Remove two unneeded exports and make two symbols static in fs/mpage.c
[deliverable/linux.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30
31 #define EFX_MAX_MTU (9 * 1024)
32
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38 static struct workqueue_struct *refill_workqueue;
39
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44 static struct workqueue_struct *reset_workqueue;
45
46 /**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52 /*
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54 *
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
57 */
58 static int lro = true;
59 module_param(lro, int, 0644);
60 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61
62 /*
63 * Use separate channels for TX and RX events
64 *
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
67 *
68 * This is only used in MSI-X interrupt mode
69 */
70 static unsigned int separate_tx_channels;
71 module_param(separate_tx_channels, uint, 0644);
72 MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
74
75 /* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78 static int napi_weight = 64;
79
80 /* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84 unsigned int efx_monitor_interval = 1 * HZ;
85
86 /* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93 static unsigned int allow_bad_hwaddr;
94
95 /* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101 static unsigned int rx_irq_mod_usec = 60;
102
103 /* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112 static unsigned int tx_irq_mod_usec = 150;
113
114 /* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119 static unsigned int interrupt_mode;
120
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
132 static int phy_flash_cfg;
133 module_param(phy_flash_cfg, int, 0644);
134 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
136 static unsigned irq_adapt_low_thresh = 10000;
137 module_param(irq_adapt_low_thresh, uint, 0644);
138 MODULE_PARM_DESC(irq_adapt_low_thresh,
139 "Threshold score for reducing IRQ moderation");
140
141 static unsigned irq_adapt_high_thresh = 20000;
142 module_param(irq_adapt_high_thresh, uint, 0644);
143 MODULE_PARM_DESC(irq_adapt_high_thresh,
144 "Threshold score for increasing IRQ moderation");
145
146 /**************************************************************************
147 *
148 * Utility functions and prototypes
149 *
150 *************************************************************************/
151 static void efx_remove_channel(struct efx_channel *channel);
152 static void efx_remove_port(struct efx_nic *efx);
153 static void efx_fini_napi(struct efx_nic *efx);
154 static void efx_fini_channels(struct efx_nic *efx);
155
156 #define EFX_ASSERT_RESET_SERIALISED(efx) \
157 do { \
158 if (efx->state == STATE_RUNNING) \
159 ASSERT_RTNL(); \
160 } while (0)
161
162 /**************************************************************************
163 *
164 * Event queue processing
165 *
166 *************************************************************************/
167
168 /* Process channel's event queue
169 *
170 * This function is responsible for processing the event queue of a
171 * single channel. The caller must guarantee that this function will
172 * never be concurrently called more than once on the same channel,
173 * though different channels may be being processed concurrently.
174 */
175 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
176 {
177 struct efx_nic *efx = channel->efx;
178 int rx_packets;
179
180 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
181 !channel->enabled))
182 return 0;
183
184 rx_packets = falcon_process_eventq(channel, rx_quota);
185 if (rx_packets == 0)
186 return 0;
187
188 /* Deliver last RX packet. */
189 if (channel->rx_pkt) {
190 __efx_rx_packet(channel, channel->rx_pkt,
191 channel->rx_pkt_csummed);
192 channel->rx_pkt = NULL;
193 }
194
195 efx_rx_strategy(channel);
196
197 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
198
199 return rx_packets;
200 }
201
202 /* Mark channel as finished processing
203 *
204 * Note that since we will not receive further interrupts for this
205 * channel before we finish processing and call the eventq_read_ack()
206 * method, there is no need to use the interrupt hold-off timers.
207 */
208 static inline void efx_channel_processed(struct efx_channel *channel)
209 {
210 /* The interrupt handler for this channel may set work_pending
211 * as soon as we acknowledge the events we've seen. Make sure
212 * it's cleared before then. */
213 channel->work_pending = false;
214 smp_wmb();
215
216 falcon_eventq_read_ack(channel);
217 }
218
219 /* NAPI poll handler
220 *
221 * NAPI guarantees serialisation of polls of the same device, which
222 * provides the guarantee required by efx_process_channel().
223 */
224 static int efx_poll(struct napi_struct *napi, int budget)
225 {
226 struct efx_channel *channel =
227 container_of(napi, struct efx_channel, napi_str);
228 int rx_packets;
229
230 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
231 channel->channel, raw_smp_processor_id());
232
233 rx_packets = efx_process_channel(channel, budget);
234
235 if (rx_packets < budget) {
236 struct efx_nic *efx = channel->efx;
237
238 if (channel->used_flags & EFX_USED_BY_RX &&
239 efx->irq_rx_adaptive &&
240 unlikely(++channel->irq_count == 1000)) {
241 unsigned old_irq_moderation = channel->irq_moderation;
242
243 if (unlikely(channel->irq_mod_score <
244 irq_adapt_low_thresh)) {
245 channel->irq_moderation =
246 max_t(int,
247 channel->irq_moderation -
248 FALCON_IRQ_MOD_RESOLUTION,
249 FALCON_IRQ_MOD_RESOLUTION);
250 } else if (unlikely(channel->irq_mod_score >
251 irq_adapt_high_thresh)) {
252 channel->irq_moderation =
253 min(channel->irq_moderation +
254 FALCON_IRQ_MOD_RESOLUTION,
255 efx->irq_rx_moderation);
256 }
257
258 if (channel->irq_moderation != old_irq_moderation)
259 falcon_set_int_moderation(channel);
260
261 channel->irq_count = 0;
262 channel->irq_mod_score = 0;
263 }
264
265 /* There is no race here; although napi_disable() will
266 * only wait for napi_complete(), this isn't a problem
267 * since efx_channel_processed() will have no effect if
268 * interrupts have already been disabled.
269 */
270 napi_complete(napi);
271 efx_channel_processed(channel);
272 }
273
274 return rx_packets;
275 }
276
277 /* Process the eventq of the specified channel immediately on this CPU
278 *
279 * Disable hardware generated interrupts, wait for any existing
280 * processing to finish, then directly poll (and ack ) the eventq.
281 * Finally reenable NAPI and interrupts.
282 *
283 * Since we are touching interrupts the caller should hold the suspend lock
284 */
285 void efx_process_channel_now(struct efx_channel *channel)
286 {
287 struct efx_nic *efx = channel->efx;
288
289 BUG_ON(!channel->used_flags);
290 BUG_ON(!channel->enabled);
291
292 /* Disable interrupts and wait for ISRs to complete */
293 falcon_disable_interrupts(efx);
294 if (efx->legacy_irq)
295 synchronize_irq(efx->legacy_irq);
296 if (channel->irq)
297 synchronize_irq(channel->irq);
298
299 /* Wait for any NAPI processing to complete */
300 napi_disable(&channel->napi_str);
301
302 /* Poll the channel */
303 efx_process_channel(channel, efx->type->evq_size);
304
305 /* Ack the eventq. This may cause an interrupt to be generated
306 * when they are reenabled */
307 efx_channel_processed(channel);
308
309 napi_enable(&channel->napi_str);
310 falcon_enable_interrupts(efx);
311 }
312
313 /* Create event queue
314 * Event queue memory allocations are done only once. If the channel
315 * is reset, the memory buffer will be reused; this guards against
316 * errors during channel reset and also simplifies interrupt handling.
