Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / sfc / nic.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "nic.h"
20 #include "regs.h"
21 #include "io.h"
22 #include "workarounds.h"
23
24 /**************************************************************************
25 *
26 * Configurable values
27 *
28 **************************************************************************
29 */
30
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
37 */
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
40
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
43
44 /* RX FIFO XOFF watermark
45 *
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
49 */
50 int efx_nic_rx_xoff_thresh = -1;
51 module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
52 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
53
54 /* RX FIFO XON watermark
55 *
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
59 */
60 int efx_nic_rx_xon_thresh = -1;
61 module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
62 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
63
64 /* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
66 * disable it.
67 */
68 #define EFX_INT_ERROR_EXPIRE 3600
69 #define EFX_MAX_INT_ERRORS 5
70
71 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
72 */
73 #define EFX_FLUSH_INTERVAL 10
74 #define EFX_FLUSH_POLL_COUNT 100
75
76 /* Size and alignment of special buffers (4KB) */
77 #define EFX_BUF_SIZE 4096
78
79 /* Depth of RX flush request fifo */
80 #define EFX_RX_FLUSH_COUNT 4
81
82 /* Generated event code for efx_generate_test_event() */
83 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
84 (0x00010100 + (_channel)->channel)
85
86 /* Generated event code for efx_generate_fill_event() */
87 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
88 (0x00010200 + (_channel)->channel)
89
90 /**************************************************************************
91 *
92 * Solarstorm hardware access
93 *
94 **************************************************************************/
95
96 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
97 unsigned int index)
98 {
99 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
100 value, index);
101 }
102
103 /* Read the current event from the event queue */
104 static inline efx_qword_t *efx_event(struct efx_channel *channel,
105 unsigned int index)
106 {
107 return ((efx_qword_t *) (channel->eventq.addr)) + index;
108 }
109
110 /* See if an event is present
111 *
112 * We check both the high and low dword of the event for all ones. We
113 * wrote all ones when we cleared the event, and no valid event can
114 * have all ones in either its high or low dwords. This approach is
115 * robust against reordering.
116 *
117 * Note that using a single 64-bit comparison is incorrect; even
118 * though the CPU read will be atomic, the DMA write may not be.
119 */
120 static inline int efx_event_present(efx_qword_t *event)
121 {
122 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
123 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
124 }
125
126 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
127 const efx_oword_t *mask)
128 {
129 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
130 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
131 }
132
133 int efx_nic_test_registers(struct efx_nic *efx,
134 const struct efx_nic_register_test *regs,
135 size_t n_regs)
136 {
137 unsigned address = 0, i, j;
138 efx_oword_t mask, imask, original, reg, buf;
139
140 /* Falcon should be in loopback to isolate the XMAC from the PHY */
141 WARN_ON(!LOOPBACK_INTERNAL(efx));
142
143 for (i = 0; i < n_regs; ++i) {
144 address = regs[i].address;
145 mask = imask = regs[i].mask;
146 EFX_INVERT_OWORD(imask);
147
148 efx_reado(efx, &original, address);
149
150 /* bit sweep on and off */
151 for (j = 0; j < 128; j++) {
152 if (!EFX_EXTRACT_OWORD32(mask, j, j))
153 continue;
154
155 /* Test this testable bit can be set in isolation */
156 EFX_AND_OWORD(reg, original, mask);
157 EFX_SET_OWORD32(reg, j, j, 1);
158
159 efx_writeo(efx, &reg, address);
160 efx_reado(efx, &buf, address);
161
162 if (efx_masked_compare_oword(&reg, &buf, &mask))
163 goto fail;
164
165 /* Test this testable bit can be cleared in isolation */
166 EFX_OR_OWORD(reg, original, mask);
167 EFX_SET_OWORD32(reg, j, j, 0);
168
169 efx_writeo(efx, &reg, address);
170 efx_reado(efx, &buf, address);
171
172 if (efx_masked_compare_oword(&reg, &buf, &mask))
173 goto fail;
174 }
175
176 efx_writeo(efx, &original, address);
177 }
178
179 return 0;
180
181 fail:
182 netif_err(efx, hw, efx->net_dev,
183 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
184 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
185 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
186 return -EIO;
187 }
188
189 /**************************************************************************
190 *
191 * Special buffer handling
192 * Special buffers are used for event queues and the TX and RX
193 * descriptor rings.
194 *
195 *************************************************************************/
196
197 /*
198 * Initialise a special buffer
199 *
200 * This will define a buffer (previously allocated via
201 * efx_alloc_special_buffer()) in the buffer table, allowing
202 * it to be used for event queues, descriptor rings etc.
203 */
204 static void
205 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
206 {
207 efx_qword_t buf_desc;
208 int index;
209 dma_addr_t dma_addr;
210 int i;
211
212 EFX_BUG_ON_PARANOID(!buffer->addr);
213
214 /* Write buffer descriptors to NIC */
215 for (i = 0; i < buffer->entries; i++) {
216 index = buffer->index + i;
217 dma_addr = buffer->dma_addr + (i * 4096);
218 netif_dbg(efx, probe, efx->net_dev,
219 "mapping special buffer %d at %llx\n",
220 index, (unsigned long long)dma_addr);
221 EFX_POPULATE_QWORD_3(buf_desc,
222 FRF_AZ_BUF_ADR_REGION, 0,
223 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
224 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
225 efx_write_buf_tbl(efx, &buf_desc, index);
226 }
227 }
228
229 /* Unmaps a buffer and clears the buffer table entries */
230 static void
231 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
232 {
233 efx_oword_t buf_tbl_upd;
234 unsigned int start = buffer->index;
235 unsigned int end = (buffer->index + buffer->entries - 1);
236
237 if (!buffer->entries)
238 return;
239
240 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
241 buffer->index, buffer->index + buffer->entries - 1);
242
243 EFX_POPULATE_OWORD_4(buf_tbl_upd,
244 FRF_AZ_BUF_UPD_CMD, 0,
245 FRF_AZ_BUF_CLR_CMD, 1,
246 FRF_AZ_BUF_CLR_END_ID, end,
247 FRF_AZ_BUF_CLR_START_ID, start);
248 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
249 }
250
251 /*
252 * Allocate a new special buffer
253 *
254 * This allocates memory for a new buffer, clears it and allocates a
255 * new buffer ID range. It does not write into the buffer table.
256 *
257 * This call will allocate 4KB buffers, since 8KB buffers can't be
258 * used for event queues and descriptor rings.
