sfc: Remove unused field efx_channel::reset_work
[deliverable/linux.git] / drivers / net / sfc / net_driver.h
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/version.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_vlan.h>
21 #include <linux/timer.h>
22 #include <linux/mii.h>
23 #include <linux/list.h>
24 #include <linux/pci.h>
25 #include <linux/device.h>
26 #include <linux/highmem.h>
27 #include <linux/workqueue.h>
28 #include <linux/inet_lro.h>
29 #include <linux/i2c.h>
30
31 #include "enum.h"
32 #include "bitfield.h"
33
34 #define EFX_MAX_LRO_DESCRIPTORS 8
35 #define EFX_MAX_LRO_AGGR MAX_SKB_FRAGS
36
37 /**************************************************************************
38 *
39 * Build definitions
40 *
41 **************************************************************************/
42 #ifndef EFX_DRIVER_NAME
43 #define EFX_DRIVER_NAME "sfc"
44 #endif
45 #define EFX_DRIVER_VERSION "2.2"
46
47 #ifdef EFX_ENABLE_DEBUG
48 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
49 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
50 #else
51 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
52 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
53 #endif
54
55 /* Un-rate-limited logging */
56 #define EFX_ERR(efx, fmt, args...) \
57 dev_err(&((efx)->pci_dev->dev), "ERR: %s " fmt, efx_dev_name(efx), ##args)
58
59 #define EFX_INFO(efx, fmt, args...) \
60 dev_info(&((efx)->pci_dev->dev), "INFO: %s " fmt, efx_dev_name(efx), ##args)
61
62 #ifdef EFX_ENABLE_DEBUG
63 #define EFX_LOG(efx, fmt, args...) \
64 dev_info(&((efx)->pci_dev->dev), "DBG: %s " fmt, efx_dev_name(efx), ##args)
65 #else
66 #define EFX_LOG(efx, fmt, args...) \
67 dev_dbg(&((efx)->pci_dev->dev), "DBG: %s " fmt, efx_dev_name(efx), ##args)
68 #endif
69
70 #define EFX_TRACE(efx, fmt, args...) do {} while (0)
71
72 #define EFX_REGDUMP(efx, fmt, args...) do {} while (0)
73
74 /* Rate-limited logging */
75 #define EFX_ERR_RL(efx, fmt, args...) \
76 do {if (net_ratelimit()) EFX_ERR(efx, fmt, ##args); } while (0)
77
78 #define EFX_INFO_RL(efx, fmt, args...) \
79 do {if (net_ratelimit()) EFX_INFO(efx, fmt, ##args); } while (0)
80
81 #define EFX_LOG_RL(efx, fmt, args...) \
82 do {if (net_ratelimit()) EFX_LOG(efx, fmt, ##args); } while (0)
83
84 /**************************************************************************
85 *
86 * Efx data structures
87 *
88 **************************************************************************/
89
90 #define EFX_MAX_CHANNELS 32
91 #define EFX_MAX_TX_QUEUES 1
92 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
93
94 /**
95 * struct efx_special_buffer - An Efx special buffer
96 * @addr: CPU base address of the buffer
97 * @dma_addr: DMA base address of the buffer
98 * @len: Buffer length, in bytes
99 * @index: Buffer index within controller;s buffer table
100 * @entries: Number of buffer table entries
101 *
102 * Special buffers are used for the event queues and the TX and RX
103 * descriptor queues for each channel. They are *not* used for the
104 * actual transmit and receive buffers.
105 *
106 * Note that for Falcon, TX and RX descriptor queues live in host memory.
107 * Allocation and freeing procedures must take this into account.
108 */
109 struct efx_special_buffer {
110 void *addr;
111 dma_addr_t dma_addr;
112 unsigned int len;
113 int index;
114 int entries;
115 };
116
117 /**
118 * struct efx_tx_buffer - An Efx TX buffer
119 * @skb: The associated socket buffer.
120 * Set only on the final fragment of a packet; %NULL for all other
121 * fragments. When this fragment completes, then we can free this
122 * skb.
123 * @tsoh: The associated TSO header structure, or %NULL if this
124 * buffer is not a TSO header.
125 * @dma_addr: DMA address of the fragment.
126 * @len: Length of this fragment.
127 * This field is zero when the queue slot is empty.
128 * @continuation: True if this fragment is not the end of a packet.
