sfc: Make the dmaq size a run-time setting (rather than compile-time)
[deliverable/linux.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include "net_driver.h"
25 #include "efx.h"
26 #include "mdio_10g.h"
27 #include "nic.h"
28
29 #include "mcdi.h"
30 #include "workarounds.h"
31
32 /**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
69 };
70
71 /* Interrupt mode names (see INT_MODE())) */
72 const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73 const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77 };
78
79 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80 const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
92 };
93
94 #define EFX_MAX_MTU (9 * 1024)
95
96 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100 static struct workqueue_struct *reset_workqueue;
101
102 /**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
108 /*
109 * Use separate channels for TX and RX events
110 *
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
113 *
114 * This is only used in MSI-X interrupt mode
115 */
116 static unsigned int separate_tx_channels;
117 module_param(separate_tx_channels, uint, 0444);
118 MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
120
121 /* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124 static int napi_weight = 64;
125
126 /* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130 unsigned int efx_monitor_interval = 1 * HZ;
131
132 /* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139 static unsigned int allow_bad_hwaddr;
140
141 /* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147 static unsigned int rx_irq_mod_usec = 60;
148
149 /* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158 static unsigned int tx_irq_mod_usec = 150;
159
160 /* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165 static unsigned int interrupt_mode;
166
167 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174 static unsigned int rss_cpus;
175 module_param(rss_cpus, uint, 0444);
176 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
178 static int phy_flash_cfg;
179 module_param(phy_flash_cfg, int, 0644);
180 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
182 static unsigned irq_adapt_low_thresh = 10000;
183 module_param(irq_adapt_low_thresh, uint, 0644);
184 MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187 static unsigned irq_adapt_high_thresh = 20000;
188 module_param(irq_adapt_high_thresh, uint, 0644);
189 MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
192 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196 module_param(debug, uint, 0);
197 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
198
199 /**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_port(struct efx_nic *efx);
206 static void efx_fini_napi(struct efx_nic *efx);
207 static void efx_fini_channels(struct efx_nic *efx);
208
209 #define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
213 ASSERT_RTNL(); \
214 } while (0)
215
216 /**************************************************************************
217 *
218 * Event queue processing
219 *
220 *************************************************************************/
221
222 /* Process channel's event queue
223 *
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
228 */
229 static int efx_process_channel(struct efx_channel *channel, int budget)
230 {
231 struct efx_nic *efx = channel->efx;
232 int spent;
233
234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
235 !channel->enabled))
236 return 0;
237
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
240 return 0;
241
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
247 }
248
249 efx_rx_strategy(channel);
250
251 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
252
253 return spent;
254 }
255
256 /* Mark channel as finished processing
257 *
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
261 */
262 static inline void efx_channel_processed(struct efx_channel *channel)
263 {
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
267 channel->work_pending = false;
268 smp_wmb();
269
270 efx_nic_eventq_read_ack(channel);
271 }
272
273 /* NAPI poll handler
274 *
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
277 */
278 static int efx_poll(struct napi_struct *napi, int budget)
279 {
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
282 struct efx_nic *efx = channel->efx;
283 int spent;
284
285 netif_vdbg(efx, intr, efx->net_dev,
286 "channel %d NAPI poll executing on CPU %d\n",
287 channel->channel, raw_smp_processor_id());
288
289 spent = efx_process_channel(channel, budget);
290
291 if (spent < budget) {
292 if (channel->channel < efx->n_rx_channels &&
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
299 efx->type->push_irq_moderation(channel);
300 }
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
306 efx->type->push_irq_moderation(channel);
307 }
308 }
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
311 }
312
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
317 */
318 napi_complete(napi);
319 efx_channel_processed(channel);
320 }
321
322 return spent;
323 }
324
325 /* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
331 * Since we are touching interrupts the caller should hold the suspend lock
332 */
333 void efx_process_channel_now(struct efx_channel *channel)
334 {
335 struct efx_nic *efx = channel->efx;
336
337 BUG_ON(channel->channel >= efx->n_channels);
338 BUG_ON(!channel->enabled);
339
340 /* Disable interrupts and wait for ISRs to complete */
341 efx_nic_disable_interrupts(efx);
342 if (efx->legacy_irq)
343 synchronize_irq(efx->legacy_irq);
344 if (channel->irq)
345 synchronize_irq(channel->irq);
346
347 /* Wait for any NAPI processing to complete */
348 napi_disable(&channel->napi_str);
349
350 /* Poll the channel */
351 efx_process_channel(channel, channel->eventq_mask + 1);
352
353 /* Ack the eventq. This may cause an interrupt to be generated
354 * when they are reenabled */
355 efx_channel_processed(channel);
356
357 napi_enable(&channel->napi_str);
358 efx_nic_enable_interrupts(efx);
359 }
360
361 /* Create event queue
362 * Event queue memory allocations are done only once. If the channel
363 * is reset, the memory buffer will be reused; this guards against
364 * errors during channel reset and also simplifies interrupt handling.
365 */
366 static int efx_probe_eventq(struct efx_channel *channel)
367 {
368 struct efx_nic *efx = channel->efx;
369 unsigned long entries;
370
371 netif_dbg(channel->efx, probe, channel->efx->net_dev,
372 "chan %d create event queue\n", channel->channel);
373
374 /* Build an event queue with room for one event per tx and rx buffer,
375 * plus some extra for link state events and MCDI completions. */
376 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
377 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
378 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
379
380 return efx_nic_probe_eventq(channel);
381 }
382
383 /* Prepare channel's event queue */
384 static void efx_init_eventq(struct efx_channel *channel)
385 {
386 netif_dbg(channel->efx, drv, channel->efx->net_dev,
387 "chan %d init event queue\n", channel->channel);
388
389 channel->eventq_read_ptr = 0;
390
391 efx_nic_init_eventq(channel);
392 }
393
394 static void efx_fini_eventq(struct efx_channel *channel)
395 {
396 netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 "chan %d fini event queue\n", channel->channel);
398
399 efx_nic_fini_eventq(channel);
400 }
401
402 static void efx_remove_eventq(struct efx_channel *channel)
403 {
404 netif_dbg(channel->efx, drv, channel->efx->net_dev,
405 "chan %d remove event queue\n", channel->channel);
406
407 efx_nic_remove_eventq(channel);
408 }
409
410 /**************************************************************************
411 *
412 * Channel handling
413 *
414 *************************************************************************/
415
416 static int efx_probe_channel(struct efx_channel *channel)
417 {
418 struct efx_tx_queue *tx_queue;
419 struct efx_rx_queue *rx_queue;
420 int rc;
421
422 netif_dbg(channel->efx, probe, channel->efx->net_dev,
423 "creating channel %d\n", channel->channel);
424
425 rc = efx_probe_eventq(channel);
426 if (rc)
427 goto fail1;
428
429 efx_for_each_channel_tx_queue(tx_queue, channel) {
430 rc = efx_probe_tx_queue(tx_queue);
431 if (rc)
432 goto fail2;
433 }
434
435 efx_for_each_channel_rx_queue(rx_queue, channel) {
436 rc = efx_probe_rx_queue(rx_queue);
437 if (rc)
438 goto fail3;
439 }
440
441 channel->n_rx_frm_trunc = 0;
442
443 return 0;
444
445 fail3:
446 efx_for_each_channel_rx_queue(rx_queue, channel)
447 efx_remove_rx_queue(rx_queue);
448 fail2:
449 efx_for_each_channel_tx_queue(tx_queue, channel)
450 efx_remove_tx_queue(tx_queue);
451 fail1:
452 return rc;
453 }
454
455
456 static void efx_set_channel_names(struct efx_nic *efx)
457 {
458 struct efx_channel *channel;
459 const char *type = "";
460 int number;
461
462 efx_for_each_channel(channel, efx) {
463 number = channel->channel;
464 if (efx->n_channels > efx->n_rx_channels) {
465 if (channel->channel < efx->n_rx_channels) {
466 type = "-rx";
467 } else {
468 type = "-tx";
469 number -= efx->n_rx_channels;
470 }
471 }
472 snprintf(channel->name, sizeof(channel->name),
473 "%s%s-%d", efx->name, type, number);
474 }
475 }
476
477 /* Channels are shutdown and reinitialised whilst the NIC is running
478 * to propagate configuration changes (mtu, checksum offload), or
479 * to clear hardware error conditions
480 */
481 static void efx_init_channels(struct efx_nic *efx)
482 {
483 struct efx_tx_queue *tx_queue;
484 struct efx_rx_queue *rx_queue;
485 struct efx_channel *channel;
486
487 /* Calculate the rx buffer allocation parameters required to
488 * support the current MTU, including padding for header
489 * alignment and overruns.
