Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
[deliverable/linux.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 static const unsigned int
33 /* "Large" EEPROM device: Atmel AT25640 or similar
34 * 8 KB, 16-bit address, 32 B write block */
35 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
36 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
37 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
38 /* Default flash device: Atmel AT25F1024
39 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
40 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
41 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
42 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
43 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
44 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
45
46 /**************************************************************************
47 *
48 * I2C bus - this is a bit-bashing interface using GPIO pins
49 * Note that it uses the output enables to tristate the outputs
50 * SDA is the data pin and SCL is the clock
51 *
52 **************************************************************************
53 */
54 static void falcon_setsda(void *data, int state)
55 {
56 struct efx_nic *efx = (struct efx_nic *)data;
57 efx_oword_t reg;
58
59 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
60 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
61 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
62 }
63
64 static void falcon_setscl(void *data, int state)
65 {
66 struct efx_nic *efx = (struct efx_nic *)data;
67 efx_oword_t reg;
68
69 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
70 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
71 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
72 }
73
74 static int falcon_getsda(void *data)
75 {
76 struct efx_nic *efx = (struct efx_nic *)data;
77 efx_oword_t reg;
78
79 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
80 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
81 }
82
83 static int falcon_getscl(void *data)
84 {
85 struct efx_nic *efx = (struct efx_nic *)data;
86 efx_oword_t reg;
87
88 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
89 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
90 }
91
92 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
93 .setsda = falcon_setsda,
94 .setscl = falcon_setscl,
95 .getsda = falcon_getsda,
96 .getscl = falcon_getscl,
97 .udelay = 5,
98 /* Wait up to 50 ms for slave to let us pull SCL high */
99 .timeout = DIV_ROUND_UP(HZ, 20),
100 };
101
102 static void falcon_push_irq_moderation(struct efx_channel *channel)
103 {
104 efx_dword_t timer_cmd;
105 struct efx_nic *efx = channel->efx;
106
107 /* Set timer register */
108 if (channel->irq_moderation) {
109 EFX_POPULATE_DWORD_2(timer_cmd,
110 FRF_AB_TC_TIMER_MODE,
111 FFE_BB_TIMER_MODE_INT_HLDOFF,
112 FRF_AB_TC_TIMER_VAL,
113 channel->irq_moderation - 1);
114 } else {
115 EFX_POPULATE_DWORD_2(timer_cmd,
116 FRF_AB_TC_TIMER_MODE,
117 FFE_BB_TIMER_MODE_DIS,
118 FRF_AB_TC_TIMER_VAL, 0);
119 }
120 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
121 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
122 channel->channel);
123 }
124
125 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
126
127 static void falcon_prepare_flush(struct efx_nic *efx)
128 {
129 falcon_deconfigure_mac_wrapper(efx);
130
131 /* Wait for the tx and rx fifo's to get to the next packet boundary
132 * (~1ms without back-pressure), then to drain the remainder of the
133 * fifo's at data path speeds (negligible), with a healthy margin. */
134 msleep(10);
135 }
136
137 /* Acknowledge a legacy interrupt from Falcon
138 *
139 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
140 *
141 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
142 * BIU. Interrupt acknowledge is read sensitive so must write instead
143 * (then read to ensure the BIU collector is flushed)
144 *
145 * NB most hardware supports MSI interrupts
146 */
147 inline void falcon_irq_ack_a1(struct efx_nic *efx)
148 {
149 efx_dword_t reg;
150
151 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
152 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
153 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
154 }
155
156
157 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
158 {
159 struct efx_nic *efx = dev_id;
160 efx_oword_t *int_ker = efx->irq_status.addr;
161 int syserr;
162 int queues;
163
164 /* Check to see if this is our interrupt. If it isn't, we
165 * exit without having touched the hardware.
166 */
167 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
168 netif_vdbg(efx, intr, efx->net_dev,
169 "IRQ %d on CPU %d not for me\n", irq,
170 raw_smp_processor_id());
171 return IRQ_NONE;
172 }
173 efx->last_irq_cpu = raw_smp_processor_id();
174 netif_vdbg(efx, intr, efx->net_dev,
175 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
176 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
177
178 /* Determine interrupting queues, clear interrupt status
179 * register and acknowledge the device interrupt.
180 */
181 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
182 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
183
184 /* Check to see if we have a serious error condition */
185 if (queues & (1U << efx->fatal_irq_level)) {
186 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
187 if (unlikely(syserr))
188 return efx_nic_fatal_interrupt(efx);
189 }
190
191 EFX_ZERO_OWORD(*int_ker);
192 wmb(); /* Ensure the vector is cleared before interrupt ack */
193 falcon_irq_ack_a1(efx);
194
195 if (queues & 1)
196 efx_schedule_channel(efx_get_channel(efx, 0));
197 if (queues & 2)
198 efx_schedule_channel(efx_get_channel(efx, 1));
199 return IRQ_HANDLED;
200 }
201 /**************************************************************************
202 *
203 * EEPROM/flash
204 *
205 **************************************************************************
206 */
207
208 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
209
210 static int falcon_spi_poll(struct efx_nic *efx)
211 {
212 efx_oword_t reg;
213 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
214 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
215 }
216
217 /* Wait for SPI command completion */
218 static int falcon_spi_wait(struct efx_nic *efx)
219 {
220 /* Most commands will finish quickly, so we start polling at
221 * very short intervals. Sometimes the command may have to
222 * wait for VPD or expansion ROM access outside of our
223 * control, so we allow up to 100 ms. */
224 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
225 int i;
226
227 for (i = 0; i < 10; i++) {
228 if (!falcon_spi_poll(efx))
229 return 0;
230 udelay(10);
231 }
232
233 for (;;) {
234 if (!falcon_spi_poll(efx))
235 return 0;
236 if (time_after_eq(jiffies, timeout)) {
