sfc: Replaced various macros with inline functions
[deliverable/linux.git] / drivers / net / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/ip.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <net/ip.h>
17 #include <net/checksum.h>
18 #include "net_driver.h"
19 #include "rx.h"
20 #include "efx.h"
21 #include "falcon.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
27
28 /* Size of buffer allocated for skb header area. */
29 #define EFX_SKB_HEADERS 64u
30
31 /*
32 * rx_alloc_method - RX buffer allocation method
33 *
34 * This driver supports two methods for allocating and using RX buffers:
35 * each RX buffer may be backed by an skb or by an order-n page.
36 *
37 * When LRO is in use then the second method has a lower overhead,
38 * since we don't have to allocate then free skbs on reassembled frames.
39 *
40 * Values:
41 * - RX_ALLOC_METHOD_AUTO = 0
42 * - RX_ALLOC_METHOD_SKB = 1
43 * - RX_ALLOC_METHOD_PAGE = 2
44 *
45 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46 * controlled by the parameters below.
47 *
48 * - Since pushing and popping descriptors are separated by the rx_queue
49 * size, so the watermarks should be ~rxd_size.
50 * - The performance win by using page-based allocation for LRO is less
51 * than the performance hit of using page-based allocation of non-LRO,
52 * so the watermarks should reflect this.
53 *
54 * Per channel we maintain a single variable, updated by each channel:
55 *
56 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57 * RX_ALLOC_FACTOR_SKB)
58 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59 * limits the hysteresis), and update the allocation strategy:
60 *
61 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
63 */
64 static int rx_alloc_method = RX_ALLOC_METHOD_PAGE;
65
66 #define RX_ALLOC_LEVEL_LRO 0x2000
67 #define RX_ALLOC_LEVEL_MAX 0x3000
68 #define RX_ALLOC_FACTOR_LRO 1
69 #define RX_ALLOC_FACTOR_SKB (-2)
70
71 /* This is the percentage fill level below which new RX descriptors
72 * will be added to the RX descriptor ring.
73 */
74 static unsigned int rx_refill_threshold = 90;
75
76 /* This is the percentage fill level to which an RX queue will be refilled
77 * when the "RX refill threshold" is reached.
78 */
79 static unsigned int rx_refill_limit = 95;
80
81 /*
82 * RX maximum head room required.
83 *
84 * This must be at least 1 to prevent overflow and at least 2 to allow
85 * pipelined receives.
86 */
87 #define EFX_RXD_HEAD_ROOM 2
88
89 static inline unsigned int efx_page_offset(void *p)
90 {
91 return (__force unsigned int)p & (PAGE_SIZE - 1);
92 }
93 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
94 {
95 /* Offset is always within one page, so we don't need to consider
96 * the page order.
97 */
98 return efx_page_offset(buf->data);
99 }
100 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
101 {
102 return PAGE_SIZE << efx->rx_buffer_order;
103 }
104
105
106 /**************************************************************************
107 *
108 * Linux generic LRO handling
109 *
110 **************************************************************************
111 */
112
113 static int efx_lro_get_skb_hdr(struct sk_buff *skb, void **ip_hdr,
114 void **tcpudp_hdr, u64 *hdr_flags, void *priv)
115 {
116 struct efx_channel *channel = (struct efx_channel *)priv;
117 struct iphdr *iph;
118 struct tcphdr *th;
119
120 iph = (struct iphdr *)skb->data;
121 if (skb->protocol != htons(ETH_P_IP) || iph->protocol != IPPROTO_TCP)
122 goto fail;
123
124 th = (struct tcphdr *)(skb->data + iph->ihl * 4);
125
126 *tcpudp_hdr = th;
127 *ip_hdr = iph;
128 *hdr_flags = LRO_IPV4 | LRO_TCP;
129
130 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
131 return 0;
132 fail:
133 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
