net: trans_start cleanups
[deliverable/linux.git] / drivers / net / sis900.c
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
4
5 Modified from the driver which is originally written by Donald Becker.
6
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
11
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
19
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73
74 #include <asm/processor.h> /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h> /* User space memory access functions */
78
79 #include "sis900.h"
80
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83
84 static const char version[] __devinitconst =
85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91
92 #define SIS900_DEF_MSG \
93 (NETIF_MSG_DRV | \
94 NETIF_MSG_LINK | \
95 NETIF_MSG_RX_ERR | \
96 NETIF_MSG_TX_ERR)
97
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT (4*HZ)
100
101 enum {
102 SIS_900 = 0,
103 SIS_7016
104 };
105 static const char * card_names[] = {
106 "SiS 900 PCI Fast Ethernet",
107 "SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 {0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119
120 static const struct mii_chip_info {
121 const char * name;
122 u16 phy_id0;
123 u16 phy_id1;
124 u8 phy_types;
125 #define HOME 0x0001
126 #define LAN 0x0002
127 #define MIX 0x0003
128 #define UNKNOWN 0x0
129 } mii_chip_table[] = {
130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
137 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
143 {NULL,},
144 };
145
146 struct mii_phy {
147 struct mii_phy * next;
148 int phy_addr;
149 u16 phy_id0;
150 u16 phy_id1;
151 u16 status;
152 u8 phy_types;
153 };
154
155 typedef struct _BufferDesc {
156 u32 link;
157 u32 cmdsts;
158 u32 bufptr;
159 } BufferDesc;
160
161 struct sis900_private {
162 struct pci_dev * pci_dev;
163
164 spinlock_t lock;
165
166 struct mii_phy * mii;
167 struct mii_phy * first_mii; /* record the first mii structure */
168 unsigned int cur_phy;
169 struct mii_if_info mii_info;
170
171 struct timer_list timer; /* Link status detection timer. */
172 u8 autong_complete; /* 1: auto-negotiate complete */
173
174 u32 msg_enable;
175
176 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177 unsigned int cur_tx, dirty_tx;
178
179 /* The saved address of a sent/receive-in-place packet buffer */
180 struct sk_buff *tx_skbuff[NUM_TX_DESC];
181 struct sk_buff *rx_skbuff[NUM_RX_DESC];
182 BufferDesc *tx_ring;
183 BufferDesc *rx_ring;
184
185 dma_addr_t tx_ring_dma;
186 dma_addr_t rx_ring_dma;
187
188 unsigned int tx_full; /* The Tx queue is full. */
189 u8 host_bridge_rev;
190 u8 chipset_rev;
191 };
192
193 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195 MODULE_LICENSE("GPL");
196
197 module_param(multicast_filter_limit, int, 0444);
198 module_param(max_interrupt_work, int, 0444);
199 module_param(sis900_debug, int, 0444);
200 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
203
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 static void sis900_poll(struct net_device *dev);
206 #endif
207 static int sis900_open(struct net_device *net_dev);
208 static int sis900_mii_probe (struct net_device * net_dev);
209 static void sis900_init_rxfilter (struct net_device * net_dev);
210 static u16 read_eeprom(long ioaddr, int location);
211 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213 static void sis900_timer(unsigned long data);
214 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215 static void sis900_tx_timeout(struct net_device *net_dev);
216 static void sis900_init_tx_ring(struct net_device *net_dev);
217 static void sis900_init_rx_ring(struct net_device *net_dev);
218 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
219 struct net_device *net_dev);
220 static int sis900_rx(struct net_device *net_dev);
221 static void sis900_finish_xmit (struct net_device *net_dev);
222 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
223 static int sis900_close(struct net_device *net_dev);
224 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
225 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226 static void set_rx_mode(struct net_device *net_dev);
227 static void sis900_reset(struct net_device *net_dev);
228 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230 static u16 sis900_default_phy(struct net_device * net_dev);
231 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234 static void sis900_set_mode (long ioaddr, int speed, int duplex);
235 static const struct ethtool_ops sis900_ethtool_ops;
236
237 /**
238 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239 * @pci_dev: the sis900 pci device
240 * @net_dev: the net device to get address for
241 *
242 * Older SiS900 and friends, use EEPROM to store MAC address.
243 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
244 */
245
246 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
247 {
248 long ioaddr = pci_resource_start(pci_dev, 0);
249 u16 signature;
250 int i;
251
252 /* check to see if we have sane EEPROM */
253 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
254 if (signature == 0xffff || signature == 0x0000) {
255 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
256 pci_name(pci_dev), signature);
257 return 0;
258 }
259
260 /* get MAC address from EEPROM */
261 for (i = 0; i < 3; i++)
262 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
263
264 return 1;
265 }
266
267 /**
268 * sis630e_get_mac_addr - Get MAC address for SiS630E model
269 * @pci_dev: the sis900 pci device
270 * @net_dev: the net device to get address for
271 *
272 * SiS630E model, use APC CMOS RAM to store MAC address.
273 * APC CMOS RAM is accessed through ISA bridge.
274 * MAC address is read into @net_dev->dev_addr.
275 */
276
277 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
278 struct net_device *net_dev)
279 {
280 struct pci_dev *isa_bridge = NULL;
281 u8 reg;
282 int i;
283
284 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
285 if (!isa_bridge)
286 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
287 if (!isa_bridge) {
288 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
289 pci_name(pci_dev));
290 return 0;
291 }
292 pci_read_config_byte(isa_bridge, 0x48, &reg);
293 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
294
295 for (i = 0; i < 6; i++) {
296 outb(0x09 + i, 0x70);
297 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
298 }
299 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
300 pci_dev_put(isa_bridge);
301
302 return 1;
303 }
304
305
306 /**
307 * sis635_get_mac_addr - Get MAC address for SIS635 model
308 * @pci_dev: the sis900 pci device
309 * @net_dev: the net device to get address for
310 *
311 * SiS635 model, set MAC Reload Bit to load Mac address from APC
312 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
313 * @net_dev->dev_addr.
314 */
315
316 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
317 struct net_device *net_dev)
318 {
319 long ioaddr = net_dev->base_addr;
320 u32 rfcrSave;
321 u32 i;
322
323 rfcrSave = inl(rfcr + ioaddr);
324
325 outl(rfcrSave | RELOAD, ioaddr + cr);
326 outl(0, ioaddr + cr);
327
328 /* disable packet filtering before setting filter */
329 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
330
331 /* load MAC addr to filter data register */
332 for (i = 0 ; i < 3 ; i++) {
333 outl((i << RFADDR_shift), ioaddr + rfcr);
334 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
335 }
336
337 /* enable packet filtering */
338 outl(rfcrSave | RFEN, rfcr + ioaddr);
339
340 return 1;
341 }
342
343 /**
344 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
345 * @pci_dev: the sis900 pci device
346 * @net_dev: the net device to get address for
347 *
348 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
349 * is shared by
350 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
351 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
352 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
353 * EEDONE signal to refuse EEPROM access by LAN.
354 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
355 * The signature field in SiS962 or SiS963 spec is meaningless.
356 * MAC address is read into @net_dev->dev_addr.
357 */
358
359 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
360 struct net_device *net_dev)
361 {
362 long ioaddr = net_dev->base_addr;
363 long ee_addr = ioaddr + mear;
364 u32 waittime = 0;
365 int i;
366
367 outl(EEREQ, ee_addr);
368 while(waittime < 2000) {
369 if(inl(ee_addr) & EEGNT) {
370
371 /* get MAC address from EEPROM */
372 for (i = 0; i < 3; i++)
373 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
374
375 outl(EEDONE, ee_addr);
376 return 1;
377 } else {
378 udelay(1);
379 waittime ++;
380 }
381 }
382 outl(EEDONE, ee_addr);
383 return 0;
384 }
385
386 static const struct net_device_ops sis900_netdev_ops = {
387 .ndo_open = sis900_open,
388 .ndo_stop = sis900_close,
389 .ndo_start_xmit = sis900_start_xmit,
390 .ndo_set_config = sis900_set_config,
391 .ndo_set_multicast_list = set_rx_mode,
392 .ndo_change_mtu = eth_change_mtu,
393 .ndo_validate_addr = eth_validate_addr,
394 .ndo_set_mac_address = eth_mac_addr,
395 .ndo_do_ioctl = mii_ioctl,
396 .ndo_tx_timeout = sis900_tx_timeout,
397 #ifdef CONFIG_NET_POLL_CONTROLLER
398 .ndo_poll_controller = sis900_poll,
399 #endif
400 };
401
402 /**
403 * sis900_probe - Probe for sis900 device
404 * @pci_dev: the sis900 pci device
405 * @pci_id: the pci device ID
406 *
407 * Check and probe sis900 net device for @pci_dev.
408 * Get mac address according to the chip revision,
409 * and assign SiS900-specific entries in the device structure.
