Merge branch 'devel' of git://git.kernel.org/pub/scm/linux/kernel/git/ycmiao/pxa...
[deliverable/linux.git] / drivers / net / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <net/ip.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
27
28 /* Maximum size of a buffer sharing a page */
29 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
30
31 /* Size of buffer allocated for skb header area. */
32 #define EFX_SKB_HEADERS 64u
33
34 /*
35 * rx_alloc_method - RX buffer allocation method
36 *
37 * This driver supports two methods for allocating and using RX buffers:
38 * each RX buffer may be backed by an skb or by an order-n page.
39 *
40 * When LRO is in use then the second method has a lower overhead,
41 * since we don't have to allocate then free skbs on reassembled frames.
42 *
43 * Values:
44 * - RX_ALLOC_METHOD_AUTO = 0
45 * - RX_ALLOC_METHOD_SKB = 1
46 * - RX_ALLOC_METHOD_PAGE = 2
47 *
48 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
49 * controlled by the parameters below.
50 *
51 * - Since pushing and popping descriptors are separated by the rx_queue
52 * size, so the watermarks should be ~rxd_size.
53 * - The performance win by using page-based allocation for LRO is less
54 * than the performance hit of using page-based allocation of non-LRO,
55 * so the watermarks should reflect this.
56 *
57 * Per channel we maintain a single variable, updated by each channel:
58 *
59 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
60 * RX_ALLOC_FACTOR_SKB)
61 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
62 * limits the hysteresis), and update the allocation strategy:
63 *
64 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
65 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
66 */
67 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
68
69 #define RX_ALLOC_LEVEL_LRO 0x2000
70 #define RX_ALLOC_LEVEL_MAX 0x3000
71 #define RX_ALLOC_FACTOR_LRO 1
72 #define RX_ALLOC_FACTOR_SKB (-2)
73
74 /* This is the percentage fill level below which new RX descriptors
75 * will be added to the RX descriptor ring.
76 */
77 static unsigned int rx_refill_threshold = 90;
78
79 /* This is the percentage fill level to which an RX queue will be refilled
80 * when the "RX refill threshold" is reached.
81 */
82 static unsigned int rx_refill_limit = 95;
83
84 /*
85 * RX maximum head room required.
86 *
87 * This must be at least 1 to prevent overflow and at least 2 to allow
88 * pipelined receives.
89 */
90 #define EFX_RXD_HEAD_ROOM 2
91
92 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
93 {
94 /* Offset is always within one page, so we don't need to consider
95 * the page order.
96 */
97 return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
98 }
99 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
100 {
101 return PAGE_SIZE << efx->rx_buffer_order;
102 }
103
104 static inline u32 efx_rx_buf_hash(struct efx_rx_buffer *buf)
105 {
106 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
107 return __le32_to_cpup((const __le32 *)(buf->data - 4));
108 #else
109 const u8 *data = (const u8 *)(buf->data - 4);
110 return ((u32)data[0] |
111 (u32)data[1] << 8 |
112 (u32)data[2] << 16 |
113 (u32)data[3] << 24);
114 #endif
115 }
116
117 /**
118 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
119 *
120 * @rx_queue: Efx RX queue
121 *
122 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
123 * struct efx_rx_buffer for each one. Return a negative error code or 0
124 * on success. May fail having only inserted fewer than EFX_RX_BATCH
125 * buffers.
