnt) |
5734 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5735 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5736 val64 |= SPI_CONTROL_REQ;
5737 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5738 while (exit_cnt < 5) {
5739 val64 = readq(&bar0->spi_control);
5740 if (val64 & SPI_CONTROL_NACK) {
5741 ret = 1;
5742 break;
5743 } else if (val64 & SPI_CONTROL_DONE) {
5744 ret = 0;
5745 break;
5746 }
5747 msleep(50);
5748 exit_cnt++;
5749 }
5750 }
5751 return ret;
5752 }
5753 static void s2io_vpd_read(struct s2io_nic *nic)
5754 {
5755 u8 *vpd_data;
5756 u8 data;
5757 int i=0, cnt, fail = 0;
5758 int vpd_addr = 0x80;
5759
5760 if (nic->device_type == XFRAME_II_DEVICE) {
5761 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5762 vpd_addr = 0x80;
5763 }
5764 else {
5765 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5766 vpd_addr = 0x50;
5767 }
5768 strcpy(nic->serial_num, "NOT AVAILABLE");
5769
5770 vpd_data = kmalloc(256, GFP_KERNEL);
5771 if (!vpd_data) {
5772 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5773 return;
5774 }
5775 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5776
5777 for (i = 0; i < 256; i +=4 ) {
5778 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5779 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5780 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5781 for (cnt = 0; cnt <5; cnt++) {
5782 msleep(2);
5783 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5784 if (data == 0x80)
5785 break;
5786 }
5787 if (cnt >= 5) {
5788 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5789 fail = 1;
5790 break;
5791 }
5792 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5793 (u32 *)&vpd_data[i]);
5794 }
5795
5796 if(!fail) {
5797 /* read serial number of adapter */
5798 for (cnt = 0; cnt < 256; cnt++) {
5799 if ((vpd_data[cnt] == 'S') &&
5800 (vpd_data[cnt+1] == 'N') &&
5801 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5802 memset(nic->serial_num, 0, VPD_STRING_LEN);
5803 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5804 vpd_data[cnt+2]);
5805 break;
5806 }
5807 }
5808 }
5809
5810 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5811 memset(nic->product_name, 0, vpd_data[1]);
5812 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5813 }
5814 kfree(vpd_data);
5815 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5816 }
5817
5818 /**
5819 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5820 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5821 * @eeprom : pointer to the user level structure provided by ethtool,
5822 * containing all relevant information.
5823 * @data_buf : user defined value to be written into Eeprom.
5824 * Description: Reads the values stored in the Eeprom at given offset
5825 * for a given length. Stores these values int the input argument data
5826 * buffer 'data_buf' and returns these to the caller (ethtool.)
5827 * Return value:
5828 * int 0 on success
5829 */
5830
5831 static int s2io_ethtool_geeprom(struct net_device *dev,
5832 struct ethtool_eeprom *eeprom, u8 * data_buf)
5833 {
5834 u32 i, valid;
5835 u64 data;
5836 struct s2io_nic *sp = dev->priv;
5837
5838 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5839
5840 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5841 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5842
5843 for (i = 0; i < eeprom->len; i += 4) {
5844 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5845 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5846 return -EFAULT;
5847 }
5848 valid = INV(data);
5849 memcpy((data_buf + i), &valid, 4);
5850 }
5851 return 0;
5852 }
5853
5854 /**
5855 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5856 * @sp : private member of the device structure, which is a pointer to the
5857 * s2io_nic structure.
5858 * @eeprom : pointer to the user level structure provided by ethtool,
5859 * containing all relevant information.
5860 * @data_buf ; user defined value to be written into Eeprom.
5861 * Description:
5862 * Tries to write the user provided value in the Eeprom, at the offset
5863 * given by the user.
5864 * Return value:
5865 * 0 on success, -EFAULT on failure.
5866 */
5867
5868 static int s2io_ethtool_seeprom(struct net_device *dev,
5869 struct ethtool_eeprom *eeprom,
5870 u8 * data_buf)
5871 {
5872 int len = eeprom->len, cnt = 0;
5873 u64 valid = 0, data;
5874 struct s2io_nic *sp = dev->priv;
5875
5876 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5877 DBG_PRINT(ERR_DBG,
5878 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5879 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5880 eeprom->magic);
5881 return -EFAULT;
5882 }
5883
5884 while (len) {
5885 data = (u32) data_buf[cnt] & 0x000000FF;
5886 if (data) {
5887 valid = (u32) (data << 24);
5888 } else
5889 valid = data;
5890
5891 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5892 DBG_PRINT(ERR_DBG,
5893 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5894 DBG_PRINT(ERR_DBG,
5895 "write into the specified offset\n");
5896 return -EFAULT;
5897 }
5898 cnt++;
5899 len--;
5900 }
5901
5902 return 0;
5903 }
5904
5905 /**
5906 * s2io_register_test - reads and writes into all clock domains.
5907 * @sp : private member of the device structure, which is a pointer to the
5908 * s2io_nic structure.
5909 * @data : variable that returns the result of each of the test conducted b
5910 * by the driver.
5911 * Description:
5912 * Read and write into all clock domains. The NIC has 3 clock domains,
5913 * see that registers in all the three regions are accessible.
5914 * Return value:
5915 * 0 on success.
5916 */
5917
5918 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5919 {
5920 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5921 u64 val64 = 0, exp_val;
5922 int fail = 0;
5923
5924 val64 = readq(&bar0->pif_rd_swapper_fb);
5925 if (val64 != 0x123456789abcdefULL) {
5926 fail = 1;
5927 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5928 }
5929
5930 val64 = readq(&bar0->rmac_pause_cfg);
5931 if (val64 != 0xc000ffff00000000ULL) {
5932 fail = 1;
5933 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5934 }
5935
5936 val64 = readq(&bar0->rx_queue_cfg);
5937 if (sp->device_type == XFRAME_II_DEVICE)
5938 exp_val = 0x0404040404040404ULL;
5939 else
5940 exp_val = 0x0808080808080808ULL;
5941 if (val64 != exp_val) {
5942 fail = 1;
5943 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5944 }
5945
5946 val64 = readq(&bar0->xgxs_efifo_cfg);
5947 if (val64 != 0x000000001923141EULL) {
5948 fail = 1;
5949 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5950 }
5951
5952 val64 = 0x5A5A5A5A5A5A5A5AULL;
5953 writeq(val64, &bar0->xmsi_data);
5954 val64 = readq(&bar0->xmsi_data);
5955 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5956 fail = 1;
5957 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5958 }
5959
5960 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5961 writeq(val64, &bar0->xmsi_data);
5962 val64 = readq(&bar0->xmsi_data);
5963 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5964 fail = 1;
5965 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5966 }
5967
5968 *data = fail;
5969 return fail;
5970 }
5971
5972 /**
5973 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5974 * @sp : private member of the device structure, which is a pointer to the
5975 * s2io_nic structure.
5976 * @data:variable that returns the result of each of the test conducted by
5977 * the driver.
5978 * Description:
5979 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5980 * register.
5981 * Return value:
5982 * 0 on success.
5983 */
5984
5985 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5986 {
5987 int fail = 0;
5988 u64 ret_data, org_4F0, org_7F0;
5989 u8 saved_4F0 = 0, saved_7F0 = 0;
5990 struct net_device *dev = sp->dev;
5991
5992 /* Test Write Error at offset 0 */
5993 /* Note that SPI interface allows write access to all areas
5994 * of EEPROM. Hence doing all negative testing only for Xframe I.
5995 */
5996 if (sp->device_type == XFRAME_I_DEVICE)
5997 if (!write_eeprom(sp, 0, 0, 3))
5998 fail = 1;
5999
6000 /* Save current values at offsets 0x4F0 and 0x7F0 */
6001 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6002 saved_4F0 = 1;
6003 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6004 saved_7F0 = 1;
6005
6006 /* Test Write at offset 4f0 */
6007 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6008 fail = 1;
6009 if (read_eeprom(sp, 0x4F0, &ret_data))
6010 fail = 1;
6011
6012 if (ret_data != 0x012345) {
6013 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6014 "Data written %llx Data read %llx\n",
6015 dev->name, (unsigned long long)0x12345,
6016 (unsigned long long)ret_data);
6017 fail = 1;
6018 }
6019
6020 /* Reset the EEPROM data go FFFF */
6021 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6022
6023 /* Test Write Request Error at offset 0x7c */
6024 if (sp->device_type == XFRAME_I_DEVICE)
6025 if (!write_eeprom(sp, 0x07C, 0, 3))
6026 fail = 1;
6027
6028 /* Test Write Request at offset 0x7f0 */
6029 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6030 fail = 1;
6031 if (read_eeprom(sp, 0x7F0, &ret_data))
6032 fail = 1;
6033
6034 if (ret_data != 0x012345) {
6035 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6036 "Data written %llx Data read %llx\n",
6037 dev->name, (unsigned long long)0x12345,
6038 (unsigned long long)ret_data);
6039 fail = 1;
6040 }
6041
6042 /* Reset the EEPROM data go FFFF */
6043 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6044
6045 if (sp->device_type == XFRAME_I_DEVICE) {
6046 /* Test Write Error at offset 0x80 */
6047 if (!write_eeprom(sp, 0x080, 0, 3))
6048 fail = 1;
6049
6050 /* Test Write Error at offset 0xfc */
6051 if (!write_eeprom(sp, 0x0FC, 0, 3))
6052 fail = 1;
6053
6054 /* Test Write Error at offset 0x100 */
6055 if (!write_eeprom(sp, 0x100, 0, 3))
6056 fail = 1;
6057
6058 /* Test Write Error at offset 4ec */
6059 if (!write_eeprom(sp, 0x4EC, 0, 3))
6060 fail = 1;
6061 }
6062
6063 /* Restore values at offsets 0x4F0 and 0x7F0 */
6064 if (saved_4F0)
6065 write_eeprom(sp, 0x4F0, org_4F0, 3);
6066 if (saved_7F0)
6067 write_eeprom(sp, 0x7F0, org_7F0, 3);
6068
6069 *data = fail;
6070 return fail;
6071 }
6072
6073 /**
6074 * s2io_bist_test - invokes the MemBist test of the card .
6075 * @sp : private member of the device structure, which is a pointer to the
6076 * s2io_nic structure.
6077 * @data:variable that returns the result of each of the test conducted by
6078 * the driver.
6079 * Description:
6080 * This invokes the MemBist test of the card. We give around
6081 * 2 secs time for the Test to complete. If it's still not complete
6082 * within this peiod, we consider that the test failed.
6083 * Return value:
6084 * 0 on success and -1 on failure.