410 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
411 */
412
413 static int __devinit sis900_probe(struct pci_dev *pci_dev,
414 const struct pci_device_id *pci_id)
415 {
416 struct sis900_private *sis_priv;
417 struct net_device *net_dev;
418 struct pci_dev *dev;
419 dma_addr_t ring_dma;
420 void *ring_space;
421 long ioaddr;
422 int i, ret;
423 const char *card_name = card_names[pci_id->driver_data];
424 const char *dev_name = pci_name(pci_dev);
425
426 /* when built into the kernel, we only print version if device is found */
427 #ifndef MODULE
428 static int printed_version;
429 if (!printed_version++)
430 printk(version);
431 #endif
432
433 /* setup various bits in PCI command register */
434 ret = pci_enable_device(pci_dev);
435 if(ret) return ret;
436
437 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
438 if(i){
439 printk(KERN_ERR "sis900.c: architecture does not support "
440 "32bit PCI busmaster DMA\n");
441 return i;
442 }
443
444 pci_set_master(pci_dev);
445
446 net_dev = alloc_etherdev(sizeof(struct sis900_private));
447 if (!net_dev)
448 return -ENOMEM;
449 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
450
451 /* We do a request_region() to register /proc/ioports info. */
452 ioaddr = pci_resource_start(pci_dev, 0);
453 ret = pci_request_regions(pci_dev, "sis900");
454 if (ret)
455 goto err_out;
456
457 sis_priv = netdev_priv(net_dev);
458 net_dev->base_addr = ioaddr;
459 net_dev->irq = pci_dev->irq;
460 sis_priv->pci_dev = pci_dev;
461 spin_lock_init(&sis_priv->lock);
462
463 pci_set_drvdata(pci_dev, net_dev);
464
465 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
466 if (!ring_space) {
467 ret = -ENOMEM;
468 goto err_out_cleardev;
469 }
470 sis_priv->tx_ring = (BufferDesc *)ring_space;
471 sis_priv->tx_ring_dma = ring_dma;
472
473 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
474 if (!ring_space) {
475 ret = -ENOMEM;
476 goto err_unmap_tx;
477 }
478 sis_priv->rx_ring = (BufferDesc *)ring_space;
479 sis_priv->rx_ring_dma = ring_dma;
480
481 /* The SiS900-specific entries in the device structure. */
482 net_dev->netdev_ops = &sis900_netdev_ops;
483 net_dev->watchdog_timeo = TX_TIMEOUT;
484 net_dev->ethtool_ops = &sis900_ethtool_ops;
485
486 if (sis900_debug > 0)
487 sis_priv->msg_enable = sis900_debug;
488 else
489 sis_priv->msg_enable = SIS900_DEF_MSG;
490
491 sis_priv->mii_info.dev = net_dev;
492 sis_priv->mii_info.mdio_read = mdio_read;
493 sis_priv->mii_info.mdio_write = mdio_write;
494 sis_priv->mii_info.phy_id_mask = 0x1f;
495 sis_priv->mii_info.reg_num_mask = 0x1f;
496
497 /* Get Mac address according to the chip revision */
498 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
499 if(netif_msg_probe(sis_priv))
500 printk(KERN_DEBUG "%s: detected revision %2.2x, "
501 "trying to get MAC address...\n",
502 dev_name, sis_priv->chipset_rev);
503
504 ret = 0;
505 if (sis_priv->chipset_rev == SIS630E_900_REV)
506 ret = sis630e_get_mac_addr(pci_dev, net_dev);
507 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
508 ret = sis635_get_mac_addr(pci_dev, net_dev);
509 else if (sis_priv->chipset_rev == SIS96x_900_REV)
510 ret = sis96x_get_mac_addr(pci_dev, net_dev);
511 else
512 ret = sis900_get_mac_addr(pci_dev, net_dev);
513
514 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
515 random_ether_addr(net_dev->dev_addr);
516 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
517 "using random generated one\n", dev_name);
518 }
519
520 /* 630ET : set the mii access mode as software-mode */
521 if (sis_priv->chipset_rev == SIS630ET_900_REV)
522 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
523
524 /* probe for mii transceiver */
525 if (sis900_mii_probe(net_dev) == 0) {
526 printk(KERN_WARNING "%s: Error probing MII device.\n",
527 dev_name);
528 ret = -ENODEV;
529 goto err_unmap_rx;
530 }
531
532 /* save our host bridge revision */
533 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
534 if (dev) {
535 pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
536 pci_dev_put(dev);
537 }
538
539 ret = register_netdev(net_dev);
540 if (ret)
541 goto err_unmap_rx;
542
543 /* print some information about our NIC */
544 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
545 net_dev->name, card_name, ioaddr, net_dev->irq,
546 net_dev->dev_addr);
547
548 /* Detect Wake on Lan support */
549 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
550 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
551 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
552
553 return 0;
554
555 err_unmap_rx:
556 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
557 sis_priv->rx_ring_dma);
558 err_unmap_tx:
559 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
560 sis_priv->tx_ring_dma);
561 err_out_cleardev:
562 pci_set_drvdata(pci_dev, NULL);
563 pci_release_regions(pci_dev);
564 err_out:
565 free_netdev(net_dev);
566 return ret;
567 }
568
569 /**
570 * sis900_mii_probe - Probe MII PHY for sis900
571 * @net_dev: the net device to probe for
572 *
573 * Search for total of 32 possible mii phy addresses.
574 * Identify and set current phy if found one,
575 * return error if it failed to found.
576 */
577
578 static int __devinit sis900_mii_probe(struct net_device * net_dev)
579 {
580 struct sis900_private *sis_priv = netdev_priv(net_dev);
581 const char *dev_name = pci_name(sis_priv->pci_dev);
582 u16 poll_bit = MII_STAT_LINK, status = 0;
583 unsigned long timeout = jiffies + 5 * HZ;
584 int phy_addr;
585
586 sis_priv->mii = NULL;
587
588 /* search for total of 32 possible mii phy addresses */
589 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
590 struct mii_phy * mii_phy = NULL;
591 u16 mii_status;
592 int i;
593
594 mii_phy = NULL;
595 for(i = 0; i < 2; i++)
596 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
597
598 if (mii_status == 0xffff || mii_status == 0x0000) {
599 if (netif_msg_probe(sis_priv))
600 printk(KERN_DEBUG "%s: MII at address %d"
601 " not accessible\n",
602 dev_name, phy_addr);
603 continue;
604 }
605
606 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
607 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
608 mii_phy = sis_priv->first_mii;
609 while (mii_phy) {
610 struct mii_phy *phy;
611 phy = mii_phy;
612 mii_phy = mii_phy->next;
613 kfree(phy);
614 }
615 return 0;
616 }
617
618 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
619 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
620 mii_phy->phy_addr = phy_addr;
621 mii_phy->status = mii_status;
622 mii_phy->next = sis_priv->mii;
623 sis_priv->mii = mii_phy;
624 sis_priv->first_mii = mii_phy;
625
626 for (i = 0; mii_chip_table[i].phy_id1; i++)
627 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
628 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
629 mii_phy->phy_types = mii_chip_table[i].phy_types;
630 if (mii_chip_table[i].phy_types == MIX)
631 mii_phy->phy_types =
632 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
633 printk(KERN_INFO "%s: %s transceiver found "
634 "at address %d.\n",
635 dev_name,
636 mii_chip_table[i].name,
637 phy_addr);
638 break;
639 }
640
641 if( !mii_chip_table[i].phy_id1 ) {
642 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
643 dev_name, phy_addr);
644 mii_phy->phy_types = UNKNOWN;
645 }
646 }
647
648 if (sis_priv->mii == NULL) {
649 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
650 return 0;
651 }
652
653 /* select default PHY for mac */
654 sis_priv->mii = NULL;
655 sis900_default_phy( net_dev );
656
657 /* Reset phy if default phy is internal sis900 */
658 if ((sis_priv->mii->phy_id0 == 0x001D) &&
659 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
660 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
661
662 /* workaround for ICS1893 PHY */
663 if ((sis_priv->mii->phy_id0 == 0x0015) &&
664 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
665 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
666
667 if(status & MII_STAT_LINK){
668 while (poll_bit) {
669 yield();
670
671 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
672 if (time_after_eq(jiffies, timeout)) {
673 printk(KERN_WARNING "%s: reset phy and link down now\n",
674 dev_name);
675 return -ETIME;
676 }
677 }
678 }
679
680 if (sis_priv->chipset_rev == SIS630E_900_REV) {
681 /* SiS 630E has some bugs on default value of PHY registers */
682 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
683 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
684 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
685 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
686 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
687 }
688
689 if (sis_priv->mii->status & MII_STAT_LINK)
690 netif_carrier_on(net_dev);
691 else
692 netif_carrier_off(net_dev);
693
694 return 1;
695 }
696
697 /**
698 * sis900_default_phy - Select default PHY for sis900 mac.
699 * @net_dev: the net device to probe for
700 *
701 * Select first detected PHY with link as default.
702 * If no one is link on, select PHY whose types is HOME as default.
703 * If HOME doesn't exist, select LAN.