126 */
127 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
128 {
129 struct efx_nic *efx = rx_queue->efx;
130 struct net_device *net_dev = efx->net_dev;
131 struct efx_rx_buffer *rx_buf;
132 int skb_len = efx->rx_buffer_len;
133 unsigned index, count;
134
135 for (count = 0; count < EFX_RX_BATCH; ++count) {
136 index = rx_queue->added_count & rx_queue->ptr_mask;
137 rx_buf = efx_rx_buffer(rx_queue, index);
138
139 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
140 if (unlikely(!rx_buf->skb))
141 return -ENOMEM;
142 rx_buf->page = NULL;
143
144 /* Adjust the SKB for padding and checksum */
145 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
146 rx_buf->len = skb_len - NET_IP_ALIGN;
147 rx_buf->data = (char *)rx_buf->skb->data;
148 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
149
150 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
151 rx_buf->data, rx_buf->len,
152 PCI_DMA_FROMDEVICE);
153 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
154 rx_buf->dma_addr))) {
155 dev_kfree_skb_any(rx_buf->skb);
156 rx_buf->skb = NULL;
157 return -EIO;
158 }
159
160 ++rx_queue->added_count;
161 ++rx_queue->alloc_skb_count;
162 }
163
164 return 0;
165 }
166
167 /**
168 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
169 *
170 * @rx_queue: Efx RX queue
171 *
172 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
173 * and populates struct efx_rx_buffers for each one. Return a negative error
174 * code or 0 on success. If a single page can be split between two buffers,
175 * then the page will either be inserted fully, or not at at all.
176 */
177 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
178 {
179 struct efx_nic *efx = rx_queue->efx;
180 struct efx_rx_buffer *rx_buf;
181 struct page *page;
182 void *page_addr;
183 struct efx_rx_page_state *state;
184 dma_addr_t dma_addr;
185 unsigned index, count;
186
187 /* We can split a page between two buffers */
188 BUILD_BUG_ON(EFX_RX_BATCH & 1);
189
190 for (count = 0; count < EFX_RX_BATCH; ++count) {
191 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
192 efx->rx_buffer_order);
193 if (unlikely(page == NULL))
194 return -ENOMEM;
195 dma_addr = pci_map_page(efx->pci_dev, page, 0,
196 efx_rx_buf_size(efx),
197 PCI_DMA_FROMDEVICE);
198 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
199 __free_pages(page, efx->rx_buffer_order);
200 return -EIO;
201 }
202 page_addr = page_address(page);
203 state = page_addr;
204 state->refcnt = 0;
205 state->dma_addr = dma_addr;
206
207 page_addr += sizeof(struct efx_rx_page_state);
208 dma_addr += sizeof(struct efx_rx_page_state);
209
210 split:
211 index = rx_queue->added_count & rx_queue->ptr_mask;
212 rx_buf = efx_rx_buffer(rx_queue, index);
213 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
214 rx_buf->skb = NULL;
215 rx_buf->page = page;
216 rx_buf->data = page_addr + EFX_PAGE_IP_ALIGN;
217 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
218 ++rx_queue->added_count;
219 ++rx_queue->alloc_page_count;
220 ++state->refcnt;
221
222 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
223 /* Use the second half of the page */
224 get_page(page);
225 dma_addr += (PAGE_SIZE >> 1);
226 page_addr += (PAGE_SIZE >> 1);
227 ++count;
228 goto split;
229 }
230 }
231
232 return 0;
233 }
234
235 static void efx_unmap_rx_buffer(struct efx_nic *efx,
236 struct efx_rx_buffer *rx_buf)
237 {
238 if (rx_buf->page) {
239 struct efx_rx_page_state *state;
240
