[NET]: Make NAPI polling independent of struct net_device objects.
[deliverable/linux.git] / drivers / net / sb1250-mac.c
1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 *
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21 */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/bitops.h>
35 #include <asm/processor.h> /* Processor type for cache alignment. */
36 #include <asm/io.h>
37 #include <asm/cache.h>
38
39 /* This is only here until the firmware is ready. In that case,
40 the firmware leaves the ethernet address in the register for us. */
41 #ifdef CONFIG_SIBYTE_STANDALONE
42 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
43 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
44 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
45 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
46 #endif
47
48
49 /* These identify the driver base version and may not be removed. */
50 #if 0
51 static char version1[] __devinitdata =
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
53 #endif
54
55
56 /* Operational parameters that usually are not changed. */
57
58 #define CONFIG_SBMAC_COALESCE
59
60 #define MAX_UNITS 4 /* More are supported, limit only on options */
61
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (2*HZ)
64
65
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
68
69 /* A few user-configurable values which may be modified when a driver
70 module is loaded. */
71
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
73 static int debug = 1;
74 module_param(debug, int, S_IRUGO);
75 MODULE_PARM_DESC(debug, "Debug messages");
76
77 /* mii status msgs */
78 static int noisy_mii = 1;
79 module_param(noisy_mii, int, S_IRUGO);
80 MODULE_PARM_DESC(noisy_mii, "MII status messages");
81
82 /* Used to pass the media type, etc.
83 Both 'options[]' and 'full_duplex[]' should exist for driver
84 interoperability.
85 The media type is usually passed in 'options[]'.
86 */
87 #ifdef MODULE
88 static int options[MAX_UNITS] = {-1, -1, -1, -1};
89 module_param_array(options, int, NULL, S_IRUGO);
90 MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
91
92 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1};
93 module_param_array(full_duplex, int, NULL, S_IRUGO);
94 MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
95 #endif
96
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt_tx = 255;
99 module_param(int_pktcnt_tx, int, S_IRUGO);
100 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
101
102 static int int_timeout_tx = 255;
103 module_param(int_timeout_tx, int, S_IRUGO);
104 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
105
106 static int int_pktcnt_rx = 64;
107 module_param(int_pktcnt_rx, int, S_IRUGO);
108 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
109
110 static int int_timeout_rx = 64;
111 module_param(int_timeout_rx, int, S_IRUGO);
112 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
113 #endif
114
115 #include <asm/sibyte/sb1250.h>
116 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
117 #include <asm/sibyte/bcm1480_regs.h>
118 #include <asm/sibyte/bcm1480_int.h>
119 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
120 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
121 #include <asm/sibyte/sb1250_regs.h>
122 #include <asm/sibyte/sb1250_int.h>
123 #else
124 #error invalid SiByte MAC configuation
125 #endif
126 #include <asm/sibyte/sb1250_scd.h>
127 #include <asm/sibyte/sb1250_mac.h>
128 #include <asm/sibyte/sb1250_dma.h>
129
130 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
131 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
132 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
133 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
134 #else
135 #error invalid SiByte MAC configuation
136 #endif
137
138 /**********************************************************************
139 * Simple types
140 ********************************************************************* */
141
142
143 typedef enum { sbmac_speed_auto, sbmac_speed_10,
144 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
145
146 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
147 sbmac_duplex_full } sbmac_duplex_t;
148
149 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
150 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
151
152 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
153 sbmac_state_broken } sbmac_state_t;
154
155
156 /**********************************************************************
157 * Macros
158 ********************************************************************* */
159
160
161 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
162 (d)->sbdma_dscrtable : (d)->f+1)
163
164
165 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
166
167 #define SBMAC_MAX_TXDESCR 256
168 #define SBMAC_MAX_RXDESCR 256
169
170 #define ETHER_ALIGN 2
171 #define ETHER_ADDR_LEN 6
172 #define ENET_PACKET_SIZE 1518
173 /*#define ENET_PACKET_SIZE 9216 */
174
175 /**********************************************************************
176 * DMA Descriptor structure
177 ********************************************************************* */
178
179 typedef struct sbdmadscr_s {
180 uint64_t dscr_a;
181 uint64_t dscr_b;
182 } sbdmadscr_t;
183
184 typedef unsigned long paddr_t;
185
186 /**********************************************************************
187 * DMA Controller structure
188 ********************************************************************* */
189
190 typedef struct sbmacdma_s {
191
192 /*
193 * This stuff is used to identify the channel and the registers
194 * associated with it.
195 */
196
197 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
198 int sbdma_channel; /* channel number */
199 int sbdma_txdir; /* direction (1=transmit) */
200 int sbdma_maxdescr; /* total # of descriptors in ring */
201 #ifdef CONFIG_SBMAC_COALESCE
202 int sbdma_int_pktcnt; /* # descriptors rx/tx before interrupt*/
203 int sbdma_int_timeout; /* # usec rx/tx interrupt */
204 #endif
205
206 volatile void __iomem *sbdma_config0; /* DMA config register 0 */
207 volatile void __iomem *sbdma_config1; /* DMA config register 1 */
208 volatile void __iomem *sbdma_dscrbase; /* Descriptor base address */
209 volatile void __iomem *sbdma_dscrcnt; /* Descriptor count register */
210 volatile void __iomem *sbdma_curdscr; /* current descriptor address */
211 volatile void __iomem *sbdma_oodpktlost;/* pkt drop (rx only) */
212
213
214 /*
215 * This stuff is for maintenance of the ring
216 */
217
218 sbdmadscr_t *sbdma_dscrtable_unaligned;
219 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
220 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
221
222 struct sk_buff **sbdma_ctxtable; /* context table, one per descr */
223
224 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
225 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
226 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
227 } sbmacdma_t;
228
229
230 /**********************************************************************
231 * Ethernet softc structure
232 ********************************************************************* */
233
234 struct sbmac_softc {
235
236 /*
237 * Linux-specific things
238 */
239
240 struct net_device *sbm_dev; /* pointer to linux device */
241 struct napi_struct napi;
242 spinlock_t sbm_lock; /* spin lock */
243 struct timer_list sbm_timer; /* for monitoring MII */
244 struct net_device_stats sbm_stats;
245 int sbm_devflags; /* current device flags */
246
247 int sbm_phy_oldbmsr;
248 int sbm_phy_oldanlpar;
249 int sbm_phy_oldk1stsr;
250 int sbm_phy_oldlinkstat;
251 int sbm_buffersize;
252
253 unsigned char sbm_phys[2];
254
255 /*
256 * Controller-specific things
257 */
258
259 void __iomem *sbm_base; /* MAC's base address */
260 sbmac_state_t sbm_state; /* current state */
261
262 volatile void __iomem *sbm_macenable; /* MAC Enable Register */
263 volatile void __iomem *sbm_maccfg; /* MAC Configuration Register */
264 volatile void __iomem *sbm_fifocfg; /* FIFO configuration register */
265 volatile void __iomem *sbm_framecfg; /* Frame configuration register */
266 volatile void __iomem *sbm_rxfilter; /* receive filter register */
267 volatile void __iomem *sbm_isr; /* Interrupt status register */
268 volatile void __iomem *sbm_imr; /* Interrupt mask register */
269 volatile void __iomem *sbm_mdio; /* MDIO register */
270
271 sbmac_speed_t sbm_speed; /* current speed */
272 sbmac_duplex_t sbm_duplex; /* current duplex */
273 sbmac_fc_t sbm_fc; /* current flow control setting */
274
275 unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
276
277 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
278 sbmacdma_t sbm_rxdma;
279 int rx_hw_checksum;
280 int sbe_idx;
281 };
282
283
284 /**********************************************************************
285 * Externs
286 ********************************************************************* */
287
288 /**********************************************************************
289 * Prototypes
290 ********************************************************************* */
291
292 static void sbdma_initctx(sbmacdma_t *d,
293 struct sbmac_softc *s,
294 int chan,
295 int txrx,
296 int maxdescr);
297 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
298 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
299 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
300 static void sbdma_emptyring(sbmacdma_t *d);
301 static void sbdma_fillring(sbmacdma_t *d);
302 static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d, int work_to_do, int poll);
303 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll);
304 static int sbmac_initctx(struct sbmac_softc *s);
305 static void sbmac_channel_start(struct sbmac_softc *s);
306 static void sbmac_channel_stop(struct sbmac_softc *s);
307 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
308 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
309 static uint64_t sbmac_addr2reg(unsigned char *ptr);
310 static irqreturn_t sbmac_intr(int irq,void *dev_instance);
311 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
312 static void sbmac_setmulti(struct sbmac_softc *sc);
313 static int sbmac_init(struct net_device *dev, int idx);
314 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
315 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
316
317 static int sbmac_open(struct net_device *dev);
318 static void sbmac_timer(unsigned long data);
319 static void sbmac_tx_timeout (struct net_device *dev);
320 static struct net_device_stats *sbmac_get_stats(struct net_device *dev);
321 static void sbmac_set_rx_mode(struct net_device *dev);
322 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
323 static int sbmac_close(struct net_device *dev);
324 static int sbmac_poll(struct napi_struct *napi, int budget);
325
326 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
327 static int sbmac_mii_probe(struct net_device *dev);
328
329 static void sbmac_mii_sync(struct sbmac_softc *s);
330 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
331 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
332 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
333 unsigned int regval);
334
335
336 /**********************************************************************
337 * Globals
338 ********************************************************************* */
339
340 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
341
342
343 /**********************************************************************
344 * MDIO constants
345 ********************************************************************* */
346
347 #define MII_COMMAND_START 0x01
348 #define MII_COMMAND_READ 0x02
349 #define MII_COMMAND_WRITE 0x01
350 #define MII_COMMAND_ACK 0x02
351
352 #define BMCR_RESET 0x8000
353 #define BMCR_LOOPBACK 0x4000
354 #define BMCR_SPEED0 0x2000
355 #define BMCR_ANENABLE 0x1000
356 #define BMCR_POWERDOWN 0x0800
357 #define BMCR_ISOLATE 0x0400
358 #define BMCR_RESTARTAN 0x0200
359 #define BMCR_DUPLEX 0x0100