704 */
705
706 static u16 sis900_default_phy(struct net_device * net_dev)
707 {
708 struct sis900_private *sis_priv = netdev_priv(net_dev);
709 struct mii_phy *phy = NULL, *phy_home = NULL,
710 *default_phy = NULL, *phy_lan = NULL;
711 u16 status;
712
713 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
714 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
715 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
716
717 /* Link ON & Not select default PHY & not ghost PHY */
718 if ((status & MII_STAT_LINK) && !default_phy &&
719 (phy->phy_types != UNKNOWN))
720 default_phy = phy;
721 else {
722 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
723 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
724 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
725 if (phy->phy_types == HOME)
726 phy_home = phy;
727 else if(phy->phy_types == LAN)
728 phy_lan = phy;
729 }
730 }
731
732 if (!default_phy && phy_home)
733 default_phy = phy_home;
734 else if (!default_phy && phy_lan)
735 default_phy = phy_lan;
736 else if (!default_phy)
737 default_phy = sis_priv->first_mii;
738
739 if (sis_priv->mii != default_phy) {
740 sis_priv->mii = default_phy;
741 sis_priv->cur_phy = default_phy->phy_addr;
742 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
743 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
744 }
745
746 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
747
748 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
749 status &= (~MII_CNTL_ISOLATE);
750
751 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
752 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
753 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
754
755 return status;
756 }
757
758
759 /**
760 * sis900_set_capability - set the media capability of network adapter.
761 * @net_dev : the net device to probe for
762 * @phy : default PHY
763 *
764 * Set the media capability of network adapter according to
765 * mii status register. It's necessary before auto-negotiate.
766 */
767
768 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
769 {
770 u16 cap;
771 u16 status;
772
773 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
774 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
775
776 cap = MII_NWAY_CSMA_CD |
777 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
778 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
779 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
780 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
781
782 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
783 }
784
785
786 /* Delay between EEPROM clock transitions. */
787 #define eeprom_delay() inl(ee_addr)
788
789 /**
790 * read_eeprom - Read Serial EEPROM
791 * @ioaddr: base i/o address
792 * @location: the EEPROM location to read
793 *
794 * Read Serial EEPROM through EEPROM Access Register.
795 * Note that location is in word (16 bits) unit
796 */
797
798 static u16 __devinit read_eeprom(long ioaddr, int location)
799 {
800 int i;
801 u16 retval = 0;
802 long ee_addr = ioaddr + mear;
803 u32 read_cmd = location | EEread;
804
805 outl(0, ee_addr);
806 eeprom_delay();
807 outl(EECS, ee_addr);
808 eeprom_delay();
809
810 /* Shift the read command (9) bits out. */
811 for (i = 8; i >= 0; i--) {
812 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
813 outl(dataval, ee_addr);
814 eeprom_delay();
815 outl(dataval | EECLK, ee_addr);
816 eeprom_delay();
817 }
818 outl(EECS, ee_addr);
819 eeprom_delay();
820
821 /* read the 16-bits data in */
822 for (i = 16; i > 0; i--) {
823 outl(EECS, ee_addr);
824 eeprom_delay();
825 outl(EECS | EECLK, ee_addr);
826 eeprom_delay();
827 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
828 eeprom_delay();
829 }
830
831 /* Terminate the EEPROM access. */
832 outl(0, ee_addr);
833 eeprom_delay();
834
835 return (retval);
836 }
837
838 /* Read and write the MII management registers using software-generated
839 serial MDIO protocol. Note that the command bits and data bits are
840 send out separately */
841 #define mdio_delay() inl(mdio_addr)
842
843 static void mdio_idle(long mdio_addr)
844 {
845 outl(MDIO | MDDIR, mdio_addr);
846 mdio_delay();
847 outl(MDIO | MDDIR | MDC, mdio_addr);
848 }
849
850 /* Syncronize the MII management interface by shifting 32 one bits out. */
851 static void mdio_reset(long mdio_addr)
852 {
853 int i;
854
855 for (i = 31; i >= 0; i--) {
856 outl(MDDIR | MDIO, mdio_addr);
857 mdio_delay();
858 outl(MDDIR | MDIO | MDC, mdio_addr);
859 mdio_delay();
860 }
861 return;
862 }
863
864 /**
865 * mdio_read - read MII PHY register
866 * @net_dev: the net device to read
867 * @phy_id: the phy address to read
868 * @location: the phy regiester id to read
869 *
870 * Read MII registers through MDIO and MDC
871 * using MDIO management frame structure and protocol(defined by ISO/IEC).
872 * Please see SiS7014 or ICS spec
873 */
874
875 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
876 {
877 long mdio_addr = net_dev->base_addr + mear;
878 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
879 u16 retval = 0;
880 int i;
881
882 mdio_reset(mdio_addr);
883 mdio_idle(mdio_addr);
884
885 for (i = 15; i >= 0; i--) {
886 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
887 outl(dataval, mdio_addr);
888 mdio_delay();
889 outl(dataval | MDC, mdio_addr);
890 mdio_delay();
891 }
892
893 /* Read the 16 data bits. */
894 for (i = 16; i > 0; i--) {
895 outl(0, mdio_addr);
896 mdio_delay();
897 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
898 outl(MDC, mdio_addr);
899 mdio_delay();
900 }
901 outl(0x00, mdio_addr);
902
903 return retval;
904 }
905
906 /**
907 * mdio_write - write MII PHY register
908 * @net_dev: the net device to write
909 * @phy_id: the phy address to write
910 * @location: the phy regiester id to write
911 * @value: the register value to write with
912 *
913 * Write MII registers with @value through MDIO and MDC
914 * using MDIO management frame structure and protocol(defined by ISO/IEC)
915 * please see SiS7014 or ICS spec
916 */
917
918 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
919 int value)
920 {
921 long mdio_addr = net_dev->base_addr + mear;
922 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
923 int i;
924
925 mdio_reset(mdio_addr);
926 mdio_idle(mdio_addr);
927
928 /* Shift the command bits out. */
929 for (i = 15; i >= 0; i--) {
930 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
931 outb(dataval, mdio_addr);
932 mdio_delay();
933 outb(dataval | MDC, mdio_addr);
934 mdio_delay();
935 }
936 mdio_delay();
937
938 /* Shift the value bits out. */
939 for (i = 15; i >= 0; i--) {
940 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
941 outl(dataval, mdio_addr);
942 mdio_delay();
943 outl(dataval | MDC, mdio_addr);
944 mdio_delay();
945 }
946 mdio_delay();
947
948 /* Clear out extra bits. */
949 for (i = 2; i > 0; i--) {
950 outb(0, mdio_addr);
951 mdio_delay();
952 outb(MDC, mdio_addr);
953 mdio_delay();
954 }
955 outl(0x00, mdio_addr);
956
957 return;
958 }
959
960
961 /**
962 * sis900_reset_phy - reset sis900 mii phy.
963 * @net_dev: the net device to write
964 * @phy_addr: default phy address
965 *
966 * Some specific phy can't work properly without reset.
967 * This function will be called during initialization and
968 * link status change from ON to DOWN.
969 */
970
971 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
972 {
973 int i;
974 u16 status;
975
976 for (i = 0; i < 2; i++)
977 status = mdio_read(net_dev, phy_addr, MII_STATUS);
978
979 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
980
981 return status;
982 }
983
984 #ifdef CONFIG_NET_POLL_CONTROLLER
985 /*
986 * Polling 'interrupt' - used by things like netconsole to send skbs
987 * without having to re-enable interrupts. It's not called while
988 * the interrupt routine is executing.
989 */
990 static void sis900_poll(struct net_device *dev)
991 {
992 disable_irq(dev->irq);
993 sis900_interrupt(dev->irq, dev);
994 enable_irq(dev->irq);
995 }
996 #endif
997
998 /**
999 * sis900_open - open sis900 device
1000 * @net_dev: the net device to open
1001 *
1002 * Do some initialization and start net interface.
1003 * enable interrupts and set sis900 timer.
1004 */
1005
1006 static int
1007 sis900_open(struct net_device *net_dev)
1008 {
1009 struct sis900_private *sis_priv = netdev_priv(net_dev);
1010 long ioaddr = net_dev->base_addr;
1011 int ret;
1012
1013 /* Soft reset the chip. */
1014 sis900_reset(net_dev);
1015
1016 /* Equalizer workaround Rule */
1017 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1018
1019 ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED,
1020 net_dev->name, net_dev);
1021 if (ret)
1022 return ret;
1023
1024 sis900_init_rxfilter(net_dev);
1025
1026 sis900_init_tx_ring(net_dev);
1027 sis900_init_rx_ring(net_dev);
1028
1029 set_rx_mode(net_dev);
1030
1031 netif_start_queue(net_dev);
1032
1033 /* Workaround for EDB */
1034 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1035
1036 /* Enable all known interrupts by setting the interrupt mask. */
1037 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1038 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1039 outl(IE, ioaddr + ier);
1040
1041 sis900_check_mode(net_dev, sis_priv->mii);
1042
1043 /* Set the timer to switch to check for link beat and perhaps switch
1044 to an alternate media type. */
1045 init_timer(&sis_priv->timer);
1046 sis_priv->timer.expires = jiffies + HZ;
1047 sis_priv->timer.data = (unsigned long)net_dev;
1048 sis_priv->timer.function = &sis900_timer;
1049 add_timer(&sis_priv->timer);
1050
1051 return 0;
1052 }
1053
1054 /**
1055 * sis900_init_rxfilter - Initialize the Rx filter
1056 * @net_dev: the net device to initialize for
1057 *
1058 * Set receive filter address to our MAC address
1059 * and enable packet filtering.