134 return -1;
135 }
136
137 static int efx_get_frag_hdr(struct skb_frag_struct *frag, void **mac_hdr,
138 void **ip_hdr, void **tcpudp_hdr, u64 *hdr_flags,
139 void *priv)
140 {
141 struct efx_channel *channel = (struct efx_channel *)priv;
142 struct ethhdr *eh;
143 struct iphdr *iph;
144
145 /* We support EtherII and VLAN encapsulated IPv4 */
146 eh = (struct ethhdr *)(page_address(frag->page) + frag->page_offset);
147 *mac_hdr = eh;
148
149 if (eh->h_proto == htons(ETH_P_IP)) {
150 iph = (struct iphdr *)(eh + 1);
151 } else {
152 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)eh;
153 if (veh->h_vlan_encapsulated_proto != htons(ETH_P_IP))
154 goto fail;
155
156 iph = (struct iphdr *)(veh + 1);
157 }
158 *ip_hdr = iph;
159
160 /* We can only do LRO over TCP */
161 if (iph->protocol != IPPROTO_TCP)
162 goto fail;
163
164 *hdr_flags = LRO_IPV4 | LRO_TCP;
165 *tcpudp_hdr = (struct tcphdr *)((u8 *) iph + iph->ihl * 4);
166
167 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
168 return 0;
169 fail:
170 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
171 return -1;
172 }
173
174 int efx_lro_init(struct net_lro_mgr *lro_mgr, struct efx_nic *efx)
175 {
176 size_t s = sizeof(struct net_lro_desc) * EFX_MAX_LRO_DESCRIPTORS;
177 struct net_lro_desc *lro_arr;
178
179 /* Allocate the LRO descriptors structure */
180 lro_arr = kzalloc(s, GFP_KERNEL);
181 if (lro_arr == NULL)
182 return -ENOMEM;
183
184 lro_mgr->lro_arr = lro_arr;
185 lro_mgr->max_desc = EFX_MAX_LRO_DESCRIPTORS;
186 lro_mgr->max_aggr = EFX_MAX_LRO_AGGR;
187 lro_mgr->frag_align_pad = EFX_PAGE_SKB_ALIGN;
188
189 lro_mgr->get_skb_header = efx_lro_get_skb_hdr;
190 lro_mgr->get_frag_header = efx_get_frag_hdr;
191 lro_mgr->dev = efx->net_dev;
192
193 lro_mgr->features = LRO_F_NAPI;
194
195 /* We can pass packets up with the checksum intact */
196 lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
197
198 lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
199
200 return 0;
201 }
202
203 void efx_lro_fini(struct net_lro_mgr *lro_mgr)
204 {
205 kfree(lro_mgr->lro_arr);
206 lro_mgr->lro_arr = NULL;
207 }
208
209 /**
210 * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
211 *
212 * @rx_queue: Efx RX queue
213 * @rx_buf: RX buffer structure to populate
214 *
215 * This allocates memory for a new receive buffer, maps it for DMA,
216 * and populates a struct efx_rx_buffer with the relevant
217 * information. Return a negative error code or 0 on success.
218 */
219 static inline int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
220 struct efx_rx_buffer *rx_buf)
221 {
222 struct efx_nic *efx = rx_queue->efx;
223 struct net_device *net_dev = efx->net_dev;
224 int skb_len = efx->rx_buffer_len;
225
226 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
227 if (unlikely(!rx_buf->skb))
228 return -ENOMEM;
229
230 /* Adjust the SKB for padding and checksum */
231 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
232 rx_buf->len = skb_len - NET_IP_ALIGN;
233 rx_buf->data = (char *)rx_buf->skb->data;
234 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
235
236 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
237 rx_buf->data, rx_buf->len,
238 PCI_DMA_FROMDEVICE);
239
240 if (unlikely(pci_dma_mapping_error(rx_buf->dma_addr))) {
241 dev_kfree_skb_any(rx_buf->skb);
242 rx_buf->skb = NULL;
243 return -EIO;
244 }
245
246 return 0;
247 }
248
249 /**
250 * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
251 *
252 * @rx_queue: Efx RX queue
253 * @rx_buf: RX buffer structure to populate
254 *
255 * This allocates memory for a new receive buffer, maps it for DMA,
256 * and populates a struct efx_rx_buffer with the relevant
257 * information. Return a negative error code or 0 on success.