490 */
491 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
492 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
493 efx->type->rx_buffer_hash_size +
494 efx->type->rx_buffer_padding);
495 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
496 sizeof(struct efx_rx_page_state));
497
498 /* Initialise the channels */
499 efx_for_each_channel(channel, efx) {
500 netif_dbg(channel->efx, drv, channel->efx->net_dev,
501 "init chan %d\n", channel->channel);
502
503 efx_init_eventq(channel);
504
505 efx_for_each_channel_tx_queue(tx_queue, channel)
506 efx_init_tx_queue(tx_queue);
507
508 /* The rx buffer allocation strategy is MTU dependent */
509 efx_rx_strategy(channel);
510
511 efx_for_each_channel_rx_queue(rx_queue, channel)
512 efx_init_rx_queue(rx_queue);
513
514 WARN_ON(channel->rx_pkt != NULL);
515 efx_rx_strategy(channel);
516 }
517 }
518
519 /* This enables event queue processing and packet transmission.
520 *
521 * Note that this function is not allowed to fail, since that would
522 * introduce too much complexity into the suspend/resume path.
523 */
524 static void efx_start_channel(struct efx_channel *channel)
525 {
526 struct efx_rx_queue *rx_queue;
527
528 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
529 "starting chan %d\n", channel->channel);
530
531 /* The interrupt handler for this channel may set work_pending
532 * as soon as we enable it. Make sure it's cleared before
533 * then. Similarly, make sure it sees the enabled flag set. */
534 channel->work_pending = false;
535 channel->enabled = true;
536 smp_wmb();
537
538 /* Fill the queues before enabling NAPI */
539 efx_for_each_channel_rx_queue(rx_queue, channel)
540 efx_fast_push_rx_descriptors(rx_queue);
541
542 napi_enable(&channel->napi_str);
543 }
544
545 /* This disables event queue processing and packet transmission.
546 * This function does not guarantee that all queue processing
547 * (e.g. RX refill) is complete.
548 */
549 static void efx_stop_channel(struct efx_channel *channel)
550 {
551 if (!channel->enabled)
552 return;
553
554 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
555 "stop chan %d\n", channel->channel);
556
557 channel->enabled = false;
558 napi_disable(&channel->napi_str);
559 }
560
561 static void efx_fini_channels(struct efx_nic *efx)
562 {
563 struct efx_channel *channel;
564 struct efx_tx_queue *tx_queue;
565 struct efx_rx_queue *rx_queue;
566 int rc;
567
568 EFX_ASSERT_RESET_SERIALISED(efx);
569 BUG_ON(efx->port_enabled);
570
571 rc = efx_nic_flush_queues(efx);
572 if (rc && EFX_WORKAROUND_7803(efx)) {
573 /* Schedule a reset to recover from the flush failure. The
574 * descriptor caches reference memory we're about to free,
575 * but falcon_reconfigure_mac_wrapper() won't reconnect
576 * the MACs because of the pending reset. */
577 netif_err(efx, drv, efx->net_dev,
578 "Resetting to recover from flush failure\n");
579 efx_schedule_reset(efx, RESET_TYPE_ALL);
580 } else if (rc) {
581 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
582 } else {
583 netif_dbg(efx, drv, efx->net_dev,
584 "successfully flushed all queues\n");
585 }
586
587 efx_for_each_channel(channel, efx) {
588 netif_dbg(channel->efx, drv, channel->efx->net_dev,
589 "shut down chan %d\n", channel->channel);
590
591 efx_for_each_channel_rx_queue(rx_queue, channel)
592 efx_fini_rx_queue(rx_queue);
593 efx_for_each_channel_tx_queue(tx_queue, channel)
594 efx_fini_tx_queue(tx_queue);
595 efx_fini_eventq(channel);
596 }
597 }
598
599 static void efx_remove_channel(struct efx_channel *channel)
600 {
601 struct efx_tx_queue *tx_queue;
602 struct efx_rx_queue *rx_queue;
603
604 netif_dbg(channel->efx, drv, channel->efx->net_dev,
605 "destroy chan %d\n", channel->channel);
606
607 efx_for_each_channel_rx_queue(rx_queue, channel)
608 efx_remove_rx_queue(rx_queue);
609 efx_for_each_channel_tx_queue(tx_queue, channel)
610 efx_remove_tx_queue(tx_queue);
611 efx_remove_eventq(channel);
612 }
613
614 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
615 {
616 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
617 }
618
619 /**************************************************************************
620 *
621 * Port handling
622 *
623 **************************************************************************/
624
625 /* This ensures that the kernel is kept informed (via
626 * netif_carrier_on/off) of the link status, and also maintains the
627 * link status's stop on the port's TX queue.
628 */
629 void efx_link_status_changed(struct efx_nic *efx)
630 {
631 struct efx_link_state *link_state = &efx->link_state;
632
633 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
634 * that no events are triggered between unregister_netdev() and the
635 * driver unloading. A more general condition is that NETDEV_CHANGE
636 * can only be generated between NETDEV_UP and NETDEV_DOWN */
637 if (!netif_running(efx->net_dev))
638 return;
639
640 if (efx->port_inhibited) {
641 netif_carrier_off(efx->net_dev);
642 return;
643 }
644
645 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
646 efx->n_link_state_changes++;
647
648 if (link_state->up)
649 netif_carrier_on(efx->net_dev);
650 else
651 netif_carrier_off(efx->net_dev);
652 }
653
654 /* Status message for kernel log */
655 if (link_state->up) {
656 netif_info(efx, link, efx->net_dev,
657 "link up at %uMbps %s-duplex (MTU %d)%s\n",
658 link_state->speed, link_state->fd ? "full" : "half",
659 efx->net_dev->mtu,
660 (efx->promiscuous ? " [PROMISC]" : ""));
661 } else {
662 netif_info(efx, link, efx->net_dev, "link down\n");
663 }
664
665 }
666
667 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
668 {
669 efx->link_advertising = advertising;
670 if (advertising) {
671 if (advertising & ADVERTISED_Pause)
672 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
673 else
674 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
675 if (advertising & ADVERTISED_Asym_Pause)
676 efx->wanted_fc ^= EFX_FC_TX;
677 }
678 }
679
680 void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
681 {
682 efx->wanted_fc = wanted_fc;
683 if (efx->link_advertising) {
684 if (wanted_fc & EFX_FC_RX)
685 efx->link_advertising |= (ADVERTISED_Pause |
686 ADVERTISED_Asym_Pause);
687 else
688 efx->link_advertising &= ~(ADVERTISED_Pause |
689 ADVERTISED_Asym_Pause);
690 if (wanted_fc & EFX_FC_TX)
691 efx->link_advertising ^= ADVERTISED_Asym_Pause;
692 }
693 }
694
695 static void efx_fini_port(struct efx_nic *efx);
696
697 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
698 * the MAC appropriately. All other PHY configuration changes are pushed
699 * through phy_op->set_settings(), and pushed asynchronously to the MAC
700 * through efx_monitor().