6085 */
6086
6087 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6088 {
6089 u8 bist = 0;
6090 int cnt = 0, ret = -1;
6091
6092 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6093 bist |= PCI_BIST_START;
6094 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6095
6096 while (cnt < 20) {
6097 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6098 if (!(bist & PCI_BIST_START)) {
6099 *data = (bist & PCI_BIST_CODE_MASK);
6100 ret = 0;
6101 break;
6102 }
6103 msleep(100);
6104 cnt++;
6105 }
6106
6107 return ret;
6108 }
6109
6110 /**
6111 * s2io-link_test - verifies the link state of the nic
6112 * @sp ; private member of the device structure, which is a pointer to the
6113 * s2io_nic structure.
6114 * @data: variable that returns the result of each of the test conducted by
6115 * the driver.
6116 * Description:
6117 * The function verifies the link state of the NIC and updates the input
6118 * argument 'data' appropriately.
6119 * Return value:
6120 * 0 on success.
6121 */
6122
6123 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6124 {
6125 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6126 u64 val64;
6127
6128 val64 = readq(&bar0->adapter_status);
6129 if(!(LINK_IS_UP(val64)))
6130 *data = 1;
6131 else
6132 *data = 0;
6133
6134 return *data;
6135 }
6136
6137 /**
6138 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6139 * @sp - private member of the device structure, which is a pointer to the
6140 * s2io_nic structure.
6141 * @data - variable that returns the result of each of the test
6142 * conducted by the driver.
6143 * Description:
6144 * This is one of the offline test that tests the read and write
6145 * access to the RldRam chip on the NIC.
6146 * Return value:
6147 * 0 on success.
6148 */
6149
6150 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6151 {
6152 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6153 u64 val64;
6154 int cnt, iteration = 0, test_fail = 0;
6155
6156 val64 = readq(&bar0->adapter_control);
6157 val64 &= ~ADAPTER_ECC_EN;
6158 writeq(val64, &bar0->adapter_control);
6159
6160 val64 = readq(&bar0->mc_rldram_test_ctrl);
6161 val64 |= MC_RLDRAM_TEST_MODE;
6162 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6163
6164 val64 = readq(&bar0->mc_rldram_mrs);
6165 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6166 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6167
6168 val64 |= MC_RLDRAM_MRS_ENABLE;
6169 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6170
6171 while (iteration < 2) {
6172 val64 = 0x55555555aaaa0000ULL;
6173 if (iteration == 1) {
6174 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6175 }
6176 writeq(val64, &bar0->mc_rldram_test_d0);
6177
6178 val64 = 0xaaaa5a5555550000ULL;
6179 if (iteration == 1) {
6180 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6181 }
6182 writeq(val64, &bar0->mc_rldram_test_d1);
6183
6184 val64 = 0x55aaaaaaaa5a0000ULL;
6185 if (iteration == 1) {
6186 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6187 }
6188 writeq(val64, &bar0->mc_rldram_test_d2);
6189
6190 val64 = (u64) (0x0000003ffffe0100ULL);
6191 writeq(val64, &bar0->mc_rldram_test_add);
6192
6193 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6194 MC_RLDRAM_TEST_GO;
6195 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6196
6197 for (cnt = 0; cnt < 5; cnt++) {
6198 val64 = readq(&bar0->mc_rldram_test_ctrl);
6199 if (val64 & MC_RLDRAM_TEST_DONE)
6200 break;
6201 msleep(200);
6202 }
6203
6204 if (cnt == 5)
6205 break;
6206
6207 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6208 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6209
6210 for (cnt = 0; cnt < 5; cnt++) {
6211 val64 = readq(&bar0->mc_rldram_test_ctrl);
6212 if (val64 & MC_RLDRAM_TEST_DONE)
6213 break;
6214 msleep(500);
6215 }
6216
6217 if (cnt == 5)
6218 break;
6219
6220 val64 = readq(&bar0->mc_rldram_test_ctrl);
6221 if (!(val64 & MC_RLDRAM_TEST_PASS))
6222 test_fail = 1;
6223
6224 iteration++;
6225 }
6226
6227 *data = test_fail;
6228
6229 /* Bring the adapter out of test mode */
6230 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6231
6232 return test_fail;
6233 }
6234
6235 /**
6236 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6237 * @sp : private member of the device structure, which is a pointer to the
6238 * s2io_nic structure.
6239 * @ethtest : pointer to a ethtool command specific structure that will be
6240 * returned to the user.
6241 * @data : variable that returns the result of each of the test
6242 * conducted by the driver.
6243 * Description:
6244 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6245 * the health of the card.
6246 * Return value:
6247 * void
6248 */
6249
6250 static void s2io_ethtool_test(struct net_device *dev,
6251 struct ethtool_test *ethtest,
6252 uint64_t * data)
6253 {
6254 struct s2io_nic *sp = dev->priv;
6255 int orig_state = netif_running(sp->dev);
6256
6257 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6258 /* Offline Tests. */
6259 if (orig_state)
6260 s2io_close(sp->dev);
6261
6262 if (s2io_register_test(sp, &data[0]))
6263 ethtest->flags |= ETH_TEST_FL_FAILED;
6264
6265 s2io_reset(sp);
6266
6267 if (s2io_rldram_test(sp, &data[3]))
6268 ethtest->flags |= ETH_TEST_FL_FAILED;
6269
6270 s2io_reset(sp);
6271
6272 if (s2io_eeprom_test(sp, &data[1]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6274
6275 if (s2io_bist_test(sp, &data[4]))
6276 ethtest->flags |= ETH_TEST_FL_FAILED;
6277
6278 if (orig_state)
6279 s2io_open(sp->dev);
6280
6281 data[2] = 0;
6282 } else {
6283 /* Online Tests. */
6284 if (!orig_state) {
6285 DBG_PRINT(ERR_DBG,
6286 "%s: is not up, cannot run test\n",
6287 dev->name);
6288 data[0] = -1;
6289 data[1] = -1;
6290 data[2] = -1;
6291 data[3] = -1;
6292 data[4] = -1;
6293 }
6294
6295 if (s2io_link_test(sp, &data[2]))
6296 ethtest->flags |= ETH_TEST_FL_FAILED;
6297
6298 data[0] = 0;
6299 data[1] = 0;
6300 data[3] = 0;
6301 data[4] = 0;
6302 }
6303 }
6304
6305 static void s2io_get_ethtool_stats(struct net_device *dev,
6306 struct ethtool_stats *estats,
6307 u64 * tmp_stats)
6308 {
6309 int i = 0, k;
6310 struct s2io_nic *sp = dev->priv;
6311 struct stat_block *stat_info = sp->mac_control.stats_info;
6312
6313 s2io_updt_stats(sp);
6314 tmp_stats[i++] =
6315 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6316 le32_to_cpu(stat_info->tmac_frms);
6317 tmp_stats[i++] =
6318 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6319 le32_to_cpu(stat_info->tmac_data_octets);
6320 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6323 le32_to_cpu(stat_info->tmac_mcst_frms);
6324 tmp_stats[i++] =
6325 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6326 le32_to_cpu(stat_info->tmac_bcst_frms);
6327 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_ttl_octets);
6331 tmp_stats[i++] =
6332 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6333 le32_to_cpu(stat_info->tmac_ucst_frms);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_nucst_frms);
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6339 le32_to_cpu(stat_info->tmac_any_err_frms);
6340 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6341 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6344 le32_to_cpu(stat_info->tmac_vld_ip);
6345 tmp_stats[i++] =
6346 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6347 le32_to_cpu(stat_info->tmac_drop_ip);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6350 le32_to_cpu(stat_info->tmac_icmp);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6353 le32_to_cpu(stat_info->tmac_rst_tcp);
6354 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6355 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6356 le32_to_cpu(stat_info->tmac_udp);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_vld_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_data_octets);
6363 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6364 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6365 tmp_stats[i++] =
6366 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6367 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6370 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6371 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6372 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6373 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6374 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6375 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6378 le32_to_cpu(stat_info->rmac_ttl_octets);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6381 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6382 tmp_stats[i++] =
6383 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6384 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6387 le32_to_cpu(stat_info->rmac_discarded_frms);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6390 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6391 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6392 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6395 le32_to_cpu(stat_info->rmac_usized_frms);
6396 tmp_stats[i++] =
6397 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6398 le32_to_cpu(stat_info->rmac_osized_frms);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6401 le32_to_cpu(stat_info->rmac_frag_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_jabber_frms);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6408 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6410 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6411 tmp_stats[i++] =
6412 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6413 le32_to_cpu(stat_info->rmac_ip);
6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6415 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6416 tmp_stats[i++] =
6417 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6418 le32_to_cpu(stat_info->rmac_drop_ip);
6419 tmp_stats[i++] =
6420 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6421 le32_to_cpu(stat_info->rmac_icmp);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6425 le32_to_cpu(stat_info->rmac_udp);
6426 tmp_stats[i++] =
6427 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6428 le32_to_cpu(stat_info->rmac_err_drp_udp);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6430 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6431 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6432 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6438 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6439 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6440 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6441 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6442 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6443 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6444 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6445 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6446 tmp_stats[i++] =
6447 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6448 le32_to_cpu(stat_info->rmac_pause_cnt);
6449 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6450 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6451 tmp_stats[i++] =
6452 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6453 le32_to_cpu(stat_info->rmac_accepted_ip);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6473
6474 /* Enhanced statistics exist only for Hercules */
6475 if(sp->device_type == XFRAME_II_DEVICE) {
6476 tmp_stats[i++] =
6477 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6478 tmp_stats[i++] =
6479 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6480 tmp_stats[i++] =
6481 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6482 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6483 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6484 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6485 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6486 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6487 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6488 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6489 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6490 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6491 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6492 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6493 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6494 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6495 }
6496
6497 tmp_stats[i++] = 0;
6498 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6499 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6500 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6501 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6502 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6503 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6504 for (k = 0; k < MAX_RX_RINGS; k++)
6505 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6506 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6507 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6508 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6509 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6510 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6511 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6512 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6513 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6514 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6515 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6516 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6517 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6518 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6519 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6520 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6521 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6522 if (stat_info->sw_stat.num_aggregations) {
6523 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6524 int count = 0;
6525 /*
6526 * Since 64-bit divide does not work on all platforms,
6527 * do repeated subtraction.