129 * @unmap_single: True if pci_unmap_single should be used.
130 * @unmap_addr: DMA address to unmap
131 * @unmap_len: Length of this fragment to unmap
132 */
133 struct efx_tx_buffer {
134 const struct sk_buff *skb;
135 struct efx_tso_header *tsoh;
136 dma_addr_t dma_addr;
137 unsigned short len;
138 unsigned char continuation;
139 unsigned char unmap_single;
140 dma_addr_t unmap_addr;
141 unsigned short unmap_len;
142 };
143
144 /**
145 * struct efx_tx_queue - An Efx TX queue
146 *
147 * This is a ring buffer of TX fragments.
148 * Since the TX completion path always executes on the same
149 * CPU and the xmit path can operate on different CPUs,
150 * performance is increased by ensuring that the completion
151 * path and the xmit path operate on different cache lines.
152 * This is particularly important if the xmit path is always
153 * executing on one CPU which is different from the completion
154 * path. There is also a cache line for members which are
155 * read but not written on the fast path.
156 *
157 * @efx: The associated Efx NIC
158 * @queue: DMA queue number
159 * @used: Queue is used by net driver
160 * @channel: The associated channel
161 * @buffer: The software buffer ring
162 * @txd: The hardware descriptor ring
163 * @read_count: Current read pointer.
164 * This is the number of buffers that have been removed from both rings.
165 * @stopped: Stopped flag.
166 * Set if this TX queue is currently stopping its port.
167 * @insert_count: Current insert pointer
168 * This is the number of buffers that have been added to the
169 * software ring.
170 * @write_count: Current write pointer
171 * This is the number of buffers that have been added to the
172 * hardware ring.
173 * @old_read_count: The value of read_count when last checked.
174 * This is here for performance reasons. The xmit path will
175 * only get the up-to-date value of read_count if this
176 * variable indicates that the queue is full. This is to
177 * avoid cache-line ping-pong between the xmit path and the
178 * completion path.
179 * @tso_headers_free: A list of TSO headers allocated for this TX queue
180 * that are not in use, and so available for new TSO sends. The list
181 * is protected by the TX queue lock.
182 * @tso_bursts: Number of times TSO xmit invoked by kernel
183 * @tso_long_headers: Number of packets with headers too long for standard
184 * blocks
185 * @tso_packets: Number of packets via the TSO xmit path
186 */
187 struct efx_tx_queue {
188 /* Members which don't change on the fast path */
189 struct efx_nic *efx ____cacheline_aligned_in_smp;
190 int queue;
191 int used;
192 struct efx_channel *channel;
193 struct efx_nic *nic;
194 struct efx_tx_buffer *buffer;
195 struct efx_special_buffer txd;
196
197 /* Members used mainly on the completion path */
198 unsigned int read_count ____cacheline_aligned_in_smp;
199 int stopped;
200
201 /* Members used only on the xmit path */
202 unsigned int insert_count ____cacheline_aligned_in_smp;
203 unsigned int write_count;
204 unsigned int old_read_count;
205 struct efx_tso_header *tso_headers_free;
206 unsigned int tso_bursts;
207 unsigned int tso_long_headers;
208 unsigned int tso_packets;
209 };
210
211 /**
212 * struct efx_rx_buffer - An Efx RX data buffer
213 * @dma_addr: DMA base address of the buffer
214 * @skb: The associated socket buffer, if any.
215 * If both this and page are %NULL, the buffer slot is currently free.
216 * @page: The associated page buffer, if any.
217 * If both this and skb are %NULL, the buffer slot is currently free.
218 * @data: Pointer to ethernet header
219 * @len: Buffer length, in bytes.
220 * @unmap_addr: DMA address to unmap
221 */
222 struct efx_rx_buffer {
223 dma_addr_t dma_addr;
224 struct sk_buff *skb;
225 struct page *page;
226 char *data;
227 unsigned int len;
228 dma_addr_t unmap_addr;
229 };
230
231 /**
232 * struct efx_rx_queue - An Efx RX queue
233 * @efx: The associated Efx NIC
234 * @queue: DMA queue number
235 * @used: Queue is used by net driver
236 * @channel: The associated channel
237 * @buffer: The software buffer ring
238 * @rxd: The hardware descriptor ring
239 * @added_count: Number of buffers added to the receive queue.
240 * @notified_count: Number of buffers given to NIC (<= @added_count).