701 *
702 * Callers must hold the mac_lock
703 */
704 int __efx_reconfigure_port(struct efx_nic *efx)
705 {
706 enum efx_phy_mode phy_mode;
707 int rc;
708
709 WARN_ON(!mutex_is_locked(&efx->mac_lock));
710
711 /* Serialise the promiscuous flag with efx_set_multicast_list. */
712 if (efx_dev_registered(efx)) {
713 netif_addr_lock_bh(efx->net_dev);
714 netif_addr_unlock_bh(efx->net_dev);
715 }
716
717 /* Disable PHY transmit in mac level loopbacks */
718 phy_mode = efx->phy_mode;
719 if (LOOPBACK_INTERNAL(efx))
720 efx->phy_mode |= PHY_MODE_TX_DISABLED;
721 else
722 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
723
724 rc = efx->type->reconfigure_port(efx);
725
726 if (rc)
727 efx->phy_mode = phy_mode;
728
729 return rc;
730 }
731
732 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
733 * disabled. */
734 int efx_reconfigure_port(struct efx_nic *efx)
735 {
736 int rc;
737
738 EFX_ASSERT_RESET_SERIALISED(efx);
739
740 mutex_lock(&efx->mac_lock);
741 rc = __efx_reconfigure_port(efx);
742 mutex_unlock(&efx->mac_lock);
743
744 return rc;
745 }
746
747 /* Asynchronous work item for changing MAC promiscuity and multicast
748 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
749 * MAC directly. */
750 static void efx_mac_work(struct work_struct *data)
751 {
752 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
753
754 mutex_lock(&efx->mac_lock);
755 if (efx->port_enabled) {
756 efx->type->push_multicast_hash(efx);
757 efx->mac_op->reconfigure(efx);
758 }
759 mutex_unlock(&efx->mac_lock);
760 }
761
762 static int efx_probe_port(struct efx_nic *efx)
763 {
764 int rc;
765
766 netif_dbg(efx, probe, efx->net_dev, "create port\n");
767
768 if (phy_flash_cfg)
769 efx->phy_mode = PHY_MODE_SPECIAL;
770
771 /* Connect up MAC/PHY operations table */
772 rc = efx->type->probe_port(efx);
773 if (rc)
774 return rc;
775
776 /* Sanity check MAC address */
777 if (is_valid_ether_addr(efx->mac_address)) {
778 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
779 } else {
780 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
781 efx->mac_address);
782 if (!allow_bad_hwaddr) {
783 rc = -EINVAL;
784 goto err;
785 }
786 random_ether_addr(efx->net_dev->dev_addr);
787 netif_info(efx, probe, efx->net_dev,
788 "using locally-generated MAC %pM\n",
789 efx->net_dev->dev_addr);
790 }
791
792 return 0;
793
794 err:
795 efx->type->remove_port(efx);
796 return rc;
797 }
798
799 static int efx_init_port(struct efx_nic *efx)
800 {
801 int rc;
802
803 netif_dbg(efx, drv, efx->net_dev, "init port\n");
804
805 mutex_lock(&efx->mac_lock);
806
807 rc = efx->phy_op->init(efx);
808 if (rc)
809 goto fail1;
810
811 efx->port_initialized = true;
812
813 /* Reconfigure the MAC before creating dma queues (required for
814 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
815 efx->mac_op->reconfigure(efx);
816
817 /* Ensure the PHY advertises the correct flow control settings */
818 rc = efx->phy_op->reconfigure(efx);
819 if (rc)
820 goto fail2;
821
822 mutex_unlock(&efx->mac_lock);
823 return 0;
824
825 fail2:
826 efx->phy_op->fini(efx);
827 fail1:
828 mutex_unlock(&efx->mac_lock);
829 return rc;
830 }
831
832 static void efx_start_port(struct efx_nic *efx)
833 {
834 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
835 BUG_ON(efx->port_enabled);
836
837 mutex_lock(&efx->mac_lock);
838 efx->port_enabled = true;
839
840 /* efx_mac_work() might have been scheduled after efx_stop_port(),
841 * and then cancelled by efx_flush_all() */
842 efx->type->push_multicast_hash(efx);
843 efx->mac_op->reconfigure(efx);
844
845 mutex_unlock(&efx->mac_lock);
846 }
847
848 /* Prevent efx_mac_work() and efx_monitor() from working */
849 static void efx_stop_port(struct efx_nic *efx)
850 {
851 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
852
853 mutex_lock(&efx->mac_lock);
854 efx->port_enabled = false;
855 mutex_unlock(&efx->mac_lock);
856
857 /* Serialise against efx_set_multicast_list() */
858 if (efx_dev_registered(efx)) {
859 netif_addr_lock_bh(efx->net_dev);
860 netif_addr_unlock_bh(efx->net_dev);
861 }
862 }
863
864 static void efx_fini_port(struct efx_nic *efx)
865 {
866 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
867
868 if (!efx->port_initialized)
869 return;
870
871 efx->phy_op->fini(efx);
872 efx->port_initialized = false;
873
874 efx->link_state.up = false;
875 efx_link_status_changed(efx);
876 }
877
878 static void efx_remove_port(struct efx_nic *efx)
879 {
880 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
881
882 efx->type->remove_port(efx);
883 }
884
885 /**************************************************************************
886 *
887 * NIC handling
888 *
889 **************************************************************************/
890
891 /* This configures the PCI device to enable I/O and DMA. */
892 static int efx_init_io(struct efx_nic *efx)
893 {
894 struct pci_dev *pci_dev = efx->pci_dev;
895 dma_addr_t dma_mask = efx->type->max_dma_mask;
896 int rc;
897
898 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
899
900 rc = pci_enable_device(pci_dev);
901 if (rc) {
902 netif_err(efx, probe, efx->net_dev,
903 "failed to enable PCI device\n");
904 goto fail1;
905 }
906
907 pci_set_master(pci_dev);
908
909 /* Set the PCI DMA mask. Try all possibilities from our
910 * genuine mask down to 32 bits, because some architectures
911 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
912 * masks event though they reject 46 bit masks.
913 */
914 while (dma_mask > 0x7fffffffUL) {
915 if (pci_dma_supported(pci_dev, dma_mask) &&
916 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
917 break;
918 dma_mask >>= 1;
919 }
920 if (rc) {
921 netif_err(efx, probe, efx->net_dev,
922 "could not find a suitable DMA mask\n");
923 goto fail2;
924 }
925 netif_dbg(efx, probe, efx->net_dev,
926 "using DMA mask %llx\n", (unsigned long long) dma_mask);
927 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
928 if (rc) {
929 /* pci_set_consistent_dma_mask() is not *allowed* to
930 * fail with a mask that pci_set_dma_mask() accepted,
931 * but just in case...
932 */
933 netif_err(efx, probe, efx->net_dev,
934 "failed to set consistent DMA mask\n");
935 goto fail2;
936 }
937
938 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
939 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
940 if (rc) {
941 netif_err(efx, probe, efx->net_dev,
942 "request for memory BAR failed\n");
943 rc = -EIO;
944 goto fail3;
945 }
946 efx->membase = ioremap_nocache(efx->membase_phys,
947 efx->type->mem_map_size);
948 if (!efx->membase) {
949 netif_err(efx, probe, efx->net_dev,
950 "could not map memory BAR at %llx+%x\n",
951 (unsigned long long)efx->membase_phys,
952 efx->type->mem_map_size);
953 rc = -ENOMEM;
954 goto fail4;
955 }
956 netif_dbg(efx, probe, efx->net_dev,
957 "memory BAR at %llx+%x (virtual %p)\n",
958 (unsigned long long)efx->membase_phys,
959 efx->type->mem_map_size, efx->membase);
960
961 return 0;
962
963 fail4:
964 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
965 fail3:
966 efx->membase_phys = 0;
967 fail2:
968 pci_disable_device(efx->pci_dev);
969 fail1:
970 return rc;
971 }
972
973 static void efx_fini_io(struct efx_nic *efx)
974 {
975 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
976
977 if (efx->membase) {
978 iounmap(efx->membase);
979 efx->membase = NULL;
980 }
981
982 if (efx->membase_phys) {
983 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
984 efx->membase_phys = 0;
985 }
986
987 pci_disable_device(efx->pci_dev);
988 }
989
990 /* Get number of channels wanted. Each channel will have its own IRQ,
991 * 1 RX queue and/or 2 TX queues. */
992 static int efx_wanted_channels(void)
993 {
994 cpumask_var_t core_mask;
995 int count;
996 int cpu;
997
998 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
999 printk(KERN_WARNING
1000 "sfc: RSS disabled due to allocation failure\n");
1001 return 1;
1002 }
1003
1004 count = 0;
1005 for_each_online_cpu(cpu) {
1006 if (!cpumask_test_cpu(cpu, core_mask)) {
1007 ++count;
1008 cpumask_or(core_mask, core_mask,
1009 topology_core_cpumask(cpu));
1010 }
1011 }
1012
1013 free_cpumask_var(core_mask);
1014 return count;
1015 }
1016
1017 /* Probe the number and type of interrupts we are able to obtain, and
1018 * the resulting numbers of channels and RX queues.