317 */
318 static int efx_probe_eventq(struct efx_channel *channel)
319 {
320 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
321
322 return falcon_probe_eventq(channel);
323 }
324
325 /* Prepare channel's event queue */
326 static void efx_init_eventq(struct efx_channel *channel)
327 {
328 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
329
330 channel->eventq_read_ptr = 0;
331
332 falcon_init_eventq(channel);
333 }
334
335 static void efx_fini_eventq(struct efx_channel *channel)
336 {
337 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
338
339 falcon_fini_eventq(channel);
340 }
341
342 static void efx_remove_eventq(struct efx_channel *channel)
343 {
344 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
345
346 falcon_remove_eventq(channel);
347 }
348
349 /**************************************************************************
350 *
351 * Channel handling
352 *
353 *************************************************************************/
354
355 static int efx_probe_channel(struct efx_channel *channel)
356 {
357 struct efx_tx_queue *tx_queue;
358 struct efx_rx_queue *rx_queue;
359 int rc;
360
361 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
362
363 rc = efx_probe_eventq(channel);
364 if (rc)
365 goto fail1;
366
367 efx_for_each_channel_tx_queue(tx_queue, channel) {
368 rc = efx_probe_tx_queue(tx_queue);
369 if (rc)
370 goto fail2;
371 }
372
373 efx_for_each_channel_rx_queue(rx_queue, channel) {
374 rc = efx_probe_rx_queue(rx_queue);
375 if (rc)
376 goto fail3;
377 }
378
379 channel->n_rx_frm_trunc = 0;
380
381 return 0;
382
383 fail3:
384 efx_for_each_channel_rx_queue(rx_queue, channel)
385 efx_remove_rx_queue(rx_queue);
386 fail2:
387 efx_for_each_channel_tx_queue(tx_queue, channel)
388 efx_remove_tx_queue(tx_queue);
389 fail1:
390 return rc;
391 }
392
393
394 static void efx_set_channel_names(struct efx_nic *efx)
395 {
396 struct efx_channel *channel;
397 const char *type = "";
398 int number;
399
400 efx_for_each_channel(channel, efx) {
401 number = channel->channel;
402 if (efx->n_channels > efx->n_rx_queues) {
403 if (channel->channel < efx->n_rx_queues) {
404 type = "-rx";
405 } else {
406 type = "-tx";
407 number -= efx->n_rx_queues;
408 }
409 }
410 snprintf(channel->name, sizeof(channel->name),
411 "%s%s-%d", efx->name, type, number);
412 }
413 }
414
415 /* Channels are shutdown and reinitialised whilst the NIC is running
416 * to propagate configuration changes (mtu, checksum offload), or
417 * to clear hardware error conditions
418 */
419 static void efx_init_channels(struct efx_nic *efx)
420 {
421 struct efx_tx_queue *tx_queue;
422 struct efx_rx_queue *rx_queue;
423 struct efx_channel *channel;
424
425 /* Calculate the rx buffer allocation parameters required to
426 * support the current MTU, including padding for header
427 * alignment and overruns.
428 */
429 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
430 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
431 efx->type->rx_buffer_padding);
432 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
433
434 /* Initialise the channels */
435 efx_for_each_channel(channel, efx) {
436 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
437
438 efx_init_eventq(channel);
439
440 efx_for_each_channel_tx_queue(tx_queue, channel)
441 efx_init_tx_queue(tx_queue);
442
443 /* The rx buffer allocation strategy is MTU dependent */
444 efx_rx_strategy(channel);
445
446 efx_for_each_channel_rx_queue(rx_queue, channel)
447 efx_init_rx_queue(rx_queue);
448
449 WARN_ON(channel->rx_pkt != NULL);
450 efx_rx_strategy(channel);
451 }
452 }
453
454 /* This enables event queue processing and packet transmission.
455 *
456 * Note that this function is not allowed to fail, since that would
457 * introduce too much complexity into the suspend/resume path.
458 */
459 static void efx_start_channel(struct efx_channel *channel)
460 {
461 struct efx_rx_queue *rx_queue;
462
463 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
464
465 if (!(channel->efx->net_dev->flags & IFF_UP))
466 netif_napi_add(channel->napi_dev, &channel->napi_str,
467 efx_poll, napi_weight);
468
469 /* The interrupt handler for this channel may set work_pending
470 * as soon as we enable it. Make sure it's cleared before
471 * then. Similarly, make sure it sees the enabled flag set. */
472 channel->work_pending = false;
473 channel->enabled = true;
474 smp_wmb();
475
476 napi_enable(&channel->napi_str);
477
478 /* Load up RX descriptors */
479 efx_for_each_channel_rx_queue(rx_queue, channel)
480 efx_fast_push_rx_descriptors(rx_queue);
481 }
482
483 /* This disables event queue processing and packet transmission.
484 * This function does not guarantee that all queue processing
485 * (e.g. RX refill) is complete.
486 */
487 static void efx_stop_channel(struct efx_channel *channel)
488 {
489 struct efx_rx_queue *rx_queue;
490
491 if (!channel->enabled)
492 return;
493
494 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
495
496 channel->enabled = false;
497 napi_disable(&channel->napi_str);
498
499 /* Ensure that any worker threads have exited or will be no-ops */
500 efx_for_each_channel_rx_queue(rx_queue, channel) {
501 spin_lock_bh(&rx_queue->add_lock);
502 spin_unlock_bh(&rx_queue->add_lock);
503 }
504 }
505
506 static void efx_fini_channels(struct efx_nic *efx)
507 {
508 struct efx_channel *channel;
509 struct efx_tx_queue *tx_queue;
510 struct efx_rx_queue *rx_queue;
511 int rc;
512
513 EFX_ASSERT_RESET_SERIALISED(efx);
514 BUG_ON(efx->port_enabled);
515
516 rc = falcon_flush_queues(efx);
517 if (rc)
518 EFX_ERR(efx, "failed to flush queues\n");
519 else
520 EFX_LOG(efx, "successfully flushed all queues\n");
521
522 efx_for_each_channel(channel, efx) {
523 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
524
525 efx_for_each_channel_rx_queue(rx_queue, channel)
526 efx_fini_rx_queue(rx_queue);
527 efx_for_each_channel_tx_queue(tx_queue, channel)
528 efx_fini_tx_queue(tx_queue);
529 efx_fini_eventq(channel);
530 }
531 }
532
533 static void efx_remove_channel(struct efx_channel *channel)
534 {
535 struct efx_tx_queue *tx_queue;
536 struct efx_rx_queue *rx_queue;
537
538 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
539
540 efx_for_each_channel_rx_queue(rx_queue, channel)
541 efx_remove_rx_queue(rx_queue);
542 efx_for_each_channel_tx_queue(tx_queue, channel)
543 efx_remove_tx_queue(tx_queue);
544 efx_remove_eventq(channel);
545
546 channel->used_flags = 0;
547 }
548
549 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
550 {
551 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
552 }
553
554 /**************************************************************************
555 *
556 * Port handling
557 *
558 **************************************************************************/
559
560 /* This ensures that the kernel is kept informed (via
561 * netif_carrier_on/off) of the link status, and also maintains the
562 * link status's stop on the port's TX queue.
563 */
564 static void efx_link_status_changed(struct efx_nic *efx)
565 {
566 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
567 * that no events are triggered between unregister_netdev() and the
568 * driver unloading. A more general condition is that NETDEV_CHANGE
569 * can only be generated between NETDEV_UP and NETDEV_DOWN */
570 if (!netif_running(efx->net_dev))
571 return;
572
573 if (efx->port_inhibited) {
574 netif_carrier_off(efx->net_dev);
575 return;
576 }
577
578 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
579 efx->n_link_state_changes++;
580
581 if (efx->link_up)
582 netif_carrier_on(efx->net_dev);
583 else
584 netif_carrier_off(efx->net_dev);
585 }
586
587 /* Status message for kernel log */
588 if (efx->link_up) {
589 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
590 efx->link_speed, efx->link_fd ? "full" : "half",
591 efx->net_dev->mtu,
592 (efx->promiscuous ? " [PROMISC]" : ""));
593 } else {
594 EFX_INFO(efx, "link down\n");
595 }
596
597 }
598
599 static void efx_fini_port(struct efx_nic *efx);
600
601 /* This call reinitialises the MAC to pick up new PHY settings. The
602 * caller must hold the mac_lock */
603 void __efx_reconfigure_port(struct efx_nic *efx)
604 {
605 WARN_ON(!mutex_is_locked(&efx->mac_lock));
606
607 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
608 raw_smp_processor_id());
609
610 /* Serialise the promiscuous flag with efx_set_multicast_list. */
611 if (efx_dev_registered(efx)) {
612 netif_addr_lock_bh(efx->net_dev);
613 netif_addr_unlock_bh(efx->net_dev);
614 }
615
616 falcon_deconfigure_mac_wrapper(efx);
