Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "workarounds.h"
30
31 /* Hardware control for SFC4000 (aka Falcon). */
32
33 static const unsigned int
34 /* "Large" EEPROM device: Atmel AT25640 or similar
35 * 8 KB, 16-bit address, 32 B write block */
36 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
37 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
38 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
39 /* Default flash device: Atmel AT25F1024
40 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
42 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
43 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
44 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
45 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
46
47 /**************************************************************************
48 *
49 * I2C bus - this is a bit-bashing interface using GPIO pins
50 * Note that it uses the output enables to tristate the outputs
51 * SDA is the data pin and SCL is the clock
52 *
53 **************************************************************************
54 */
55 static void falcon_setsda(void *data, int state)
56 {
57 struct efx_nic *efx = (struct efx_nic *)data;
58 efx_oword_t reg;
59
60 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
61 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
62 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
63 }
64
65 static void falcon_setscl(void *data, int state)
66 {
67 struct efx_nic *efx = (struct efx_nic *)data;
68 efx_oword_t reg;
69
70 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
71 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
72 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
73 }
74
75 static int falcon_getsda(void *data)
76 {
77 struct efx_nic *efx = (struct efx_nic *)data;
78 efx_oword_t reg;
79
80 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
81 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
82 }
83
84 static int falcon_getscl(void *data)
85 {
86 struct efx_nic *efx = (struct efx_nic *)data;
87 efx_oword_t reg;
88
89 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
90 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
91 }
92
93 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
94 .setsda = falcon_setsda,
95 .setscl = falcon_setscl,
96 .getsda = falcon_getsda,
97 .getscl = falcon_getscl,
98 .udelay = 5,
99 /* Wait up to 50 ms for slave to let us pull SCL high */
100 .timeout = DIV_ROUND_UP(HZ, 20),
101 };
102
103 static void falcon_push_irq_moderation(struct efx_channel *channel)
104 {
105 efx_dword_t timer_cmd;
106 struct efx_nic *efx = channel->efx;
107
108 /* Set timer register */
109 if (channel->irq_moderation) {
110 EFX_POPULATE_DWORD_2(timer_cmd,
111 FRF_AB_TC_TIMER_MODE,
112 FFE_BB_TIMER_MODE_INT_HLDOFF,
113 FRF_AB_TC_TIMER_VAL,
114 channel->irq_moderation - 1);
115 } else {
116 EFX_POPULATE_DWORD_2(timer_cmd,
117 FRF_AB_TC_TIMER_MODE,
118 FFE_BB_TIMER_MODE_DIS,
119 FRF_AB_TC_TIMER_VAL, 0);
120 }
121 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
122 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
123 channel->channel);
124 }
125
126 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
127
128 static void falcon_prepare_flush(struct efx_nic *efx)
129 {
130 falcon_deconfigure_mac_wrapper(efx);
131
132 /* Wait for the tx and rx fifo's to get to the next packet boundary
133 * (~1ms without back-pressure), then to drain the remainder of the
134 * fifo's at data path speeds (negligible), with a healthy margin. */
135 msleep(10);
136 }
137
138 /* Acknowledge a legacy interrupt from Falcon
139 *
140 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
141 *
142 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143 * BIU. Interrupt acknowledge is read sensitive so must write instead
144 * (then read to ensure the BIU collector is flushed)
145 *
146 * NB most hardware supports MSI interrupts
147 */
148 inline void falcon_irq_ack_a1(struct efx_nic *efx)
149 {
150 efx_dword_t reg;
151
152 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
153 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
154 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
155 }
156
157
158 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
159 {
160 struct efx_nic *efx = dev_id;
161 efx_oword_t *int_ker = efx->irq_status.addr;
162 int syserr;
163 int queues;
164
165 /* Check to see if this is our interrupt. If it isn't, we
166 * exit without having touched the hardware.
167 */
168 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
169 netif_vdbg(efx, intr, efx->net_dev,
170 "IRQ %d on CPU %d not for me\n", irq,
171 raw_smp_processor_id());
172 return IRQ_NONE;
173 }
174 efx->last_irq_cpu = raw_smp_processor_id();
175 netif_vdbg(efx, intr, efx->net_dev,
176 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
177 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
178
179 /* Determine interrupting queues, clear interrupt status
180 * register and acknowledge the device interrupt.
181 */
182 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
183 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
184
185 /* Check to see if we have a serious error condition */
186 if (queues & (1U << efx->fatal_irq_level)) {
187 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
188 if (unlikely(syserr))
189 return efx_nic_fatal_interrupt(efx);
190 }
191
192 EFX_ZERO_OWORD(*int_ker);
193 wmb(); /* Ensure the vector is cleared before interrupt ack */
194 falcon_irq_ack_a1(efx);
195
196 if (queues & 1)
197 efx_schedule_channel(efx_get_channel(efx, 0));
198 if (queues & 2)
199 efx_schedule_channel(efx_get_channel(efx, 1));
200 return IRQ_HANDLED;
201 }
202 /**************************************************************************
203 *
204 * EEPROM/flash
205 *
206 **************************************************************************
207 */
208
209 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
210
211 static int falcon_spi_poll(struct efx_nic *efx)
212 {
213 efx_oword_t reg;
214 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
215 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
216 }
217
218 /* Wait for SPI command completion */
219 static int falcon_spi_wait(struct efx_nic *efx)
220 {
221 /* Most commands will finish quickly, so we start polling at
222 * very short intervals. Sometimes the command may have to
223 * wait for VPD or expansion ROM access outside of our
224 * control, so we allow up to 100 ms. */
225 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
226 int i;
227
