sfc: Refactor link configuration
[deliverable/linux.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33 *
34 * Configurable values
35 *
36 **************************************************************************
37 */
38
39 /* This is set to 16 for a good reason. In summary, if larger than
40 * 16, the descriptor cache holds more than a default socket
41 * buffer's worth of packets (for UDP we can only have at most one
42 * socket buffer's worth outstanding). This combined with the fact
43 * that we only get 1 TX event per descriptor cache means the NIC
44 * goes idle.
45 */
46 #define TX_DC_ENTRIES 16
47 #define TX_DC_ENTRIES_ORDER 1
48
49 #define RX_DC_ENTRIES 64
50 #define RX_DC_ENTRIES_ORDER 3
51
52 static const unsigned int
53 /* "Large" EEPROM device: Atmel AT25640 or similar
54 * 8 KB, 16-bit address, 32 B write block */
55 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
56 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
57 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
58 /* Default flash device: Atmel AT25F1024
59 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
60 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
61 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
62 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
63 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
64 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
65
66 /* RX FIFO XOFF watermark
67 *
68 * When the amount of the RX FIFO increases used increases past this
69 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
70 * This also has an effect on RX/TX arbitration
71 */
72 static int rx_xoff_thresh_bytes = -1;
73 module_param(rx_xoff_thresh_bytes, int, 0644);
74 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
75
76 /* RX FIFO XON watermark
77 *
78 * When the amount of the RX FIFO used decreases below this
79 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
80 * This also has an effect on RX/TX arbitration
81 */
82 static int rx_xon_thresh_bytes = -1;
83 module_param(rx_xon_thresh_bytes, int, 0644);
84 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
85
86 /* If FALCON_MAX_INT_ERRORS internal errors occur within
87 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
88 * disable it.
89 */
90 #define FALCON_INT_ERROR_EXPIRE 3600
91 #define FALCON_MAX_INT_ERRORS 5
92
93 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
94 */
95 #define FALCON_FLUSH_INTERVAL 10
96 #define FALCON_FLUSH_POLL_COUNT 100
97
98 /**************************************************************************
99 *
100 * Falcon constants
101 *
102 **************************************************************************
103 */
104
105 /* Size and alignment of special buffers (4KB) */
106 #define FALCON_BUF_SIZE 4096
107
108 /* Depth of RX flush request fifo */
109 #define FALCON_RX_FLUSH_COUNT 4
110
111 #define FALCON_IS_DUAL_FUNC(efx) \
112 (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
113
114 /**************************************************************************
115 *
116 * Falcon hardware access
117 *
118 **************************************************************************/
119
120 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
121 unsigned int index)
122 {
123 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
124 value, index);
125 }
126
127 /* Read the current event from the event queue */
128 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
129 unsigned int index)
130 {
131 return (((efx_qword_t *) (channel->eventq.addr)) + index);
132 }
133
134 /* See if an event is present
135 *
136 * We check both the high and low dword of the event for all ones. We
137 * wrote all ones when we cleared the event, and no valid event can
138 * have all ones in either its high or low dwords. This approach is
139 * robust against reordering.
140 *
141 * Note that using a single 64-bit comparison is incorrect; even
142 * though the CPU read will be atomic, the DMA write may not be.
143 */
144 static inline int falcon_event_present(efx_qword_t *event)
145 {
146 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
147 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
148 }
149
150 /**************************************************************************
151 *
152 * I2C bus - this is a bit-bashing interface using GPIO pins
153 * Note that it uses the output enables to tristate the outputs
154 * SDA is the data pin and SCL is the clock
155 *
156 **************************************************************************
157 */
158 static void falcon_setsda(void *data, int state)
159 {
160 struct efx_nic *efx = (struct efx_nic *)data;
161 efx_oword_t reg;
162
163 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
164 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
165 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
166 }
167
168 static void falcon_setscl(void *data, int state)
169 {
170 struct efx_nic *efx = (struct efx_nic *)data;
171 efx_oword_t reg;
172
173 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
174 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
175 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
176 }
177
178 static int falcon_getsda(void *data)
179 {
180 struct efx_nic *efx = (struct efx_nic *)data;
181 efx_oword_t reg;
182
183 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
184 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
185 }
186
187 static int falcon_getscl(void *data)
188 {
189 struct efx_nic *efx = (struct efx_nic *)data;
190 efx_oword_t reg;
191
192 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
193 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
194 }
195
196 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
197 .setsda = falcon_setsda,
198 .setscl = falcon_setscl,
199 .getsda = falcon_getsda,
200 .getscl = falcon_getscl,
201 .udelay = 5,
202 /* Wait up to 50 ms for slave to let us pull SCL high */
203 .timeout = DIV_ROUND_UP(HZ, 20),
204 };
205
206 /**************************************************************************
207 *
208 * Falcon special buffer handling
209 * Special buffers are used for event queues and the TX and RX
210 * descriptor rings.
211 *
212 *************************************************************************/
213
214 /*
215 * Initialise a Falcon special buffer
216 *
217 * This will define a buffer (previously allocated via
218 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
219 * it to be used for event queues, descriptor rings etc.
220 */
221 static void
222 falcon_init_special_buffer(struct efx_nic *efx,
223 struct efx_special_buffer *buffer)
224 {
225 efx_qword_t buf_desc;
226 int index;
227 dma_addr_t dma_addr;
228 int i;
229
230 EFX_BUG_ON_PARANOID(!buffer->addr);
231
232 /* Write buffer descriptors to NIC */
233 for (i = 0; i < buffer->entries; i++) {
234 index = buffer->index + i;
235 dma_addr = buffer->dma_addr + (i * 4096);
236 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
237 index, (unsigned long long)dma_addr);
238 EFX_POPULATE_QWORD_3(buf_desc,
239 FRF_AZ_BUF_ADR_REGION, 0,
240 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
241 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
242 falcon_write_buf_tbl(efx, &buf_desc, index);
243 }
244 }
245
246 /* Unmaps a buffer from Falcon and clears the buffer table entries */
247 static void
248 falcon_fini_special_buffer(struct efx_nic *efx,
249 struct efx_special_buffer *buffer)
250 {
251 efx_oword_t buf_tbl_upd;
252 unsigned int start = buffer->index;
253 unsigned int end = (buffer->index + buffer->entries - 1);
254
255 if (!buffer->entries)
256 return;
257
258 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
259 buffer->index, buffer->index + buffer->entries - 1);
260
261 EFX_POPULATE_OWORD_4(buf_tbl_upd,
262 FRF_AZ_BUF_UPD_CMD, 0,
263 FRF_AZ_BUF_CLR_CMD, 1,
264 FRF_AZ_BUF_CLR_END_ID, end,
265 FRF_AZ_BUF_CLR_START_ID, start);
266 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
267 }
268
269 /*
270 * Allocate a new Falcon special buffer
271 *
272 * This allocates memory for a new buffer, clears it and allocates a
273 * new buffer ID range. It does not write into Falcon's buffer table.
274 *
275 * This call will allocate 4KB buffers, since Falcon can't use 8KB
276 * buffers for event queues and descriptor rings.
277 */
278 static int falcon_alloc_special_buffer(struct efx_nic *efx,
279 struct efx_special_buffer *buffer,
280 unsigned int len)
281 {
282 len = ALIGN(len, FALCON_BUF_SIZE);
283
284 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
285 &buffer->dma_addr);
286 if (!buffer->addr)
287 return -ENOMEM;
288 buffer->len = len;
289 buffer->entries = len / FALCON_BUF_SIZE;
290 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
291
292 /* All zeros is a potentially valid event so memset to 0xff */
293 memset(buffer->addr, 0xff, len);
294
295 /* Select new buffer ID */
296 buffer->index = efx->next_buffer_table;
297 efx->next_buffer_table += buffer->entries;
298
299 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
300 "(virt %p phys %llx)\n", buffer->index,
301 buffer->index + buffer->entries - 1,
302 (u64)buffer->dma_addr, len,
303 buffer->addr, (u64)virt_to_phys(buffer->addr));
304
305 return 0;
306 }
307
308 static void falcon_free_special_buffer(struct efx_nic *efx,
309 struct efx_special_buffer *buffer)
310 {
311 if (!buffer->addr)
312 return;
313
314 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
315 "(virt %p phys %llx)\n", buffer->index,
316 buffer->index + buffer->entries - 1,
317 (u64)buffer->dma_addr, buffer->len,
318 buffer->addr, (u64)virt_to_phys(buffer->addr));
319
320 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
321 buffer->dma_addr);
322 buffer->addr = NULL;
323 buffer->entries = 0;
324 }
325
326 /**************************************************************************
327 *
328 * Falcon generic buffer handling
329 * These buffers are used for interrupt status and MAC stats
330 *
331 **************************************************************************/
332
333 static int falcon_alloc_buffer(struct efx_nic *efx,
334 struct efx_buffer *buffer, unsigned int len)
335 {
336 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
337 &buffer->dma_addr);
338 if (!buffer->addr)
339 return -ENOMEM;
340 buffer->len = len;
341 memset(buffer->addr, 0, len);
342 return 0;
343 }
344
345 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
346 {
347 if (buffer->addr) {
348 pci_free_consistent(efx->pci_dev, buffer->len,
349 buffer->addr, buffer->dma_addr);
350 buffer->addr = NULL;
351 }
352 }
353
354 /**************************************************************************
355 *
356 * Falcon TX path
357 *
358 **************************************************************************/
359
360 /* Returns a pointer to the specified transmit descriptor in the TX
361 * descriptor queue belonging to the specified channel.
362 */
363 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
364 unsigned int index)
365 {
366 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
367 }
368
369 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
370 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
371 {
372 unsigned write_ptr;
373 efx_dword_t reg;
374
375 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
376 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
377 efx_writed_page(tx_queue->efx, &reg,
378 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
379 }
380
381
382 /* For each entry inserted into the software descriptor ring, create a
383 * descriptor in the hardware TX descriptor ring (in host memory), and
384 * write a doorbell.