617
618 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
619 if (LOOPBACK_INTERNAL(efx))
620 efx->phy_mode |= PHY_MODE_TX_DISABLED;
621 else
622 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
623 efx->phy_op->reconfigure(efx);
624
625 if (falcon_switch_mac(efx))
626 goto fail;
627
628 efx->mac_op->reconfigure(efx);
629
630 /* Inform kernel of loss/gain of carrier */
631 efx_link_status_changed(efx);
632 return;
633
634 fail:
635 EFX_ERR(efx, "failed to reconfigure MAC\n");
636 efx->port_enabled = false;
637 efx_fini_port(efx);
638 }
639
640 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
641 * disabled. */
642 void efx_reconfigure_port(struct efx_nic *efx)
643 {
644 EFX_ASSERT_RESET_SERIALISED(efx);
645
646 mutex_lock(&efx->mac_lock);
647 __efx_reconfigure_port(efx);
648 mutex_unlock(&efx->mac_lock);
649 }
650
651 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
652 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
653 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
654 static void efx_phy_work(struct work_struct *data)
655 {
656 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
657
658 mutex_lock(&efx->mac_lock);
659 if (efx->port_enabled)
660 __efx_reconfigure_port(efx);
661 mutex_unlock(&efx->mac_lock);
662 }
663
664 static void efx_mac_work(struct work_struct *data)
665 {
666 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
667
668 mutex_lock(&efx->mac_lock);
669 if (efx->port_enabled)
670 efx->mac_op->irq(efx);
671 mutex_unlock(&efx->mac_lock);
672 }
673
674 static int efx_probe_port(struct efx_nic *efx)
675 {
676 int rc;
677
678 EFX_LOG(efx, "create port\n");
679
680 /* Connect up MAC/PHY operations table and read MAC address */
681 rc = falcon_probe_port(efx);
682 if (rc)
683 goto err;
684
685 if (phy_flash_cfg)
686 efx->phy_mode = PHY_MODE_SPECIAL;
687
688 /* Sanity check MAC address */
689 if (is_valid_ether_addr(efx->mac_address)) {
690 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
691 } else {
692 EFX_ERR(efx, "invalid MAC address %pM\n",
693 efx->mac_address);
694 if (!allow_bad_hwaddr) {
695 rc = -EINVAL;
696 goto err;
697 }
698 random_ether_addr(efx->net_dev->dev_addr);
699 EFX_INFO(efx, "using locally-generated MAC %pM\n",
700 efx->net_dev->dev_addr);
701 }
702
703 return 0;
704
705 err:
706 efx_remove_port(efx);
707 return rc;
708 }
709
710 static int efx_init_port(struct efx_nic *efx)
711 {
712 int rc;
713
714 EFX_LOG(efx, "init port\n");
715
716 rc = efx->phy_op->init(efx);
717 if (rc)
718 return rc;
719 mutex_lock(&efx->mac_lock);
720 efx->phy_op->reconfigure(efx);
721 rc = falcon_switch_mac(efx);
722 mutex_unlock(&efx->mac_lock);
723 if (rc)
724 goto fail;
725 efx->mac_op->reconfigure(efx);
726
727 efx->port_initialized = true;
728 efx_stats_enable(efx);
729 return 0;
730
731 fail:
732 efx->phy_op->fini(efx);
733 return rc;
734 }
735
736 /* Allow efx_reconfigure_port() to be scheduled, and close the window
737 * between efx_stop_port and efx_flush_all whereby a previously scheduled
738 * efx_phy_work()/efx_mac_work() may have been cancelled */
739 static void efx_start_port(struct efx_nic *efx)
740 {
741 EFX_LOG(efx, "start port\n");
742 BUG_ON(efx->port_enabled);
743
744 mutex_lock(&efx->mac_lock);
745 efx->port_enabled = true;
746 __efx_reconfigure_port(efx);
747 efx->mac_op->irq(efx);
748 mutex_unlock(&efx->mac_lock);
749 }
750
751 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
752 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
753 * and efx_mac_work may still be scheduled via NAPI processing until
754 * efx_flush_all() is called */
755 static void efx_stop_port(struct efx_nic *efx)
756 {
757 EFX_LOG(efx, "stop port\n");
758
759 mutex_lock(&efx->mac_lock);
760 efx->port_enabled = false;
761 mutex_unlock(&efx->mac_lock);
762
763 /* Serialise against efx_set_multicast_list() */
764 if (efx_dev_registered(efx)) {
765 netif_addr_lock_bh(efx->net_dev);
766 netif_addr_unlock_bh(efx->net_dev);
767 }
768 }
769
770 static void efx_fini_port(struct efx_nic *efx)
771 {
772 EFX_LOG(efx, "shut down port\n");
773
774 if (!efx->port_initialized)
775 return;
776
777 efx_stats_disable(efx);
778 efx->phy_op->fini(efx);
779 efx->port_initialized = false;
780
781 efx->link_up = false;
782 efx_link_status_changed(efx);
783 }
784
785 static void efx_remove_port(struct efx_nic *efx)
786 {
787 EFX_LOG(efx, "destroying port\n");
788
789 falcon_remove_port(efx);
790 }
791
792 /**************************************************************************
793 *
794 * NIC handling
795 *
796 **************************************************************************/
797
798 /* This configures the PCI device to enable I/O and DMA. */
799 static int efx_init_io(struct efx_nic *efx)
800 {
801 struct pci_dev *pci_dev = efx->pci_dev;
802 dma_addr_t dma_mask = efx->type->max_dma_mask;
803 int rc;
804
805 EFX_LOG(efx, "initialising I/O\n");
806
807 rc = pci_enable_device(pci_dev);
808 if (rc) {
809 EFX_ERR(efx, "failed to enable PCI device\n");
810 goto fail1;
811 }
812
813 pci_set_master(pci_dev);
814
815 /* Set the PCI DMA mask. Try all possibilities from our
816 * genuine mask down to 32 bits, because some architectures
817 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
818 * masks event though they reject 46 bit masks.
819 */
820 while (dma_mask > 0x7fffffffUL) {
821 if (pci_dma_supported(pci_dev, dma_mask) &&
822 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
823 break;
824 dma_mask >>= 1;
825 }
826 if (rc) {
827 EFX_ERR(efx, "could not find a suitable DMA mask\n");
828 goto fail2;
829 }
830 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
831 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
832 if (rc) {
833 /* pci_set_consistent_dma_mask() is not *allowed* to
834 * fail with a mask that pci_set_dma_mask() accepted,
835 * but just in case...
836 */
837 EFX_ERR(efx, "failed to set consistent DMA mask\n");
838 goto fail2;
839 }
840
841 efx->membase_phys = pci_resource_start(efx->pci_dev,
842 efx->type->mem_bar);
843 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
844 if (rc) {
845 EFX_ERR(efx, "request for memory BAR failed\n");
846 rc = -EIO;
847 goto fail3;
848 }
849 efx->membase = ioremap_nocache(efx->membase_phys,
850 efx->type->mem_map_size);
851 if (!efx->membase) {
852 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
853 efx->type->mem_bar,
854 (unsigned long long)efx->membase_phys,
855 efx->type->mem_map_size);
856 rc = -ENOMEM;
857 goto fail4;
858 }
859 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
860 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
861 efx->type->mem_map_size, efx->membase);
862
863 return 0;
864
865 fail4:
866 pci_release_region(efx->pci_dev, efx->type->mem_bar);
867 fail3:
868 efx->membase_phys = 0;
869 fail2:
870 pci_disable_device(efx->pci_dev);
871 fail1:
872 return rc;
873 }
874
875 static void efx_fini_io(struct efx_nic *efx)
876 {
877 EFX_LOG(efx, "shutting down I/O\n");
878
879 if (efx->membase) {
880 iounmap(efx->membase);
881 efx->membase = NULL;
882 }
883
884 if (efx->membase_phys) {
885 pci_release_region(efx->pci_dev, efx->type->mem_bar);
886 efx->membase_phys = 0;
887 }
888
889 pci_disable_device(efx->pci_dev);
890 }
891
892 /* Get number of RX queues wanted. Return number of online CPU
893 * packages in the expectation that an IRQ balancer will spread
894 * interrupts across them. */
895 static int efx_wanted_rx_queues(void)
896 {
897 cpumask_var_t core_mask;
898 int count;
899 int cpu;
900
901 if (!alloc_cpumask_var(&core_mask, GFP_KERNEL)) {
902 printk(KERN_WARNING
903 "efx.c: allocation failure, irq balancing hobbled\n");
904 return 1;
905 }
906
907 cpumask_clear(core_mask);
908 count = 0;
909 for_each_online_cpu(cpu) {
910 if (!cpumask_test_cpu(cpu, core_mask)) {
911 ++count;
912 cpumask_or(core_mask, core_mask,
913 topology_core_cpumask(cpu));
914 }
915 }
916
917 free_cpumask_var(core_mask);
918 return count;
919 }
920
921 /* Probe the number and type of interrupts we are able to obtain, and
922 * the resulting numbers of channels and RX queues.
923 */
924 static void efx_probe_interrupts(struct efx_nic *efx)
925 {
926 int max_channels =
927 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
928 int rc, i;
929
930 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
931 struct msix_entry xentries[EFX_MAX_CHANNELS];
932 int wanted_ints;
933 int rx_queues;
934
935 /* We want one RX queue and interrupt per CPU package
936 * (or as specified by the rss_cpus module parameter).
937 * We will need one channel per interrupt.