360 #define BMCR_COLTEST 0x0080
361 #define BMCR_SPEED1 0x0040
362 #define BMCR_SPEED1000 BMCR_SPEED1
363 #define BMCR_SPEED100 BMCR_SPEED0
364 #define BMCR_SPEED10 0
365
366 #define BMSR_100BT4 0x8000
367 #define BMSR_100BT_FDX 0x4000
368 #define BMSR_100BT_HDX 0x2000
369 #define BMSR_10BT_FDX 0x1000
370 #define BMSR_10BT_HDX 0x0800
371 #define BMSR_100BT2_FDX 0x0400
372 #define BMSR_100BT2_HDX 0x0200
373 #define BMSR_1000BT_XSR 0x0100
374 #define BMSR_PRESUP 0x0040
375 #define BMSR_ANCOMPLT 0x0020
376 #define BMSR_REMFAULT 0x0010
377 #define BMSR_AUTONEG 0x0008
378 #define BMSR_LINKSTAT 0x0004
379 #define BMSR_JABDETECT 0x0002
380 #define BMSR_EXTCAPAB 0x0001
381
382 #define PHYIDR1 0x2000
383 #define PHYIDR2 0x5C60
384
385 #define ANAR_NP 0x8000
386 #define ANAR_RF 0x2000
387 #define ANAR_ASYPAUSE 0x0800
388 #define ANAR_PAUSE 0x0400
389 #define ANAR_T4 0x0200
390 #define ANAR_TXFD 0x0100
391 #define ANAR_TXHD 0x0080
392 #define ANAR_10FD 0x0040
393 #define ANAR_10HD 0x0020
394 #define ANAR_PSB 0x0001
395
396 #define ANLPAR_NP 0x8000
397 #define ANLPAR_ACK 0x4000
398 #define ANLPAR_RF 0x2000
399 #define ANLPAR_ASYPAUSE 0x0800
400 #define ANLPAR_PAUSE 0x0400
401 #define ANLPAR_T4 0x0200
402 #define ANLPAR_TXFD 0x0100
403 #define ANLPAR_TXHD 0x0080
404 #define ANLPAR_10FD 0x0040
405 #define ANLPAR_10HD 0x0020
406 #define ANLPAR_PSB 0x0001 /* 802.3 */
407
408 #define ANER_PDF 0x0010
409 #define ANER_LPNPABLE 0x0008
410 #define ANER_NPABLE 0x0004
411 #define ANER_PAGERX 0x0002
412 #define ANER_LPANABLE 0x0001
413
414 #define ANNPTR_NP 0x8000
415 #define ANNPTR_MP 0x2000
416 #define ANNPTR_ACK2 0x1000
417 #define ANNPTR_TOGTX 0x0800
418 #define ANNPTR_CODE 0x0008
419
420 #define ANNPRR_NP 0x8000
421 #define ANNPRR_MP 0x2000
422 #define ANNPRR_ACK3 0x1000
423 #define ANNPRR_TOGTX 0x0800
424 #define ANNPRR_CODE 0x0008
425
426 #define K1TCR_TESTMODE 0x0000
427 #define K1TCR_MSMCE 0x1000
428 #define K1TCR_MSCV 0x0800
429 #define K1TCR_RPTR 0x0400
430 #define K1TCR_1000BT_FDX 0x200
431 #define K1TCR_1000BT_HDX 0x100
432
433 #define K1STSR_MSMCFLT 0x8000
434 #define K1STSR_MSCFGRES 0x4000
435 #define K1STSR_LRSTAT 0x2000
436 #define K1STSR_RRSTAT 0x1000
437 #define K1STSR_LP1KFD 0x0800
438 #define K1STSR_LP1KHD 0x0400
439 #define K1STSR_LPASMDIR 0x0200
440
441 #define K1SCR_1KX_FDX 0x8000
442 #define K1SCR_1KX_HDX 0x4000
443 #define K1SCR_1KT_FDX 0x2000
444 #define K1SCR_1KT_HDX 0x1000
445
446 #define STRAP_PHY1 0x0800
447 #define STRAP_NCMODE 0x0400
448 #define STRAP_MANMSCFG 0x0200
449 #define STRAP_ANENABLE 0x0100
450 #define STRAP_MSVAL 0x0080
451 #define STRAP_1KHDXADV 0x0010
452 #define STRAP_1KFDXADV 0x0008
453 #define STRAP_100ADV 0x0004
454 #define STRAP_SPEEDSEL 0x0000
455 #define STRAP_SPEED100 0x0001
456
457 #define PHYSUP_SPEED1000 0x10
458 #define PHYSUP_SPEED100 0x08
459 #define PHYSUP_SPEED10 0x00
460 #define PHYSUP_LINKUP 0x04
461 #define PHYSUP_FDX 0x02
462
463 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
464 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
465 #define MII_PHYIDR1 0x02
466 #define MII_PHYIDR2 0x03
467
468 #define MII_K1STSR 0x0A /* 1K Status Register (ro) */
469 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
470
471
472 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
473
474 #define ENABLE 1
475 #define DISABLE 0
476
477 /**********************************************************************
478 * SBMAC_MII_SYNC(s)
479 *
480 * Synchronize with the MII - send a pattern of bits to the MII
481 * that will guarantee that it is ready to accept a command.
482 *
483 * Input parameters:
484 * s - sbmac structure
485 *
486 * Return value:
487 * nothing
488 ********************************************************************* */
489
490 static void sbmac_mii_sync(struct sbmac_softc *s)
491 {
492 int cnt;
493 uint64_t bits;
494 int mac_mdio_genc;
495
496 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
497
498 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
499
500 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
501
502 for (cnt = 0; cnt < 32; cnt++) {
503 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
504 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
505 }
506 }
507
508 /**********************************************************************
509 * SBMAC_MII_SENDDATA(s,data,bitcnt)
510 *
511 * Send some bits to the MII. The bits to be sent are right-
512 * justified in the 'data' parameter.
513 *
514 * Input parameters:
515 * s - sbmac structure
516 * data - data to send
517 * bitcnt - number of bits to send
518 ********************************************************************* */
519
520 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
521 {
522 int i;
523 uint64_t bits;
524 unsigned int curmask;
525 int mac_mdio_genc;
526
527 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
528
529 bits = M_MAC_MDIO_DIR_OUTPUT;
530 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
531
532 curmask = 1 << (bitcnt - 1);
533
534 for (i = 0; i < bitcnt; i++) {
535 if (data & curmask)
536 bits |= M_MAC_MDIO_OUT;
537 else bits &= ~M_MAC_MDIO_OUT;
538 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
539 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
540 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
541 curmask >>= 1;
542 }
543 }
544
545
546
547 /**********************************************************************
548 * SBMAC_MII_READ(s,phyaddr,regidx)
549 *
550 * Read a PHY register.
551 *
552 * Input parameters:
553 * s - sbmac structure
554 * phyaddr - PHY's address
555 * regidx = index of register to read
556 *
557 * Return value:
558 * value read, or 0 if an error occurred.
559 ********************************************************************* */
560
561 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
562 {
563 int idx;
564 int error;
565 int regval;
566 int mac_mdio_genc;
567
568 /*
569 * Synchronize ourselves so that the PHY knows the next
570 * thing coming down is a command
571 */
572
573 sbmac_mii_sync(s);
574
575 /*
576 * Send the data to the PHY. The sequence is
577 * a "start" command (2 bits)
578 * a "read" command (2 bits)
579 * the PHY addr (5 bits)
580 * the register index (5 bits)
581 */
582
583 sbmac_mii_senddata(s,MII_COMMAND_START, 2);
584 sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
585 sbmac_mii_senddata(s,phyaddr, 5);
586 sbmac_mii_senddata(s,regidx, 5);
587
588 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
589
590 /*
591 * Switch the port around without a clock transition.
592 */
593 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
594
595 /*
596 * Send out a clock pulse to signal we want the status
597 */
598
599 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
600 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
601
602 /*
603 * If an error occurred, the PHY will signal '1' back
604 */
605 error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
606
607 /*
608 * Issue an 'idle' clock pulse, but keep the direction
609 * the same.
610 */
611 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
612 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
613
614 regval = 0;
615
616 for (idx = 0; idx < 16; idx++) {
617 regval <<= 1;
618
619 if (error == 0) {
620 if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
621 regval |= 1;
622 }
623
624 __raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
625 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
626 }
627
628 /* Switch back to output */
629 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
630
631 if (error == 0)
632 return regval;
633 return 0;
634 }
635
636
637 /**********************************************************************
638 * SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
639 *
640 * Write a value to a PHY register.
641 *
642 * Input parameters:
643 * s - sbmac structure
644 * phyaddr - PHY to use
645 * regidx - register within the PHY
646 * regval - data to write to register
647 *
648 * Return value:
649 * nothing
650 ********************************************************************* */
651
652 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
653 unsigned int regval)
654 {
655 int mac_mdio_genc;
656
657 sbmac_mii_sync(s);
658
659 sbmac_mii_senddata(s,MII_COMMAND_START,2);
660 sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
661 sbmac_mii_senddata(s,phyaddr, 5);
662 sbmac_mii_senddata(s,regidx, 5);
663 sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
664 sbmac_mii_senddata(s,regval,16);
665
666 mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
667
668 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
669 }
670
671
672
673 /**********************************************************************
674 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
675 *
676 * Initialize a DMA channel context. Since there are potentially
677 * eight DMA channels per MAC, it's nice to do this in a standard
678 * way.
679 *
680 * Input parameters:
681 * d - sbmacdma_t structure (DMA channel context)
682 * s - sbmac_softc structure (pointer to a MAC)
683 * chan - channel number (0..1 right now)
684 * txrx - Identifies DMA_TX or DMA_RX for channel direction
685 * maxdescr - number of descriptors
686 *
687 * Return value:
688 * nothing
689 ********************************************************************* */
690
691 static void sbdma_initctx(sbmacdma_t *d,
692 struct sbmac_softc *s,
693 int chan,
694 int txrx,
695 int maxdescr)
696 {
697 #ifdef CONFIG_SBMAC_COALESCE
698 int int_pktcnt, int_timeout;
699 #endif
700
701 /*
702 * Save away interesting stuff in the structure
703 */
704
705 d->sbdma_eth = s;
706 d->sbdma_channel = chan;
707 d->sbdma_txdir = txrx;
708
709 #if 0
710 /* RMON clearing */
711 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
712 #endif
713
714 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
715 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
716 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
717 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
718 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
719 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
720 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
721 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
722 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
723 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
724 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
725 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
726 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
727 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
728 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
729 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
730 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
731 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
732 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
733 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
734 __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
735
736 /*
737 * initialize register pointers
738 */
739
740 d->sbdma_config0 =
741 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
742 d->sbdma_config1 =
743 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
744 d->sbdma_dscrbase =
745 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
746 d->sbdma_dscrcnt =
747 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
748 d->sbdma_curdscr =
749 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
750 if (d->sbdma_txdir)
751 d->sbdma_oodpktlost = NULL;
752 else
753 d->sbdma_oodpktlost =
754 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
755
756 /*
757 * Allocate memory for the ring
758 */
759
760 d->sbdma_maxdescr = maxdescr;
761
762 d->sbdma_dscrtable_unaligned =
763 d->sbdma_dscrtable = (sbdmadscr_t *)
764 kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
765
766 /*
767 * The descriptor table must be aligned to at least 16 bytes or the
768 * MAC will corrupt it.