228 for (i = 0; i < 10; i++) {
229 if (!falcon_spi_poll(efx))
230 return 0;
231 udelay(10);
232 }
233
234 for (;;) {
235 if (!falcon_spi_poll(efx))
236 return 0;
237 if (time_after_eq(jiffies, timeout)) {
238 netif_err(efx, hw, efx->net_dev,
239 "timed out waiting for SPI\n");
240 return -ETIMEDOUT;
241 }
242 schedule_timeout_uninterruptible(1);
243 }
244 }
245
246 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
247 unsigned int command, int address,
248 const void *in, void *out, size_t len)
249 {
250 bool addressed = (address >= 0);
251 bool reading = (out != NULL);
252 efx_oword_t reg;
253 int rc;
254
255 /* Input validation */
256 if (len > FALCON_SPI_MAX_LEN)
257 return -EINVAL;
258 BUG_ON(!mutex_is_locked(&efx->spi_lock));
259
260 /* Check that previous command is not still running */
261 rc = falcon_spi_poll(efx);
262 if (rc)
263 return rc;
264
265 /* Program address register, if we have an address */
266 if (addressed) {
267 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
268 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
269 }
270
271 /* Program data register, if we have data */
272 if (in != NULL) {
273 memcpy(&reg, in, len);
274 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
275 }
276
277 /* Issue read/write command */
278 EFX_POPULATE_OWORD_7(reg,
279 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
280 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
281 FRF_AB_EE_SPI_HCMD_DABCNT, len,
282 FRF_AB_EE_SPI_HCMD_READ, reading,
283 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
284 FRF_AB_EE_SPI_HCMD_ADBCNT,
285 (addressed ? spi->addr_len : 0),
286 FRF_AB_EE_SPI_HCMD_ENC, command);
287 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
288
289 /* Wait for read/write to complete */
290 rc = falcon_spi_wait(efx);
291 if (rc)
292 return rc;
293
294 /* Read data */
295 if (out != NULL) {
296 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
297 memcpy(out, &reg, len);
298 }
299
300 return 0;
301 }
302
303 static size_t
304 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
305 {
306 return min(FALCON_SPI_MAX_LEN,
307 (spi->block_size - (start & (spi->block_size - 1))));
308 }
309
310 static inline u8
311 efx_spi_munge_command(const struct efx_spi_device *spi,
312 const u8 command, const unsigned int address)
313 {
314 return command | (((address >> 8) & spi->munge_address) << 3);
315 }
316
317 /* Wait up to 10 ms for buffered write completion */
318 int
319 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
320 {
321 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
322 u8 status;
323 int rc;
324
325 for (;;) {
326 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
327 &status, sizeof(status));
328 if (rc)
329 return rc;
330 if (!(status & SPI_STATUS_NRDY))
331 return 0;
332 if (time_after_eq(jiffies, timeout)) {
333 netif_err(efx, hw, efx->net_dev,
334 "SPI write timeout on device %d"
335 " last status=0x%02x\n",
336 spi->device_id, status);
337 return -ETIMEDOUT;
338 }
339 schedule_timeout_uninterruptible(1);
340 }
341 }
342
343 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
344 loff_t start, size_t len, size_t *retlen, u8 *buffer)
345 {
346 size_t block_len, pos = 0;
347 unsigned int command;
348 int rc = 0;
349
350 while (pos < len) {
351 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
352
353 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
354 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
355 buffer + pos, block_len);
356 if (rc)
357 break;
358 pos += block_len;
359
360 /* Avoid locking up the system */
361 cond_resched();
362 if (signal_pending(current)) {
363 rc = -EINTR;
364 break;
365 }
366 }
367
368 if (retlen)
369 *retlen = pos;
370 return rc;
371 }
372
373 int
374 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
375 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
376 {
377 u8 verify_buffer[FALCON_SPI_MAX_LEN];
378 size_t block_len, pos = 0;
379 unsigned int command;
380 int rc = 0;
381
382 while (pos < len) {
383 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
384 if (rc)
385 break;
386
387 block_len = min(len - pos,
388 falcon_spi_write_limit(spi, start + pos));
389 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
390 rc = falcon_spi_cmd(efx, spi, command, start + pos,
391 buffer + pos, NULL, block_len);
392 if (rc)
393 break;
394
395 rc = falcon_spi_wait_write(efx, spi);
396 if (rc)
397 break;
398
399 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
400 rc = falcon_spi_cmd(efx, spi, command, start + pos,
401 NULL, verify_buffer, block_len);
402 if (memcmp(verify_buffer, buffer + pos, block_len)) {
403 rc = -EIO;
404 break;
405 }
406
407 pos += block_len;
408
409 /* Avoid locking up the system */
410 cond_resched();
411 if (signal_pending(current)) {
412 rc = -EINTR;
413 break;
414 }
415 }
416
417 if (retlen)
418 *retlen = pos;
419 return rc;
420 }
421
422 /**************************************************************************
423 *
424 * MAC wrapper
425 *
426 **************************************************************************
427 */
428
429 static void falcon_push_multicast_hash(struct efx_nic *efx)
430 {
431 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
432
433 WARN_ON(!mutex_is_locked(&efx->mac_lock));
434
435 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
436 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
437 }
438
439 static void falcon_reset_macs(struct efx_nic *efx)
440 {
441 struct falcon_nic_data *nic_data = efx->nic_data;
442 efx_oword_t reg, mac_ctrl;
443 int count;
444
445 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
446 /* It's not safe to use GLB_CTL_REG to reset the
447 * macs, so instead use the internal MAC resets
448 */
449 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
450 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
451
452 for (count = 0; count < 10000; count++) {
453 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
454 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
455 0)
456 return;
457 udelay(10);
458 }
459
460 netif_err(efx, hw, efx->net_dev,
461 "timed out waiting for XMAC core reset\n");
462 }
463
464 /* Mac stats will fail whist the TX fifo is draining */
465 WARN_ON(nic_data->stats_disable_count == 0);
466
467 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
468 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
469 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
470
471 efx_reado(efx, &reg, FR_AB_GLB_CTL);
472 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
473 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