259 */
260 static int efx_alloc_special_buffer(struct efx_nic *efx,
261 struct efx_special_buffer *buffer,
262 unsigned int len)
263 {
264 len = ALIGN(len, EFX_BUF_SIZE);
265
266 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
267 &buffer->dma_addr, GFP_KERNEL);
268 if (!buffer->addr)
269 return -ENOMEM;
270 buffer->len = len;
271 buffer->entries = len / EFX_BUF_SIZE;
272 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
273
274 /* All zeros is a potentially valid event so memset to 0xff */
275 memset(buffer->addr, 0xff, len);
276
277 /* Select new buffer ID */
278 buffer->index = efx->next_buffer_table;
279 efx->next_buffer_table += buffer->entries;
280
281 netif_dbg(efx, probe, efx->net_dev,
282 "allocating special buffers %d-%d at %llx+%x "
283 "(virt %p phys %llx)\n", buffer->index,
284 buffer->index + buffer->entries - 1,
285 (u64)buffer->dma_addr, len,
286 buffer->addr, (u64)virt_to_phys(buffer->addr));
287
288 return 0;
289 }
290
291 static void
292 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
293 {
294 if (!buffer->addr)
295 return;
296
297 netif_dbg(efx, hw, efx->net_dev,
298 "deallocating special buffers %d-%d at %llx+%x "
299 "(virt %p phys %llx)\n", buffer->index,
300 buffer->index + buffer->entries - 1,
301 (u64)buffer->dma_addr, buffer->len,
302 buffer->addr, (u64)virt_to_phys(buffer->addr));
303
304 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
305 buffer->dma_addr);
306 buffer->addr = NULL;
307 buffer->entries = 0;
308 }
309
310 /**************************************************************************
311 *
312 * Generic buffer handling
313 * These buffers are used for interrupt status and MAC stats
314 *
315 **************************************************************************/
316
317 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
318 unsigned int len)
319 {
320 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
321 &buffer->dma_addr);
322 if (!buffer->addr)
323 return -ENOMEM;
324 buffer->len = len;
325 memset(buffer->addr, 0, len);
326 return 0;
327 }
328
329 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
330 {
331 if (buffer->addr) {
332 pci_free_consistent(efx->pci_dev, buffer->len,
333 buffer->addr, buffer->dma_addr);
334 buffer->addr = NULL;
335 }
336 }
337
338 /**************************************************************************
339 *
340 * TX path
341 *
342 **************************************************************************/
343
344 /* Returns a pointer to the specified transmit descriptor in the TX
345 * descriptor queue belonging to the specified channel.
346 */
347 static inline efx_qword_t *
348 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
349 {
350 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
351 }
352
353 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
354 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
355 {
356 unsigned write_ptr;
357 efx_dword_t reg;
358
359 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
360 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
361 efx_writed_page(tx_queue->efx, &reg,
362 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
363 }
364
365 /* Write pointer and first descriptor for TX descriptor ring */
366 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
367 const efx_qword_t *txd)
368 {
369 unsigned write_ptr;
370 efx_oword_t reg;
371
372 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
373 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
374
375 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
376 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
377 FRF_AZ_TX_DESC_WPTR, write_ptr);
378 reg.qword[0] = *txd;
379 efx_writeo_page(tx_queue->efx, &reg,
380 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
381 }
382
383 static inline bool
384 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
385 {
386 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
387
388 if (empty_read_count == 0)
389 return false;
390
391 tx_queue->empty_read_count = 0;
392 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
393 }
394
395 /* For each entry inserted into the software descriptor ring, create a
396 * descriptor in the hardware TX descriptor ring (in host memory), and
397 * write a doorbell.
398 */
399 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
400 {
401
402 struct efx_tx_buffer *buffer;
403 efx_qword_t *txd;
404 unsigned write_ptr;
405 unsigned old_write_count = tx_queue->write_count;
406
407 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
408
409 do {
410 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
411 buffer = &tx_queue->buffer[write_ptr];
412 txd = efx_tx_desc(tx_queue, write_ptr);
413 ++tx_queue->write_count;
414
415 /* Create TX descriptor ring entry */
416 EFX_POPULATE_QWORD_4(*txd,
417 FSF_AZ_TX_KER_CONT, buffer->continuation,
418 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
419 FSF_AZ_TX_KER_BUF_REGION, 0,
420 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
421 } while (tx_queue->write_count != tx_queue->insert_count);
422
423 wmb(); /* Ensure descriptors are written before they are fetched */
424
425 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
426 txd = efx_tx_desc(tx_queue,
427 old_write_count & tx_queue->ptr_mask);
428 efx_push_tx_desc(tx_queue, txd);
429 ++tx_queue->pushes;
430 } else {
431 efx_notify_tx_desc(tx_queue);
432 }
433 }
434
435 /* Allocate hardware resources for a TX queue */
436 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
437 {
438 struct efx_nic *efx = tx_queue->efx;
439 unsigned entries;
440
441 entries = tx_queue->ptr_mask + 1;
442 return efx_alloc_special_buffer(efx, &tx_queue->txd,
443 entries * sizeof(efx_qword_t));
444 }
445
446 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
447 {
448 efx_oword_t tx_desc_ptr;
449 struct efx_nic *efx = tx_queue->efx;
450
451 tx_queue->flushed = FLUSH_NONE;
452
453 /* Pin TX descriptor ring */
454 efx_init_special_buffer(efx, &tx_queue->txd);
455
456 /* Push TX descriptor ring to card */
457 EFX_POPULATE_OWORD_10(tx_desc_ptr,
458 FRF_AZ_TX_DESCQ_EN, 1,
459 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
460 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
461 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
462 FRF_AZ_TX_DESCQ_EVQ_ID,
463 tx_queue->channel->channel,
464 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
465 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
466 FRF_AZ_TX_DESCQ_SIZE,
467 __ffs(tx_queue->txd.entries),
468 FRF_AZ_TX_DESCQ_TYPE, 0,
469 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
470
471 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
472 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
473 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
474 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
475 !csum);
476 }
477
478 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
479 tx_queue->queue);
480
481 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
482 efx_oword_t reg;
483
484 /* Only 128 bits in this register */
485 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
486
487 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
488 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
489 clear_bit_le(tx_queue->queue, (void *)&reg);
490 else
491 set_bit_le(tx_queue->queue, (void *)&reg);
492 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
493 }
494 }
495
496 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
497 {
498 struct efx_nic *efx = tx_queue->efx;
499 efx_oword_t tx_flush_descq;
500
501 tx_queue->flushed = FLUSH_PENDING;
502
503 /* Post a flush command */
504 EFX_POPULATE_OWORD_2(tx_flush_descq,
505 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
506 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
507 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
508 }
509
510 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
511 {
512 struct efx_nic *efx = tx_queue->efx;
513 efx_oword_t tx_desc_ptr;
514
515 /* The queue should have been flushed */
516 WARN_ON(tx_queue->flushed != FLUSH_DONE);
517
518 /* Remove TX descriptor ring from card */
519 EFX_ZERO_OWORD(tx_desc_ptr);
520 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
521 tx_queue->queue);
522
523 /* Unpin TX descriptor ring */
524 efx_fini_special_buffer(efx, &tx_queue->txd);
525 }
526
527 /* Free buffers backing TX queue */
528 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
529 {
530 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
531 }
532
533 /**************************************************************************
534 *
535 * RX path
536 *
537 **************************************************************************/
538
539 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
540 static inline efx_qword_t *
541 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
542 {
543 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
544 }
545
546 /* This creates an entry in the RX descriptor queue */
547 static inline void
548 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
549 {
550 struct efx_rx_buffer *rx_buf;
551 efx_qword_t *rxd;
552
553 rxd = efx_rx_desc(rx_queue, index);
554 rx_buf = efx_rx_buffer(rx_queue, index);
555 EFX_POPULATE_QWORD_3(*rxd,
556 FSF_AZ_RX_KER_BUF_SIZE,
557 rx_buf->len -
558 rx_queue->efx->type->rx_buffer_padding,
559 FSF_AZ_RX_KER_BUF_REGION, 0,
560 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
561 }
562
563 /* This writes to the RX_DESC_WPTR register for the specified receive
564 * descriptor ring.