769 */
770 d->sbdma_dscrtable = (sbdmadscr_t *)
771 ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
772
773 memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
774
775 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
776
777 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
778
779 /*
780 * And context table
781 */
782
783 d->sbdma_ctxtable = (struct sk_buff **)
784 kmalloc(d->sbdma_maxdescr*sizeof(struct sk_buff *), GFP_KERNEL);
785
786 memset(d->sbdma_ctxtable,0,d->sbdma_maxdescr*sizeof(struct sk_buff *));
787
788 #ifdef CONFIG_SBMAC_COALESCE
789 /*
790 * Setup Rx/Tx DMA coalescing defaults
791 */
792
793 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
794 if ( int_pktcnt ) {
795 d->sbdma_int_pktcnt = int_pktcnt;
796 } else {
797 d->sbdma_int_pktcnt = 1;
798 }
799
800 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
801 if ( int_timeout ) {
802 d->sbdma_int_timeout = int_timeout;
803 } else {
804 d->sbdma_int_timeout = 0;
805 }
806 #endif
807
808 }
809
810 /**********************************************************************
811 * SBDMA_CHANNEL_START(d)
812 *
813 * Initialize the hardware registers for a DMA channel.
814 *
815 * Input parameters:
816 * d - DMA channel to init (context must be previously init'd
817 * rxtx - DMA_RX or DMA_TX depending on what type of channel
818 *
819 * Return value:
820 * nothing
821 ********************************************************************* */
822
823 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
824 {
825 /*
826 * Turn on the DMA channel
827 */
828
829 #ifdef CONFIG_SBMAC_COALESCE
830 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
831 0, d->sbdma_config1);
832 __raw_writeq(M_DMA_EOP_INT_EN |
833 V_DMA_RINGSZ(d->sbdma_maxdescr) |
834 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
835 0, d->sbdma_config0);
836 #else
837 __raw_writeq(0, d->sbdma_config1);
838 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
839 0, d->sbdma_config0);
840 #endif
841
842 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
843
844 /*
845 * Initialize ring pointers
846 */
847
848 d->sbdma_addptr = d->sbdma_dscrtable;
849 d->sbdma_remptr = d->sbdma_dscrtable;
850 }
851
852 /**********************************************************************
853 * SBDMA_CHANNEL_STOP(d)
854 *
855 * Initialize the hardware registers for a DMA channel.
856 *
857 * Input parameters:
858 * d - DMA channel to init (context must be previously init'd
859 *
860 * Return value:
861 * nothing
862 ********************************************************************* */
863
864 static void sbdma_channel_stop(sbmacdma_t *d)
865 {
866 /*
867 * Turn off the DMA channel
868 */
869
870 __raw_writeq(0, d->sbdma_config1);
871
872 __raw_writeq(0, d->sbdma_dscrbase);
873
874 __raw_writeq(0, d->sbdma_config0);
875
876 /*
877 * Zero ring pointers
878 */
879
880 d->sbdma_addptr = NULL;
881 d->sbdma_remptr = NULL;
882 }
883
884 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
885 {
886 unsigned long addr;
887 unsigned long newaddr;
888
889 addr = (unsigned long) skb->data;
890
891 newaddr = (addr + power2 - 1) & ~(power2 - 1);
892
893 skb_reserve(skb,newaddr-addr+offset);
894 }
895
896
897 /**********************************************************************
898 * SBDMA_ADD_RCVBUFFER(d,sb)
899 *
900 * Add a buffer to the specified DMA channel. For receive channels,
901 * this queues a buffer for inbound packets.
902 *
903 * Input parameters:
904 * d - DMA channel descriptor
905 * sb - sk_buff to add, or NULL if we should allocate one
906 *
907 * Return value:
908 * 0 if buffer could not be added (ring is full)
909 * 1 if buffer added successfully
910 ********************************************************************* */
911
912
913 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
914 {
915 sbdmadscr_t *dsc;
916 sbdmadscr_t *nextdsc;
917 struct sk_buff *sb_new = NULL;
918 int pktsize = ENET_PACKET_SIZE;
919
920 /* get pointer to our current place in the ring */
921
922 dsc = d->sbdma_addptr;
923 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
924
925 /*
926 * figure out if the ring is full - if the next descriptor
927 * is the same as the one that we're going to remove from
928 * the ring, the ring is full
929 */
930
931 if (nextdsc == d->sbdma_remptr) {
932 return -ENOSPC;
933 }
934
935 /*
936 * Allocate a sk_buff if we don't already have one.
937 * If we do have an sk_buff, reset it so that it's empty.
938 *
939 * Note: sk_buffs don't seem to be guaranteed to have any sort
940 * of alignment when they are allocated. Therefore, allocate enough
941 * extra space to make sure that:
942 *
943 * 1. the data does not start in the middle of a cache line.
944 * 2. The data does not end in the middle of a cache line
945 * 3. The buffer can be aligned such that the IP addresses are
946 * naturally aligned.
947 *
948 * Remember, the SOCs MAC writes whole cache lines at a time,
949 * without reading the old contents first. So, if the sk_buff's
950 * data portion starts in the middle of a cache line, the SOC
951 * DMA will trash the beginning (and ending) portions.
952 */
953
954 if (sb == NULL) {
955 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
956 if (sb_new == NULL) {
957 printk(KERN_INFO "%s: sk_buff allocation failed\n",
958 d->sbdma_eth->sbm_dev->name);
959 return -ENOBUFS;
960 }
961
962 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
963 }
964 else {
965 sb_new = sb;
966 /*
967 * nothing special to reinit buffer, it's already aligned
968 * and sb->data already points to a good place.
969 */
970 }
971
972 /*
973 * fill in the descriptor
974 */
975
976 #ifdef CONFIG_SBMAC_COALESCE
977 /*
978 * Do not interrupt per DMA transfer.
979 */
980 dsc->dscr_a = virt_to_phys(sb_new->data) |
981 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
982 #else
983 dsc->dscr_a = virt_to_phys(sb_new->data) |
984 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
985 M_DMA_DSCRA_INTERRUPT;
986 #endif
987
988 /* receiving: no options */
989 dsc->dscr_b = 0;
990
991 /*
992 * fill in the context
993 */
994
995 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
996
997 /*
998 * point at next packet
999 */
1000
1001 d->sbdma_addptr = nextdsc;
1002
1003 /*
1004 * Give the buffer to the DMA engine.
1005 */
1006
1007 __raw_writeq(1, d->sbdma_dscrcnt);
1008
1009 return 0; /* we did it */
1010 }
1011
1012 /**********************************************************************
1013 * SBDMA_ADD_TXBUFFER(d,sb)
1014 *
1015 * Add a transmit buffer to the specified DMA channel, causing a
1016 * transmit to start.
1017 *
1018 * Input parameters:
1019 * d - DMA channel descriptor
1020 * sb - sk_buff to add
1021 *
1022 * Return value:
1023 * 0 transmit queued successfully
1024 * otherwise error code
1025 ********************************************************************* */
1026
1027
1028 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
1029 {
1030 sbdmadscr_t *dsc;
1031 sbdmadscr_t *nextdsc;
1032 uint64_t phys;
1033 uint64_t ncb;
1034 int length;
1035
1036 /* get pointer to our current place in the ring */
1037
1038 dsc = d->sbdma_addptr;
1039 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
1040
1041 /*
1042 * figure out if the ring is full - if the next descriptor
1043 * is the same as the one that we're going to remove from
1044 * the ring, the ring is full
1045 */
1046
1047 if (nextdsc == d->sbdma_remptr) {
1048 return -ENOSPC;
1049 }
1050
1051 /*
1052 * Under Linux, it's not necessary to copy/coalesce buffers
1053 * like it is on NetBSD. We think they're all contiguous,
1054 * but that may not be true for GBE.
1055 */
1056
1057 length = sb->len;
1058
1059 /*
1060 * fill in the descriptor. Note that the number of cache
1061 * blocks in the descriptor is the number of blocks
1062 * *spanned*, so we need to add in the offset (if any)
1063 * while doing the calculation.
1064 */
1065
1066 phys = virt_to_phys(sb->data);
1067 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1068
1069 dsc->dscr_a = phys |
1070 V_DMA_DSCRA_A_SIZE(ncb) |
1071 #ifndef CONFIG_SBMAC_COALESCE
1072 M_DMA_DSCRA_INTERRUPT |
1073 #endif
1074 M_DMA_ETHTX_SOP;
1075
1076 /* transmitting: set outbound options and length */
1077
1078 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1079 V_DMA_DSCRB_PKT_SIZE(length);
1080
1081 /*
1082 * fill in the context
1083 */
1084
1085 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1086
1087 /*
1088 * point at next packet
1089 */
1090
1091 d->sbdma_addptr = nextdsc;
1092
1093 /*
1094 * Give the buffer to the DMA engine.
1095 */
1096
1097 __raw_writeq(1, d->sbdma_dscrcnt);
1098
1099 return 0; /* we did it */
1100 }
1101
1102
1103
1104
1105 /**********************************************************************
1106 * SBDMA_EMPTYRING(d)
1107 *
1108 * Free all allocated sk_buffs on the specified DMA channel;
1109 *
1110 * Input parameters:
1111 * d - DMA channel
1112 *
1113 * Return value:
1114 * nothing
1115 ********************************************************************* */
1116
1117 static void sbdma_emptyring(sbmacdma_t *d)
1118 {
1119 int idx;
1120 struct sk_buff *sb;
1121
1122 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1123 sb = d->sbdma_ctxtable[idx];
1124 if (sb) {
1125 dev_kfree_skb(sb);
1126 d->sbdma_ctxtable[idx] = NULL;
1127 }
1128 }
1129 }
1130
1131
1132 /**********************************************************************
1133 * SBDMA_FILLRING(d)
1134 *
1135 * Fill the specified DMA channel (must be receive channel)
1136 * with sk_buffs
1137 *
1138 * Input parameters:
1139 * d - DMA channel
1140 *
1141 * Return value:
1142 * nothing
1143 ********************************************************************* */
1144
1145 static void sbdma_fillring(sbmacdma_t *d)
1146 {
1147 int idx;
1148
1149 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1150 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1151 break;
1152 }
1153 }
1154
1155 #ifdef CONFIG_NET_POLL_CONTROLLER
1156 static void sbmac_netpoll(struct net_device *netdev)
1157 {
1158 struct sbmac_softc *sc = netdev_priv(netdev);
1159 int irq = sc->sbm_dev->irq;
1160
1161 __raw_writeq(0, sc->sbm_imr);
1162
1163 sbmac_intr(irq, netdev);
1164
1165 #ifdef CONFIG_SBMAC_COALESCE
1166 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1167 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1168 sc->sbm_imr);
1169 #else
1170 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1171 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1172 #endif
1173 }
1174 #endif
1175
1176 /**********************************************************************
1177 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1178 *
1179 * Process "completed" receive buffers on the specified DMA channel.