1060 */
1061
1062 static void
1063 sis900_init_rxfilter (struct net_device * net_dev)
1064 {
1065 struct sis900_private *sis_priv = netdev_priv(net_dev);
1066 long ioaddr = net_dev->base_addr;
1067 u32 rfcrSave;
1068 u32 i;
1069
1070 rfcrSave = inl(rfcr + ioaddr);
1071
1072 /* disable packet filtering before setting filter */
1073 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1074
1075 /* load MAC addr to filter data register */
1076 for (i = 0 ; i < 3 ; i++) {
1077 u32 w;
1078
1079 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1080 outl((i << RFADDR_shift), ioaddr + rfcr);
1081 outl(w, ioaddr + rfdr);
1082
1083 if (netif_msg_hw(sis_priv)) {
1084 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1085 net_dev->name, i, inl(ioaddr + rfdr));
1086 }
1087 }
1088
1089 /* enable packet filtering */
1090 outl(rfcrSave | RFEN, rfcr + ioaddr);
1091 }
1092
1093 /**
1094 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1095 * @net_dev: the net device to initialize for
1096 *
1097 * Initialize the Tx descriptor ring,
1098 */
1099
1100 static void
1101 sis900_init_tx_ring(struct net_device *net_dev)
1102 {
1103 struct sis900_private *sis_priv = netdev_priv(net_dev);
1104 long ioaddr = net_dev->base_addr;
1105 int i;
1106
1107 sis_priv->tx_full = 0;
1108 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1109
1110 for (i = 0; i < NUM_TX_DESC; i++) {
1111 sis_priv->tx_skbuff[i] = NULL;
1112
1113 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1114 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1115 sis_priv->tx_ring[i].cmdsts = 0;
1116 sis_priv->tx_ring[i].bufptr = 0;
1117 }
1118
1119 /* load Transmit Descriptor Register */
1120 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1121 if (netif_msg_hw(sis_priv))
1122 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1123 net_dev->name, inl(ioaddr + txdp));
1124 }
1125
1126 /**
1127 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1128 * @net_dev: the net device to initialize for
1129 *
1130 * Initialize the Rx descriptor ring,
1131 * and pre-allocate recevie buffers (socket buffer)
1132 */
1133
1134 static void
1135 sis900_init_rx_ring(struct net_device *net_dev)
1136 {
1137 struct sis900_private *sis_priv = netdev_priv(net_dev);
1138 long ioaddr = net_dev->base_addr;
1139 int i;
1140
1141 sis_priv->cur_rx = 0;
1142 sis_priv->dirty_rx = 0;
1143
1144 /* init RX descriptor */
1145 for (i = 0; i < NUM_RX_DESC; i++) {
1146 sis_priv->rx_skbuff[i] = NULL;
1147
1148 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1149 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1150 sis_priv->rx_ring[i].cmdsts = 0;
1151 sis_priv->rx_ring[i].bufptr = 0;
1152 }
1153
1154 /* allocate sock buffers */
1155 for (i = 0; i < NUM_RX_DESC; i++) {
1156 struct sk_buff *skb;
1157
1158 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1159 /* not enough memory for skbuff, this makes a "hole"
1160 on the buffer ring, it is not clear how the
1161 hardware will react to this kind of degenerated
1162 buffer */
1163 break;
1164 }
1165 sis_priv->rx_skbuff[i] = skb;
1166 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1167 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1168 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1169 }
1170 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1171
1172 /* load Receive Descriptor Register */
1173 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1174 if (netif_msg_hw(sis_priv))
1175 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1176 net_dev->name, inl(ioaddr + rxdp));
1177 }
1178
1179 /**
1180 * sis630_set_eq - set phy equalizer value for 630 LAN
1181 * @net_dev: the net device to set equalizer value
1182 * @revision: 630 LAN revision number
1183 *
1184 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1185 * PHY register 14h(Test)
1186 * Bit 14: 0 -- Automatically dectect (default)
1187 * 1 -- Manually set Equalizer filter
1188 * Bit 13: 0 -- (Default)
1189 * 1 -- Speed up convergence of equalizer setting
1190 * Bit 9 : 0 -- (Default)
1191 * 1 -- Disable Baseline Wander
1192 * Bit 3~7 -- Equalizer filter setting
1193 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1194 * Then calculate equalizer value
1195 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1196 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1197 * Calculate Equalizer value:
1198 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1199 * When the equalizer is stable, this value is not a fixed value. It will be within
1200 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1201 * 0 <= max <= 4 --> set equalizer to max
1202 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1203 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1204 */
1205
1206 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1207 {
1208 struct sis900_private *sis_priv = netdev_priv(net_dev);
1209 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1210 int i, maxcount=10;
1211
1212 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1213 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1214 return;
1215
1216 if (netif_carrier_ok(net_dev)) {
1217 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1218 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1219 (0x2200 | reg14h) & 0xBFFF);
1220 for (i=0; i < maxcount; i++) {
1221 eq_value = (0x00F8 & mdio_read(net_dev,
1222 sis_priv->cur_phy, MII_RESV)) >> 3;
1223 if (i == 0)
1224 max_value=min_value=eq_value;
1225 max_value = (eq_value > max_value) ?
1226 eq_value : max_value;
1227 min_value = (eq_value < min_value) ?
1228 eq_value : min_value;
1229 }
1230 /* 630E rule to determine the equalizer value */
1231 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1232 revision == SIS630ET_900_REV) {
1233 if (max_value < 5)
1234 eq_value = max_value;
1235 else if (max_value >= 5 && max_value < 15)
1236 eq_value = (max_value == min_value) ?
1237 max_value+2 : max_value+1;
1238 else if (max_value >= 15)
1239 eq_value=(max_value == min_value) ?
1240 max_value+6 : max_value+5;
1241 }
1242 /* 630B0&B1 rule to determine the equalizer value */
1243 if (revision == SIS630A_900_REV &&
1244 (sis_priv->host_bridge_rev == SIS630B0 ||
1245 sis_priv->host_bridge_rev == SIS630B1)) {
1246 if (max_value == 0)
1247 eq_value = 3;
1248 else
1249 eq_value = (max_value + min_value + 1)/2;
1250 }
1251 /* write equalizer value and setting */
1252 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1253 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1254 reg14h = (reg14h | 0x6000) & 0xFDFF;
1255 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1256 } else {
1257 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1258 if (revision == SIS630A_900_REV &&
1259 (sis_priv->host_bridge_rev == SIS630B0 ||
1260 sis_priv->host_bridge_rev == SIS630B1))
1261 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1262 (reg14h | 0x2200) & 0xBFFF);
1263 else
1264 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1265 (reg14h | 0x2000) & 0xBFFF);
1266 }
1267 return;
1268 }
1269
1270 /**
1271 * sis900_timer - sis900 timer routine
1272 * @data: pointer to sis900 net device
1273 *
1274 * On each timer ticks we check two things,
1275 * link status (ON/OFF) and link mode (10/100/Full/Half)
1276 */
1277
1278 static void sis900_timer(unsigned long data)
1279 {
1280 struct net_device *net_dev = (struct net_device *)data;
1281 struct sis900_private *sis_priv = netdev_priv(net_dev);
1282 struct mii_phy *mii_phy = sis_priv->mii;
1283 static const int next_tick = 5*HZ;
1284 u16 status;
1285
1286 if (!sis_priv->autong_complete){
1287 int uninitialized_var(speed), duplex = 0;
1288
1289 sis900_read_mode(net_dev, &speed, &duplex);
1290 if (duplex){
1291 sis900_set_mode(net_dev->base_addr, speed, duplex);
1292 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1293 netif_start_queue(net_dev);
1294 }
1295
1296 sis_priv->timer.expires = jiffies + HZ;
1297 add_timer(&sis_priv->timer);
1298 return;
1299 }
1300
1301 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1302 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1303
1304 /* Link OFF -> ON */
1305 if (!netif_carrier_ok(net_dev)) {
1306 LookForLink:
1307 /* Search for new PHY */
1308 status = sis900_default_phy(net_dev);
1309 mii_phy = sis_priv->mii;
1310
1311 if (status & MII_STAT_LINK){
1312 sis900_check_mode(net_dev, mii_phy);
1313 netif_carrier_on(net_dev);
1314 }
1315 } else {
1316 /* Link ON -> OFF */
1317 if (!(status & MII_STAT_LINK)){
1318 netif_carrier_off(net_dev);
1319 if(netif_msg_link(sis_priv))
1320 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1321
1322 /* Change mode issue */
1323 if ((mii_phy->phy_id0 == 0x001D) &&
1324 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1325 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1326
1327 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1328
1329 goto LookForLink;
1330 }
1331 }
1332
1333 sis_priv->timer.expires = jiffies + next_tick;
1334 add_timer(&sis_priv->timer);
1335 }
1336
1337 /**
1338 * sis900_check_mode - check the media mode for sis900
1339 * @net_dev: the net device to be checked
1340 * @mii_phy: the mii phy
1341 *
1342 * Older driver gets the media mode from mii status output
1343 * register. Now we set our media capability and auto-negotiate
1344 * to get the upper bound of speed and duplex between two ends.
1345 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1346 * and autong_complete should be set to 1.
1347 */
1348
1349 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1350 {
1351 struct sis900_private *sis_priv = netdev_priv(net_dev);
1352 long ioaddr = net_dev->base_addr;
1353 int speed, duplex;
1354
1355 if (mii_phy->phy_types == LAN) {
1356 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1357 sis900_set_capability(net_dev , mii_phy);
1358 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1359 } else {
1360 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1361 speed = HW_SPEED_HOME;
1362 duplex = FDX_CAPABLE_HALF_SELECTED;
1363 sis900_set_mode(ioaddr, speed, duplex);
1364 sis_priv->autong_complete = 1;
1365 }
1366 }
1367
1368 /**
1369 * sis900_set_mode - Set the media mode of mac register.