241 EFX_BUG_ON_PARANOID(rx_buf->skb);
242
243 state = page_address(rx_buf->page);
244 if (--state->refcnt == 0) {
245 pci_unmap_page(efx->pci_dev,
246 state->dma_addr,
247 efx_rx_buf_size(efx),
248 PCI_DMA_FROMDEVICE);
249 }
250 } else if (likely(rx_buf->skb)) {
251 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
252 rx_buf->len, PCI_DMA_FROMDEVICE);
253 }
254 }
255
256 static void efx_free_rx_buffer(struct efx_nic *efx,
257 struct efx_rx_buffer *rx_buf)
258 {
259 if (rx_buf->page) {
260 __free_pages(rx_buf->page, efx->rx_buffer_order);
261 rx_buf->page = NULL;
262 } else if (likely(rx_buf->skb)) {
263 dev_kfree_skb_any(rx_buf->skb);
264 rx_buf->skb = NULL;
265 }
266 }
267
268 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
269 struct efx_rx_buffer *rx_buf)
270 {
271 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
272 efx_free_rx_buffer(rx_queue->efx, rx_buf);
273 }
274
275 /* Attempt to resurrect the other receive buffer that used to share this page,
276 * which had previously been passed up to the kernel and freed. */
277 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
278 struct efx_rx_buffer *rx_buf)
279 {
280 struct efx_rx_page_state *state = page_address(rx_buf->page);
281 struct efx_rx_buffer *new_buf;
282 unsigned fill_level, index;
283
284 /* +1 because efx_rx_packet() incremented removed_count. +1 because
285 * we'd like to insert an additional descriptor whilst leaving
286 * EFX_RXD_HEAD_ROOM for the non-recycle path */
287 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
288 if (unlikely(fill_level > rx_queue->max_fill)) {
289 /* We could place "state" on a list, and drain the list in
290 * efx_fast_push_rx_descriptors(). For now, this will do. */
291 return;
292 }
293
294 ++state->refcnt;
295 get_page(rx_buf->page);
296
297 index = rx_queue->added_count & rx_queue->ptr_mask;
298 new_buf = efx_rx_buffer(rx_queue, index);
299 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
300 new_buf->skb = NULL;
301 new_buf->page = rx_buf->page;
302 new_buf->data = (void *)
303 ((__force unsigned long)rx_buf->data ^ (PAGE_SIZE >> 1));
304 new_buf->len = rx_buf->len;
305 ++rx_queue->added_count;
306 }
307
308 /* Recycle the given rx buffer directly back into the rx_queue. There is
309 * always room to add this buffer, because we've just popped a buffer. */
310 static void efx_recycle_rx_buffer(struct efx_channel *channel,
311 struct efx_rx_buffer *rx_buf)
312 {
313 struct efx_nic *efx = channel->efx;
314 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
315 struct efx_rx_buffer *new_buf;
316 unsigned index;
317
318 if (rx_buf->page != NULL && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
319 page_count(rx_buf->page) == 1)
320 efx_resurrect_rx_buffer(rx_queue, rx_buf);
321
322 index = rx_queue->added_count & rx_queue->ptr_mask;
323 new_buf = efx_rx_buffer(rx_queue, index);
324
325 memcpy(new_buf, rx_buf, sizeof(*new_buf));
326 rx_buf->page = NULL;
327 rx_buf->skb = NULL;
328 ++rx_queue->added_count;
329 }
330
331 /**
332 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
333 * @rx_queue: RX descriptor queue
334 * This will aim to fill the RX descriptor queue up to
335 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
336 * memory to do so, a slow fill will be scheduled.
337 *
338 * The caller must provide serialisation (none is used here). In practise,
339 * this means this function must run from the NAPI handler, or be called
340 * when NAPI is disabled.