938 */
939 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
940 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
941 wanted_ints = min(wanted_ints, max_channels);
942
943 for (i = 0; i < wanted_ints; i++)
944 xentries[i].entry = i;
945 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
946 if (rc > 0) {
947 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
948 " available (%d < %d).\n", rc, wanted_ints);
949 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
950 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
951 wanted_ints = rc;
952 rc = pci_enable_msix(efx->pci_dev, xentries,
953 wanted_ints);
954 }
955
956 if (rc == 0) {
957 efx->n_rx_queues = min(rx_queues, wanted_ints);
958 efx->n_channels = wanted_ints;
959 for (i = 0; i < wanted_ints; i++)
960 efx->channel[i].irq = xentries[i].vector;
961 } else {
962 /* Fall back to single channel MSI */
963 efx->interrupt_mode = EFX_INT_MODE_MSI;
964 EFX_ERR(efx, "could not enable MSI-X\n");
965 }
966 }
967
968 /* Try single interrupt MSI */
969 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
970 efx->n_rx_queues = 1;
971 efx->n_channels = 1;
972 rc = pci_enable_msi(efx->pci_dev);
973 if (rc == 0) {
974 efx->channel[0].irq = efx->pci_dev->irq;
975 } else {
976 EFX_ERR(efx, "could not enable MSI\n");
977 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
978 }
979 }
980
981 /* Assume legacy interrupts */
982 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
983 efx->n_rx_queues = 1;
984 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
985 efx->legacy_irq = efx->pci_dev->irq;
986 }
987 }
988
989 static void efx_remove_interrupts(struct efx_nic *efx)
990 {
991 struct efx_channel *channel;
992
993 /* Remove MSI/MSI-X interrupts */
994 efx_for_each_channel(channel, efx)
995 channel->irq = 0;
996 pci_disable_msi(efx->pci_dev);
997 pci_disable_msix(efx->pci_dev);
998
999 /* Remove legacy interrupt */
1000 efx->legacy_irq = 0;
1001 }
1002
1003 static void efx_set_channels(struct efx_nic *efx)
1004 {
1005 struct efx_tx_queue *tx_queue;
1006 struct efx_rx_queue *rx_queue;
1007
1008 efx_for_each_tx_queue(tx_queue, efx) {
1009 if (separate_tx_channels)
1010 tx_queue->channel = &efx->channel[efx->n_channels-1];
1011 else
1012 tx_queue->channel = &efx->channel[0];
1013 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1014 }
1015
1016 efx_for_each_rx_queue(rx_queue, efx) {
1017 rx_queue->channel = &efx->channel[rx_queue->queue];
1018 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1019 }
1020 }
1021
1022 static int efx_probe_nic(struct efx_nic *efx)
1023 {
1024 int rc;
1025
1026 EFX_LOG(efx, "creating NIC\n");
1027
1028 /* Carry out hardware-type specific initialisation */
1029 rc = falcon_probe_nic(efx);
1030 if (rc)
1031 return rc;
1032
1033 /* Determine the number of channels and RX queues by trying to hook
1034 * in MSI-X interrupts. */
1035 efx_probe_interrupts(efx);
1036
1037 efx_set_channels(efx);
1038
1039 /* Initialise the interrupt moderation settings */
1040 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1041
1042 return 0;
1043 }
1044
1045 static void efx_remove_nic(struct efx_nic *efx)
1046 {
1047 EFX_LOG(efx, "destroying NIC\n");
1048
1049 efx_remove_interrupts(efx);
1050 falcon_remove_nic(efx);
1051 }
1052
1053 /**************************************************************************
1054 *
1055 * NIC startup/shutdown
1056 *
1057 *************************************************************************/
1058
1059 static int efx_probe_all(struct efx_nic *efx)
1060 {
1061 struct efx_channel *channel;
1062 int rc;
1063
1064 /* Create NIC */
1065 rc = efx_probe_nic(efx);
1066 if (rc) {
1067 EFX_ERR(efx, "failed to create NIC\n");
1068 goto fail1;
1069 }
1070
1071 /* Create port */
1072 rc = efx_probe_port(efx);
1073 if (rc) {
1074 EFX_ERR(efx, "failed to create port\n");
1075 goto fail2;
1076 }
1077
1078 /* Create channels */
1079 efx_for_each_channel(channel, efx) {
1080 rc = efx_probe_channel(channel);
1081 if (rc) {
1082 EFX_ERR(efx, "failed to create channel %d\n",
1083 channel->channel);
1084 goto fail3;
1085 }
1086 }
1087 efx_set_channel_names(efx);
1088
1089 return 0;
1090
1091 fail3:
1092 efx_for_each_channel(channel, efx)
1093 efx_remove_channel(channel);
1094 efx_remove_port(efx);
1095 fail2:
1096 efx_remove_nic(efx);
1097 fail1:
1098 return rc;
1099 }
1100
1101 /* Called after previous invocation(s) of efx_stop_all, restarts the
1102 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1103 * and ensures that the port is scheduled to be reconfigured.
1104 * This function is safe to call multiple times when the NIC is in any
1105 * state. */
1106 static void efx_start_all(struct efx_nic *efx)
1107 {
1108 struct efx_channel *channel;
1109
1110 EFX_ASSERT_RESET_SERIALISED(efx);
1111
1112 /* Check that it is appropriate to restart the interface. All
1113 * of these flags are safe to read under just the rtnl lock */
1114 if (efx->port_enabled)
1115 return;
1116 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1117 return;
1118 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1119 return;
1120
1121 /* Mark the port as enabled so port reconfigurations can start, then
1122 * restart the transmit interface early so the watchdog timer stops */
1123 efx_start_port(efx);
1124 if (efx_dev_registered(efx))
1125 efx_wake_queue(efx);
1126
1127 efx_for_each_channel(channel, efx)
1128 efx_start_channel(channel);
1129
1130 falcon_enable_interrupts(efx);
1131
1132 /* Start hardware monitor if we're in RUNNING */
1133 if (efx->state == STATE_RUNNING)
1134 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1135 efx_monitor_interval);
1136 }
1137
1138 /* Flush all delayed work. Should only be called when no more delayed work
1139 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1140 * since we're holding the rtnl_lock at this point. */
1141 static void efx_flush_all(struct efx_nic *efx)
1142 {
1143 struct efx_rx_queue *rx_queue;
1144
1145 /* Make sure the hardware monitor is stopped */
1146 cancel_delayed_work_sync(&efx->monitor_work);
1147
1148 /* Ensure that all RX slow refills are complete. */
1149 efx_for_each_rx_queue(rx_queue, efx)
1150 cancel_delayed_work_sync(&rx_queue->work);
1151
1152 /* Stop scheduled port reconfigurations */
1153 cancel_work_sync(&efx->mac_work);
1154 cancel_work_sync(&efx->phy_work);
1155
1156 }
1157
1158 /* Quiesce hardware and software without bringing the link down.