1180 *
1181 * Input parameters:
1182 * sc - softc structure
1183 * d - DMA channel context
1184 * work_to_do - no. of packets to process before enabling interrupt
1185 * again (for NAPI)
1186 * poll - 1: using polling (for NAPI)
1187 *
1188 * Return value:
1189 * nothing
1190 ********************************************************************* */
1191
1192 static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d,
1193 int work_to_do, int poll)
1194 {
1195 int curidx;
1196 int hwidx;
1197 sbdmadscr_t *dsc;
1198 struct sk_buff *sb;
1199 int len;
1200 int work_done = 0;
1201 int dropped = 0;
1202
1203 prefetch(d);
1204
1205 again:
1206 /* Check if the HW dropped any frames */
1207 sc->sbm_stats.rx_fifo_errors
1208 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1209 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1210
1211 while (work_to_do-- > 0) {
1212 /*
1213 * figure out where we are (as an index) and where
1214 * the hardware is (also as an index)
1215 *
1216 * This could be done faster if (for example) the
1217 * descriptor table was page-aligned and contiguous in
1218 * both virtual and physical memory -- you could then
1219 * just compare the low-order bits of the virtual address
1220 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1221 */
1222
1223 dsc = d->sbdma_remptr;
1224 curidx = dsc - d->sbdma_dscrtable;
1225
1226 prefetch(dsc);
1227 prefetch(&d->sbdma_ctxtable[curidx]);
1228
1229 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1230 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1231
1232 /*
1233 * If they're the same, that means we've processed all
1234 * of the descriptors up to (but not including) the one that
1235 * the hardware is working on right now.
1236 */
1237
1238 if (curidx == hwidx)
1239 goto done;
1240
1241 /*
1242 * Otherwise, get the packet's sk_buff ptr back
1243 */
1244
1245 sb = d->sbdma_ctxtable[curidx];
1246 d->sbdma_ctxtable[curidx] = NULL;
1247
1248 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1249
1250 /*
1251 * Check packet status. If good, process it.
1252 * If not, silently drop it and put it back on the
1253 * receive ring.
1254 */
1255
1256 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1257
1258 /*
1259 * Add a new buffer to replace the old one. If we fail
1260 * to allocate a buffer, we're going to drop this
1261 * packet and put it right back on the receive ring.
1262 */
1263
1264 if (unlikely (sbdma_add_rcvbuffer(d,NULL) ==
1265 -ENOBUFS)) {
1266 sc->sbm_stats.rx_dropped++;
1267 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1268 /* No point in continuing at the moment */
1269 printk(KERN_ERR "dropped packet (1)\n");
1270 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1271 goto done;
1272 } else {
1273 /*
1274 * Set length into the packet
1275 */
1276 skb_put(sb,len);
1277
1278 /*
1279 * Buffer has been replaced on the
1280 * receive ring. Pass the buffer to
1281 * the kernel
1282 */
1283 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1284 /* Check hw IPv4/TCP checksum if supported */
1285 if (sc->rx_hw_checksum == ENABLE) {
1286 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1287 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1288 sb->ip_summed = CHECKSUM_UNNECESSARY;
1289 /* don't need to set sb->csum */
1290 } else {
1291 sb->ip_summed = CHECKSUM_NONE;
1292 }
1293 }
1294 prefetch(sb->data);
1295 prefetch((const void *)(((char *)sb->data)+32));
1296 if (poll)
1297 dropped = netif_receive_skb(sb);
1298 else
1299 dropped = netif_rx(sb);
1300
1301 if (dropped == NET_RX_DROP) {
1302 sc->sbm_stats.rx_dropped++;
1303 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1304 goto done;
1305 }
1306 else {
1307 sc->sbm_stats.rx_bytes += len;
1308 sc->sbm_stats.rx_packets++;
1309 }
1310 }
1311 } else {
1312 /*
1313 * Packet was mangled somehow. Just drop it and
1314 * put it back on the receive ring.
1315 */
1316 sc->sbm_stats.rx_errors++;
1317 sbdma_add_rcvbuffer(d,sb);
1318 }
1319
1320
1321 /*
1322 * .. and advance to the next buffer.
1323 */
1324
1325 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1326 work_done++;
1327 }
1328 if (!poll) {
1329 work_to_do = 32;
1330 goto again; /* collect fifo drop statistics again */
1331 }
1332 done:
1333 return work_done;
1334 }
1335
1336 /**********************************************************************
1337 * SBDMA_TX_PROCESS(sc,d)
1338 *
1339 * Process "completed" transmit buffers on the specified DMA channel.
1340 * This is normally called within the interrupt service routine.
1341 * Note that this isn't really ideal for priority channels, since
1342 * it processes all of the packets on a given channel before
1343 * returning.
1344 *
1345 * Input parameters:
1346 * sc - softc structure
1347 * d - DMA channel context
1348 * poll - 1: using polling (for NAPI)
1349 *
1350 * Return value:
1351 * nothing
1352 ********************************************************************* */
1353
1354 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll)
1355 {
1356 int curidx;
1357 int hwidx;
1358 sbdmadscr_t *dsc;
1359 struct sk_buff *sb;
1360 unsigned long flags;
1361 int packets_handled = 0;
1362
1363 spin_lock_irqsave(&(sc->sbm_lock), flags);
1364
1365 if (d->sbdma_remptr == d->sbdma_addptr)
1366 goto end_unlock;
1367
1368 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1369 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1370
1371 for (;;) {
1372 /*
1373 * figure out where we are (as an index) and where
1374 * the hardware is (also as an index)
1375 *
1376 * This could be done faster if (for example) the
1377 * descriptor table was page-aligned and contiguous in
1378 * both virtual and physical memory -- you could then
1379 * just compare the low-order bits of the virtual address
1380 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1381 */
1382
1383 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1384
1385 /*
1386 * If they're the same, that means we've processed all
1387 * of the descriptors up to (but not including) the one that
1388 * the hardware is working on right now.
1389 */
1390
1391 if (curidx == hwidx)
1392 break;
1393
1394 /*
1395 * Otherwise, get the packet's sk_buff ptr back
1396 */
1397
1398 dsc = &(d->sbdma_dscrtable[curidx]);
1399 sb = d->sbdma_ctxtable[curidx];
1400 d->sbdma_ctxtable[curidx] = NULL;
1401
1402 /*
1403 * Stats
1404 */
1405
1406 sc->sbm_stats.tx_bytes += sb->len;
1407 sc->sbm_stats.tx_packets++;
1408
1409 /*
1410 * for transmits, we just free buffers.
1411 */
1412
1413 dev_kfree_skb_irq(sb);
1414
1415 /*
1416 * .. and advance to the next buffer.
1417 */
1418
1419 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1420
1421 packets_handled++;
1422
1423 }
1424
1425 /*
1426 * Decide if we should wake up the protocol or not.
1427 * Other drivers seem to do this when we reach a low
1428 * watermark on the transmit queue.
1429 */
1430
1431 if (packets_handled)
1432 netif_wake_queue(d->sbdma_eth->sbm_dev);
1433
1434 end_unlock:
1435 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1436
1437 }
1438
1439
1440
1441 /**********************************************************************
1442 * SBMAC_INITCTX(s)
1443 *
1444 * Initialize an Ethernet context structure - this is called
1445 * once per MAC on the 1250. Memory is allocated here, so don't
1446 * call it again from inside the ioctl routines that bring the
1447 * interface up/down
1448 *
1449 * Input parameters:
1450 * s - sbmac context structure
1451 *
1452 * Return value:
1453 * 0
1454 ********************************************************************* */
1455
1456 static int sbmac_initctx(struct sbmac_softc *s)
1457 {
1458
1459 /*
1460 * figure out the addresses of some ports
1461 */
1462
1463 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1464 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1465 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1466 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1467 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1468 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1469 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1470 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1471
1472 s->sbm_phys[0] = 1;
1473 s->sbm_phys[1] = 0;
1474
1475 s->sbm_phy_oldbmsr = 0;
1476 s->sbm_phy_oldanlpar = 0;
1477 s->sbm_phy_oldk1stsr = 0;
1478 s->sbm_phy_oldlinkstat = 0;
1479
1480 /*
1481 * Initialize the DMA channels. Right now, only one per MAC is used
1482 * Note: Only do this _once_, as it allocates memory from the kernel!
1483 */
1484
1485 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1486 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1487
1488 /*
1489 * initial state is OFF
1490 */
1491
1492 s->sbm_state = sbmac_state_off;
1493
1494 /*
1495 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1496 */
1497
1498 s->sbm_speed = sbmac_speed_10;
1499 s->sbm_duplex = sbmac_duplex_half;
1500 s->sbm_fc = sbmac_fc_disabled;
1501
1502 return 0;
1503 }
1504
1505
1506 static void sbdma_uninitctx(struct sbmacdma_s *d)
1507 {
1508 if (d->sbdma_dscrtable_unaligned) {
1509 kfree(d->sbdma_dscrtable_unaligned);
1510 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1511 }
1512
1513 if (d->sbdma_ctxtable) {
1514 kfree(d->sbdma_ctxtable);
1515 d->sbdma_ctxtable = NULL;
1516 }
1517 }
1518
1519
1520 static void sbmac_uninitctx(struct sbmac_softc *sc)
1521 {
1522 sbdma_uninitctx(&(sc->sbm_txdma));
1523 sbdma_uninitctx(&(sc->sbm_rxdma));
1524 }
1525
1526
1527 /**********************************************************************
1528 * SBMAC_CHANNEL_START(s)
1529 *
1530 * Start packet processing on this MAC.
1531 *
1532 * Input parameters:
1533 * s - sbmac structure
1534 *
1535 * Return value:
1536 * nothing
1537 ********************************************************************* */
1538
1539 static void sbmac_channel_start(struct sbmac_softc *s)
1540 {
1541 uint64_t reg;
1542 volatile void __iomem *port;
1543 uint64_t cfg,fifo,framecfg;
1544 int idx, th_value;
1545
1546 /*
1547 * Don't do this if running
1548 */
1549
1550 if (s->sbm_state == sbmac_state_on)
1551 return;
1552
1553 /*
1554 * Bring the controller out of reset, but leave it off.