341 */
342 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
343 {
344 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
345 unsigned fill_level;
346 int space, rc = 0;
347
348 /* Calculate current fill level, and exit if we don't need to fill */
349 fill_level = (rx_queue->added_count - rx_queue->removed_count);
350 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
351 if (fill_level >= rx_queue->fast_fill_trigger)
352 goto out;
353
354 /* Record minimum fill level */
355 if (unlikely(fill_level < rx_queue->min_fill)) {
356 if (fill_level)
357 rx_queue->min_fill = fill_level;
358 }
359
360 space = rx_queue->fast_fill_limit - fill_level;
361 if (space < EFX_RX_BATCH)
362 goto out;
363
364 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
365 "RX queue %d fast-filling descriptor ring from"
366 " level %d to level %d using %s allocation\n",
367 efx_rx_queue_index(rx_queue), fill_level,
368 rx_queue->fast_fill_limit,
369 channel->rx_alloc_push_pages ? "page" : "skb");
370
371 do {
372 if (channel->rx_alloc_push_pages)
373 rc = efx_init_rx_buffers_page(rx_queue);
374 else
375 rc = efx_init_rx_buffers_skb(rx_queue);
376 if (unlikely(rc)) {
377 /* Ensure that we don't leave the rx queue empty */
378 if (rx_queue->added_count == rx_queue->removed_count)
379 efx_schedule_slow_fill(rx_queue);
380 goto out;
381 }
382 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
383
384 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
385 "RX queue %d fast-filled descriptor ring "
386 "to level %d\n", efx_rx_queue_index(rx_queue),
387 rx_queue->added_count - rx_queue->removed_count);
388
389 out:
390 if (rx_queue->notified_count != rx_queue->added_count)
391 efx_nic_notify_rx_desc(rx_queue);
392 }
393
394 void efx_rx_slow_fill(unsigned long context)
395 {
396 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
397 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
398
399 /* Post an event to cause NAPI to run and refill the queue */
400 efx_nic_generate_fill_event(channel);
401 ++rx_queue->slow_fill_count;
402 }
403
404 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
405 struct efx_rx_buffer *rx_buf,
406 int len, bool *discard,
407 bool *leak_packet)
408 {
409 struct efx_nic *efx = rx_queue->efx;
410 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
411
412 if (likely(len <= max_len))
413 return;
414
415 /* The packet must be discarded, but this is only a fatal error
416 * if the caller indicated it was
417 */
418 *discard = true;
419
420 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
421 if (net_ratelimit())
422 netif_err(efx, rx_err, efx->net_dev,
423 " RX queue %d seriously overlength "
424 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
425 efx_rx_queue_index(rx_queue), len, max_len,
426 efx->type->rx_buffer_padding);
427 /* If this buffer was skb-allocated, then the meta
428 * data at the end of the skb will be trashed. So
429 * we have no choice but to leak the fragment.
430 */
431 *leak_packet = (rx_buf->skb != NULL);
432 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
433 } else {
434 if (net_ratelimit())
435 netif_err(efx, rx_err, efx->net_dev,
436 " RX queue %d overlength RX event "
437 "(0x%x > 0x%x)\n",
438 efx_rx_queue_index(rx_queue), len, max_len);
439 }
440
441 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
442 }
443
444 /* Pass a received packet up through the generic LRO stack
445 *
446 * Handles driverlink veto, and passes the fragment up via
447 * the appropriate LRO method
448 */
449 static void efx_rx_packet_lro(struct efx_channel *channel,
450 struct efx_rx_buffer *rx_buf,
451 bool checksummed)
452 {
453 struct napi_struct *napi = &channel->napi_str;
454 gro_result_t gro_result;
455
456 /* Pass the skb/page into the LRO engine */
457 if (rx_buf->page) {
458 struct efx_nic *efx = channel->efx;
459 struct page *page = rx_buf->page;
460 struct sk_buff *skb;
461
462 EFX_BUG_ON_PARANOID(rx_buf->skb);
463 rx_buf->page = NULL;
464
465 skb = napi_get_frags(napi);
466 if (!skb) {
467 put_page(page);
468 return;
469 }
470
471 if (efx->net_dev->features & NETIF_F_RXHASH)
472 skb->rxhash = efx_rx_buf_hash(rx_buf);
473
474 skb_shinfo(skb)->frags[0].page = page;
475 skb_shinfo(skb)->frags[0].page_offset =
476 efx_rx_buf_offset(rx_buf);
477 skb_shinfo(skb)->frags[0].size = rx_buf->len;
478 skb_shinfo(skb)->nr_frags = 1;
479
480 skb->len = rx_buf->len;
481 skb->data_len = rx_buf->len;
482 skb->truesize += rx_buf->len;
483 skb->ip_summed =
484 checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
485
486 skb_record_rx_queue(skb, channel->channel);
487
488 gro_result = napi_gro_frags(napi);
489 } else {
490 struct sk_buff *skb = rx_buf->skb;
491
492 EFX_BUG_ON_PARANOID(!skb);
493 EFX_BUG_ON_PARANOID(!checksummed);
494 rx_buf->skb = NULL;
495
496 gro_result = napi_gro_receive(napi, skb);
497 }
498
499 if (gro_result == GRO_NORMAL) {
500 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
501 } else if (gro_result != GRO_DROP) {
502 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
503 channel->irq_mod_score += 2;
504 }
505 }
506
507 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
508 unsigned int len, bool checksummed, bool discard)
509 {
510 struct efx_nic *efx = rx_queue->efx;
511 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
512 struct efx_rx_buffer *rx_buf;
513 bool leak_packet = false;
514
515 rx_buf = efx_rx_buffer(rx_queue, index);
516 EFX_BUG_ON_PARANOID(!rx_buf->data);
517 EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
518 EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
519
520 /* This allows the refill path to post another buffer.