241 * @removed_count: Number of buffers removed from the receive queue.
242 * @add_lock: Receive queue descriptor add spin lock.
243 * This lock must be held in order to add buffers to the RX
244 * descriptor ring (rxd and buffer) and to update added_count (but
245 * not removed_count).
246 * @max_fill: RX descriptor maximum fill level (<= ring size)
247 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
248 * (<= @max_fill)
249 * @fast_fill_limit: The level to which a fast fill will fill
250 * (@fast_fill_trigger <= @fast_fill_limit <= @max_fill)
251 * @min_fill: RX descriptor minimum non-zero fill level.
252 * This records the minimum fill level observed when a ring
253 * refill was triggered.
254 * @min_overfill: RX descriptor minimum overflow fill level.
255 * This records the minimum fill level at which RX queue
256 * overflow was observed. It should never be set.
257 * @alloc_page_count: RX allocation strategy counter.
258 * @alloc_skb_count: RX allocation strategy counter.
259 * @work: Descriptor push work thread
260 * @buf_page: Page for next RX buffer.
261 * We can use a single page for multiple RX buffers. This tracks
262 * the remaining space in the allocation.
263 * @buf_dma_addr: Page's DMA address.
264 * @buf_data: Page's host address.
265 */
266 struct efx_rx_queue {
267 struct efx_nic *efx;
268 int queue;
269 int used;
270 struct efx_channel *channel;
271 struct efx_rx_buffer *buffer;
272 struct efx_special_buffer rxd;
273
274 int added_count;
275 int notified_count;
276 int removed_count;
277 spinlock_t add_lock;
278 unsigned int max_fill;
279 unsigned int fast_fill_trigger;
280 unsigned int fast_fill_limit;
281 unsigned int min_fill;
282 unsigned int min_overfill;
283 unsigned int alloc_page_count;
284 unsigned int alloc_skb_count;
285 struct delayed_work work;
286 unsigned int slow_fill_count;
287
288 struct page *buf_page;
289 dma_addr_t buf_dma_addr;
290 char *buf_data;
291 };
292
293 /**
294 * struct efx_buffer - An Efx general-purpose buffer
295 * @addr: host base address of the buffer
296 * @dma_addr: DMA base address of the buffer
297 * @len: Buffer length, in bytes
298 *
299 * Falcon uses these buffers for its interrupt status registers and
300 * MAC stats dumps.
301 */
302 struct efx_buffer {
303 void *addr;
304 dma_addr_t dma_addr;
305 unsigned int len;
306 };
307
308
309 /* Flags for channel->used_flags */
310 #define EFX_USED_BY_RX 1
311 #define EFX_USED_BY_TX 2
312 #define EFX_USED_BY_RX_TX (EFX_USED_BY_RX | EFX_USED_BY_TX)
313
314 enum efx_rx_alloc_method {
315 RX_ALLOC_METHOD_AUTO = 0,
316 RX_ALLOC_METHOD_SKB = 1,
317 RX_ALLOC_METHOD_PAGE = 2,
318 };
319
320 /**
321 * struct efx_channel - An Efx channel
322 *
323 * A channel comprises an event queue, at least one TX queue, at least
324 * one RX queue, and an associated tasklet for processing the event
325 * queue.
326 *
327 * @efx: Associated Efx NIC
328 * @evqnum: Event queue number
329 * @channel: Channel instance number
330 * @used_flags: Channel is used by net driver
331 * @enabled: Channel enabled indicator
332 * @irq: IRQ number (MSI and MSI-X only)
333 * @has_interrupt: Channel has an interrupt
334 * @irq_moderation: IRQ moderation value (in us)
335 * @napi_dev: Net device used with NAPI
336 * @napi_str: NAPI control structure
337 * @reset_work: Scheduled reset work thread
338 * @work_pending: Is work pending via NAPI?
339 * @eventq: Event queue buffer
340 * @eventq_read_ptr: Event queue read pointer
341 * @last_eventq_read_ptr: Last event queue read pointer value.