258 */
259 static inline int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
260 struct efx_rx_buffer *rx_buf)
261 {
262 struct efx_nic *efx = rx_queue->efx;
263 int bytes, space, offset;
264
265 bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
266
267 /* If there is space left in the previously allocated page,
268 * then use it. Otherwise allocate a new one */
269 rx_buf->page = rx_queue->buf_page;
270 if (rx_buf->page == NULL) {
271 dma_addr_t dma_addr;
272
273 rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
274 efx->rx_buffer_order);
275 if (unlikely(rx_buf->page == NULL))
276 return -ENOMEM;
277
278 dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
279 0, efx_rx_buf_size(efx),
280 PCI_DMA_FROMDEVICE);
281
282 if (unlikely(pci_dma_mapping_error(dma_addr))) {
283 __free_pages(rx_buf->page, efx->rx_buffer_order);
284 rx_buf->page = NULL;
285 return -EIO;
286 }
287
288 rx_queue->buf_page = rx_buf->page;
289 rx_queue->buf_dma_addr = dma_addr;
290 rx_queue->buf_data = ((char *) page_address(rx_buf->page) +
291 EFX_PAGE_IP_ALIGN);
292 }
293
294 offset = efx_page_offset(rx_queue->buf_data);
295 rx_buf->len = bytes;
296 rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
297 rx_buf->data = rx_queue->buf_data;
298
299 /* Try to pack multiple buffers per page */
300 if (efx->rx_buffer_order == 0) {
301 /* The next buffer starts on the next 512 byte boundary */
302 rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
303 offset += ((bytes + 0x1ff) & ~0x1ff);
304
305 space = efx_rx_buf_size(efx) - offset;
306 if (space >= bytes) {
307 /* Refs dropped on kernel releasing each skb */
308 get_page(rx_queue->buf_page);
309 goto out;
310 }
311 }
312
313 /* This is the final RX buffer for this page, so mark it for
314 * unmapping */
315 rx_queue->buf_page = NULL;
316 rx_buf->unmap_addr = rx_queue->buf_dma_addr;
317
318 out:
319 return 0;
320 }
321
322 /* This allocates memory for a new receive buffer, maps it for DMA,
323 * and populates a struct efx_rx_buffer with the relevant
324 * information.
325 */
326 static inline int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
327 struct efx_rx_buffer *new_rx_buf)
328 {
329 int rc = 0;
330
331 if (rx_queue->channel->rx_alloc_push_pages) {
332 new_rx_buf->skb = NULL;
333 rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
334 rx_queue->alloc_page_count++;
335 } else {
336 new_rx_buf->page = NULL;
337 rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
338 rx_queue->alloc_skb_count++;
339 }
340
341 if (unlikely(rc < 0))
342 EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
343 rx_queue->queue, rc);
344 return rc;
345 }
346
347 static inline void efx_unmap_rx_buffer(struct efx_nic *efx,
348 struct efx_rx_buffer *rx_buf)
349 {
350 if (rx_buf->page) {
351 EFX_BUG_ON_PARANOID(rx_buf->skb);
352 if (rx_buf->unmap_addr) {
353 pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
354 efx_rx_buf_size(efx),
355 PCI_DMA_FROMDEVICE);
356 rx_buf->unmap_addr = 0;
357 }
358 } else if (likely(rx_buf->skb)) {
359 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
360 rx_buf->len, PCI_DMA_FROMDEVICE);
361 }
362 }
363
364 static inline void efx_free_rx_buffer(struct efx_nic *efx,
365 struct efx_rx_buffer *rx_buf)
366 {
367 if (rx_buf->page) {
368 __free_pages(rx_buf->page, efx->rx_buffer_order);
369 rx_buf->page = NULL;
370 } else if (likely(rx_buf->skb)) {
371 dev_kfree_skb_any(rx_buf->skb);
372 rx_buf->skb = NULL;
373 }
374 }
375
376 static inline void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
377 struct efx_rx_buffer *rx_buf)
378 {
379 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
380 efx_free_rx_buffer(rx_queue->efx, rx_buf);
381 }
382
383 /**
384 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
385 * @rx_queue: RX descriptor queue
386 * @retry: Recheck the fill level
387 * This will aim to fill the RX descriptor queue up to
388 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
389 * memory to do so, the caller should retry.