6528 */
6529 while (tmp >= stat_info->sw_stat.num_aggregations) {
6530 tmp -= stat_info->sw_stat.num_aggregations;
6531 count++;
6532 }
6533 tmp_stats[i++] = count;
6534 }
6535 else
6536 tmp_stats[i++] = 0;
6537 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6538 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6539 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6541 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6542 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6545 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6546
6547 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6552
6553 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6572 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6573 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6574 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6575 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6576 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6577 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6578 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6579 }
6580
6581 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6582 {
6583 return (XENA_REG_SPACE);
6584 }
6585
6586
6587 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6588 {
6589 struct s2io_nic *sp = dev->priv;
6590
6591 return (sp->rx_csum);
6592 }
6593
6594 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6595 {
6596 struct s2io_nic *sp = dev->priv;
6597
6598 if (data)
6599 sp->rx_csum = 1;
6600 else
6601 sp->rx_csum = 0;
6602
6603 return 0;
6604 }
6605
6606 static int s2io_get_eeprom_len(struct net_device *dev)
6607 {
6608 return (XENA_EEPROM_SPACE);
6609 }
6610
6611 static int s2io_get_sset_count(struct net_device *dev, int sset)
6612 {
6613 struct s2io_nic *sp = dev->priv;
6614
6615 switch (sset) {
6616 case ETH_SS_TEST:
6617 return S2IO_TEST_LEN;
6618 case ETH_SS_STATS:
6619 switch(sp->device_type) {
6620 case XFRAME_I_DEVICE:
6621 return XFRAME_I_STAT_LEN;
6622 case XFRAME_II_DEVICE:
6623 return XFRAME_II_STAT_LEN;
6624 default:
6625 return 0;
6626 }
6627 default:
6628 return -EOPNOTSUPP;
6629 }
6630 }
6631
6632 static void s2io_ethtool_get_strings(struct net_device *dev,
6633 u32 stringset, u8 * data)
6634 {
6635 int stat_size = 0;
6636 struct s2io_nic *sp = dev->priv;
6637
6638 switch (stringset) {
6639 case ETH_SS_TEST:
6640 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6641 break;
6642 case ETH_SS_STATS:
6643 stat_size = sizeof(ethtool_xena_stats_keys);
6644 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6645 if(sp->device_type == XFRAME_II_DEVICE) {
6646 memcpy(data + stat_size,
6647 &ethtool_enhanced_stats_keys,
6648 sizeof(ethtool_enhanced_stats_keys));
6649 stat_size += sizeof(ethtool_enhanced_stats_keys);
6650 }
6651
6652 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6653 sizeof(ethtool_driver_stats_keys));
6654 }
6655 }
6656
6657 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6658 {
6659 if (data)
6660 dev->features |= NETIF_F_IP_CSUM;
6661 else
6662 dev->features &= ~NETIF_F_IP_CSUM;
6663
6664 return 0;
6665 }
6666
6667 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6668 {
6669 return (dev->features & NETIF_F_TSO) != 0;
6670 }
6671 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6672 {
6673 if (data)
6674 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6675 else
6676 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6677
6678 return 0;
6679 }
6680
6681 static const struct ethtool_ops netdev_ethtool_ops = {
6682 .get_settings = s2io_ethtool_gset,
6683 .set_settings = s2io_ethtool_sset,
6684 .get_drvinfo = s2io_ethtool_gdrvinfo,
6685 .get_regs_len = s2io_ethtool_get_regs_len,
6686 .get_regs = s2io_ethtool_gregs,
6687 .get_link = ethtool_op_get_link,
6688 .get_eeprom_len = s2io_get_eeprom_len,
6689 .get_eeprom = s2io_ethtool_geeprom,
6690 .set_eeprom = s2io_ethtool_seeprom,
6691 .get_ringparam = s2io_ethtool_gringparam,
6692 .get_pauseparam = s2io_ethtool_getpause_data,
6693 .set_pauseparam = s2io_ethtool_setpause_data,
6694 .get_rx_csum = s2io_ethtool_get_rx_csum,
6695 .set_rx_csum = s2io_ethtool_set_rx_csum,
6696 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6697 .set_sg = ethtool_op_set_sg,
6698 .get_tso = s2io_ethtool_op_get_tso,
6699 .set_tso = s2io_ethtool_op_set_tso,
6700 .set_ufo = ethtool_op_set_ufo,
6701 .self_test = s2io_ethtool_test,
6702 .get_strings = s2io_ethtool_get_strings,
6703 .phys_id = s2io_ethtool_idnic,
6704 .get_ethtool_stats = s2io_get_ethtool_stats,
6705 .get_sset_count = s2io_get_sset_count,
6706 };
6707
6708 /**
6709 * s2io_ioctl - Entry point for the Ioctl
6710 * @dev : Device pointer.
6711 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6712 * a proprietary structure used to pass information to the driver.
6713 * @cmd : This is used to distinguish between the different commands that
6714 * can be passed to the IOCTL functions.
6715 * Description:
6716 * Currently there are no special functionality supported in IOCTL, hence
6717 * function always return EOPNOTSUPPORTED
6718 */
6719
6720 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6721 {
6722 return -EOPNOTSUPP;
6723 }
6724
6725 /**
6726 * s2io_change_mtu - entry point to change MTU size for the device.
6727 * @dev : device pointer.
6728 * @new_mtu : the new MTU size for the device.
6729 * Description: A driver entry point to change MTU size for the device.
6730 * Before changing the MTU the device must be stopped.
6731 * Return value:
6732 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6733 * file on failure.
6734 */
6735
6736 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6737 {
6738 struct s2io_nic *sp = dev->priv;
6739 int ret = 0;
6740
6741 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6742 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6743 dev->name);
6744 return -EPERM;
6745 }
6746
6747 dev->mtu = new_mtu;
6748 if (netif_running(dev)) {
6749 s2io_stop_all_tx_queue(sp);
6750 s2io_card_down(sp);
6751 ret = s2io_card_up(sp);
6752 if (ret) {
6753 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6754 __FUNCTION__);
6755 return ret;
6756 }
6757 s2io_wake_all_tx_queue(sp);
6758 } else { /* Device is down */
6759 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6760 u64 val64 = new_mtu;
6761
6762 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6763 }
6764
6765 return ret;
6766 }
6767
6768 /**
6769 * s2io_tasklet - Bottom half of the ISR.
6770 * @dev_adr : address of the device structure in dma_addr_t format.
6771 * Description:
6772 * This is the tasklet or the bottom half of the ISR. This is
6773 * an extension of the ISR which is scheduled by the scheduler to be run
6774 * when the load on the CPU is low. All low priority tasks of the ISR can
6775 * be pushed into the tasklet. For now the tasklet is used only to
6776 * replenish the Rx buffers in the Rx buffer descriptors.
6777 * Return value:
6778 * void.
6779 */
6780
6781 static void s2io_tasklet(unsigned long dev_addr)
6782 {
6783 struct net_device *dev = (struct net_device *) dev_addr;
6784 struct s2io_nic *sp = dev->priv;
6785 int i, ret;
6786 struct mac_info *mac_control;
6787 struct config_param *config;
6788
6789 mac_control = &sp->mac_control;
6790 config = &sp->config;
6791
6792 if (!TASKLET_IN_USE) {
6793 for (i = 0; i < config->rx_ring_num; i++) {
6794 ret = fill_rx_buffers(sp, i);
6795 if (ret == -ENOMEM) {
6796 DBG_PRINT(INFO_DBG, "%s: Out of ",
6797 dev->name);
6798 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6799 break;
6800 } else if (ret == -EFILL) {
6801 DBG_PRINT(INFO_DBG,
6802 "%s: Rx Ring %d is full\n",
6803 dev->name, i);
6804 break;
6805 }
6806 }
6807 clear_bit(0, (&sp->tasklet_status));
6808 }
6809 }
6810
6811 /**
6812 * s2io_set_link - Set the LInk status
6813 * @data: long pointer to device private structue
6814 * Description: Sets the link status for the adapter
6815 */
6816
6817 static void s2io_set_link(struct work_struct *work)
6818 {
6819 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6820 struct net_device *dev = nic->dev;
6821 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6822 register u64 val64;
6823 u16 subid;
6824
6825 rtnl_lock();
6826
6827 if (!netif_running(dev))
6828 goto out_unlock;
6829
6830 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6831 /* The card is being reset, no point doing anything */
6832 goto out_unlock;
6833 }
6834
6835 subid = nic->pdev->subsystem_device;
6836 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6837 /*
6838 * Allow a small delay for the NICs self initiated
6839 * cleanup to complete.