1555 */
1556
1557 __raw_writeq(0, s->sbm_macenable);
1558
1559 /*
1560 * Ignore all received packets
1561 */
1562
1563 __raw_writeq(0, s->sbm_rxfilter);
1564
1565 /*
1566 * Calculate values for various control registers.
1567 */
1568
1569 cfg = M_MAC_RETRY_EN |
1570 M_MAC_TX_HOLD_SOP_EN |
1571 V_MAC_TX_PAUSE_CNT_16K |
1572 M_MAC_AP_STAT_EN |
1573 M_MAC_FAST_SYNC |
1574 M_MAC_SS_EN |
1575 0;
1576
1577 /*
1578 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1579 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1580 * Use a larger RD_THRSH for gigabit
1581 */
1582 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1583 th_value = 28;
1584 else
1585 th_value = 64;
1586
1587 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1588 ((s->sbm_speed == sbmac_speed_1000)
1589 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1590 V_MAC_TX_RL_THRSH(4) |
1591 V_MAC_RX_PL_THRSH(4) |
1592 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1593 V_MAC_RX_PL_THRSH(4) |
1594 V_MAC_RX_RL_THRSH(8) |
1595 0;
1596
1597 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1598 V_MAC_MAX_FRAMESZ_DEFAULT |
1599 V_MAC_BACKOFF_SEL(1);
1600
1601 /*
1602 * Clear out the hash address map
1603 */
1604
1605 port = s->sbm_base + R_MAC_HASH_BASE;
1606 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1607 __raw_writeq(0, port);
1608 port += sizeof(uint64_t);
1609 }
1610
1611 /*
1612 * Clear out the exact-match table
1613 */
1614
1615 port = s->sbm_base + R_MAC_ADDR_BASE;
1616 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1617 __raw_writeq(0, port);
1618 port += sizeof(uint64_t);
1619 }
1620
1621 /*
1622 * Clear out the DMA Channel mapping table registers
1623 */
1624
1625 port = s->sbm_base + R_MAC_CHUP0_BASE;
1626 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1627 __raw_writeq(0, port);
1628 port += sizeof(uint64_t);
1629 }
1630
1631
1632 port = s->sbm_base + R_MAC_CHLO0_BASE;
1633 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1634 __raw_writeq(0, port);
1635 port += sizeof(uint64_t);
1636 }
1637
1638 /*
1639 * Program the hardware address. It goes into the hardware-address
1640 * register as well as the first filter register.
1641 */
1642
1643 reg = sbmac_addr2reg(s->sbm_hwaddr);
1644
1645 port = s->sbm_base + R_MAC_ADDR_BASE;
1646 __raw_writeq(reg, port);
1647 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1648
1649 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1650 /*
1651 * Pass1 SOCs do not receive packets addressed to the
1652 * destination address in the R_MAC_ETHERNET_ADDR register.
1653 * Set the value to zero.
1654 */
1655 __raw_writeq(0, port);
1656 #else
1657 __raw_writeq(reg, port);
1658 #endif
1659
1660 /*
1661 * Set the receive filter for no packets, and write values
1662 * to the various config registers
1663 */
1664
1665 __raw_writeq(0, s->sbm_rxfilter);
1666 __raw_writeq(0, s->sbm_imr);
1667 __raw_writeq(framecfg, s->sbm_framecfg);
1668 __raw_writeq(fifo, s->sbm_fifocfg);
1669 __raw_writeq(cfg, s->sbm_maccfg);
1670
1671 /*
1672 * Initialize DMA channels (rings should be ok now)
1673 */
1674
1675 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1676 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1677
1678 /*
1679 * Configure the speed, duplex, and flow control
1680 */
1681
1682 sbmac_set_speed(s,s->sbm_speed);
1683 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1684
1685 /*
1686 * Fill the receive ring
1687 */
1688
1689 sbdma_fillring(&(s->sbm_rxdma));
1690
1691 /*
1692 * Turn on the rest of the bits in the enable register
1693 */
1694
1695 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1696 __raw_writeq(M_MAC_RXDMA_EN0 |
1697 M_MAC_TXDMA_EN0, s->sbm_macenable);
1698 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1699 __raw_writeq(M_MAC_RXDMA_EN0 |
1700 M_MAC_TXDMA_EN0 |
1701 M_MAC_RX_ENABLE |
1702 M_MAC_TX_ENABLE, s->sbm_macenable);
1703 #else
1704 #error invalid SiByte MAC configuation
1705 #endif
1706
1707 #ifdef CONFIG_SBMAC_COALESCE
1708 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1709 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1710 #else
1711 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1712 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1713 #endif
1714
1715 /*
1716 * Enable receiving unicasts and broadcasts
1717 */
1718
1719 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1720
1721 /*
1722 * we're running now.
1723 */
1724
1725 s->sbm_state = sbmac_state_on;
1726
1727 /*
1728 * Program multicast addresses
1729 */
1730
1731 sbmac_setmulti(s);
1732
1733 /*
1734 * If channel was in promiscuous mode before, turn that on
1735 */
1736
1737 if (s->sbm_devflags & IFF_PROMISC) {
1738 sbmac_promiscuous_mode(s,1);
1739 }
1740
1741 }
1742
1743
1744 /**********************************************************************
1745 * SBMAC_CHANNEL_STOP(s)
1746 *
1747 * Stop packet processing on this MAC.
1748 *
1749 * Input parameters:
1750 * s - sbmac structure
1751 *
1752 * Return value:
1753 * nothing
1754 ********************************************************************* */
1755
1756 static void sbmac_channel_stop(struct sbmac_softc *s)
1757 {
1758 /* don't do this if already stopped */
1759
1760 if (s->sbm_state == sbmac_state_off)
1761 return;
1762
1763 /* don't accept any packets, disable all interrupts */
1764
1765 __raw_writeq(0, s->sbm_rxfilter);
1766 __raw_writeq(0, s->sbm_imr);
1767
1768 /* Turn off ticker */
1769
1770 /* XXX */
1771
1772 /* turn off receiver and transmitter */
1773
1774 __raw_writeq(0, s->sbm_macenable);
1775
1776 /* We're stopped now. */
1777
1778 s->sbm_state = sbmac_state_off;
1779
1780 /*
1781 * Stop DMA channels (rings should be ok now)
1782 */
1783
1784 sbdma_channel_stop(&(s->sbm_rxdma));
1785 sbdma_channel_stop(&(s->sbm_txdma));
1786
1787 /* Empty the receive and transmit rings */
1788
1789 sbdma_emptyring(&(s->sbm_rxdma));
1790 sbdma_emptyring(&(s->sbm_txdma));
1791
1792 }
1793
1794 /**********************************************************************
1795 * SBMAC_SET_CHANNEL_STATE(state)
1796 *
1797 * Set the channel's state ON or OFF
1798 *
1799 * Input parameters:
1800 * state - new state
1801 *
1802 * Return value:
1803 * old state
1804 ********************************************************************* */
1805 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1806 sbmac_state_t state)
1807 {
1808 sbmac_state_t oldstate = sc->sbm_state;
1809
1810 /*
1811 * If same as previous state, return
1812 */
1813
1814 if (state == oldstate) {
1815 return oldstate;
1816 }
1817
1818 /*
1819 * If new state is ON, turn channel on
1820 */
1821
1822 if (state == sbmac_state_on) {
1823 sbmac_channel_start(sc);
1824 }
1825 else {
1826 sbmac_channel_stop(sc);
1827 }
1828
1829 /*
1830 * Return previous state
1831 */
1832
1833 return oldstate;
1834 }
1835
1836
1837 /**********************************************************************
1838 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1839 *
1840 * Turn on or off promiscuous mode
1841 *
1842 * Input parameters:
1843 * sc - softc
1844 * onoff - 1 to turn on, 0 to turn off
1845 *
1846 * Return value:
1847 * nothing
1848 ********************************************************************* */
1849
1850 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1851 {
1852 uint64_t reg;
1853
1854 if (sc->sbm_state != sbmac_state_on)
1855 return;
1856
1857 if (onoff) {
1858 reg = __raw_readq(sc->sbm_rxfilter);
1859 reg |= M_MAC_ALLPKT_EN;
1860 __raw_writeq(reg, sc->sbm_rxfilter);
1861 }
1862 else {
1863 reg = __raw_readq(sc->sbm_rxfilter);
1864 reg &= ~M_MAC_ALLPKT_EN;
1865 __raw_writeq(reg, sc->sbm_rxfilter);
1866 }
1867 }
1868
1869 /**********************************************************************
1870 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1871 *
1872 * Set the iphdr offset as 15 assuming ethernet encapsulation
1873 *
1874 * Input parameters:
1875 * sc - softc
1876 *
1877 * Return value:
1878 * nothing
1879 ********************************************************************* */
1880
1881 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1882 {
1883 uint64_t reg;
1884
1885 /* Hard code the off set to 15 for now */
1886 reg = __raw_readq(sc->sbm_rxfilter);
1887 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1888 __raw_writeq(reg, sc->sbm_rxfilter);
1889
1890 /* BCM1250 pass1 didn't have hardware checksum. Everything
1891 later does. */
1892 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1893 sc->rx_hw_checksum = DISABLE;
1894 } else {
1895 sc->rx_hw_checksum = ENABLE;
1896 }
1897 }
1898
1899
1900 /**********************************************************************
1901 * SBMAC_ADDR2REG(ptr)
1902 *
1903 * Convert six bytes into the 64-bit register value that
1904 * we typically write into the SBMAC's address/mcast registers
1905 *
1906 * Input parameters:
1907 * ptr - pointer to 6 bytes
1908 *
1909 * Return value:
1910 * register value
1911 ********************************************************************* */
1912
1913 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1914 {
1915 uint64_t reg = 0;
1916
1917 ptr += 6;
1918
1919 reg |= (uint64_t) *(--ptr);
1920 reg <<= 8;
1921 reg |= (uint64_t) *(--ptr);
1922 reg <<= 8;
1923 reg |= (uint64_t) *(--ptr);
1924 reg <<= 8;
1925 reg |= (uint64_t) *(--ptr);
1926 reg <<= 8;
1927 reg |= (uint64_t) *(--ptr);
1928 reg <<= 8;
1929 reg |= (uint64_t) *(--ptr);
1930
1931 return reg;
1932 }
1933
1934
1935 /**********************************************************************
1936 * SBMAC_SET_SPEED(s,speed)
1937 *
1938 * Configure LAN speed for the specified MAC.
1939 * Warning: must be called when MAC is off!