385 */
386 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
387 {
388
389 struct efx_tx_buffer *buffer;
390 efx_qword_t *txd;
391 unsigned write_ptr;
392
393 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
394
395 do {
396 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
397 buffer = &tx_queue->buffer[write_ptr];
398 txd = falcon_tx_desc(tx_queue, write_ptr);
399 ++tx_queue->write_count;
400
401 /* Create TX descriptor ring entry */
402 EFX_POPULATE_QWORD_4(*txd,
403 FSF_AZ_TX_KER_CONT, buffer->continuation,
404 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
405 FSF_AZ_TX_KER_BUF_REGION, 0,
406 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
407 } while (tx_queue->write_count != tx_queue->insert_count);
408
409 wmb(); /* Ensure descriptors are written before they are fetched */
410 falcon_notify_tx_desc(tx_queue);
411 }
412
413 /* Allocate hardware resources for a TX queue */
414 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
415 {
416 struct efx_nic *efx = tx_queue->efx;
417 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
418 EFX_TXQ_SIZE & EFX_TXQ_MASK);
419 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
420 EFX_TXQ_SIZE * sizeof(efx_qword_t));
421 }
422
423 void falcon_init_tx(struct efx_tx_queue *tx_queue)
424 {
425 efx_oword_t tx_desc_ptr;
426 struct efx_nic *efx = tx_queue->efx;
427
428 tx_queue->flushed = FLUSH_NONE;
429
430 /* Pin TX descriptor ring */
431 falcon_init_special_buffer(efx, &tx_queue->txd);
432
433 /* Push TX descriptor ring to card */
434 EFX_POPULATE_OWORD_10(tx_desc_ptr,
435 FRF_AZ_TX_DESCQ_EN, 1,
436 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
437 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
438 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
439 FRF_AZ_TX_DESCQ_EVQ_ID,
440 tx_queue->channel->channel,
441 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
442 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
443 FRF_AZ_TX_DESCQ_SIZE,
444 __ffs(tx_queue->txd.entries),
445 FRF_AZ_TX_DESCQ_TYPE, 0,
446 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
447
448 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
449 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
450 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
451 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
452 !csum);
453 }
454
455 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
456 tx_queue->queue);
457
458 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
459 efx_oword_t reg;
460
461 /* Only 128 bits in this register */
462 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
463
464 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
465 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
466 clear_bit_le(tx_queue->queue, (void *)&reg);
467 else
468 set_bit_le(tx_queue->queue, (void *)&reg);
469 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
470 }
471 }
472
473 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
474 {
475 struct efx_nic *efx = tx_queue->efx;
476 efx_oword_t tx_flush_descq;
477
478 tx_queue->flushed = FLUSH_PENDING;
479
480 /* Post a flush command */
481 EFX_POPULATE_OWORD_2(tx_flush_descq,
482 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
483 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
484 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
485 }
486
487 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
488 {
489 struct efx_nic *efx = tx_queue->efx;
490 efx_oword_t tx_desc_ptr;
491
492 /* The queue should have been flushed */
493 WARN_ON(tx_queue->flushed != FLUSH_DONE);
494
495 /* Remove TX descriptor ring from card */
496 EFX_ZERO_OWORD(tx_desc_ptr);
497 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
498 tx_queue->queue);
499
500 /* Unpin TX descriptor ring */
501 falcon_fini_special_buffer(efx, &tx_queue->txd);
502 }
503
504 /* Free buffers backing TX queue */
505 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
506 {
507 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
508 }
509
510 /**************************************************************************
511 *
512 * Falcon RX path
513 *
514 **************************************************************************/
515
516 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
517 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
518 unsigned int index)
519 {
520 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
521 }
522
523 /* This creates an entry in the RX descriptor queue */
524 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
525 unsigned index)
526 {
527 struct efx_rx_buffer *rx_buf;
528 efx_qword_t *rxd;
529
530 rxd = falcon_rx_desc(rx_queue, index);
531 rx_buf = efx_rx_buffer(rx_queue, index);
532 EFX_POPULATE_QWORD_3(*rxd,
533 FSF_AZ_RX_KER_BUF_SIZE,
534 rx_buf->len -
535 rx_queue->efx->type->rx_buffer_padding,
536 FSF_AZ_RX_KER_BUF_REGION, 0,
537 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
538 }
539
540 /* This writes to the RX_DESC_WPTR register for the specified receive
541 * descriptor ring.
542 */
543 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
544 {
545 efx_dword_t reg;
546 unsigned write_ptr;
547
548 while (rx_queue->notified_count != rx_queue->added_count) {
549 falcon_build_rx_desc(rx_queue,
550 rx_queue->notified_count &
551 EFX_RXQ_MASK);
552 ++rx_queue->notified_count;
553 }
554
555 wmb();
556 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
557 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
558 efx_writed_page(rx_queue->efx, &reg,
559 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
560 }
561
562 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
563 {
564 struct efx_nic *efx = rx_queue->efx;
565 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
566 EFX_RXQ_SIZE & EFX_RXQ_MASK);
567 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
568 EFX_RXQ_SIZE * sizeof(efx_qword_t));
569 }
570
571 void falcon_init_rx(struct efx_rx_queue *rx_queue)
572 {
573 efx_oword_t rx_desc_ptr;
574 struct efx_nic *efx = rx_queue->efx;
575 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
576 bool iscsi_digest_en = is_b0;
577
578 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
579 rx_queue->queue, rx_queue->rxd.index,
580 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
581
582 rx_queue->flushed = FLUSH_NONE;
583
584 /* Pin RX descriptor ring */
585 falcon_init_special_buffer(efx, &rx_queue->rxd);
586
587 /* Push RX descriptor ring to card */
588 EFX_POPULATE_OWORD_10(rx_desc_ptr,
589 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
590 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
591 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
592 FRF_AZ_RX_DESCQ_EVQ_ID,
593 rx_queue->channel->channel,
594 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
595 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
596 FRF_AZ_RX_DESCQ_SIZE,
597 __ffs(rx_queue->rxd.entries),
598 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
599 /* For >=B0 this is scatter so disable */
600 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
601 FRF_AZ_RX_DESCQ_EN, 1);
602 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
603 rx_queue->queue);
604 }
605
606 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
607 {
608 struct efx_nic *efx = rx_queue->efx;
609 efx_oword_t rx_flush_descq;
610
611 rx_queue->flushed = FLUSH_PENDING;
612
613 /* Post a flush command */
614 EFX_POPULATE_OWORD_2(rx_flush_descq,
615 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
616 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
617 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
618 }
619
620 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
621 {
622 efx_oword_t rx_desc_ptr;
623 struct efx_nic *efx = rx_queue->efx;
624
625 /* The queue should already have been flushed */
626 WARN_ON(rx_queue->flushed != FLUSH_DONE);
627
628 /* Remove RX descriptor ring from card */
629 EFX_ZERO_OWORD(rx_desc_ptr);
630 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
631 rx_queue->queue);
632
633 /* Unpin RX descriptor ring */
634 falcon_fini_special_buffer(efx, &rx_queue->rxd);
635 }
636
637 /* Free buffers backing RX queue */
638 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
639 {
640 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
641 }
642
643 /**************************************************************************
644 *
645 * Falcon event queue processing
646 * Event queues are processed by per-channel tasklets.
647 *
648 **************************************************************************/
649
650 /* Update a channel's event queue's read pointer (RPTR) register
651 *
652 * This writes the EVQ_RPTR_REG register for the specified channel's
653 * event queue.
654 *
655 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
656 * whereas channel->eventq_read_ptr contains the index of the "next to
657 * read" event.
658 */
659 void falcon_eventq_read_ack(struct efx_channel *channel)
660 {
661 efx_dword_t reg;
662 struct efx_nic *efx = channel->efx;
663
664 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
665 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
666 channel->channel);
667 }
668
669 /* Use HW to insert a SW defined event */
670 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
671 {
672 efx_oword_t drv_ev_reg;
673
674 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
675 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
676 drv_ev_reg.u32[0] = event->u32[0];
677 drv_ev_reg.u32[1] = event->u32[1];
678 drv_ev_reg.u32[2] = 0;
679 drv_ev_reg.u32[3] = 0;
680 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
681 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
682 }
683
684 /* Handle a transmit completion event
685 *
686 * Falcon batches TX completion events; the message we receive is of
687 * the form "complete all TX events up to this index".
688 */
689 static void falcon_handle_tx_event(struct efx_channel *channel,
690 efx_qword_t *event)
691 {
692 unsigned int tx_ev_desc_ptr;
693 unsigned int tx_ev_q_label;
694 struct efx_tx_queue *tx_queue;
695 struct efx_nic *efx = channel->efx;
696
697 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
698 /* Transmit completion */
699 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
700 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
701 tx_queue = &efx->tx_queue[tx_ev_q_label];
702 channel->irq_mod_score +=
703 (tx_ev_desc_ptr - tx_queue->read_count) &
704 EFX_TXQ_MASK;
705 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
706 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
707 /* Rewrite the FIFO write pointer */
708 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
709 tx_queue = &efx->tx_queue[tx_ev_q_label];
710
711 if (efx_dev_registered(efx))
712 netif_tx_lock(efx->net_dev);
713 falcon_notify_tx_desc(tx_queue);
714 if (efx_dev_registered(efx))
715 netif_tx_unlock(efx->net_dev);
716 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
717 EFX_WORKAROUND_10727(efx)) {
718 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
719 } else {
720 EFX_ERR(efx, "channel %d unexpected TX event "
721 EFX_QWORD_FMT"\n", channel->channel,
722 EFX_QWORD_VAL(*event));
723 }
724 }
725
726 /* Detect errors included in the rx_evt_pkt_ok bit. */
727 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
728 const efx_qword_t *event,
729 bool *rx_ev_pkt_ok,
730 bool *discard)
731 {
732 struct efx_nic *efx = rx_queue->efx;
733 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
734 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
735 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
736 bool rx_ev_other_err, rx_ev_pause_frm;
737 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
738 unsigned rx_ev_pkt_type;
739
740 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
741 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
742 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
743 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
744 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
745 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
746 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
747 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
748 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
749 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
750 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
751 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
752 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
753 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
754 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
755
756 /* Every error apart from tobe_disc and pause_frm */
757 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
758 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
759 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
760
761 /* Count errors that are not in MAC stats. Ignore expected
762 * checksum errors during self-test. */
763 if (rx_ev_frm_trunc)
764 ++rx_queue->channel->n_rx_frm_trunc;
765 else if (rx_ev_tobe_disc)
766 ++rx_queue->channel->n_rx_tobe_disc;
767 else if (!efx->loopback_selftest) {
768 if (rx_ev_ip_hdr_chksum_err)
769 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
770 else if (rx_ev_tcp_udp_chksum_err)
771 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
772 }
773
774 /* The frame must be discarded if any of these are true. */
775 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
776 rx_ev_tobe_disc | rx_ev_pause_frm);
777
778 /* TOBE_DISC is expected on unicast mismatches; don't print out an
779 * error message. FRM_TRUNC indicates RXDP dropped the packet due
780 * to a FIFO overflow.
781 */
782 #ifdef EFX_ENABLE_DEBUG
783 if (rx_ev_other_err) {
784 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
785 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
786 rx_queue->queue, EFX_QWORD_VAL(*event),
787 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
788 rx_ev_ip_hdr_chksum_err ?
789 " [IP_HDR_CHKSUM_ERR]" : "",
790 rx_ev_tcp_udp_chksum_err ?
791 " [TCP_UDP_CHKSUM_ERR]" : "",
792 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
793 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
794 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
795 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
796 rx_ev_pause_frm ? " [PAUSE]" : "");
797 }
798 #endif
799 }
800
801 /* Handle receive events that are not in-order. */
802 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
803 unsigned index)
804 {
805 struct efx_nic *efx = rx_queue->efx;
806 unsigned expected, dropped;
807
808 expected = rx_queue->removed_count & EFX_RXQ_MASK;
809 dropped = (index - expected) & EFX_RXQ_MASK;
810 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
811 dropped, index, expected);
812
813 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
814 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
815 }
816
817 /* Handle a packet received event
818 *
819 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
820 * wrong destination address
821 * Also "is multicast" and "matches multicast filter" flags can be used to
822 * discard non-matching multicast packets.
823 */
824 static void falcon_handle_rx_event(struct efx_channel *channel,
825 const efx_qword_t *event)
826 {
827 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
828 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
829 unsigned expected_ptr;
830 bool rx_ev_pkt_ok, discard = false, checksummed;
831 struct efx_rx_queue *rx_queue;
832 struct efx_nic *efx = channel->efx;
833
834 /* Basic packet information */
835 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
836 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
837 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
838 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
839 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
840 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
841 channel->channel);
842
843 rx_queue = &efx->rx_queue[channel->channel];
844
845 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
846 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
847 if (unlikely(rx_ev_desc_ptr != expected_ptr))
848 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
849
850 if (likely(rx_ev_pkt_ok)) {
851 /* If packet is marked as OK and packet type is TCP/IPv4 or
852 * UDP/IPv4, then we can rely on the hardware checksum.