6840 */
6841 msleep(100);
6842 }
6843
6844 val64 = readq(&bar0->adapter_status);
6845 if (LINK_IS_UP(val64)) {
6846 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6847 if (verify_xena_quiescence(nic)) {
6848 val64 = readq(&bar0->adapter_control);
6849 val64 |= ADAPTER_CNTL_EN;
6850 writeq(val64, &bar0->adapter_control);
6851 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6852 nic->device_type, subid)) {
6853 val64 = readq(&bar0->gpio_control);
6854 val64 |= GPIO_CTRL_GPIO_0;
6855 writeq(val64, &bar0->gpio_control);
6856 val64 = readq(&bar0->gpio_control);
6857 } else {
6858 val64 |= ADAPTER_LED_ON;
6859 writeq(val64, &bar0->adapter_control);
6860 }
6861 nic->device_enabled_once = TRUE;
6862 } else {
6863 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6864 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6865 s2io_stop_all_tx_queue(nic);
6866 }
6867 }
6868 val64 = readq(&bar0->adapter_control);
6869 val64 |= ADAPTER_LED_ON;
6870 writeq(val64, &bar0->adapter_control);
6871 s2io_link(nic, LINK_UP);
6872 } else {
6873 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6874 subid)) {
6875 val64 = readq(&bar0->gpio_control);
6876 val64 &= ~GPIO_CTRL_GPIO_0;
6877 writeq(val64, &bar0->gpio_control);
6878 val64 = readq(&bar0->gpio_control);
6879 }
6880 /* turn off LED */
6881 val64 = readq(&bar0->adapter_control);
6882 val64 = val64 &(~ADAPTER_LED_ON);
6883 writeq(val64, &bar0->adapter_control);
6884 s2io_link(nic, LINK_DOWN);
6885 }
6886 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6887
6888 out_unlock:
6889 rtnl_unlock();
6890 }
6891
6892 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6893 struct buffAdd *ba,
6894 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6895 u64 *temp2, int size)
6896 {
6897 struct net_device *dev = sp->dev;
6898 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6899
6900 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6901 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6902 /* allocate skb */
6903 if (*skb) {
6904 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6905 /*
6906 * As Rx frame are not going to be processed,
6907 * using same mapped address for the Rxd
6908 * buffer pointer
6909 */
6910 rxdp1->Buffer0_ptr = *temp0;
6911 } else {
6912 *skb = dev_alloc_skb(size);
6913 if (!(*skb)) {
6914 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6915 DBG_PRINT(INFO_DBG, "memory to allocate ");
6916 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6917 sp->mac_control.stats_info->sw_stat. \
6918 mem_alloc_fail_cnt++;
6919 return -ENOMEM ;
6920 }
6921 sp->mac_control.stats_info->sw_stat.mem_allocated
6922 += (*skb)->truesize;
6923 /* storing the mapped addr in a temp variable
6924 * such it will be used for next rxd whose
6925 * Host Control is NULL
6926 */
6927 rxdp1->Buffer0_ptr = *temp0 =
6928 pci_map_single( sp->pdev, (*skb)->data,
6929 size - NET_IP_ALIGN,
6930 PCI_DMA_FROMDEVICE);
6931 if( (rxdp1->Buffer0_ptr == 0) ||
6932 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6933 goto memalloc_failed;
6934 }
6935 rxdp->Host_Control = (unsigned long) (*skb);
6936 }
6937 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6938 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6939 /* Two buffer Mode */
6940 if (*skb) {
6941 rxdp3->Buffer2_ptr = *temp2;
6942 rxdp3->Buffer0_ptr = *temp0;
6943 rxdp3->Buffer1_ptr = *temp1;
6944 } else {
6945 *skb = dev_alloc_skb(size);
6946 if (!(*skb)) {
6947 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6948 DBG_PRINT(INFO_DBG, "memory to allocate ");
6949 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6950 sp->mac_control.stats_info->sw_stat. \
6951 mem_alloc_fail_cnt++;
6952 return -ENOMEM;
6953 }
6954 sp->mac_control.stats_info->sw_stat.mem_allocated
6955 += (*skb)->truesize;
6956 rxdp3->Buffer2_ptr = *temp2 =
6957 pci_map_single(sp->pdev, (*skb)->data,
6958 dev->mtu + 4,
6959 PCI_DMA_FROMDEVICE);
6960 if( (rxdp3->Buffer2_ptr == 0) ||
6961 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6962 goto memalloc_failed;
6963 }
6964 rxdp3->Buffer0_ptr = *temp0 =
6965 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6966 PCI_DMA_FROMDEVICE);
6967 if( (rxdp3->Buffer0_ptr == 0) ||
6968 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6969 pci_unmap_single (sp->pdev,
6970 (dma_addr_t)rxdp3->Buffer2_ptr,
6971 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6972 goto memalloc_failed;
6973 }
6974 rxdp->Host_Control = (unsigned long) (*skb);
6975
6976 /* Buffer-1 will be dummy buffer not used */
6977 rxdp3->Buffer1_ptr = *temp1 =
6978 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6979 PCI_DMA_FROMDEVICE);
6980 if( (rxdp3->Buffer1_ptr == 0) ||
6981 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6982 pci_unmap_single (sp->pdev,
6983 (dma_addr_t)rxdp3->Buffer0_ptr,
6984 BUF0_LEN, PCI_DMA_FROMDEVICE);
6985 pci_unmap_single (sp->pdev,
6986 (dma_addr_t)rxdp3->Buffer2_ptr,
6987 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6988 goto memalloc_failed;
6989 }
6990 }
6991 }
6992 return 0;
6993 memalloc_failed:
6994 stats->pci_map_fail_cnt++;
6995 stats->mem_freed += (*skb)->truesize;
6996 dev_kfree_skb(*skb);
6997 return -ENOMEM;
6998 }
6999
7000 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7001 int size)
7002 {
7003 struct net_device *dev = sp->dev;
7004 if (sp->rxd_mode == RXD_MODE_1) {
7005 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
7006 } else if (sp->rxd_mode == RXD_MODE_3B) {
7007 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7008 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7009 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
7010 }
7011 }
7012
7013 static int rxd_owner_bit_reset(struct s2io_nic *sp)
7014 {
7015 int i, j, k, blk_cnt = 0, size;
7016 struct mac_info * mac_control = &sp->mac_control;
7017 struct config_param *config = &sp->config;
7018 struct net_device *dev = sp->dev;
7019 struct RxD_t *rxdp = NULL;
7020 struct sk_buff *skb = NULL;
7021 struct buffAdd *ba = NULL;
7022 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7023
7024 /* Calculate the size based on ring mode */
7025 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7026 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7027 if (sp->rxd_mode == RXD_MODE_1)
7028 size += NET_IP_ALIGN;
7029 else if (sp->rxd_mode == RXD_MODE_3B)
7030 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7031
7032 for (i = 0; i < config->rx_ring_num; i++) {
7033 blk_cnt = config->rx_cfg[i].num_rxd /
7034 (rxd_count[sp->rxd_mode] +1);
7035
7036 for (j = 0; j < blk_cnt; j++) {
7037 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7038 rxdp = mac_control->rings[i].
7039 rx_blocks[j].rxds[k].virt_addr;
7040 if(sp->rxd_mode == RXD_MODE_3B)
7041 ba = &mac_control->rings[i].ba[j][k];
7042 if (set_rxd_buffer_pointer(sp, rxdp, ba,
7043 &skb,(u64 *)&temp0_64,
7044 (u64 *)&temp1_64,
7045 (u64 *)&temp2_64,
7046 size) == ENOMEM) {
7047 return 0;
7048 }
7049
7050 set_rxd_buffer_size(sp, rxdp, size);
7051 wmb();
7052 /* flip the Ownership bit to Hardware */
7053 rxdp->Control_1 |= RXD_OWN_XENA;
7054 }
7055 }
7056 }
7057 return 0;
7058
7059 }
7060
7061 static int s2io_add_isr(struct s2io_nic * sp)
7062 {
7063 int ret = 0;
7064 struct net_device *dev = sp->dev;
7065 int err = 0;
7066
7067 if (sp->config.intr_type == MSI_X)
7068 ret = s2io_enable_msi_x(sp);
7069 if (ret) {
7070 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7071 sp->config.intr_type = INTA;
7072 }
7073
7074 /* Store the values of the MSIX table in the struct s2io_nic structure */
7075 store_xmsi_data(sp);
7076
7077 /* After proper initialization of H/W, register ISR */
7078 if (sp->config.intr_type == MSI_X) {
7079 int i, msix_tx_cnt=0,msix_rx_cnt=0;
7080
7081 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
7082 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
7083 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7084 dev->name, i);
7085 err = request_irq(sp->entries[i].vector,
7086 s2io_msix_fifo_handle, 0, sp->desc[i],
7087 sp->s2io_entries[i].arg);
7088 /* If either data or addr is zero print it */
7089 if(!(sp->msix_info[i].addr &&
7090 sp->msix_info[i].data)) {
7091 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7092 "Data:0x%lx\n",sp->desc[i],
7093 (unsigned long long)
7094 sp->msix_info[i].addr,
7095 (unsigned long)
7096 ntohl(sp->msix_info[i].data));
7097 } else {
7098 msix_tx_cnt++;
7099 }
7100 } else {
7101 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7102 dev->name, i);
7103 err = request_irq(sp->entries[i].vector,
7104 s2io_msix_ring_handle, 0, sp->desc[i],
7105 sp->s2io_entries[i].arg);
7106 /* If either data or addr is zero print it */
7107 if(!(sp->msix_info[i].addr &&
7108 sp->msix_info[i].data)) {
7109 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7110 "Data:0x%lx\n",sp->desc[i],
7111 (unsigned long long)
7112 sp->msix_info[i].addr,
7113 (unsigned long)
7114 ntohl(sp->msix_info[i].data));
7115 } else {
7116 msix_rx_cnt++;
7117 }
7118 }
7119 if (err) {
7120 remove_msix_isr(sp);
7121 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7122 "failed\n", dev->name, i);
7123 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7124 dev->name);
7125 sp->config.intr_type = INTA;
7126 break;
7127 }
7128 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7129 }
7130 if (!err) {
7131 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7132 msix_tx_cnt);
7133 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7134 msix_rx_cnt);
7135 }
7136 }
7137 if (sp->config.intr_type == INTA) {
7138 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7139 sp->name, dev);
7140 if (err) {
7141 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7142 dev->name);
7143 return -1;
7144 }
7145 }
7146 return 0;
7147 }
7148 static void s2io_rem_isr(struct s2io_nic * sp)
7149 {
7150 if (sp->config.intr_type == MSI_X)
7151 remove_msix_isr(sp);
7152 else
7153 remove_inta_isr(sp);
7154 }
7155
7156 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7157 {
7158 int cnt = 0;
7159 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7160 unsigned long flags;
7161 register u64 val64 = 0;
7162 struct config_param *config;
7163 config = &sp->config;
7164
7165 if (!is_s2io_card_up(sp))
7166 return;
7167
7168 del_timer_sync(&sp->alarm_timer);
7169 /* If s2io_set_link task is executing, wait till it completes. */
7170 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7171 msleep(50);
7172 }
7173 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7174
7175 /* Disable napi */
7176 if (config->napi)
7177 napi_disable(&sp->napi);
7178
7179 /* disable Tx and Rx traffic on the NIC */
7180 if (do_io)
7181 stop_nic(sp);
7182
7183 s2io_rem_isr(sp);
7184
7185 /* Kill tasklet. */
7186 tasklet_kill(&sp->task);
7187
7188 /* Check if the device is Quiescent and then Reset the NIC */
7189 while(do_io) {
7190 /* As per the HW requirement we need to replenish the
7191 * receive buffer to avoid the ring bump. Since there is
7192 * no intention of processing the Rx frame at this pointwe are
7193 * just settting the ownership bit of rxd in Each Rx
7194 * ring to HW and set the appropriate buffer size
7195 * based on the ring mode
7196 */
7197 rxd_owner_bit_reset(sp);
7198
7199 val64 = readq(&bar0->adapter_status);
7200 if (verify_xena_quiescence(sp)) {
7201 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7202 break;
7203 }
7204
7205 msleep(50);
7206 cnt++;
7207 if (cnt == 10) {
7208 DBG_PRINT(ERR_DBG,
7209 "s2io_close:Device not Quiescent ");
7210 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7211 (unsigned long long) val64);
7212 break;
7213 }
7214 }
7215 if (do_io)
7216 s2io_reset(sp);
7217
7218 /* Free all Tx buffers */
7219 free_tx_buffers(sp);
7220
7221 /* Free all Rx buffers */
7222 spin_lock_irqsave(&sp->rx_lock, flags);
7223 free_rx_buffers(sp);
7224 spin_unlock_irqrestore(&sp->rx_lock, flags);
7225
7226 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7227 }
7228
7229 static void s2io_card_down(struct s2io_nic * sp)
7230 {
7231 do_s2io_card_down(sp, 1);
7232 }
7233
7234 static int s2io_card_up(struct s2io_nic * sp)
7235 {
7236 int i, ret = 0;
7237 struct mac_info *mac_control;
7238 struct config_param *config;
7239 struct net_device *dev = (struct net_device *) sp->dev;
7240 u16 interruptible;
7241
7242 /* Initialize the H/W I/O registers */
7243 ret = init_nic(sp);
7244 if (ret != 0) {
7245 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7246 dev->name);
7247 if (ret != -EIO)
7248 s2io_reset(sp);
7249 return ret;
7250 }
7251
7252 /*
7253 * Initializing the Rx buffers. For now we are considering only 1
7254 * Rx ring and initializing buffers into 30 Rx blocks
7255 */
7256 mac_control = &sp->mac_control;
7257 config = &sp->config;
7258
7259 for (i = 0; i < config->rx_ring_num; i++) {
7260 if ((ret = fill_rx_buffers(sp, i))) {
7261 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7262 dev->name);
7263 s2io_reset(sp);
7264 free_rx_buffers(sp);
7265 return -ENOMEM;
7266 }
7267 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7268 atomic_read(&sp->rx_bufs_left[i]));
7269 }
7270
7271 /* Initialise napi */
7272 if (config->napi)
7273 napi_enable(&sp->napi);
7274
7275 /* Maintain the state prior to the open */
7276 if (sp->promisc_flg)
7277 sp->promisc_flg = 0;
7278 if (sp->m_cast_flg) {
7279 sp->m_cast_flg = 0;
7280 sp->all_multi_pos= 0;
7281 }
7282
7283 /* Setting its receive mode */
7284 s2io_set_multicast(dev);
7285
7286 if (sp->lro) {
7287 /* Initialize max aggregatable pkts per session based on MTU */
7288 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7289 /* Check if we can use(if specified) user provided value */
7290 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7291 sp->lro_max_aggr_per_sess = lro_max_pkts;
7292 }
7293
7294 /* Enable Rx Traffic and interrupts on the NIC */
7295 if (start_nic(sp)) {
7296 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7297 s2io_reset(sp);
7298 free_rx_buffers(sp);
7299 return -ENODEV;
7300 }
7301
7302 /* Add interrupt service routine */
7303 if (s2io_add_isr(sp) != 0) {
7304 if (sp->config.intr_type == MSI_X)
7305 s2io_rem_isr(sp);
7306 s2io_reset(sp);
7307 free_rx_buffers(sp);
7308 return -ENODEV;
7309 }
7310
7311 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7312
7313 /* Enable tasklet for the device */
7314 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7315
7316 /* Enable select interrupts */
7317 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7318 if (sp->config.intr_type != INTA)
7319 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7320 else {
7321 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7322 interruptible |= TX_PIC_INTR;
7323 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7324 }
7325
7326 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7327 return 0;
7328 }
7329
7330 /**
7331 * s2io_restart_nic - Resets the NIC.