1940 *
1941 * Input parameters:
1942 * s - sbmac structure
1943 * speed - speed to set MAC to (see sbmac_speed_t enum)
1944 *
1945 * Return value:
1946 * 1 if successful
1947 * 0 indicates invalid parameters
1948 ********************************************************************* */
1949
1950 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1951 {
1952 uint64_t cfg;
1953 uint64_t framecfg;
1954
1955 /*
1956 * Save new current values
1957 */
1958
1959 s->sbm_speed = speed;
1960
1961 if (s->sbm_state == sbmac_state_on)
1962 return 0; /* save for next restart */
1963
1964 /*
1965 * Read current register values
1966 */
1967
1968 cfg = __raw_readq(s->sbm_maccfg);
1969 framecfg = __raw_readq(s->sbm_framecfg);
1970
1971 /*
1972 * Mask out the stuff we want to change
1973 */
1974
1975 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1976 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1977 M_MAC_SLOT_SIZE);
1978
1979 /*
1980 * Now add in the new bits
1981 */
1982
1983 switch (speed) {
1984 case sbmac_speed_10:
1985 framecfg |= V_MAC_IFG_RX_10 |
1986 V_MAC_IFG_TX_10 |
1987 K_MAC_IFG_THRSH_10 |
1988 V_MAC_SLOT_SIZE_10;
1989 cfg |= V_MAC_SPEED_SEL_10MBPS;
1990 break;
1991
1992 case sbmac_speed_100:
1993 framecfg |= V_MAC_IFG_RX_100 |
1994 V_MAC_IFG_TX_100 |
1995 V_MAC_IFG_THRSH_100 |
1996 V_MAC_SLOT_SIZE_100;
1997 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1998 break;
1999
2000 case sbmac_speed_1000:
2001 framecfg |= V_MAC_IFG_RX_1000 |
2002 V_MAC_IFG_TX_1000 |
2003 V_MAC_IFG_THRSH_1000 |
2004 V_MAC_SLOT_SIZE_1000;
2005 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
2006 break;
2007
2008 case sbmac_speed_auto: /* XXX not implemented */
2009 /* fall through */
2010 default:
2011 return 0;
2012 }
2013
2014 /*
2015 * Send the bits back to the hardware
2016 */
2017
2018 __raw_writeq(framecfg, s->sbm_framecfg);
2019 __raw_writeq(cfg, s->sbm_maccfg);
2020
2021 return 1;
2022 }
2023
2024 /**********************************************************************
2025 * SBMAC_SET_DUPLEX(s,duplex,fc)
2026 *
2027 * Set Ethernet duplex and flow control options for this MAC
2028 * Warning: must be called when MAC is off!
2029 *
2030 * Input parameters:
2031 * s - sbmac structure
2032 * duplex - duplex setting (see sbmac_duplex_t)
2033 * fc - flow control setting (see sbmac_fc_t)
2034 *
2035 * Return value:
2036 * 1 if ok
2037 * 0 if an invalid parameter combination was specified
2038 ********************************************************************* */
2039
2040 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
2041 {
2042 uint64_t cfg;
2043
2044 /*
2045 * Save new current values
2046 */
2047
2048 s->sbm_duplex = duplex;
2049 s->sbm_fc = fc;
2050
2051 if (s->sbm_state == sbmac_state_on)
2052 return 0; /* save for next restart */
2053
2054 /*
2055 * Read current register values
2056 */
2057
2058 cfg = __raw_readq(s->sbm_maccfg);
2059
2060 /*
2061 * Mask off the stuff we're about to change
2062 */
2063
2064 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
2065
2066
2067 switch (duplex) {
2068 case sbmac_duplex_half:
2069 switch (fc) {
2070 case sbmac_fc_disabled:
2071 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
2072 break;
2073
2074 case sbmac_fc_collision:
2075 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
2076 break;
2077
2078 case sbmac_fc_carrier:
2079 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
2080 break;
2081
2082 case sbmac_fc_auto: /* XXX not implemented */
2083 /* fall through */
2084 case sbmac_fc_frame: /* not valid in half duplex */
2085 default: /* invalid selection */
2086 return 0;
2087 }
2088 break;
2089
2090 case sbmac_duplex_full:
2091 switch (fc) {
2092 case sbmac_fc_disabled:
2093 cfg |= V_MAC_FC_CMD_DISABLED;
2094 break;
2095
2096 case sbmac_fc_frame:
2097 cfg |= V_MAC_FC_CMD_ENABLED;
2098 break;
2099
2100 case sbmac_fc_collision: /* not valid in full duplex */
2101 case sbmac_fc_carrier: /* not valid in full duplex */
2102 case sbmac_fc_auto: /* XXX not implemented */
2103 /* fall through */
2104 default:
2105 return 0;
2106 }
2107 break;
2108 case sbmac_duplex_auto:
2109 /* XXX not implemented */
2110 break;
2111 }
2112
2113 /*
2114 * Send the bits back to the hardware
2115 */
2116
2117 __raw_writeq(cfg, s->sbm_maccfg);
2118
2119 return 1;
2120 }
2121
2122
2123
2124
2125 /**********************************************************************
2126 * SBMAC_INTR()
2127 *
2128 * Interrupt handler for MAC interrupts
2129 *
2130 * Input parameters:
2131 * MAC structure
2132 *
2133 * Return value:
2134 * nothing
2135 ********************************************************************* */
2136 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
2137 {
2138 struct net_device *dev = (struct net_device *) dev_instance;
2139 struct sbmac_softc *sc = netdev_priv(dev);
2140 uint64_t isr;
2141 int handled = 0;
2142
2143 /*
2144 * Read the ISR (this clears the bits in the real
2145 * register, except for counter addr)
2146 */
2147
2148 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2149
2150 if (isr == 0)
2151 return IRQ_RETVAL(0);
2152 handled = 1;
2153
2154 /*
2155 * Transmits on channel 0
2156 */
2157
2158 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2159 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2160
2161 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2162 if (netif_rx_schedule_prep(dev, &sc->napi)) {
2163 __raw_writeq(0, sc->sbm_imr);
2164 __netif_rx_schedule(dev, &sc->napi);
2165 /* Depend on the exit from poll to reenable intr */
2166 }
2167 else {
2168 /* may leave some packets behind */
2169 sbdma_rx_process(sc,&(sc->sbm_rxdma),
2170 SBMAC_MAX_RXDESCR * 2, 0);
2171 }
2172 }
2173 return IRQ_RETVAL(handled);
2174 }
2175
2176 /**********************************************************************
2177 * SBMAC_START_TX(skb,dev)
2178 *
2179 * Start output on the specified interface. Basically, we
2180 * queue as many buffers as we can until the ring fills up, or
2181 * we run off the end of the queue, whichever comes first.
2182 *
2183 * Input parameters:
2184 *
2185 *
2186 * Return value:
2187 * nothing
2188 ********************************************************************* */
2189 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2190 {
2191 struct sbmac_softc *sc = netdev_priv(dev);
2192
2193 /* lock eth irq */
2194 spin_lock_irq (&sc->sbm_lock);
2195
2196 /*
2197 * Put the buffer on the transmit ring. If we
2198 * don't have room, stop the queue.
2199 */
2200
2201 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2202 /* XXX save skb that we could not send */
2203 netif_stop_queue(dev);
2204 spin_unlock_irq(&sc->sbm_lock);
2205
2206 return 1;
2207 }
2208
2209 dev->trans_start = jiffies;
2210
2211 spin_unlock_irq (&sc->sbm_lock);
2212
2213 return 0;
2214 }
2215
2216 /**********************************************************************
2217 * SBMAC_SETMULTI(sc)
2218 *
2219 * Reprogram the multicast table into the hardware, given
2220 * the list of multicasts associated with the interface
2221 * structure.
2222 *
2223 * Input parameters:
2224 * sc - softc
2225 *
2226 * Return value:
2227 * nothing
2228 ********************************************************************* */
2229
2230 static void sbmac_setmulti(struct sbmac_softc *sc)
2231 {
2232 uint64_t reg;
2233 volatile void __iomem *port;
2234 int idx;
2235 struct dev_mc_list *mclist;
2236 struct net_device *dev = sc->sbm_dev;
2237
2238 /*
2239 * Clear out entire multicast table. We do this by nuking
2240 * the entire hash table and all the direct matches except
2241 * the first one, which is used for our station address
2242 */
2243
2244 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2245 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2246 __raw_writeq(0, port);
2247 }
2248
2249 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2250 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2251 __raw_writeq(0, port);
2252 }
2253
2254 /*
2255 * Clear the filter to say we don't want any multicasts.
2256 */
2257
2258 reg = __raw_readq(sc->sbm_rxfilter);
2259 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2260 __raw_writeq(reg, sc->sbm_rxfilter);
2261
2262 if (dev->flags & IFF_ALLMULTI) {
2263 /*
2264 * Enable ALL multicasts. Do this by inverting the
2265 * multicast enable bit.
2266 */
2267 reg = __raw_readq(sc->sbm_rxfilter);
2268 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2269 __raw_writeq(reg, sc->sbm_rxfilter);
2270 return;
2271 }
2272
2273
2274 /*
2275 * Progam new multicast entries. For now, only use the
2276 * perfect filter. In the future we'll need to use the
2277 * hash filter if the perfect filter overflows
2278 */
2279
2280 /* XXX only using perfect filter for now, need to use hash
2281 * XXX if the table overflows */
2282
2283 idx = 1; /* skip station address */
2284 mclist = dev->mc_list;
2285 while (mclist && (idx < MAC_ADDR_COUNT)) {
2286 reg = sbmac_addr2reg(mclist->dmi_addr);
2287 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2288 __raw_writeq(reg, port);
2289 idx++;
2290 mclist = mclist->next;
2291 }
2292
2293 /*
2294 * Enable the "accept multicast bits" if we programmed at least one
2295 * multicast.
2296 */
2297
2298 if (idx > 1) {
2299 reg = __raw_readq(sc->sbm_rxfilter);
2300 reg |= M_MAC_MCAST_EN;
2301 __raw_writeq(reg, sc->sbm_rxfilter);
2302 }
2303 }
2304
2305 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2306 /**********************************************************************
2307 * SBMAC_PARSE_XDIGIT(str)
2308 *
2309 * Parse a hex digit, returning its value
2310 *
2311 * Input parameters:
2312 * str - character
2313 *
2314 * Return value:
2315 * hex value, or -1 if invalid
2316 ********************************************************************* */
2317
2318 static int sbmac_parse_xdigit(char str)
2319 {
2320 int digit;
2321
2322 if ((str >= '0') && (str <= '9'))
2323 digit = str - '0';
2324 else if ((str >= 'a') && (str <= 'f'))
2325 digit = str - 'a' + 10;
2326 else if ((str >= 'A') && (str <= 'F'))
2327 digit = str - 'A' + 10;
2328 else
2329 return -1;
2330
2331 return digit;
2332 }
2333
2334 /**********************************************************************
2335 * SBMAC_PARSE_HWADDR(str,hwaddr)
2336 *
2337 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2338 * Ethernet address.