237 netif_err(efx, hw, efx->net_dev,
238 "timed out waiting for SPI\n");
239 return -ETIMEDOUT;
240 }
241 schedule_timeout_uninterruptible(1);
242 }
243 }
244
245 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
246 unsigned int command, int address,
247 const void *in, void *out, size_t len)
248 {
249 bool addressed = (address >= 0);
250 bool reading = (out != NULL);
251 efx_oword_t reg;
252 int rc;
253
254 /* Input validation */
255 if (len > FALCON_SPI_MAX_LEN)
256 return -EINVAL;
257
258 /* Check that previous command is not still running */
259 rc = falcon_spi_poll(efx);
260 if (rc)
261 return rc;
262
263 /* Program address register, if we have an address */
264 if (addressed) {
265 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
266 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
267 }
268
269 /* Program data register, if we have data */
270 if (in != NULL) {
271 memcpy(&reg, in, len);
272 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
273 }
274
275 /* Issue read/write command */
276 EFX_POPULATE_OWORD_7(reg,
277 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
278 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
279 FRF_AB_EE_SPI_HCMD_DABCNT, len,
280 FRF_AB_EE_SPI_HCMD_READ, reading,
281 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
282 FRF_AB_EE_SPI_HCMD_ADBCNT,
283 (addressed ? spi->addr_len : 0),
284 FRF_AB_EE_SPI_HCMD_ENC, command);
285 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
286
287 /* Wait for read/write to complete */
288 rc = falcon_spi_wait(efx);
289 if (rc)
290 return rc;
291
292 /* Read data */
293 if (out != NULL) {
294 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
295 memcpy(out, &reg, len);
296 }
297
298 return 0;
299 }
300
301 static size_t
302 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
303 {
304 return min(FALCON_SPI_MAX_LEN,
305 (spi->block_size - (start & (spi->block_size - 1))));
306 }
307
308 static inline u8
309 efx_spi_munge_command(const struct efx_spi_device *spi,
310 const u8 command, const unsigned int address)
311 {
312 return command | (((address >> 8) & spi->munge_address) << 3);
313 }
314
315 /* Wait up to 10 ms for buffered write completion */
316 int
317 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
318 {
319 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
320 u8 status;
321 int rc;
322
323 for (;;) {
324 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
325 &status, sizeof(status));
326 if (rc)
327 return rc;
328 if (!(status & SPI_STATUS_NRDY))
329 return 0;
330 if (time_after_eq(jiffies, timeout)) {
331 netif_err(efx, hw, efx->net_dev,
332 "SPI write timeout on device %d"
333 " last status=0x%02x\n",
334 spi->device_id, status);
335 return -ETIMEDOUT;
336 }
337 schedule_timeout_uninterruptible(1);
338 }
339 }
340
341 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
342 loff_t start, size_t len, size_t *retlen, u8 *buffer)
343 {
344 size_t block_len, pos = 0;
345 unsigned int command;
346 int rc = 0;
347
348 while (pos < len) {
349 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
350
351 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
352 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
353 buffer + pos, block_len);
354 if (rc)
355 break;
356 pos += block_len;
357
358 /* Avoid locking up the system */
359 cond_resched();
360 if (signal_pending(current)) {
361 rc = -EINTR;
362 break;
363 }
364 }
365
366 if (retlen)
367 *retlen = pos;
368 return rc;
369 }
370
371 int
372 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
373 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
374 {
375 u8 verify_buffer[FALCON_SPI_MAX_LEN];
376 size_t block_len, pos = 0;
377 unsigned int command;
378 int rc = 0;
379
380 while (pos < len) {
381 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
382 if (rc)
383 break;
384
385 block_len = min(len - pos,
386 falcon_spi_write_limit(spi, start + pos));
387 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
388 rc = falcon_spi_cmd(efx, spi, command, start + pos,
389 buffer + pos, NULL, block_len);
390 if (rc)
391 break;
392
393 rc = falcon_spi_wait_write(efx, spi);
394 if (rc)
395 break;
396
397 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
398 rc = falcon_spi_cmd(efx, spi, command, start + pos,
399 NULL, verify_buffer, block_len);
400 if (memcmp(verify_buffer, buffer + pos, block_len)) {
401 rc = -EIO;
402 break;
403 }
404
405 pos += block_len;
406
407 /* Avoid locking up the system */
408 cond_resched();
409 if (signal_pending(current)) {
410 rc = -EINTR;
411 break;
412 }
413 }
414
415 if (retlen)
416 *retlen = pos;
417 return rc;
418 }
419
420 /**************************************************************************
421 *
422 * MAC wrapper
423 *
424 **************************************************************************
425 */
426
427 static void falcon_push_multicast_hash(struct efx_nic *efx)
428 {
429 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
430
431 WARN_ON(!mutex_is_locked(&efx->mac_lock));
432
433 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
434 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
435 }
436
437 static void falcon_reset_macs(struct efx_nic *efx)
438 {
439 struct falcon_nic_data *nic_data = efx->nic_data;
440 efx_oword_t reg, mac_ctrl;
441 int count;
442
443 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
444 /* It's not safe to use GLB_CTL_REG to reset the
445 * macs, so instead use the internal MAC resets
446 */
447 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
448 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
449
450 for (count = 0; count < 10000; count++) {
451 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
452 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
453 0)
454 return;
455 udelay(10);
456 }
457
458 netif_err(efx, hw, efx->net_dev,
459 "timed out waiting for XMAC core reset\n");
460 }
461
462 /* Mac stats will fail whist the TX fifo is draining */
463 WARN_ON(nic_data->stats_disable_count == 0);
464
465 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
466 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
467 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
468
469 efx_reado(efx, &reg, FR_AB_GLB_CTL);
470 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
471 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
472 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
473 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
474
475 count = 0;
476 while (1) {
477 efx_reado(efx, &reg, FR_AB_GLB_CTL);
478 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
479 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
480 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
481 netif_dbg(efx, hw, efx->net_dev,
482 "Completed MAC reset after %d loops\n",
483 count);
484 break;
485 }
486 if (count > 20) {