7332 * @data : long pointer to the device private structure
7333 * Description:
7334 * This function is scheduled to be run by the s2io_tx_watchdog
7335 * function after 0.5 secs to reset the NIC. The idea is to reduce
7336 * the run time of the watch dog routine which is run holding a
7337 * spin lock.
7338 */
7339
7340 static void s2io_restart_nic(struct work_struct *work)
7341 {
7342 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7343 struct net_device *dev = sp->dev;
7344
7345 rtnl_lock();
7346
7347 if (!netif_running(dev))
7348 goto out_unlock;
7349
7350 s2io_card_down(sp);
7351 if (s2io_card_up(sp)) {
7352 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7353 dev->name);
7354 }
7355 s2io_wake_all_tx_queue(sp);
7356 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7357 dev->name);
7358 out_unlock:
7359 rtnl_unlock();
7360 }
7361
7362 /**
7363 * s2io_tx_watchdog - Watchdog for transmit side.
7364 * @dev : Pointer to net device structure
7365 * Description:
7366 * This function is triggered if the Tx Queue is stopped
7367 * for a pre-defined amount of time when the Interface is still up.
7368 * If the Interface is jammed in such a situation, the hardware is
7369 * reset (by s2io_close) and restarted again (by s2io_open) to
7370 * overcome any problem that might have been caused in the hardware.
7371 * Return value:
7372 * void
7373 */
7374
7375 static void s2io_tx_watchdog(struct net_device *dev)
7376 {
7377 struct s2io_nic *sp = dev->priv;
7378
7379 if (netif_carrier_ok(dev)) {
7380 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7381 schedule_work(&sp->rst_timer_task);
7382 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7383 }
7384 }
7385
7386 /**
7387 * rx_osm_handler - To perform some OS related operations on SKB.
7388 * @sp: private member of the device structure,pointer to s2io_nic structure.
7389 * @skb : the socket buffer pointer.
7390 * @len : length of the packet
7391 * @cksum : FCS checksum of the frame.
7392 * @ring_no : the ring from which this RxD was extracted.
7393 * Description:
7394 * This function is called by the Rx interrupt serivce routine to perform
7395 * some OS related operations on the SKB before passing it to the upper
7396 * layers. It mainly checks if the checksum is OK, if so adds it to the
7397 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7398 * to the upper layer. If the checksum is wrong, it increments the Rx
7399 * packet error count, frees the SKB and returns error.
7400 * Return value:
7401 * SUCCESS on success and -1 on failure.
7402 */
7403 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7404 {
7405 struct s2io_nic *sp = ring_data->nic;
7406 struct net_device *dev = (struct net_device *) sp->dev;
7407 struct sk_buff *skb = (struct sk_buff *)
7408 ((unsigned long) rxdp->Host_Control);
7409 int ring_no = ring_data->ring_no;
7410 u16 l3_csum, l4_csum;
7411 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7412 struct lro *lro;
7413 u8 err_mask;
7414
7415 skb->dev = dev;
7416
7417 if (err) {
7418 /* Check for parity error */
7419 if (err & 0x1) {
7420 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7421 }
7422 err_mask = err >> 48;
7423 switch(err_mask) {
7424 case 1:
7425 sp->mac_control.stats_info->sw_stat.
7426 rx_parity_err_cnt++;
7427 break;
7428
7429 case 2:
7430 sp->mac_control.stats_info->sw_stat.
7431 rx_abort_cnt++;
7432 break;
7433
7434 case 3:
7435 sp->mac_control.stats_info->sw_stat.
7436 rx_parity_abort_cnt++;
7437 break;
7438
7439 case 4:
7440 sp->mac_control.stats_info->sw_stat.
7441 rx_rda_fail_cnt++;
7442 break;
7443
7444 case 5:
7445 sp->mac_control.stats_info->sw_stat.
7446 rx_unkn_prot_cnt++;
7447 break;
7448
7449 case 6:
7450 sp->mac_control.stats_info->sw_stat.
7451 rx_fcs_err_cnt++;
7452 break;
7453
7454 case 7:
7455 sp->mac_control.stats_info->sw_stat.
7456 rx_buf_size_err_cnt++;
7457 break;
7458
7459 case 8:
7460 sp->mac_control.stats_info->sw_stat.
7461 rx_rxd_corrupt_cnt++;
7462 break;
7463
7464 case 15:
7465 sp->mac_control.stats_info->sw_stat.
7466 rx_unkn_err_cnt++;
7467 break;
7468 }
7469 /*
7470 * Drop the packet if bad transfer code. Exception being
7471 * 0x5, which could be due to unsupported IPv6 extension header.
7472 * In this case, we let stack handle the packet.
7473 * Note that in this case, since checksum will be incorrect,
7474 * stack will validate the same.
7475 */
7476 if (err_mask != 0x5) {
7477 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7478 dev->name, err_mask);
7479 sp->stats.rx_crc_errors++;
7480 sp->mac_control.stats_info->sw_stat.mem_freed
7481 += skb->truesize;
7482 dev_kfree_skb(skb);
7483 atomic_dec(&sp->rx_bufs_left[ring_no]);
7484 rxdp->Host_Control = 0;
7485 return 0;
7486 }
7487 }
7488
7489 /* Updating statistics */
7490 sp->stats.rx_packets++;
7491 rxdp->Host_Control = 0;
7492 if (sp->rxd_mode == RXD_MODE_1) {
7493 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7494
7495 sp->stats.rx_bytes += len;
7496 skb_put(skb, len);
7497
7498 } else if (sp->rxd_mode == RXD_MODE_3B) {
7499 int get_block = ring_data->rx_curr_get_info.block_index;
7500 int get_off = ring_data->rx_curr_get_info.offset;
7501 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7502 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7503 unsigned char *buff = skb_push(skb, buf0_len);
7504
7505 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7506 sp->stats.rx_bytes += buf0_len + buf2_len;
7507 memcpy(buff, ba->ba_0, buf0_len);
7508 skb_put(skb, buf2_len);
7509 }
7510
7511 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7512 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7513 (sp->rx_csum)) {
7514 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7515 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7516 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7517 /*
7518 * NIC verifies if the Checksum of the received
7519 * frame is Ok or not and accordingly returns
7520 * a flag in the RxD.
7521 */
7522 skb->ip_summed = CHECKSUM_UNNECESSARY;
7523 if (sp->lro) {
7524 u32 tcp_len;
7525 u8 *tcp;
7526 int ret = 0;
7527
7528 ret = s2io_club_tcp_session(skb->data, &tcp,
7529 &tcp_len, &lro,
7530 rxdp, sp);
7531 switch (ret) {
7532 case 3: /* Begin anew */
7533 lro->parent = skb;
7534 goto aggregate;
7535 case 1: /* Aggregate */
7536 {
7537 lro_append_pkt(sp, lro,
7538 skb, tcp_len);
7539 goto aggregate;
7540 }
7541 case 4: /* Flush session */
7542 {
7543 lro_append_pkt(sp, lro,
7544 skb, tcp_len);
7545 queue_rx_frame(lro->parent,
7546 lro->vlan_tag);
7547 clear_lro_session(lro);
7548 sp->mac_control.stats_info->
7549 sw_stat.flush_max_pkts++;
7550 goto aggregate;
7551 }
7552 case 2: /* Flush both */
7553 lro->parent->data_len =
7554 lro->frags_len;
7555 sp->mac_control.stats_info->
7556 sw_stat.sending_both++;
7557 queue_rx_frame(lro->parent,
7558 lro->vlan_tag);
7559 clear_lro_session(lro);
7560 goto send_up;
7561 case 0: /* sessions exceeded */
7562 case -1: /* non-TCP or not
7563 * L2 aggregatable
7564 */
7565 case 5: /*
7566 * First pkt in session not
7567 * L3/L4 aggregatable
7568 */
7569 break;
7570 default:
7571 DBG_PRINT(ERR_DBG,
7572 "%s: Samadhana!!\n",
7573 __FUNCTION__);
7574 BUG();
7575 }
7576 }
7577 } else {
7578 /*
7579 * Packet with erroneous checksum, let the
7580 * upper layers deal with it.
7581 */
7582 skb->ip_summed = CHECKSUM_NONE;
7583 }
7584 } else
7585 skb->ip_summed = CHECKSUM_NONE;
7586
7587 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7588 send_up:
7589 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7590 dev->last_rx = jiffies;
7591 aggregate:
7592 atomic_dec(&sp->rx_bufs_left[ring_no]);
7593 return SUCCESS;
7594 }
7595
7596 /**
7597 * s2io_link - stops/starts the Tx queue.
7598 * @sp : private member of the device structure, which is a pointer to the
7599 * s2io_nic structure.
7600 * @link : inidicates whether link is UP/DOWN.
7601 * Description:
7602 * This function stops/starts the Tx queue depending on whether the link
7603 * status of the NIC is is down or up. This is called by the Alarm
7604 * interrupt handler whenever a link change interrupt comes up.
7605 * Return value:
7606 * void.
