Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / drivers / net / sis900.c
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
4
5 Modified from the driver which is originally written by Donald Becker.
6
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
11
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
19
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/string.h>
56 #include <linux/timer.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/pci.h>
62 #include <linux/netdevice.h>
63 #include <linux/init.h>
64 #include <linux/mii.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/delay.h>
68 #include <linux/ethtool.h>
69 #include <linux/crc32.h>
70 #include <linux/bitops.h>
71 #include <linux/dma-mapping.h>
72
73 #include <asm/processor.h> /* Processor type for cache alignment. */
74 #include <asm/io.h>
75 #include <asm/irq.h>
76 #include <asm/uaccess.h> /* User space memory access functions */
77
78 #include "sis900.h"
79
80 #define SIS900_MODULE_NAME "sis900"
81 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
82
83 static char version[] __devinitdata =
84 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
85
86 static int max_interrupt_work = 40;
87 static int multicast_filter_limit = 128;
88
89 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
90
91 #define SIS900_DEF_MSG \
92 (NETIF_MSG_DRV | \
93 NETIF_MSG_LINK | \
94 NETIF_MSG_RX_ERR | \
95 NETIF_MSG_TX_ERR)
96
97 /* Time in jiffies before concluding the transmitter is hung. */
98 #define TX_TIMEOUT (4*HZ)
99
100 enum {
101 SIS_900 = 0,
102 SIS_7016
103 };
104 static const char * card_names[] = {
105 "SiS 900 PCI Fast Ethernet",
106 "SiS 7016 PCI Fast Ethernet"
107 };
108 static struct pci_device_id sis900_pci_tbl [] = {
109 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
111 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
113 {0,}
114 };
115 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
116
117 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
118
119 static const struct mii_chip_info {
120 const char * name;
121 u16 phy_id0;
122 u16 phy_id1;
123 u8 phy_types;
124 #define HOME 0x0001
125 #define LAN 0x0002
126 #define MIX 0x0003
127 #define UNKNOWN 0x0
128 } mii_chip_table[] = {
129 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
130 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
131 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
132 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
133 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
134 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
135 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
136 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
137 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
138 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
139 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
140 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
141 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
142 {NULL,},
143 };
144
145 struct mii_phy {
146 struct mii_phy * next;
147 int phy_addr;
148 u16 phy_id0;
149 u16 phy_id1;
150 u16 status;
151 u8 phy_types;
152 };
153
154 typedef struct _BufferDesc {
155 u32 link;
156 u32 cmdsts;
157 u32 bufptr;
158 } BufferDesc;
159
160 struct sis900_private {
161 struct pci_dev * pci_dev;
162
163 spinlock_t lock;
164
165 struct mii_phy * mii;
166 struct mii_phy * first_mii; /* record the first mii structure */
167 unsigned int cur_phy;
168 struct mii_if_info mii_info;
169
170 struct timer_list timer; /* Link status detection timer. */
171 u8 autong_complete; /* 1: auto-negotiate complete */
172
173 u32 msg_enable;
174
175 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
176 unsigned int cur_tx, dirty_tx;
177
178 /* The saved address of a sent/receive-in-place packet buffer */
179 struct sk_buff *tx_skbuff[NUM_TX_DESC];
180 struct sk_buff *rx_skbuff[NUM_RX_DESC];
181 BufferDesc *tx_ring;
182 BufferDesc *rx_ring;
183
184 dma_addr_t tx_ring_dma;
185 dma_addr_t rx_ring_dma;
186
187 unsigned int tx_full; /* The Tx queue is full. */
188 u8 host_bridge_rev;
189 u8 chipset_rev;
190 };
191
192 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
193 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
194 MODULE_LICENSE("GPL");
195
196 module_param(multicast_filter_limit, int, 0444);
197 module_param(max_interrupt_work, int, 0444);
198 module_param(sis900_debug, int, 0444);
199 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
200 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
201 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
202
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 static void sis900_poll(struct net_device *dev);
205 #endif
206 static int sis900_open(struct net_device *net_dev);
207 static int sis900_mii_probe (struct net_device * net_dev);
208 static void sis900_init_rxfilter (struct net_device * net_dev);
209 static u16 read_eeprom(long ioaddr, int location);
210 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
211 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
212 static void sis900_timer(unsigned long data);
213 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
214 static void sis900_tx_timeout(struct net_device *net_dev);
215 static void sis900_init_tx_ring(struct net_device *net_dev);
216 static void sis900_init_rx_ring(struct net_device *net_dev);
217 static int sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
218 static int sis900_rx(struct net_device *net_dev);
219 static void sis900_finish_xmit (struct net_device *net_dev);
220 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
221 static int sis900_close(struct net_device *net_dev);
222 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
223 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
224 static void set_rx_mode(struct net_device *net_dev);
225 static void sis900_reset(struct net_device *net_dev);
226 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
227 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
228 static u16 sis900_default_phy(struct net_device * net_dev);
229 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
230 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
231 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
232 static void sis900_set_mode (long ioaddr, int speed, int duplex);
233 static const struct ethtool_ops sis900_ethtool_ops;
234
235 /**
236 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
237 * @pci_dev: the sis900 pci device
238 * @net_dev: the net device to get address for
239 *
240 * Older SiS900 and friends, use EEPROM to store MAC address.