1019 */
1020 static void efx_probe_interrupts(struct efx_nic *efx)
1021 {
1022 int max_channels =
1023 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1024 int rc, i;
1025
1026 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1027 struct msix_entry xentries[EFX_MAX_CHANNELS];
1028 int n_channels;
1029
1030 n_channels = efx_wanted_channels();
1031 if (separate_tx_channels)
1032 n_channels *= 2;
1033 n_channels = min(n_channels, max_channels);
1034
1035 for (i = 0; i < n_channels; i++)
1036 xentries[i].entry = i;
1037 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1038 if (rc > 0) {
1039 netif_err(efx, drv, efx->net_dev,
1040 "WARNING: Insufficient MSI-X vectors"
1041 " available (%d < %d).\n", rc, n_channels);
1042 netif_err(efx, drv, efx->net_dev,
1043 "WARNING: Performance may be reduced.\n");
1044 EFX_BUG_ON_PARANOID(rc >= n_channels);
1045 n_channels = rc;
1046 rc = pci_enable_msix(efx->pci_dev, xentries,
1047 n_channels);
1048 }
1049
1050 if (rc == 0) {
1051 efx->n_channels = n_channels;
1052 if (separate_tx_channels) {
1053 efx->n_tx_channels =
1054 max(efx->n_channels / 2, 1U);
1055 efx->n_rx_channels =
1056 max(efx->n_channels -
1057 efx->n_tx_channels, 1U);
1058 } else {
1059 efx->n_tx_channels = efx->n_channels;
1060 efx->n_rx_channels = efx->n_channels;
1061 }
1062 for (i = 0; i < n_channels; i++)
1063 efx_get_channel(efx, i)->irq =
1064 xentries[i].vector;
1065 } else {
1066 /* Fall back to single channel MSI */
1067 efx->interrupt_mode = EFX_INT_MODE_MSI;
1068 netif_err(efx, drv, efx->net_dev,
1069 "could not enable MSI-X\n");
1070 }
1071 }
1072
1073 /* Try single interrupt MSI */
1074 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1075 efx->n_channels = 1;
1076 efx->n_rx_channels = 1;
1077 efx->n_tx_channels = 1;
1078 rc = pci_enable_msi(efx->pci_dev);
1079 if (rc == 0) {
1080 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1081 } else {
1082 netif_err(efx, drv, efx->net_dev,
1083 "could not enable MSI\n");
1084 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1085 }
1086 }
1087
1088 /* Assume legacy interrupts */
1089 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1090 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1091 efx->n_rx_channels = 1;
1092 efx->n_tx_channels = 1;
1093 efx->legacy_irq = efx->pci_dev->irq;
1094 }
1095 }
1096
1097 static void efx_remove_interrupts(struct efx_nic *efx)
1098 {
1099 struct efx_channel *channel;
1100
1101 /* Remove MSI/MSI-X interrupts */
1102 efx_for_each_channel(channel, efx)
1103 channel->irq = 0;
1104 pci_disable_msi(efx->pci_dev);
1105 pci_disable_msix(efx->pci_dev);
1106
1107 /* Remove legacy interrupt */
1108 efx->legacy_irq = 0;
1109 }
1110
1111 struct efx_tx_queue *
1112 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1113 {
1114 unsigned tx_channel_offset =
1115 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1116 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1117 type >= EFX_TXQ_TYPES);
1118 return &efx->channel[tx_channel_offset + index]->tx_queue[type];
1119 }
1120
1121 static void efx_set_channels(struct efx_nic *efx)
1122 {
1123 struct efx_channel *channel;
1124 struct efx_tx_queue *tx_queue;
1125 unsigned tx_channel_offset =
1126 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1127
1128 /* Channel pointers were set in efx_init_struct() but we now
1129 * need to clear them for TX queues in any RX-only channels. */
1130 efx_for_each_channel(channel, efx) {
1131 if (channel->channel - tx_channel_offset >=
1132 efx->n_tx_channels) {
1133 efx_for_each_channel_tx_queue(tx_queue, channel)
1134 tx_queue->channel = NULL;
1135 }
1136 }
1137 }
1138
1139 static int efx_probe_nic(struct efx_nic *efx)
1140 {
1141 size_t i;
1142 int rc;
1143
1144 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1145
1146 /* Carry out hardware-type specific initialisation */
1147 rc = efx->type->probe(efx);
1148 if (rc)
1149 return rc;
1150
1151 /* Determine the number of channels and queues by trying to hook
1152 * in MSI-X interrupts. */
1153 efx_probe_interrupts(efx);
1154
1155 if (efx->n_channels > 1)
1156 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1157 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1158 efx->rx_indir_table[i] = i % efx->n_rx_channels;
1159
1160 efx_set_channels(efx);
1161 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
1162
1163 /* Initialise the interrupt moderation settings */
1164 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1165
1166 return 0;
1167 }
1168
1169 static void efx_remove_nic(struct efx_nic *efx)
1170 {
1171 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1172
1173 efx_remove_interrupts(efx);
1174 efx->type->remove(efx);
1175 }
1176
1177 /**************************************************************************
1178 *
1179 * NIC startup/shutdown
1180 *
1181 *************************************************************************/
1182
1183 static int efx_probe_all(struct efx_nic *efx)
1184 {
1185 struct efx_channel *channel;
1186 int rc;
1187
1188 /* Create NIC */
1189 rc = efx_probe_nic(efx);
1190 if (rc) {
1191 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1192 goto fail1;
1193 }
1194
1195 /* Create port */
1196 rc = efx_probe_port(efx);
1197 if (rc) {
1198 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1199 goto fail2;
1200 }
1201
1202 /* Create channels */
1203 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1204 efx_for_each_channel(channel, efx) {
1205 rc = efx_probe_channel(channel);
1206 if (rc) {
1207 netif_err(efx, probe, efx->net_dev,
1208 "failed to create channel %d\n",
1209 channel->channel);
1210 goto fail3;
1211 }
1212 }
1213 efx_set_channel_names(efx);
1214
1215 return 0;
1216
1217 fail3:
1218 efx_for_each_channel(channel, efx)
1219 efx_remove_channel(channel);
1220 efx_remove_port(efx);
1221 fail2:
1222 efx_remove_nic(efx);
1223 fail1:
1224 return rc;
1225 }
1226
1227 /* Called after previous invocation(s) of efx_stop_all, restarts the
1228 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1229 * and ensures that the port is scheduled to be reconfigured.
1230 * This function is safe to call multiple times when the NIC is in any
1231 * state. */
1232 static void efx_start_all(struct efx_nic *efx)
1233 {
1234 struct efx_channel *channel;
1235
1236 EFX_ASSERT_RESET_SERIALISED(efx);
1237
1238 /* Check that it is appropriate to restart the interface. All
1239 * of these flags are safe to read under just the rtnl lock */
1240 if (efx->port_enabled)
1241 return;
1242 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1243 return;
1244 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1245 return;
1246
1247 /* Mark the port as enabled so port reconfigurations can start, then
1248 * restart the transmit interface early so the watchdog timer stops */
1249 efx_start_port(efx);
1250
1251 efx_for_each_channel(channel, efx) {
1252 if (efx_dev_registered(efx))
1253 efx_wake_queue(channel);
1254 efx_start_channel(channel);
1255 }
1256
1257 efx_nic_enable_interrupts(efx);
1258
1259 /* Switch to event based MCDI completions after enabling interrupts.
1260 * If a reset has been scheduled, then we need to stay in polled mode.
1261 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1262 * reset_pending [modified from an atomic context], we instead guarantee
1263 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1264 efx_mcdi_mode_event(efx);
1265 if (efx->reset_pending != RESET_TYPE_NONE)
1266 efx_mcdi_mode_poll(efx);
1267
1268 /* Start the hardware monitor if there is one. Otherwise (we're link
1269 * event driven), we have to poll the PHY because after an event queue
1270 * flush, we could have a missed a link state change */
1271 if (efx->type->monitor != NULL) {
1272 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1273 efx_monitor_interval);
1274 } else {
1275 mutex_lock(&efx->mac_lock);
1276 if (efx->phy_op->poll(efx))
1277 efx_link_status_changed(efx);
1278 mutex_unlock(&efx->mac_lock);
1279 }
1280
1281 efx->type->start_stats(efx);
1282 }
1283
1284 /* Flush all delayed work. Should only be called when no more delayed work
1285 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1286 * since we're holding the rtnl_lock at this point. */
1287 static void efx_flush_all(struct efx_nic *efx)
1288 {
1289 /* Make sure the hardware monitor is stopped */
1290 cancel_delayed_work_sync(&efx->monitor_work);
1291 /* Stop scheduled port reconfigurations */
1292 cancel_work_sync(&efx->mac_work);
1293 }
1294
1295 /* Quiesce hardware and software without bringing the link down.
1296 * Safe to call multiple times, when the nic and interface is in any
1297 * state. The caller is guaranteed to subsequently be in a position
1298 * to modify any hardware and software state they see fit without
1299 * taking locks. */
1300 static void efx_stop_all(struct efx_nic *efx)
1301 {
1302 struct efx_channel *channel;
1303
1304 EFX_ASSERT_RESET_SERIALISED(efx);
1305
1306 /* port_enabled can be read safely under the rtnl lock */
1307 if (!efx->port_enabled)
1308 return;
1309
1310 efx->type->stop_stats(efx);
1311
1312 /* Switch to MCDI polling on Siena before disabling interrupts */
1313 efx_mcdi_mode_poll(efx);
1314
1315 /* Disable interrupts and wait for ISR to complete */
1316 efx_nic_disable_interrupts(efx);
1317 if (efx->legacy_irq)
1318 synchronize_irq(efx->legacy_irq);
1319 efx_for_each_channel(channel, efx) {
1320 if (channel->irq)
1321 synchronize_irq(channel->irq);
1322 }
1323
1324 /* Stop all NAPI processing and synchronous rx refills */
1325 efx_for_each_channel(channel, efx)
1326 efx_stop_channel(channel);
1327
1328 /* Stop all asynchronous port reconfigurations. Since all
1329 * event processing has already been stopped, there is no
1330 * window to loose phy events */
1331 efx_stop_port(efx);
1332
1333 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1334 efx_flush_all(efx);
1335
1336 /* Stop the kernel transmit interface late, so the watchdog
1337 * timer isn't ticking over the flush */
1338 if (efx_dev_registered(efx)) {
1339 struct efx_channel *channel;
1340 efx_for_each_channel(channel, efx)
1341 efx_stop_queue(channel);
1342 netif_tx_lock_bh(efx->net_dev);
1343 netif_tx_unlock_bh(efx->net_dev);
1344 }
1345 }
1346
1347 static void efx_remove_all(struct efx_nic *efx)
1348 {
1349 struct efx_channel *channel;
1350
1351 efx_for_each_channel(channel, efx)
1352 efx_remove_channel(channel);
1353 efx_remove_port(efx);
1354 efx_remove_nic(efx);
1355 }
1356
1357 /**************************************************************************
1358 *
1359 * Interrupt moderation
1360 *
1361 **************************************************************************/
1362
1363 static unsigned irq_mod_ticks(int usecs, int resolution)
1364 {
1365 if (usecs <= 0)
1366 return 0; /* cannot receive interrupts ahead of time :-) */
1367 if (usecs < resolution)
1368 return 1; /* never round down to 0 */
1369 return usecs / resolution;
1370 }
1371
1372 /* Set interrupt moderation parameters */
1373 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1374 bool rx_adaptive)
1375 {
1376 struct efx_channel *channel;
1377 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1378 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1379
1380 EFX_ASSERT_RESET_SERIALISED(efx);
1381
1382 efx->irq_rx_adaptive = rx_adaptive;
1383 efx->irq_rx_moderation = rx_ticks;
1384 efx_for_each_channel(channel, efx) {
1385 if (efx_channel_get_rx_queue(channel))
1386 channel->irq_moderation = rx_ticks;
1387 else if (efx_channel_get_tx_queue(channel, 0))
1388 channel->irq_moderation = tx_ticks;
1389 }
1390 }
1391
1392 /**************************************************************************
1393 *
1394 * Hardware monitor
1395 *
1396 **************************************************************************/
1397
1398 /* Run periodically off the general workqueue. Serialised against
1399 * efx_reconfigure_port via the mac_lock */
1400 static void efx_monitor(struct work_struct *data)
1401 {
1402 struct efx_nic *efx = container_of(data, struct efx_nic,
1403 monitor_work.work);
1404
1405 netif_vdbg(efx, timer, efx->net_dev,
1406 "hardware monitor executing on CPU %d\n",
1407 raw_smp_processor_id());
1408 BUG_ON(efx->type->monitor == NULL);
1409
1410 /* If the mac_lock is already held then it is likely a port
1411 * reconfiguration is already in place, which will likely do
1412 * most of the work of check_hw() anyway. */
1413 if (!mutex_trylock(&efx->mac_lock))
1414 goto out_requeue;
1415 if (!efx->port_enabled)
1416 goto out_unlock;
1417 efx->type->monitor(efx);
1418
1419 out_unlock:
1420 mutex_unlock(&efx->mac_lock);
1421 out_requeue:
1422 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1423 efx_monitor_interval);
1424 }
1425
1426 /**************************************************************************
1427 *
1428 * ioctls
1429 *
1430 *************************************************************************/
1431
1432 /* Net device ioctl
1433 * Context: process, rtnl_lock() held.