565 */
566 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
567 {
568 struct efx_nic *efx = rx_queue->efx;
569 efx_dword_t reg;
570 unsigned write_ptr;
571
572 while (rx_queue->notified_count != rx_queue->added_count) {
573 efx_build_rx_desc(
574 rx_queue,
575 rx_queue->notified_count & rx_queue->ptr_mask);
576 ++rx_queue->notified_count;
577 }
578
579 wmb();
580 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
581 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
582 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
583 efx_rx_queue_index(rx_queue));
584 }
585
586 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
587 {
588 struct efx_nic *efx = rx_queue->efx;
589 unsigned entries;
590
591 entries = rx_queue->ptr_mask + 1;
592 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
593 entries * sizeof(efx_qword_t));
594 }
595
596 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
597 {
598 efx_oword_t rx_desc_ptr;
599 struct efx_nic *efx = rx_queue->efx;
600 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
601 bool iscsi_digest_en = is_b0;
602
603 netif_dbg(efx, hw, efx->net_dev,
604 "RX queue %d ring in special buffers %d-%d\n",
605 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
606 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
607
608 rx_queue->flushed = FLUSH_NONE;
609
610 /* Pin RX descriptor ring */
611 efx_init_special_buffer(efx, &rx_queue->rxd);
612
613 /* Push RX descriptor ring to card */
614 EFX_POPULATE_OWORD_10(rx_desc_ptr,
615 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
616 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
617 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
618 FRF_AZ_RX_DESCQ_EVQ_ID,
619 efx_rx_queue_channel(rx_queue)->channel,
620 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
621 FRF_AZ_RX_DESCQ_LABEL,
622 efx_rx_queue_index(rx_queue),
623 FRF_AZ_RX_DESCQ_SIZE,
624 __ffs(rx_queue->rxd.entries),
625 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
626 /* For >=B0 this is scatter so disable */
627 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
628 FRF_AZ_RX_DESCQ_EN, 1);
629 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
630 efx_rx_queue_index(rx_queue));
631 }
632
633 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
634 {
635 struct efx_nic *efx = rx_queue->efx;
636 efx_oword_t rx_flush_descq;
637
638 rx_queue->flushed = FLUSH_PENDING;
639
640 /* Post a flush command */
641 EFX_POPULATE_OWORD_2(rx_flush_descq,
642 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
643 FRF_AZ_RX_FLUSH_DESCQ,
644 efx_rx_queue_index(rx_queue));
645 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
646 }
647
648 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
649 {
650 efx_oword_t rx_desc_ptr;
651 struct efx_nic *efx = rx_queue->efx;
652
653 /* The queue should already have been flushed */
654 WARN_ON(rx_queue->flushed != FLUSH_DONE);
655
656 /* Remove RX descriptor ring from card */
657 EFX_ZERO_OWORD(rx_desc_ptr);
658 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
659 efx_rx_queue_index(rx_queue));
660
661 /* Unpin RX descriptor ring */
662 efx_fini_special_buffer(efx, &rx_queue->rxd);
663 }
664
665 /* Free buffers backing RX queue */
666 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
667 {
668 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
669 }
670
671 /**************************************************************************
672 *
673 * Event queue processing
674 * Event queues are processed by per-channel tasklets.
675 *
676 **************************************************************************/
677
678 /* Update a channel's event queue's read pointer (RPTR) register
679 *
680 * This writes the EVQ_RPTR_REG register for the specified channel's
681 * event queue.
682 */
683 void efx_nic_eventq_read_ack(struct efx_channel *channel)
684 {
685 efx_dword_t reg;
686 struct efx_nic *efx = channel->efx;
687
688 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
689 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
690 channel->channel);
691 }
692
693 /* Use HW to insert a SW defined event */
694 static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
695 {
696 efx_oword_t drv_ev_reg;
697
698 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
699 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
700 drv_ev_reg.u32[0] = event->u32[0];
701 drv_ev_reg.u32[1] = event->u32[1];
702 drv_ev_reg.u32[2] = 0;
703 drv_ev_reg.u32[3] = 0;
704 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
705 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
706 }
707
708 /* Handle a transmit completion event
709 *
710 * The NIC batches TX completion events; the message we receive is of
711 * the form "complete all TX events up to this index".
712 */
713 static int
714 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
715 {
716 unsigned int tx_ev_desc_ptr;
717 unsigned int tx_ev_q_label;
718 struct efx_tx_queue *tx_queue;
719 struct efx_nic *efx = channel->efx;
720 int tx_packets = 0;
721
722 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
723 /* Transmit completion */
724 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
725 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
726 tx_queue = efx_channel_get_tx_queue(
727 channel, tx_ev_q_label % EFX_TXQ_TYPES);
728 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
729 tx_queue->ptr_mask);
730 channel->irq_mod_score += tx_packets;
731 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
732 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
733 /* Rewrite the FIFO write pointer */
734 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
735 tx_queue = efx_channel_get_tx_queue(
736 channel, tx_ev_q_label % EFX_TXQ_TYPES);
737
738 if (efx_dev_registered(efx))
739 netif_tx_lock(efx->net_dev);
740 efx_notify_tx_desc(tx_queue);
741 if (efx_dev_registered(efx))
742 netif_tx_unlock(efx->net_dev);
743 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
744 EFX_WORKAROUND_10727(efx)) {
745 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
746 } else {
747 netif_err(efx, tx_err, efx->net_dev,
748 "channel %d unexpected TX event "
749 EFX_QWORD_FMT"\n", channel->channel,
750 EFX_QWORD_VAL(*event));
751 }
752
753 return tx_packets;
754 }
755
756 /* Detect errors included in the rx_evt_pkt_ok bit. */
757 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
758 const efx_qword_t *event,
759 bool *rx_ev_pkt_ok,
760 bool *discard)
761 {
762 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
763 struct efx_nic *efx = rx_queue->efx;
764 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
765 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
766 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
767 bool rx_ev_other_err, rx_ev_pause_frm;
768 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
769 unsigned rx_ev_pkt_type;
770
771 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
772 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
773 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
774 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
775 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
776 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
777 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
778 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
779 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
780 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
781 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
782 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
783 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
784 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
785 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
786
787 /* Every error apart from tobe_disc and pause_frm */
788 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
789 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
790 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
791
792 /* Count errors that are not in MAC stats. Ignore expected
793 * checksum errors during self-test. */
794 if (rx_ev_frm_trunc)
795 ++channel->n_rx_frm_trunc;
796 else if (rx_ev_tobe_disc)
797 ++channel->n_rx_tobe_disc;
798 else if (!efx->loopback_selftest) {
799 if (rx_ev_ip_hdr_chksum_err)
800 ++channel->n_rx_ip_hdr_chksum_err;
801 else if (rx_ev_tcp_udp_chksum_err)
802 ++channel->n_rx_tcp_udp_chksum_err;
803 }
804
805 /* The frame must be discarded if any of these are true. */
806 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
807 rx_ev_tobe_disc | rx_ev_pause_frm);
808
809 /* TOBE_DISC is expected on unicast mismatches; don't print out an
810 * error message. FRM_TRUNC indicates RXDP dropped the packet due
811 * to a FIFO overflow.
812 */
813 #ifdef EFX_ENABLE_DEBUG
814 if (rx_ev_other_err && net_ratelimit()) {
815 netif_dbg(efx, rx_err, efx->net_dev,
816 " RX queue %d unexpected RX event "
817 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
818 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
819 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
820 rx_ev_ip_hdr_chksum_err ?
821 " [IP_HDR_CHKSUM_ERR]" : "",
822 rx_ev_tcp_udp_chksum_err ?