390 */
391 static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
392 int retry)
393 {
394 struct efx_rx_buffer *rx_buf;
395 unsigned fill_level, index;
396 int i, space, rc = 0;
397
398 /* Calculate current fill level. Do this outside the lock,
399 * because most of the time we'll end up not wanting to do the
400 * fill anyway.
401 */
402 fill_level = (rx_queue->added_count - rx_queue->removed_count);
403 EFX_BUG_ON_PARANOID(fill_level >
404 rx_queue->efx->type->rxd_ring_mask + 1);
405
406 /* Don't fill if we don't need to */
407 if (fill_level >= rx_queue->fast_fill_trigger)
408 return 0;
409
410 /* Record minimum fill level */
411 if (unlikely(fill_level < rx_queue->min_fill)) {
412 if (fill_level)
413 rx_queue->min_fill = fill_level;
414 }
415
416 /* Acquire RX add lock. If this lock is contended, then a fast
417 * fill must already be in progress (e.g. in the refill
418 * tasklet), so we don't need to do anything
419 */
420 if (!spin_trylock_bh(&rx_queue->add_lock))
421 return -1;
422
423 retry:
424 /* Recalculate current fill level now that we have the lock */
425 fill_level = (rx_queue->added_count - rx_queue->removed_count);
426 EFX_BUG_ON_PARANOID(fill_level >
427 rx_queue->efx->type->rxd_ring_mask + 1);
428 space = rx_queue->fast_fill_limit - fill_level;
429 if (space < EFX_RX_BATCH)
430 goto out_unlock;
431
432 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
433 " level %d to level %d using %s allocation\n",
434 rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
435 rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
436
437 do {
438 for (i = 0; i < EFX_RX_BATCH; ++i) {
439 index = (rx_queue->added_count &
440 rx_queue->efx->type->rxd_ring_mask);
441 rx_buf = efx_rx_buffer(rx_queue, index);
442 rc = efx_init_rx_buffer(rx_queue, rx_buf);
443 if (unlikely(rc))
444 goto out;
445 ++rx_queue->added_count;
446 }
447 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
448
449 EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
450 "to level %d\n", rx_queue->queue,
451 rx_queue->added_count - rx_queue->removed_count);
452
453 out:
454 /* Send write pointer to card. */
455 falcon_notify_rx_desc(rx_queue);
456
457 /* If the fast fill is running inside from the refill tasklet, then
458 * for SMP systems it may be running on a different CPU to
459 * RX event processing, which means that the fill level may now be
460 * out of date. */
461 if (unlikely(retry && (rc == 0)))
462 goto retry;
463
464 out_unlock:
465 spin_unlock_bh(&rx_queue->add_lock);
466
467 return rc;
468 }
469
470 /**
471 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
472 * @rx_queue: RX descriptor queue
473 *
474 * This will aim to fill the RX descriptor queue up to
475 * @rx_queue->@fast_fill_limit. If there is insufficient memory to do so,
476 * it will schedule a work item to immediately continue the fast fill
477 */
478 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
479 {
480 int rc;
481
482 rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
483 if (unlikely(rc)) {
484 /* Schedule the work item to run immediately. The hope is
485 * that work is immediately pending to free some memory
486 * (e.g. an RX event or TX completion)
487 */
488 efx_schedule_slow_fill(rx_queue, 0);
489 }
490 }
491
492 void efx_rx_work(struct work_struct *data)
493 {
494 struct efx_rx_queue *rx_queue;
495 int rc;
496
497 rx_queue = container_of(data, struct efx_rx_queue, work.work);
498
499 if (unlikely(!rx_queue->channel->enabled))
500 return;
501
502 EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
503 "%d\n", rx_queue->queue, raw_smp_processor_id());
504
505 ++rx_queue->slow_fill_count;
506 /* Push new RX descriptors, allowing at least 1 jiffy for
507 * the kernel to free some more memory. */
508 rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
509 if (rc)
510 efx_schedule_slow_fill(rx_queue, 1);
511 }
512
513 static inline void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
514 struct efx_rx_buffer *rx_buf,
515 int len, int *discard,
516 int *leak_packet)
517 {
518 struct efx_nic *efx = rx_queue->efx;
519 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
520
521 if (likely(len <= max_len))
522 return;
523
524 /* The packet must be discarded, but this is only a fatal error
525 * if the caller indicated it was
526 */
527 *discard = 1;
528
529 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
530 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
531 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
532 rx_queue->queue, len, max_len,
533 efx->type->rx_buffer_padding);
534 /* If this buffer was skb-allocated, then the meta
535 * data at the end of the skb will be trashed. So
536 * we have no choice but to leak the fragment.