1370 * @ioaddr: the address of the device
1371 * @speed : the transmit speed to be determined
1372 * @duplex: the duplex mode to be determined
1373 *
1374 * Set the media mode of mac register txcfg/rxcfg according to
1375 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1376 * bus is used instead of PCI bus. When this bit is set 1, the
1377 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1378 * double words.
1379 */
1380
1381 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1382 {
1383 u32 tx_flags = 0, rx_flags = 0;
1384
1385 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1386 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1387 (TX_FILL_THRESH << TxFILLT_shift);
1388 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1389 } else {
1390 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1391 (TX_FILL_THRESH << TxFILLT_shift);
1392 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1393 }
1394
1395 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1396 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1397 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1398 } else {
1399 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1400 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1401 }
1402
1403 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1404 tx_flags |= (TxCSI | TxHBI);
1405 rx_flags |= RxATX;
1406 }
1407
1408 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1409 /* Can accept Jumbo packet */
1410 rx_flags |= RxAJAB;
1411 #endif
1412
1413 outl (tx_flags, ioaddr + txcfg);
1414 outl (rx_flags, ioaddr + rxcfg);
1415 }
1416
1417 /**
1418 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1419 * @net_dev: the net device to read mode for
1420 * @phy_addr: mii phy address
1421 *
1422 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1423 * autong_complete should be set to 0 when starting auto-negotiation.
1424 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1425 * sis900_timer will wait for link on again if autong_complete = 0.
1426 */
1427
1428 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1429 {
1430 struct sis900_private *sis_priv = netdev_priv(net_dev);
1431 int i = 0;
1432 u32 status;
1433
1434 for (i = 0; i < 2; i++)
1435 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1436
1437 if (!(status & MII_STAT_LINK)){
1438 if(netif_msg_link(sis_priv))
1439 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1440 sis_priv->autong_complete = 1;
1441 netif_carrier_off(net_dev);
1442 return;
1443 }
1444
1445 /* (Re)start AutoNegotiate */
1446 mdio_write(net_dev, phy_addr, MII_CONTROL,
1447 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1448 sis_priv->autong_complete = 0;
1449 }
1450
1451
1452 /**
1453 * sis900_read_mode - read media mode for sis900 internal phy
1454 * @net_dev: the net device to read mode for
1455 * @speed : the transmit speed to be determined
1456 * @duplex : the duplex mode to be determined
1457 *
1458 * The capability of remote end will be put in mii register autorec
1459 * after auto-negotiation. Use AND operation to get the upper bound
1460 * of speed and duplex between two ends.
1461 */
1462
1463 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1464 {
1465 struct sis900_private *sis_priv = netdev_priv(net_dev);
1466 struct mii_phy *phy = sis_priv->mii;
1467 int phy_addr = sis_priv->cur_phy;
1468 u32 status;
1469 u16 autoadv, autorec;
1470 int i;
1471
1472 for (i = 0; i < 2; i++)
1473 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1474
1475 if (!(status & MII_STAT_LINK))
1476 return;
1477
1478 /* AutoNegotiate completed */
1479 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1480 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1481 status = autoadv & autorec;
1482
1483 *speed = HW_SPEED_10_MBPS;
1484 *duplex = FDX_CAPABLE_HALF_SELECTED;
1485
1486 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1487 *speed = HW_SPEED_100_MBPS;
1488 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1489 *duplex = FDX_CAPABLE_FULL_SELECTED;
1490
1491 sis_priv->autong_complete = 1;
1492
1493 /* Workaround for Realtek RTL8201 PHY issue */
1494 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1495 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1496 *duplex = FDX_CAPABLE_FULL_SELECTED;
1497 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1498 *speed = HW_SPEED_100_MBPS;
1499 }
1500
1501 if(netif_msg_link(sis_priv))
1502 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1503 net_dev->name,
1504 *speed == HW_SPEED_100_MBPS ?
1505 "100mbps" : "10mbps",
1506 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1507 "full" : "half");
1508 }
1509
1510 /**
1511 * sis900_tx_timeout - sis900 transmit timeout routine
1512 * @net_dev: the net device to transmit
1513 *
1514 * print transmit timeout status
1515 * disable interrupts and do some tasks
1516 */
1517
1518 static void sis900_tx_timeout(struct net_device *net_dev)
1519 {
1520 struct sis900_private *sis_priv = netdev_priv(net_dev);
1521 long ioaddr = net_dev->base_addr;
1522 unsigned long flags;
1523 int i;
1524
1525 if(netif_msg_tx_err(sis_priv))
1526 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1527 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1528
1529 /* Disable interrupts by clearing the interrupt mask. */
1530 outl(0x0000, ioaddr + imr);
1531
1532 /* use spinlock to prevent interrupt handler accessing buffer ring */
1533 spin_lock_irqsave(&sis_priv->lock, flags);
1534
1535 /* discard unsent packets */
1536 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1537 for (i = 0; i < NUM_TX_DESC; i++) {
1538 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1539
1540 if (skb) {
1541 pci_unmap_single(sis_priv->pci_dev,
1542 sis_priv->tx_ring[i].bufptr, skb->len,
1543 PCI_DMA_TODEVICE);
1544 dev_kfree_skb_irq(skb);
1545 sis_priv->tx_skbuff[i] = NULL;
1546 sis_priv->tx_ring[i].cmdsts = 0;
1547 sis_priv->tx_ring[i].bufptr = 0;
1548 net_dev->stats.tx_dropped++;
1549 }
1550 }
1551 sis_priv->tx_full = 0;
1552 netif_wake_queue(net_dev);
1553
1554 spin_unlock_irqrestore(&sis_priv->lock, flags);
1555
1556 net_dev->trans_start = jiffies; /* prevent tx timeout */
1557
1558 /* load Transmit Descriptor Register */
1559 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1560
1561 /* Enable all known interrupts by setting the interrupt mask. */
1562 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1563 return;
1564 }
1565
1566 /**
1567 * sis900_start_xmit - sis900 start transmit routine
1568 * @skb: socket buffer pointer to put the data being transmitted
1569 * @net_dev: the net device to transmit with
1570 *
1571 * Set the transmit buffer descriptor,
1572 * and write TxENA to enable transmit state machine.
1573 * tell upper layer if the buffer is full
1574 */
1575
1576 static netdev_tx_t
1577 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1578 {
1579 struct sis900_private *sis_priv = netdev_priv(net_dev);
1580 long ioaddr = net_dev->base_addr;
1581 unsigned int entry;
1582 unsigned long flags;
1583 unsigned int index_cur_tx, index_dirty_tx;
1584 unsigned int count_dirty_tx;
1585
1586 /* Don't transmit data before the complete of auto-negotiation */
1587 if(!sis_priv->autong_complete){
1588 netif_stop_queue(net_dev);
1589 return NETDEV_TX_BUSY;
1590 }
1591
1592 spin_lock_irqsave(&sis_priv->lock, flags);
1593
1594 /* Calculate the next Tx descriptor entry. */
1595 entry = sis_priv->cur_tx % NUM_TX_DESC;
1596 sis_priv->tx_skbuff[entry] = skb;
1597
1598 /* set the transmit buffer descriptor and enable Transmit State Machine */
1599 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1600 skb->data, skb->len, PCI_DMA_TODEVICE);
1601 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1602 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1603
1604 sis_priv->cur_tx ++;
1605 index_cur_tx = sis_priv->cur_tx;
1606 index_dirty_tx = sis_priv->dirty_tx;
1607
1608 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1609 count_dirty_tx ++;
1610
1611 if (index_cur_tx == index_dirty_tx) {
1612 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1613 sis_priv->tx_full = 1;
1614 netif_stop_queue(net_dev);
1615 } else if (count_dirty_tx < NUM_TX_DESC) {