823 " [TCP_UDP_CHKSUM_ERR]" : "",
824 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
825 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
826 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
827 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
828 rx_ev_pause_frm ? " [PAUSE]" : "");
829 }
830 #endif
831 }
832
833 /* Handle receive events that are not in-order. */
834 static void
835 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
836 {
837 struct efx_nic *efx = rx_queue->efx;
838 unsigned expected, dropped;
839
840 expected = rx_queue->removed_count & rx_queue->ptr_mask;
841 dropped = (index - expected) & rx_queue->ptr_mask;
842 netif_info(efx, rx_err, efx->net_dev,
843 "dropped %d events (index=%d expected=%d)\n",
844 dropped, index, expected);
845
846 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
847 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
848 }
849
850 /* Handle a packet received event
851 *
852 * The NIC gives a "discard" flag if it's a unicast packet with the
853 * wrong destination address
854 * Also "is multicast" and "matches multicast filter" flags can be used to
855 * discard non-matching multicast packets.
856 */
857 static void
858 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
859 {
860 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
861 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
862 unsigned expected_ptr;
863 bool rx_ev_pkt_ok, discard = false, checksummed;
864 struct efx_rx_queue *rx_queue;
865 struct efx_nic *efx = channel->efx;
866
867 /* Basic packet information */
868 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
869 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
870 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
871 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
872 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
873 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
874 channel->channel);
875
876 rx_queue = efx_channel_get_rx_queue(channel);
877
878 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
879 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
880 if (unlikely(rx_ev_desc_ptr != expected_ptr))
881 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
882
883 if (likely(rx_ev_pkt_ok)) {
884 /* If packet is marked as OK and packet type is TCP/IP or
885 * UDP/IP, then we can rely on the hardware checksum.
886 */
887 checksummed =
888 likely(efx->rx_checksum_enabled) &&
889 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
890 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
891 } else {
892 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
893 checksummed = false;
894 }
895
896 /* Detect multicast packets that didn't match the filter */
897 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
898 if (rx_ev_mcast_pkt) {
899 unsigned int rx_ev_mcast_hash_match =
900 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
901
902 if (unlikely(!rx_ev_mcast_hash_match)) {
903 ++channel->n_rx_mcast_mismatch;
904 discard = true;
905 }
906 }
907
908 channel->irq_mod_score += 2;
909
910 /* Handle received packet */
911 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
912 checksummed, discard);
913 }
914
915 static void
916 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
917 {
918 struct efx_nic *efx = channel->efx;
919 unsigned code;
920
921 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
922 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
923 ++channel->magic_count;
924 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
925 /* The queue must be empty, so we won't receive any rx
926 * events, so efx_process_channel() won't refill the
927 * queue. Refill it here */
928 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
929 else
930 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
931 "generated event "EFX_QWORD_FMT"\n",
932 channel->channel, EFX_QWORD_VAL(*event));
933 }
934
935 static void
936 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
937 {
938 struct efx_nic *efx = channel->efx;
939 unsigned int ev_sub_code;
940 unsigned int ev_sub_data;
941
942 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
943 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
944
945 switch (ev_sub_code) {
946 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
947 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
948 channel->channel, ev_sub_data);
949 break;
950 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
951 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
952 channel->channel, ev_sub_data);
953 break;
954 case FSE_AZ_EVQ_INIT_DONE_EV:
955 netif_dbg(efx, hw, efx->net_dev,
956 "channel %d EVQ %d initialised\n",
957 channel->channel, ev_sub_data);
958 break;
959 case FSE_AZ_SRM_UPD_DONE_EV:
960 netif_vdbg(efx, hw, efx->net_dev,
961 "channel %d SRAM update done\n", channel->channel);
962 break;
963 case FSE_AZ_WAKE_UP_EV:
964 netif_vdbg(efx, hw, efx->net_dev,
965 "channel %d RXQ %d wakeup event\n",
966 channel->channel, ev_sub_data);
967 break;
968 case FSE_AZ_TIMER_EV:
969 netif_vdbg(efx, hw, efx->net_dev,
970 "channel %d RX queue %d timer expired\n",
971 channel->channel, ev_sub_data);
972 break;
973 case FSE_AA_RX_RECOVER_EV:
974 netif_err(efx, rx_err, efx->net_dev,
975 "channel %d seen DRIVER RX_RESET event. "
976 "Resetting.\n", channel->channel);
977 atomic_inc(&efx->rx_reset);
978 efx_schedule_reset(efx,
979 EFX_WORKAROUND_6555(efx) ?
980 RESET_TYPE_RX_RECOVERY :
981 RESET_TYPE_DISABLE);
982 break;
983 case FSE_BZ_RX_DSC_ERROR_EV:
984 netif_err(efx, rx_err, efx->net_dev,
985 "RX DMA Q %d reports descriptor fetch error."
986 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
987 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
988 break;
989 case FSE_BZ_TX_DSC_ERROR_EV:
990 netif_err(efx, tx_err, efx->net_dev,
991 "TX DMA Q %d reports descriptor fetch error."
992 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
993 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
994 break;
995 default:
996 netif_vdbg(efx, hw, efx->net_dev,
997 "channel %d unknown driver event code %d "
998 "data %04x\n", channel->channel, ev_sub_code,
999 ev_sub_data);
1000 break;
1001 }
1002 }
1003
1004 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1005 {
1006 struct efx_nic *efx = channel->efx;
1007 unsigned int read_ptr;
1008 efx_qword_t event, *p_event;
1009 int ev_code;
1010 int tx_packets = 0;
1011 int spent = 0;
1012
1013 read_ptr = channel->eventq_read_ptr;
1014
1015 for (;;) {
1016 p_event = efx_event(channel, read_ptr);
1017 event = *p_event;
1018
1019 if (!efx_event_present(&event))
1020 /* End of events */
1021 break;
1022
1023 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1024 "channel %d event is "EFX_QWORD_FMT"\n",
1025 channel->channel, EFX_QWORD_VAL(event));
1026
1027 /* Clear this event by marking it all ones */
1028 EFX_SET_QWORD(*p_event);
1029
1030 /* Increment read pointer */
1031 read_ptr = (read_ptr + 1) & channel->eventq_mask;
1032
1033 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1034
1035 switch (ev_code) {
1036 case FSE_AZ_EV_CODE_RX_EV:
1037 efx_handle_rx_event(channel, &event);
1038 if (++spent == budget)
1039 goto out;
1040 break;
1041 case FSE_AZ_EV_CODE_TX_EV:
1042 tx_packets += efx_handle_tx_event(channel, &event);
1043 if (tx_packets > efx->txq_entries) {
1044 spent = budget;
1045 goto out;
1046 }
1047 break;
1048 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1049 efx_handle_generated_event(channel, &event);
1050 break;
1051 case FSE_AZ_EV_CODE_DRIVER_EV:
1052 efx_handle_driver_event(channel, &event);
1053 break;
1054 case FSE_CZ_EV_CODE_MCDI_EV:
1055 efx_mcdi_process_event(channel, &event);
1056 break;
1057 case FSE_AZ_EV_CODE_GLOBAL_EV:
1058 if (efx->type->handle_global_event &&
1059 efx->type->handle_global_event(channel, &event))
1060 break;
1061 /* else fall through */
1062 default:
1063 netif_err(channel->efx, hw, channel->efx->net_dev,
1064 "channel %d unknown event type %d (data "
1065 EFX_QWORD_FMT ")\n", channel->channel,
1066 ev_code, EFX_QWORD_VAL(event));
1067 }
1068 }
1069
1070 out:
1071 channel->eventq_read_ptr = read_ptr;
1072 return spent;
1073 }
1074
1075
1076 /* Allocate buffer table entries for event queue */
1077 int efx_nic_probe_eventq(struct efx_channel *channel)
1078 {
1079 struct efx_nic *efx = channel->efx;
1080 unsigned entries;
1081
1082 entries = channel->eventq_mask + 1;
1083 return efx_alloc_special_buffer(efx, &channel->eventq,
1084 entries * sizeof(efx_qword_t));
1085 }
1086
1087 void efx_nic_init_eventq(struct efx_channel *channel)
1088 {
1089 efx_oword_t reg;
1090 struct efx_nic *efx = channel->efx;
1091
1092 netif_dbg(efx, hw, efx->net_dev,
1093 "channel %d event queue in special buffers %d-%d\n",
1094 channel->channel, channel->eventq.index,
1095 channel->eventq.index + channel->eventq.entries - 1);
1096
1097 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1098 EFX_POPULATE_OWORD_3(reg,
1099 FRF_CZ_TIMER_Q_EN, 1,
1100 FRF_CZ_HOST_NOTIFY_MODE, 0,
1101 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1102 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1103 }
1104
1105 /* Pin event queue buffer */
1106 efx_init_special_buffer(efx, &channel->eventq);
1107
1108 /* Fill event queue with all ones (i.e. empty events) */
1109 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1110
1111 /* Push event queue to card */
1112 EFX_POPULATE_OWORD_3(reg,
1113 FRF_AZ_EVQ_EN, 1,
1114 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1115 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1116 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1117 channel->channel);
1118
1119 efx->type->push_irq_moderation(channel);
1120 }
1121
1122 void efx_nic_fini_eventq(struct efx_channel *channel)
1123 {
1124 efx_oword_t reg;
1125 struct efx_nic *efx = channel->efx;
1126
1127 /* Remove event queue from card */
1128 EFX_ZERO_OWORD(reg);
1129 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1130 channel->channel);
1131 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1132 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1133
1134 /* Unpin event queue */
1135 efx_fini_special_buffer(efx, &channel->eventq);
1136 }
1137
1138 /* Free buffers backing event queue */
1139 void efx_nic_remove_eventq(struct efx_channel *channel)
1140 {
1141 efx_free_special_buffer(channel->efx, &channel->eventq);
1142 }
1143
1144
1145 void efx_nic_generate_test_event(struct efx_channel *channel)
1146 {
1147 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1148 efx_qword_t test_event;
1149
1150 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1151 FSE_AZ_EV_CODE_DRV_GEN_EV,
1152 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1153 efx_generate_event(channel, &test_event);
1154 }
1155
1156 void efx_nic_generate_fill_event(struct efx_channel *channel)
1157 {
1158 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1159 efx_qword_t test_event;
1160
1161 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1162 FSE_AZ_EV_CODE_DRV_GEN_EV,
1163 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1164 efx_generate_event(channel, &test_event);
1165 }
1166
1167 /**************************************************************************
1168 *
1169 * Flush handling
1170 *
1171 **************************************************************************/
1172
1173
1174 static void efx_poll_flush_events(struct efx_nic *efx)
1175 {
1176 struct efx_channel *channel = efx_get_channel(efx, 0);
1177 struct efx_tx_queue *tx_queue;
1178 struct efx_rx_queue *rx_queue;
1179 unsigned int read_ptr = channel->eventq_read_ptr;
1180 unsigned int end_ptr = (read_ptr - 1) & channel->eventq_mask;
1181
1182 do {
1183 efx_qword_t *event = efx_event(channel, read_ptr);
1184 int ev_code, ev_sub_code, ev_queue;
1185 bool ev_failed;
1186
1187 if (!efx_event_present(event))
1188 break;
1189
1190 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1191 ev_sub_code = EFX_QWORD_FIELD(*event,
1192 FSF_AZ_DRIVER_EV_SUBCODE);
1193 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1194 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1195 ev_queue = EFX_QWORD_FIELD(*event,
1196 FSF_AZ_DRIVER_EV_SUBDATA);
1197 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1198 tx_queue = efx_get_tx_queue(
1199 efx, ev_queue / EFX_TXQ_TYPES,
1200 ev_queue % EFX_TXQ_TYPES);
1201 tx_queue->flushed = FLUSH_DONE;
1202 }
1203 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1204 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1205 ev_queue = EFX_QWORD_FIELD(
1206 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1207 ev_failed = EFX_QWORD_FIELD(
1208 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1209 if (ev_queue < efx->n_rx_channels) {
1210 rx_queue = efx_get_rx_queue(efx, ev_queue);
1211 rx_queue->flushed =
1212 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1213 }
1214 }
1215
1216 /* We're about to destroy the queue anyway, so
1217 * it's ok to throw away every non-flush event */
1218 EFX_SET_QWORD(*event);
1219
1220 read_ptr = (read_ptr + 1) & channel->eventq_mask;
1221 } while (read_ptr != end_ptr);
1222
1223 channel->eventq_read_ptr = read_ptr;
1224 }
1225
1226 /* Handle tx and rx flushes at the same time, since they run in
1227 * parallel in the hardware and there's no reason for us to
1228 * serialise them */
1229 int efx_nic_flush_queues(struct efx_nic *efx)
1230 {
1231 struct efx_channel *channel;
1232 struct efx_rx_queue *rx_queue;
1233 struct efx_tx_queue *tx_queue;
1234 int i, tx_pending, rx_pending;
1235
1236 /* If necessary prepare the hardware for flushing */
1237 efx->type->prepare_flush(efx);
1238
1239 /* Flush all tx queues in parallel */
1240 efx_for_each_channel(channel, efx) {
1241 efx_for_each_channel_tx_queue(tx_queue, channel)
1242 efx_flush_tx_queue(tx_queue);
1243 }
1244
1245 /* The hardware supports four concurrent rx flushes, each of which may
1246 * need to be retried if there is an outstanding descriptor fetch */
1247 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1248 rx_pending = tx_pending = 0;
1249 efx_for_each_channel(channel, efx) {
1250 efx_for_each_channel_rx_queue(rx_queue, channel) {
1251 if (rx_queue->flushed == FLUSH_PENDING)
1252 ++rx_pending;
1253 }
1254 }
1255 efx_for_each_channel(channel, efx) {
1256 efx_for_each_channel_rx_queue(rx_queue, channel) {
1257 if (rx_pending == EFX_RX_FLUSH_COUNT)
1258 break;
1259 if (rx_queue->flushed == FLUSH_FAILED ||
1260 rx_queue->flushed == FLUSH_NONE) {
1261 efx_flush_rx_queue(rx_queue);
1262 ++rx_pending;
1263 }
1264 }
1265 efx_for_each_channel_tx_queue(tx_queue, channel) {
1266 if (tx_queue->flushed != FLUSH_DONE)
1267 ++tx_pending;
1268 }
1269 }
1270
1271 if (rx_pending == 0 && tx_pending == 0)
1272 return 0;
1273
1274 msleep(EFX_FLUSH_INTERVAL);
1275 efx_poll_flush_events(efx);
1276 }
1277
1278 /* Mark the queues as all flushed. We're going to return failure
1279 * leading to a reset, or fake up success anyway */
1280 efx_for_each_channel(channel, efx) {
1281 efx_for_each_channel_tx_queue(tx_queue, channel) {
1282 if (tx_queue->flushed != FLUSH_DONE)
1283 netif_err(efx, hw, efx->net_dev,
1284 "tx queue %d flush command timed out\n",
1285 tx_queue->queue);
1286 tx_queue->flushed = FLUSH_DONE;
1287 }
1288 efx_for_each_channel_rx_queue(rx_queue, channel) {
1289 if (rx_queue->flushed != FLUSH_DONE)
1290 netif_err(efx, hw, efx->net_dev,
1291 "rx queue %d flush command timed out\n",
1292 efx_rx_queue_index(rx_queue));
1293 rx_queue->flushed = FLUSH_DONE;
1294 }
1295 }
1296
1297 return -ETIMEDOUT;
1298 }
1299
1300 /**************************************************************************
1301 *
1302 * Hardware interrupts
1303 * The hardware interrupt handler does very little work; all the event
1304 * queue processing is carried out by per-channel tasklets.