474 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
475 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
476
477 count = 0;
478 while (1) {
479 efx_reado(efx, &reg, FR_AB_GLB_CTL);
480 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
481 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
482 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
483 netif_dbg(efx, hw, efx->net_dev,
484 "Completed MAC reset after %d loops\n",
485 count);
486 break;
487 }
488 if (count > 20) {
489 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
490 break;
491 }
492 count++;
493 udelay(10);
494 }
495
496 /* Ensure the correct MAC is selected before statistics
497 * are re-enabled by the caller */
498 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
499
500 falcon_setup_xaui(efx);
501 }
502
503 void falcon_drain_tx_fifo(struct efx_nic *efx)
504 {
505 efx_oword_t reg;
506
507 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
508 (efx->loopback_mode != LOOPBACK_NONE))
509 return;
510
511 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
512 /* There is no point in draining more than once */
513 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
514 return;
515
516 falcon_reset_macs(efx);
517 }
518
519 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
520 {
521 efx_oword_t reg;
522
523 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
524 return;
525
526 /* Isolate the MAC -> RX */
527 efx_reado(efx, &reg, FR_AZ_RX_CFG);
528 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
529 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
530
531 /* Isolate TX -> MAC */
532 falcon_drain_tx_fifo(efx);
533 }
534
535 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
536 {
537 struct efx_link_state *link_state = &efx->link_state;
538 efx_oword_t reg;
539 int link_speed, isolate;
540
541 isolate = (efx->reset_pending != RESET_TYPE_NONE);
542
543 switch (link_state->speed) {
544 case 10000: link_speed = 3; break;
545 case 1000: link_speed = 2; break;
546 case 100: link_speed = 1; break;
547 default: link_speed = 0; break;
548 }
549 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
550 * as advertised. Disable to ensure packets are not
551 * indefinitely held and TX queue can be flushed at any point
552 * while the link is down. */
553 EFX_POPULATE_OWORD_5(reg,
554 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
555 FRF_AB_MAC_BCAD_ACPT, 1,
556 FRF_AB_MAC_UC_PROM, efx->promiscuous,
557 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
558 FRF_AB_MAC_SPEED, link_speed);
559 /* On B0, MAC backpressure can be disabled and packets get
560 * discarded. */
561 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
562 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
563 !link_state->up || isolate);
564 }
565
566 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
567
568 /* Restore the multicast hash registers. */
569 falcon_push_multicast_hash(efx);
570
571 efx_reado(efx, &reg, FR_AZ_RX_CFG);
572 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
573 * initialisation but it may read back as 0) */
574 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
575 /* Unisolate the MAC -> RX */
576 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
577 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
578 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
579 }
580
581 static void falcon_stats_request(struct efx_nic *efx)
582 {
583 struct falcon_nic_data *nic_data = efx->nic_data;
584 efx_oword_t reg;
585
586 WARN_ON(nic_data->stats_pending);
587 WARN_ON(nic_data->stats_disable_count);
588
589 if (nic_data->stats_dma_done == NULL)
590 return; /* no mac selected */
591
592 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
593 nic_data->stats_pending = true;
594 wmb(); /* ensure done flag is clear */
595
596 /* Initiate DMA transfer of stats */
597 EFX_POPULATE_OWORD_2(reg,
598 FRF_AB_MAC_STAT_DMA_CMD, 1,
599 FRF_AB_MAC_STAT_DMA_ADR,
600 efx->stats_buffer.dma_addr);
601 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
602
603 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
604 }
605
606 static void falcon_stats_complete(struct efx_nic *efx)
607 {
608 struct falcon_nic_data *nic_data = efx->nic_data;
609
610 if (!nic_data->stats_pending)
611 return;
612
613 nic_data->stats_pending = 0;
614 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
615 rmb(); /* read the done flag before the stats */
616 efx->mac_op->update_stats(efx);
617 } else {
618 netif_err(efx, hw, efx->net_dev,
619 "timed out waiting for statistics\n");
620 }
621 }
622
623 static void falcon_stats_timer_func(unsigned long context)
624 {
625 struct efx_nic *efx = (struct efx_nic *)context;
626 struct falcon_nic_data *nic_data = efx->nic_data;
627
628 spin_lock(&efx->stats_lock);
629
630 falcon_stats_complete(efx);
631 if (nic_data->stats_disable_count == 0)
632 falcon_stats_request(efx);
633
634 spin_unlock(&efx->stats_lock);
635 }
636
637 static bool falcon_loopback_link_poll(struct efx_nic *efx)
638 {
639 struct efx_link_state old_state = efx->link_state;
640
641 WARN_ON(!mutex_is_locked(&efx->mac_lock));
642 WARN_ON(!LOOPBACK_INTERNAL(efx));
643
644 efx->link_state.fd = true;
645 efx->link_state.fc = efx->wanted_fc;
646 efx->link_state.up = true;
647 efx->link_state.speed = 10000;
648
649 return !efx_link_state_equal(&efx->link_state, &old_state);
650 }
651
652 static int falcon_reconfigure_port(struct efx_nic *efx)
653 {
654 int rc;
655
656 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
657
658 /* Poll the PHY link state *before* reconfiguring it. This means we
659 * will pick up the correct speed (in loopback) to select the correct
660 * MAC.
661 */
662 if (LOOPBACK_INTERNAL(efx))
663 falcon_loopback_link_poll(efx);
664 else
665 efx->phy_op->poll(efx);
666
667 falcon_stop_nic_stats(efx);
668 falcon_deconfigure_mac_wrapper(efx);
669
670 falcon_reset_macs(efx);
671
672 efx->phy_op->reconfigure(efx);
673 rc = efx->mac_op->reconfigure(efx);
674 BUG_ON(rc);
675
676 falcon_start_nic_stats(efx);
677
678 /* Synchronise efx->link_state with the kernel */
679 efx_link_status_changed(efx);
680
681 return 0;
682 }
683
684 /**************************************************************************
685 *
686 * PHY access via GMII
687 *
688 **************************************************************************
689 */
690
691 /* Wait for GMII access to complete */
692 static int falcon_gmii_wait(struct efx_nic *efx)
693 {
694 efx_oword_t md_stat;
695 int count;
696
697 /* wait upto 50ms - taken max from datasheet */