487 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
488 break;
489 }
490 count++;
491 udelay(10);
492 }
493
494 /* Ensure the correct MAC is selected before statistics
495 * are re-enabled by the caller */
496 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
497
498 falcon_setup_xaui(efx);
499 }
500
501 void falcon_drain_tx_fifo(struct efx_nic *efx)
502 {
503 efx_oword_t reg;
504
505 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
506 (efx->loopback_mode != LOOPBACK_NONE))
507 return;
508
509 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
510 /* There is no point in draining more than once */
511 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
512 return;
513
514 falcon_reset_macs(efx);
515 }
516
517 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
518 {
519 efx_oword_t reg;
520
521 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
522 return;
523
524 /* Isolate the MAC -> RX */
525 efx_reado(efx, &reg, FR_AZ_RX_CFG);
526 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
527 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
528
529 /* Isolate TX -> MAC */
530 falcon_drain_tx_fifo(efx);
531 }
532
533 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
534 {
535 struct efx_link_state *link_state = &efx->link_state;
536 efx_oword_t reg;
537 int link_speed, isolate;
538
539 isolate = (efx->reset_pending != RESET_TYPE_NONE);
540
541 switch (link_state->speed) {
542 case 10000: link_speed = 3; break;
543 case 1000: link_speed = 2; break;
544 case 100: link_speed = 1; break;
545 default: link_speed = 0; break;
546 }
547 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
548 * as advertised. Disable to ensure packets are not
549 * indefinitely held and TX queue can be flushed at any point
550 * while the link is down. */
551 EFX_POPULATE_OWORD_5(reg,
552 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
553 FRF_AB_MAC_BCAD_ACPT, 1,
554 FRF_AB_MAC_UC_PROM, efx->promiscuous,
555 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
556 FRF_AB_MAC_SPEED, link_speed);
557 /* On B0, MAC backpressure can be disabled and packets get
558 * discarded. */
559 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
560 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
561 !link_state->up || isolate);
562 }
563
564 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
565
566 /* Restore the multicast hash registers. */
567 falcon_push_multicast_hash(efx);
568
569 efx_reado(efx, &reg, FR_AZ_RX_CFG);
570 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
571 * initialisation but it may read back as 0) */
572 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
573 /* Unisolate the MAC -> RX */
574 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
575 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
576 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
577 }
578
579 static void falcon_stats_request(struct efx_nic *efx)
580 {
581 struct falcon_nic_data *nic_data = efx->nic_data;
582 efx_oword_t reg;
583
584 WARN_ON(nic_data->stats_pending);
585 WARN_ON(nic_data->stats_disable_count);
586
587 if (nic_data->stats_dma_done == NULL)
588 return; /* no mac selected */
589
590 *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
591 nic_data->stats_pending = true;
592 wmb(); /* ensure done flag is clear */
593
594 /* Initiate DMA transfer of stats */
595 EFX_POPULATE_OWORD_2(reg,
596 FRF_AB_MAC_STAT_DMA_CMD, 1,
597 FRF_AB_MAC_STAT_DMA_ADR,
598 efx->stats_buffer.dma_addr);
599 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
600
601 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
602 }
603
604 static void falcon_stats_complete(struct efx_nic *efx)
605 {
606 struct falcon_nic_data *nic_data = efx->nic_data;
607
608 if (!nic_data->stats_pending)
609 return;
610
611 nic_data->stats_pending = 0;
612 if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
613 rmb(); /* read the done flag before the stats */
614 efx->mac_op->update_stats(efx);
615 } else {
616 netif_err(efx, hw, efx->net_dev,
617 "timed out waiting for statistics\n");
618 }
619 }
620
621 static void falcon_stats_timer_func(unsigned long context)
622 {
623 struct efx_nic *efx = (struct efx_nic *)context;
624 struct falcon_nic_data *nic_data = efx->nic_data;
625
626 spin_lock(&efx->stats_lock);
627
628 falcon_stats_complete(efx);
629 if (nic_data->stats_disable_count == 0)
630 falcon_stats_request(efx);
631
632 spin_unlock(&efx->stats_lock);
633 }
634
635 static bool falcon_loopback_link_poll(struct efx_nic *efx)
636 {
637 struct efx_link_state old_state = efx->link_state;
638
639 WARN_ON(!mutex_is_locked(&efx->mac_lock));
640 WARN_ON(!LOOPBACK_INTERNAL(efx));
641
642 efx->link_state.fd = true;
643 efx->link_state.fc = efx->wanted_fc;
644 efx->link_state.up = true;
645 efx->link_state.speed = 10000;
646
647 return !efx_link_state_equal(&efx->link_state, &old_state);
648 }
649
650 static int falcon_reconfigure_port(struct efx_nic *efx)
651 {
652 int rc;
653
654 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
655
656 /* Poll the PHY link state *before* reconfiguring it. This means we
657 * will pick up the correct speed (in loopback) to select the correct
658 * MAC.
659 */
660 if (LOOPBACK_INTERNAL(efx))
661 falcon_loopback_link_poll(efx);
662 else
663 efx->phy_op->poll(efx);
664
665 falcon_stop_nic_stats(efx);
666 falcon_deconfigure_mac_wrapper(efx);
667
668 falcon_reset_macs(efx);
669
670 efx->phy_op->reconfigure(efx);
671 rc = efx->mac_op->reconfigure(efx);
672 BUG_ON(rc);
673
674 falcon_start_nic_stats(efx);
675
676 /* Synchronise efx->link_state with the kernel */
677 efx_link_status_changed(efx);
678
679 return 0;
680 }
681
682 /**************************************************************************
683 *
684 * PHY access via GMII
685 *
686 **************************************************************************
687 */
688
689 /* Wait for GMII access to complete */
690 static int falcon_gmii_wait(struct efx_nic *efx)
691 {
692 efx_oword_t md_stat;
693 int count;
694
695 /* wait upto 50ms - taken max from datasheet */
696 for (count = 0; count < 5000; count++) {
697 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
698 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
699 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
700 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
701 netif_err(efx, hw, efx->net_dev,
702 "error from GMII access "
703 EFX_OWORD_FMT"\n",
704 EFX_OWORD_VAL(md_stat));
705 return -EIO;
706 }
707 return 0;
708 }
709 udelay(10);
710 }
711 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
712 return -ETIMEDOUT;
713 }
714
715 /* Write an MDIO register of a PHY connected to Falcon. */
716 static int falcon_mdio_write(struct net_device *net_dev,
717 int prtad, int devad, u16 addr, u16 value)
718 {
719 struct efx_nic *efx = netdev_priv(net_dev);