1434 */
1435 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1436 {
1437 struct efx_nic *efx = netdev_priv(net_dev);
1438 struct mii_ioctl_data *data = if_mii(ifr);
1439
1440 EFX_ASSERT_RESET_SERIALISED(efx);
1441
1442 /* Convert phy_id from older PRTAD/DEVAD format */
1443 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1444 (data->phy_id & 0xfc00) == 0x0400)
1445 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1446
1447 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1448 }
1449
1450 /**************************************************************************
1451 *
1452 * NAPI interface
1453 *
1454 **************************************************************************/
1455
1456 static int efx_init_napi(struct efx_nic *efx)
1457 {
1458 struct efx_channel *channel;
1459
1460 efx_for_each_channel(channel, efx) {
1461 channel->napi_dev = efx->net_dev;
1462 netif_napi_add(channel->napi_dev, &channel->napi_str,
1463 efx_poll, napi_weight);
1464 }
1465 return 0;
1466 }
1467
1468 static void efx_fini_napi(struct efx_nic *efx)
1469 {
1470 struct efx_channel *channel;
1471
1472 efx_for_each_channel(channel, efx) {
1473 if (channel->napi_dev)
1474 netif_napi_del(&channel->napi_str);
1475 channel->napi_dev = NULL;
1476 }
1477 }
1478
1479 /**************************************************************************
1480 *
1481 * Kernel netpoll interface
1482 *
1483 *************************************************************************/
1484
1485 #ifdef CONFIG_NET_POLL_CONTROLLER
1486
1487 /* Although in the common case interrupts will be disabled, this is not
1488 * guaranteed. However, all our work happens inside the NAPI callback,
1489 * so no locking is required.
1490 */
1491 static void efx_netpoll(struct net_device *net_dev)
1492 {
1493 struct efx_nic *efx = netdev_priv(net_dev);
1494 struct efx_channel *channel;
1495
1496 efx_for_each_channel(channel, efx)
1497 efx_schedule_channel(channel);
1498 }
1499
1500 #endif
1501
1502 /**************************************************************************
1503 *
1504 * Kernel net device interface
1505 *
1506 *************************************************************************/
1507
1508 /* Context: process, rtnl_lock() held. */
1509 static int efx_net_open(struct net_device *net_dev)
1510 {
1511 struct efx_nic *efx = netdev_priv(net_dev);
1512 EFX_ASSERT_RESET_SERIALISED(efx);
1513
1514 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1515 raw_smp_processor_id());
1516
1517 if (efx->state == STATE_DISABLED)
1518 return -EIO;
1519 if (efx->phy_mode & PHY_MODE_SPECIAL)
1520 return -EBUSY;
1521 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1522 return -EIO;
1523
1524 /* Notify the kernel of the link state polled during driver load,
1525 * before the monitor starts running */
1526 efx_link_status_changed(efx);
1527
1528 efx_start_all(efx);
1529 return 0;
1530 }
1531
1532 /* Context: process, rtnl_lock() held.
1533 * Note that the kernel will ignore our return code; this method
1534 * should really be a void.
1535 */
1536 static int efx_net_stop(struct net_device *net_dev)
1537 {
1538 struct efx_nic *efx = netdev_priv(net_dev);
1539
1540 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1541 raw_smp_processor_id());
1542
1543 if (efx->state != STATE_DISABLED) {
1544 /* Stop the device and flush all the channels */
1545 efx_stop_all(efx);
1546 efx_fini_channels(efx);
1547 efx_init_channels(efx);
1548 }
1549
1550 return 0;
1551 }
1552
1553 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1554 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1555 {
1556 struct efx_nic *efx = netdev_priv(net_dev);
1557 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1558
1559 spin_lock_bh(&efx->stats_lock);
1560 efx->type->update_stats(efx);
1561 spin_unlock_bh(&efx->stats_lock);
1562
1563 stats->rx_packets = mac_stats->rx_packets;
1564 stats->tx_packets = mac_stats->tx_packets;
1565 stats->rx_bytes = mac_stats->rx_bytes;
1566 stats->tx_bytes = mac_stats->tx_bytes;
1567 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1568 stats->multicast = mac_stats->rx_multicast;
1569 stats->collisions = mac_stats->tx_collision;
1570 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1571 mac_stats->rx_length_error);
1572 stats->rx_crc_errors = mac_stats->rx_bad;
1573 stats->rx_frame_errors = mac_stats->rx_align_error;
1574 stats->rx_fifo_errors = mac_stats->rx_overflow;
1575 stats->rx_missed_errors = mac_stats->rx_missed;
1576 stats->tx_window_errors = mac_stats->tx_late_collision;
1577
1578 stats->rx_errors = (stats->rx_length_errors +
1579 stats->rx_crc_errors +
1580 stats->rx_frame_errors +
1581 mac_stats->rx_symbol_error);
1582 stats->tx_errors = (stats->tx_window_errors +
1583 mac_stats->tx_bad);
1584
1585 return stats;
1586 }
1587
1588 /* Context: netif_tx_lock held, BHs disabled. */
1589 static void efx_watchdog(struct net_device *net_dev)
1590 {
1591 struct efx_nic *efx = netdev_priv(net_dev);
1592
1593 netif_err(efx, tx_err, efx->net_dev,
1594 "TX stuck with port_enabled=%d: resetting channels\n",
1595 efx->port_enabled);
1596
1597 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1598 }
1599
1600
1601 /* Context: process, rtnl_lock() held. */
1602 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1603 {
1604 struct efx_nic *efx = netdev_priv(net_dev);
1605 int rc = 0;
1606
1607 EFX_ASSERT_RESET_SERIALISED(efx);
1608
1609 if (new_mtu > EFX_MAX_MTU)
1610 return -EINVAL;
1611
1612 efx_stop_all(efx);
1613
1614 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1615
1616 efx_fini_channels(efx);
1617
1618 mutex_lock(&efx->mac_lock);
1619 /* Reconfigure the MAC before enabling the dma queues so that
1620 * the RX buffers don't overflow */
1621 net_dev->mtu = new_mtu;
1622 efx->mac_op->reconfigure(efx);
1623 mutex_unlock(&efx->mac_lock);
1624
1625 efx_init_channels(efx);
1626
1627 efx_start_all(efx);
1628 return rc;
1629 }
1630
1631 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1632 {
1633 struct efx_nic *efx = netdev_priv(net_dev);
1634 struct sockaddr *addr = data;
1635 char *new_addr = addr->sa_data;
1636
1637 EFX_ASSERT_RESET_SERIALISED(efx);
1638
1639 if (!is_valid_ether_addr(new_addr)) {
1640 netif_err(efx, drv, efx->net_dev,
1641 "invalid ethernet MAC address requested: %pM\n",
1642 new_addr);
1643 return -EINVAL;
1644 }
1645
1646 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1647
1648 /* Reconfigure the MAC */
1649 mutex_lock(&efx->mac_lock);
1650 efx->mac_op->reconfigure(efx);
1651 mutex_unlock(&efx->mac_lock);
1652
1653 return 0;
1654 }
1655
1656 /* Context: netif_addr_lock held, BHs disabled. */
1657 static void efx_set_multicast_list(struct net_device *net_dev)
1658 {
1659 struct efx_nic *efx = netdev_priv(net_dev);
1660 struct netdev_hw_addr *ha;
1661 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1662 u32 crc;
1663 int bit;
1664
1665 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1666
1667 /* Build multicast hash table */
1668 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1669 memset(mc_hash, 0xff, sizeof(*mc_hash));
1670 } else {
1671 memset(mc_hash, 0x00, sizeof(*mc_hash));
1672 netdev_for_each_mc_addr(ha, net_dev) {
1673 crc = ether_crc_le(ETH_ALEN, ha->addr);
1674 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1675 set_bit_le(bit, mc_hash->byte);
1676 }
1677
1678 /* Broadcast packets go through the multicast hash filter.