342 * @eventq_magic: Event queue magic value for driver-generated test events
343 * @lro_mgr: LRO state
344 * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
345 * and diagnostic counters
346 * @rx_alloc_push_pages: RX allocation method currently in use for pushing
347 * descriptors
348 * @rx_alloc_pop_pages: RX allocation method currently in use for popping
349 * descriptors
350 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
351 * @n_rx_ip_frag_err: Count of RX IP fragment errors
352 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
353 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
354 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
355 * @n_rx_overlength: Count of RX_OVERLENGTH errors
356 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
357 */
358 struct efx_channel {
359 struct efx_nic *efx;
360 int evqnum;
361 int channel;
362 int used_flags;
363 int enabled;
364 int irq;
365 unsigned int has_interrupt;
366 unsigned int irq_moderation;
367 struct net_device *napi_dev;
368 struct napi_struct napi_str;
369 int work_pending;
370 struct efx_special_buffer eventq;
371 unsigned int eventq_read_ptr;
372 unsigned int last_eventq_read_ptr;
373 unsigned int eventq_magic;
374
375 struct net_lro_mgr lro_mgr;
376 int rx_alloc_level;
377 int rx_alloc_push_pages;
378 int rx_alloc_pop_pages;
379
380 unsigned n_rx_tobe_disc;
381 unsigned n_rx_ip_frag_err;
382 unsigned n_rx_ip_hdr_chksum_err;
383 unsigned n_rx_tcp_udp_chksum_err;
384 unsigned n_rx_frm_trunc;
385 unsigned n_rx_overlength;
386 unsigned n_skbuff_leaks;
387
388 /* Used to pipeline received packets in order to optimise memory
389 * access with prefetches.
390 */
391 struct efx_rx_buffer *rx_pkt;
392 int rx_pkt_csummed;
393
394 };
395
396 /**
397 * struct efx_blinker - S/W LED blinking context
398 * @led_num: LED ID (board-specific meaning)
399 * @state: Current state - on or off
400 * @resubmit: Timer resubmission flag
401 * @timer: Control timer for blinking
402 */
403 struct efx_blinker {
404 int led_num;
405 int state;
406 int resubmit;
407 struct timer_list timer;
408 };
409
410
411 /**
412 * struct efx_board - board information
413 * @type: Board model type
414 * @major: Major rev. ('A', 'B' ...)
415 * @minor: Minor rev. (0, 1, ...)
416 * @init: Initialisation function
417 * @init_leds: Sets up board LEDs
418 * @set_fault_led: Turns the fault LED on or off
419 * @blink: Starts/stops blinking
420 * @fini: Cleanup function
421 * @blinker: used to blink LEDs in software
422 * @hwmon_client: I2C client for hardware monitor
423 * @ioexp_client: I2C client for power/port control
424 */
425 struct efx_board {
426 int type;
427 int major;
428 int minor;
429 int (*init) (struct efx_nic *nic);
430 /* As the LEDs are typically attached to the PHY, LEDs
431 * have a separate init callback that happens later than
432 * board init. */
433 int (*init_leds)(struct efx_nic *efx);
434 void (*set_fault_led) (struct efx_nic *efx, int state);
435 void (*blink) (struct efx_nic *efx, int start);
436 void (*fini) (struct efx_nic *nic);
437 struct efx_blinker blinker;
438 struct i2c_client *hwmon_client, *ioexp_client;
439 };
440
441 #define STRING_TABLE_LOOKUP(val, member) \
442 member ## _names[val]
443
444 enum efx_int_mode {
445 /* Be careful if altering to correct macro below */
446 EFX_INT_MODE_MSIX = 0,
447 EFX_INT_MODE_MSI = 1,
448 EFX_INT_MODE_LEGACY = 2,
449 EFX_INT_MODE_MAX /* Insert any new items before this */
450 };
451 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
452
453 enum phy_type {
454 PHY_TYPE_NONE = 0,
455 PHY_TYPE_CX4_RTMR = 1,
456 PHY_TYPE_1G_ALASKA = 2,
457 PHY_TYPE_10XPRESS = 3,
458 PHY_TYPE_XFP = 4,
459 PHY_TYPE_PM8358 = 6,
460 PHY_TYPE_MAX /* Insert any new items before this */
461 };
462
463 #define PHY_ADDR_INVALID 0xff
464
465 enum nic_state {
466 STATE_INIT = 0,
467 STATE_RUNNING = 1,
468 STATE_FINI = 2,
469 STATE_RESETTING = 3, /* rtnl_lock always held */
470 STATE_DISABLED = 4,
471 STATE_MAX,
472 };
473
474 /*
475 * Alignment of page-allocated RX buffers
476 *
477 * Controls the number of bytes inserted at the start of an RX buffer.