1305 *
1306 **************************************************************************/
1307
1308 /* Enable/disable/generate interrupts */
1309 static inline void efx_nic_interrupts(struct efx_nic *efx,
1310 bool enabled, bool force)
1311 {
1312 efx_oword_t int_en_reg_ker;
1313
1314 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1315 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1316 FRF_AZ_KER_INT_KER, force,
1317 FRF_AZ_DRV_INT_EN_KER, enabled);
1318 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1319 }
1320
1321 void efx_nic_enable_interrupts(struct efx_nic *efx)
1322 {
1323 struct efx_channel *channel;
1324
1325 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1326 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327
1328 /* Enable interrupts */
1329 efx_nic_interrupts(efx, true, false);
1330
1331 /* Force processing of all the channels to get the EVQ RPTRs up to
1332 date */
1333 efx_for_each_channel(channel, efx)
1334 efx_schedule_channel(channel);
1335 }
1336
1337 void efx_nic_disable_interrupts(struct efx_nic *efx)
1338 {
1339 /* Disable interrupts */
1340 efx_nic_interrupts(efx, false, false);
1341 }
1342
1343 /* Generate a test interrupt
1344 * Interrupt must already have been enabled, otherwise nasty things
1345 * may happen.
1346 */
1347 void efx_nic_generate_interrupt(struct efx_nic *efx)
1348 {
1349 efx_nic_interrupts(efx, true, true);
1350 }
1351
1352 /* Process a fatal interrupt
1353 * Disable bus mastering ASAP and schedule a reset
1354 */
1355 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1356 {
1357 struct falcon_nic_data *nic_data = efx->nic_data;
1358 efx_oword_t *int_ker = efx->irq_status.addr;
1359 efx_oword_t fatal_intr;
1360 int error, mem_perr;
1361
1362 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1363 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1364
1365 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1366 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1367 EFX_OWORD_VAL(fatal_intr),
1368 error ? "disabling bus mastering" : "no recognised error");
1369
1370 /* If this is a memory parity error dump which blocks are offending */
1371 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1372 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1373 if (mem_perr) {
1374 efx_oword_t reg;
1375 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1376 netif_err(efx, hw, efx->net_dev,
1377 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1378 EFX_OWORD_VAL(reg));
1379 }
1380
1381 /* Disable both devices */
1382 pci_clear_master(efx->pci_dev);
1383 if (efx_nic_is_dual_func(efx))
1384 pci_clear_master(nic_data->pci_dev2);
1385 efx_nic_disable_interrupts(efx);
1386
1387 /* Count errors and reset or disable the NIC accordingly */
1388 if (efx->int_error_count == 0 ||
1389 time_after(jiffies, efx->int_error_expire)) {
1390 efx->int_error_count = 0;
1391 efx->int_error_expire =
1392 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1393 }
1394 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1395 netif_err(efx, hw, efx->net_dev,
1396 "SYSTEM ERROR - reset scheduled\n");
1397 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1398 } else {
1399 netif_err(efx, hw, efx->net_dev,
1400 "SYSTEM ERROR - max number of errors seen."
1401 "NIC will be disabled\n");
1402 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1403 }
1404
1405 return IRQ_HANDLED;
1406 }
1407
1408 /* Handle a legacy interrupt
1409 * Acknowledges the interrupt and schedule event queue processing.
1410 */
1411 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1412 {
1413 struct efx_nic *efx = dev_id;
1414 efx_oword_t *int_ker = efx->irq_status.addr;
1415 irqreturn_t result = IRQ_NONE;
1416 struct efx_channel *channel;
1417 efx_dword_t reg;
1418 u32 queues;
1419 int syserr;
1420
1421 /* Could this be ours? If interrupts are disabled then the
1422 * channel state may not be valid.
1423 */
1424 if (!efx->legacy_irq_enabled)
1425 return result;
1426
1427 /* Read the ISR which also ACKs the interrupts */
1428 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1429 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1430
1431 /* Check to see if we have a serious error condition */
1432 if (queues & (1U << efx->fatal_irq_level)) {
1433 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1434 if (unlikely(syserr))
1435 return efx_nic_fatal_interrupt(efx);
1436 }
1437
1438 if (queues != 0) {
1439 if (EFX_WORKAROUND_15783(efx))
1440 efx->irq_zero_count = 0;
1441
1442 /* Schedule processing of any interrupting queues */
1443 efx_for_each_channel(channel, efx) {
1444 if (queues & 1)
1445 efx_schedule_channel(channel);
1446 queues >>= 1;
1447 }
1448 result = IRQ_HANDLED;
1449
1450 } else if (EFX_WORKAROUND_15783(efx)) {
1451 efx_qword_t *event;
1452
1453 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1454 * because this might be a shared interrupt. */
1455 if (efx->irq_zero_count++ == 0)
1456 result = IRQ_HANDLED;
1457
1458 /* Ensure we schedule or rearm all event queues */
1459 efx_for_each_channel(channel, efx) {
1460 event = efx_event(channel, channel->eventq_read_ptr);
1461 if (efx_event_present(event))
1462 efx_schedule_channel(channel);
1463 else
1464 efx_nic_eventq_read_ack(channel);
1465 }
1466 }
1467
1468 if (result == IRQ_HANDLED) {
1469 efx->last_irq_cpu = raw_smp_processor_id();
1470 netif_vdbg(efx, intr, efx->net_dev,
1471 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1472 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1473 }
1474
1475 return result;
1476 }
1477
1478 /* Handle an MSI interrupt
1479 *
1480 * Handle an MSI hardware interrupt. This routine schedules event
1481 * queue processing. No interrupt acknowledgement cycle is necessary.
1482 * Also, we never need to check that the interrupt is for us, since
1483 * MSI interrupts cannot be shared.
1484 */
1485 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1486 {
1487 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1488 struct efx_nic *efx = channel->efx;
1489 efx_oword_t *int_ker = efx->irq_status.addr;
1490 int syserr;
1491
1492 efx->last_irq_cpu = raw_smp_processor_id();
1493 netif_vdbg(efx, intr, efx->net_dev,
1494 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1495 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1496
1497 /* Check to see if we have a serious error condition */
1498 if (channel->channel == efx->fatal_irq_level) {
1499 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1500 if (unlikely(syserr))
1501 return efx_nic_fatal_interrupt(efx);
1502 }
1503
1504 /* Schedule processing of the channel */
1505 efx_schedule_channel(channel);
1506
1507 return IRQ_HANDLED;
1508 }
1509
1510
1511 /* Setup RSS indirection table.
1512 * This maps from the hash value of the packet to RXQ
1513 */
1514 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1515 {
1516 size_t i = 0;
1517 efx_dword_t dword;
1518
1519 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1520 return;
1521
1522 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1523 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1524
1525 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1526 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1527 efx->rx_indir_table[i]);
1528 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1529 }
1530 }
1531
1532 /* Hook interrupt handler(s)
1533 * Try MSI and then legacy interrupts.