241 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
242 */
243
244 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
245 {
246 long ioaddr = pci_resource_start(pci_dev, 0);
247 u16 signature;
248 int i;
249
250 /* check to see if we have sane EEPROM */
251 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
252 if (signature == 0xffff || signature == 0x0000) {
253 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
254 pci_name(pci_dev), signature);
255 return 0;
256 }
257
258 /* get MAC address from EEPROM */
259 for (i = 0; i < 3; i++)
260 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
261
262 return 1;
263 }
264
265 /**
266 * sis630e_get_mac_addr - Get MAC address for SiS630E model
267 * @pci_dev: the sis900 pci device
268 * @net_dev: the net device to get address for
269 *
270 * SiS630E model, use APC CMOS RAM to store MAC address.
271 * APC CMOS RAM is accessed through ISA bridge.
272 * MAC address is read into @net_dev->dev_addr.
273 */
274
275 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
276 struct net_device *net_dev)
277 {
278 struct pci_dev *isa_bridge = NULL;
279 u8 reg;
280 int i;
281
282 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
283 if (!isa_bridge)
284 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
285 if (!isa_bridge) {
286 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
287 pci_name(pci_dev));
288 return 0;
289 }
290 pci_read_config_byte(isa_bridge, 0x48, &reg);
291 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
292
293 for (i = 0; i < 6; i++) {
294 outb(0x09 + i, 0x70);
295 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
296 }
297 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
298 pci_dev_put(isa_bridge);
299
300 return 1;
301 }
302
303
304 /**
305 * sis635_get_mac_addr - Get MAC address for SIS635 model
306 * @pci_dev: the sis900 pci device
307 * @net_dev: the net device to get address for
308 *
309 * SiS635 model, set MAC Reload Bit to load Mac address from APC
310 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
311 * @net_dev->dev_addr.
312 */
313
314 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
315 struct net_device *net_dev)
316 {
317 long ioaddr = net_dev->base_addr;
318 u32 rfcrSave;
319 u32 i;
320
321 rfcrSave = inl(rfcr + ioaddr);
322
323 outl(rfcrSave | RELOAD, ioaddr + cr);
324 outl(0, ioaddr + cr);
325
326 /* disable packet filtering before setting filter */
327 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
328
329 /* load MAC addr to filter data register */
330 for (i = 0 ; i < 3 ; i++) {
331 outl((i << RFADDR_shift), ioaddr + rfcr);
332 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
333 }
334
335 /* enable packet filtering */
336 outl(rfcrSave | RFEN, rfcr + ioaddr);
337
338 return 1;
339 }
340
341 /**
342 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
343 * @pci_dev: the sis900 pci device
344 * @net_dev: the net device to get address for
345 *
346 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
347 * is shared by
348 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
349 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
350 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
351 * EEDONE signal to refuse EEPROM access by LAN.
352 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
353 * The signature field in SiS962 or SiS963 spec is meaningless.
354 * MAC address is read into @net_dev->dev_addr.
355 */
356
357 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
358 struct net_device *net_dev)
359 {
360 long ioaddr = net_dev->base_addr;
361 long ee_addr = ioaddr + mear;
362 u32 waittime = 0;
363 int i;
364
365 outl(EEREQ, ee_addr);
366 while(waittime < 2000) {
367 if(inl(ee_addr) & EEGNT) {
368
369 /* get MAC address from EEPROM */
370 for (i = 0; i < 3; i++)
371 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
372
373 outl(EEDONE, ee_addr);
374 return 1;
375 } else {
376 udelay(1);
377 waittime ++;
378 }
379 }
380 outl(EEDONE, ee_addr);
381 return 0;
382 }
383
384 static const struct net_device_ops sis900_netdev_ops = {
385 .ndo_open = sis900_open,
386 .ndo_stop = sis900_close,
387 .ndo_start_xmit = sis900_start_xmit,
388 .ndo_set_config = sis900_set_config,
389 .ndo_set_multicast_list = set_rx_mode,
390 .ndo_change_mtu = eth_change_mtu,
391 .ndo_validate_addr = eth_validate_addr,
392 .ndo_do_ioctl = mii_ioctl,
393 .ndo_tx_timeout = sis900_tx_timeout,
394 #ifdef CONFIG_NET_POLL_CONTROLLER
395 .ndo_poll_controller = sis900_poll,
396 #endif
397 };
398
399 /**
400 * sis900_probe - Probe for sis900 device
401 * @pci_dev: the sis900 pci device
402 * @pci_id: the pci device ID
403 *
404 * Check and probe sis900 net device for @pci_dev.