478 * This is the equivalent of NET_IP_ALIGN [which controls the alignment
479 * of the skb->head for hardware DMA].
480 */
481 #if defined(__i386__) || defined(__x86_64__)
482 #define EFX_PAGE_IP_ALIGN 0
483 #else
484 #define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
485 #endif
486
487 /*
488 * Alignment of the skb->head which wraps a page-allocated RX buffer
489 *
490 * The skb allocated to wrap an rx_buffer can have this alignment. Since
491 * the data is memcpy'd from the rx_buf, it does not need to be equal to
492 * EFX_PAGE_IP_ALIGN.
493 */
494 #define EFX_PAGE_SKB_ALIGN 2
495
496 /* Forward declaration */
497 struct efx_nic;
498
499 /* Pseudo bit-mask flow control field */
500 enum efx_fc_type {
501 EFX_FC_RX = 1,
502 EFX_FC_TX = 2,
503 EFX_FC_AUTO = 4,
504 };
505
506 /**
507 * struct efx_phy_operations - Efx PHY operations table
508 * @init: Initialise PHY
509 * @fini: Shut down PHY
510 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
511 * @clear_interrupt: Clear down interrupt
512 * @blink: Blink LEDs
513 * @check_hw: Check hardware
514 * @reset_xaui: Reset XAUI side of PHY for (software sequenced reset)
515 * @mmds: MMD presence mask
516 * @loopbacks: Supported loopback modes mask
517 */
518 struct efx_phy_operations {
519 int (*init) (struct efx_nic *efx);
520 void (*fini) (struct efx_nic *efx);
521 void (*reconfigure) (struct efx_nic *efx);
522 void (*clear_interrupt) (struct efx_nic *efx);
523 int (*check_hw) (struct efx_nic *efx);
524 void (*reset_xaui) (struct efx_nic *efx);
525 int mmds;
526 unsigned loopbacks;
527 };
528
529 /*
530 * Efx extended statistics
531 *
532 * Not all statistics are provided by all supported MACs. The purpose
533 * is this structure is to contain the raw statistics provided by each
534 * MAC.
535 */
536 struct efx_mac_stats {
537 u64 tx_bytes;
538 u64 tx_good_bytes;
539 u64 tx_bad_bytes;
540 unsigned long tx_packets;
541 unsigned long tx_bad;
542 unsigned long tx_pause;
543 unsigned long tx_control;
544 unsigned long tx_unicast;
545 unsigned long tx_multicast;
546 unsigned long tx_broadcast;
547 unsigned long tx_lt64;
548 unsigned long tx_64;
549 unsigned long tx_65_to_127;
550 unsigned long tx_128_to_255;
551 unsigned long tx_256_to_511;
552 unsigned long tx_512_to_1023;
553 unsigned long tx_1024_to_15xx;
554 unsigned long tx_15xx_to_jumbo;
555 unsigned long tx_gtjumbo;
556 unsigned long tx_collision;
557 unsigned long tx_single_collision;
558 unsigned long tx_multiple_collision;
559 unsigned long tx_excessive_collision;
560 unsigned long tx_deferred;
561 unsigned long tx_late_collision;
562 unsigned long tx_excessive_deferred;
563 unsigned long tx_non_tcpudp;
564 unsigned long tx_mac_src_error;
565 unsigned long tx_ip_src_error;
566 u64 rx_bytes;
567 u64 rx_good_bytes;
568 u64 rx_bad_bytes;
569 unsigned long rx_packets;
570 unsigned long rx_good;
571 unsigned long rx_bad;
572 unsigned long rx_pause;
573 unsigned long rx_control;
574 unsigned long rx_unicast;
575 unsigned long rx_multicast;
576 unsigned long rx_broadcast;
577 unsigned long rx_lt64;
578 unsigned long rx_64;
579 unsigned long rx_65_to_127;
580 unsigned long rx_128_to_255;
581 unsigned long rx_256_to_511;
582 unsigned long rx_512_to_1023;
583 unsigned long rx_1024_to_15xx;
584 unsigned long rx_15xx_to_jumbo;
585 unsigned long rx_gtjumbo;
586 unsigned long rx_bad_lt64;
587 unsigned long rx_bad_64_to_15xx;
588 unsigned long rx_bad_15xx_to_jumbo;
589 unsigned long rx_bad_gtjumbo;
590 unsigned long rx_overflow;
591 unsigned long rx_missed;
592 unsigned long rx_false_carrier;
593 unsigned long rx_symbol_error;
594 unsigned long rx_align_error;
595 unsigned long rx_length_error;
596 unsigned long rx_internal_error;
597 unsigned long rx_good_lt64;
598 };
599
600 /* Number of bits used in a multicast filter hash address */
601 #define EFX_MCAST_HASH_BITS 8
602
603 /* Number of (single-bit) entries in a multicast filter hash */
604 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
605
606 /* An Efx multicast filter hash */
607 union efx_multicast_hash {
608 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
609 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
610 };
611
612 /**
613 * struct efx_nic - an Efx NIC
614 * @name: Device name (net device name or bus id before net device registered)
615 * @pci_dev: The PCI device
616 * @type: Controller type attributes
617 * @legacy_irq: IRQ number
618 * @workqueue: Workqueue for port reconfigures and the HW monitor.