698 for (count = 0; count < 5000; count++) {
699 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
700 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
701 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
702 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
703 netif_err(efx, hw, efx->net_dev,
704 "error from GMII access "
705 EFX_OWORD_FMT"\n",
706 EFX_OWORD_VAL(md_stat));
707 return -EIO;
708 }
709 return 0;
710 }
711 udelay(10);
712 }
713 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
714 return -ETIMEDOUT;
715 }
716
717 /* Write an MDIO register of a PHY connected to Falcon. */
718 static int falcon_mdio_write(struct net_device *net_dev,
719 int prtad, int devad, u16 addr, u16 value)
720 {
721 struct efx_nic *efx = netdev_priv(net_dev);
722 efx_oword_t reg;
723 int rc;
724
725 netif_vdbg(efx, hw, efx->net_dev,
726 "writing MDIO %d register %d.%d with 0x%04x\n",
727 prtad, devad, addr, value);
728
729 mutex_lock(&efx->mdio_lock);
730
731 /* Check MDIO not currently being accessed */
732 rc = falcon_gmii_wait(efx);
733 if (rc)
734 goto out;
735
736 /* Write the address/ID register */
737 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
738 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
739
740 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
741 FRF_AB_MD_DEV_ADR, devad);
742 efx_writeo(efx, &reg, FR_AB_MD_ID);
743
744 /* Write data */
745 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
746 efx_writeo(efx, &reg, FR_AB_MD_TXD);
747
748 EFX_POPULATE_OWORD_2(reg,
749 FRF_AB_MD_WRC, 1,
750 FRF_AB_MD_GC, 0);
751 efx_writeo(efx, &reg, FR_AB_MD_CS);
752
753 /* Wait for data to be written */
754 rc = falcon_gmii_wait(efx);
755 if (rc) {
756 /* Abort the write operation */
757 EFX_POPULATE_OWORD_2(reg,
758 FRF_AB_MD_WRC, 0,
759 FRF_AB_MD_GC, 1);
760 efx_writeo(efx, &reg, FR_AB_MD_CS);
761 udelay(10);
762 }
763
764 out:
765 mutex_unlock(&efx->mdio_lock);
766 return rc;
767 }
768
769 /* Read an MDIO register of a PHY connected to Falcon. */
770 static int falcon_mdio_read(struct net_device *net_dev,
771 int prtad, int devad, u16 addr)
772 {
773 struct efx_nic *efx = netdev_priv(net_dev);
774 efx_oword_t reg;
775 int rc;
776
777 mutex_lock(&efx->mdio_lock);
778
779 /* Check MDIO not currently being accessed */
780 rc = falcon_gmii_wait(efx);
781 if (rc)
782 goto out;
783
784 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
785 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
786
787 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
788 FRF_AB_MD_DEV_ADR, devad);
789 efx_writeo(efx, &reg, FR_AB_MD_ID);
790
791 /* Request data to be read */
792 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
793 efx_writeo(efx, &reg, FR_AB_MD_CS);
794
795 /* Wait for data to become available */
796 rc = falcon_gmii_wait(efx);
797 if (rc == 0) {
798 efx_reado(efx, &reg, FR_AB_MD_RXD);
799 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
800 netif_vdbg(efx, hw, efx->net_dev,
801 "read from MDIO %d register %d.%d, got %04x\n",
802 prtad, devad, addr, rc);
803 } else {
804 /* Abort the read operation */
805 EFX_POPULATE_OWORD_2(reg,
806 FRF_AB_MD_RIC, 0,
807 FRF_AB_MD_GC, 1);
808 efx_writeo(efx, &reg, FR_AB_MD_CS);
809
810 netif_dbg(efx, hw, efx->net_dev,
811 "read from MDIO %d register %d.%d, got error %d\n",
812 prtad, devad, addr, rc);
813 }
814
815 out:
816 mutex_unlock(&efx->mdio_lock);
817 return rc;
818 }
819
820 /* This call is responsible for hooking in the MAC and PHY operations */
821 static int falcon_probe_port(struct efx_nic *efx)
822 {
823 struct falcon_nic_data *nic_data = efx->nic_data;
824 int rc;
825
826 switch (efx->phy_type) {
827 case PHY_TYPE_SFX7101:
828 efx->phy_op = &falcon_sfx7101_phy_ops;
829 break;
830 case PHY_TYPE_QT2022C2:
831 case PHY_TYPE_QT2025C:
832 efx->phy_op = &falcon_qt202x_phy_ops;
833 break;
834 case PHY_TYPE_TXC43128:
835 efx->phy_op = &falcon_txc_phy_ops;
836 break;
837 default:
838 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
839 efx->phy_type);
840 return -ENODEV;
841 }
842
843 /* Fill out MDIO structure and loopback modes */
844 efx->mdio.mdio_read = falcon_mdio_read;
845 efx->mdio.mdio_write = falcon_mdio_write;
846 rc = efx->phy_op->probe(efx);
847 if (rc != 0)
848 return rc;
849
850 /* Initial assumption */
851 efx->link_state.speed = 10000;
852 efx->link_state.fd = true;
853
854 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
855 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
856 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
857 else
858 efx->wanted_fc = EFX_FC_RX;
859 if (efx->mdio.mmds & MDIO_DEVS_AN)
860 efx->wanted_fc |= EFX_FC_AUTO;
861
862 /* Allocate buffer for stats */
863 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
864 FALCON_MAC_STATS_SIZE);
865 if (rc)
866 return rc;
867 netif_dbg(efx, probe, efx->net_dev,
868 "stats buffer at %llx (virt %p phys %llx)\n",
869 (u64)efx->stats_buffer.dma_addr,
870 efx->stats_buffer.addr,
871 (u64)virt_to_phys(efx->stats_buffer.addr));
872 nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
873
874 return 0;
875 }
876
877 static void falcon_remove_port(struct efx_nic *efx)
878 {
879 efx->phy_op->remove(efx);
880 efx_nic_free_buffer(efx, &efx->stats_buffer);
881 }
882
883 /**************************************************************************
884 *
885 * Falcon test code
886 *
887 **************************************************************************/
888
889 static int
890 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
891 {
892 struct falcon_nvconfig *nvconfig;
893 struct efx_spi_device *spi;
894 void *region;
895 int rc, magic_num, struct_ver;
896 __le16 *word, *limit;
897 u32 csum;
898
899 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
900 if (!spi)
901 return -EINVAL;
902
903 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
904 if (!region)
905 return -ENOMEM;
906 nvconfig = region + FALCON_NVCONFIG_OFFSET;
907
908 mutex_lock(&efx->spi_lock);
909 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
910 mutex_unlock(&efx->spi_lock);
911 if (rc) {
912 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
913 efx->spi_flash ? "flash" : "EEPROM");
914 rc = -EIO;
915 goto out;
916 }
917
918 magic_num = le16_to_cpu(nvconfig->board_magic_num);
919 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
920
921 rc = -EINVAL;
922 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
923 netif_err(efx, hw, efx->net_dev,
924 "NVRAM bad magic 0x%x\n", magic_num);
925 goto out;
926 }
927 if (struct_ver < 2) {
928 netif_err(efx, hw, efx->net_dev,