720 struct falcon_nic_data *nic_data = efx->nic_data;
721 efx_oword_t reg;
722 int rc;
723
724 netif_vdbg(efx, hw, efx->net_dev,
725 "writing MDIO %d register %d.%d with 0x%04x\n",
726 prtad, devad, addr, value);
727
728 mutex_lock(&nic_data->mdio_lock);
729
730 /* Check MDIO not currently being accessed */
731 rc = falcon_gmii_wait(efx);
732 if (rc)
733 goto out;
734
735 /* Write the address/ID register */
736 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
737 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
738
739 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
740 FRF_AB_MD_DEV_ADR, devad);
741 efx_writeo(efx, &reg, FR_AB_MD_ID);
742
743 /* Write data */
744 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
745 efx_writeo(efx, &reg, FR_AB_MD_TXD);
746
747 EFX_POPULATE_OWORD_2(reg,
748 FRF_AB_MD_WRC, 1,
749 FRF_AB_MD_GC, 0);
750 efx_writeo(efx, &reg, FR_AB_MD_CS);
751
752 /* Wait for data to be written */
753 rc = falcon_gmii_wait(efx);
754 if (rc) {
755 /* Abort the write operation */
756 EFX_POPULATE_OWORD_2(reg,
757 FRF_AB_MD_WRC, 0,
758 FRF_AB_MD_GC, 1);
759 efx_writeo(efx, &reg, FR_AB_MD_CS);
760 udelay(10);
761 }
762
763 out:
764 mutex_unlock(&nic_data->mdio_lock);
765 return rc;
766 }
767
768 /* Read an MDIO register of a PHY connected to Falcon. */
769 static int falcon_mdio_read(struct net_device *net_dev,
770 int prtad, int devad, u16 addr)
771 {
772 struct efx_nic *efx = netdev_priv(net_dev);
773 struct falcon_nic_data *nic_data = efx->nic_data;
774 efx_oword_t reg;
775 int rc;
776
777 mutex_lock(&nic_data->mdio_lock);
778
779 /* Check MDIO not currently being accessed */
780 rc = falcon_gmii_wait(efx);
781 if (rc)
782 goto out;
783
784 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
785 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
786
787 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
788 FRF_AB_MD_DEV_ADR, devad);
789 efx_writeo(efx, &reg, FR_AB_MD_ID);
790
791 /* Request data to be read */
792 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
793 efx_writeo(efx, &reg, FR_AB_MD_CS);
794
795 /* Wait for data to become available */
796 rc = falcon_gmii_wait(efx);
797 if (rc == 0) {
798 efx_reado(efx, &reg, FR_AB_MD_RXD);
799 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
800 netif_vdbg(efx, hw, efx->net_dev,
801 "read from MDIO %d register %d.%d, got %04x\n",
802 prtad, devad, addr, rc);
803 } else {
804 /* Abort the read operation */
805 EFX_POPULATE_OWORD_2(reg,
806 FRF_AB_MD_RIC, 0,
807 FRF_AB_MD_GC, 1);
808 efx_writeo(efx, &reg, FR_AB_MD_CS);
809
810 netif_dbg(efx, hw, efx->net_dev,
811 "read from MDIO %d register %d.%d, got error %d\n",
812 prtad, devad, addr, rc);
813 }
814
815 out:
816 mutex_unlock(&nic_data->mdio_lock);
817 return rc;
818 }
819
820 /* This call is responsible for hooking in the MAC and PHY operations */
821 static int falcon_probe_port(struct efx_nic *efx)
822 {
823 struct falcon_nic_data *nic_data = efx->nic_data;
824 int rc;
825
826 switch (efx->phy_type) {
827 case PHY_TYPE_SFX7101:
828 efx->phy_op = &falcon_sfx7101_phy_ops;
829 break;
830 case PHY_TYPE_QT2022C2:
831 case PHY_TYPE_QT2025C:
832 efx->phy_op = &falcon_qt202x_phy_ops;
833 break;
834 case PHY_TYPE_TXC43128:
835 efx->phy_op = &falcon_txc_phy_ops;
836 break;
837 default:
838 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
839 efx->phy_type);
840 return -ENODEV;
841 }
842
843 /* Fill out MDIO structure and loopback modes */
844 mutex_init(&nic_data->mdio_lock);
845 efx->mdio.mdio_read = falcon_mdio_read;
846 efx->mdio.mdio_write = falcon_mdio_write;
847 rc = efx->phy_op->probe(efx);
848 if (rc != 0)
849 return rc;
850
851 /* Initial assumption */
852 efx->link_state.speed = 10000;
853 efx->link_state.fd = true;
854
855 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
856 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
857 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
858 else
859 efx->wanted_fc = EFX_FC_RX;
860 if (efx->mdio.mmds & MDIO_DEVS_AN)
861 efx->wanted_fc |= EFX_FC_AUTO;
862
863 /* Allocate buffer for stats */
864 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
865 FALCON_MAC_STATS_SIZE);
866 if (rc)
867 return rc;
868 netif_dbg(efx, probe, efx->net_dev,
869 "stats buffer at %llx (virt %p phys %llx)\n",
870 (u64)efx->stats_buffer.dma_addr,
871 efx->stats_buffer.addr,
872 (u64)virt_to_phys(efx->stats_buffer.addr));
873 nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
874
875 return 0;
876 }
877
878 static void falcon_remove_port(struct efx_nic *efx)
879 {
880 efx->phy_op->remove(efx);
881 efx_nic_free_buffer(efx, &efx->stats_buffer);
882 }
883
884 /* Global events are basically PHY events */
885 static bool
886 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
887 {
888 struct efx_nic *efx = channel->efx;
889 struct falcon_nic_data *nic_data = efx->nic_data;
890
891 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
892 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
893 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
894 /* Ignored */
895 return true;
896
897 if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
898 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
899 nic_data->xmac_poll_required = true;
900 return true;
901 }
902
903 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
904 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
905 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
906 netif_err(efx, rx_err, efx->net_dev,
907 "channel %d seen global RX_RESET event. Resetting.\n",
908 channel->channel);
909
910 atomic_inc(&efx->rx_reset);
911 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
912 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
913 return true;
914 }
915
916 return false;
917 }
918
919 /**************************************************************************
920 *
921 * Falcon test code
922 *
923 **************************************************************************/
924
925 static int
926 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
927 {
928 struct falcon_nic_data *nic_data = efx->nic_data;
929 struct falcon_nvconfig *nvconfig;
930 struct efx_spi_device *spi;
931 void *region;
932 int rc, magic_num, struct_ver;
933 __le16 *word, *limit;
934 u32 csum;
935
936 if (efx_spi_present(&nic_data->spi_flash))
937 spi = &nic_data->spi_flash;
938 else if (efx_spi_present(&nic_data->spi_eeprom))
939 spi = &nic_data->spi_eeprom;
940 else
941 return -EINVAL;
942
943 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
944 if (!region)
945 return -ENOMEM;
946 nvconfig = region + FALCON_NVCONFIG_OFFSET;
947
948 mutex_lock(&nic_data->spi_lock);
949 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
950 mutex_unlock(&nic_data->spi_lock);
951 if (rc) {
952 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
953 efx_spi_present(&nic_data->spi_flash) ?