7607 */
7608
7609 static void s2io_link(struct s2io_nic * sp, int link)
7610 {
7611 struct net_device *dev = (struct net_device *) sp->dev;
7612
7613 if (link != sp->last_link_state) {
7614 init_tti(sp, link);
7615 if (link == LINK_DOWN) {
7616 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7617 s2io_stop_all_tx_queue(sp);
7618 netif_carrier_off(dev);
7619 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7620 sp->mac_control.stats_info->sw_stat.link_up_time =
7621 jiffies - sp->start_time;
7622 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7623 } else {
7624 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7625 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7626 sp->mac_control.stats_info->sw_stat.link_down_time =
7627 jiffies - sp->start_time;
7628 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7629 netif_carrier_on(dev);
7630 s2io_wake_all_tx_queue(sp);
7631 }
7632 }
7633 sp->last_link_state = link;
7634 sp->start_time = jiffies;
7635 }
7636
7637 /**
7638 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7639 * @sp : private member of the device structure, which is a pointer to the
7640 * s2io_nic structure.
7641 * Description:
7642 * This function initializes a few of the PCI and PCI-X configuration registers
7643 * with recommended values.
7644 * Return value:
7645 * void
7646 */
7647
7648 static void s2io_init_pci(struct s2io_nic * sp)
7649 {
7650 u16 pci_cmd = 0, pcix_cmd = 0;
7651
7652 /* Enable Data Parity Error Recovery in PCI-X command register. */
7653 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7654 &(pcix_cmd));
7655 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7656 (pcix_cmd | 1));
7657 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7658 &(pcix_cmd));
7659
7660 /* Set the PErr Response bit in PCI command register. */
7661 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7662 pci_write_config_word(sp->pdev, PCI_COMMAND,
7663 (pci_cmd | PCI_COMMAND_PARITY));
7664 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7665 }
7666
7667 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7668 u8 *dev_multiq)
7669 {
7670 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7671 (tx_fifo_num < 1)) {
7672 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7673 "(%d) not supported\n", tx_fifo_num);
7674
7675 if (tx_fifo_num < 1)
7676 tx_fifo_num = 1;
7677 else
7678 tx_fifo_num = MAX_TX_FIFOS;
7679
7680 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7681 DBG_PRINT(ERR_DBG, "tx fifos\n");
7682 }
7683
7684 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7685 if (multiq) {
7686 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7687 multiq = 0;
7688 }
7689 #endif
7690 if (multiq)
7691 *dev_multiq = multiq;
7692
7693 if (tx_steering_type && (1 == tx_fifo_num)) {
7694 if (tx_steering_type != TX_DEFAULT_STEERING)
7695 DBG_PRINT(ERR_DBG,
7696 "s2io: Tx steering is not supported with "
7697 "one fifo. Disabling Tx steering.\n");
7698 tx_steering_type = NO_STEERING;
7699 }
7700
7701 if ((tx_steering_type < NO_STEERING) ||
7702 (tx_steering_type > TX_DEFAULT_STEERING)) {
7703 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7704 "supported\n");
7705 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7706 tx_steering_type = NO_STEERING;
7707 }
7708
7709 if ( rx_ring_num > 8) {
7710 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7711 "supported\n");
7712 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7713 rx_ring_num = 8;
7714 }
7715 if (*dev_intr_type != INTA)
7716 napi = 0;
7717
7718 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7719 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7720 "Defaulting to INTA\n");
7721 *dev_intr_type = INTA;
7722 }
7723
7724 if ((*dev_intr_type == MSI_X) &&
7725 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7726 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7727 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7728 "Defaulting to INTA\n");
7729 *dev_intr_type = INTA;
7730 }
7731
7732 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7733 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7734 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7735 rx_ring_mode = 1;
7736 }
7737 return SUCCESS;
7738 }
7739
7740 /**
7741 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7742 * or Traffic class respectively.
7743 * @nic: device private variable
7744 * Description: The function configures the receive steering to
7745 * desired receive ring.
7746 * Return Value: SUCCESS on success and
7747 * '-1' on failure (endian settings incorrect).
7748 */
7749 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7750 {
7751 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7752 register u64 val64 = 0;
7753
7754 if (ds_codepoint > 63)
7755 return FAILURE;
7756
7757 val64 = RTS_DS_MEM_DATA(ring);
7758 writeq(val64, &bar0->rts_ds_mem_data);
7759
7760 val64 = RTS_DS_MEM_CTRL_WE |
7761 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7762 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7763
7764 writeq(val64, &bar0->rts_ds_mem_ctrl);
7765
7766 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7767 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7768 S2IO_BIT_RESET);
7769 }
7770
7771 /**
7772 * s2io_init_nic - Initialization of the adapter .
7773 * @pdev : structure containing the PCI related information of the device.
7774 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7775 * Description:
7776 * The function initializes an adapter identified by the pci_dec structure.
7777 * All OS related initialization including memory and device structure and
7778 * initlaization of the device private variable is done. Also the swapper
7779 * control register is initialized to enable read and write into the I/O
7780 * registers of the device.
7781 * Return value:
7782 * returns 0 on success and negative on failure.
7783 */
7784
7785 static int __devinit
7786 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7787 {
7788 struct s2io_nic *sp;
7789 struct net_device *dev;
7790 int i, j, ret;
7791 int dma_flag = FALSE;
7792 u32 mac_up, mac_down;
7793 u64 val64 = 0, tmp64 = 0;
7794 struct XENA_dev_config __iomem *bar0 = NULL;
7795 u16 subid;
7796 struct mac_info *mac_control;
7797 struct config_param *config;
7798 int mode;
7799 u8 dev_intr_type = intr_type;
7800 u8 dev_multiq = 0;
7801 DECLARE_MAC_BUF(mac);
7802
7803 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7804 if (ret)
7805 return ret;
7806
7807 if ((ret = pci_enable_device(pdev))) {
7808 DBG_PRINT(ERR_DBG,
7809 "s2io_init_nic: pci_enable_device failed\n");
7810 return ret;
7811 }
7812
7813 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7814 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7815 dma_flag = TRUE;
7816 if (pci_set_consistent_dma_mask
7817 (pdev, DMA_64BIT_MASK)) {
7818 DBG_PRINT(ERR_DBG,
7819 "Unable to obtain 64bit DMA for \
7820 consistent allocations\n");
7821 pci_disable_device(pdev);
7822 return -ENOMEM;
7823 }
7824 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7825 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7826 } else {
7827 pci_disable_device(pdev);
7828 return -ENOMEM;
7829 }
7830 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7831 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7832 pci_disable_device(pdev);
7833 return -ENODEV;
7834 }
7835 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7836 if (dev_multiq)
7837 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7838 else
7839 #endif
7840 dev = alloc_etherdev(sizeof(struct s2io_nic));
7841 if (dev == NULL) {
7842 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7843 pci_disable_device(pdev);
7844 pci_release_regions(pdev);
7845 return -ENODEV;
7846 }
7847
7848 pci_set_master(pdev);
7849 pci_set_drvdata(pdev, dev);
7850 SET_NETDEV_DEV(dev, &pdev->dev);
7851
7852 /* Private member variable initialized to s2io NIC structure */
7853 sp = dev->priv;
7854 memset(sp, 0, sizeof(struct s2io_nic));
7855 sp->dev = dev;
7856 sp->pdev = pdev;
7857 sp->high_dma_flag = dma_flag;
7858 sp->device_enabled_once = FALSE;
7859 if (rx_ring_mode == 1)
7860 sp->rxd_mode = RXD_MODE_1;
7861 if (rx_ring_mode == 2)
7862 sp->rxd_mode = RXD_MODE_3B;
7863
7864 sp->config.intr_type = dev_intr_type;
7865
7866 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7867 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7868 sp->device_type = XFRAME_II_DEVICE;
7869 else
7870 sp->device_type = XFRAME_I_DEVICE;
7871
7872 sp->lro = lro_enable;
7873
7874 /* Initialize some PCI/PCI-X fields of the NIC. */
7875 s2io_init_pci(sp);
7876
7877 /*
7878 * Setting the device configuration parameters.
7879 * Most of these parameters can be specified by the user during
7880 * module insertion as they are module loadable parameters. If
7881 * these parameters are not not specified during load time, they
7882 * are initialized with default values.