929 "NVRAM has ancient version 0x%x\n", struct_ver);
930 goto out;
931 } else if (struct_ver < 4) {
932 word = &nvconfig->board_magic_num;
933 limit = (__le16 *) (nvconfig + 1);
934 } else {
935 word = region;
936 limit = region + FALCON_NVCONFIG_END;
937 }
938 for (csum = 0; word < limit; ++word)
939 csum += le16_to_cpu(*word);
940
941 if (~csum & 0xffff) {
942 netif_err(efx, hw, efx->net_dev,
943 "NVRAM has incorrect checksum\n");
944 goto out;
945 }
946
947 rc = 0;
948 if (nvconfig_out)
949 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
950
951 out:
952 kfree(region);
953 return rc;
954 }
955
956 static int falcon_test_nvram(struct efx_nic *efx)
957 {
958 return falcon_read_nvram(efx, NULL);
959 }
960
961 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
962 { FR_AZ_ADR_REGION,
963 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
964 { FR_AZ_RX_CFG,
965 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
966 { FR_AZ_TX_CFG,
967 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
968 { FR_AZ_TX_RESERVED,
969 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
970 { FR_AB_MAC_CTRL,
971 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
972 { FR_AZ_SRM_TX_DC_CFG,
973 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
974 { FR_AZ_RX_DC_CFG,
975 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
976 { FR_AZ_RX_DC_PF_WM,
977 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
978 { FR_BZ_DP_CTRL,
979 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
980 { FR_AB_GM_CFG2,
981 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
982 { FR_AB_GMF_CFG0,
983 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
984 { FR_AB_XM_GLB_CFG,
985 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
986 { FR_AB_XM_TX_CFG,
987 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
988 { FR_AB_XM_RX_CFG,
989 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
990 { FR_AB_XM_RX_PARAM,
991 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
992 { FR_AB_XM_FC,
993 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
994 { FR_AB_XM_ADR_LO,
995 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
996 { FR_AB_XX_SD_CTL,
997 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
998 };
999
1000 static int falcon_b0_test_registers(struct efx_nic *efx)
1001 {
1002 return efx_nic_test_registers(efx, falcon_b0_register_tests,
1003 ARRAY_SIZE(falcon_b0_register_tests));
1004 }
1005
1006 /**************************************************************************
1007 *
1008 * Device reset
1009 *
1010 **************************************************************************
1011 */
1012
1013 /* Resets NIC to known state. This routine must be called in process
1014 * context and is allowed to sleep. */
1015 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1016 {
1017 struct falcon_nic_data *nic_data = efx->nic_data;
1018 efx_oword_t glb_ctl_reg_ker;
1019 int rc;
1020
1021 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1022 RESET_TYPE(method));
1023
1024 /* Initiate device reset */
1025 if (method == RESET_TYPE_WORLD) {
1026 rc = pci_save_state(efx->pci_dev);
1027 if (rc) {
1028 netif_err(efx, drv, efx->net_dev,
1029 "failed to backup PCI state of primary "
1030 "function prior to hardware reset\n");
1031 goto fail1;
1032 }
1033 if (efx_nic_is_dual_func(efx)) {
1034 rc = pci_save_state(nic_data->pci_dev2);
1035 if (rc) {
1036 netif_err(efx, drv, efx->net_dev,
1037 "failed to backup PCI state of "
1038 "secondary function prior to "
1039 "hardware reset\n");
1040 goto fail2;
1041 }
1042 }
1043
1044 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1045 FRF_AB_EXT_PHY_RST_DUR,
1046 FFE_AB_EXT_PHY_RST_DUR_10240US,
1047 FRF_AB_SWRST, 1);
1048 } else {
1049 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1050 /* exclude PHY from "invisible" reset */
1051 FRF_AB_EXT_PHY_RST_CTL,
1052 method == RESET_TYPE_INVISIBLE,
1053 /* exclude EEPROM/flash and PCIe */
1054 FRF_AB_PCIE_CORE_RST_CTL, 1,
1055 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1056 FRF_AB_PCIE_SD_RST_CTL, 1,
1057 FRF_AB_EE_RST_CTL, 1,
1058 FRF_AB_EXT_PHY_RST_DUR,
1059 FFE_AB_EXT_PHY_RST_DUR_10240US,
1060 FRF_AB_SWRST, 1);
1061 }
1062 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1063
1064 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1065 schedule_timeout_uninterruptible(HZ / 20);
1066
1067 /* Restore PCI configuration if needed */
1068 if (method == RESET_TYPE_WORLD) {
1069 if (efx_nic_is_dual_func(efx)) {
1070 rc = pci_restore_state(nic_data->pci_dev2);
1071 if (rc) {
1072 netif_err(efx, drv, efx->net_dev,
1073 "failed to restore PCI config for "
1074 "the secondary function\n");
1075 goto fail3;
1076 }
1077 }
1078 rc = pci_restore_state(efx->pci_dev);
1079 if (rc) {
1080 netif_err(efx, drv, efx->net_dev,
1081 "failed to restore PCI config for the "
1082 "primary function\n");
1083 goto fail4;
1084 }
1085 netif_dbg(efx, drv, efx->net_dev,
1086 "successfully restored PCI config\n");
1087 }
1088
1089 /* Assert that reset complete */
1090 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1091 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1092 rc = -ETIMEDOUT;
1093 netif_err(efx, hw, efx->net_dev,
1094 "timed out waiting for hardware reset\n");
1095 goto fail5;
1096 }
1097 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1098
1099 return 0;
1100
1101 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1102 fail2:
1103 fail3:
1104 pci_restore_state(efx->pci_dev);
1105 fail1:
1106 fail4:
1107 fail5:
1108 return rc;
1109 }
1110
1111 static void falcon_monitor(struct efx_nic *efx)
1112 {
1113 bool link_changed;
1114 int rc;
1115
1116 BUG_ON(!mutex_is_locked(&efx->mac_lock));
1117
1118 rc = falcon_board(efx)->type->monitor(efx);
1119 if (rc) {
1120 netif_err(efx, hw, efx->net_dev,
1121 "Board sensor %s; shutting down PHY\n",
1122 (rc == -ERANGE) ? "reported fault" : "failed");
1123 efx->phy_mode |= PHY_MODE_LOW_POWER;
1124 rc = __efx_reconfigure_port(efx);
1125 WARN_ON(rc);
1126 }
1127
1128 if (LOOPBACK_INTERNAL(efx))
1129 link_changed = falcon_loopback_link_poll(efx);
1130 else
1131 link_changed = efx->phy_op->poll(efx);
1132
1133 if (link_changed) {
1134 falcon_stop_nic_stats(efx);
1135 falcon_deconfigure_mac_wrapper(efx);
1136
1137 falcon_reset_macs(efx);
1138 rc = efx->mac_op->reconfigure(efx);
1139 BUG_ON(rc);
1140
1141 falcon_start_nic_stats(efx);
1142
1143 efx_link_status_changed(efx);
1144 }
1145
1146 falcon_poll_xmac(efx);
1147 }
1148
1149 /* Zeroes out the SRAM contents. This routine must be called in
1150 * process context and is allowed to sleep.