619 * Work items do not hold and must not acquire RTNL.
620 * @reset_workqueue: Workqueue for resets. Work item will acquire RTNL.
621 * @reset_work: Scheduled reset workitem
622 * @monitor_work: Hardware monitor workitem
623 * @membase_phys: Memory BAR value as physical address
624 * @membase: Memory BAR value
625 * @biu_lock: BIU (bus interface unit) lock
626 * @interrupt_mode: Interrupt mode
627 * @i2c_adap: I2C adapter
628 * @board_info: Board-level information
629 * @state: Device state flag. Serialised by the rtnl_lock.
630 * @reset_pending: Pending reset method (normally RESET_TYPE_NONE)
631 * @tx_queue: TX DMA queues
632 * @rx_queue: RX DMA queues
633 * @channel: Channels
634 * @rss_queues: Number of RSS queues
635 * @rx_buffer_len: RX buffer length
636 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
637 * @irq_status: Interrupt status buffer
638 * @last_irq_cpu: Last CPU to handle interrupt.
639 * This register is written with the SMP processor ID whenever an
640 * interrupt is handled. It is used by falcon_test_interrupt()
641 * to verify that an interrupt has occurred.
642 * @n_rx_nodesc_drop_cnt: RX no descriptor drop count
643 * @nic_data: Hardware dependant state
644 * @mac_lock: MAC access lock. Protects @port_enabled, efx_monitor() and
645 * efx_reconfigure_port()
646 * @port_enabled: Port enabled indicator.
647 * Serialises efx_stop_all(), efx_start_all() and efx_monitor() and
648 * efx_reconfigure_work with kernel interfaces. Safe to read under any
649 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
650 * be held to modify it.
651 * @port_initialized: Port initialized?
652 * @net_dev: Operating system network device. Consider holding the rtnl lock
653 * @rx_checksum_enabled: RX checksumming enabled
654 * @netif_stop_count: Port stop count
655 * @netif_stop_lock: Port stop lock
656 * @mac_stats: MAC statistics. These include all statistics the MACs
657 * can provide. Generic code converts these into a standard
658 * &struct net_device_stats.
659 * @stats_buffer: DMA buffer for statistics
660 * @stats_lock: Statistics update lock
661 * @mac_address: Permanent MAC address
662 * @phy_type: PHY type
663 * @phy_lock: PHY access lock
664 * @phy_op: PHY interface
665 * @phy_data: PHY private data (including PHY-specific stats)
666 * @mii: PHY interface
667 * @tx_disabled: PHY transmitter turned off
668 * @link_up: Link status
669 * @link_options: Link options (MII/GMII format)
670 * @n_link_state_changes: Number of times the link has changed state
671 * @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
672 * @multicast_hash: Multicast hash table
673 * @flow_control: Flow control flags - separate RX/TX so can't use link_options
674 * @reconfigure_work: work item for dealing with PHY events
675 * @loopback_mode: Loopback status
676 * @loopback_modes: Supported loopback mode bitmask
677 * @loopback_selftest: Offline self-test private state
678 *
679 * The @priv field of the corresponding &struct net_device points to
680 * this.