1616 /* Typical path, tell upper layer that more transmission is possible */
1617 netif_start_queue(net_dev);
1618 } else {
1619 /* buffer full, tell upper layer no more transmission */
1620 sis_priv->tx_full = 1;
1621 netif_stop_queue(net_dev);
1622 }
1623
1624 spin_unlock_irqrestore(&sis_priv->lock, flags);
1625
1626 if (netif_msg_tx_queued(sis_priv))
1627 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1628 "to slot %d.\n",
1629 net_dev->name, skb->data, (int)skb->len, entry);
1630
1631 return NETDEV_TX_OK;
1632 }
1633
1634 /**
1635 * sis900_interrupt - sis900 interrupt handler
1636 * @irq: the irq number
1637 * @dev_instance: the client data object
1638 *
1639 * The interrupt handler does all of the Rx thread work,
1640 * and cleans up after the Tx thread
1641 */
1642
1643 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1644 {
1645 struct net_device *net_dev = dev_instance;
1646 struct sis900_private *sis_priv = netdev_priv(net_dev);
1647 int boguscnt = max_interrupt_work;
1648 long ioaddr = net_dev->base_addr;
1649 u32 status;
1650 unsigned int handled = 0;
1651
1652 spin_lock (&sis_priv->lock);
1653
1654 do {
1655 status = inl(ioaddr + isr);
1656
1657 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1658 /* nothing intresting happened */
1659 break;
1660 handled = 1;
1661
1662 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1663 if (status & (RxORN | RxERR | RxOK))
1664 /* Rx interrupt */
1665 sis900_rx(net_dev);
1666
1667 if (status & (TxURN | TxERR | TxIDLE))
1668 /* Tx interrupt */
1669 sis900_finish_xmit(net_dev);
1670
1671 /* something strange happened !!! */
1672 if (status & HIBERR) {
1673 if(netif_msg_intr(sis_priv))
1674 printk(KERN_INFO "%s: Abnormal interrupt, "
1675 "status %#8.8x.\n", net_dev->name, status);
1676 break;
1677 }
1678 if (--boguscnt < 0) {
1679 if(netif_msg_intr(sis_priv))
1680 printk(KERN_INFO "%s: Too much work at interrupt, "
1681 "interrupt status = %#8.8x.\n",
1682 net_dev->name, status);
1683 break;
1684 }
1685 } while (1);
1686
1687 if(netif_msg_intr(sis_priv))
1688 printk(KERN_DEBUG "%s: exiting interrupt, "
1689 "interrupt status = 0x%#8.8x.\n",
1690 net_dev->name, inl(ioaddr + isr));
1691
1692 spin_unlock (&sis_priv->lock);
1693 return IRQ_RETVAL(handled);
1694 }
1695
1696 /**
1697 * sis900_rx - sis900 receive routine
1698 * @net_dev: the net device which receives data
1699 *
1700 * Process receive interrupt events,
1701 * put buffer to higher layer and refill buffer pool
1702 * Note: This function is called by interrupt handler,
1703 * don't do "too much" work here
1704 */
1705
1706 static int sis900_rx(struct net_device *net_dev)
1707 {
1708 struct sis900_private *sis_priv = netdev_priv(net_dev);
1709 long ioaddr = net_dev->base_addr;
1710 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1711 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1712 int rx_work_limit;
1713
1714 if (netif_msg_rx_status(sis_priv))
1715 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1716 "status:0x%8.8x\n",
1717 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1718 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1719
1720 while (rx_status & OWN) {
1721 unsigned int rx_size;
1722 unsigned int data_size;
1723
1724 if (--rx_work_limit < 0)
1725 break;
1726
1727 data_size = rx_status & DSIZE;
1728 rx_size = data_size - CRC_SIZE;
1729
1730 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1731 /* ``TOOLONG'' flag means jumbo packet recived. */
1732 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1733 rx_status &= (~ ((unsigned int)TOOLONG));
1734 #endif
1735
1736 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1737 /* corrupted packet received */
1738 if (netif_msg_rx_err(sis_priv))
1739 printk(KERN_DEBUG "%s: Corrupted packet "
1740 "received, buffer status = 0x%8.8x/%d.\n",
1741 net_dev->name, rx_status, data_size);
1742 net_dev->stats.rx_errors++;
1743 if (rx_status & OVERRUN)
1744 net_dev->stats.rx_over_errors++;
1745 if (rx_status & (TOOLONG|RUNT))
1746 net_dev->stats.rx_length_errors++;
1747 if (rx_status & (RXISERR | FAERR))
1748 net_dev->stats.rx_frame_errors++;
1749 if (rx_status & CRCERR)
1750 net_dev->stats.rx_crc_errors++;
1751 /* reset buffer descriptor state */
1752 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1753 } else {
1754 struct sk_buff * skb;
1755 struct sk_buff * rx_skb;
1756
1757 pci_unmap_single(sis_priv->pci_dev,
1758 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1759 PCI_DMA_FROMDEVICE);
1760
1761 /* refill the Rx buffer, what if there is not enough
1762 * memory for new socket buffer ?? */
1763 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1764 /*
1765 * Not enough memory to refill the buffer
1766 * so we need to recycle the old one so
1767 * as to avoid creating a memory hole
1768 * in the rx ring
1769 */
1770 skb = sis_priv->rx_skbuff[entry];
1771 net_dev->stats.rx_dropped++;
1772 goto refill_rx_ring;
1773 }
1774
1775 /* This situation should never happen, but due to
1776 some unknown bugs, it is possible that
1777 we are working on NULL sk_buff :-( */
1778 if (sis_priv->rx_skbuff[entry] == NULL) {
1779 if (netif_msg_rx_err(sis_priv))
1780 printk(KERN_WARNING "%s: NULL pointer "
1781 "encountered in Rx ring\n"
1782 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1783 net_dev->name, sis_priv->cur_rx,
1784 sis_priv->dirty_rx);
1785 break;
1786 }
1787
1788 /* give the socket buffer to upper layers */
1789 rx_skb = sis_priv->rx_skbuff[entry];
1790 skb_put(rx_skb, rx_size);
1791 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1792 netif_rx(rx_skb);
1793
1794 /* some network statistics */
1795 if ((rx_status & BCAST) == MCAST)
1796 net_dev->stats.multicast++;
1797 net_dev->stats.rx_bytes += rx_size;
1798 net_dev->stats.rx_packets++;
1799 sis_priv->dirty_rx++;
1800 refill_rx_ring:
1801 sis_priv->rx_skbuff[entry] = skb;
1802 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1803 sis_priv->rx_ring[entry].bufptr =
1804 pci_map_single(sis_priv->pci_dev, skb->data,
1805 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1806 }
1807 sis_priv->cur_rx++;
1808 entry = sis_priv->cur_rx % NUM_RX_DESC;
1809 rx_status = sis_priv->rx_ring[entry].cmdsts;
1810 } // while
1811
1812 /* refill the Rx buffer, what if the rate of refilling is slower
1813 * than consuming ?? */
1814 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1815 struct sk_buff *skb;
1816
1817 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1818
1819 if (sis_priv->rx_skbuff[entry] == NULL) {
1820 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1821 /* not enough memory for skbuff, this makes a
1822 * "hole" on the buffer ring, it is not clear
1823 * how the hardware will react to this kind
1824 * of degenerated buffer */
1825 if (netif_msg_rx_err(sis_priv))
1826 printk(KERN_INFO "%s: Memory squeeze, "
1827 "deferring packet.\n",
1828 net_dev->name);
1829 net_dev->stats.rx_dropped++;
1830 break;
1831 }
1832 sis_priv->rx_skbuff[entry] = skb;
1833 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1834 sis_priv->rx_ring[entry].bufptr =
1835 pci_map_single(sis_priv->pci_dev, skb->data,
1836 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1837 }
1838 }
1839 /* re-enable the potentially idle receive state matchine */
1840 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1841
1842 return 0;
1843 }
1844
1845 /**
1846 * sis900_finish_xmit - finish up transmission of packets
1847 * @net_dev: the net device to be transmitted on
1848 *
1849 * Check for error condition and free socket buffer etc
1850 * schedule for more transmission as needed
1851 * Note: This function is called by interrupt handler,
1852 * don't do "too much" work here
1853 */
1854
1855 static void sis900_finish_xmit (struct net_device *net_dev)
1856 {
1857 struct sis900_private *sis_priv = netdev_priv(net_dev);
1858
1859 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1860 struct sk_buff *skb;
1861 unsigned int entry;
1862 u32 tx_status;
1863
1864 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1865 tx_status = sis_priv->tx_ring[entry].cmdsts;
1866
1867 if (tx_status & OWN) {
1868 /* The packet is not transmitted yet (owned by hardware) !