853 */
854 checksummed =
855 likely(efx->rx_checksum_enabled) &&
856 (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
857 rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
858 } else {
859 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
860 &discard);
861 checksummed = false;
862 }
863
864 /* Detect multicast packets that didn't match the filter */
865 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
866 if (rx_ev_mcast_pkt) {
867 unsigned int rx_ev_mcast_hash_match =
868 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
869
870 if (unlikely(!rx_ev_mcast_hash_match)) {
871 ++channel->n_rx_mcast_mismatch;
872 discard = true;
873 }
874 }
875
876 channel->irq_mod_score += 2;
877
878 /* Handle received packet */
879 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
880 checksummed, discard);
881 }
882
883 /* Global events are basically PHY events */
884 static void falcon_handle_global_event(struct efx_channel *channel,
885 efx_qword_t *event)
886 {
887 struct efx_nic *efx = channel->efx;
888 bool handled = false;
889
890 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
891 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
892 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
893 /* Ignored */
894 handled = true;
895 }
896
897 if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
898 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
899 efx->xmac_poll_required = true;
900 handled = true;
901 }
902
903 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
904 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
905 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
906 EFX_ERR(efx, "channel %d seen global RX_RESET "
907 "event. Resetting.\n", channel->channel);
908
909 atomic_inc(&efx->rx_reset);
910 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
911 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
912 handled = true;
913 }
914
915 if (!handled)
916 EFX_ERR(efx, "channel %d unknown global event "
917 EFX_QWORD_FMT "\n", channel->channel,
918 EFX_QWORD_VAL(*event));
919 }
920
921 static void falcon_handle_driver_event(struct efx_channel *channel,
922 efx_qword_t *event)
923 {
924 struct efx_nic *efx = channel->efx;
925 unsigned int ev_sub_code;
926 unsigned int ev_sub_data;
927
928 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
929 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
930
931 switch (ev_sub_code) {
932 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
933 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
934 channel->channel, ev_sub_data);
935 break;
936 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
937 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
938 channel->channel, ev_sub_data);
939 break;
940 case FSE_AZ_EVQ_INIT_DONE_EV:
941 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
942 channel->channel, ev_sub_data);
943 break;
944 case FSE_AZ_SRM_UPD_DONE_EV:
945 EFX_TRACE(efx, "channel %d SRAM update done\n",
946 channel->channel);
947 break;
948 case FSE_AZ_WAKE_UP_EV:
949 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
950 channel->channel, ev_sub_data);
951 break;
952 case FSE_AZ_TIMER_EV:
953 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
954 channel->channel, ev_sub_data);
955 break;
956 case FSE_AA_RX_RECOVER_EV:
957 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
958 "Resetting.\n", channel->channel);
959 atomic_inc(&efx->rx_reset);
960 efx_schedule_reset(efx,
961 EFX_WORKAROUND_6555(efx) ?
962 RESET_TYPE_RX_RECOVERY :
963 RESET_TYPE_DISABLE);
964 break;
965 case FSE_BZ_RX_DSC_ERROR_EV:
966 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
967 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
968 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
969 break;
970 case FSE_BZ_TX_DSC_ERROR_EV:
971 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
972 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
973 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
974 break;
975 default:
976 EFX_TRACE(efx, "channel %d unknown driver event code %d "
977 "data %04x\n", channel->channel, ev_sub_code,
978 ev_sub_data);
979 break;
980 }
981 }
982
983 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
984 {
985 unsigned int read_ptr;
986 efx_qword_t event, *p_event;
987 int ev_code;
988 int rx_packets = 0;
989
990 read_ptr = channel->eventq_read_ptr;
991
992 do {
993 p_event = falcon_event(channel, read_ptr);
994 event = *p_event;
995
996 if (!falcon_event_present(&event))
997 /* End of events */
998 break;
999
1000 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1001 channel->channel, EFX_QWORD_VAL(event));
1002
1003 /* Clear this event by marking it all ones */
1004 EFX_SET_QWORD(*p_event);
1005
1006 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1007
1008 switch (ev_code) {
1009 case FSE_AZ_EV_CODE_RX_EV:
1010 falcon_handle_rx_event(channel, &event);
1011 ++rx_packets;
1012 break;
1013 case FSE_AZ_EV_CODE_TX_EV:
1014 falcon_handle_tx_event(channel, &event);
1015 break;
1016 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1017 channel->eventq_magic = EFX_QWORD_FIELD(
1018 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1019 EFX_LOG(channel->efx, "channel %d received generated "
1020 "event "EFX_QWORD_FMT"\n", channel->channel,
1021 EFX_QWORD_VAL(event));
1022 break;
1023 case FSE_AZ_EV_CODE_GLOBAL_EV:
1024 falcon_handle_global_event(channel, &event);
1025 break;
1026 case FSE_AZ_EV_CODE_DRIVER_EV:
1027 falcon_handle_driver_event(channel, &event);
1028 break;
1029 default:
1030 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1031 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1032 ev_code, EFX_QWORD_VAL(event));
1033 }
1034
1035 /* Increment read pointer */
1036 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1037
1038 } while (rx_packets < rx_quota);
1039
1040 channel->eventq_read_ptr = read_ptr;
1041 return rx_packets;
1042 }
1043
1044 static void falcon_push_irq_moderation(struct efx_channel *channel)
1045 {
1046 efx_dword_t timer_cmd;
1047 struct efx_nic *efx = channel->efx;
1048
1049 /* Set timer register */
1050 if (channel->irq_moderation) {
1051 EFX_POPULATE_DWORD_2(timer_cmd,
1052 FRF_AB_TC_TIMER_MODE,
1053 FFE_BB_TIMER_MODE_INT_HLDOFF,
1054 FRF_AB_TC_TIMER_VAL,
1055 channel->irq_moderation - 1);
1056 } else {
1057 EFX_POPULATE_DWORD_2(timer_cmd,
1058 FRF_AB_TC_TIMER_MODE,
1059 FFE_BB_TIMER_MODE_DIS,
1060 FRF_AB_TC_TIMER_VAL, 0);
1061 }
1062 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1063 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1064 channel->channel);
1065
1066 }
1067
1068 /* Allocate buffer table entries for event queue */
1069 int falcon_probe_eventq(struct efx_channel *channel)
1070 {
1071 struct efx_nic *efx = channel->efx;
1072 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1073 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1074 return falcon_alloc_special_buffer(efx, &channel->eventq,
1075 EFX_EVQ_SIZE * sizeof(efx_qword_t));
1076 }
1077
1078 void falcon_init_eventq(struct efx_channel *channel)
1079 {
1080 efx_oword_t evq_ptr;
1081 struct efx_nic *efx = channel->efx;
1082
1083 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1084 channel->channel, channel->eventq.index,
1085 channel->eventq.index + channel->eventq.entries - 1);
1086
1087 /* Pin event queue buffer */
1088 falcon_init_special_buffer(efx, &channel->eventq);
1089
1090 /* Fill event queue with all ones (i.e. empty events) */
1091 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1092
1093 /* Push event queue to card */
1094 EFX_POPULATE_OWORD_3(evq_ptr,
1095 FRF_AZ_EVQ_EN, 1,
1096 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1097 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1098 efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1099 channel->channel);
1100
1101 falcon_push_irq_moderation(channel);
1102 }
1103
1104 void falcon_fini_eventq(struct efx_channel *channel)
1105 {
1106 efx_oword_t eventq_ptr;
1107 struct efx_nic *efx = channel->efx;
1108
1109 /* Remove event queue from card */
1110 EFX_ZERO_OWORD(eventq_ptr);
1111 efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1112 channel->channel);
1113
1114 /* Unpin event queue */
1115 falcon_fini_special_buffer(efx, &channel->eventq);
1116 }
1117
1118 /* Free buffers backing event queue */
1119 void falcon_remove_eventq(struct efx_channel *channel)
1120 {
1121 falcon_free_special_buffer(channel->efx, &channel->eventq);
1122 }
1123
1124
1125 /* Generates a test event on the event queue. A subsequent call to
1126 * process_eventq() should pick up the event and place the value of
1127 * "magic" into channel->eventq_magic;
1128 */
1129 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1130 {
1131 efx_qword_t test_event;
1132
1133 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1134 FSE_AZ_EV_CODE_DRV_GEN_EV,
1135 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1136 falcon_generate_event(channel, &test_event);
1137 }
1138
1139 /**************************************************************************
1140 *
1141 * Flush handling
1142 *
1143 **************************************************************************/
1144
1145
1146 static void falcon_poll_flush_events(struct efx_nic *efx)
1147 {
1148 struct efx_channel *channel = &efx->channel[0];
1149 struct efx_tx_queue *tx_queue;
1150 struct efx_rx_queue *rx_queue;
1151 unsigned int read_ptr = channel->eventq_read_ptr;
1152 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1153
1154 do {
1155 efx_qword_t *event = falcon_event(channel, read_ptr);
1156 int ev_code, ev_sub_code, ev_queue;
1157 bool ev_failed;
1158
1159 if (!falcon_event_present(event))
1160 break;
1161
1162 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1163 ev_sub_code = EFX_QWORD_FIELD(*event,
1164 FSF_AZ_DRIVER_EV_SUBCODE);
1165 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1166 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1167 ev_queue = EFX_QWORD_FIELD(*event,
1168 FSF_AZ_DRIVER_EV_SUBDATA);
1169 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1170 tx_queue = efx->tx_queue + ev_queue;
1171 tx_queue->flushed = FLUSH_DONE;
1172 }
1173 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1174 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1175 ev_queue = EFX_QWORD_FIELD(
1176 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1177 ev_failed = EFX_QWORD_FIELD(
1178 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1179 if (ev_queue < efx->n_rx_queues) {
1180 rx_queue = efx->rx_queue + ev_queue;
1181 rx_queue->flushed =
1182 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1183 }
1184 }
1185
1186 /* We're about to destroy the queue anyway, so
1187 * it's ok to throw away every non-flush event */
1188 EFX_SET_QWORD(*event);
1189
1190 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1191 } while (read_ptr != end_ptr);
1192
1193 channel->eventq_read_ptr = read_ptr;
1194 }
1195
1196 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
1197
1198 static void falcon_prepare_flush(struct efx_nic *efx)
1199 {
1200 falcon_deconfigure_mac_wrapper(efx);
1201
1202 /* Wait for the tx and rx fifo's to get to the next packet boundary
1203 * (~1ms without back-pressure), then to drain the remainder of the
1204 * fifo's at data path speeds (negligible), with a healthy margin. */
1205 msleep(10);
1206 }
1207
1208 /* Handle tx and rx flushes at the same time, since they run in
1209 * parallel in the hardware and there's no reason for us to
1210 * serialise them */
1211 int falcon_flush_queues(struct efx_nic *efx)
1212 {
1213 struct efx_rx_queue *rx_queue;
1214 struct efx_tx_queue *tx_queue;
1215 int i, tx_pending, rx_pending;
1216
1217 /* If necessary prepare the hardware for flushing */
1218 efx->type->prepare_flush(efx);
1219
1220 /* Flush all tx queues in parallel */
1221 efx_for_each_tx_queue(tx_queue, efx)
1222 falcon_flush_tx_queue(tx_queue);
1223
1224 /* The hardware supports four concurrent rx flushes, each of which may
1225 * need to be retried if there is an outstanding descriptor fetch */
1226 for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1227 rx_pending = tx_pending = 0;
1228 efx_for_each_rx_queue(rx_queue, efx) {
1229 if (rx_queue->flushed == FLUSH_PENDING)
1230 ++rx_pending;
1231 }
1232 efx_for_each_rx_queue(rx_queue, efx) {
1233 if (rx_pending == FALCON_RX_FLUSH_COUNT)
1234 break;
1235 if (rx_queue->flushed == FLUSH_FAILED ||
1236 rx_queue->flushed == FLUSH_NONE) {
1237 falcon_flush_rx_queue(rx_queue);
1238 ++rx_pending;
1239 }
1240 }
1241 efx_for_each_tx_queue(tx_queue, efx) {
1242 if (tx_queue->flushed != FLUSH_DONE)
1243 ++tx_pending;
1244 }
1245
1246 if (rx_pending == 0 && tx_pending == 0)
1247 return 0;
1248
1249 msleep(FALCON_FLUSH_INTERVAL);
1250 falcon_poll_flush_events(efx);
1251 }
1252
1253 /* Mark the queues as all flushed. We're going to return failure
1254 * leading to a reset, or fake up success anyway */
1255 efx_for_each_tx_queue(tx_queue, efx) {
1256 if (tx_queue->flushed != FLUSH_DONE)
1257 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1258 tx_queue->queue);
1259 tx_queue->flushed = FLUSH_DONE;
1260 }
1261 efx_for_each_rx_queue(rx_queue, efx) {
1262 if (rx_queue->flushed != FLUSH_DONE)
1263 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1264 rx_queue->queue);
1265 rx_queue->flushed = FLUSH_DONE;
1266 }
1267
1268 if (EFX_WORKAROUND_7803(efx))
1269 return 0;
1270
1271 return -ETIMEDOUT;
1272 }
1273
1274 /**************************************************************************
1275 *
1276 * Falcon hardware interrupts
1277 * The hardware interrupt handler does very little work; all the event
1278 * queue processing is carried out by per-channel tasklets.