1159 * Safe to call multiple times, when the nic and interface is in any
1160 * state. The caller is guaranteed to subsequently be in a position
1161 * to modify any hardware and software state they see fit without
1162 * taking locks. */
1163 static void efx_stop_all(struct efx_nic *efx)
1164 {
1165 struct efx_channel *channel;
1166
1167 EFX_ASSERT_RESET_SERIALISED(efx);
1168
1169 /* port_enabled can be read safely under the rtnl lock */
1170 if (!efx->port_enabled)
1171 return;
1172
1173 /* Disable interrupts and wait for ISR to complete */
1174 falcon_disable_interrupts(efx);
1175 if (efx->legacy_irq)
1176 synchronize_irq(efx->legacy_irq);
1177 efx_for_each_channel(channel, efx) {
1178 if (channel->irq)
1179 synchronize_irq(channel->irq);
1180 }
1181
1182 /* Stop all NAPI processing and synchronous rx refills */
1183 efx_for_each_channel(channel, efx)
1184 efx_stop_channel(channel);
1185
1186 /* Stop all asynchronous port reconfigurations. Since all
1187 * event processing has already been stopped, there is no
1188 * window to loose phy events */
1189 efx_stop_port(efx);
1190
1191 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1192 efx_flush_all(efx);
1193
1194 /* Isolate the MAC from the TX and RX engines, so that queue
1195 * flushes will complete in a timely fashion. */
1196 falcon_drain_tx_fifo(efx);
1197
1198 /* Stop the kernel transmit interface late, so the watchdog
1199 * timer isn't ticking over the flush */
1200 if (efx_dev_registered(efx)) {
1201 efx_stop_queue(efx);
1202 netif_tx_lock_bh(efx->net_dev);
1203 netif_tx_unlock_bh(efx->net_dev);
1204 }
1205 }
1206
1207 static void efx_remove_all(struct efx_nic *efx)
1208 {
1209 struct efx_channel *channel;
1210
1211 efx_for_each_channel(channel, efx)
1212 efx_remove_channel(channel);
1213 efx_remove_port(efx);
1214 efx_remove_nic(efx);
1215 }
1216
1217 /* A convinience function to safely flush all the queues */
1218 void efx_flush_queues(struct efx_nic *efx)
1219 {
1220 EFX_ASSERT_RESET_SERIALISED(efx);
1221
1222 efx_stop_all(efx);
1223
1224 efx_fini_channels(efx);
1225 efx_init_channels(efx);
1226
1227 efx_start_all(efx);
1228 }
1229
1230 /**************************************************************************
1231 *
1232 * Interrupt moderation
1233 *
1234 **************************************************************************/
1235
1236 /* Set interrupt moderation parameters */
1237 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1238 bool rx_adaptive)
1239 {
1240 struct efx_tx_queue *tx_queue;
1241 struct efx_rx_queue *rx_queue;
1242
1243 EFX_ASSERT_RESET_SERIALISED(efx);
1244
1245 efx_for_each_tx_queue(tx_queue, efx)
1246 tx_queue->channel->irq_moderation = tx_usecs;
1247
1248 efx->irq_rx_adaptive = rx_adaptive;
1249 efx->irq_rx_moderation = rx_usecs;
1250 efx_for_each_rx_queue(rx_queue, efx)
1251 rx_queue->channel->irq_moderation = rx_usecs;
1252 }
1253
1254 /**************************************************************************
1255 *
1256 * Hardware monitor
1257 *
1258 **************************************************************************/
1259
1260 /* Run periodically off the general workqueue. Serialised against
1261 * efx_reconfigure_port via the mac_lock */
1262 static void efx_monitor(struct work_struct *data)
1263 {
1264 struct efx_nic *efx = container_of(data, struct efx_nic,
1265 monitor_work.work);
1266 int rc;
1267
1268 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1269 raw_smp_processor_id());
1270
1271 /* If the mac_lock is already held then it is likely a port
1272 * reconfiguration is already in place, which will likely do
1273 * most of the work of check_hw() anyway. */
1274 if (!mutex_trylock(&efx->mac_lock))
1275 goto out_requeue;
1276 if (!efx->port_enabled)
1277 goto out_unlock;
1278 rc = efx->board_info.monitor(efx);
1279 if (rc) {
1280 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1281 (rc == -ERANGE) ? "reported fault" : "failed");
1282 efx->phy_mode |= PHY_MODE_LOW_POWER;
1283 falcon_sim_phy_event(efx);
1284 }
1285 efx->phy_op->poll(efx);
1286 efx->mac_op->poll(efx);
1287
1288 out_unlock:
1289 mutex_unlock(&efx->mac_lock);
1290 out_requeue:
1291 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1292 efx_monitor_interval);
1293 }
1294
1295 /**************************************************************************
1296 *
1297 * ioctls
1298 *
1299 *************************************************************************/
1300
1301 /* Net device ioctl
1302 * Context: process, rtnl_lock() held.
1303 */
1304 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1305 {
1306 struct efx_nic *efx = netdev_priv(net_dev);
1307
1308 EFX_ASSERT_RESET_SERIALISED(efx);
1309
1310 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1311 }
1312
1313 /**************************************************************************
1314 *
1315 * NAPI interface
1316 *
1317 **************************************************************************/
1318
1319 static int efx_init_napi(struct efx_nic *efx)
1320 {
1321 struct efx_channel *channel;
1322
1323 efx_for_each_channel(channel, efx) {
1324 channel->napi_dev = efx->net_dev;
1325 }
1326 return 0;
1327 }
1328
1329 static void efx_fini_napi(struct efx_nic *efx)
1330 {
1331 struct efx_channel *channel;
1332
1333 efx_for_each_channel(channel, efx) {
1334 channel->napi_dev = NULL;
1335 }
1336 }
1337
1338 /**************************************************************************
1339 *
1340 * Kernel netpoll interface
1341 *
1342 *************************************************************************/
1343
1344 #ifdef CONFIG_NET_POLL_CONTROLLER
1345
1346 /* Although in the common case interrupts will be disabled, this is not
1347 * guaranteed. However, all our work happens inside the NAPI callback,
1348 * so no locking is required.
1349 */
1350 static void efx_netpoll(struct net_device *net_dev)
1351 {
1352 struct efx_nic *efx = netdev_priv(net_dev);
1353 struct efx_channel *channel;
1354
1355 efx_for_each_channel(channel, efx)
1356 efx_schedule_channel(channel);
1357 }
1358
1359 #endif
1360
1361 /**************************************************************************
1362 *
1363 * Kernel net device interface
1364 *
1365 *************************************************************************/
1366
1367 /* Context: process, rtnl_lock() held. */
1368 static int efx_net_open(struct net_device *net_dev)
1369 {
1370 struct efx_nic *efx = netdev_priv(net_dev);
1371 EFX_ASSERT_RESET_SERIALISED(efx);
1372
1373 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1374 raw_smp_processor_id());
1375
1376 if (efx->state == STATE_DISABLED)
1377 return -EIO;
1378 if (efx->phy_mode & PHY_MODE_SPECIAL)
1379 return -EBUSY;
1380
1381 efx_start_all(efx);
1382 return 0;
1383 }
1384
1385 /* Context: process, rtnl_lock() held.
1386 * Note that the kernel will ignore our return code; this method
1387 * should really be a void.
1388 */
1389 static int efx_net_stop(struct net_device *net_dev)
1390 {
1391 struct efx_nic *efx = netdev_priv(net_dev);
1392
1393 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1394 raw_smp_processor_id());
1395
1396 if (efx->state != STATE_DISABLED) {
1397 /* Stop the device and flush all the channels */
1398 efx_stop_all(efx);
1399 efx_fini_channels(efx);
1400 efx_init_channels(efx);
1401 }
1402
1403 return 0;
1404 }
1405
1406 void efx_stats_disable(struct efx_nic *efx)
1407 {
1408 spin_lock(&efx->stats_lock);
1409 ++efx->stats_disable_count;
1410 spin_unlock(&efx->stats_lock);
1411 }
1412
1413 void efx_stats_enable(struct efx_nic *efx)
1414 {
1415 spin_lock(&efx->stats_lock);
1416 --efx->stats_disable_count;
1417 spin_unlock(&efx->stats_lock);
1418 }
1419
1420 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1421 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1422 {
1423 struct efx_nic *efx = netdev_priv(net_dev);
1424 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1425 struct net_device_stats *stats = &net_dev->stats;
1426
1427 /* Update stats if possible, but do not wait if another thread
1428 * is updating them or if MAC stats fetches are temporarily
1429 * disabled; slightly stale stats are acceptable.