1679 * ether_crc_le() of the broadcast address is 0xbe2612ff
1680 * so we always add bit 0xff to the mask.
1681 */
1682 set_bit_le(0xff, mc_hash->byte);
1683 }
1684
1685 if (efx->port_enabled)
1686 queue_work(efx->workqueue, &efx->mac_work);
1687 /* Otherwise efx_start_port() will do this */
1688 }
1689
1690 static const struct net_device_ops efx_netdev_ops = {
1691 .ndo_open = efx_net_open,
1692 .ndo_stop = efx_net_stop,
1693 .ndo_get_stats64 = efx_net_stats,
1694 .ndo_tx_timeout = efx_watchdog,
1695 .ndo_start_xmit = efx_hard_start_xmit,
1696 .ndo_validate_addr = eth_validate_addr,
1697 .ndo_do_ioctl = efx_ioctl,
1698 .ndo_change_mtu = efx_change_mtu,
1699 .ndo_set_mac_address = efx_set_mac_address,
1700 .ndo_set_multicast_list = efx_set_multicast_list,
1701 #ifdef CONFIG_NET_POLL_CONTROLLER
1702 .ndo_poll_controller = efx_netpoll,
1703 #endif
1704 };
1705
1706 static void efx_update_name(struct efx_nic *efx)
1707 {
1708 strcpy(efx->name, efx->net_dev->name);
1709 efx_mtd_rename(efx);
1710 efx_set_channel_names(efx);
1711 }
1712
1713 static int efx_netdev_event(struct notifier_block *this,
1714 unsigned long event, void *ptr)
1715 {
1716 struct net_device *net_dev = ptr;
1717
1718 if (net_dev->netdev_ops == &efx_netdev_ops &&
1719 event == NETDEV_CHANGENAME)
1720 efx_update_name(netdev_priv(net_dev));
1721
1722 return NOTIFY_DONE;
1723 }
1724
1725 static struct notifier_block efx_netdev_notifier = {
1726 .notifier_call = efx_netdev_event,
1727 };
1728
1729 static ssize_t
1730 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1731 {
1732 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1733 return sprintf(buf, "%d\n", efx->phy_type);
1734 }
1735 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1736
1737 static int efx_register_netdev(struct efx_nic *efx)
1738 {
1739 struct net_device *net_dev = efx->net_dev;
1740 int rc;
1741
1742 net_dev->watchdog_timeo = 5 * HZ;
1743 net_dev->irq = efx->pci_dev->irq;
1744 net_dev->netdev_ops = &efx_netdev_ops;
1745 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1746
1747 /* Clear MAC statistics */
1748 efx->mac_op->update_stats(efx);
1749 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1750
1751 rtnl_lock();
1752
1753 rc = dev_alloc_name(net_dev, net_dev->name);
1754 if (rc < 0)
1755 goto fail_locked;
1756 efx_update_name(efx);
1757
1758 rc = register_netdevice(net_dev);
1759 if (rc)
1760 goto fail_locked;
1761
1762 /* Always start with carrier off; PHY events will detect the link */
1763 netif_carrier_off(efx->net_dev);
1764
1765 rtnl_unlock();
1766
1767 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1768 if (rc) {
1769 netif_err(efx, drv, efx->net_dev,
1770 "failed to init net dev attributes\n");
1771 goto fail_registered;
1772 }
1773
1774 return 0;
1775
1776 fail_locked:
1777 rtnl_unlock();
1778 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1779 return rc;
1780
1781 fail_registered:
1782 unregister_netdev(net_dev);
1783 return rc;
1784 }
1785
1786 static void efx_unregister_netdev(struct efx_nic *efx)
1787 {
1788 struct efx_channel *channel;
1789 struct efx_tx_queue *tx_queue;
1790
1791 if (!efx->net_dev)
1792 return;
1793
1794 BUG_ON(netdev_priv(efx->net_dev) != efx);
1795
1796 /* Free up any skbs still remaining. This has to happen before
1797 * we try to unregister the netdev as running their destructors
1798 * may be needed to get the device ref. count to 0. */
1799 efx_for_each_channel(channel, efx) {
1800 efx_for_each_channel_tx_queue(tx_queue, channel)
1801 efx_release_tx_buffers(tx_queue);
1802 }
1803
1804 if (efx_dev_registered(efx)) {
1805 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1806 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1807 unregister_netdev(efx->net_dev);
1808 }
1809 }
1810
1811 /**************************************************************************
1812 *
1813 * Device reset and suspend
1814 *
1815 **************************************************************************/
1816
1817 /* Tears down the entire software state and most of the hardware state
1818 * before reset. */
1819 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1820 {
1821 EFX_ASSERT_RESET_SERIALISED(efx);
1822
1823 efx_stop_all(efx);
1824 mutex_lock(&efx->mac_lock);
1825 mutex_lock(&efx->spi_lock);
1826
1827 efx_fini_channels(efx);
1828 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1829 efx->phy_op->fini(efx);
1830 efx->type->fini(efx);
1831 }
1832
1833 /* This function will always ensure that the locks acquired in
1834 * efx_reset_down() are released. A failure return code indicates
1835 * that we were unable to reinitialise the hardware, and the
1836 * driver should be disabled. If ok is false, then the rx and tx
1837 * engines are not restarted, pending a RESET_DISABLE. */
1838 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1839 {
1840 int rc;
1841
1842 EFX_ASSERT_RESET_SERIALISED(efx);
1843
1844 rc = efx->type->init(efx);
1845 if (rc) {
1846 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
1847 goto fail;
1848 }
1849
1850 if (!ok)
1851 goto fail;
1852
1853 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1854 rc = efx->phy_op->init(efx);
1855 if (rc)
1856 goto fail;
1857 if (efx->phy_op->reconfigure(efx))
1858 netif_err(efx, drv, efx->net_dev,
1859 "could not restore PHY settings\n");
1860 }
1861
1862 efx->mac_op->reconfigure(efx);
1863
1864 efx_init_channels(efx);
1865
1866 mutex_unlock(&efx->spi_lock);
1867 mutex_unlock(&efx->mac_lock);
1868
1869 efx_start_all(efx);
1870
1871 return 0;
1872
1873 fail:
1874 efx->port_initialized = false;
1875
1876 mutex_unlock(&efx->spi_lock);
1877 mutex_unlock(&efx->mac_lock);
1878
1879 return rc;
1880 }
1881
1882 /* Reset the NIC using the specified method. Note that the reset may
1883 * fail, in which case the card will be left in an unusable state.
1884 *
1885 * Caller must hold the rtnl_lock.
1886 */
1887 int efx_reset(struct efx_nic *efx, enum reset_type method)
1888 {
1889 int rc, rc2;
1890 bool disabled;
1891
1892 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
1893 RESET_TYPE(method));
1894
1895 efx_reset_down(efx, method);
1896
1897 rc = efx->type->reset(efx, method);
1898 if (rc) {
1899 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
1900 goto out;
1901 }
1902
1903 /* Allow resets to be rescheduled. */
1904 efx->reset_pending = RESET_TYPE_NONE;
1905
1906 /* Reinitialise bus-mastering, which may have been turned off before
1907 * the reset was scheduled. This is still appropriate, even in the
1908 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1909 * can respond to requests. */
1910 pci_set_master(efx->pci_dev);
1911
1912 out:
1913 /* Leave device stopped if necessary */
1914 disabled = rc || method == RESET_TYPE_DISABLE;
1915 rc2 = efx_reset_up(efx, method, !disabled);
1916 if (rc2) {
1917 disabled = true;
1918 if (!rc)
1919 rc = rc2;
1920 }
1921
1922 if (disabled) {
1923 dev_close(efx->net_dev);
1924 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
1925 efx->state = STATE_DISABLED;
1926 } else {
1927 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
1928 }
1929 return rc;
1930 }
1931
1932 /* The worker thread exists so that code that cannot sleep can
1933 * schedule a reset for later.