954 "flash" : "EEPROM");
955 rc = -EIO;
956 goto out;
957 }
958
959 magic_num = le16_to_cpu(nvconfig->board_magic_num);
960 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
961
962 rc = -EINVAL;
963 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
964 netif_err(efx, hw, efx->net_dev,
965 "NVRAM bad magic 0x%x\n", magic_num);
966 goto out;
967 }
968 if (struct_ver < 2) {
969 netif_err(efx, hw, efx->net_dev,
970 "NVRAM has ancient version 0x%x\n", struct_ver);
971 goto out;
972 } else if (struct_ver < 4) {
973 word = &nvconfig->board_magic_num;
974 limit = (__le16 *) (nvconfig + 1);
975 } else {
976 word = region;
977 limit = region + FALCON_NVCONFIG_END;
978 }
979 for (csum = 0; word < limit; ++word)
980 csum += le16_to_cpu(*word);
981
982 if (~csum & 0xffff) {
983 netif_err(efx, hw, efx->net_dev,
984 "NVRAM has incorrect checksum\n");
985 goto out;
986 }
987
988 rc = 0;
989 if (nvconfig_out)
990 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
991
992 out:
993 kfree(region);
994 return rc;
995 }
996
997 static int falcon_test_nvram(struct efx_nic *efx)
998 {
999 return falcon_read_nvram(efx, NULL);
1000 }
1001
1002 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1003 { FR_AZ_ADR_REGION,
1004 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1005 { FR_AZ_RX_CFG,
1006 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1007 { FR_AZ_TX_CFG,
1008 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1009 { FR_AZ_TX_RESERVED,
1010 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1011 { FR_AB_MAC_CTRL,
1012 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1013 { FR_AZ_SRM_TX_DC_CFG,
1014 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1015 { FR_AZ_RX_DC_CFG,
1016 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1017 { FR_AZ_RX_DC_PF_WM,
1018 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1019 { FR_BZ_DP_CTRL,
1020 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1021 { FR_AB_GM_CFG2,
1022 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1023 { FR_AB_GMF_CFG0,
1024 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1025 { FR_AB_XM_GLB_CFG,
1026 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1027 { FR_AB_XM_TX_CFG,
1028 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1029 { FR_AB_XM_RX_CFG,
1030 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1031 { FR_AB_XM_RX_PARAM,
1032 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1033 { FR_AB_XM_FC,
1034 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1035 { FR_AB_XM_ADR_LO,
1036 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1037 { FR_AB_XX_SD_CTL,
1038 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1039 };
1040
1041 static int falcon_b0_test_registers(struct efx_nic *efx)
1042 {
1043 return efx_nic_test_registers(efx, falcon_b0_register_tests,
1044 ARRAY_SIZE(falcon_b0_register_tests));
1045 }
1046
1047 /**************************************************************************
1048 *
1049 * Device reset
1050 *
1051 **************************************************************************
1052 */
1053
1054 /* Resets NIC to known state. This routine must be called in process
1055 * context and is allowed to sleep. */
1056 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1057 {
1058 struct falcon_nic_data *nic_data = efx->nic_data;
1059 efx_oword_t glb_ctl_reg_ker;
1060 int rc;
1061
1062 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1063 RESET_TYPE(method));
1064
1065 /* Initiate device reset */
1066 if (method == RESET_TYPE_WORLD) {
1067 rc = pci_save_state(efx->pci_dev);
1068 if (rc) {
1069 netif_err(efx, drv, efx->net_dev,
1070 "failed to backup PCI state of primary "
1071 "function prior to hardware reset\n");
1072 goto fail1;
1073 }
1074 if (efx_nic_is_dual_func(efx)) {
1075 rc = pci_save_state(nic_data->pci_dev2);
1076 if (rc) {
1077 netif_err(efx, drv, efx->net_dev,
1078 "failed to backup PCI state of "
1079 "secondary function prior to "
1080 "hardware reset\n");
1081 goto fail2;
1082 }
1083 }
1084
1085 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1086 FRF_AB_EXT_PHY_RST_DUR,
1087 FFE_AB_EXT_PHY_RST_DUR_10240US,
1088 FRF_AB_SWRST, 1);
1089 } else {
1090 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1091 /* exclude PHY from "invisible" reset */
1092 FRF_AB_EXT_PHY_RST_CTL,
1093 method == RESET_TYPE_INVISIBLE,
1094 /* exclude EEPROM/flash and PCIe */
1095 FRF_AB_PCIE_CORE_RST_CTL, 1,
1096 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1097 FRF_AB_PCIE_SD_RST_CTL, 1,
1098 FRF_AB_EE_RST_CTL, 1,
1099 FRF_AB_EXT_PHY_RST_DUR,
1100 FFE_AB_EXT_PHY_RST_DUR_10240US,
1101 FRF_AB_SWRST, 1);
1102 }
1103 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1104
1105 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1106 schedule_timeout_uninterruptible(HZ / 20);
1107
1108 /* Restore PCI configuration if needed */
1109 if (method == RESET_TYPE_WORLD) {
1110 if (efx_nic_is_dual_func(efx)) {
1111 rc = pci_restore_state(nic_data->pci_dev2);
1112 if (rc) {
1113 netif_err(efx, drv, efx->net_dev,
1114 "failed to restore PCI config for "
1115 "the secondary function\n");
1116 goto fail3;
1117 }
1118 }
1119 rc = pci_restore_state(efx->pci_dev);
1120 if (rc) {
1121 netif_err(efx, drv, efx->net_dev,
1122 "failed to restore PCI config for the "
1123 "primary function\n");
1124 goto fail4;
1125 }
1126 netif_dbg(efx, drv, efx->net_dev,
1127 "successfully restored PCI config\n");
1128 }
1129
1130 /* Assert that reset complete */
1131 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1132 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1133 rc = -ETIMEDOUT;
1134 netif_err(efx, hw, efx->net_dev,
1135 "timed out waiting for hardware reset\n");
1136 goto fail5;
1137 }
1138 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1139
1140 return 0;
1141
1142 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1143 fail2:
1144 fail3:
1145 pci_restore_state(efx->pci_dev);
1146 fail1:
1147 fail4:
1148 fail5:
1149 return rc;
1150 }
1151
1152 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1153 {
1154 struct falcon_nic_data *nic_data = efx->nic_data;
1155 int rc;
1156
1157 mutex_lock(&nic_data->spi_lock);
1158 rc = __falcon_reset_hw(efx, method);
1159 mutex_unlock(&nic_data->spi_lock);
1160
1161 return rc;
1162 }
1163
1164 static void falcon_monitor(struct efx_nic *efx)
1165 {
1166 bool link_changed;
1167 int rc;
1168
1169 BUG_ON(!mutex_is_locked(&efx->mac_lock));
1170
1171 rc = falcon_board(efx)->type->monitor(efx);
1172 if (rc) {
1173 netif_err(efx, hw, efx->net_dev,
1174 "Board sensor %s; shutting down PHY\n",
1175 (rc == -ERANGE) ? "reported fault" : "failed");
1176 efx->phy_mode |= PHY_MODE_LOW_POWER;
1177 rc = __efx_reconfigure_port(efx);
1178 WARN_ON(rc);
1179 }
1180
1181 if (LOOPBACK_INTERNAL(efx))
1182 link_changed = falcon_loopback_link_poll(efx);
1183 else
1184 link_changed = efx->phy_op->poll(efx);
1185
1186 if (link_changed) {
1187 falcon_stop_nic_stats(efx);
1188 falcon_deconfigure_mac_wrapper(efx);
1189
1190 falcon_reset_macs(efx);
1191 rc = efx->mac_op->reconfigure(efx);
1192 BUG_ON(rc);
1193
1194 falcon_start_nic_stats(efx);
1195
1196 efx_link_status_changed(efx);
1197 }
1198
1199 falcon_poll_xmac(efx);
1200 }
1201
1202 /* Zeroes out the SRAM contents. This routine must be called in
1203 * process context and is allowed to sleep.