1430 */
1431 if (!spin_trylock(&efx->stats_lock))
1432 return stats;
1433 if (!efx->stats_disable_count) {
1434 efx->mac_op->update_stats(efx);
1435 falcon_update_nic_stats(efx);
1436 }
1437 spin_unlock(&efx->stats_lock);
1438
1439 stats->rx_packets = mac_stats->rx_packets;
1440 stats->tx_packets = mac_stats->tx_packets;
1441 stats->rx_bytes = mac_stats->rx_bytes;
1442 stats->tx_bytes = mac_stats->tx_bytes;
1443 stats->multicast = mac_stats->rx_multicast;
1444 stats->collisions = mac_stats->tx_collision;
1445 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1446 mac_stats->rx_length_error);
1447 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1448 stats->rx_crc_errors = mac_stats->rx_bad;
1449 stats->rx_frame_errors = mac_stats->rx_align_error;
1450 stats->rx_fifo_errors = mac_stats->rx_overflow;
1451 stats->rx_missed_errors = mac_stats->rx_missed;
1452 stats->tx_window_errors = mac_stats->tx_late_collision;
1453
1454 stats->rx_errors = (stats->rx_length_errors +
1455 stats->rx_over_errors +
1456 stats->rx_crc_errors +
1457 stats->rx_frame_errors +
1458 stats->rx_fifo_errors +
1459 stats->rx_missed_errors +
1460 mac_stats->rx_symbol_error);
1461 stats->tx_errors = (stats->tx_window_errors +
1462 mac_stats->tx_bad);
1463
1464 return stats;
1465 }
1466
1467 /* Context: netif_tx_lock held, BHs disabled. */
1468 static void efx_watchdog(struct net_device *net_dev)
1469 {
1470 struct efx_nic *efx = netdev_priv(net_dev);
1471
1472 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1473 " resetting channels\n",
1474 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1475
1476 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1477 }
1478
1479
1480 /* Context: process, rtnl_lock() held. */
1481 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1482 {
1483 struct efx_nic *efx = netdev_priv(net_dev);
1484 int rc = 0;
1485
1486 EFX_ASSERT_RESET_SERIALISED(efx);
1487
1488 if (new_mtu > EFX_MAX_MTU)
1489 return -EINVAL;
1490
1491 efx_stop_all(efx);
1492
1493 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1494
1495 efx_fini_channels(efx);
1496 net_dev->mtu = new_mtu;
1497 efx_init_channels(efx);
1498
1499 efx_start_all(efx);
1500 return rc;
1501 }
1502
1503 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1504 {
1505 struct efx_nic *efx = netdev_priv(net_dev);
1506 struct sockaddr *addr = data;
1507 char *new_addr = addr->sa_data;
1508
1509 EFX_ASSERT_RESET_SERIALISED(efx);
1510
1511 if (!is_valid_ether_addr(new_addr)) {
1512 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1513 new_addr);
1514 return -EINVAL;
1515 }
1516
1517 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1518
1519 /* Reconfigure the MAC */
1520 efx_reconfigure_port(efx);
1521
1522 return 0;
1523 }
1524
1525 /* Context: netif_addr_lock held, BHs disabled. */
1526 static void efx_set_multicast_list(struct net_device *net_dev)
1527 {
1528 struct efx_nic *efx = netdev_priv(net_dev);
1529 struct dev_mc_list *mc_list = net_dev->mc_list;
1530 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1531 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1532 bool changed = (efx->promiscuous != promiscuous);
1533 u32 crc;
1534 int bit;
1535 int i;
1536
1537 efx->promiscuous = promiscuous;
1538
1539 /* Build multicast hash table */
1540 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1541 memset(mc_hash, 0xff, sizeof(*mc_hash));
1542 } else {
1543 memset(mc_hash, 0x00, sizeof(*mc_hash));
1544 for (i = 0; i < net_dev->mc_count; i++) {
1545 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1546 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1547 set_bit_le(bit, mc_hash->byte);
1548 mc_list = mc_list->next;
1549 }
1550 }
1551
1552 if (!efx->port_enabled)
1553 /* Delay pushing settings until efx_start_port() */
1554 return;
1555
1556 if (changed)
1557 queue_work(efx->workqueue, &efx->phy_work);
1558
1559 /* Create and activate new global multicast hash table */
1560 falcon_set_multicast_hash(efx);
1561 }
1562
1563 static const struct net_device_ops efx_netdev_ops = {
1564 .ndo_open = efx_net_open,
1565 .ndo_stop = efx_net_stop,
1566 .ndo_get_stats = efx_net_stats,
1567 .ndo_tx_timeout = efx_watchdog,
1568 .ndo_start_xmit = efx_hard_start_xmit,
1569 .ndo_validate_addr = eth_validate_addr,
1570 .ndo_do_ioctl = efx_ioctl,
1571 .ndo_change_mtu = efx_change_mtu,
1572 .ndo_set_mac_address = efx_set_mac_address,
1573 .ndo_set_multicast_list = efx_set_multicast_list,
1574 #ifdef CONFIG_NET_POLL_CONTROLLER
1575 .ndo_poll_controller = efx_netpoll,
1576 #endif
1577 };
1578
1579 static void efx_update_name(struct efx_nic *efx)
1580 {
1581 strcpy(efx->name, efx->net_dev->name);
1582 efx_mtd_rename(efx);
1583 efx_set_channel_names(efx);
1584 }
1585
1586 static int efx_netdev_event(struct notifier_block *this,
1587 unsigned long event, void *ptr)
1588 {
1589 struct net_device *net_dev = ptr;
1590
1591 if (net_dev->netdev_ops == &efx_netdev_ops &&
1592 event == NETDEV_CHANGENAME)
1593 efx_update_name(netdev_priv(net_dev));
1594
1595 return NOTIFY_DONE;
1596 }
1597
1598 static struct notifier_block efx_netdev_notifier = {
1599 .notifier_call = efx_netdev_event,
1600 };
1601
1602 static ssize_t
1603 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1604 {
1605 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1606 return sprintf(buf, "%d\n", efx->phy_type);
1607 }
1608 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1609
1610 static int efx_register_netdev(struct efx_nic *efx)
1611 {
1612 struct net_device *net_dev = efx->net_dev;
1613 int rc;
1614
1615 net_dev->watchdog_timeo = 5 * HZ;
1616 net_dev->irq = efx->pci_dev->irq;
1617 net_dev->netdev_ops = &efx_netdev_ops;
1618 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1619 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1620
1621 /* Always start with carrier off; PHY events will detect the link */
1622 netif_carrier_off(efx->net_dev);
1623
1624 /* Clear MAC statistics */
1625 efx->mac_op->update_stats(efx);
1626 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1627
1628 rc = register_netdev(net_dev);
1629 if (rc) {
1630 EFX_ERR(efx, "could not register net dev\n");
1631 return rc;
1632 }
1633
1634 rtnl_lock();
1635 efx_update_name(efx);
1636 rtnl_unlock();
1637
1638 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1639 if (rc) {
1640 EFX_ERR(efx, "failed to init net dev attributes\n");
1641 goto fail_registered;
1642 }
1643
1644 return 0;
1645
1646 fail_registered:
1647 unregister_netdev(net_dev);
1648 return rc;
1649 }
1650
1651 static void efx_unregister_netdev(struct efx_nic *efx)
1652 {
1653 struct efx_tx_queue *tx_queue;
1654
1655 if (!efx->net_dev)
1656 return;
1657
1658 BUG_ON(netdev_priv(efx->net_dev) != efx);
1659
1660 /* Free up any skbs still remaining. This has to happen before
1661 * we try to unregister the netdev as running their destructors
1662 * may be needed to get the device ref. count to 0. */
1663 efx_for_each_tx_queue(tx_queue, efx)
1664 efx_release_tx_buffers(tx_queue);
1665
1666 if (efx_dev_registered(efx)) {
1667 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1668 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1669 unregister_netdev(efx->net_dev);
1670 }
1671 }
1672
1673 /**************************************************************************
1674 *
1675 * Device reset and suspend
1676 *
1677 **************************************************************************/
1678
1679 /* Tears down the entire software state and most of the hardware state
1680 * before reset. */
1681 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1682 struct ethtool_cmd *ecmd)
1683 {
1684 EFX_ASSERT_RESET_SERIALISED(efx);
1685
1686 efx_stats_disable(efx);
1687 efx_stop_all(efx);
1688 mutex_lock(&efx->mac_lock);
1689 mutex_lock(&efx->spi_lock);
1690
1691 efx->phy_op->get_settings(efx, ecmd);
1692
1693 efx_fini_channels(efx);
1694 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1695 efx->phy_op->fini(efx);
1696 }
1697
1698 /* This function will always ensure that the locks acquired in
1699 * efx_reset_down() are released. A failure return code indicates
1700 * that we were unable to reinitialise the hardware, and the
1701 * driver should be disabled. If ok is false, then the rx and tx
1702 * engines are not restarted, pending a RESET_DISABLE. */
1703 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1704 struct ethtool_cmd *ecmd, bool ok)
1705 {
1706 int rc;
1707
1708 EFX_ASSERT_RESET_SERIALISED(efx);
1709
1710 rc = falcon_init_nic(efx);
1711 if (rc) {
1712 EFX_ERR(efx, "failed to initialise NIC\n");
1713 ok = false;
1714 }
1715
1716 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1717 if (ok) {
1718 rc = efx->phy_op->init(efx);
1719 if (rc)
1720 ok = false;
1721 }
1722 if (!ok)
1723 efx->port_initialized = false;
1724 }
1725
1726 if (ok) {
1727 efx_init_channels(efx);
1728
1729 if (efx->phy_op->set_settings(efx, ecmd))
1730 EFX_ERR(efx, "could not restore PHY settings\n");
1731 }
1732
1733 mutex_unlock(&efx->spi_lock);
1734 mutex_unlock(&efx->mac_lock);
1735
1736 if (ok) {
1737 efx_start_all(efx);
1738 efx_stats_enable(efx);
1739 }
1740 return rc;
1741 }
1742
1743 /* Reset the NIC as transparently as possible. Do not reset the PHY
1744 * Note that the reset may fail, in which case the card will be left
1745 * in a most-probably-unusable state.
1746 *
1747 * This function will sleep. You cannot reset from within an atomic
1748 * state; use efx_schedule_reset() instead.
1749 *
1750 * Grabs the rtnl_lock.