681 */
682 struct efx_nic {
683 char name[IFNAMSIZ];
684 struct pci_dev *pci_dev;
685 const struct efx_nic_type *type;
686 int legacy_irq;
687 struct workqueue_struct *workqueue;
688 struct workqueue_struct *reset_workqueue;
689 struct work_struct reset_work;
690 struct delayed_work monitor_work;
691 resource_size_t membase_phys;
692 void __iomem *membase;
693 spinlock_t biu_lock;
694 enum efx_int_mode interrupt_mode;
695
696 struct i2c_adapter i2c_adap;
697 struct efx_board board_info;
698
699 enum nic_state state;
700 enum reset_type reset_pending;
701
702 struct efx_tx_queue tx_queue[EFX_MAX_TX_QUEUES];
703 struct efx_rx_queue rx_queue[EFX_MAX_RX_QUEUES];
704 struct efx_channel channel[EFX_MAX_CHANNELS];
705
706 int rss_queues;
707 unsigned int rx_buffer_len;
708 unsigned int rx_buffer_order;
709
710 struct efx_buffer irq_status;
711 volatile signed int last_irq_cpu;
712
713 unsigned n_rx_nodesc_drop_cnt;
714
715 struct falcon_nic_data *nic_data;
716
717 struct mutex mac_lock;
718 int port_enabled;
719
720 int port_initialized;
721 struct net_device *net_dev;
722 int rx_checksum_enabled;
723
724 atomic_t netif_stop_count;
725 spinlock_t netif_stop_lock;
726
727 struct efx_mac_stats mac_stats;
728 struct efx_buffer stats_buffer;
729 spinlock_t stats_lock;
730
731 unsigned char mac_address[ETH_ALEN];
732
733 enum phy_type phy_type;
734 spinlock_t phy_lock;
735 struct efx_phy_operations *phy_op;
736 void *phy_data;
737 struct mii_if_info mii;
738 unsigned tx_disabled;
739
740 int link_up;
741 unsigned int link_options;
742 unsigned int n_link_state_changes;
743
744 int promiscuous;
745 union efx_multicast_hash multicast_hash;
746 enum efx_fc_type flow_control;
747 struct work_struct reconfigure_work;
748
749 atomic_t rx_reset;
750 enum efx_loopback_mode loopback_mode;
751 unsigned int loopback_modes;
752
753 void *loopback_selftest;
754 };
755
756 static inline int efx_dev_registered(struct efx_nic *efx)
757 {
758 return efx->net_dev->reg_state == NETREG_REGISTERED;
759 }
760
761 /* Net device name, for inclusion in log messages if it has been registered.
762 * Use efx->name not efx->net_dev->name so that races with (un)registration
763 * are harmless.
764 */
765 static inline const char *efx_dev_name(struct efx_nic *efx)
766 {
767 return efx_dev_registered(efx) ? efx->name : "";
768 }
769
770 /**
771 * struct efx_nic_type - Efx device type definition
772 * @mem_bar: Memory BAR number
773 * @mem_map_size: Memory BAR mapped size
774 * @txd_ptr_tbl_base: TX descriptor ring base address
775 * @rxd_ptr_tbl_base: RX descriptor ring base address
776 * @buf_tbl_base: Buffer table base address
777 * @evq_ptr_tbl_base: Event queue pointer table base address
778 * @evq_rptr_tbl_base: Event queue read-pointer table base address
779 * @txd_ring_mask: TX descriptor ring size - 1 (must be a power of two - 1)
780 * @rxd_ring_mask: RX descriptor ring size - 1 (must be a power of two - 1)
781 * @evq_size: Event queue size (must be a power of two)
782 * @max_dma_mask: Maximum possible DMA mask
783 * @tx_dma_mask: TX DMA mask
784 * @bug5391_mask: Address mask for bug 5391 workaround
785 * @rx_xoff_thresh: RX FIFO XOFF watermark (bytes)
786 * @rx_xon_thresh: RX FIFO XON watermark (bytes)
787 * @rx_buffer_padding: Padding added to each RX buffer
788 * @max_interrupt_mode: Highest capability interrupt mode supported
789 * from &enum efx_init_mode.