2339 *
2340 * Input parameters:
2341 * str - string
2342 * hwaddr - pointer to hardware address
2343 *
2344 * Return value:
2345 * 0 if ok, else -1
2346 ********************************************************************* */
2347
2348 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2349 {
2350 int digit1,digit2;
2351 int idx = 6;
2352
2353 while (*str && (idx > 0)) {
2354 digit1 = sbmac_parse_xdigit(*str);
2355 if (digit1 < 0)
2356 return -1;
2357 str++;
2358 if (!*str)
2359 return -1;
2360
2361 if ((*str == ':') || (*str == '-')) {
2362 digit2 = digit1;
2363 digit1 = 0;
2364 }
2365 else {
2366 digit2 = sbmac_parse_xdigit(*str);
2367 if (digit2 < 0)
2368 return -1;
2369 str++;
2370 }
2371
2372 *hwaddr++ = (digit1 << 4) | digit2;
2373 idx--;
2374
2375 if (*str == '-')
2376 str++;
2377 if (*str == ':')
2378 str++;
2379 }
2380 return 0;
2381 }
2382 #endif
2383
2384 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2385 {
2386 if (new_mtu > ENET_PACKET_SIZE)
2387 return -EINVAL;
2388 _dev->mtu = new_mtu;
2389 printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2390 return 0;
2391 }
2392
2393 /**********************************************************************
2394 * SBMAC_INIT(dev)
2395 *
2396 * Attach routine - init hardware and hook ourselves into linux
2397 *
2398 * Input parameters:
2399 * dev - net_device structure
2400 *
2401 * Return value:
2402 * status
2403 ********************************************************************* */
2404
2405 static int sbmac_init(struct net_device *dev, int idx)
2406 {
2407 struct sbmac_softc *sc;
2408 unsigned char *eaddr;
2409 uint64_t ea_reg;
2410 int i;
2411 int err;
2412
2413 sc = netdev_priv(dev);
2414
2415 /* Determine controller base address */
2416
2417 sc->sbm_base = IOADDR(dev->base_addr);
2418 sc->sbm_dev = dev;
2419 sc->sbe_idx = idx;
2420
2421 eaddr = sc->sbm_hwaddr;
2422
2423 /*
2424 * Read the ethernet address. The firwmare left this programmed
2425 * for us in the ethernet address register for each mac.
2426 */
2427
2428 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2429 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2430 for (i = 0; i < 6; i++) {
2431 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2432 ea_reg >>= 8;
2433 }
2434
2435 for (i = 0; i < 6; i++) {
2436 dev->dev_addr[i] = eaddr[i];
2437 }
2438
2439
2440 /*
2441 * Init packet size
2442 */
2443
2444 sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2445
2446 /*
2447 * Initialize context (get pointers to registers and stuff), then
2448 * allocate the memory for the descriptor tables.
2449 */
2450
2451 sbmac_initctx(sc);
2452
2453 /*
2454 * Set up Linux device callins
2455 */
2456
2457 spin_lock_init(&(sc->sbm_lock));
2458
2459 dev->open = sbmac_open;
2460 dev->hard_start_xmit = sbmac_start_tx;
2461 dev->stop = sbmac_close;
2462 dev->get_stats = sbmac_get_stats;
2463 dev->set_multicast_list = sbmac_set_rx_mode;
2464 dev->do_ioctl = sbmac_mii_ioctl;
2465 dev->tx_timeout = sbmac_tx_timeout;
2466 dev->watchdog_timeo = TX_TIMEOUT;
2467
2468 netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2469
2470 dev->change_mtu = sb1250_change_mtu;
2471 #ifdef CONFIG_NET_POLL_CONTROLLER
2472 dev->poll_controller = sbmac_netpoll;
2473 #endif
2474
2475 /* This is needed for PASS2 for Rx H/W checksum feature */
2476 sbmac_set_iphdr_offset(sc);
2477
2478 err = register_netdev(dev);
2479 if (err)
2480 goto out_uninit;
2481
2482 if (sc->rx_hw_checksum == ENABLE) {
2483 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
2484 sc->sbm_dev->name);
2485 }
2486
2487 /*
2488 * Display Ethernet address (this is called during the config
2489 * process so we need to finish off the config message that
2490 * was being displayed)
2491 */
2492 printk(KERN_INFO
2493 "%s: SiByte Ethernet at 0x%08lX, address: %02X:%02X:%02X:%02X:%02X:%02X\n",
2494 dev->name, dev->base_addr,
2495 eaddr[0],eaddr[1],eaddr[2],eaddr[3],eaddr[4],eaddr[5]);
2496
2497
2498 return 0;
2499
2500 out_uninit:
2501 sbmac_uninitctx(sc);
2502
2503 return err;
2504 }
2505
2506
2507 static int sbmac_open(struct net_device *dev)
2508 {
2509 struct sbmac_softc *sc = netdev_priv(dev);
2510
2511 if (debug > 1) {
2512 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2513 }
2514
2515 /*
2516 * map/route interrupt (clear status first, in case something
2517 * weird is pending; we haven't initialized the mac registers
2518 * yet)
2519 */
2520
2521 __raw_readq(sc->sbm_isr);
2522 if (request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev))
2523 return -EBUSY;
2524
2525 /*
2526 * Probe phy address
2527 */
2528
2529 if(sbmac_mii_probe(dev) == -1) {
2530 printk("%s: failed to probe PHY.\n", dev->name);
2531 return -EINVAL;
2532 }
2533
2534 napi_enable(&sc->napi);
2535
2536 /*
2537 * Configure default speed
2538 */
2539
2540 sbmac_mii_poll(sc,noisy_mii);
2541
2542 /*
2543 * Turn on the channel
2544 */
2545
2546 sbmac_set_channel_state(sc,sbmac_state_on);
2547
2548 /*
2549 * XXX Station address is in dev->dev_addr
2550 */
2551
2552 if (dev->if_port == 0)
2553 dev->if_port = 0;
2554
2555 netif_start_queue(dev);
2556
2557 sbmac_set_rx_mode(dev);
2558
2559 /* Set the timer to check for link beat. */
2560 init_timer(&sc->sbm_timer);
2561 sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2562 sc->sbm_timer.data = (unsigned long)dev;
2563 sc->sbm_timer.function = &sbmac_timer;
2564 add_timer(&sc->sbm_timer);
2565
2566 return 0;
2567 }
2568
2569 static int sbmac_mii_probe(struct net_device *dev)
2570 {
2571 int i;
2572 struct sbmac_softc *s = netdev_priv(dev);
2573 u16 bmsr, id1, id2;
2574 u32 vendor, device;
2575
2576 for (i=1; i<31; i++) {
2577 bmsr = sbmac_mii_read(s, i, MII_BMSR);
2578 if (bmsr != 0) {
2579 s->sbm_phys[0] = i;
2580 id1 = sbmac_mii_read(s, i, MII_PHYIDR1);
2581 id2 = sbmac_mii_read(s, i, MII_PHYIDR2);
2582 vendor = ((u32)id1 << 6) | ((id2 >> 10) & 0x3f);
2583 device = (id2 >> 4) & 0x3f;
2584
2585 printk(KERN_INFO "%s: found phy %d, vendor %06x part %02x\n",
2586 dev->name, i, vendor, device);
2587 return i;
2588 }
2589 }
2590 return -1;
2591 }
2592
2593
2594 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2595 {
2596 int bmsr,bmcr,k1stsr,anlpar;
2597 int chg;
2598 char buffer[100];
2599 char *p = buffer;
2600
2601 /* Read the mode status and mode control registers. */
2602 bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2603 bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2604
2605 /* get the link partner status */
2606 anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2607
2608 /* if supported, read the 1000baseT register */
2609 if (bmsr & BMSR_1000BT_XSR) {
2610 k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2611 }
2612 else {
2613 k1stsr = 0;
2614 }
2615
2616 chg = 0;
2617
2618 if ((bmsr & BMSR_LINKSTAT) == 0) {
2619 /*
2620 * If link status is down, clear out old info so that when
2621 * it comes back up it will force us to reconfigure speed
2622 */
2623 s->sbm_phy_oldbmsr = 0;
2624 s->sbm_phy_oldanlpar = 0;
2625 s->sbm_phy_oldk1stsr = 0;
2626 return 0;
2627 }
2628
2629 if ((s->sbm_phy_oldbmsr != bmsr) ||
2630 (s->sbm_phy_oldanlpar != anlpar) ||
2631 (s->sbm_phy_oldk1stsr != k1stsr)) {
2632 if (debug > 1) {
2633 printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x k1stsr:%x/%x\n",
2634 s->sbm_dev->name,
2635 s->sbm_phy_oldbmsr,bmsr,
2636 s->sbm_phy_oldanlpar,anlpar,
2637 s->sbm_phy_oldk1stsr,k1stsr);
2638 }
2639 s->sbm_phy_oldbmsr = bmsr;
2640 s->sbm_phy_oldanlpar = anlpar;
2641 s->sbm_phy_oldk1stsr = k1stsr;
2642 chg = 1;
2643 }
2644
2645 if (chg == 0)
2646 return 0;
2647
2648 p += sprintf(p,"Link speed: ");
2649
2650 if (k1stsr & K1STSR_LP1KFD) {
2651 s->sbm_speed = sbmac_speed_1000;
2652 s->sbm_duplex = sbmac_duplex_full;
2653 s->sbm_fc = sbmac_fc_frame;
2654 p += sprintf(p,"1000BaseT FDX");
2655 }
2656 else if (k1stsr & K1STSR_LP1KHD) {
2657 s->sbm_speed = sbmac_speed_1000;
2658 s->sbm_duplex = sbmac_duplex_half;
2659 s->sbm_fc = sbmac_fc_disabled;
2660 p += sprintf(p,"1000BaseT HDX");
2661 }
2662 else if (anlpar & ANLPAR_TXFD) {
2663 s->sbm_speed = sbmac_speed_100;
2664 s->sbm_duplex = sbmac_duplex_full;
2665 s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2666 p += sprintf(p,"100BaseT FDX");
2667 }
2668 else if (anlpar & ANLPAR_TXHD) {
2669 s->sbm_speed = sbmac_speed_100;
2670 s->sbm_duplex = sbmac_duplex_half;
2671 s->sbm_fc = sbmac_fc_disabled;
2672 p += sprintf(p,"100BaseT HDX");
2673 }
2674 else if (anlpar & ANLPAR_10FD) {
2675 s->sbm_speed = sbmac_speed_10;
2676 s->sbm_duplex = sbmac_duplex_full;
2677 s->sbm_fc = sbmac_fc_frame;
2678 p += sprintf(p,"10BaseT FDX");
2679 }
2680 else if (anlpar & ANLPAR_10HD) {
2681 s->sbm_speed = sbmac_speed_10;
2682 s->sbm_duplex = sbmac_duplex_half;
2683 s->sbm_fc = sbmac_fc_collision;
2684 p += sprintf(p,"10BaseT HDX");
2685 }
2686 else {
2687 p += sprintf(p,"Unknown");
2688 }
2689
2690 if (noisy) {