1751 */
1752 static int efx_reset(struct efx_nic *efx)
1753 {
1754 struct ethtool_cmd ecmd;
1755 enum reset_type method = efx->reset_pending;
1756 int rc = 0;
1757
1758 /* Serialise with kernel interfaces */
1759 rtnl_lock();
1760
1761 /* If we're not RUNNING then don't reset. Leave the reset_pending
1762 * flag set so that efx_pci_probe_main will be retried */
1763 if (efx->state != STATE_RUNNING) {
1764 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1765 goto out_unlock;
1766 }
1767
1768 EFX_INFO(efx, "resetting (%d)\n", method);
1769
1770 efx_reset_down(efx, method, &ecmd);
1771
1772 rc = falcon_reset_hw(efx, method);
1773 if (rc) {
1774 EFX_ERR(efx, "failed to reset hardware\n");
1775 goto out_disable;
1776 }
1777
1778 /* Allow resets to be rescheduled. */
1779 efx->reset_pending = RESET_TYPE_NONE;
1780
1781 /* Reinitialise bus-mastering, which may have been turned off before
1782 * the reset was scheduled. This is still appropriate, even in the
1783 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1784 * can respond to requests. */
1785 pci_set_master(efx->pci_dev);
1786
1787 /* Leave device stopped if necessary */
1788 if (method == RESET_TYPE_DISABLE) {
1789 efx_reset_up(efx, method, &ecmd, false);
1790 rc = -EIO;
1791 } else {
1792 rc = efx_reset_up(efx, method, &ecmd, true);
1793 }
1794
1795 out_disable:
1796 if (rc) {
1797 EFX_ERR(efx, "has been disabled\n");
1798 efx->state = STATE_DISABLED;
1799 dev_close(efx->net_dev);
1800 } else {
1801 EFX_LOG(efx, "reset complete\n");
1802 }
1803
1804 out_unlock:
1805 rtnl_unlock();
1806 return rc;
1807 }
1808
1809 /* The worker thread exists so that code that cannot sleep can
1810 * schedule a reset for later.
1811 */
1812 static void efx_reset_work(struct work_struct *data)
1813 {
1814 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1815
1816 efx_reset(nic);
1817 }
1818
1819 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1820 {
1821 enum reset_type method;
1822
1823 if (efx->reset_pending != RESET_TYPE_NONE) {
1824 EFX_INFO(efx, "quenching already scheduled reset\n");
1825 return;
1826 }
1827
1828 switch (type) {
1829 case RESET_TYPE_INVISIBLE:
1830 case RESET_TYPE_ALL:
1831 case RESET_TYPE_WORLD:
1832 case RESET_TYPE_DISABLE:
1833 method = type;
1834 break;
1835 case RESET_TYPE_RX_RECOVERY:
1836 case RESET_TYPE_RX_DESC_FETCH:
1837 case RESET_TYPE_TX_DESC_FETCH:
1838 case RESET_TYPE_TX_SKIP:
1839 method = RESET_TYPE_INVISIBLE;
1840 break;
1841 default:
1842 method = RESET_TYPE_ALL;
1843 break;
1844 }
1845
1846 if (method != type)
1847 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1848 else
1849 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1850
1851 efx->reset_pending = method;
1852
1853 queue_work(reset_workqueue, &efx->reset_work);
1854 }
1855
1856 /**************************************************************************
1857 *
1858 * List of NICs we support
1859 *
1860 **************************************************************************/
1861
1862 /* PCI device ID table */
1863 static struct pci_device_id efx_pci_table[] __devinitdata = {
1864 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1865 .driver_data = (unsigned long) &falcon_a_nic_type},
1866 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1867 .driver_data = (unsigned long) &falcon_b_nic_type},
1868 {0} /* end of list */
1869 };
1870
1871 /**************************************************************************
1872 *
1873 * Dummy PHY/MAC/Board operations
1874 *
1875 * Can be used for some unimplemented operations
1876 * Needed so all function pointers are valid and do not have to be tested
1877 * before use
1878 *
1879 **************************************************************************/
1880 int efx_port_dummy_op_int(struct efx_nic *efx)
1881 {
1882 return 0;
1883 }
1884 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1885 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1886
1887 static struct efx_mac_operations efx_dummy_mac_operations = {
1888 .reconfigure = efx_port_dummy_op_void,
1889 .poll = efx_port_dummy_op_void,
1890 .irq = efx_port_dummy_op_void,
1891 };
1892
1893 static struct efx_phy_operations efx_dummy_phy_operations = {
1894 .init = efx_port_dummy_op_int,
1895 .reconfigure = efx_port_dummy_op_void,
1896 .poll = efx_port_dummy_op_void,
1897 .fini = efx_port_dummy_op_void,
1898 .clear_interrupt = efx_port_dummy_op_void,
1899 };
1900
1901 static struct efx_board efx_dummy_board_info = {
1902 .init = efx_port_dummy_op_int,
1903 .init_leds = efx_port_dummy_op_void,
1904 .set_id_led = efx_port_dummy_op_blink,
1905 .monitor = efx_port_dummy_op_int,
1906 .blink = efx_port_dummy_op_blink,
1907 .fini = efx_port_dummy_op_void,
1908 };
1909
1910 /**************************************************************************
1911 *
1912 * Data housekeeping
1913 *
1914 **************************************************************************/
1915
1916 /* This zeroes out and then fills in the invariants in a struct
1917 * efx_nic (including all sub-structures).
1918 */
1919 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1920 struct pci_dev *pci_dev, struct net_device *net_dev)
1921 {
1922 struct efx_channel *channel;
1923 struct efx_tx_queue *tx_queue;
1924 struct efx_rx_queue *rx_queue;
1925 int i;
1926
1927 /* Initialise common structures */
1928 memset(efx, 0, sizeof(*efx));
1929 spin_lock_init(&efx->biu_lock);
1930 spin_lock_init(&efx->phy_lock);
1931 mutex_init(&efx->spi_lock);
1932 INIT_WORK(&efx->reset_work, efx_reset_work);
1933 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1934 efx->pci_dev = pci_dev;
1935 efx->state = STATE_INIT;
1936 efx->reset_pending = RESET_TYPE_NONE;
1937 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1938 efx->board_info = efx_dummy_board_info;
1939
1940 efx->net_dev = net_dev;
1941 efx->rx_checksum_enabled = true;
1942 spin_lock_init(&efx->netif_stop_lock);
1943 spin_lock_init(&efx->stats_lock);
1944 efx->stats_disable_count = 1;
1945 mutex_init(&efx->mac_lock);
1946 efx->mac_op = &efx_dummy_mac_operations;
1947 efx->phy_op = &efx_dummy_phy_operations;
1948 efx->mii.dev = net_dev;
1949 INIT_WORK(&efx->phy_work, efx_phy_work);
1950 INIT_WORK(&efx->mac_work, efx_mac_work);
1951 atomic_set(&efx->netif_stop_count, 1);
1952
1953 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1954 channel = &efx->channel[i];
1955 channel->efx = efx;
1956 channel->channel = i;
1957 channel->work_pending = false;
1958 }
1959 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1960 tx_queue = &efx->tx_queue[i];
1961 tx_queue->efx = efx;
1962 tx_queue->queue = i;
1963 tx_queue->buffer = NULL;
1964 tx_queue->channel = &efx->channel[0]; /* for safety */
1965 tx_queue->tso_headers_free = NULL;
1966 }
1967 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1968 rx_queue = &efx->rx_queue[i];
1969 rx_queue->efx = efx;
1970 rx_queue->queue = i;
1971 rx_queue->channel = &efx->channel[0]; /* for safety */
1972 rx_queue->buffer = NULL;
1973 spin_lock_init(&rx_queue->add_lock);
1974 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1975 }
1976
1977 efx->type = type;
1978
1979 /* Sanity-check NIC type */
1980 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1981 (efx->type->txd_ring_mask + 1));
1982 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1983 (efx->type->rxd_ring_mask + 1));
1984 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1985 (efx->type->evq_size - 1));
1986 /* As close as we can get to guaranteeing that we don't overflow */
1987 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1988 (efx->type->txd_ring_mask + 1 +
1989 efx->type->rxd_ring_mask + 1));
1990 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1991
1992 /* Higher numbered interrupt modes are less capable! */
1993 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1994 interrupt_mode);
1995
1996 /* Would be good to use the net_dev name, but we're too early */
1997 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1998 pci_name(pci_dev));
1999 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2000 if (!efx->workqueue)
2001 return -ENOMEM;
2002
2003 return 0;
2004 }
2005
2006 static void efx_fini_struct(struct efx_nic *efx)
2007 {
2008 if (efx->workqueue) {
2009 destroy_workqueue(efx->workqueue);
2010 efx->workqueue = NULL;
2011 }
2012 }
2013
2014 /**************************************************************************
2015 *
2016 * PCI interface
2017 *
2018 **************************************************************************/
2019
2020 /* Main body of final NIC shutdown code
2021 * This is called only at module unload (or hotplug removal).
2022 */
2023 static void efx_pci_remove_main(struct efx_nic *efx)
2024 {
2025 EFX_ASSERT_RESET_SERIALISED(efx);
2026
2027 /* Skip everything if we never obtained a valid membase */
2028 if (!efx->membase)
2029 return;
2030
2031 efx_fini_channels(efx);
2032 efx_fini_port(efx);
2033
2034 /* Shutdown the board, then the NIC and board state */
2035 efx->board_info.fini(efx);
2036 falcon_fini_interrupt(efx);
2037
2038 efx_fini_napi(efx);
2039 efx_remove_all(efx);
2040 }
2041
2042 /* Final NIC shutdown
2043 * This is called only at module unload (or hotplug removal).