1869 * Note: the interrupt is generated only when Tx Machine
1870 * is idle, so this is an almost impossible case */
1871 break;
1872 }
1873
1874 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1875 /* packet unsuccessfully transmitted */
1876 if (netif_msg_tx_err(sis_priv))
1877 printk(KERN_DEBUG "%s: Transmit "
1878 "error, Tx status %8.8x.\n",
1879 net_dev->name, tx_status);
1880 net_dev->stats.tx_errors++;
1881 if (tx_status & UNDERRUN)
1882 net_dev->stats.tx_fifo_errors++;
1883 if (tx_status & ABORT)
1884 net_dev->stats.tx_aborted_errors++;
1885 if (tx_status & NOCARRIER)
1886 net_dev->stats.tx_carrier_errors++;
1887 if (tx_status & OWCOLL)
1888 net_dev->stats.tx_window_errors++;
1889 } else {
1890 /* packet successfully transmitted */
1891 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1892 net_dev->stats.tx_bytes += tx_status & DSIZE;
1893 net_dev->stats.tx_packets++;
1894 }
1895 /* Free the original skb. */
1896 skb = sis_priv->tx_skbuff[entry];
1897 pci_unmap_single(sis_priv->pci_dev,
1898 sis_priv->tx_ring[entry].bufptr, skb->len,
1899 PCI_DMA_TODEVICE);
1900 dev_kfree_skb_irq(skb);
1901 sis_priv->tx_skbuff[entry] = NULL;
1902 sis_priv->tx_ring[entry].bufptr = 0;
1903 sis_priv->tx_ring[entry].cmdsts = 0;
1904 }
1905
1906 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1907 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1908 /* The ring is no longer full, clear tx_full and schedule
1909 * more transmission by netif_wake_queue(net_dev) */
1910 sis_priv->tx_full = 0;
1911 netif_wake_queue (net_dev);
1912 }
1913 }
1914
1915 /**
1916 * sis900_close - close sis900 device
1917 * @net_dev: the net device to be closed
1918 *
1919 * Disable interrupts, stop the Tx and Rx Status Machine
1920 * free Tx and RX socket buffer
1921 */
1922
1923 static int sis900_close(struct net_device *net_dev)
1924 {
1925 long ioaddr = net_dev->base_addr;
1926 struct sis900_private *sis_priv = netdev_priv(net_dev);
1927 struct sk_buff *skb;
1928 int i;
1929
1930 netif_stop_queue(net_dev);
1931
1932 /* Disable interrupts by clearing the interrupt mask. */
1933 outl(0x0000, ioaddr + imr);
1934 outl(0x0000, ioaddr + ier);
1935
1936 /* Stop the chip's Tx and Rx Status Machine */
1937 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1938
1939 del_timer(&sis_priv->timer);
1940
1941 free_irq(net_dev->irq, net_dev);
1942
1943 /* Free Tx and RX skbuff */
1944 for (i = 0; i < NUM_RX_DESC; i++) {
1945 skb = sis_priv->rx_skbuff[i];
1946 if (skb) {
1947 pci_unmap_single(sis_priv->pci_dev,
1948 sis_priv->rx_ring[i].bufptr,
1949 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1950 dev_kfree_skb(skb);
1951 sis_priv->rx_skbuff[i] = NULL;
1952 }
1953 }
1954 for (i = 0; i < NUM_TX_DESC; i++) {
1955 skb = sis_priv->tx_skbuff[i];
1956 if (skb) {
1957 pci_unmap_single(sis_priv->pci_dev,
1958 sis_priv->tx_ring[i].bufptr, skb->len,
1959 PCI_DMA_TODEVICE);
1960 dev_kfree_skb(skb);
1961 sis_priv->tx_skbuff[i] = NULL;
1962 }
1963 }
1964
1965 /* Green! Put the chip in low-power mode. */
1966
1967 return 0;
1968 }
1969
1970 /**
1971 * sis900_get_drvinfo - Return information about driver
1972 * @net_dev: the net device to probe
1973 * @info: container for info returned
1974 *
1975 * Process ethtool command such as "ehtool -i" to show information
1976 */
1977
1978 static void sis900_get_drvinfo(struct net_device *net_dev,
1979 struct ethtool_drvinfo *info)
1980 {
1981 struct sis900_private *sis_priv = netdev_priv(net_dev);
1982
1983 strcpy (info->driver, SIS900_MODULE_NAME);
1984 strcpy (info->version, SIS900_DRV_VERSION);
1985 strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1986 }
1987
1988 static u32 sis900_get_msglevel(struct net_device *net_dev)
1989 {
1990 struct sis900_private *sis_priv = netdev_priv(net_dev);
1991 return sis_priv->msg_enable;
1992 }
1993
1994 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1995 {
1996 struct sis900_private *sis_priv = netdev_priv(net_dev);
1997 sis_priv->msg_enable = value;
1998 }
1999
2000 static u32 sis900_get_link(struct net_device *net_dev)
2001 {
2002 struct sis900_private *sis_priv = netdev_priv(net_dev);
2003 return mii_link_ok(&sis_priv->mii_info);
2004 }
2005
2006 static int sis900_get_settings(struct net_device *net_dev,
2007 struct ethtool_cmd *cmd)
2008 {
2009 struct sis900_private *sis_priv = netdev_priv(net_dev);
2010 spin_lock_irq(&sis_priv->lock);
2011 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2012 spin_unlock_irq(&sis_priv->lock);
2013 return 0;
2014 }
2015
2016 static int sis900_set_settings(struct net_device *net_dev,
2017 struct ethtool_cmd *cmd)
2018 {
2019 struct sis900_private *sis_priv = netdev_priv(net_dev);
2020 int rt;
2021 spin_lock_irq(&sis_priv->lock);
2022 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2023 spin_unlock_irq(&sis_priv->lock);
2024 return rt;
2025 }
2026
2027 static int sis900_nway_reset(struct net_device *net_dev)
2028 {
2029 struct sis900_private *sis_priv = netdev_priv(net_dev);
2030 return mii_nway_restart(&sis_priv->mii_info);
2031 }
2032
2033 /**
2034 * sis900_set_wol - Set up Wake on Lan registers
2035 * @net_dev: the net device to probe
2036 * @wol: container for info passed to the driver
2037 *
2038 * Process ethtool command "wol" to setup wake on lan features.
2039 * SiS900 supports sending WoL events if a correct packet is received,
2040 * but there is no simple way to filter them to only a subset (broadcast,
2041 * multicast, unicast or arp).
2042 */
2043
2044 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2045 {
2046 struct sis900_private *sis_priv = netdev_priv(net_dev);
2047 long pmctrl_addr = net_dev->base_addr + pmctrl;
2048 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2049
2050 if (wol->wolopts == 0) {
2051 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2052 cfgpmcsr &= ~PME_EN;
2053 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2054 outl(pmctrl_bits, pmctrl_addr);
2055 if (netif_msg_wol(sis_priv))
2056 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2057 return 0;
2058 }
2059
2060 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2061 | WAKE_BCAST | WAKE_ARP))
2062 return -EINVAL;
2063
2064 if (wol->wolopts & WAKE_MAGIC)
2065 pmctrl_bits |= MAGICPKT;
2066 if (wol->wolopts & WAKE_PHY)
2067 pmctrl_bits |= LINKON;
2068
2069 outl(pmctrl_bits, pmctrl_addr);
2070
2071 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2072 cfgpmcsr |= PME_EN;
2073 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2074 if (netif_msg_wol(sis_priv))
2075 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2076
2077 return 0;
2078 }
2079
2080 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2081 {
2082 long pmctrl_addr = net_dev->base_addr + pmctrl;
2083 u32 pmctrl_bits;
2084
2085 pmctrl_bits = inl(pmctrl_addr);
2086 if (pmctrl_bits & MAGICPKT)
2087 wol->wolopts |= WAKE_MAGIC;
2088 if (pmctrl_bits & LINKON)
2089 wol->wolopts |= WAKE_PHY;
2090
2091 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2092 }
2093
2094 static const struct ethtool_ops sis900_ethtool_ops = {
2095 .get_drvinfo = sis900_get_drvinfo,
2096 .get_msglevel = sis900_get_msglevel,
2097 .set_msglevel = sis900_set_msglevel,
2098 .get_link = sis900_get_link,
2099 .get_settings = sis900_get_settings,
2100 .set_settings = sis900_set_settings,
2101 .nway_reset = sis900_nway_reset,
2102 .get_wol = sis900_get_wol,
2103 .set_wol = sis900_set_wol
2104 };
2105
2106 /**
2107 * mii_ioctl - process MII i/o control command
2108 * @net_dev: the net device to command for
2109 * @rq: parameter for command
2110 * @cmd: the i/o command
2111 *
2112 * Process MII command like read/write MII register
2113 */
2114
2115 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2116 {
2117 struct sis900_private *sis_priv = netdev_priv(net_dev);
2118 struct mii_ioctl_data *data = if_mii(rq);
2119
2120 switch(cmd) {
2121 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2122 data->phy_id = sis_priv->mii->phy_addr;
2123 /* Fall Through */
2124
2125 case SIOCGMIIREG: /* Read MII PHY register. */
2126 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2127 return 0;
2128
2129 case SIOCSMIIREG: /* Write MII PHY register. */
2130 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2131 return 0;
2132 default:
2133 return -EOPNOTSUPP;
2134 }
2135 }
2136
2137 /**
2138 * sis900_set_config - Set media type by net_device.set_config
2139 * @dev: the net device for media type change
2140 * @map: ifmap passed by ifconfig
2141 *
2142 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2143 * we support only port changes. All other runtime configuration
2144 * changes will be ignored
2145 */
2146
2147 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2148 {
2149 struct sis900_private *sis_priv = netdev_priv(dev);
2150 struct mii_phy *mii_phy = sis_priv->mii;
2151
2152 u16 status;
2153
2154 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2155 /* we switch on the ifmap->port field. I couldn't find anything
2156 * like a definition or standard for the values of that field.