790 * @phys_addr_channels: Number of channels with physically addressed
791 * descriptors
792 */
793 struct efx_nic_type {
794 unsigned int mem_bar;
795 unsigned int mem_map_size;
796 unsigned int txd_ptr_tbl_base;
797 unsigned int rxd_ptr_tbl_base;
798 unsigned int buf_tbl_base;
799 unsigned int evq_ptr_tbl_base;
800 unsigned int evq_rptr_tbl_base;
801
802 unsigned int txd_ring_mask;
803 unsigned int rxd_ring_mask;
804 unsigned int evq_size;
805 u64 max_dma_mask;
806 unsigned int tx_dma_mask;
807 unsigned bug5391_mask;
808
809 int rx_xoff_thresh;
810 int rx_xon_thresh;
811 unsigned int rx_buffer_padding;
812 unsigned int max_interrupt_mode;
813 unsigned int phys_addr_channels;
814 };
815
816 /**************************************************************************
817 *
818 * Prototypes and inline functions
819 *
820 *************************************************************************/
821
822 /* Iterate over all used channels */
823 #define efx_for_each_channel(_channel, _efx) \
824 for (_channel = &_efx->channel[0]; \
825 _channel < &_efx->channel[EFX_MAX_CHANNELS]; \
826 _channel++) \
827 if (!_channel->used_flags) \
828 continue; \
829 else
830
831 /* Iterate over all used channels with interrupts */
832 #define efx_for_each_channel_with_interrupt(_channel, _efx) \
833 for (_channel = &_efx->channel[0]; \
834 _channel < &_efx->channel[EFX_MAX_CHANNELS]; \
835 _channel++) \
836 if (!(_channel->used_flags && _channel->has_interrupt)) \
837 continue; \
838 else
839
840 /* Iterate over all used TX queues */
841 #define efx_for_each_tx_queue(_tx_queue, _efx) \
842 for (_tx_queue = &_efx->tx_queue[0]; \
843 _tx_queue < &_efx->tx_queue[EFX_MAX_TX_QUEUES]; \
844 _tx_queue++) \
845 if (!_tx_queue->used) \
846 continue; \
847 else
848
849 /* Iterate over all TX queues belonging to a channel */
850 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
851 for (_tx_queue = &_channel->efx->tx_queue[0]; \
852 _tx_queue < &_channel->efx->tx_queue[EFX_MAX_TX_QUEUES]; \
853 _tx_queue++) \
854 if ((!_tx_queue->used) || \
855 (_tx_queue->channel != _channel)) \
856 continue; \
857 else
858
859 /* Iterate over all used RX queues */
860 #define efx_for_each_rx_queue(_rx_queue, _efx) \
861 for (_rx_queue = &_efx->rx_queue[0]; \
862 _rx_queue < &_efx->rx_queue[EFX_MAX_RX_QUEUES]; \
863 _rx_queue++) \
864 if (!_rx_queue->used) \
865 continue; \
866 else
867
868 /* Iterate over all RX queues belonging to a channel */
869 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
870 for (_rx_queue = &_channel->efx->rx_queue[0]; \
871 _rx_queue < &_channel->efx->rx_queue[EFX_MAX_RX_QUEUES]; \
872 _rx_queue++) \
873 if ((!_rx_queue->used) || \
874 (_rx_queue->channel != _channel)) \
875 continue; \
876 else
877
878 /* Returns a pointer to the specified receive buffer in the RX
879 * descriptor queue.
880 */
881 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
882 unsigned int index)
883 {
884 return (&rx_queue->buffer[index]);
885 }
886
887 /* Set bit in a little-endian bitfield */
888 static inline void set_bit_le(unsigned nr, unsigned char *addr)
889 {
890 addr[nr / 8] |= (1 << (nr % 8));
891 }
892
893 /* Clear bit in a little-endian bitfield */
894 static inline void clear_bit_le(unsigned nr, unsigned char *addr)
895 {
896 addr[nr / 8] &= ~(1 << (nr % 8));
897 }
898
899
900 /**
901 * EFX_MAX_FRAME_LEN - calculate maximum frame length
902 *
903 * This calculates the maximum frame length that will be used for a
904 * given MTU. The frame length will be equal to the MTU plus a
905 * constant amount of header space and padding. This is the quantity
906 * that the net driver will program into the MAC as the maximum frame
907 * length.
908 *
909 * The 10G MAC used in Falcon requires 8-byte alignment on the frame
910 * length, so we round up to the nearest 8.
911 */
912 #define EFX_MAX_FRAME_LEN(mtu) \
913 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */) + 7) & ~7)
914
915
916 #endif /* EFX_NET_DRIVER_H */
This page took 0.090356 seconds and 6 git commands to generate.