7883 */
7884 mac_control = &sp->mac_control;
7885 config = &sp->config;
7886
7887 config->napi = napi;
7888 config->tx_steering_type = tx_steering_type;
7889
7890 /* Tx side parameters. */
7891 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7892 config->tx_fifo_num = MAX_TX_FIFOS;
7893 else
7894 config->tx_fifo_num = tx_fifo_num;
7895
7896 /* Initialize the fifos used for tx steering */
7897 if (config->tx_fifo_num < 5) {
7898 if (config->tx_fifo_num == 1)
7899 sp->total_tcp_fifos = 1;
7900 else
7901 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7902 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7903 sp->total_udp_fifos = 1;
7904 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7905 } else {
7906 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7907 FIFO_OTHER_MAX_NUM);
7908 sp->udp_fifo_idx = sp->total_tcp_fifos;
7909 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7910 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7911 }
7912
7913 config->multiq = dev_multiq;
7914 for (i = 0; i < config->tx_fifo_num; i++) {
7915 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7916 config->tx_cfg[i].fifo_priority = i;
7917 }
7918
7919 /* mapping the QoS priority to the configured fifos */
7920 for (i = 0; i < MAX_TX_FIFOS; i++)
7921 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7922
7923 /* map the hashing selector table to the configured fifos */
7924 for (i = 0; i < config->tx_fifo_num; i++)
7925 sp->fifo_selector[i] = fifo_selector[i];
7926
7927
7928 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7929 for (i = 0; i < config->tx_fifo_num; i++) {
7930 config->tx_cfg[i].f_no_snoop =
7931 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7932 if (config->tx_cfg[i].fifo_len < 65) {
7933 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7934 break;
7935 }
7936 }
7937 /* + 2 because one Txd for skb->data and one Txd for UFO */
7938 config->max_txds = MAX_SKB_FRAGS + 2;
7939
7940 /* Rx side parameters. */
7941 config->rx_ring_num = rx_ring_num;
7942 for (i = 0; i < MAX_RX_RINGS; i++) {
7943 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7944 (rxd_count[sp->rxd_mode] + 1);
7945 config->rx_cfg[i].ring_priority = i;
7946 }
7947
7948 for (i = 0; i < rx_ring_num; i++) {
7949 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7950 config->rx_cfg[i].f_no_snoop =
7951 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7952 }
7953
7954 /* Setting Mac Control parameters */
7955 mac_control->rmac_pause_time = rmac_pause_time;
7956 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7957 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7958
7959
7960 /* Initialize Ring buffer parameters. */
7961 for (i = 0; i < config->rx_ring_num; i++)
7962 atomic_set(&sp->rx_bufs_left[i], 0);
7963
7964 /* initialize the shared memory used by the NIC and the host */
7965 if (init_shared_mem(sp)) {
7966 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7967 dev->name);
7968 ret = -ENOMEM;
7969 goto mem_alloc_failed;
7970 }
7971
7972 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7973 pci_resource_len(pdev, 0));
7974 if (!sp->bar0) {
7975 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7976 dev->name);
7977 ret = -ENOMEM;
7978 goto bar0_remap_failed;
7979 }
7980
7981 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7982 pci_resource_len(pdev, 2));
7983 if (!sp->bar1) {
7984 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7985 dev->name);
7986 ret = -ENOMEM;
7987 goto bar1_remap_failed;
7988 }
7989
7990 dev->irq = pdev->irq;
7991 dev->base_addr = (unsigned long) sp->bar0;
7992
7993 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7994 for (j = 0; j < MAX_TX_FIFOS; j++) {
7995 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7996 (sp->bar1 + (j * 0x00020000));
7997 }
7998
7999 /* Driver entry points */
8000 dev->open = &s2io_open;
8001 dev->stop = &s2io_close;
8002 dev->hard_start_xmit = &s2io_xmit;
8003 dev->get_stats = &s2io_get_stats;
8004 dev->set_multicast_list = &s2io_set_multicast;
8005 dev->do_ioctl = &s2io_ioctl;
8006 dev->set_mac_address = &s2io_set_mac_addr;
8007 dev->change_mtu = &s2io_change_mtu;
8008 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8009 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8010 dev->vlan_rx_register = s2io_vlan_rx_register;
8011 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
8012
8013 /*
8014 * will use eth_mac_addr() for dev->set_mac_address
8015 * mac address will be set every time dev->open() is called
8016 */
8017 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
8018
8019 #ifdef CONFIG_NET_POLL_CONTROLLER
8020 dev->poll_controller = s2io_netpoll;
8021 #endif
8022
8023 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8024 if (sp->high_dma_flag == TRUE)
8025 dev->features |= NETIF_F_HIGHDMA;
8026 dev->features |= NETIF_F_TSO;
8027 dev->features |= NETIF_F_TSO6;
8028 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
8029 dev->features |= NETIF_F_UFO;
8030 dev->features |= NETIF_F_HW_CSUM;
8031 }
8032 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
8033 if (config->multiq)
8034 dev->features |= NETIF_F_MULTI_QUEUE;
8035 #endif
8036 dev->tx_timeout = &s2io_tx_watchdog;
8037 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8038 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8039 INIT_WORK(&sp->set_link_task, s2io_set_link);
8040
8041 pci_save_state(sp->pdev);
8042
8043 /* Setting swapper control on the NIC, for proper reset operation */
8044 if (s2io_set_swapper(sp)) {
8045 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8046 dev->name);
8047 ret = -EAGAIN;
8048 goto set_swap_failed;
8049 }
8050
8051 /* Verify if the Herc works on the slot its placed into */
8052 if (sp->device_type & XFRAME_II_DEVICE) {
8053 mode = s2io_verify_pci_mode(sp);
8054 if (mode < 0) {
8055 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
8056 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8057 ret = -EBADSLT;
8058 goto set_swap_failed;
8059 }
8060 }
8061
8062 /* Not needed for Herc */
8063 if (sp->device_type & XFRAME_I_DEVICE) {
8064 /*
8065 * Fix for all "FFs" MAC address problems observed on
8066 * Alpha platforms
8067 */
8068 fix_mac_address(sp);
8069 s2io_reset(sp);
8070 }
8071
8072 /*
8073 * MAC address initialization.
8074 * For now only one mac address will be read and used.
8075 */
8076 bar0 = sp->bar0;
8077 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8078 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8079 writeq(val64, &bar0->rmac_addr_cmd_mem);
8080 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8081 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8082 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8083 mac_down = (u32) tmp64;
8084 mac_up = (u32) (tmp64 >> 32);
8085
8086 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8087 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8088 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8089 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8090 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8091 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8092
8093 /* Set the factory defined MAC address initially */
8094 dev->addr_len = ETH_ALEN;
8095 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8096 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8097
8098 /* initialize number of multicast & unicast MAC entries variables */
8099 if (sp->device_type == XFRAME_I_DEVICE) {
8100 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8101 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8102 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8103 } else if (sp->device_type == XFRAME_II_DEVICE) {
8104 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8105 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8106 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8107 }
8108
8109 /* store mac addresses from CAM to s2io_nic structure */
8110 do_s2io_store_unicast_mc(sp);
8111
8112 /* Store the values of the MSIX table in the s2io_nic structure */
8113 store_xmsi_data(sp);
8114 /* reset Nic and bring it to known state */
8115 s2io_reset(sp);
8116
8117 /*
8118 * Initialize the tasklet status and link state flags
8119 * and the card state parameter
8120 */
8121 sp->tasklet_status = 0;
8122 sp->state = 0;
8123
8124 /* Initialize spinlocks */
8125 for (i = 0; i < sp->config.tx_fifo_num; i++)
8126 spin_lock_init(&mac_control->fifos[i].tx_lock);
8127
8128 if (!napi)
8129 spin_lock_init(&sp->put_lock);
8130 spin_lock_init(&sp->rx_lock);
8131
8132 /*
8133 * SXE-002: Configure link and activity LED to init state
8134 * on driver load.
8135 */
8136 subid = sp->pdev->subsystem_device;
8137 if ((subid & 0xFF) >= 0x07) {
8138 val64 = readq(&bar0->gpio_control);
8139 val64 |= 0x0000800000000000ULL;
8140 writeq(val64, &bar0->gpio_control);
8141 val64 = 0x0411040400000000ULL;
8142 writeq(val64, (void __iomem *) bar0 + 0x2700);
8143 val64 = readq(&bar0->gpio_control);
8144 }
8145
8146 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8147
8148 if (register_netdev(dev)) {
8149 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8150 ret = -ENODEV;
8151 goto register_failed;
8152 }
8153 s2io_vpd_read(sp);
8154 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8155 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8156 sp->product_name, pdev->revision);
8157 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8158 s2io_driver_version);
8159 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8160 dev->name, print_mac(mac, dev->dev_addr));
8161 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8162 if (sp->device_type & XFRAME_II_DEVICE) {
8163 mode = s2io_print_pci_mode(sp);
8164 if (mode < 0) {
8165 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8166 ret = -EBADSLT;
8167 unregister_netdev(dev);
8168 goto set_swap_failed;
8169 }
8170 }
8171 switch(sp->rxd_mode) {
8172 case RXD_MODE_1:
8173 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8174 dev->name);
8175 break;
8176 case RXD_MODE_3B:
8177 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8178 dev->name);
8179 break;
8180 }
8181
8182 if (napi)
8183 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8184
8185 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8186 sp->config.tx_fifo_num);
8187
8188 switch(sp->config.intr_type) {
8189 case INTA:
8190 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8191 break;
8192 case MSI_X:
8193 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8194 break;
8195 }
8196 if (sp->config.multiq) {
8197 for (i = 0; i < sp->config.tx_fifo_num; i++)
8198 mac_control->fifos[i].multiq = config->multiq;
8199 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8200 dev->name);
8201 } else
8202 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8203 dev->name);
8204
8205 switch (sp->config.tx_steering_type) {
8206 case NO_STEERING:
8207 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8208 " transmit\n", dev->name);
8209 break;
8210 case TX_PRIORITY_STEERING:
8211 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8212 " transmit\n", dev->name);
8213 break;
8214 case TX_DEFAULT_STEERING:
8215 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8216 " transmit\n", dev->name);
8217 }
8218
8219 if (sp->lro)
8220 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8221 dev->name);
8222 if (ufo)
8223 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8224 " enabled\n", dev->name);
8225 /* Initialize device name */
8226 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8227
8228 /*
8229 * Make Link state as off at this point, when the Link change
8230 * interrupt comes the state will be automatically changed to
8231 * the right state.
8232 */
8233 netif_carrier_off(dev);
8234
8235 return 0;
8236
8237 register_failed:
8238 set_swap_failed:
8239 iounmap(sp->bar1);
8240 bar1_remap_failed:
8241 iounmap(sp->bar0);
8242 bar0_remap_failed:
8243 mem_alloc_failed:
8244 free_shared_mem(sp);
8245 pci_disable_device(pdev);
8246 pci_release_regions(pdev);
8247 pci_set_drvdata(pdev, NULL);
8248 free_netdev(dev);
8249
8250 return ret;
8251 }
8252
8253 /**
8254 * s2io_rem_nic - Free the PCI device
8255 * @pdev: structure containing the PCI related information of the device.
8256 * Description: This function is called by the Pci subsystem to release a
8257 * PCI device and free up all resource held up by the device. This could
8258 * be in response to a Hot plug event or when the driver is to be removed
8259 * from memory.
8260 */
8261
8262 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8263 {
8264 struct net_device *dev =
8265 (struct net_device *) pci_get_drvdata(pdev);
8266 struct s2io_nic *sp;
8267
8268 if (dev == NULL) {
8269 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8270 return;
8271 }
8272
8273 flush_scheduled_work();
8274
8275 sp = dev->priv;
8276 unregister_netdev(dev);
8277
8278 free_shared_mem(sp);
8279 iounmap(sp->bar0);
8280 iounmap(sp->bar1);
8281 pci_release_regions(pdev);
8282 pci_set_drvdata(pdev, NULL);
8283 free_netdev(dev);
8284 pci_disable_device(pdev);
8285 }
8286
8287 /**
8288 * s2io_starter - Entry point for the driver
8289 * Description: This function is the entry point for the driver. It verifies
8290 * the module loadable parameters and initializes PCI configuration space.
8291 */
8292
8293 static int __init s2io_starter(void)
8294 {
8295 return pci_register_driver(&s2io_driver);
8296 }
8297
8298 /**
8299 * s2io_closer - Cleanup routine for the driver
8300 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8301 */
8302
8303 static __exit void s2io_closer(void)
8304 {
8305 pci_unregister_driver(&s2io_driver);
8306 DBG_PRINT(INIT_DBG, "cleanup done\n");
8307 }
8308
8309 module_init(s2io_starter);
8310 module_exit(s2io_closer);
8311
8312 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8313 struct tcphdr **tcp, struct RxD_t *rxdp,
8314 struct s2io_nic *sp)
8315 {
8316 int ip_off;
8317 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8318
8319 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8320 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8321 __FUNCTION__);
8322 return -1;
8323 }
8324
8325 /* Checking for DIX type or DIX type with VLAN */
8326 if ((l2_type == 0)
8327 || (l2_type == 4)) {
8328 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8329 /*
8330 * If vlan stripping is disabled and the frame is VLAN tagged,
8331 * shift the offset by the VLAN header size bytes.