1934 */
1935 static void efx_reset_work(struct work_struct *data)
1936 {
1937 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1938
1939 if (efx->reset_pending == RESET_TYPE_NONE)
1940 return;
1941
1942 /* If we're not RUNNING then don't reset. Leave the reset_pending
1943 * flag set so that efx_pci_probe_main will be retried */
1944 if (efx->state != STATE_RUNNING) {
1945 netif_info(efx, drv, efx->net_dev,
1946 "scheduled reset quenched. NIC not RUNNING\n");
1947 return;
1948 }
1949
1950 rtnl_lock();
1951 (void)efx_reset(efx, efx->reset_pending);
1952 rtnl_unlock();
1953 }
1954
1955 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1956 {
1957 enum reset_type method;
1958
1959 if (efx->reset_pending != RESET_TYPE_NONE) {
1960 netif_info(efx, drv, efx->net_dev,
1961 "quenching already scheduled reset\n");
1962 return;
1963 }
1964
1965 switch (type) {
1966 case RESET_TYPE_INVISIBLE:
1967 case RESET_TYPE_ALL:
1968 case RESET_TYPE_WORLD:
1969 case RESET_TYPE_DISABLE:
1970 method = type;
1971 break;
1972 case RESET_TYPE_RX_RECOVERY:
1973 case RESET_TYPE_RX_DESC_FETCH:
1974 case RESET_TYPE_TX_DESC_FETCH:
1975 case RESET_TYPE_TX_SKIP:
1976 method = RESET_TYPE_INVISIBLE;
1977 break;
1978 case RESET_TYPE_MC_FAILURE:
1979 default:
1980 method = RESET_TYPE_ALL;
1981 break;
1982 }
1983
1984 if (method != type)
1985 netif_dbg(efx, drv, efx->net_dev,
1986 "scheduling %s reset for %s\n",
1987 RESET_TYPE(method), RESET_TYPE(type));
1988 else
1989 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
1990 RESET_TYPE(method));
1991
1992 efx->reset_pending = method;
1993
1994 /* efx_process_channel() will no longer read events once a
1995 * reset is scheduled. So switch back to poll'd MCDI completions. */
1996 efx_mcdi_mode_poll(efx);
1997
1998 queue_work(reset_workqueue, &efx->reset_work);
1999 }
2000
2001 /**************************************************************************
2002 *
2003 * List of NICs we support
2004 *
2005 **************************************************************************/
2006
2007 /* PCI device ID table */
2008 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2009 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
2010 .driver_data = (unsigned long) &falcon_a1_nic_type},
2011 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
2012 .driver_data = (unsigned long) &falcon_b0_nic_type},
2013 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2014 .driver_data = (unsigned long) &siena_a0_nic_type},
2015 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2016 .driver_data = (unsigned long) &siena_a0_nic_type},
2017 {0} /* end of list */
2018 };
2019
2020 /**************************************************************************
2021 *
2022 * Dummy PHY/MAC operations
2023 *
2024 * Can be used for some unimplemented operations
2025 * Needed so all function pointers are valid and do not have to be tested
2026 * before use
2027 *
2028 **************************************************************************/
2029 int efx_port_dummy_op_int(struct efx_nic *efx)
2030 {
2031 return 0;
2032 }
2033 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2034 void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2035 {
2036 }
2037 bool efx_port_dummy_op_poll(struct efx_nic *efx)
2038 {
2039 return false;
2040 }
2041
2042 static struct efx_phy_operations efx_dummy_phy_operations = {
2043 .init = efx_port_dummy_op_int,
2044 .reconfigure = efx_port_dummy_op_int,
2045 .poll = efx_port_dummy_op_poll,
2046 .fini = efx_port_dummy_op_void,
2047 };
2048
2049 /**************************************************************************
2050 *
2051 * Data housekeeping
2052 *
2053 **************************************************************************/
2054
2055 /* This zeroes out and then fills in the invariants in a struct
2056 * efx_nic (including all sub-structures).
2057 */
2058 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2059 struct pci_dev *pci_dev, struct net_device *net_dev)
2060 {
2061 struct efx_channel *channel;
2062 struct efx_tx_queue *tx_queue;
2063 struct efx_rx_queue *rx_queue;
2064 int i, j;
2065
2066 /* Initialise common structures */
2067 memset(efx, 0, sizeof(*efx));
2068 spin_lock_init(&efx->biu_lock);
2069 mutex_init(&efx->mdio_lock);
2070 mutex_init(&efx->spi_lock);
2071 #ifdef CONFIG_SFC_MTD
2072 INIT_LIST_HEAD(&efx->mtd_list);
2073 #endif
2074 INIT_WORK(&efx->reset_work, efx_reset_work);
2075 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2076 efx->pci_dev = pci_dev;
2077 efx->msg_enable = debug;
2078 efx->state = STATE_INIT;
2079 efx->reset_pending = RESET_TYPE_NONE;
2080 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2081
2082 efx->net_dev = net_dev;
2083 efx->rx_checksum_enabled = true;
2084 spin_lock_init(&efx->stats_lock);
2085 mutex_init(&efx->mac_lock);
2086 efx->mac_op = type->default_mac_ops;
2087 efx->phy_op = &efx_dummy_phy_operations;
2088 efx->mdio.dev = net_dev;
2089 INIT_WORK(&efx->mac_work, efx_mac_work);
2090
2091 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2092 efx->channel[i] = kzalloc(sizeof(*channel), GFP_KERNEL);
2093 channel = efx->channel[i];
2094 channel->efx = efx;
2095 channel->channel = i;
2096 spin_lock_init(&channel->tx_stop_lock);
2097 atomic_set(&channel->tx_stop_count, 1);
2098
2099 for (j = 0; j < EFX_TXQ_TYPES; j++) {
2100 tx_queue = &channel->tx_queue[j];
2101 tx_queue->efx = efx;
2102 tx_queue->queue = i * EFX_TXQ_TYPES + j;
2103 tx_queue->channel = channel;
2104 }
2105
2106 rx_queue = &channel->rx_queue;
2107 rx_queue->efx = efx;
2108 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2109 (unsigned long)rx_queue);
2110 }
2111
2112 efx->type = type;
2113
2114 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2115
2116 /* Higher numbered interrupt modes are less capable! */
2117 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2118 interrupt_mode);
2119
2120 /* Would be good to use the net_dev name, but we're too early */
2121 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2122 pci_name(pci_dev));
2123 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2124 if (!efx->workqueue)
2125 return -ENOMEM;
2126
2127 return 0;
2128 }
2129
2130 static void efx_fini_struct(struct efx_nic *efx)
2131 {
2132 int i;
2133
2134 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2135 kfree(efx->channel[i]);
2136
2137 if (efx->workqueue) {
2138 destroy_workqueue(efx->workqueue);
2139 efx->workqueue = NULL;
2140 }
2141 }
2142
2143 /**************************************************************************
2144 *
2145 * PCI interface
2146 *
2147 **************************************************************************/
2148
2149 /* Main body of final NIC shutdown code
2150 * This is called only at module unload (or hotplug removal).
2151 */
2152 static void efx_pci_remove_main(struct efx_nic *efx)
2153 {
2154 efx_nic_fini_interrupt(efx);
2155 efx_fini_channels(efx);
2156 efx_fini_port(efx);
2157 efx->type->fini(efx);
2158 efx_fini_napi(efx);
2159 efx_remove_all(efx);
2160 }
2161
2162 /* Final NIC shutdown
2163 * This is called only at module unload (or hotplug removal).
2164 */
2165 static void efx_pci_remove(struct pci_dev *pci_dev)
2166 {
2167 struct efx_nic *efx;
2168
2169 efx = pci_get_drvdata(pci_dev);
2170 if (!efx)
2171 return;
2172
2173 /* Mark the NIC as fini, then stop the interface */
2174 rtnl_lock();
2175 efx->state = STATE_FINI;
2176 dev_close(efx->net_dev);
2177
2178 /* Allow any queued efx_resets() to complete */
2179 rtnl_unlock();
2180
2181 efx_unregister_netdev(efx);
2182
2183 efx_mtd_remove(efx);
2184
2185 /* Wait for any scheduled resets to complete. No more will be
2186 * scheduled from this point because efx_stop_all() has been
2187 * called, we are no longer registered with driverlink, and
2188 * the net_device's have been removed. */
2189 cancel_work_sync(&efx->reset_work);
2190
2191 efx_pci_remove_main(efx);
2192
2193 efx_fini_io(efx);
2194 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2195
2196 pci_set_drvdata(pci_dev, NULL);
2197 efx_fini_struct(efx);
2198 free_netdev(efx->net_dev);
2199 };
2200
2201 /* Main body of NIC initialisation
2202 * This is called at module load (or hotplug insertion, theoretically).