537 */
538 *leak_packet = (rx_buf->skb != NULL);
539 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
540 } else {
541 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
542 "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
543 }
544
545 rx_queue->channel->n_rx_overlength++;
546 }
547
548 /* Pass a received packet up through the generic LRO stack
549 *
550 * Handles driverlink veto, and passes the fragment up via
551 * the appropriate LRO method
552 */
553 static inline void efx_rx_packet_lro(struct efx_channel *channel,
554 struct efx_rx_buffer *rx_buf)
555 {
556 struct net_lro_mgr *lro_mgr = &channel->lro_mgr;
557 void *priv = channel;
558
559 /* Pass the skb/page into the LRO engine */
560 if (rx_buf->page) {
561 struct skb_frag_struct frags;
562
563 frags.page = rx_buf->page;
564 frags.page_offset = efx_rx_buf_offset(rx_buf);
565 frags.size = rx_buf->len;
566
567 lro_receive_frags(lro_mgr, &frags, rx_buf->len,
568 rx_buf->len, priv, 0);
569
570 EFX_BUG_ON_PARANOID(rx_buf->skb);
571 rx_buf->page = NULL;
572 } else {
573 EFX_BUG_ON_PARANOID(!rx_buf->skb);
574
575 lro_receive_skb(lro_mgr, rx_buf->skb, priv);
576 rx_buf->skb = NULL;
577 }
578 }
579
580 /* Allocate and construct an SKB around a struct page.*/
581 static inline struct sk_buff *efx_rx_mk_skb(struct efx_rx_buffer *rx_buf,
582 struct efx_nic *efx,
583 int hdr_len)
584 {
585 struct sk_buff *skb;
586
587 /* Allocate an SKB to store the headers */
588 skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
589 if (unlikely(skb == NULL)) {
590 EFX_ERR_RL(efx, "RX out of memory for skb\n");
591 return NULL;
592 }
593
594 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags);
595 EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
596
597 skb->ip_summed = CHECKSUM_UNNECESSARY;
598 skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
599
600 skb->len = rx_buf->len;
601 skb->truesize = rx_buf->len + sizeof(struct sk_buff);
602 memcpy(skb->data, rx_buf->data, hdr_len);
603 skb->tail += hdr_len;
604
605 /* Append the remaining page onto the frag list */
606 if (unlikely(rx_buf->len > hdr_len)) {
607 struct skb_frag_struct *frag = skb_shinfo(skb)->frags;
608 frag->page = rx_buf->page;
609 frag->page_offset = efx_rx_buf_offset(rx_buf) + hdr_len;
610 frag->size = skb->len - hdr_len;
611 skb_shinfo(skb)->nr_frags = 1;
612 skb->data_len = frag->size;
613 } else {
614 __free_pages(rx_buf->page, efx->rx_buffer_order);
615 skb->data_len = 0;
616 }
617
618 /* Ownership has transferred from the rx_buf to skb */
619 rx_buf->page = NULL;
620
621 /* Move past the ethernet header */
622 skb->protocol = eth_type_trans(skb, efx->net_dev);
623
624 return skb;
625 }
626
627 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
628 unsigned int len, int checksummed, int discard)
629 {
630 struct efx_nic *efx = rx_queue->efx;
631 struct efx_rx_buffer *rx_buf;
632 int leak_packet = 0;
633
634 rx_buf = efx_rx_buffer(rx_queue, index);
635 EFX_BUG_ON_PARANOID(!rx_buf->data);
636 EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
637 EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
638
639 /* This allows the refill path to post another buffer.
640 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
641 * isn't overwritten yet.