1151 */
1152 static int falcon_reset_sram(struct efx_nic *efx)
1153 {
1154 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1155 int count;
1156
1157 /* Set the SRAM wake/sleep GPIO appropriately. */
1158 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1159 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1160 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1161 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1162
1163 /* Initiate SRAM reset */
1164 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1165 FRF_AZ_SRM_INIT_EN, 1,
1166 FRF_AZ_SRM_NB_SZ, 0);
1167 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1168
1169 /* Wait for SRAM reset to complete */
1170 count = 0;
1171 do {
1172 netif_dbg(efx, hw, efx->net_dev,
1173 "waiting for SRAM reset (attempt %d)...\n", count);
1174
1175 /* SRAM reset is slow; expect around 16ms */
1176 schedule_timeout_uninterruptible(HZ / 50);
1177
1178 /* Check for reset complete */
1179 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1180 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1181 netif_dbg(efx, hw, efx->net_dev,
1182 "SRAM reset complete\n");
1183
1184 return 0;
1185 }
1186 } while (++count < 20); /* wait upto 0.4 sec */
1187
1188 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1189 return -ETIMEDOUT;
1190 }
1191
1192 static int falcon_spi_device_init(struct efx_nic *efx,
1193 struct efx_spi_device **spi_device_ret,
1194 unsigned int device_id, u32 device_type)
1195 {
1196 struct efx_spi_device *spi_device;
1197
1198 if (device_type != 0) {
1199 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1200 if (!spi_device)
1201 return -ENOMEM;
1202 spi_device->device_id = device_id;
1203 spi_device->size =
1204 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1205 spi_device->addr_len =
1206 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1207 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1208 spi_device->addr_len == 1);
1209 spi_device->erase_command =
1210 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1211 spi_device->erase_size =
1212 1 << SPI_DEV_TYPE_FIELD(device_type,
1213 SPI_DEV_TYPE_ERASE_SIZE);
1214 spi_device->block_size =
1215 1 << SPI_DEV_TYPE_FIELD(device_type,
1216 SPI_DEV_TYPE_BLOCK_SIZE);
1217 } else {
1218 spi_device = NULL;
1219 }
1220
1221 kfree(*spi_device_ret);
1222 *spi_device_ret = spi_device;
1223 return 0;
1224 }
1225
1226 static void falcon_remove_spi_devices(struct efx_nic *efx)
1227 {
1228 kfree(efx->spi_eeprom);
1229 efx->spi_eeprom = NULL;
1230 kfree(efx->spi_flash);
1231 efx->spi_flash = NULL;
1232 }
1233
1234 /* Extract non-volatile configuration */
1235 static int falcon_probe_nvconfig(struct efx_nic *efx)
1236 {
1237 struct falcon_nvconfig *nvconfig;
1238 int board_rev;
1239 int rc;
1240
1241 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1242 if (!nvconfig)
1243 return -ENOMEM;
1244
1245 rc = falcon_read_nvram(efx, nvconfig);
1246 if (rc == -EINVAL) {
1247 netif_err(efx, probe, efx->net_dev,
1248 "NVRAM is invalid therefore using defaults\n");
1249 efx->phy_type = PHY_TYPE_NONE;
1250 efx->mdio.prtad = MDIO_PRTAD_NONE;
1251 board_rev = 0;
1252 rc = 0;
1253 } else if (rc) {
1254 goto fail1;
1255 } else {
1256 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
1257 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
1258
1259 efx->phy_type = v2->port0_phy_type;
1260 efx->mdio.prtad = v2->port0_phy_addr;
1261 board_rev = le16_to_cpu(v2->board_revision);
1262
1263 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1264 rc = falcon_spi_device_init(
1265 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1266 le32_to_cpu(v3->spi_device_type
1267 [FFE_AB_SPI_DEVICE_FLASH]));
1268 if (rc)
1269 goto fail2;
1270 rc = falcon_spi_device_init(
1271 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1272 le32_to_cpu(v3->spi_device_type
1273 [FFE_AB_SPI_DEVICE_EEPROM]));
1274 if (rc)
1275 goto fail2;
1276 }
1277 }
1278
1279 /* Read the MAC addresses */
1280 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1281
1282 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1283 efx->phy_type, efx->mdio.prtad);
1284
1285 rc = falcon_probe_board(efx, board_rev);
1286 if (rc)
1287 goto fail2;
1288
1289 kfree(nvconfig);
1290 return 0;
1291
1292 fail2:
1293 falcon_remove_spi_devices(efx);
1294 fail1:
1295 kfree(nvconfig);
1296 return rc;
1297 }
1298
1299 /* Probe all SPI devices on the NIC */
1300 static void falcon_probe_spi_devices(struct efx_nic *efx)
1301 {
1302 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1303 int boot_dev;
1304
1305 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1306 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1307 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1308
1309 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1310 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1311 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1312 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1313 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1314 "flash" : "EEPROM");
1315 } else {
1316 /* Disable VPD and set clock dividers to safe
1317 * values for initial programming. */
1318 boot_dev = -1;
1319 netif_dbg(efx, probe, efx->net_dev,
1320 "Booted from internal ASIC settings;"
1321 " setting SPI config\n");
1322 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1323 /* 125 MHz / 7 ~= 20 MHz */
1324 FRF_AB_EE_SF_CLOCK_DIV, 7,
1325 /* 125 MHz / 63 ~= 2 MHz */
1326 FRF_AB_EE_EE_CLOCK_DIV, 63);
1327 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1328 }
1329
1330 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1331 falcon_spi_device_init(efx, &efx->spi_flash,
1332 FFE_AB_SPI_DEVICE_FLASH,
1333 default_flash_type);
1334 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1335 falcon_spi_device_init(efx, &efx->spi_eeprom,
1336 FFE_AB_SPI_DEVICE_EEPROM,
1337 large_eeprom_type);
1338 }
1339
1340 static int falcon_probe_nic(struct efx_nic *efx)
1341 {
1342 struct falcon_nic_data *nic_data;
1343 struct falcon_board *board;
1344 int rc;
1345
1346 /* Allocate storage for hardware specific data */
1347 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1348 if (!nic_data)
1349 return -ENOMEM;
1350 efx->nic_data = nic_data;
1351
1352 rc = -ENODEV;
1353
1354 if (efx_nic_fpga_ver(efx) != 0) {
1355 netif_err(efx, probe, efx->net_dev,
1356 "Falcon FPGA not supported\n");
1357 goto fail1;
1358 }
1359
1360 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1361 efx_oword_t nic_stat;
1362 struct pci_dev *dev;
1363 u8 pci_rev = efx->pci_dev->revision;
1364
1365 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1366 netif_err(efx, probe, efx->net_dev,
1367 "Falcon rev A0 not supported\n");
1368 goto fail1;
1369 }
1370 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1371 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1372 netif_err(efx, probe, efx->net_dev,
1373 "Falcon rev A1 1G not supported\n");
1374 goto fail1;
1375 }