1279 *
1280 **************************************************************************/
1281
1282 /* Enable/disable/generate Falcon interrupts */
1283 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1284 int force)
1285 {
1286 efx_oword_t int_en_reg_ker;
1287
1288 EFX_POPULATE_OWORD_2(int_en_reg_ker,
1289 FRF_AZ_KER_INT_KER, force,
1290 FRF_AZ_DRV_INT_EN_KER, enabled);
1291 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1292 }
1293
1294 void falcon_enable_interrupts(struct efx_nic *efx)
1295 {
1296 struct efx_channel *channel;
1297
1298 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1299 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1300
1301 /* Enable interrupts */
1302 falcon_interrupts(efx, 1, 0);
1303
1304 /* Force processing of all the channels to get the EVQ RPTRs up to
1305 date */
1306 efx_for_each_channel(channel, efx)
1307 efx_schedule_channel(channel);
1308 }
1309
1310 void falcon_disable_interrupts(struct efx_nic *efx)
1311 {
1312 /* Disable interrupts */
1313 falcon_interrupts(efx, 0, 0);
1314 }
1315
1316 /* Generate a Falcon test interrupt
1317 * Interrupt must already have been enabled, otherwise nasty things
1318 * may happen.
1319 */
1320 void falcon_generate_interrupt(struct efx_nic *efx)
1321 {
1322 falcon_interrupts(efx, 1, 1);
1323 }
1324
1325 /* Acknowledge a legacy interrupt from Falcon
1326 *
1327 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1328 *
1329 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1330 * BIU. Interrupt acknowledge is read sensitive so must write instead
1331 * (then read to ensure the BIU collector is flushed)
1332 *
1333 * NB most hardware supports MSI interrupts
1334 */
1335 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1336 {
1337 efx_dword_t reg;
1338
1339 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1340 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1341 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1342 }
1343
1344 /* Process a fatal interrupt
1345 * Disable bus mastering ASAP and schedule a reset
1346 */
1347 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1348 {
1349 struct falcon_nic_data *nic_data = efx->nic_data;
1350 efx_oword_t *int_ker = efx->irq_status.addr;
1351 efx_oword_t fatal_intr;
1352 int error, mem_perr;
1353
1354 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1355 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1356
1357 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1358 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1359 EFX_OWORD_VAL(fatal_intr),
1360 error ? "disabling bus mastering" : "no recognised error");
1361 if (error == 0)
1362 goto out;
1363
1364 /* If this is a memory parity error dump which blocks are offending */
1365 mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1366 if (mem_perr) {
1367 efx_oword_t reg;
1368 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1369 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1370 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1371 }
1372
1373 /* Disable both devices */
1374 pci_clear_master(efx->pci_dev);
1375 if (FALCON_IS_DUAL_FUNC(efx))
1376 pci_clear_master(nic_data->pci_dev2);
1377 falcon_disable_interrupts(efx);
1378
1379 /* Count errors and reset or disable the NIC accordingly */
1380 if (efx->int_error_count == 0 ||
1381 time_after(jiffies, efx->int_error_expire)) {
1382 efx->int_error_count = 0;
1383 efx->int_error_expire =
1384 jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1385 }
1386 if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1387 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1388 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1389 } else {
1390 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1391 "NIC will be disabled\n");
1392 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1393 }
1394 out:
1395 return IRQ_HANDLED;
1396 }
1397
1398 /* Handle a legacy interrupt from Falcon
1399 * Acknowledges the interrupt and schedule event queue processing.
1400 */
1401 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1402 {
1403 struct efx_nic *efx = dev_id;
1404 efx_oword_t *int_ker = efx->irq_status.addr;
1405 irqreturn_t result = IRQ_NONE;
1406 struct efx_channel *channel;
1407 efx_dword_t reg;
1408 u32 queues;
1409 int syserr;
1410
1411 /* Read the ISR which also ACKs the interrupts */
1412 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1413 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1414
1415 /* Check to see if we have a serious error condition */
1416 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1417 if (unlikely(syserr))
1418 return falcon_fatal_interrupt(efx);
1419
1420 /* Schedule processing of any interrupting queues */
1421 efx_for_each_channel(channel, efx) {
1422 if ((queues & 1) ||
1423 falcon_event_present(
1424 falcon_event(channel, channel->eventq_read_ptr))) {
1425 efx_schedule_channel(channel);
1426 result = IRQ_HANDLED;
1427 }
1428 queues >>= 1;
1429 }
1430
1431 if (result == IRQ_HANDLED) {
1432 efx->last_irq_cpu = raw_smp_processor_id();
1433 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1434 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1435 }
1436
1437 return result;
1438 }
1439
1440
1441 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1442 {
1443 struct efx_nic *efx = dev_id;
1444 efx_oword_t *int_ker = efx->irq_status.addr;
1445 struct efx_channel *channel;
1446 int syserr;
1447 int queues;
1448
1449 /* Check to see if this is our interrupt. If it isn't, we
1450 * exit without having touched the hardware.
1451 */
1452 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1453 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1454 raw_smp_processor_id());
1455 return IRQ_NONE;
1456 }
1457 efx->last_irq_cpu = raw_smp_processor_id();
1458 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1459 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1460
1461 /* Check to see if we have a serious error condition */
1462 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1463 if (unlikely(syserr))
1464 return falcon_fatal_interrupt(efx);
1465
1466 /* Determine interrupting queues, clear interrupt status
1467 * register and acknowledge the device interrupt.
1468 */
1469 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
1470 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
1471 EFX_ZERO_OWORD(*int_ker);
1472 wmb(); /* Ensure the vector is cleared before interrupt ack */
1473 falcon_irq_ack_a1(efx);
1474
1475 /* Schedule processing of any interrupting queues */
1476 channel = &efx->channel[0];
1477 while (queues) {
1478 if (queues & 0x01)
1479 efx_schedule_channel(channel);
1480 channel++;
1481 queues >>= 1;
1482 }
1483
1484 return IRQ_HANDLED;
1485 }
1486
1487 /* Handle an MSI interrupt from Falcon
1488 *
1489 * Handle an MSI hardware interrupt. This routine schedules event
1490 * queue processing. No interrupt acknowledgement cycle is necessary.
1491 * Also, we never need to check that the interrupt is for us, since
1492 * MSI interrupts cannot be shared.
1493 */
1494 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1495 {
1496 struct efx_channel *channel = dev_id;
1497 struct efx_nic *efx = channel->efx;
1498 efx_oword_t *int_ker = efx->irq_status.addr;
1499 int syserr;
1500
1501 efx->last_irq_cpu = raw_smp_processor_id();
1502 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1503 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1504
1505 /* Check to see if we have a serious error condition */
1506 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1507 if (unlikely(syserr))
1508 return falcon_fatal_interrupt(efx);
1509
1510 /* Schedule processing of the channel */
1511 efx_schedule_channel(channel);
1512
1513 return IRQ_HANDLED;
1514 }
1515
1516
1517 /* Setup RSS indirection table.
1518 * This maps from the hash value of the packet to RXQ
1519 */
1520 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1521 {
1522 int i = 0;
1523 unsigned long offset;
1524 efx_dword_t dword;
1525
1526 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1527 return;
1528
1529 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1530 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1531 offset += 0x10) {
1532 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1533 i % efx->n_rx_queues);
1534 efx_writed(efx, &dword, offset);
1535 i++;
1536 }
1537 }
1538
1539 /* Hook interrupt handler(s)
1540 * Try MSI and then legacy interrupts.
1541 */
1542 int falcon_init_interrupt(struct efx_nic *efx)
1543 {
1544 struct efx_channel *channel;
1545 int rc;
1546
1547 if (!EFX_INT_MODE_USE_MSI(efx)) {
1548 irq_handler_t handler;
1549 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1550 handler = falcon_legacy_interrupt_b0;
1551 else
1552 handler = falcon_legacy_interrupt_a1;
1553
1554 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1555 efx->name, efx);
1556 if (rc) {
1557 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1558 efx->pci_dev->irq);
1559 goto fail1;
1560 }
1561 return 0;
1562 }
1563
1564 /* Hook MSI or MSI-X interrupt */
1565 efx_for_each_channel(channel, efx) {
1566 rc = request_irq(channel->irq, falcon_msi_interrupt,
1567 IRQF_PROBE_SHARED, /* Not shared */
1568 channel->name, channel);
1569 if (rc) {
1570 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1571 goto fail2;
1572 }
1573 }
1574
1575 return 0;
1576
1577 fail2:
1578 efx_for_each_channel(channel, efx)
1579 free_irq(channel->irq, channel);
1580 fail1:
1581 return rc;
1582 }
1583
1584 void falcon_fini_interrupt(struct efx_nic *efx)
1585 {
1586 struct efx_channel *channel;
1587 efx_oword_t reg;
1588
1589 /* Disable MSI/MSI-X interrupts */
1590 efx_for_each_channel(channel, efx) {
1591 if (channel->irq)
1592 free_irq(channel->irq, channel);
1593 }
1594
1595 /* ACK legacy interrupt */
1596 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1597 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1598 else
1599 falcon_irq_ack_a1(efx);
1600
1601 /* Disable legacy interrupt */
1602 if (efx->legacy_irq)
1603 free_irq(efx->legacy_irq, efx);
1604 }
1605
1606 /**************************************************************************
1607 *
1608 * EEPROM/flash
1609 *
1610 **************************************************************************
1611 */
1612
1613 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1614
1615 static int falcon_spi_poll(struct efx_nic *efx)
1616 {
1617 efx_oword_t reg;
1618 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1619 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1620 }
1621
1622 /* Wait for SPI command completion */
1623 static int falcon_spi_wait(struct efx_nic *efx)
1624 {
1625 /* Most commands will finish quickly, so we start polling at
1626 * very short intervals. Sometimes the command may have to
1627 * wait for VPD or expansion ROM access outside of our
1628 * control, so we allow up to 100 ms. */
1629 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1630 int i;
1631
1632 for (i = 0; i < 10; i++) {
1633 if (!falcon_spi_poll(efx))
1634 return 0;
1635 udelay(10);
1636 }
1637
1638 for (;;) {
1639 if (!falcon_spi_poll(efx))
1640 return 0;
1641 if (time_after_eq(jiffies, timeout)) {
1642 EFX_ERR(efx, "timed out waiting for SPI\n");
1643 return -ETIMEDOUT;
1644 }
1645 schedule_timeout_uninterruptible(1);
1646 }
1647 }
1648
1649 int falcon_spi_cmd(const struct efx_spi_device *spi,
1650 unsigned int command, int address,
1651 const void *in, void *out, size_t len)
1652 {
1653 struct efx_nic *efx = spi->efx;
1654 bool addressed = (address >= 0);
1655 bool reading = (out != NULL);
1656 efx_oword_t reg;
1657 int rc;
1658
1659 /* Input validation */
1660 if (len > FALCON_SPI_MAX_LEN)
1661 return -EINVAL;
1662 BUG_ON(!mutex_is_locked(&efx->spi_lock));
1663
1664 /* Check that previous command is not still running */
1665 rc = falcon_spi_poll(efx);
1666 if (rc)
1667 return rc;
1668
1669 /* Program address register, if we have an address */
1670 if (addressed) {