2691 printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2692 }
2693
2694 return 1;
2695 }
2696
2697
2698 static void sbmac_timer(unsigned long data)
2699 {
2700 struct net_device *dev = (struct net_device *)data;
2701 struct sbmac_softc *sc = netdev_priv(dev);
2702 int next_tick = HZ;
2703 int mii_status;
2704
2705 spin_lock_irq (&sc->sbm_lock);
2706
2707 /* make IFF_RUNNING follow the MII status bit "Link established" */
2708 mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2709
2710 if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2711 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2712 if (mii_status & BMSR_LINKSTAT) {
2713 netif_carrier_on(dev);
2714 }
2715 else {
2716 netif_carrier_off(dev);
2717 }
2718 }
2719
2720 /*
2721 * Poll the PHY to see what speed we should be running at
2722 */
2723
2724 if (sbmac_mii_poll(sc,noisy_mii)) {
2725 if (sc->sbm_state != sbmac_state_off) {
2726 /*
2727 * something changed, restart the channel
2728 */
2729 if (debug > 1) {
2730 printk("%s: restarting channel because speed changed\n",
2731 sc->sbm_dev->name);
2732 }
2733 sbmac_channel_stop(sc);
2734 sbmac_channel_start(sc);
2735 }
2736 }
2737
2738 spin_unlock_irq (&sc->sbm_lock);
2739
2740 sc->sbm_timer.expires = jiffies + next_tick;
2741 add_timer(&sc->sbm_timer);
2742 }
2743
2744
2745 static void sbmac_tx_timeout (struct net_device *dev)
2746 {
2747 struct sbmac_softc *sc = netdev_priv(dev);
2748
2749 spin_lock_irq (&sc->sbm_lock);
2750
2751
2752 dev->trans_start = jiffies;
2753 sc->sbm_stats.tx_errors++;
2754
2755 spin_unlock_irq (&sc->sbm_lock);
2756
2757 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2758 }
2759
2760
2761
2762
2763 static struct net_device_stats *sbmac_get_stats(struct net_device *dev)
2764 {
2765 struct sbmac_softc *sc = netdev_priv(dev);
2766 unsigned long flags;
2767
2768 spin_lock_irqsave(&sc->sbm_lock, flags);
2769
2770 /* XXX update other stats here */
2771
2772 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2773
2774 return &sc->sbm_stats;
2775 }
2776
2777
2778
2779 static void sbmac_set_rx_mode(struct net_device *dev)
2780 {
2781 unsigned long flags;
2782 struct sbmac_softc *sc = netdev_priv(dev);
2783
2784 spin_lock_irqsave(&sc->sbm_lock, flags);
2785 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2786 /*
2787 * Promiscuous changed.
2788 */
2789
2790 if (dev->flags & IFF_PROMISC) {
2791 sbmac_promiscuous_mode(sc,1);
2792 }
2793 else {
2794 sbmac_promiscuous_mode(sc,0);
2795 }
2796 }
2797 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2798
2799 /*
2800 * Program the multicasts. Do this every time.
2801 */
2802
2803 sbmac_setmulti(sc);
2804
2805 }
2806
2807 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2808 {
2809 struct sbmac_softc *sc = netdev_priv(dev);
2810 u16 *data = (u16 *)&rq->ifr_ifru;
2811 unsigned long flags;
2812 int retval;
2813
2814 spin_lock_irqsave(&sc->sbm_lock, flags);
2815 retval = 0;
2816
2817 switch(cmd) {
2818 case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
2819 data[0] = sc->sbm_phys[0] & 0x1f;
2820 /* Fall Through */
2821 case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
2822 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2823 break;
2824 case SIOCDEVPRIVATE+2: /* Write the specified MII register */
2825 if (!capable(CAP_NET_ADMIN)) {
2826 retval = -EPERM;
2827 break;
2828 }
2829 if (debug > 1) {
2830 printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2831 data[0],data[1],data[2]);
2832 }
2833 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2834 break;
2835 default:
2836 retval = -EOPNOTSUPP;
2837 }
2838
2839 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2840 return retval;
2841 }
2842
2843 static int sbmac_close(struct net_device *dev)
2844 {
2845 struct sbmac_softc *sc = netdev_priv(dev);
2846 unsigned long flags;
2847 int irq;
2848
2849 napi_disable(&sc->napi);
2850
2851 sbmac_set_channel_state(sc,sbmac_state_off);
2852
2853 del_timer_sync(&sc->sbm_timer);
2854
2855 spin_lock_irqsave(&sc->sbm_lock, flags);
2856
2857 netif_stop_queue(dev);
2858
2859 if (debug > 1) {
2860 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2861 }
2862
2863 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2864
2865 irq = dev->irq;
2866 synchronize_irq(irq);
2867 free_irq(irq, dev);
2868
2869 sbdma_emptyring(&(sc->sbm_txdma));
2870 sbdma_emptyring(&(sc->sbm_rxdma));
2871
2872 return 0;
2873 }
2874
2875 static int sbmac_poll(struct napi_struct *napi, int budget)
2876 {
2877 struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2878 struct net_device *dev = sc->sbm_dev;
2879 int work_done;
2880
2881 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2882 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2883
2884 if (work_done < budget) {
2885 netif_rx_complete(dev, napi);
2886
2887 #ifdef CONFIG_SBMAC_COALESCE
2888 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2889 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2890 sc->sbm_imr);
2891 #else
2892 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2893 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2894 #endif
2895 }
2896
2897 return work_done;
2898 }
2899
2900 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2901 static void
2902 sbmac_setup_hwaddr(int chan,char *addr)
2903 {
2904 uint8_t eaddr[6];
2905 uint64_t val;
2906 unsigned long port;
2907
2908 port = A_MAC_CHANNEL_BASE(chan);
2909 sbmac_parse_hwaddr(addr,eaddr);
2910 val = sbmac_addr2reg(eaddr);
2911 __raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
2912 val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2913 }
2914 #endif
2915
2916 static struct net_device *dev_sbmac[MAX_UNITS];
2917
2918 static int __init
2919 sbmac_init_module(void)
2920 {
2921 int idx;
2922 struct net_device *dev;
2923 unsigned long port;
2924 int chip_max_units;
2925
2926 /* Set the number of available units based on the SOC type. */
2927 switch (soc_type) {
2928 case K_SYS_SOC_TYPE_BCM1250:
2929 case K_SYS_SOC_TYPE_BCM1250_ALT:
2930 chip_max_units = 3;
2931 break;
2932 case K_SYS_SOC_TYPE_BCM1120:
2933 case K_SYS_SOC_TYPE_BCM1125:
2934 case K_SYS_SOC_TYPE_BCM1125H:
2935 case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2936 chip_max_units = 2;
2937 break;
2938 case K_SYS_SOC_TYPE_BCM1x55:
2939 case K_SYS_SOC_TYPE_BCM1x80:
2940 chip_max_units = 4;
2941 break;
2942 default:
2943 chip_max_units = 0;
2944 break;
2945 }
2946 if (chip_max_units > MAX_UNITS)
2947 chip_max_units = MAX_UNITS;
2948
2949 /*
2950 * For bringup when not using the firmware, we can pre-fill
2951 * the MAC addresses using the environment variables
2952 * specified in this file (or maybe from the config file?)
2953 */
2954 #ifdef SBMAC_ETH0_HWADDR
2955 if (chip_max_units > 0)
2956 sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2957 #endif
2958 #ifdef SBMAC_ETH1_HWADDR
2959 if (chip_max_units > 1)
2960 sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2961 #endif
2962 #ifdef SBMAC_ETH2_HWADDR
2963 if (chip_max_units > 2)
2964 sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2965 #endif
2966 #ifdef SBMAC_ETH3_HWADDR
2967 if (chip_max_units > 3)
2968 sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR);
2969 #endif
2970
2971 /*
2972 * Walk through the Ethernet controllers and find
2973 * those who have their MAC addresses set.
2974 */
2975 for (idx = 0; idx < chip_max_units; idx++) {
2976
2977 /*
2978 * This is the base address of the MAC.
2979 */
2980
2981 port = A_MAC_CHANNEL_BASE(idx);
2982
2983 /*
2984 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2985 * value for us by the firmware if we are going to use this MAC.
2986 * If we find a zero, skip this MAC.
2987 */
2988
2989 sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2990 if (sbmac_orig_hwaddr[idx] == 0) {
2991 printk(KERN_DEBUG "sbmac: not configuring MAC at "
2992 "%lx\n", port);
2993 continue;
2994 }
2995
2996 /*
2997 * Okay, cool. Initialize this MAC.
2998 */
2999
3000 dev = alloc_etherdev(sizeof(struct sbmac_softc));
3001 if (!dev)
3002 return -ENOMEM;
3003
3004 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
3005
3006 dev->irq = UNIT_INT(idx);
3007 dev->base_addr = port;
3008 dev->mem_end = 0;
3009 if (sbmac_init(dev, idx)) {
3010 port = A_MAC_CHANNEL_BASE(idx);
3011 __raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
3012 free_netdev(dev);
3013 continue;
3014 }
3015 dev_sbmac[idx] = dev;
3016 }
3017 return 0;
3018 }
3019
3020
3021 static void __exit
3022 sbmac_cleanup_module(void)
3023 {
3024 struct net_device *dev;
3025 int idx;
3026
3027 for (idx = 0; idx < MAX_UNITS; idx++) {
3028 struct sbmac_softc *sc;
3029 dev = dev_sbmac[idx];
3030 if (!dev)
3031 continue;
3032
3033 sc = netdev_priv(dev);
3034 unregister_netdev(dev);
3035 sbmac_uninitctx(sc);
3036 free_netdev(dev);
3037 }
3038 }
3039
3040 module_init(sbmac_init_module);
3041 module_exit(sbmac_cleanup_module);
This page took 0.133564 seconds and 5 git commands to generate.