1204 */
1205 static int falcon_reset_sram(struct efx_nic *efx)
1206 {
1207 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1208 int count;
1209
1210 /* Set the SRAM wake/sleep GPIO appropriately. */
1211 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1212 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1213 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1214 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1215
1216 /* Initiate SRAM reset */
1217 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1218 FRF_AZ_SRM_INIT_EN, 1,
1219 FRF_AZ_SRM_NB_SZ, 0);
1220 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1221
1222 /* Wait for SRAM reset to complete */
1223 count = 0;
1224 do {
1225 netif_dbg(efx, hw, efx->net_dev,
1226 "waiting for SRAM reset (attempt %d)...\n", count);
1227
1228 /* SRAM reset is slow; expect around 16ms */
1229 schedule_timeout_uninterruptible(HZ / 50);
1230
1231 /* Check for reset complete */
1232 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1233 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1234 netif_dbg(efx, hw, efx->net_dev,
1235 "SRAM reset complete\n");
1236
1237 return 0;
1238 }
1239 } while (++count < 20); /* wait upto 0.4 sec */
1240
1241 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1242 return -ETIMEDOUT;
1243 }
1244
1245 static void falcon_spi_device_init(struct efx_nic *efx,
1246 struct efx_spi_device *spi_device,
1247 unsigned int device_id, u32 device_type)
1248 {
1249 if (device_type != 0) {
1250 spi_device->device_id = device_id;
1251 spi_device->size =
1252 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1253 spi_device->addr_len =
1254 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1255 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1256 spi_device->addr_len == 1);
1257 spi_device->erase_command =
1258 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1259 spi_device->erase_size =
1260 1 << SPI_DEV_TYPE_FIELD(device_type,
1261 SPI_DEV_TYPE_ERASE_SIZE);
1262 spi_device->block_size =
1263 1 << SPI_DEV_TYPE_FIELD(device_type,
1264 SPI_DEV_TYPE_BLOCK_SIZE);
1265 } else {
1266 spi_device->size = 0;
1267 }
1268 }
1269
1270 /* Extract non-volatile configuration */
1271 static int falcon_probe_nvconfig(struct efx_nic *efx)
1272 {
1273 struct falcon_nic_data *nic_data = efx->nic_data;
1274 struct falcon_nvconfig *nvconfig;
1275 int rc;
1276
1277 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1278 if (!nvconfig)
1279 return -ENOMEM;
1280
1281 rc = falcon_read_nvram(efx, nvconfig);
1282 if (rc)
1283 goto out;
1284
1285 efx->phy_type = nvconfig->board_v2.port0_phy_type;
1286 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1287
1288 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1289 falcon_spi_device_init(
1290 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1291 le32_to_cpu(nvconfig->board_v3
1292 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1293 falcon_spi_device_init(
1294 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1295 le32_to_cpu(nvconfig->board_v3
1296 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1297 }
1298
1299 /* Read the MAC addresses */
1300 memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1301
1302 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1303 efx->phy_type, efx->mdio.prtad);
1304
1305 rc = falcon_probe_board(efx,
1306 le16_to_cpu(nvconfig->board_v2.board_revision));
1307 out:
1308 kfree(nvconfig);
1309 return rc;
1310 }
1311
1312 /* Probe all SPI devices on the NIC */
1313 static void falcon_probe_spi_devices(struct efx_nic *efx)
1314 {
1315 struct falcon_nic_data *nic_data = efx->nic_data;
1316 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1317 int boot_dev;
1318
1319 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1320 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1321 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1322
1323 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1324 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1325 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1326 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1327 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1328 "flash" : "EEPROM");
1329 } else {
1330 /* Disable VPD and set clock dividers to safe
1331 * values for initial programming. */
1332 boot_dev = -1;
1333 netif_dbg(efx, probe, efx->net_dev,
1334 "Booted from internal ASIC settings;"
1335 " setting SPI config\n");
1336 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1337 /* 125 MHz / 7 ~= 20 MHz */
1338 FRF_AB_EE_SF_CLOCK_DIV, 7,
1339 /* 125 MHz / 63 ~= 2 MHz */
1340 FRF_AB_EE_EE_CLOCK_DIV, 63);
1341 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1342 }
1343
1344 mutex_init(&nic_data->spi_lock);
1345
1346 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1347 falcon_spi_device_init(efx, &nic_data->spi_flash,
1348 FFE_AB_SPI_DEVICE_FLASH,
1349 default_flash_type);
1350 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1351 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1352 FFE_AB_SPI_DEVICE_EEPROM,
1353 large_eeprom_type);
1354 }
1355
1356 static int falcon_probe_nic(struct efx_nic *efx)
1357 {
1358 struct falcon_nic_data *nic_data;
1359 struct falcon_board *board;
1360 int rc;
1361
1362 /* Allocate storage for hardware specific data */
1363 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1364 if (!nic_data)
1365 return -ENOMEM;
1366 efx->nic_data = nic_data;
1367
1368 rc = -ENODEV;
1369
1370 if (efx_nic_fpga_ver(efx) != 0) {
1371 netif_err(efx, probe, efx->net_dev,
1372 "Falcon FPGA not supported\n");
1373 goto fail1;
1374 }
1375
1376 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1377 efx_oword_t nic_stat;
1378 struct pci_dev *dev;
1379 u8 pci_rev = efx->pci_dev->revision;
1380
1381 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1382 netif_err(efx, probe, efx->net_dev,
1383 "Falcon rev A0 not supported\n");
1384 goto fail1;
1385 }
1386 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1387 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1388 netif_err(efx, probe, efx->net_dev,
1389 "Falcon rev A1 1G not supported\n");
1390 goto fail1;
1391 }
1392 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1393 netif_err(efx, probe, efx->net_dev,
1394 "Falcon rev A1 PCI-X not supported\n");
1395 goto fail1;
1396 }
1397
1398 dev = pci_dev_get(efx->pci_dev);
1399 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1400 dev))) {
1401 if (dev->bus == efx->pci_dev->bus &&
1402 dev->devfn == efx->pci_dev->devfn + 1) {
1403 nic_data->pci_dev2 = dev;
1404 break;
1405 }
1406 }
1407 if (!nic_data->pci_dev2) {