2203 */
2204 static int efx_pci_probe_main(struct efx_nic *efx)
2205 {
2206 int rc;
2207
2208 /* Do start-of-day initialisation */
2209 rc = efx_probe_all(efx);
2210 if (rc)
2211 goto fail1;
2212
2213 rc = efx_init_napi(efx);
2214 if (rc)
2215 goto fail2;
2216
2217 rc = efx->type->init(efx);
2218 if (rc) {
2219 netif_err(efx, probe, efx->net_dev,
2220 "failed to initialise NIC\n");
2221 goto fail3;
2222 }
2223
2224 rc = efx_init_port(efx);
2225 if (rc) {
2226 netif_err(efx, probe, efx->net_dev,
2227 "failed to initialise port\n");
2228 goto fail4;
2229 }
2230
2231 efx_init_channels(efx);
2232
2233 rc = efx_nic_init_interrupt(efx);
2234 if (rc)
2235 goto fail5;
2236
2237 return 0;
2238
2239 fail5:
2240 efx_fini_channels(efx);
2241 efx_fini_port(efx);
2242 fail4:
2243 efx->type->fini(efx);
2244 fail3:
2245 efx_fini_napi(efx);
2246 fail2:
2247 efx_remove_all(efx);
2248 fail1:
2249 return rc;
2250 }
2251
2252 /* NIC initialisation
2253 *
2254 * This is called at module load (or hotplug insertion,
2255 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2256 * sets up and registers the network devices with the kernel and hooks
2257 * the interrupt service routine. It does not prepare the device for
2258 * transmission; this is left to the first time one of the network
2259 * interfaces is brought up (i.e. efx_net_open).
2260 */
2261 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2262 const struct pci_device_id *entry)
2263 {
2264 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2265 struct net_device *net_dev;
2266 struct efx_nic *efx;
2267 int i, rc;
2268
2269 /* Allocate and initialise a struct net_device and struct efx_nic */
2270 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
2271 if (!net_dev)
2272 return -ENOMEM;
2273 net_dev->features |= (type->offload_features | NETIF_F_SG |
2274 NETIF_F_HIGHDMA | NETIF_F_TSO |
2275 NETIF_F_GRO);
2276 if (type->offload_features & NETIF_F_V6_CSUM)
2277 net_dev->features |= NETIF_F_TSO6;
2278 /* Mask for features that also apply to VLAN devices */
2279 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2280 NETIF_F_HIGHDMA | NETIF_F_TSO);
2281 efx = netdev_priv(net_dev);
2282 pci_set_drvdata(pci_dev, efx);
2283 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2284 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2285 if (rc)
2286 goto fail1;
2287
2288 netif_info(efx, probe, efx->net_dev,
2289 "Solarflare Communications NIC detected\n");
2290
2291 /* Set up basic I/O (BAR mappings etc) */
2292 rc = efx_init_io(efx);
2293 if (rc)
2294 goto fail2;
2295
2296 /* No serialisation is required with the reset path because
2297 * we're in STATE_INIT. */
2298 for (i = 0; i < 5; i++) {
2299 rc = efx_pci_probe_main(efx);
2300
2301 /* Serialise against efx_reset(). No more resets will be
2302 * scheduled since efx_stop_all() has been called, and we
2303 * have not and never have been registered with either
2304 * the rtnetlink or driverlink layers. */
2305 cancel_work_sync(&efx->reset_work);
2306
2307 if (rc == 0) {
2308 if (efx->reset_pending != RESET_TYPE_NONE) {
2309 /* If there was a scheduled reset during
2310 * probe, the NIC is probably hosed anyway */
2311 efx_pci_remove_main(efx);
2312 rc = -EIO;
2313 } else {
2314 break;
2315 }
2316 }
2317
2318 /* Retry if a recoverably reset event has been scheduled */
2319 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2320 (efx->reset_pending != RESET_TYPE_ALL))
2321 goto fail3;
2322
2323 efx->reset_pending = RESET_TYPE_NONE;
2324 }
2325
2326 if (rc) {
2327 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2328 goto fail4;
2329 }
2330
2331 /* Switch to the running state before we expose the device to the OS,
2332 * so that dev_open()|efx_start_all() will actually start the device */
2333 efx->state = STATE_RUNNING;
2334
2335 rc = efx_register_netdev(efx);
2336 if (rc)
2337 goto fail5;
2338
2339 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2340
2341 rtnl_lock();
2342 efx_mtd_probe(efx); /* allowed to fail */
2343 rtnl_unlock();
2344 return 0;
2345
2346 fail5:
2347 efx_pci_remove_main(efx);
2348 fail4:
2349 fail3:
2350 efx_fini_io(efx);
2351 fail2:
2352 efx_fini_struct(efx);
2353 fail1:
2354 WARN_ON(rc > 0);
2355 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2356 free_netdev(net_dev);
2357 return rc;
2358 }
2359
2360 static int efx_pm_freeze(struct device *dev)
2361 {
2362 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2363
2364 efx->state = STATE_FINI;
2365
2366 netif_device_detach(efx->net_dev);
2367
2368 efx_stop_all(efx);
2369 efx_fini_channels(efx);
2370
2371 return 0;
2372 }
2373
2374 static int efx_pm_thaw(struct device *dev)
2375 {
2376 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2377
2378 efx->state = STATE_INIT;
2379
2380 efx_init_channels(efx);
2381
2382 mutex_lock(&efx->mac_lock);
2383 efx->phy_op->reconfigure(efx);
2384 mutex_unlock(&efx->mac_lock);
2385
2386 efx_start_all(efx);
2387
2388 netif_device_attach(efx->net_dev);
2389
2390 efx->state = STATE_RUNNING;
2391
2392 efx->type->resume_wol(efx);
2393
2394 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2395 queue_work(reset_workqueue, &efx->reset_work);
2396
2397 return 0;
2398 }
2399
2400 static int efx_pm_poweroff(struct device *dev)
2401 {
2402 struct pci_dev *pci_dev = to_pci_dev(dev);
2403 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2404
2405 efx->type->fini(efx);
2406
2407 efx->reset_pending = RESET_TYPE_NONE;
2408
2409 pci_save_state(pci_dev);
2410 return pci_set_power_state(pci_dev, PCI_D3hot);
2411 }
2412
2413 /* Used for both resume and restore */
2414 static int efx_pm_resume(struct device *dev)
2415 {
2416 struct pci_dev *pci_dev = to_pci_dev(dev);
2417 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2418 int rc;
2419
2420 rc = pci_set_power_state(pci_dev, PCI_D0);
2421 if (rc)
2422 return rc;
2423 pci_restore_state(pci_dev);
2424 rc = pci_enable_device(pci_dev);
2425 if (rc)
2426 return rc;
2427 pci_set_master(efx->pci_dev);
2428 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2429 if (rc)
2430 return rc;
2431 rc = efx->type->init(efx);
2432 if (rc)
2433 return rc;
2434 efx_pm_thaw(dev);
2435 return 0;
2436 }
2437
2438 static int efx_pm_suspend(struct device *dev)
2439 {
2440 int rc;
2441
2442 efx_pm_freeze(dev);
2443 rc = efx_pm_poweroff(dev);
2444 if (rc)
2445 efx_pm_resume(dev);
2446 return rc;
2447 }
2448
2449 static struct dev_pm_ops efx_pm_ops = {
2450 .suspend = efx_pm_suspend,
2451 .resume = efx_pm_resume,
2452 .freeze = efx_pm_freeze,
2453 .thaw = efx_pm_thaw,
2454 .poweroff = efx_pm_poweroff,
2455 .restore = efx_pm_resume,
2456 };
2457
2458 static struct pci_driver efx_pci_driver = {
2459 .name = KBUILD_MODNAME,
2460 .id_table = efx_pci_table,
2461 .probe = efx_pci_probe,
2462 .remove = efx_pci_remove,
2463 .driver.pm = &efx_pm_ops,
2464 };
2465
2466 /**************************************************************************
2467 *
2468 * Kernel module interface
2469 *
2470 *************************************************************************/
2471
2472 module_param(interrupt_mode, uint, 0444);
2473 MODULE_PARM_DESC(interrupt_mode,
2474 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2475
2476 static int __init efx_init_module(void)
2477 {
2478 int rc;
2479
2480 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2481
2482 rc = register_netdevice_notifier(&efx_netdev_notifier);
2483 if (rc)
2484 goto err_notifier;
2485
2486 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2487 if (!reset_workqueue) {
2488 rc = -ENOMEM;
2489 goto err_reset;
2490 }
2491
2492 rc = pci_register_driver(&efx_pci_driver);
2493 if (rc < 0)
2494 goto err_pci;
2495
2496 return 0;
2497
2498 err_pci:
2499 destroy_workqueue(reset_workqueue);
2500 err_reset:
2501 unregister_netdevice_notifier(&efx_netdev_notifier);
2502 err_notifier:
2503 return rc;
2504 }
2505
2506 static void __exit efx_exit_module(void)
2507 {
2508 printk(KERN_INFO "Solarflare NET driver unloading\n");
2509
2510 pci_unregister_driver(&efx_pci_driver);
2511 destroy_workqueue(reset_workqueue);
2512 unregister_netdevice_notifier(&efx_netdev_notifier);
2513
2514 }
2515
2516 module_init(efx_init_module);
2517 module_exit(efx_exit_module);
2518
2519 MODULE_AUTHOR("Solarflare Communications and "
2520 "Michael Brown <mbrown@fensystems.co.uk>");
2521 MODULE_DESCRIPTION("Solarflare Communications network driver");
2522 MODULE_LICENSE("GPL");
2523 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.117597 seconds and 5 git commands to generate.