2157 * I think the meaning of those values is device specific. But
2158 * since I would like to change the media type via the ifconfig
2159 * command I use the definition from linux/netdevice.h
2160 * (which seems to be different from the ifport(pcmcia) definition) */
2161 switch(map->port){
2162 case IF_PORT_UNKNOWN: /* use auto here */
2163 dev->if_port = map->port;
2164 /* we are going to change the media type, so the Link
2165 * will be temporary down and we need to reflect that
2166 * here. When the Link comes up again, it will be
2167 * sensed by the sis_timer procedure, which also does
2168 * all the rest for us */
2169 netif_carrier_off(dev);
2170
2171 /* read current state */
2172 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2173
2174 /* enable auto negotiation and reset the negotioation
2175 * (I don't really know what the auto negatiotiation
2176 * reset really means, but it sounds for me right to
2177 * do one here) */
2178 mdio_write(dev, mii_phy->phy_addr,
2179 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2180
2181 break;
2182
2183 case IF_PORT_10BASET: /* 10BaseT */
2184 dev->if_port = map->port;
2185
2186 /* we are going to change the media type, so the Link
2187 * will be temporary down and we need to reflect that
2188 * here. When the Link comes up again, it will be
2189 * sensed by the sis_timer procedure, which also does
2190 * all the rest for us */
2191 netif_carrier_off(dev);
2192
2193 /* set Speed to 10Mbps */
2194 /* read current state */
2195 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2196
2197 /* disable auto negotiation and force 10MBit mode*/
2198 mdio_write(dev, mii_phy->phy_addr,
2199 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2200 MII_CNTL_AUTO));
2201 break;
2202
2203 case IF_PORT_100BASET: /* 100BaseT */
2204 case IF_PORT_100BASETX: /* 100BaseTx */
2205 dev->if_port = map->port;
2206
2207 /* we are going to change the media type, so the Link
2208 * will be temporary down and we need to reflect that
2209 * here. When the Link comes up again, it will be
2210 * sensed by the sis_timer procedure, which also does
2211 * all the rest for us */
2212 netif_carrier_off(dev);
2213
2214 /* set Speed to 100Mbps */
2215 /* disable auto negotiation and enable 100MBit Mode */
2216 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2217 mdio_write(dev, mii_phy->phy_addr,
2218 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2219 MII_CNTL_SPEED);
2220
2221 break;
2222
2223 case IF_PORT_10BASE2: /* 10Base2 */
2224 case IF_PORT_AUI: /* AUI */
2225 case IF_PORT_100BASEFX: /* 100BaseFx */
2226 /* These Modes are not supported (are they?)*/
2227 return -EOPNOTSUPP;
2228 break;
2229
2230 default:
2231 return -EINVAL;
2232 }
2233 }
2234 return 0;
2235 }
2236
2237 /**
2238 * sis900_mcast_bitnr - compute hashtable index
2239 * @addr: multicast address
2240 * @revision: revision id of chip
2241 *
2242 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2243 * hash table, which makes this function a little bit different from other drivers
2244 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2245 * multicast hash table.
2246 */
2247
2248 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2249 {
2250
2251 u32 crc = ether_crc(6, addr);
2252
2253 /* leave 8 or 7 most siginifant bits */
2254 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2255 return ((int)(crc >> 24));
2256 else
2257 return ((int)(crc >> 25));
2258 }
2259
2260 /**
2261 * set_rx_mode - Set SiS900 receive mode
2262 * @net_dev: the net device to be set
2263 *
2264 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2265 * And set the appropriate multicast filter.
2266 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2267 */
2268
2269 static void set_rx_mode(struct net_device *net_dev)
2270 {
2271 long ioaddr = net_dev->base_addr;
2272 struct sis900_private *sis_priv = netdev_priv(net_dev);
2273 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2274 int i, table_entries;
2275 u32 rx_mode;
2276
2277 /* 635 Hash Table entries = 256(2^16) */
2278 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2279 (sis_priv->chipset_rev == SIS900B_900_REV))
2280 table_entries = 16;
2281 else
2282 table_entries = 8;
2283
2284 if (net_dev->flags & IFF_PROMISC) {
2285 /* Accept any kinds of packets */
2286 rx_mode = RFPromiscuous;
2287 for (i = 0; i < table_entries; i++)
2288 mc_filter[i] = 0xffff;
2289 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2290 (net_dev->flags & IFF_ALLMULTI)) {
2291 /* too many multicast addresses or accept all multicast packet */
2292 rx_mode = RFAAB | RFAAM;
2293 for (i = 0; i < table_entries; i++)
2294 mc_filter[i] = 0xffff;
2295 } else {
2296 /* Accept Broadcast packet, destination address matchs our
2297 * MAC address, use Receive Filter to reject unwanted MCAST
2298 * packets */
2299 struct netdev_hw_addr *ha;
2300 rx_mode = RFAAB;
2301
2302 netdev_for_each_mc_addr(ha, net_dev) {
2303 unsigned int bit_nr;
2304
2305 bit_nr = sis900_mcast_bitnr(ha->addr,
2306 sis_priv->chipset_rev);
2307 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2308 }
2309 }
2310
2311 /* update Multicast Hash Table in Receive Filter */
2312 for (i = 0; i < table_entries; i++) {
2313 /* why plus 0x04 ??, That makes the correct value for hash table. */
2314 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2315 outl(mc_filter[i], ioaddr + rfdr);
2316 }
2317
2318 outl(RFEN | rx_mode, ioaddr + rfcr);
2319
2320 /* sis900 is capable of looping back packets at MAC level for
2321 * debugging purpose */
2322 if (net_dev->flags & IFF_LOOPBACK) {
2323 u32 cr_saved;
2324 /* We must disable Tx/Rx before setting loopback mode */
2325 cr_saved = inl(ioaddr + cr);
2326 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2327 /* enable loopback */
2328 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2329 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2330 /* restore cr */
2331 outl(cr_saved, ioaddr + cr);
2332 }
2333
2334 return;
2335 }
2336
2337 /**
2338 * sis900_reset - Reset sis900 MAC
2339 * @net_dev: the net device to reset
2340 *
2341 * reset sis900 MAC and wait until finished
2342 * reset through command register
2343 * change backoff algorithm for 900B0 & 635 M/B
2344 */
2345
2346 static void sis900_reset(struct net_device *net_dev)
2347 {
2348 struct sis900_private *sis_priv = netdev_priv(net_dev);
2349 long ioaddr = net_dev->base_addr;
2350 int i = 0;
2351 u32 status = TxRCMP | RxRCMP;
2352
2353 outl(0, ioaddr + ier);
2354 outl(0, ioaddr + imr);
2355 outl(0, ioaddr + rfcr);
2356
2357 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2358
2359 /* Check that the chip has finished the reset. */
2360 while (status && (i++ < 1000)) {
2361 status ^= (inl(isr + ioaddr) & status);
2362 }
2363
2364 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2365 (sis_priv->chipset_rev == SIS900B_900_REV) )
2366 outl(PESEL | RND_CNT, ioaddr + cfg);
2367 else
2368 outl(PESEL, ioaddr + cfg);
2369 }
2370
2371 /**
2372 * sis900_remove - Remove sis900 device
2373 * @pci_dev: the pci device to be removed
2374 *
2375 * remove and release SiS900 net device
2376 */
2377
2378 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2379 {
2380 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2381 struct sis900_private *sis_priv = netdev_priv(net_dev);
2382 struct mii_phy *phy = NULL;
2383
2384 while (sis_priv->first_mii) {
2385 phy = sis_priv->first_mii;
2386 sis_priv->first_mii = phy->next;
2387 kfree(phy);
2388 }
2389
2390 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2391 sis_priv->rx_ring_dma);
2392 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2393 sis_priv->tx_ring_dma);
2394 unregister_netdev(net_dev);
2395 free_netdev(net_dev);
2396 pci_release_regions(pci_dev);
2397 pci_set_drvdata(pci_dev, NULL);
2398 }
2399
2400 #ifdef CONFIG_PM
2401
2402 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2403 {
2404 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2405 long ioaddr = net_dev->base_addr;
2406
2407 if(!netif_running(net_dev))
2408 return 0;
2409
2410 netif_stop_queue(net_dev);
2411 netif_device_detach(net_dev);
2412
2413 /* Stop the chip's Tx and Rx Status Machine */
2414 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2415
2416 pci_set_power_state(pci_dev, PCI_D3hot);
2417 pci_save_state(pci_dev);
2418
2419 return 0;
2420 }
2421
2422 static int sis900_resume(struct pci_dev *pci_dev)
2423 {
2424 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2425 struct sis900_private *sis_priv = netdev_priv(net_dev);
2426 long ioaddr = net_dev->base_addr;
2427
2428 if(!netif_running(net_dev))
2429 return 0;
2430 pci_restore_state(pci_dev);
2431 pci_set_power_state(pci_dev, PCI_D0);
2432
2433 sis900_init_rxfilter(net_dev);
2434
2435 sis900_init_tx_ring(net_dev);
2436 sis900_init_rx_ring(net_dev);
2437
2438 set_rx_mode(net_dev);
2439
2440 netif_device_attach(net_dev);
2441 netif_start_queue(net_dev);
2442
2443 /* Workaround for EDB */
2444 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2445
2446 /* Enable all known interrupts by setting the interrupt mask. */
2447 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2448 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2449 outl(IE, ioaddr + ier);
2450
2451 sis900_check_mode(net_dev, sis_priv->mii);
2452
2453 return 0;
2454 }
2455 #endif /* CONFIG_PM */
2456
2457 static struct pci_driver sis900_pci_driver = {
2458 .name = SIS900_MODULE_NAME,
2459 .id_table = sis900_pci_tbl,
2460 .probe = sis900_probe,
2461 .remove = __devexit_p(sis900_remove),
2462 #ifdef CONFIG_PM
2463 .suspend = sis900_suspend,
2464 .resume = sis900_resume,
2465 #endif /* CONFIG_PM */
2466 };
2467
2468 static int __init sis900_init_module(void)
2469 {
2470 /* when a module, this is printed whether or not devices are found in probe */
2471 #ifdef MODULE
2472 printk(version);
2473 #endif
2474
2475 return pci_register_driver(&sis900_pci_driver);
2476 }
2477
2478 static void __exit sis900_cleanup_module(void)
2479 {
2480 pci_unregister_driver(&sis900_pci_driver);
2481 }
2482
2483 module_init(sis900_init_module);
2484 module_exit(sis900_cleanup_module);
2485
This page took 0.130767 seconds and 5 git commands to generate.