1671 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1672 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1673 }
1674
1675 /* Program data register, if we have data */
1676 if (in != NULL) {
1677 memcpy(&reg, in, len);
1678 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1679 }
1680
1681 /* Issue read/write command */
1682 EFX_POPULATE_OWORD_7(reg,
1683 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1684 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1685 FRF_AB_EE_SPI_HCMD_DABCNT, len,
1686 FRF_AB_EE_SPI_HCMD_READ, reading,
1687 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1688 FRF_AB_EE_SPI_HCMD_ADBCNT,
1689 (addressed ? spi->addr_len : 0),
1690 FRF_AB_EE_SPI_HCMD_ENC, command);
1691 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1692
1693 /* Wait for read/write to complete */
1694 rc = falcon_spi_wait(efx);
1695 if (rc)
1696 return rc;
1697
1698 /* Read data */
1699 if (out != NULL) {
1700 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1701 memcpy(out, &reg, len);
1702 }
1703
1704 return 0;
1705 }
1706
1707 static size_t
1708 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1709 {
1710 return min(FALCON_SPI_MAX_LEN,
1711 (spi->block_size - (start & (spi->block_size - 1))));
1712 }
1713
1714 static inline u8
1715 efx_spi_munge_command(const struct efx_spi_device *spi,
1716 const u8 command, const unsigned int address)
1717 {
1718 return command | (((address >> 8) & spi->munge_address) << 3);
1719 }
1720
1721 /* Wait up to 10 ms for buffered write completion */
1722 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1723 {
1724 struct efx_nic *efx = spi->efx;
1725 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1726 u8 status;
1727 int rc;
1728
1729 for (;;) {
1730 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1731 &status, sizeof(status));
1732 if (rc)
1733 return rc;
1734 if (!(status & SPI_STATUS_NRDY))
1735 return 0;
1736 if (time_after_eq(jiffies, timeout)) {
1737 EFX_ERR(efx, "SPI write timeout on device %d"
1738 " last status=0x%02x\n",
1739 spi->device_id, status);
1740 return -ETIMEDOUT;
1741 }
1742 schedule_timeout_uninterruptible(1);
1743 }
1744 }
1745
1746 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1747 size_t len, size_t *retlen, u8 *buffer)
1748 {
1749 size_t block_len, pos = 0;
1750 unsigned int command;
1751 int rc = 0;
1752
1753 while (pos < len) {
1754 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1755
1756 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1757 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1758 buffer + pos, block_len);
1759 if (rc)
1760 break;
1761 pos += block_len;
1762
1763 /* Avoid locking up the system */
1764 cond_resched();
1765 if (signal_pending(current)) {
1766 rc = -EINTR;
1767 break;
1768 }
1769 }
1770
1771 if (retlen)
1772 *retlen = pos;
1773 return rc;
1774 }
1775
1776 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1777 size_t len, size_t *retlen, const u8 *buffer)
1778 {
1779 u8 verify_buffer[FALCON_SPI_MAX_LEN];
1780 size_t block_len, pos = 0;
1781 unsigned int command;
1782 int rc = 0;
1783
1784 while (pos < len) {
1785 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1786 if (rc)
1787 break;
1788
1789 block_len = min(len - pos,
1790 falcon_spi_write_limit(spi, start + pos));
1791 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1792 rc = falcon_spi_cmd(spi, command, start + pos,
1793 buffer + pos, NULL, block_len);
1794 if (rc)
1795 break;
1796
1797 rc = falcon_spi_wait_write(spi);
1798 if (rc)
1799 break;
1800
1801 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1802 rc = falcon_spi_cmd(spi, command, start + pos,
1803 NULL, verify_buffer, block_len);
1804 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1805 rc = -EIO;
1806 break;
1807 }
1808
1809 pos += block_len;
1810
1811 /* Avoid locking up the system */
1812 cond_resched();
1813 if (signal_pending(current)) {
1814 rc = -EINTR;
1815 break;
1816 }
1817 }
1818
1819 if (retlen)
1820 *retlen = pos;
1821 return rc;
1822 }
1823
1824 /**************************************************************************
1825 *
1826 * MAC wrapper
1827 *
1828 **************************************************************************
1829 */
1830
1831 static void falcon_push_multicast_hash(struct efx_nic *efx)
1832 {
1833 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1834
1835 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1836
1837 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1838 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1839 }
1840
1841 static void falcon_reset_macs(struct efx_nic *efx)
1842 {
1843 struct falcon_nic_data *nic_data = efx->nic_data;
1844 efx_oword_t reg, mac_ctrl;
1845 int count;
1846
1847 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1848 /* It's not safe to use GLB_CTL_REG to reset the
1849 * macs, so instead use the internal MAC resets
1850 */
1851 if (!EFX_IS10G(efx)) {
1852 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1853 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1854 udelay(1000);
1855
1856 EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1857 efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1858 udelay(1000);
1859 return;
1860 } else {
1861 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1862 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1863
1864 for (count = 0; count < 10000; count++) {
1865 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1866 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1867 0)
1868 return;
1869 udelay(10);
1870 }
1871
1872 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1873 }
1874 }
1875
1876 /* Mac stats will fail whist the TX fifo is draining */
1877 WARN_ON(nic_data->stats_disable_count == 0);
1878
1879 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1880 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1881 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1882
1883 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1884 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1885 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1886 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1887 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1888
1889 count = 0;
1890 while (1) {
1891 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1892 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1893 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1894 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1895 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1896 count);
1897 break;
1898 }
1899 if (count > 20) {
1900 EFX_ERR(efx, "MAC reset failed\n");
1901 break;
1902 }
1903 count++;
1904 udelay(10);
1905 }
1906
1907 /* Ensure the correct MAC is selected before statistics
1908 * are re-enabled by the caller */
1909 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1910 }
1911
1912 void falcon_drain_tx_fifo(struct efx_nic *efx)
1913 {
1914 efx_oword_t reg;
1915
1916 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1917 (efx->loopback_mode != LOOPBACK_NONE))
1918 return;
1919
1920 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1921 /* There is no point in draining more than once */
1922 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1923 return;
1924
1925 falcon_reset_macs(efx);
1926 }
1927
1928 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1929 {
1930 efx_oword_t reg;
1931
1932 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1933 return;
1934
1935 /* Isolate the MAC -> RX */
1936 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1937 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1938 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1939
1940 /* Isolate TX -> MAC */
1941 falcon_drain_tx_fifo(efx);
1942 }
1943
1944 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1945 {
1946 struct efx_link_state *link_state = &efx->link_state;
1947 efx_oword_t reg;
1948 int link_speed;
1949
1950 switch (link_state->speed) {
1951 case 10000: link_speed = 3; break;
1952 case 1000: link_speed = 2; break;
1953 case 100: link_speed = 1; break;
1954 default: link_speed = 0; break;
1955 }
1956 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1957 * as advertised. Disable to ensure packets are not
1958 * indefinitely held and TX queue can be flushed at any point
1959 * while the link is down. */
1960 EFX_POPULATE_OWORD_5(reg,
1961 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1962 FRF_AB_MAC_BCAD_ACPT, 1,
1963 FRF_AB_MAC_UC_PROM, efx->promiscuous,
1964 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1965 FRF_AB_MAC_SPEED, link_speed);
1966 /* On B0, MAC backpressure can be disabled and packets get
1967 * discarded. */
1968 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1969 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1970 !link_state->up);
1971 }
1972
1973 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1974
1975 /* Restore the multicast hash registers. */
1976 falcon_push_multicast_hash(efx);
1977
1978 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1979 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1980 * initialisation but it may read back as 0) */
1981 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1982 /* Unisolate the MAC -> RX */
1983 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1984 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1985 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1986 }
1987
1988 static void falcon_stats_request(struct efx_nic *efx)
1989 {
1990 struct falcon_nic_data *nic_data = efx->nic_data;
1991 efx_oword_t reg;
1992
1993 WARN_ON(nic_data->stats_pending);
1994 WARN_ON(nic_data->stats_disable_count);
1995
1996 if (nic_data->stats_dma_done == NULL)
1997 return; /* no mac selected */
1998
1999 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
2000 nic_data->stats_pending = true;
2001 wmb(); /* ensure done flag is clear */
2002
2003 /* Initiate DMA transfer of stats */
2004 EFX_POPULATE_OWORD_2(reg,
2005 FRF_AB_MAC_STAT_DMA_CMD, 1,
2006 FRF_AB_MAC_STAT_DMA_ADR,
2007 efx->stats_buffer.dma_addr);
2008 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2009
2010 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
2011 }
2012
2013 static void falcon_stats_complete(struct efx_nic *efx)
2014 {
2015 struct falcon_nic_data *nic_data = efx->nic_data;
2016
2017 if (!nic_data->stats_pending)
2018 return;
2019
2020 nic_data->stats_pending = 0;
2021 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
2022 rmb(); /* read the done flag before the stats */
2023 efx->mac_op->update_stats(efx);
2024 } else {
2025 EFX_ERR(efx, "timed out waiting for statistics\n");
2026 }
2027 }
2028
2029 static void falcon_stats_timer_func(unsigned long context)
2030 {
2031 struct efx_nic *efx = (struct efx_nic *)context;
2032 struct falcon_nic_data *nic_data = efx->nic_data;
2033
2034 spin_lock(&efx->stats_lock);
2035
2036 falcon_stats_complete(efx);
2037 if (nic_data->stats_disable_count == 0)
2038 falcon_stats_request(efx);
2039
2040 spin_unlock(&efx->stats_lock);
2041 }
2042
2043 static void falcon_switch_mac(struct efx_nic *efx);
2044
2045 static bool falcon_loopback_link_poll(struct efx_nic *efx)
2046 {
2047 struct efx_link_state old_state = efx->link_state;
2048
2049 WARN_ON(!mutex_is_locked(&efx->mac_lock));
2050 WARN_ON(!LOOPBACK_INTERNAL(efx));
2051
2052 efx->link_state.fd = true;
2053 efx->link_state.fc = efx->wanted_fc;
2054 efx->link_state.up = true;
2055
2056 if (efx->loopback_mode == LOOPBACK_GMAC)
2057 efx->link_state.speed = 1000;
2058 else
2059 efx->link_state.speed = 10000;
2060
2061 return !efx_link_state_equal(&efx->link_state, &old_state);
2062 }
2063
2064 static int falcon_reconfigure_port(struct efx_nic *efx)
2065 {
2066 int rc;
2067
2068 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
2069
2070 /* Poll the PHY link state *before* reconfiguring it. This means we
2071 * will pick up the correct speed (in loopback) to select the correct
2072 * MAC.