1408 netif_err(efx, probe, efx->net_dev,
1409 "failed to find secondary function\n");
1410 rc = -ENODEV;
1411 goto fail2;
1412 }
1413 }
1414
1415 /* Now we can reset the NIC */
1416 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1417 if (rc) {
1418 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1419 goto fail3;
1420 }
1421
1422 /* Allocate memory for INT_KER */
1423 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1424 if (rc)
1425 goto fail4;
1426 BUG_ON(efx->irq_status.dma_addr & 0x0f);
1427
1428 netif_dbg(efx, probe, efx->net_dev,
1429 "INT_KER at %llx (virt %p phys %llx)\n",
1430 (u64)efx->irq_status.dma_addr,
1431 efx->irq_status.addr,
1432 (u64)virt_to_phys(efx->irq_status.addr));
1433
1434 falcon_probe_spi_devices(efx);
1435
1436 /* Read in the non-volatile configuration */
1437 rc = falcon_probe_nvconfig(efx);
1438 if (rc) {
1439 if (rc == -EINVAL)
1440 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1441 goto fail5;
1442 }
1443
1444 /* Initialise I2C adapter */
1445 board = falcon_board(efx);
1446 board->i2c_adap.owner = THIS_MODULE;
1447 board->i2c_data = falcon_i2c_bit_operations;
1448 board->i2c_data.data = efx;
1449 board->i2c_adap.algo_data = &board->i2c_data;
1450 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1451 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1452 sizeof(board->i2c_adap.name));
1453 rc = i2c_bit_add_bus(&board->i2c_adap);
1454 if (rc)
1455 goto fail5;
1456
1457 rc = falcon_board(efx)->type->init(efx);
1458 if (rc) {
1459 netif_err(efx, probe, efx->net_dev,
1460 "failed to initialise board\n");
1461 goto fail6;
1462 }
1463
1464 nic_data->stats_disable_count = 1;
1465 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1466 (unsigned long)efx);
1467
1468 return 0;
1469
1470 fail6:
1471 BUG_ON(i2c_del_adapter(&board->i2c_adap));
1472 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1473 fail5:
1474 efx_nic_free_buffer(efx, &efx->irq_status);
1475 fail4:
1476 fail3:
1477 if (nic_data->pci_dev2) {
1478 pci_dev_put(nic_data->pci_dev2);
1479 nic_data->pci_dev2 = NULL;
1480 }
1481 fail2:
1482 fail1:
1483 kfree(efx->nic_data);
1484 return rc;
1485 }
1486
1487 static void falcon_init_rx_cfg(struct efx_nic *efx)
1488 {
1489 /* Prior to Siena the RX DMA engine will split each frame at
1490 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1491 * be so large that that never happens. */
1492 const unsigned huge_buf_size = (3 * 4096) >> 5;
1493 /* RX control FIFO thresholds (32 entries) */
1494 const unsigned ctrl_xon_thr = 20;
1495 const unsigned ctrl_xoff_thr = 25;
1496 /* RX data FIFO thresholds (256-byte units; size varies) */
1497 int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1498 int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1499 efx_oword_t reg;
1500
1501 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1502 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1503 /* Data FIFO size is 5.5K */
1504 if (data_xon_thr < 0)
1505 data_xon_thr = 512 >> 8;
1506 if (data_xoff_thr < 0)
1507 data_xoff_thr = 2048 >> 8;
1508 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1509 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1510 huge_buf_size);
1511 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1512 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1513 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1514 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1515 } else {
1516 /* Data FIFO size is 80K; register fields moved */
1517 if (data_xon_thr < 0)
1518 data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1519 if (data_xoff_thr < 0)
1520 data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1521 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1522 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1523 huge_buf_size);
1524 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1525 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1526 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1527 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1528 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1529
1530 /* Enable hash insertion. This is broken for the
1531 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1532 * IPv4 hashes. */
1533 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1534 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1535 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1536 }
1537 /* Always enable XOFF signal from RX FIFO. We enable
1538 * or disable transmission of pause frames at the MAC. */
1539 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1540 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1541 }
1542
1543 /* This call performs hardware-specific global initialisation, such as
1544 * defining the descriptor cache sizes and number of RSS channels.
1545 * It does not set up any buffers, descriptor rings or event queues.
1546 */
1547 static int falcon_init_nic(struct efx_nic *efx)
1548 {
1549 efx_oword_t temp;
1550 int rc;
1551
1552 /* Use on-chip SRAM */
1553 efx_reado(efx, &temp, FR_AB_NIC_STAT);
1554 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1555 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1556
1557 rc = falcon_reset_sram(efx);
1558 if (rc)
1559 return rc;
1560
1561 /* Clear the parity enables on the TX data fifos as
1562 * they produce false parity errors because of timing issues
1563 */
1564 if (EFX_WORKAROUND_5129(efx)) {
1565 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1566 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1567 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1568 }
1569
1570 if (EFX_WORKAROUND_7244(efx)) {
1571 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1572 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1573 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1574 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1575 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1576 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1577 }
1578
1579 /* XXX This is documented only for Falcon A0/A1 */
1580 /* Setup RX. Wait for descriptor is broken and must
1581 * be disabled. RXDP recovery shouldn't be needed, but is.
1582 */
1583 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1584 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1585 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1586 if (EFX_WORKAROUND_5583(efx))
1587 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1588 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1589
1590 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1591 * descriptors (which is bad).