1534 */
1535 int efx_nic_init_interrupt(struct efx_nic *efx)
1536 {
1537 struct efx_channel *channel;
1538 int rc;
1539
1540 if (!EFX_INT_MODE_USE_MSI(efx)) {
1541 irq_handler_t handler;
1542 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1543 handler = efx_legacy_interrupt;
1544 else
1545 handler = falcon_legacy_interrupt_a1;
1546
1547 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1548 efx->name, efx);
1549 if (rc) {
1550 netif_err(efx, drv, efx->net_dev,
1551 "failed to hook legacy IRQ %d\n",
1552 efx->pci_dev->irq);
1553 goto fail1;
1554 }
1555 return 0;
1556 }
1557
1558 /* Hook MSI or MSI-X interrupt */
1559 efx_for_each_channel(channel, efx) {
1560 rc = request_irq(channel->irq, efx_msi_interrupt,
1561 IRQF_PROBE_SHARED, /* Not shared */
1562 efx->channel_name[channel->channel],
1563 &efx->channel[channel->channel]);
1564 if (rc) {
1565 netif_err(efx, drv, efx->net_dev,
1566 "failed to hook IRQ %d\n", channel->irq);
1567 goto fail2;
1568 }
1569 }
1570
1571 return 0;
1572
1573 fail2:
1574 efx_for_each_channel(channel, efx)
1575 free_irq(channel->irq, &efx->channel[channel->channel]);
1576 fail1:
1577 return rc;
1578 }
1579
1580 void efx_nic_fini_interrupt(struct efx_nic *efx)
1581 {
1582 struct efx_channel *channel;
1583 efx_oword_t reg;
1584
1585 /* Disable MSI/MSI-X interrupts */
1586 efx_for_each_channel(channel, efx) {
1587 if (channel->irq)
1588 free_irq(channel->irq, &efx->channel[channel->channel]);
1589 }
1590
1591 /* ACK legacy interrupt */
1592 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1593 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1594 else
1595 falcon_irq_ack_a1(efx);
1596
1597 /* Disable legacy interrupt */
1598 if (efx->legacy_irq)
1599 free_irq(efx->legacy_irq, efx);
1600 }
1601
1602 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1603 {
1604 efx_oword_t altera_build;
1605 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1606 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1607 }
1608
1609 void efx_nic_init_common(struct efx_nic *efx)
1610 {
1611 efx_oword_t temp;
1612
1613 /* Set positions of descriptor caches in SRAM. */
1614 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1615 efx->type->tx_dc_base / 8);
1616 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1617 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1618 efx->type->rx_dc_base / 8);
1619 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1620
1621 /* Set TX descriptor cache size. */
1622 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1623 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1624 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1625
1626 /* Set RX descriptor cache size. Set low watermark to size-8, as
1627 * this allows most efficient prefetching.
1628 */
1629 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1630 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1631 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1632 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1633 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1634
1635 /* Program INT_KER address */
1636 EFX_POPULATE_OWORD_2(temp,
1637 FRF_AZ_NORM_INT_VEC_DIS_KER,
1638 EFX_INT_MODE_USE_MSI(efx),
1639 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1640 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1641
1642 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1643 /* Use an interrupt level unused by event queues */
1644 efx->fatal_irq_level = 0x1f;
1645 else
1646 /* Use a valid MSI-X vector */
1647 efx->fatal_irq_level = 0;
1648
1649 /* Enable all the genuinely fatal interrupts. (They are still
1650 * masked by the overall interrupt mask, controlled by
1651 * falcon_interrupts()).
1652 *
1653 * Note: All other fatal interrupts are enabled
1654 */
1655 EFX_POPULATE_OWORD_3(temp,
1656 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1657 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1658 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1659 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1660 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1661 EFX_INVERT_OWORD(temp);
1662 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1663
1664 efx_nic_push_rx_indir_table(efx);
1665
1666 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1667 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1668 */
1669 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1670 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1671 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1672 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1673 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1674 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1675 /* Enable SW_EV to inherit in char driver - assume harmless here */
1676 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1677 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1678 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1679 /* Disable hardware watchdog which can misfire */
1680 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1681 /* Squash TX of packets of 16 bytes or less */
1682 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1683 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1684 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1685 }
1686
1687 /* Register dump */
1688
1689 #define REGISTER_REVISION_A 1
1690 #define REGISTER_REVISION_B 2
1691 #define REGISTER_REVISION_C 3
1692 #define REGISTER_REVISION_Z 3 /* latest revision */
1693
1694 struct efx_nic_reg {
1695 u32 offset:24;
1696 u32 min_revision:2, max_revision:2;
1697 };
1698
1699 #define REGISTER(name, min_rev, max_rev) { \
1700 FR_ ## min_rev ## max_rev ## _ ## name, \
1701 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1702 }
1703 #define REGISTER_AA(name) REGISTER(name, A, A)
1704 #define REGISTER_AB(name) REGISTER(name, A, B)
1705 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1706 #define REGISTER_BB(name) REGISTER(name, B, B)
1707 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1708 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1709
1710 static const struct efx_nic_reg efx_nic_regs[] = {
1711 REGISTER_AZ(ADR_REGION),
1712 REGISTER_AZ(INT_EN_KER),
1713 REGISTER_BZ(INT_EN_CHAR),
1714 REGISTER_AZ(INT_ADR_KER),
1715 REGISTER_BZ(INT_ADR_CHAR),
1716 /* INT_ACK_KER is WO */
1717 /* INT_ISR0 is RC */
1718 REGISTER_AZ(HW_INIT),
1719 REGISTER_CZ(USR_EV_CFG),
1720 REGISTER_AB(EE_SPI_HCMD),
1721 REGISTER_AB(EE_SPI_HADR),
1722 REGISTER_AB(EE_SPI_HDATA),
1723 REGISTER_AB(EE_BASE_PAGE),
1724 REGISTER_AB(EE_VPD_CFG0),
1725 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1726 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1727 /* PCIE_CORE_INDIRECT is indirect */
1728 REGISTER_AB(NIC_STAT),
1729 REGISTER_AB(GPIO_CTL),
1730 REGISTER_AB(GLB_CTL),
1731 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1732 REGISTER_BZ(DP_CTRL),
1733 REGISTER_AZ(MEM_STAT),
1734 REGISTER_AZ(CS_DEBUG),
1735 REGISTER_AZ(ALTERA_BUILD),
1736 REGISTER_AZ(CSR_SPARE),
1737 REGISTER_AB(PCIE_SD_CTL0123),
1738 REGISTER_AB(PCIE_SD_CTL45),
1739 REGISTER_AB(PCIE_PCS_CTL_STAT),
1740 /* DEBUG_DATA_OUT is not used */
1741 /* DRV_EV is WO */