2073 */
2074 if (LOOPBACK_INTERNAL(efx))
2075 falcon_loopback_link_poll(efx);
2076 else
2077 efx->phy_op->poll(efx);
2078
2079 falcon_stop_nic_stats(efx);
2080 falcon_deconfigure_mac_wrapper(efx);
2081
2082 falcon_switch_mac(efx);
2083
2084 efx->phy_op->reconfigure(efx);
2085 rc = efx->mac_op->reconfigure(efx);
2086 BUG_ON(rc);
2087
2088 falcon_start_nic_stats(efx);
2089
2090 /* Synchronise efx->link_state with the kernel */
2091 efx_link_status_changed(efx);
2092
2093 return 0;
2094 }
2095
2096 /**************************************************************************
2097 *
2098 * PHY access via GMII
2099 *
2100 **************************************************************************
2101 */
2102
2103 /* Wait for GMII access to complete */
2104 static int falcon_gmii_wait(struct efx_nic *efx)
2105 {
2106 efx_oword_t md_stat;
2107 int count;
2108
2109 /* wait upto 50ms - taken max from datasheet */
2110 for (count = 0; count < 5000; count++) {
2111 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2112 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2113 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2114 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2115 EFX_ERR(efx, "error from GMII access "
2116 EFX_OWORD_FMT"\n",
2117 EFX_OWORD_VAL(md_stat));
2118 return -EIO;
2119 }
2120 return 0;
2121 }
2122 udelay(10);
2123 }
2124 EFX_ERR(efx, "timed out waiting for GMII\n");
2125 return -ETIMEDOUT;
2126 }
2127
2128 /* Write an MDIO register of a PHY connected to Falcon. */
2129 static int falcon_mdio_write(struct net_device *net_dev,
2130 int prtad, int devad, u16 addr, u16 value)
2131 {
2132 struct efx_nic *efx = netdev_priv(net_dev);
2133 efx_oword_t reg;
2134 int rc;
2135
2136 EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2137 prtad, devad, addr, value);
2138
2139 mutex_lock(&efx->mdio_lock);
2140
2141 /* Check MDIO not currently being accessed */
2142 rc = falcon_gmii_wait(efx);
2143 if (rc)
2144 goto out;
2145
2146 /* Write the address/ID register */
2147 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2148 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2149
2150 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2151 FRF_AB_MD_DEV_ADR, devad);
2152 efx_writeo(efx, &reg, FR_AB_MD_ID);
2153
2154 /* Write data */
2155 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2156 efx_writeo(efx, &reg, FR_AB_MD_TXD);
2157
2158 EFX_POPULATE_OWORD_2(reg,
2159 FRF_AB_MD_WRC, 1,
2160 FRF_AB_MD_GC, 0);
2161 efx_writeo(efx, &reg, FR_AB_MD_CS);
2162
2163 /* Wait for data to be written */
2164 rc = falcon_gmii_wait(efx);
2165 if (rc) {
2166 /* Abort the write operation */
2167 EFX_POPULATE_OWORD_2(reg,
2168 FRF_AB_MD_WRC, 0,
2169 FRF_AB_MD_GC, 1);
2170 efx_writeo(efx, &reg, FR_AB_MD_CS);
2171 udelay(10);
2172 }
2173
2174 out:
2175 mutex_unlock(&efx->mdio_lock);
2176 return rc;
2177 }
2178
2179 /* Read an MDIO register of a PHY connected to Falcon. */
2180 static int falcon_mdio_read(struct net_device *net_dev,
2181 int prtad, int devad, u16 addr)
2182 {
2183 struct efx_nic *efx = netdev_priv(net_dev);
2184 efx_oword_t reg;
2185 int rc;
2186
2187 mutex_lock(&efx->mdio_lock);
2188
2189 /* Check MDIO not currently being accessed */
2190 rc = falcon_gmii_wait(efx);
2191 if (rc)
2192 goto out;
2193
2194 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2195 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2196
2197 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2198 FRF_AB_MD_DEV_ADR, devad);
2199 efx_writeo(efx, &reg, FR_AB_MD_ID);
2200
2201 /* Request data to be read */
2202 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2203 efx_writeo(efx, &reg, FR_AB_MD_CS);
2204
2205 /* Wait for data to become available */
2206 rc = falcon_gmii_wait(efx);
2207 if (rc == 0) {
2208 efx_reado(efx, &reg, FR_AB_MD_RXD);
2209 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2210 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2211 prtad, devad, addr, rc);
2212 } else {
2213 /* Abort the read operation */
2214 EFX_POPULATE_OWORD_2(reg,
2215 FRF_AB_MD_RIC, 0,
2216 FRF_AB_MD_GC, 1);
2217 efx_writeo(efx, &reg, FR_AB_MD_CS);
2218
2219 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2220 prtad, devad, addr, rc);
2221 }
2222
2223 out:
2224 mutex_unlock(&efx->mdio_lock);
2225 return rc;
2226 }
2227
2228 static void falcon_clock_mac(struct efx_nic *efx)
2229 {
2230 unsigned strap_val;
2231 efx_oword_t nic_stat;
2232
2233 /* Configure the NIC generated MAC clock correctly */
2234 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2235 strap_val = EFX_IS10G(efx) ? 5 : 3;
2236 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2237 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2238 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2239 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2240 } else {
2241 /* Falcon A1 does not support 1G/10G speed switching
2242 * and must not be used with a PHY that does. */
2243 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2244 strap_val);
2245 }
2246 }
2247
2248 static void falcon_switch_mac(struct efx_nic *efx)
2249 {
2250 struct efx_mac_operations *old_mac_op = efx->mac_op;
2251 struct falcon_nic_data *nic_data = efx->nic_data;
2252 unsigned int stats_done_offset;
2253
2254 WARN_ON(!mutex_is_locked(&efx->mac_lock));
2255 WARN_ON(nic_data->stats_disable_count == 0);
2256
2257 efx->mac_op = (EFX_IS10G(efx) ?
2258 &falcon_xmac_operations : &falcon_gmac_operations);
2259
2260 if (EFX_IS10G(efx))
2261 stats_done_offset = XgDmaDone_offset;
2262 else
2263 stats_done_offset = GDmaDone_offset;
2264 nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
2265
2266 if (old_mac_op == efx->mac_op)
2267 return;
2268
2269 falcon_clock_mac(efx);
2270
2271 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2272 /* Not all macs support a mac-level link state */
2273 efx->xmac_poll_required = false;
2274 falcon_reset_macs(efx);
2275 }
2276
2277 /* This call is responsible for hooking in the MAC and PHY operations */
2278 static int falcon_probe_port(struct efx_nic *efx)
2279 {
2280 int rc;
2281
2282 switch (efx->phy_type) {
2283 case PHY_TYPE_SFX7101:
2284 efx->phy_op = &falcon_sfx7101_phy_ops;
2285 break;
2286 case PHY_TYPE_SFT9001A:
2287 case PHY_TYPE_SFT9001B:
2288 efx->phy_op = &falcon_sft9001_phy_ops;
2289 break;
2290 case PHY_TYPE_QT2022C2:
2291 case PHY_TYPE_QT2025C:
2292 efx->phy_op = &falcon_qt202x_phy_ops;
2293 break;
2294 default:
2295 EFX_ERR(efx, "Unknown PHY type %d\n",
2296 efx->phy_type);
2297 return -ENODEV;
2298 }
2299
2300 if (efx->phy_op->macs & EFX_XMAC)
2301 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2302 (1 << LOOPBACK_XGXS) |
2303 (1 << LOOPBACK_XAUI));
2304 if (efx->phy_op->macs & EFX_GMAC)
2305 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2306 efx->loopback_modes |= efx->phy_op->loopbacks;
2307
2308 /* Set up MDIO structure for PHY */
2309 efx->mdio.mmds = efx->phy_op->mmds;
2310 efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2311 efx->mdio.mdio_read = falcon_mdio_read;
2312 efx->mdio.mdio_write = falcon_mdio_write;
2313
2314 /* Initial assumption */
2315 efx->link_state.speed = 10000;
2316 efx->link_state.fd = true;
2317
2318 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2319 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
2320 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2321 else
2322 efx->wanted_fc = EFX_FC_RX;
2323
2324 /* Allocate buffer for stats */
2325 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2326 FALCON_MAC_STATS_SIZE);
2327 if (rc)
2328 return rc;
2329 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2330 (u64)efx->stats_buffer.dma_addr,
2331 efx->stats_buffer.addr,
2332 (u64)virt_to_phys(efx->stats_buffer.addr));
2333
2334 return 0;
2335 }
2336
2337 static void falcon_remove_port(struct efx_nic *efx)
2338 {
2339 falcon_free_buffer(efx, &efx->stats_buffer);
2340 }
2341
2342 /**************************************************************************
2343 *
2344 * Falcon test code
2345 *
2346 **************************************************************************/
2347
2348 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2349 {
2350 struct falcon_nvconfig *nvconfig;
2351 struct efx_spi_device *spi;
2352 void *region;
2353 int rc, magic_num, struct_ver;
2354 __le16 *word, *limit;
2355 u32 csum;
2356
2357 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2358 if (!spi)
2359 return -EINVAL;
2360
2361 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2362 if (!region)
2363 return -ENOMEM;
2364 nvconfig = region + FALCON_NVCONFIG_OFFSET;
2365
2366 mutex_lock(&efx->spi_lock);
2367 rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2368 mutex_unlock(&efx->spi_lock);
2369 if (rc) {
2370 EFX_ERR(efx, "Failed to read %s\n",
2371 efx->spi_flash ? "flash" : "EEPROM");
2372 rc = -EIO;
2373 goto out;
2374 }
2375
2376 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2377 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2378
2379 rc = -EINVAL;
2380 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2381 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2382 goto out;
2383 }
2384 if (struct_ver < 2) {
2385 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2386 goto out;
2387 } else if (struct_ver < 4) {
2388 word = &nvconfig->board_magic_num;
2389 limit = (__le16 *) (nvconfig + 1);
2390 } else {
2391 word = region;
2392 limit = region + FALCON_NVCONFIG_END;
2393 }
2394 for (csum = 0; word < limit; ++word)
2395 csum += le16_to_cpu(*word);
2396
2397 if (~csum & 0xffff) {
2398 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2399 goto out;
2400 }
2401
2402 rc = 0;
2403 if (nvconfig_out)
2404 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2405
2406 out:
2407 kfree(region);
2408 return rc;
2409 }
2410
2411 /* Registers tested in the falcon register test */
2412 static struct {
2413 unsigned address;
2414 efx_oword_t mask;
2415 } efx_test_registers[] = {
2416 { FR_AZ_ADR_REGION,
2417 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2418 { FR_AZ_RX_CFG,
2419 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2420 { FR_AZ_TX_CFG,
2421 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2422 { FR_AZ_TX_RESERVED,
2423 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2424 { FR_AB_MAC_CTRL,
2425 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2426 { FR_AZ_SRM_TX_DC_CFG,
2427 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2428 { FR_AZ_RX_DC_CFG,
2429 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2430 { FR_AZ_RX_DC_PF_WM,
2431 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2432 { FR_BZ_DP_CTRL,
2433 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2434 { FR_AB_GM_CFG2,
2435 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2436 { FR_AB_GMF_CFG0,
2437 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2438 { FR_AB_XM_GLB_CFG,
2439 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2440 { FR_AB_XM_TX_CFG,
2441 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2442 { FR_AB_XM_RX_CFG,
2443 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2444 { FR_AB_XM_RX_PARAM,
2445 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2446 { FR_AB_XM_FC,
2447 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2448 { FR_AB_XM_ADR_LO,
2449 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2450 { FR_AB_XX_SD_CTL,
2451 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2452 };
2453
2454 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2455 const efx_oword_t *mask)
2456 {
2457 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2458 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2459 }
2460
2461 int falcon_test_registers(struct efx_nic *efx)
2462 {
2463 unsigned address = 0, i, j;
2464 efx_oword_t mask, imask, original, reg, buf;
2465
2466 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2467 WARN_ON(!LOOPBACK_INTERNAL(efx));
2468
2469 for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2470 address = efx_test_registers[i].address;
2471 mask = imask = efx_test_registers[i].mask;
2472 EFX_INVERT_OWORD(imask);
2473
2474 efx_reado(efx, &original, address);
2475
2476 /* bit sweep on and off */
2477 for (j = 0; j < 128; j++) {
2478 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2479 continue;
2480
2481 /* Test this testable bit can be set in isolation */
2482 EFX_AND_OWORD(reg, original, mask);
2483 EFX_SET_OWORD32(reg, j, j, 1);
2484
2485 efx_writeo(efx, &reg, address);
2486 efx_reado(efx, &buf, address);
2487
2488 if (efx_masked_compare_oword(&reg, &buf, &mask))
2489 goto fail;
2490
2491 /* Test this testable bit can be cleared in isolation */
2492 EFX_OR_OWORD(reg, original, mask);
2493 EFX_SET_OWORD32(reg, j, j, 0);
2494
2495 efx_writeo(efx, &reg, address);
2496 efx_reado(efx, &buf, address);
2497
2498 if (efx_masked_compare_oword(&reg, &buf, &mask))
2499 goto fail;
2500 }
2501
2502 efx_writeo(efx, &original, address);
2503 }
2504
2505 return 0;
2506
2507 fail:
2508 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2509 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2510 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2511 return -EIO;
2512 }
2513
2514 /**************************************************************************
2515 *
2516 * Device reset
2517 *
2518 **************************************************************************
2519 */
2520
2521 /* Resets NIC to known state. This routine must be called in process
2522 * context and is allowed to sleep. */
2523 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2524 {
2525 struct falcon_nic_data *nic_data = efx->nic_data;
2526 efx_oword_t glb_ctl_reg_ker;
2527 int rc;
2528
2529 EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2530
2531 /* Initiate device reset */
2532 if (method == RESET_TYPE_WORLD) {
2533 rc = pci_save_state(efx->pci_dev);
2534 if (rc) {
2535 EFX_ERR(efx, "failed to backup PCI state of primary "
2536 "function prior to hardware reset\n");
2537 goto fail1;
2538 }
2539 if (FALCON_IS_DUAL_FUNC(efx)) {
2540 rc = pci_save_state(nic_data->pci_dev2);
2541 if (rc) {
2542 EFX_ERR(efx, "failed to backup PCI state of "
2543 "secondary function prior to "
2544 "hardware reset\n");
2545 goto fail2;
2546 }
2547 }
2548
2549 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2550 FRF_AB_EXT_PHY_RST_DUR,
2551 FFE_AB_EXT_PHY_RST_DUR_10240US,
2552 FRF_AB_SWRST, 1);
2553 } else {
2554 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2555 /* exclude PHY from "invisible" reset */
2556 FRF_AB_EXT_PHY_RST_CTL,
2557 method == RESET_TYPE_INVISIBLE,