1592 */
1593 efx_reado(efx, &temp, FR_AZ_TX_CFG);
1594 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1595 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1596
1597 falcon_init_rx_cfg(efx);
1598
1599 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1600 /* Set hash key for IPv4 */
1601 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1602 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1603
1604 /* Set destination of both TX and RX Flush events */
1605 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1606 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1607 }
1608
1609 efx_nic_init_common(efx);
1610
1611 return 0;
1612 }
1613
1614 static void falcon_remove_nic(struct efx_nic *efx)
1615 {
1616 struct falcon_nic_data *nic_data = efx->nic_data;
1617 struct falcon_board *board = falcon_board(efx);
1618 int rc;
1619
1620 board->type->fini(efx);
1621
1622 /* Remove I2C adapter and clear it in preparation for a retry */
1623 rc = i2c_del_adapter(&board->i2c_adap);
1624 BUG_ON(rc);
1625 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1626
1627 efx_nic_free_buffer(efx, &efx->irq_status);
1628
1629 __falcon_reset_hw(efx, RESET_TYPE_ALL);
1630
1631 /* Release the second function after the reset */
1632 if (nic_data->pci_dev2) {
1633 pci_dev_put(nic_data->pci_dev2);
1634 nic_data->pci_dev2 = NULL;
1635 }
1636
1637 /* Tear down the private nic state */
1638 kfree(efx->nic_data);
1639 efx->nic_data = NULL;
1640 }
1641
1642 static void falcon_update_nic_stats(struct efx_nic *efx)
1643 {
1644 struct falcon_nic_data *nic_data = efx->nic_data;
1645 efx_oword_t cnt;
1646
1647 if (nic_data->stats_disable_count)
1648 return;
1649
1650 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1651 efx->n_rx_nodesc_drop_cnt +=
1652 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1653
1654 if (nic_data->stats_pending &&
1655 *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1656 nic_data->stats_pending = false;
1657 rmb(); /* read the done flag before the stats */
1658 efx->mac_op->update_stats(efx);
1659 }
1660 }
1661
1662 void falcon_start_nic_stats(struct efx_nic *efx)
1663 {
1664 struct falcon_nic_data *nic_data = efx->nic_data;
1665
1666 spin_lock_bh(&efx->stats_lock);
1667 if (--nic_data->stats_disable_count == 0)
1668 falcon_stats_request(efx);
1669 spin_unlock_bh(&efx->stats_lock);
1670 }
1671
1672 void falcon_stop_nic_stats(struct efx_nic *efx)
1673 {
1674 struct falcon_nic_data *nic_data = efx->nic_data;
1675 int i;
1676
1677 might_sleep();
1678
1679 spin_lock_bh(&efx->stats_lock);
1680 ++nic_data->stats_disable_count;
1681 spin_unlock_bh(&efx->stats_lock);
1682
1683 del_timer_sync(&nic_data->stats_timer);
1684
1685 /* Wait enough time for the most recent transfer to
1686 * complete. */
1687 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1688 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1689 break;
1690 msleep(1);
1691 }
1692
1693 spin_lock_bh(&efx->stats_lock);
1694 falcon_stats_complete(efx);
1695 spin_unlock_bh(&efx->stats_lock);
1696 }
1697
1698 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1699 {
1700 falcon_board(efx)->type->set_id_led(efx, mode);
1701 }
1702
1703 /**************************************************************************
1704 *
1705 * Wake on LAN
1706 *
1707 **************************************************************************
1708 */
1709
1710 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1711 {
1712 wol->supported = 0;
1713 wol->wolopts = 0;
1714 memset(&wol->sopass, 0, sizeof(wol->sopass));
1715 }
1716
1717 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1718 {
1719 if (type != 0)
1720 return -EINVAL;
1721 return 0;
1722 }
1723
1724 /**************************************************************************
1725 *
1726 * Revision-dependent attributes used by efx.c and nic.c
1727 *
1728 **************************************************************************
1729 */
1730
1731 struct efx_nic_type falcon_a1_nic_type = {
1732 .probe = falcon_probe_nic,
1733 .remove = falcon_remove_nic,
1734 .init = falcon_init_nic,
1735 .fini = efx_port_dummy_op_void,
1736 .monitor = falcon_monitor,
1737 .reset = falcon_reset_hw,
1738 .probe_port = falcon_probe_port,
1739 .remove_port = falcon_remove_port,
1740 .handle_global_event = falcon_handle_global_event,
1741 .prepare_flush = falcon_prepare_flush,
1742 .update_stats = falcon_update_nic_stats,
1743 .start_stats = falcon_start_nic_stats,
1744 .stop_stats = falcon_stop_nic_stats,
1745 .set_id_led = falcon_set_id_led,
1746 .push_irq_moderation = falcon_push_irq_moderation,
1747 .push_multicast_hash = falcon_push_multicast_hash,
1748 .reconfigure_port = falcon_reconfigure_port,
1749 .get_wol = falcon_get_wol,
1750 .set_wol = falcon_set_wol,
1751 .resume_wol = efx_port_dummy_op_void,
1752 .test_nvram = falcon_test_nvram,
1753 .default_mac_ops = &falcon_xmac_operations,
1754
1755 .revision = EFX_REV_FALCON_A1,
1756 .mem_map_size = 0x20000,
1757 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1758 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1759 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1760 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1761 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1762 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1763 .rx_buffer_padding = 0x24,
1764 .max_interrupt_mode = EFX_INT_MODE_MSI,
1765 .phys_addr_channels = 4,
1766 .tx_dc_base = 0x130000,
1767 .rx_dc_base = 0x100000,
1768 .offload_features = NETIF_F_IP_CSUM,
1769 .reset_world_flags = ETH_RESET_IRQ,
1770 };
1771
1772 struct efx_nic_type falcon_b0_nic_type = {
1773 .probe = falcon_probe_nic,
1774 .remove = falcon_remove_nic,
1775 .init = falcon_init_nic,
1776 .fini = efx_port_dummy_op_void,
1777 .monitor = falcon_monitor,
1778 .reset = falcon_reset_hw,
1779 .probe_port = falcon_probe_port,
1780 .remove_port = falcon_remove_port,
1781 .handle_global_event = falcon_handle_global_event,
1782 .prepare_flush = falcon_prepare_flush,
1783 .update_stats = falcon_update_nic_stats,
1784 .start_stats = falcon_start_nic_stats,
1785 .stop_stats = falcon_stop_nic_stats,
1786 .set_id_led = falcon_set_id_led,
1787 .push_irq_moderation = falcon_push_irq_moderation,
1788 .push_multicast_hash = falcon_push_multicast_hash,
1789 .reconfigure_port = falcon_reconfigure_port,
1790 .get_wol = falcon_get_wol,
1791 .set_wol = falcon_set_wol,
1792 .resume_wol = efx_port_dummy_op_void,
1793 .test_registers = falcon_b0_test_registers,
1794 .test_nvram = falcon_test_nvram,
1795 .default_mac_ops = &falcon_xmac_operations,
1796
1797 .revision = EFX_REV_FALCON_B0,
1798 /* Map everything up to and including the RSS indirection
1799 * table. Don't map MSI-X table, MSI-X PBA since Linux
1800 * requires that they not be mapped. */
1801 .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1802 FR_BZ_RX_INDIRECTION_TBL_STEP *
1803 FR_BZ_RX_INDIRECTION_TBL_ROWS),
1804 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1805 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1806 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1807 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1808 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1809 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1810 .rx_buffer_hash_size = 0x10,
1811 .rx_buffer_padding = 0,
1812 .max_interrupt_mode = EFX_INT_MODE_MSIX,
1813 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1814 * interrupt handler only supports 32
1815 * channels */
1816 .tx_dc_base = 0x130000,
1817 .rx_dc_base = 0x100000,
1818 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1819 .reset_world_flags = ETH_RESET_IRQ,
1820 };
1821
This page took 0.115289 seconds and 5 git commands to generate.