1742 REGISTER_AZ(EVQ_CTL),
1743 REGISTER_AZ(EVQ_CNT1),
1744 REGISTER_AZ(EVQ_CNT2),
1745 REGISTER_AZ(BUF_TBL_CFG),
1746 REGISTER_AZ(SRM_RX_DC_CFG),
1747 REGISTER_AZ(SRM_TX_DC_CFG),
1748 REGISTER_AZ(SRM_CFG),
1749 /* BUF_TBL_UPD is WO */
1750 REGISTER_AZ(SRM_UPD_EVQ),
1751 REGISTER_AZ(SRAM_PARITY),
1752 REGISTER_AZ(RX_CFG),
1753 REGISTER_BZ(RX_FILTER_CTL),
1754 /* RX_FLUSH_DESCQ is WO */
1755 REGISTER_AZ(RX_DC_CFG),
1756 REGISTER_AZ(RX_DC_PF_WM),
1757 REGISTER_BZ(RX_RSS_TKEY),
1758 /* RX_NODESC_DROP is RC */
1759 REGISTER_AA(RX_SELF_RST),
1760 /* RX_DEBUG, RX_PUSH_DROP are not used */
1761 REGISTER_CZ(RX_RSS_IPV6_REG1),
1762 REGISTER_CZ(RX_RSS_IPV6_REG2),
1763 REGISTER_CZ(RX_RSS_IPV6_REG3),
1764 /* TX_FLUSH_DESCQ is WO */
1765 REGISTER_AZ(TX_DC_CFG),
1766 REGISTER_AA(TX_CHKSM_CFG),
1767 REGISTER_AZ(TX_CFG),
1768 /* TX_PUSH_DROP is not used */
1769 REGISTER_AZ(TX_RESERVED),
1770 REGISTER_BZ(TX_PACE),
1771 /* TX_PACE_DROP_QID is RC */
1772 REGISTER_BB(TX_VLAN),
1773 REGISTER_BZ(TX_IPFIL_PORTEN),
1774 REGISTER_AB(MD_TXD),
1775 REGISTER_AB(MD_RXD),
1776 REGISTER_AB(MD_CS),
1777 REGISTER_AB(MD_PHY_ADR),
1778 REGISTER_AB(MD_ID),
1779 /* MD_STAT is RC */
1780 REGISTER_AB(MAC_STAT_DMA),
1781 REGISTER_AB(MAC_CTRL),
1782 REGISTER_BB(GEN_MODE),
1783 REGISTER_AB(MAC_MC_HASH_REG0),
1784 REGISTER_AB(MAC_MC_HASH_REG1),
1785 REGISTER_AB(GM_CFG1),
1786 REGISTER_AB(GM_CFG2),
1787 /* GM_IPG and GM_HD are not used */
1788 REGISTER_AB(GM_MAX_FLEN),
1789 /* GM_TEST is not used */
1790 REGISTER_AB(GM_ADR1),
1791 REGISTER_AB(GM_ADR2),
1792 REGISTER_AB(GMF_CFG0),
1793 REGISTER_AB(GMF_CFG1),
1794 REGISTER_AB(GMF_CFG2),
1795 REGISTER_AB(GMF_CFG3),
1796 REGISTER_AB(GMF_CFG4),
1797 REGISTER_AB(GMF_CFG5),
1798 REGISTER_BB(TX_SRC_MAC_CTL),
1799 REGISTER_AB(XM_ADR_LO),
1800 REGISTER_AB(XM_ADR_HI),
1801 REGISTER_AB(XM_GLB_CFG),
1802 REGISTER_AB(XM_TX_CFG),
1803 REGISTER_AB(XM_RX_CFG),
1804 REGISTER_AB(XM_MGT_INT_MASK),
1805 REGISTER_AB(XM_FC),
1806 REGISTER_AB(XM_PAUSE_TIME),
1807 REGISTER_AB(XM_TX_PARAM),
1808 REGISTER_AB(XM_RX_PARAM),
1809 /* XM_MGT_INT_MSK (note no 'A') is RC */
1810 REGISTER_AB(XX_PWR_RST),
1811 REGISTER_AB(XX_SD_CTL),
1812 REGISTER_AB(XX_TXDRV_CTL),
1813 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1814 /* XX_CORE_STAT is partly RC */
1815 };
1816
1817 struct efx_nic_reg_table {
1818 u32 offset:24;
1819 u32 min_revision:2, max_revision:2;
1820 u32 step:6, rows:21;
1821 };
1822
1823 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1824 offset, \
1825 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1826 step, rows \
1827 }
1828 #define REGISTER_TABLE(name, min_rev, max_rev) \
1829 REGISTER_TABLE_DIMENSIONS( \
1830 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1831 min_rev, max_rev, \
1832 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1833 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1834 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1835 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1836 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1837 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1838 #define REGISTER_TABLE_BB_CZ(name) \
1839 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1840 FR_BZ_ ## name ## _STEP, \
1841 FR_BB_ ## name ## _ROWS), \
1842 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1843 FR_BZ_ ## name ## _STEP, \
1844 FR_CZ_ ## name ## _ROWS)
1845 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1846
1847 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1848 /* DRIVER is not used */
1849 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1850 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1851 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1852 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1853 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1854 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1855 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1856 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1857 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1858 /* We can't reasonably read all of the buffer table (up to 8MB!).
1859 * However this driver will only use a few entries. Reading
1860 * 1K entries allows for some expansion of queue count and
1861 * size before we need to change the version. */
1862 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1863 A, A, 8, 1024),
1864 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1865 B, Z, 8, 1024),
1866 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1867 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1868 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1869 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1870 /* TX_FILTER_TBL0 is huge and not used by this driver */
1871 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1872 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1873 /* MSIX_PBA_TABLE is not mapped */
1874 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1875 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1876 };
1877
1878 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1879 {
1880 const struct efx_nic_reg *reg;
1881 const struct efx_nic_reg_table *table;
1882 size_t len = 0;
1883
1884 for (reg = efx_nic_regs;
1885 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1886 reg++)
1887 if (efx->type->revision >= reg->min_revision &&
1888 efx->type->revision <= reg->max_revision)
1889 len += sizeof(efx_oword_t);
1890
1891 for (table = efx_nic_reg_tables;
1892 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1893 table++)
1894 if (efx->type->revision >= table->min_revision &&
1895 efx->type->revision <= table->max_revision)
1896 len += table->rows * min_t(size_t, table->step, 16);
1897
1898 return len;
1899 }
1900
1901 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1902 {
1903 const struct efx_nic_reg *reg;
1904 const struct efx_nic_reg_table *table;
1905
1906 for (reg = efx_nic_regs;
1907 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1908 reg++) {
1909 if (efx->type->revision >= reg->min_revision &&
1910 efx->type->revision <= reg->max_revision) {
1911 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1912 buf += sizeof(efx_oword_t);
1913 }
1914 }
1915
1916 for (table = efx_nic_reg_tables;
1917 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1918 table++) {
1919 size_t size, i;
1920
1921 if (!(efx->type->revision >= table->min_revision &&
1922 efx->type->revision <= table->max_revision))
1923 continue;
1924
1925 size = min_t(size_t, table->step, 16);
1926
1927 for (i = 0; i < table->rows; i++) {
1928 switch (table->step) {
1929 case 4: /* 32-bit register or SRAM */
1930 efx_readd_table(efx, buf, table->offset, i);
1931 break;
1932 case 8: /* 64-bit SRAM */
1933 efx_sram_readq(efx,
1934 efx->membase + table->offset,
1935 buf, i);
1936 break;
1937 case 16: /* 128-bit register */
1938 efx_reado_table(efx, buf, table->offset, i);
1939 break;
1940 case 32: /* 128-bit register, interleaved */
1941 efx_reado_table(efx, buf, table->offset, 2 * i);
1942 break;
1943 default:
1944 WARN_ON(1);
1945 return;
1946 }
1947 buf += size;
1948 }
1949 }
1950 }
This page took 0.075541 seconds and 5 git commands to generate.