2558 /* exclude EEPROM/flash and PCIe */
2559 FRF_AB_PCIE_CORE_RST_CTL, 1,
2560 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2561 FRF_AB_PCIE_SD_RST_CTL, 1,
2562 FRF_AB_EE_RST_CTL, 1,
2563 FRF_AB_EXT_PHY_RST_DUR,
2564 FFE_AB_EXT_PHY_RST_DUR_10240US,
2565 FRF_AB_SWRST, 1);
2566 }
2567 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2568
2569 EFX_LOG(efx, "waiting for hardware reset\n");
2570 schedule_timeout_uninterruptible(HZ / 20);
2571
2572 /* Restore PCI configuration if needed */
2573 if (method == RESET_TYPE_WORLD) {
2574 if (FALCON_IS_DUAL_FUNC(efx)) {
2575 rc = pci_restore_state(nic_data->pci_dev2);
2576 if (rc) {
2577 EFX_ERR(efx, "failed to restore PCI config for "
2578 "the secondary function\n");
2579 goto fail3;
2580 }
2581 }
2582 rc = pci_restore_state(efx->pci_dev);
2583 if (rc) {
2584 EFX_ERR(efx, "failed to restore PCI config for the "
2585 "primary function\n");
2586 goto fail4;
2587 }
2588 EFX_LOG(efx, "successfully restored PCI config\n");
2589 }
2590
2591 /* Assert that reset complete */
2592 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2593 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2594 rc = -ETIMEDOUT;
2595 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2596 goto fail5;
2597 }
2598 EFX_LOG(efx, "hardware reset complete\n");
2599
2600 return 0;
2601
2602 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2603 fail2:
2604 fail3:
2605 pci_restore_state(efx->pci_dev);
2606 fail1:
2607 fail4:
2608 fail5:
2609 return rc;
2610 }
2611
2612 static void falcon_monitor(struct efx_nic *efx)
2613 {
2614 bool link_changed;
2615 int rc;
2616
2617 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2618
2619 rc = falcon_board(efx)->type->monitor(efx);
2620 if (rc) {
2621 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
2622 (rc == -ERANGE) ? "reported fault" : "failed");
2623 efx->phy_mode |= PHY_MODE_LOW_POWER;
2624 rc = __efx_reconfigure_port(efx);
2625 WARN_ON(rc);
2626 }
2627
2628 if (LOOPBACK_INTERNAL(efx))
2629 link_changed = falcon_loopback_link_poll(efx);
2630 else
2631 link_changed = efx->phy_op->poll(efx);
2632
2633 if (link_changed) {
2634 falcon_stop_nic_stats(efx);
2635 falcon_deconfigure_mac_wrapper(efx);
2636
2637 falcon_switch_mac(efx);
2638 rc = efx->mac_op->reconfigure(efx);
2639 BUG_ON(rc);
2640
2641 falcon_start_nic_stats(efx);
2642
2643 efx_link_status_changed(efx);
2644 }
2645
2646 if (EFX_IS10G(efx))
2647 falcon_poll_xmac(efx);
2648 }
2649
2650 /* Zeroes out the SRAM contents. This routine must be called in
2651 * process context and is allowed to sleep.
2652 */
2653 static int falcon_reset_sram(struct efx_nic *efx)
2654 {
2655 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2656 int count;
2657
2658 /* Set the SRAM wake/sleep GPIO appropriately. */
2659 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2660 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2661 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2662 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2663
2664 /* Initiate SRAM reset */
2665 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2666 FRF_AZ_SRM_INIT_EN, 1,
2667 FRF_AZ_SRM_NB_SZ, 0);
2668 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2669
2670 /* Wait for SRAM reset to complete */
2671 count = 0;
2672 do {
2673 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2674
2675 /* SRAM reset is slow; expect around 16ms */
2676 schedule_timeout_uninterruptible(HZ / 50);
2677
2678 /* Check for reset complete */
2679 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2680 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2681 EFX_LOG(efx, "SRAM reset complete\n");
2682
2683 return 0;
2684 }
2685 } while (++count < 20); /* wait upto 0.4 sec */
2686
2687 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2688 return -ETIMEDOUT;
2689 }
2690
2691 static int falcon_spi_device_init(struct efx_nic *efx,
2692 struct efx_spi_device **spi_device_ret,
2693 unsigned int device_id, u32 device_type)
2694 {
2695 struct efx_spi_device *spi_device;
2696
2697 if (device_type != 0) {
2698 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2699 if (!spi_device)
2700 return -ENOMEM;
2701 spi_device->device_id = device_id;
2702 spi_device->size =
2703 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2704 spi_device->addr_len =
2705 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2706 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2707 spi_device->addr_len == 1);
2708 spi_device->erase_command =
2709 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2710 spi_device->erase_size =
2711 1 << SPI_DEV_TYPE_FIELD(device_type,
2712 SPI_DEV_TYPE_ERASE_SIZE);
2713 spi_device->block_size =
2714 1 << SPI_DEV_TYPE_FIELD(device_type,
2715 SPI_DEV_TYPE_BLOCK_SIZE);
2716
2717 spi_device->efx = efx;
2718 } else {
2719 spi_device = NULL;
2720 }
2721
2722 kfree(*spi_device_ret);
2723 *spi_device_ret = spi_device;
2724 return 0;
2725 }
2726
2727
2728 static void falcon_remove_spi_devices(struct efx_nic *efx)
2729 {
2730 kfree(efx->spi_eeprom);
2731 efx->spi_eeprom = NULL;
2732 kfree(efx->spi_flash);
2733 efx->spi_flash = NULL;
2734 }
2735
2736 /* Extract non-volatile configuration */
2737 static int falcon_probe_nvconfig(struct efx_nic *efx)
2738 {
2739 struct falcon_nvconfig *nvconfig;
2740 int board_rev;
2741 int rc;
2742
2743 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2744 if (!nvconfig)
2745 return -ENOMEM;
2746
2747 rc = falcon_read_nvram(efx, nvconfig);
2748 if (rc == -EINVAL) {
2749 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2750 efx->phy_type = PHY_TYPE_NONE;
2751 efx->mdio.prtad = MDIO_PRTAD_NONE;
2752 board_rev = 0;
2753 rc = 0;
2754 } else if (rc) {
2755 goto fail1;
2756 } else {
2757 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2758 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2759
2760 efx->phy_type = v2->port0_phy_type;
2761 efx->mdio.prtad = v2->port0_phy_addr;
2762 board_rev = le16_to_cpu(v2->board_revision);
2763
2764 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2765 rc = falcon_spi_device_init(
2766 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2767 le32_to_cpu(v3->spi_device_type
2768 [FFE_AB_SPI_DEVICE_FLASH]));
2769 if (rc)
2770 goto fail2;
2771 rc = falcon_spi_device_init(
2772 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2773 le32_to_cpu(v3->spi_device_type
2774 [FFE_AB_SPI_DEVICE_EEPROM]));
2775 if (rc)
2776 goto fail2;
2777 }
2778 }
2779
2780 /* Read the MAC addresses */
2781 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2782
2783 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2784
2785 falcon_probe_board(efx, board_rev);
2786
2787 kfree(nvconfig);
2788 return 0;
2789
2790 fail2:
2791 falcon_remove_spi_devices(efx);
2792 fail1:
2793 kfree(nvconfig);
2794 return rc;
2795 }
2796
2797 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2798 * count, port speed). Set workaround and feature flags accordingly.
2799 */
2800 static int falcon_probe_nic_variant(struct efx_nic *efx)
2801 {
2802 efx_oword_t altera_build;
2803 efx_oword_t nic_stat;
2804
2805 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2806 if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2807 EFX_ERR(efx, "Falcon FPGA not supported\n");
2808 return -ENODEV;
2809 }
2810
2811 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2812
2813 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2814 u8 pci_rev = efx->pci_dev->revision;
2815
2816 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2817 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2818 return -ENODEV;
2819 }
2820 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2821 EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
2822 return -ENODEV;
2823 }
2824 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2825 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2826 return -ENODEV;
2827 }
2828 }
2829
2830 return 0;
2831 }
2832
2833 /* Probe all SPI devices on the NIC */
2834 static void falcon_probe_spi_devices(struct efx_nic *efx)
2835 {
2836 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2837 int boot_dev;
2838
2839 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2840 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2841 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2842
2843 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2844 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2845 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2846 EFX_LOG(efx, "Booted from %s\n",
2847 boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2848 } else {
2849 /* Disable VPD and set clock dividers to safe
2850 * values for initial programming. */
2851 boot_dev = -1;
2852 EFX_LOG(efx, "Booted from internal ASIC settings;"
2853 " setting SPI config\n");
2854 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2855 /* 125 MHz / 7 ~= 20 MHz */
2856 FRF_AB_EE_SF_CLOCK_DIV, 7,
2857 /* 125 MHz / 63 ~= 2 MHz */
2858 FRF_AB_EE_EE_CLOCK_DIV, 63);
2859 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2860 }
2861
2862 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2863 falcon_spi_device_init(efx, &efx->spi_flash,
2864 FFE_AB_SPI_DEVICE_FLASH,
2865 default_flash_type);
2866 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2867 falcon_spi_device_init(efx, &efx->spi_eeprom,
2868 FFE_AB_SPI_DEVICE_EEPROM,
2869 large_eeprom_type);
2870 }
2871
2872 static int falcon_probe_nic(struct efx_nic *efx)
2873 {
2874 struct falcon_nic_data *nic_data;
2875 struct falcon_board *board;
2876 int rc;
2877
2878 /* Allocate storage for hardware specific data */
2879 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2880 if (!nic_data)
2881 return -ENOMEM;
2882 efx->nic_data = nic_data;
2883
2884 /* Determine number of ports etc. */
2885 rc = falcon_probe_nic_variant(efx);
2886 if (rc)
2887 goto fail1;
2888
2889 /* Probe secondary function if expected */
2890 if (FALCON_IS_DUAL_FUNC(efx)) {
2891 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2892
2893 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2894 dev))) {
2895 if (dev->bus == efx->pci_dev->bus &&
2896 dev->devfn == efx->pci_dev->devfn + 1) {
2897 nic_data->pci_dev2 = dev;
2898 break;
2899 }
2900 }
2901 if (!nic_data->pci_dev2) {
2902 EFX_ERR(efx, "failed to find secondary function\n");
2903 rc = -ENODEV;
2904 goto fail2;
2905 }
2906 }
2907
2908 /* Now we can reset the NIC */
2909 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2910 if (rc) {
2911 EFX_ERR(efx, "failed to reset NIC\n");
2912 goto fail3;
2913 }
2914
2915 /* Allocate memory for INT_KER */
2916 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2917 if (rc)
2918 goto fail4;
2919 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2920
2921 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2922 (u64)efx->irq_status.dma_addr,
2923 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2924
2925 falcon_probe_spi_devices(efx);
2926
2927 /* Read in the non-volatile configuration */
2928 rc = falcon_probe_nvconfig(efx);
2929 if (rc)
2930 goto fail5;
2931
2932 /* Initialise I2C adapter */
2933 board = falcon_board(efx);
2934 board->i2c_adap.owner = THIS_MODULE;
2935 board->i2c_data = falcon_i2c_bit_operations;
2936 board->i2c_data.data = efx;
2937 board->i2c_adap.algo_data = &board->i2c_data;
2938 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2939 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2940 sizeof(board->i2c_adap.name));
2941 rc = i2c_bit_add_bus(&board->i2c_adap);
2942 if (rc)
2943 goto fail5;
2944
2945 rc = falcon_board(efx)->type->init(efx);
2946 if (rc) {
2947 EFX_ERR(efx, "failed to initialise board\n");
2948 goto fail6;
2949 }
2950
2951 nic_data->stats_disable_count = 1;
2952 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2953 (unsigned long)efx);
2954
2955 return 0;
2956
2957 fail6:
2958 BUG_ON(i2c_del_adapter(&board->i2c_adap));
2959 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2960 fail5:
2961 falcon_remove_spi_devices(efx);
2962 falcon_free_buffer(efx, &efx->irq_status);
2963 fail4:
2964 fail3:
2965 if (nic_data->pci_dev2) {
2966 pci_dev_put(nic_data->pci_dev2);
2967 nic_data->pci_dev2 = NULL;
2968 }
2969 fail2:
2970 fail1:
2971 kfree(efx->nic_data);
2972 return rc;
2973 }
2974
2975 static void falcon_init_rx_cfg(struct efx_nic *efx)
2976 {
2977 /* Prior to Siena the RX DMA engine will split each frame at
2978 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2979 * be so large that that never happens. */
2980 const unsigned huge_buf_size = (3 * 4096) >> 5;
2981 /* RX control FIFO thresholds (32 entries) */
2982 const unsigned ctrl_xon_thr = 20;
2983 const unsigned ctrl_xoff_thr = 25;
2984 /* RX data FIFO thresholds (256-byte units; size varies) */
2985 int data_xon_thr = rx_xon_thresh_bytes >> 8;
2986 int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2987 efx_oword_t reg;
2988
2989 efx_reado(efx, &reg, FR_AZ_RX_CFG);
2990 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2991 /* Data FIFO size is 5.5K */
2992 if (data_xon_thr < 0)
2993 data_xon_thr = 512 >> 8;
2994 if (data_xoff_thr < 0)
2995 data_xoff_thr = 2048 >> 8;
2996 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2997 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2998 huge_buf_size);
2999 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
3000 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
3001 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
3002 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
3003 } else {
3004 /* Data FIFO size is 80K; register fields moved */
3005 if (data_xon_thr < 0)
3006 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
3007 if (data_xoff_thr < 0)
3008 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
3009 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
3010 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
3011 huge_buf_size);
3012 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
3013 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
3014 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
3015 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
3016 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
3017 }
3018 /* Always enable XOFF signal from RX FIFO. We enable
3019 * or disable transmission of pause frames at the MAC. */
3020 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
3021 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
3022 }
3023
3024 /* This call performs hardware-specific global initialisation, such as
3025 * defining the descriptor cache sizes and number of RSS channels.