8332 */
8333 if ((!vlan_strip_flag) &&
8334 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8335 ip_off += HEADER_VLAN_SIZE;
8336 } else {
8337 /* LLC, SNAP etc are considered non-mergeable */
8338 return -1;
8339 }
8340
8341 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8342 ip_len = (u8)((*ip)->ihl);
8343 ip_len <<= 2;
8344 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8345
8346 return 0;
8347 }
8348
8349 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8350 struct tcphdr *tcp)
8351 {
8352 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8353 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8354 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8355 return -1;
8356 return 0;
8357 }
8358
8359 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8360 {
8361 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8362 }
8363
8364 static void initiate_new_session(struct lro *lro, u8 *l2h,
8365 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8366 {
8367 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8368 lro->l2h = l2h;
8369 lro->iph = ip;
8370 lro->tcph = tcp;
8371 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8372 lro->tcp_ack = tcp->ack_seq;
8373 lro->sg_num = 1;
8374 lro->total_len = ntohs(ip->tot_len);
8375 lro->frags_len = 0;
8376 lro->vlan_tag = vlan_tag;
8377 /*
8378 * check if we saw TCP timestamp. Other consistency checks have
8379 * already been done.
8380 */
8381 if (tcp->doff == 8) {
8382 __be32 *ptr;
8383 ptr = (__be32 *)(tcp+1);
8384 lro->saw_ts = 1;
8385 lro->cur_tsval = ntohl(*(ptr+1));
8386 lro->cur_tsecr = *(ptr+2);
8387 }
8388 lro->in_use = 1;
8389 }
8390
8391 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8392 {
8393 struct iphdr *ip = lro->iph;
8394 struct tcphdr *tcp = lro->tcph;
8395 __sum16 nchk;
8396 struct stat_block *statinfo = sp->mac_control.stats_info;
8397 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8398
8399 /* Update L3 header */
8400 ip->tot_len = htons(lro->total_len);
8401 ip->check = 0;
8402 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8403 ip->check = nchk;
8404
8405 /* Update L4 header */
8406 tcp->ack_seq = lro->tcp_ack;
8407 tcp->window = lro->window;
8408
8409 /* Update tsecr field if this session has timestamps enabled */
8410 if (lro->saw_ts) {
8411 __be32 *ptr = (__be32 *)(tcp + 1);
8412 *(ptr+2) = lro->cur_tsecr;
8413 }
8414
8415 /* Update counters required for calculation of
8416 * average no. of packets aggregated.
8417 */
8418 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8419 statinfo->sw_stat.num_aggregations++;
8420 }
8421
8422 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8423 struct tcphdr *tcp, u32 l4_pyld)
8424 {
8425 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8426 lro->total_len += l4_pyld;
8427 lro->frags_len += l4_pyld;
8428 lro->tcp_next_seq += l4_pyld;
8429 lro->sg_num++;
8430
8431 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8432 lro->tcp_ack = tcp->ack_seq;
8433 lro->window = tcp->window;
8434
8435 if (lro->saw_ts) {
8436 __be32 *ptr;
8437 /* Update tsecr and tsval from this packet */
8438 ptr = (__be32 *)(tcp+1);
8439 lro->cur_tsval = ntohl(*(ptr+1));
8440 lro->cur_tsecr = *(ptr + 2);
8441 }
8442 }
8443
8444 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8445 struct tcphdr *tcp, u32 tcp_pyld_len)
8446 {
8447 u8 *ptr;
8448
8449 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8450
8451 if (!tcp_pyld_len) {
8452 /* Runt frame or a pure ack */
8453 return -1;
8454 }
8455
8456 if (ip->ihl != 5) /* IP has options */
8457 return -1;
8458
8459 /* If we see CE codepoint in IP header, packet is not mergeable */
8460 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8461 return -1;
8462
8463 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8464 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8465 tcp->ece || tcp->cwr || !tcp->ack) {
8466 /*
8467 * Currently recognize only the ack control word and
8468 * any other control field being set would result in
8469 * flushing the LRO session
8470 */
8471 return -1;
8472 }
8473
8474 /*
8475 * Allow only one TCP timestamp option. Don't aggregate if
8476 * any other options are detected.
8477 */
8478 if (tcp->doff != 5 && tcp->doff != 8)
8479 return -1;
8480
8481 if (tcp->doff == 8) {
8482 ptr = (u8 *)(tcp + 1);
8483 while (*ptr == TCPOPT_NOP)
8484 ptr++;
8485 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8486 return -1;
8487
8488 /* Ensure timestamp value increases monotonically */
8489 if (l_lro)
8490 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8491 return -1;
8492
8493 /* timestamp echo reply should be non-zero */
8494 if (*((__be32 *)(ptr+6)) == 0)
8495 return -1;
8496 }
8497
8498 return 0;
8499 }
8500
8501 static int
8502 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8503 struct RxD_t *rxdp, struct s2io_nic *sp)
8504 {
8505 struct iphdr *ip;
8506 struct tcphdr *tcph;
8507 int ret = 0, i;
8508 u16 vlan_tag = 0;
8509
8510 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8511 rxdp, sp))) {
8512 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8513 ip->saddr, ip->daddr);
8514 } else
8515 return ret;
8516
8517 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8518 tcph = (struct tcphdr *)*tcp;
8519 *tcp_len = get_l4_pyld_length(ip, tcph);
8520 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8521 struct lro *l_lro = &sp->lro0_n[i];
8522 if (l_lro->in_use) {
8523 if (check_for_socket_match(l_lro, ip, tcph))
8524 continue;
8525 /* Sock pair matched */
8526 *lro = l_lro;
8527
8528 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8529 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8530 "0x%x, actual 0x%x\n", __FUNCTION__,
8531 (*lro)->tcp_next_seq,
8532 ntohl(tcph->seq));
8533
8534 sp->mac_control.stats_info->
8535 sw_stat.outof_sequence_pkts++;
8536 ret = 2;
8537 break;
8538 }
8539
8540 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8541 ret = 1; /* Aggregate */
8542 else
8543 ret = 2; /* Flush both */
8544 break;
8545 }
8546 }
8547
8548 if (ret == 0) {
8549 /* Before searching for available LRO objects,
8550 * check if the pkt is L3/L4 aggregatable. If not
8551 * don't create new LRO session. Just send this
8552 * packet up.
8553 */
8554 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8555 return 5;
8556 }
8557
8558 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8559 struct lro *l_lro = &sp->lro0_n[i];
8560 if (!(l_lro->in_use)) {
8561 *lro = l_lro;
8562 ret = 3; /* Begin anew */
8563 break;
8564 }
8565 }
8566 }
8567
8568 if (ret == 0) { /* sessions exceeded */
8569 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8570 __FUNCTION__);
8571 *lro = NULL;
8572 return ret;
8573 }
8574
8575 switch (ret) {
8576 case 3:
8577 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8578 vlan_tag);
8579 break;
8580 case 2:
8581 update_L3L4_header(sp, *lro);
8582 break;
8583 case 1:
8584 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8585 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8586 update_L3L4_header(sp, *lro);
8587 ret = 4; /* Flush the LRO */
8588 }
8589 break;
8590 default:
8591 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8592 __FUNCTION__);
8593 break;
8594 }
8595
8596 return ret;
8597 }
8598
8599 static void clear_lro_session(struct lro *lro)
8600 {
8601 static u16 lro_struct_size = sizeof(struct lro);
8602
8603 memset(lro, 0, lro_struct_size);
8604 }
8605
8606 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8607 {
8608 struct net_device *dev = skb->dev;
8609 struct s2io_nic *sp = dev->priv;
8610
8611 skb->protocol = eth_type_trans(skb, dev);
8612 if (sp->vlgrp && vlan_tag
8613 && (vlan_strip_flag)) {
8614 /* Queueing the vlan frame to the upper layer */
8615 if (sp->config.napi)
8616 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8617 else
8618 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8619 } else {
8620 if (sp->config.napi)
8621 netif_receive_skb(skb);
8622 else
8623 netif_rx(skb);
8624 }
8625 }
8626
8627 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8628 struct sk_buff *skb,
8629 u32 tcp_len)
8630 {
8631 struct sk_buff *first = lro->parent;
8632
8633 first->len += tcp_len;
8634 first->data_len = lro->frags_len;
8635 skb_pull(skb, (skb->len - tcp_len));
8636 if (skb_shinfo(first)->frag_list)
8637 lro->last_frag->next = skb;
8638 else
8639 skb_shinfo(first)->frag_list = skb;
8640 first->truesize += skb->truesize;
8641 lro->last_frag = skb;
8642 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8643 return;
8644 }
8645
8646 /**
8647 * s2io_io_error_detected - called when PCI error is detected
8648 * @pdev: Pointer to PCI device
8649 * @state: The current pci connection state
8650 *
8651 * This function is called after a PCI bus error affecting
8652 * this device has been detected.
8653 */
8654 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8655 pci_channel_state_t state)
8656 {
8657 struct net_device *netdev = pci_get_drvdata(pdev);
8658 struct s2io_nic *sp = netdev->priv;
8659
8660 netif_device_detach(netdev);
8661
8662 if (netif_running(netdev)) {
8663 /* Bring down the card, while avoiding PCI I/O */
8664 do_s2io_card_down(sp, 0);
8665 }
8666 pci_disable_device(pdev);
8667
8668 return PCI_ERS_RESULT_NEED_RESET;
8669 }
8670
8671 /**
8672 * s2io_io_slot_reset - called after the pci bus has been reset.
8673 * @pdev: Pointer to PCI device
8674 *
8675 * Restart the card from scratch, as if from a cold-boot.
8676 * At this point, the card has exprienced a hard reset,
8677 * followed by fixups by BIOS, and has its config space
8678 * set up identically to what it was at cold boot.
8679 */
8680 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8681 {
8682 struct net_device *netdev = pci_get_drvdata(pdev);
8683 struct s2io_nic *sp = netdev->priv;
8684
8685 if (pci_enable_device(pdev)) {
8686 printk(KERN_ERR "s2io: "
8687 "Cannot re-enable PCI device after reset.\n");
8688 return PCI_ERS_RESULT_DISCONNECT;
8689 }
8690
8691 pci_set_master(pdev);
8692 s2io_reset(sp);
8693
8694 return PCI_ERS_RESULT_RECOVERED;
8695 }
8696
8697 /**
8698 * s2io_io_resume - called when traffic can start flowing again.
8699 * @pdev: Pointer to PCI device
8700 *
8701 * This callback is called when the error recovery driver tells
8702 * us that its OK to resume normal operation.
8703 */
8704 static void s2io_io_resume(struct pci_dev *pdev)
8705 {
8706 struct net_device *netdev = pci_get_drvdata(pdev);
8707 struct s2io_nic *sp = netdev->priv;
8708
8709 if (netif_running(netdev)) {
8710 if (s2io_card_up(sp)) {
8711 printk(KERN_ERR "s2io: "
8712 "Can't bring device back up after reset.\n");
8713 return;
8714 }
8715
8716 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8717 s2io_card_down(sp);
8718 printk(KERN_ERR "s2io: "
8719 "Can't resetore mac addr after reset.\n");
8720 return;
8721 }
8722 }
8723
8724 netif_device_attach(netdev);
8725 netif_wake_queue(netdev);
8726 }
This page took 0.298737 seconds and 6 git commands to generate.