521 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
522 * isn't overwritten yet.
523 */
524 rx_queue->removed_count++;
525
526 /* Validate the length encoded in the event vs the descriptor pushed */
527 efx_rx_packet__check_len(rx_queue, rx_buf, len,
528 &discard, &leak_packet);
529
530 netif_vdbg(efx, rx_status, efx->net_dev,
531 "RX queue %d received id %x at %llx+%x %s%s\n",
532 efx_rx_queue_index(rx_queue), index,
533 (unsigned long long)rx_buf->dma_addr, len,
534 (checksummed ? " [SUMMED]" : ""),
535 (discard ? " [DISCARD]" : ""));
536
537 /* Discard packet, if instructed to do so */
538 if (unlikely(discard)) {
539 if (unlikely(leak_packet))
540 channel->n_skbuff_leaks++;
541 else
542 efx_recycle_rx_buffer(channel, rx_buf);
543
544 /* Don't hold off the previous receive */
545 rx_buf = NULL;
546 goto out;
547 }
548
549 /* Release card resources - assumes all RX buffers consumed in-order
550 * per RX queue
551 */
552 efx_unmap_rx_buffer(efx, rx_buf);
553
554 /* Prefetch nice and early so data will (hopefully) be in cache by
555 * the time we look at it.
556 */
557 prefetch(rx_buf->data);
558
559 /* Pipeline receives so that we give time for packet headers to be
560 * prefetched into cache.
561 */
562 rx_buf->len = len;
563 out:
564 if (channel->rx_pkt)
565 __efx_rx_packet(channel,
566 channel->rx_pkt, channel->rx_pkt_csummed);
567 channel->rx_pkt = rx_buf;
568 channel->rx_pkt_csummed = checksummed;
569 }
570
571 /* Handle a received packet. Second half: Touches packet payload. */
572 void __efx_rx_packet(struct efx_channel *channel,
573 struct efx_rx_buffer *rx_buf, bool checksummed)
574 {
575 struct efx_nic *efx = channel->efx;
576 struct sk_buff *skb;
577
578 rx_buf->data += efx->type->rx_buffer_hash_size;
579 rx_buf->len -= efx->type->rx_buffer_hash_size;
580
581 /* If we're in loopback test, then pass the packet directly to the
582 * loopback layer, and free the rx_buf here
583 */
584 if (unlikely(efx->loopback_selftest)) {
585 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
586 efx_free_rx_buffer(efx, rx_buf);
587 return;
588 }
589
590 if (rx_buf->skb) {
591 prefetch(skb_shinfo(rx_buf->skb));
592
593 skb_reserve(rx_buf->skb, efx->type->rx_buffer_hash_size);
594 skb_put(rx_buf->skb, rx_buf->len);
595
596 if (efx->net_dev->features & NETIF_F_RXHASH)
597 rx_buf->skb->rxhash = efx_rx_buf_hash(rx_buf);
598
599 /* Move past the ethernet header. rx_buf->data still points
600 * at the ethernet header */
601 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
602 efx->net_dev);
603
604 skb_record_rx_queue(rx_buf->skb, channel->channel);
605 }
606
607 if (likely(checksummed || rx_buf->page)) {
608 efx_rx_packet_lro(channel, rx_buf, checksummed);
609 return;
610 }
611
612 /* We now own the SKB */
613 skb = rx_buf->skb;
614 rx_buf->skb = NULL;
615 EFX_BUG_ON_PARANOID(!skb);
616
617 /* Set the SKB flags */
618 skb_checksum_none_assert(skb);
619
620 /* Pass the packet up */
621 netif_receive_skb(skb);
622
623 /* Update allocation strategy method */
624 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
625 }
626
627 void efx_rx_strategy(struct efx_channel *channel)
628 {
629 enum efx_rx_alloc_method method = rx_alloc_method;
630
631 /* Only makes sense to use page based allocation if LRO is enabled */
632 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
633 method = RX_ALLOC_METHOD_SKB;