3026 * It does not set up any buffers, descriptor rings or event queues.
3027 */
3028 static int falcon_init_nic(struct efx_nic *efx)
3029 {
3030 efx_oword_t temp;
3031 int rc;
3032
3033 /* Use on-chip SRAM */
3034 efx_reado(efx, &temp, FR_AB_NIC_STAT);
3035 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
3036 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
3037
3038 /* Set the source of the GMAC clock */
3039 if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
3040 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
3041 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
3042 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
3043 }
3044
3045 /* Select the correct MAC */
3046 falcon_clock_mac(efx);
3047
3048 rc = falcon_reset_sram(efx);
3049 if (rc)
3050 return rc;
3051
3052 /* Set positions of descriptor caches in SRAM. */
3053 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
3054 efx->type->tx_dc_base / 8);
3055 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
3056 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
3057 efx->type->rx_dc_base / 8);
3058 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
3059
3060 /* Set TX descriptor cache size. */
3061 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
3062 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3063 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
3064
3065 /* Set RX descriptor cache size. Set low watermark to size-8, as
3066 * this allows most efficient prefetching.
3067 */
3068 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
3069 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3070 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
3071 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3072 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
3073
3074 /* Program INT_KER address */
3075 EFX_POPULATE_OWORD_2(temp,
3076 FRF_AZ_NORM_INT_VEC_DIS_KER,
3077 EFX_INT_MODE_USE_MSI(efx),
3078 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
3079 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
3080
3081 /* Clear the parity enables on the TX data fifos as
3082 * they produce false parity errors because of timing issues
3083 */
3084 if (EFX_WORKAROUND_5129(efx)) {
3085 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
3086 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
3087 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
3088 }
3089
3090 /* Enable all the genuinely fatal interrupts. (They are still
3091 * masked by the overall interrupt mask, controlled by
3092 * falcon_interrupts()).
3093 *
3094 * Note: All other fatal interrupts are enabled
3095 */
3096 EFX_POPULATE_OWORD_3(temp,
3097 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3098 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3099 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3100 EFX_INVERT_OWORD(temp);
3101 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3102
3103 if (EFX_WORKAROUND_7244(efx)) {
3104 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3105 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3106 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3107 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3108 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3109 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3110 }
3111
3112 falcon_setup_rss_indir_table(efx);
3113
3114 /* XXX This is documented only for Falcon A0/A1 */
3115 /* Setup RX. Wait for descriptor is broken and must
3116 * be disabled. RXDP recovery shouldn't be needed, but is.
3117 */
3118 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3119 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3120 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3121 if (EFX_WORKAROUND_5583(efx))
3122 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3123 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3124
3125 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3126 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3127 */
3128 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3129 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3130 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3131 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3132 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3133 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3134 /* Enable SW_EV to inherit in char driver - assume harmless here */
3135 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3136 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3137 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3138 /* Squash TX of packets of 16 bytes or less */
3139 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
3140 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3141 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3142
3143 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3144 * descriptors (which is bad).
3145 */
3146 efx_reado(efx, &temp, FR_AZ_TX_CFG);
3147 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3148 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3149
3150 falcon_init_rx_cfg(efx);
3151
3152 /* Set destination of both TX and RX Flush events */
3153 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
3154 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3155 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3156 }
3157
3158 return 0;
3159 }
3160
3161 static void falcon_remove_nic(struct efx_nic *efx)
3162 {
3163 struct falcon_nic_data *nic_data = efx->nic_data;
3164 struct falcon_board *board = falcon_board(efx);
3165 int rc;
3166
3167 board->type->fini(efx);
3168
3169 /* Remove I2C adapter and clear it in preparation for a retry */
3170 rc = i2c_del_adapter(&board->i2c_adap);
3171 BUG_ON(rc);
3172 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3173
3174 falcon_remove_spi_devices(efx);
3175 falcon_free_buffer(efx, &efx->irq_status);
3176
3177 falcon_reset_hw(efx, RESET_TYPE_ALL);
3178
3179 /* Release the second function after the reset */
3180 if (nic_data->pci_dev2) {
3181 pci_dev_put(nic_data->pci_dev2);
3182 nic_data->pci_dev2 = NULL;
3183 }
3184
3185 /* Tear down the private nic state */
3186 kfree(efx->nic_data);
3187 efx->nic_data = NULL;
3188 }
3189
3190 static void falcon_update_nic_stats(struct efx_nic *efx)
3191 {
3192 struct falcon_nic_data *nic_data = efx->nic_data;
3193 efx_oword_t cnt;
3194
3195 if (nic_data->stats_disable_count)
3196 return;
3197
3198 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3199 efx->n_rx_nodesc_drop_cnt +=
3200 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3201
3202 if (nic_data->stats_pending &&
3203 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
3204 nic_data->stats_pending = false;
3205 rmb(); /* read the done flag before the stats */
3206 efx->mac_op->update_stats(efx);
3207 }
3208 }
3209
3210 void falcon_start_nic_stats(struct efx_nic *efx)
3211 {
3212 struct falcon_nic_data *nic_data = efx->nic_data;
3213
3214 spin_lock_bh(&efx->stats_lock);
3215 if (--nic_data->stats_disable_count == 0)
3216 falcon_stats_request(efx);
3217 spin_unlock_bh(&efx->stats_lock);
3218 }
3219
3220 void falcon_stop_nic_stats(struct efx_nic *efx)
3221 {
3222 struct falcon_nic_data *nic_data = efx->nic_data;
3223 int i;
3224
3225 might_sleep();
3226
3227 spin_lock_bh(&efx->stats_lock);
3228 ++nic_data->stats_disable_count;
3229 spin_unlock_bh(&efx->stats_lock);
3230
3231 del_timer_sync(&nic_data->stats_timer);
3232
3233 /* Wait enough time for the most recent transfer to
3234 * complete. */
3235 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
3236 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
3237 break;
3238 msleep(1);
3239 }
3240
3241 spin_lock_bh(&efx->stats_lock);
3242 falcon_stats_complete(efx);
3243 spin_unlock_bh(&efx->stats_lock);
3244 }
3245
3246 /**************************************************************************
3247 *
3248 * Revision-dependent attributes used by efx.c
3249 *
3250 **************************************************************************
3251 */
3252
3253 struct efx_nic_type falcon_a1_nic_type = {
3254 .probe = falcon_probe_nic,
3255 .remove = falcon_remove_nic,
3256 .init = falcon_init_nic,
3257 .fini = efx_port_dummy_op_void,
3258 .monitor = falcon_monitor,
3259 .reset = falcon_reset_hw,
3260 .probe_port = falcon_probe_port,
3261 .remove_port = falcon_remove_port,
3262 .prepare_flush = falcon_prepare_flush,
3263 .update_stats = falcon_update_nic_stats,
3264 .start_stats = falcon_start_nic_stats,
3265 .stop_stats = falcon_stop_nic_stats,
3266 .push_irq_moderation = falcon_push_irq_moderation,
3267 .push_multicast_hash = falcon_push_multicast_hash,
3268 .reconfigure_port = falcon_reconfigure_port,
3269 .default_mac_ops = &falcon_xmac_operations,
3270
3271 .revision = EFX_REV_FALCON_A1,
3272 .mem_map_size = 0x20000,
3273 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3274 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3275 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3276 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3277 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3278 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3279 .rx_buffer_padding = 0x24,
3280 .max_interrupt_mode = EFX_INT_MODE_MSI,
3281 .phys_addr_channels = 4,
3282 .tx_dc_base = 0x130000,
3283 .rx_dc_base = 0x100000,
3284 };
3285
3286 struct efx_nic_type falcon_b0_nic_type = {
3287 .probe = falcon_probe_nic,
3288 .remove = falcon_remove_nic,
3289 .init = falcon_init_nic,
3290 .fini = efx_port_dummy_op_void,
3291 .monitor = falcon_monitor,
3292 .reset = falcon_reset_hw,
3293 .probe_port = falcon_probe_port,
3294 .remove_port = falcon_remove_port,
3295 .prepare_flush = falcon_prepare_flush,
3296 .update_stats = falcon_update_nic_stats,
3297 .start_stats = falcon_start_nic_stats,
3298 .stop_stats = falcon_stop_nic_stats,
3299 .push_irq_moderation = falcon_push_irq_moderation,
3300 .push_multicast_hash = falcon_push_multicast_hash,
3301 .reconfigure_port = falcon_reconfigure_port,
3302 .default_mac_ops = &falcon_xmac_operations,
3303
3304 .revision = EFX_REV_FALCON_B0,
3305 /* Map everything up to and including the RSS indirection
3306 * table. Don't map MSI-X table, MSI-X PBA since Linux
3307 * requires that they not be mapped. */
3308 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3309 FR_BZ_RX_INDIRECTION_TBL_STEP *
3310 FR_BZ_RX_INDIRECTION_TBL_ROWS),
3311 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3312 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3313 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3314 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3315 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3316 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3317 .rx_buffer_padding = 0,
3318 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3319 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3320 * interrupt handler only supports 32
3321 * channels */
3322 .tx_dc_base = 0x130000,
3323 .rx_dc_base = 0x100000,
3324 };
3325
This page took 0.103468 seconds and 5 git commands to generate.