642 */
643 rx_queue->removed_count++;
644
645 /* Validate the length encoded in the event vs the descriptor pushed */
646 efx_rx_packet__check_len(rx_queue, rx_buf, len,
647 &discard, &leak_packet);
648
649 EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
650 rx_queue->queue, index,
651 (unsigned long long)rx_buf->dma_addr, len,
652 (checksummed ? " [SUMMED]" : ""),
653 (discard ? " [DISCARD]" : ""));
654
655 /* Discard packet, if instructed to do so */
656 if (unlikely(discard)) {
657 if (unlikely(leak_packet))
658 rx_queue->channel->n_skbuff_leaks++;
659 else
660 /* We haven't called efx_unmap_rx_buffer yet,
661 * so fini the entire rx_buffer here */
662 efx_fini_rx_buffer(rx_queue, rx_buf);
663 return;
664 }
665
666 /* Release card resources - assumes all RX buffers consumed in-order
667 * per RX queue
668 */
669 efx_unmap_rx_buffer(efx, rx_buf);
670
671 /* Prefetch nice and early so data will (hopefully) be in cache by
672 * the time we look at it.
673 */
674 prefetch(rx_buf->data);
675
676 /* Pipeline receives so that we give time for packet headers to be
677 * prefetched into cache.
678 */
679 rx_buf->len = len;
680 if (rx_queue->channel->rx_pkt)
681 __efx_rx_packet(rx_queue->channel,
682 rx_queue->channel->rx_pkt,
683 rx_queue->channel->rx_pkt_csummed);
684 rx_queue->channel->rx_pkt = rx_buf;
685 rx_queue->channel->rx_pkt_csummed = checksummed;
686 }
687
688 /* Handle a received packet. Second half: Touches packet payload. */
689 void __efx_rx_packet(struct efx_channel *channel,
690 struct efx_rx_buffer *rx_buf, int checksummed)
691 {
692 struct efx_nic *efx = channel->efx;
693 struct sk_buff *skb;
694 int lro = efx->net_dev->features & NETIF_F_LRO;
695
696 /* If we're in loopback test, then pass the packet directly to the
697 * loopback layer, and free the rx_buf here
698 */
699 if (unlikely(efx->loopback_selftest)) {
700 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
701 efx_free_rx_buffer(efx, rx_buf);
702 goto done;
703 }
704
705 if (rx_buf->skb) {
706 prefetch(skb_shinfo(rx_buf->skb));
707
708 skb_put(rx_buf->skb, rx_buf->len);
709
710 /* Move past the ethernet header. rx_buf->data still points
711 * at the ethernet header */
712 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
713 efx->net_dev);
714 }
715
716 /* Both our generic-LRO and SFC-SSR support skb and page based
717 * allocation, but neither support switching from one to the
718 * other on the fly. If we spot that the allocation mode has
719 * changed, then flush the LRO state.
720 */
721 if (unlikely(channel->rx_alloc_pop_pages != (rx_buf->page != NULL))) {
722 efx_flush_lro(channel);
723 channel->rx_alloc_pop_pages = (rx_buf->page != NULL);
724 }
725 if (likely(checksummed && lro)) {
726 efx_rx_packet_lro(channel, rx_buf);
727 goto done;
728 }
729
730 /* Form an skb if required */
731 if (rx_buf->page) {
732 int hdr_len = min(rx_buf->len, EFX_SKB_HEADERS);
733 skb = efx_rx_mk_skb(rx_buf, efx, hdr_len);
734 if (unlikely(skb == NULL)) {
735 efx_free_rx_buffer(efx, rx_buf);
736 goto done;
737 }
738 } else {
739 /* We now own the SKB */
740 skb = rx_buf->skb;
741 rx_buf->skb = NULL;
742 }
743
744 EFX_BUG_ON_PARANOID(rx_buf->page);
745 EFX_BUG_ON_PARANOID(rx_buf->skb);
746 EFX_BUG_ON_PARANOID(!skb);
747
748 /* Set the SKB flags */
749 if (unlikely(!checksummed || !efx->rx_checksum_enabled))
750 skb->ip_summed = CHECKSUM_NONE;
751
752 /* Pass the packet up */
753 netif_receive_skb(skb);
754
755 /* Update allocation strategy method */
756 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
757
758 done:
759 efx->net_dev->last_rx = jiffies;
760 }
761
762 void efx_rx_strategy(struct efx_channel *channel)
763 {
764 enum efx_rx_alloc_method method = rx_alloc_method;
765