634 } else if (method == RX_ALLOC_METHOD_AUTO) {
635 /* Constrain the rx_alloc_level */
636 if (channel->rx_alloc_level < 0)
637 channel->rx_alloc_level = 0;
638 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
639 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
640
641 /* Decide on the allocation method */
642 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
643 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
644 }
645
646 /* Push the option */
647 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
648 }
649
650 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
651 {
652 struct efx_nic *efx = rx_queue->efx;
653 unsigned int entries;
654 int rc;
655
656 /* Create the smallest power-of-two aligned ring */
657 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
658 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
659 rx_queue->ptr_mask = entries - 1;
660
661 netif_dbg(efx, probe, efx->net_dev,
662 "creating RX queue %d size %#x mask %#x\n",
663 efx_rx_queue_index(rx_queue), efx->rxq_entries,
664 rx_queue->ptr_mask);
665
666 /* Allocate RX buffers */
667 rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer),
668 GFP_KERNEL);
669 if (!rx_queue->buffer)
670 return -ENOMEM;
671
672 rc = efx_nic_probe_rx(rx_queue);
673 if (rc) {
674 kfree(rx_queue->buffer);
675 rx_queue->buffer = NULL;
676 }
677 return rc;
678 }
679
680 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
681 {
682 struct efx_nic *efx = rx_queue->efx;
683 unsigned int max_fill, trigger, limit;
684
685 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
686 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
687
688 /* Initialise ptr fields */
689 rx_queue->added_count = 0;
690 rx_queue->notified_count = 0;
691 rx_queue->removed_count = 0;
692 rx_queue->min_fill = -1U;
693
694 /* Initialise limit fields */
695 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
696 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
697 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
698
699 rx_queue->max_fill = max_fill;
700 rx_queue->fast_fill_trigger = trigger;
701 rx_queue->fast_fill_limit = limit;
702
703 /* Set up RX descriptor ring */
704 efx_nic_init_rx(rx_queue);
705 }
706
707 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
708 {
709 int i;
710 struct efx_rx_buffer *rx_buf;
711
712 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
713 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
714
715 del_timer_sync(&rx_queue->slow_fill);
716 efx_nic_fini_rx(rx_queue);
717
718 /* Release RX buffers NB start at index 0 not current HW ptr */
719 if (rx_queue->buffer) {
720 for (i = 0; i <= rx_queue->ptr_mask; i++) {
721 rx_buf = efx_rx_buffer(rx_queue, i);
722 efx_fini_rx_buffer(rx_queue, rx_buf);
723 }
724 }
725 }
726
727 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
728 {
729 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
730 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
731
732 efx_nic_remove_rx(rx_queue);
733
734 kfree(rx_queue->buffer);
735 rx_queue->buffer = NULL;
736 }
737
738
739 module_param(rx_alloc_method, int, 0644);
740 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
741
742 module_param(rx_refill_threshold, uint, 0444);
743 MODULE_PARM_DESC(rx_refill_threshold,
744 "RX descriptor ring fast/slow fill threshold (%)");
745
This page took 0.046875 seconds and 5 git commands to generate.