1376 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1377 netif_err(efx, probe, efx->net_dev,
1378 "Falcon rev A1 PCI-X not supported\n");
1379 goto fail1;
1380 }
1381
1382 dev = pci_dev_get(efx->pci_dev);
1383 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1384 dev))) {
1385 if (dev->bus == efx->pci_dev->bus &&
1386 dev->devfn == efx->pci_dev->devfn + 1) {
1387 nic_data->pci_dev2 = dev;
1388 break;
1389 }
1390 }
1391 if (!nic_data->pci_dev2) {
1392 netif_err(efx, probe, efx->net_dev,
1393 "failed to find secondary function\n");
1394 rc = -ENODEV;
1395 goto fail2;
1396 }
1397 }
1398
1399 /* Now we can reset the NIC */
1400 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1401 if (rc) {
1402 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1403 goto fail3;
1404 }
1405
1406 /* Allocate memory for INT_KER */
1407 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1408 if (rc)
1409 goto fail4;
1410 BUG_ON(efx->irq_status.dma_addr & 0x0f);
1411
1412 netif_dbg(efx, probe, efx->net_dev,
1413 "INT_KER at %llx (virt %p phys %llx)\n",
1414 (u64)efx->irq_status.dma_addr,
1415 efx->irq_status.addr,
1416 (u64)virt_to_phys(efx->irq_status.addr));
1417
1418 falcon_probe_spi_devices(efx);
1419
1420 /* Read in the non-volatile configuration */
1421 rc = falcon_probe_nvconfig(efx);
1422 if (rc)
1423 goto fail5;
1424
1425 /* Initialise I2C adapter */
1426 board = falcon_board(efx);
1427 board->i2c_adap.owner = THIS_MODULE;
1428 board->i2c_data = falcon_i2c_bit_operations;
1429 board->i2c_data.data = efx;
1430 board->i2c_adap.algo_data = &board->i2c_data;
1431 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1432 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1433 sizeof(board->i2c_adap.name));
1434 rc = i2c_bit_add_bus(&board->i2c_adap);
1435 if (rc)
1436 goto fail5;
1437
1438 rc = falcon_board(efx)->type->init(efx);
1439 if (rc) {
1440 netif_err(efx, probe, efx->net_dev,
1441 "failed to initialise board\n");
1442 goto fail6;
1443 }
1444
1445 nic_data->stats_disable_count = 1;
1446 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1447 (unsigned long)efx);
1448
1449 return 0;
1450
1451 fail6:
1452 BUG_ON(i2c_del_adapter(&board->i2c_adap));
1453 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1454 fail5:
1455 falcon_remove_spi_devices(efx);
1456 efx_nic_free_buffer(efx, &efx->irq_status);
1457 fail4:
1458 fail3:
1459 if (nic_data->pci_dev2) {
1460 pci_dev_put(nic_data->pci_dev2);
1461 nic_data->pci_dev2 = NULL;
1462 }
1463 fail2:
1464 fail1:
1465 kfree(efx->nic_data);
1466 return rc;
1467 }
1468
1469 static void falcon_init_rx_cfg(struct efx_nic *efx)
1470 {
1471 /* Prior to Siena the RX DMA engine will split each frame at
1472 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1473 * be so large that that never happens. */
1474 const unsigned huge_buf_size = (3 * 4096) >> 5;
1475 /* RX control FIFO thresholds (32 entries) */
1476 const unsigned ctrl_xon_thr = 20;
1477 const unsigned ctrl_xoff_thr = 25;
1478 /* RX data FIFO thresholds (256-byte units; size varies) */
1479 int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1480 int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1481 efx_oword_t reg;
1482
1483 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1484 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1485 /* Data FIFO size is 5.5K */
1486 if (data_xon_thr < 0)
1487 data_xon_thr = 512 >> 8;
1488 if (data_xoff_thr < 0)
1489 data_xoff_thr = 2048 >> 8;
1490 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1491 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1492 huge_buf_size);
1493 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1494 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1495 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1496 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1497 } else {
1498 /* Data FIFO size is 80K; register fields moved */
1499 if (data_xon_thr < 0)
1500 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1501 if (data_xoff_thr < 0)
1502 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1503 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1504 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1505 huge_buf_size);
1506 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1507 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1508 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1509 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1510 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1511
1512 /* Enable hash insertion. This is broken for the
1513 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1514 * IPv4 hashes. */
1515 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1516 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1517 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1518 }
1519 /* Always enable XOFF signal from RX FIFO. We enable
1520 * or disable transmission of pause frames at the MAC. */
1521 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1522 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1523 }
1524
1525 /* This call performs hardware-specific global initialisation, such as
1526 * defining the descriptor cache sizes and number of RSS channels.
1527 * It does not set up any buffers, descriptor rings or event queues.
1528 */
1529 static int falcon_init_nic(struct efx_nic *efx)
1530 {
1531 efx_oword_t temp;
1532 int rc;
1533
1534 /* Use on-chip SRAM */
1535 efx_reado(efx, &temp, FR_AB_NIC_STAT);
1536 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1537 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1538
1539 rc = falcon_reset_sram(efx);
1540 if (rc)
1541 return rc;
1542
1543 /* Clear the parity enables on the TX data fifos as
1544 * they produce false parity errors because of timing issues
1545 */
1546 if (EFX_WORKAROUND_5129(efx)) {
1547 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1548 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1549 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1550 }
1551
1552 if (EFX_WORKAROUND_7244(efx)) {
1553 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1554 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1555 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1556 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1557 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1558 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1559 }
1560
1561 /* XXX This is documented only for Falcon A0/A1 */
1562 /* Setup RX. Wait for descriptor is broken and must
1563 * be disabled. RXDP recovery shouldn't be needed, but is.
1564 */
1565 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1566 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1567 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1568 if (EFX_WORKAROUND_5583(efx))
1569 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1570 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1571
1572 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1573 * descriptors (which is bad).