766 /* Only makes sense to use page based allocation if LRO is enabled */
767 if (!(channel->efx->net_dev->features & NETIF_F_LRO)) {
768 method = RX_ALLOC_METHOD_SKB;
769 } else if (method == RX_ALLOC_METHOD_AUTO) {
770 /* Constrain the rx_alloc_level */
771 if (channel->rx_alloc_level < 0)
772 channel->rx_alloc_level = 0;
773 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
774 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
775
776 /* Decide on the allocation method */
777 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
778 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
779 }
780
781 /* Push the option */
782 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
783 }
784
785 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
786 {
787 struct efx_nic *efx = rx_queue->efx;
788 unsigned int rxq_size;
789 int rc;
790
791 EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
792
793 /* Allocate RX buffers */
794 rxq_size = (efx->type->rxd_ring_mask + 1) * sizeof(*rx_queue->buffer);
795 rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
796 if (!rx_queue->buffer) {
797 rc = -ENOMEM;
798 goto fail1;
799 }
800
801 rc = falcon_probe_rx(rx_queue);
802 if (rc)
803 goto fail2;
804
805 return 0;
806
807 fail2:
808 kfree(rx_queue->buffer);
809 rx_queue->buffer = NULL;
810 fail1:
811 rx_queue->used = 0;
812
813 return rc;
814 }
815
816 int efx_init_rx_queue(struct efx_rx_queue *rx_queue)
817 {
818 struct efx_nic *efx = rx_queue->efx;
819 unsigned int max_fill, trigger, limit;
820
821 EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
822
823 /* Initialise ptr fields */
824 rx_queue->added_count = 0;
825 rx_queue->notified_count = 0;
826 rx_queue->removed_count = 0;
827 rx_queue->min_fill = -1U;
828 rx_queue->min_overfill = -1U;
829
830 /* Initialise limit fields */
831 max_fill = efx->type->rxd_ring_mask + 1 - EFX_RXD_HEAD_ROOM;
832 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
833 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
834
835 rx_queue->max_fill = max_fill;
836 rx_queue->fast_fill_trigger = trigger;
837 rx_queue->fast_fill_limit = limit;
838
839 /* Set up RX descriptor ring */
840 return falcon_init_rx(rx_queue);
841 }
842
843 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
844 {
845 int i;
846 struct efx_rx_buffer *rx_buf;
847
848 EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
849
850 falcon_fini_rx(rx_queue);
851
852 /* Release RX buffers NB start at index 0 not current HW ptr */
853 if (rx_queue->buffer) {
854 for (i = 0; i <= rx_queue->efx->type->rxd_ring_mask; i++) {
855 rx_buf = efx_rx_buffer(rx_queue, i);
856 efx_fini_rx_buffer(rx_queue, rx_buf);
857 }
858 }
859
860 /* For a page that is part-way through splitting into RX buffers */
861 if (rx_queue->buf_page != NULL) {
862 pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
863 efx_rx_buf_size(rx_queue->efx),
864 PCI_DMA_FROMDEVICE);
865 __free_pages(rx_queue->buf_page,
866 rx_queue->efx->rx_buffer_order);
867 rx_queue->buf_page = NULL;
868 }
869 }
870
871 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
872 {
873 EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
874
875 falcon_remove_rx(rx_queue);
876
877 kfree(rx_queue->buffer);
878 rx_queue->buffer = NULL;
879 rx_queue->used = 0;
880 }
881
882 void efx_flush_lro(struct efx_channel *channel)
883 {
884 lro_flush_all(&channel->lro_mgr);
885 }
886
887
888 module_param(rx_alloc_method, int, 0644);
889 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
890
891 module_param(rx_refill_threshold, uint, 0444);
892 MODULE_PARM_DESC(rx_refill_threshold,
893 "RX descriptor ring fast/slow fill threshold (%)");
894
This page took 0.067215 seconds and 5 git commands to generate.