2044 */
2045 static void efx_pci_remove(struct pci_dev *pci_dev)
2046 {
2047 struct efx_nic *efx;
2048
2049 efx = pci_get_drvdata(pci_dev);
2050 if (!efx)
2051 return;
2052
2053 /* Mark the NIC as fini, then stop the interface */
2054 rtnl_lock();
2055 efx->state = STATE_FINI;
2056 dev_close(efx->net_dev);
2057
2058 /* Allow any queued efx_resets() to complete */
2059 rtnl_unlock();
2060
2061 if (efx->membase == NULL)
2062 goto out;
2063
2064 efx_unregister_netdev(efx);
2065
2066 efx_mtd_remove(efx);
2067
2068 /* Wait for any scheduled resets to complete. No more will be
2069 * scheduled from this point because efx_stop_all() has been
2070 * called, we are no longer registered with driverlink, and
2071 * the net_device's have been removed. */
2072 cancel_work_sync(&efx->reset_work);
2073
2074 efx_pci_remove_main(efx);
2075
2076 out:
2077 efx_fini_io(efx);
2078 EFX_LOG(efx, "shutdown successful\n");
2079
2080 pci_set_drvdata(pci_dev, NULL);
2081 efx_fini_struct(efx);
2082 free_netdev(efx->net_dev);
2083 };
2084
2085 /* Main body of NIC initialisation
2086 * This is called at module load (or hotplug insertion, theoretically).
2087 */
2088 static int efx_pci_probe_main(struct efx_nic *efx)
2089 {
2090 int rc;
2091
2092 /* Do start-of-day initialisation */
2093 rc = efx_probe_all(efx);
2094 if (rc)
2095 goto fail1;
2096
2097 rc = efx_init_napi(efx);
2098 if (rc)
2099 goto fail2;
2100
2101 /* Initialise the board */
2102 rc = efx->board_info.init(efx);
2103 if (rc) {
2104 EFX_ERR(efx, "failed to initialise board\n");
2105 goto fail3;
2106 }
2107
2108 rc = falcon_init_nic(efx);
2109 if (rc) {
2110 EFX_ERR(efx, "failed to initialise NIC\n");
2111 goto fail4;
2112 }
2113
2114 rc = efx_init_port(efx);
2115 if (rc) {
2116 EFX_ERR(efx, "failed to initialise port\n");
2117 goto fail5;
2118 }
2119
2120 efx_init_channels(efx);
2121
2122 rc = falcon_init_interrupt(efx);
2123 if (rc)
2124 goto fail6;
2125
2126 return 0;
2127
2128 fail6:
2129 efx_fini_channels(efx);
2130 efx_fini_port(efx);
2131 fail5:
2132 fail4:
2133 efx->board_info.fini(efx);
2134 fail3:
2135 efx_fini_napi(efx);
2136 fail2:
2137 efx_remove_all(efx);
2138 fail1:
2139 return rc;
2140 }
2141
2142 /* NIC initialisation
2143 *
2144 * This is called at module load (or hotplug insertion,
2145 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2146 * sets up and registers the network devices with the kernel and hooks
2147 * the interrupt service routine. It does not prepare the device for
2148 * transmission; this is left to the first time one of the network
2149 * interfaces is brought up (i.e. efx_net_open).
2150 */
2151 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2152 const struct pci_device_id *entry)
2153 {
2154 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2155 struct net_device *net_dev;
2156 struct efx_nic *efx;
2157 int i, rc;
2158
2159 /* Allocate and initialise a struct net_device and struct efx_nic */
2160 net_dev = alloc_etherdev(sizeof(*efx));
2161 if (!net_dev)
2162 return -ENOMEM;
2163 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2164 NETIF_F_HIGHDMA | NETIF_F_TSO);
2165 if (lro)
2166 net_dev->features |= NETIF_F_GRO;
2167 /* Mask for features that also apply to VLAN devices */
2168 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2169 NETIF_F_HIGHDMA | NETIF_F_TSO);
2170 efx = netdev_priv(net_dev);
2171 pci_set_drvdata(pci_dev, efx);
2172 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2173 if (rc)
2174 goto fail1;
2175
2176 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2177
2178 /* Set up basic I/O (BAR mappings etc) */
2179 rc = efx_init_io(efx);
2180 if (rc)
2181 goto fail2;
2182
2183 /* No serialisation is required with the reset path because
2184 * we're in STATE_INIT. */
2185 for (i = 0; i < 5; i++) {
2186 rc = efx_pci_probe_main(efx);
2187
2188 /* Serialise against efx_reset(). No more resets will be
2189 * scheduled since efx_stop_all() has been called, and we
2190 * have not and never have been registered with either
2191 * the rtnetlink or driverlink layers. */
2192 cancel_work_sync(&efx->reset_work);
2193
2194 if (rc == 0) {
2195 if (efx->reset_pending != RESET_TYPE_NONE) {
2196 /* If there was a scheduled reset during
2197 * probe, the NIC is probably hosed anyway */
2198 efx_pci_remove_main(efx);
2199 rc = -EIO;
2200 } else {
2201 break;
2202 }
2203 }
2204
2205 /* Retry if a recoverably reset event has been scheduled */
2206 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2207 (efx->reset_pending != RESET_TYPE_ALL))
2208 goto fail3;
2209
2210 efx->reset_pending = RESET_TYPE_NONE;
2211 }
2212
2213 if (rc) {
2214 EFX_ERR(efx, "Could not reset NIC\n");
2215 goto fail4;
2216 }
2217
2218 /* Switch to the running state before we expose the device to
2219 * the OS. This is to ensure that the initial gathering of
2220 * MAC stats succeeds. */
2221 efx->state = STATE_RUNNING;
2222
2223 efx_mtd_probe(efx); /* allowed to fail */
2224
2225 rc = efx_register_netdev(efx);
2226 if (rc)
2227 goto fail5;
2228
2229 EFX_LOG(efx, "initialisation successful\n");
2230 return 0;
2231
2232 fail5:
2233 efx_pci_remove_main(efx);
2234 fail4:
2235 fail3:
2236 efx_fini_io(efx);
2237 fail2:
2238 efx_fini_struct(efx);
2239 fail1:
2240 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2241 free_netdev(net_dev);
2242 return rc;
2243 }
2244
2245 static struct pci_driver efx_pci_driver = {
2246 .name = EFX_DRIVER_NAME,
2247 .id_table = efx_pci_table,
2248 .probe = efx_pci_probe,
2249 .remove = efx_pci_remove,
2250 };
2251
2252 /**************************************************************************
2253 *
2254 * Kernel module interface
2255 *
2256 *************************************************************************/
2257
2258 module_param(interrupt_mode, uint, 0444);
2259 MODULE_PARM_DESC(interrupt_mode,
2260 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2261
2262 static int __init efx_init_module(void)
2263 {
2264 int rc;
2265
2266 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2267
2268 rc = register_netdevice_notifier(&efx_netdev_notifier);
2269 if (rc)
2270 goto err_notifier;
2271
2272 refill_workqueue = create_workqueue("sfc_refill");
2273 if (!refill_workqueue) {
2274 rc = -ENOMEM;
2275 goto err_refill;
2276 }
2277 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2278 if (!reset_workqueue) {
2279 rc = -ENOMEM;
2280 goto err_reset;
2281 }
2282
2283 rc = pci_register_driver(&efx_pci_driver);
2284 if (rc < 0)
2285 goto err_pci;
2286
2287 return 0;
2288
2289 err_pci:
2290 destroy_workqueue(reset_workqueue);
2291 err_reset:
2292 destroy_workqueue(refill_workqueue);
2293 err_refill:
2294 unregister_netdevice_notifier(&efx_netdev_notifier);
2295 err_notifier:
2296 return rc;
2297 }
2298
2299 static void __exit efx_exit_module(void)
2300 {
2301 printk(KERN_INFO "Solarflare NET driver unloading\n");
2302
2303 pci_unregister_driver(&efx_pci_driver);
2304 destroy_workqueue(reset_workqueue);
2305 destroy_workqueue(refill_workqueue);
2306 unregister_netdevice_notifier(&efx_netdev_notifier);
2307
2308 }
2309
2310 module_init(efx_init_module);
2311 module_exit(efx_exit_module);
2312
2313 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2314 "Solarflare Communications");
2315 MODULE_DESCRIPTION("Solarflare Communications network driver");
2316 MODULE_LICENSE("GPL");
2317 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.083458 seconds and 5 git commands to generate.