1574 */
1575 efx_reado(efx, &temp, FR_AZ_TX_CFG);
1576 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1577 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1578
1579 falcon_init_rx_cfg(efx);
1580
1581 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1582 /* Set hash key for IPv4 */
1583 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1584 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1585
1586 /* Set destination of both TX and RX Flush events */
1587 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1588 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1589 }
1590
1591 efx_nic_init_common(efx);
1592
1593 return 0;
1594 }
1595
1596 static void falcon_remove_nic(struct efx_nic *efx)
1597 {
1598 struct falcon_nic_data *nic_data = efx->nic_data;
1599 struct falcon_board *board = falcon_board(efx);
1600 int rc;
1601
1602 board->type->fini(efx);
1603
1604 /* Remove I2C adapter and clear it in preparation for a retry */
1605 rc = i2c_del_adapter(&board->i2c_adap);
1606 BUG_ON(rc);
1607 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1608
1609 falcon_remove_spi_devices(efx);
1610 efx_nic_free_buffer(efx, &efx->irq_status);
1611
1612 falcon_reset_hw(efx, RESET_TYPE_ALL);
1613
1614 /* Release the second function after the reset */
1615 if (nic_data->pci_dev2) {
1616 pci_dev_put(nic_data->pci_dev2);
1617 nic_data->pci_dev2 = NULL;
1618 }
1619
1620 /* Tear down the private nic state */
1621 kfree(efx->nic_data);
1622 efx->nic_data = NULL;
1623 }
1624
1625 static void falcon_update_nic_stats(struct efx_nic *efx)
1626 {
1627 struct falcon_nic_data *nic_data = efx->nic_data;
1628 efx_oword_t cnt;
1629
1630 if (nic_data->stats_disable_count)
1631 return;
1632
1633 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1634 efx->n_rx_nodesc_drop_cnt +=
1635 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1636
1637 if (nic_data->stats_pending &&
1638 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1639 nic_data->stats_pending = false;
1640 rmb(); /* read the done flag before the stats */
1641 efx->mac_op->update_stats(efx);
1642 }
1643 }
1644
1645 void falcon_start_nic_stats(struct efx_nic *efx)
1646 {
1647 struct falcon_nic_data *nic_data = efx->nic_data;
1648
1649 spin_lock_bh(&efx->stats_lock);
1650 if (--nic_data->stats_disable_count == 0)
1651 falcon_stats_request(efx);
1652 spin_unlock_bh(&efx->stats_lock);
1653 }
1654
1655 void falcon_stop_nic_stats(struct efx_nic *efx)
1656 {
1657 struct falcon_nic_data *nic_data = efx->nic_data;
1658 int i;
1659
1660 might_sleep();
1661
1662 spin_lock_bh(&efx->stats_lock);
1663 ++nic_data->stats_disable_count;
1664 spin_unlock_bh(&efx->stats_lock);
1665
1666 del_timer_sync(&nic_data->stats_timer);
1667
1668 /* Wait enough time for the most recent transfer to
1669 * complete. */
1670 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1671 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1672 break;
1673 msleep(1);
1674 }
1675
1676 spin_lock_bh(&efx->stats_lock);
1677 falcon_stats_complete(efx);
1678 spin_unlock_bh(&efx->stats_lock);
1679 }
1680
1681 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1682 {
1683 falcon_board(efx)->type->set_id_led(efx, mode);
1684 }
1685
1686 /**************************************************************************
1687 *
1688 * Wake on LAN
1689 *
1690 **************************************************************************
1691 */
1692
1693 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1694 {
1695 wol->supported = 0;
1696 wol->wolopts = 0;
1697 memset(&wol->sopass, 0, sizeof(wol->sopass));
1698 }
1699
1700 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1701 {
1702 if (type != 0)
1703 return -EINVAL;
1704 return 0;
1705 }
1706
1707 /**************************************************************************
1708 *
1709 * Revision-dependent attributes used by efx.c and nic.c
1710 *
1711 **************************************************************************
1712 */
1713
1714 struct efx_nic_type falcon_a1_nic_type = {
1715 .probe = falcon_probe_nic,
1716 .remove = falcon_remove_nic,
1717 .init = falcon_init_nic,
1718 .fini = efx_port_dummy_op_void,
1719 .monitor = falcon_monitor,
1720 .reset = falcon_reset_hw,
1721 .probe_port = falcon_probe_port,
1722 .remove_port = falcon_remove_port,
1723 .prepare_flush = falcon_prepare_flush,
1724 .update_stats = falcon_update_nic_stats,
1725 .start_stats = falcon_start_nic_stats,
1726 .stop_stats = falcon_stop_nic_stats,
1727 .set_id_led = falcon_set_id_led,
1728 .push_irq_moderation = falcon_push_irq_moderation,
1729 .push_multicast_hash = falcon_push_multicast_hash,
1730 .reconfigure_port = falcon_reconfigure_port,
1731 .get_wol = falcon_get_wol,
1732 .set_wol = falcon_set_wol,
1733 .resume_wol = efx_port_dummy_op_void,
1734 .test_nvram = falcon_test_nvram,
1735 .default_mac_ops = &falcon_xmac_operations,
1736
1737 .revision = EFX_REV_FALCON_A1,
1738 .mem_map_size = 0x20000,
1739 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1740 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1741 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1742 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1743 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1744 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1745 .rx_buffer_padding = 0x24,
1746 .max_interrupt_mode = EFX_INT_MODE_MSI,
1747 .phys_addr_channels = 4,
1748 .tx_dc_base = 0x130000,
1749 .rx_dc_base = 0x100000,
1750 .offload_features = NETIF_F_IP_CSUM,
1751 .reset_world_flags = ETH_RESET_IRQ,
1752 };
1753
1754 struct efx_nic_type falcon_b0_nic_type = {
1755 .probe = falcon_probe_nic,
1756 .remove = falcon_remove_nic,
1757 .init = falcon_init_nic,
1758 .fini = efx_port_dummy_op_void,
1759 .monitor = falcon_monitor,
1760 .reset = falcon_reset_hw,
1761 .probe_port = falcon_probe_port,
1762 .remove_port = falcon_remove_port,
1763 .prepare_flush = falcon_prepare_flush,
1764 .update_stats = falcon_update_nic_stats,
1765 .start_stats = falcon_start_nic_stats,
1766 .stop_stats = falcon_stop_nic_stats,
1767 .set_id_led = falcon_set_id_led,
1768 .push_irq_moderation = falcon_push_irq_moderation,
1769 .push_multicast_hash = falcon_push_multicast_hash,
1770 .reconfigure_port = falcon_reconfigure_port,
1771 .get_wol = falcon_get_wol,
1772 .set_wol = falcon_set_wol,
1773 .resume_wol = efx_port_dummy_op_void,
1774 .test_registers = falcon_b0_test_registers,
1775 .test_nvram = falcon_test_nvram,
1776 .default_mac_ops = &falcon_xmac_operations,
1777
1778 .revision = EFX_REV_FALCON_B0,
1779 /* Map everything up to and including the RSS indirection
1780 * table. Don't map MSI-X table, MSI-X PBA since Linux
1781 * requires that they not be mapped. */
1782 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1783 FR_BZ_RX_INDIRECTION_TBL_STEP *
1784 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1785 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1786 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1787 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1788 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1789 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1790 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1791 .rx_buffer_hash_size = 0x10,
1792 .rx_buffer_padding = 0,
1793 .max_interrupt_mode = EFX_INT_MODE_MSIX,
1794 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1795 * interrupt handler only supports 32
1796 * channels */
1797 .tx_dc_base = 0x130000,
1798 .rx_dc_base = 0x100000,
1799 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1800 .reset_world_flags = ETH_RESET_IRQ,
1801 };
1802
This page took 0.27916 seconds and 5 git commands to generate.