405 * Get mac address according to the chip revision,
406 * and assign SiS900-specific entries in the device structure.
407 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
408 */
409
410 static int __devinit sis900_probe(struct pci_dev *pci_dev,
411 const struct pci_device_id *pci_id)
412 {
413 struct sis900_private *sis_priv;
414 struct net_device *net_dev;
415 struct pci_dev *dev;
416 dma_addr_t ring_dma;
417 void *ring_space;
418 long ioaddr;
419 int i, ret;
420 const char *card_name = card_names[pci_id->driver_data];
421 const char *dev_name = pci_name(pci_dev);
422
423 /* when built into the kernel, we only print version if device is found */
424 #ifndef MODULE
425 static int printed_version;
426 if (!printed_version++)
427 printk(version);
428 #endif
429
430 /* setup various bits in PCI command register */
431 ret = pci_enable_device(pci_dev);
432 if(ret) return ret;
433
434 i = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
435 if(i){
436 printk(KERN_ERR "sis900.c: architecture does not support "
437 "32bit PCI busmaster DMA\n");
438 return i;
439 }
440
441 pci_set_master(pci_dev);
442
443 net_dev = alloc_etherdev(sizeof(struct sis900_private));
444 if (!net_dev)
445 return -ENOMEM;
446 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
447
448 /* We do a request_region() to register /proc/ioports info. */
449 ioaddr = pci_resource_start(pci_dev, 0);
450 ret = pci_request_regions(pci_dev, "sis900");
451 if (ret)
452 goto err_out;
453
454 sis_priv = netdev_priv(net_dev);
455 net_dev->base_addr = ioaddr;
456 net_dev->irq = pci_dev->irq;
457 sis_priv->pci_dev = pci_dev;
458 spin_lock_init(&sis_priv->lock);
459
460 pci_set_drvdata(pci_dev, net_dev);
461
462 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
463 if (!ring_space) {
464 ret = -ENOMEM;
465 goto err_out_cleardev;
466 }
467 sis_priv->tx_ring = (BufferDesc *)ring_space;
468 sis_priv->tx_ring_dma = ring_dma;
469
470 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
471 if (!ring_space) {
472 ret = -ENOMEM;
473 goto err_unmap_tx;
474 }
475 sis_priv->rx_ring = (BufferDesc *)ring_space;
476 sis_priv->rx_ring_dma = ring_dma;
477
478 /* The SiS900-specific entries in the device structure. */
479 net_dev->netdev_ops = &sis900_netdev_ops;
480 net_dev->watchdog_timeo = TX_TIMEOUT;
481 net_dev->ethtool_ops = &sis900_ethtool_ops;
482
483 if (sis900_debug > 0)
484 sis_priv->msg_enable = sis900_debug;
485 else
486 sis_priv->msg_enable = SIS900_DEF_MSG;
487
488 sis_priv->mii_info.dev = net_dev;
489 sis_priv->mii_info.mdio_read = mdio_read;
490 sis_priv->mii_info.mdio_write = mdio_write;
491 sis_priv->mii_info.phy_id_mask = 0x1f;
492 sis_priv->mii_info.reg_num_mask = 0x1f;
493
494 /* Get Mac address according to the chip revision */
495 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
496 if(netif_msg_probe(sis_priv))
497 printk(KERN_DEBUG "%s: detected revision %2.2x, "
498 "trying to get MAC address...\n",
499 dev_name, sis_priv->chipset_rev);
500
501 ret = 0;
502 if (sis_priv->chipset_rev == SIS630E_900_REV)
503 ret = sis630e_get_mac_addr(pci_dev, net_dev);
504 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
505 ret = sis635_get_mac_addr(pci_dev, net_dev);
506 else if (sis_priv->chipset_rev == SIS96x_900_REV)
507 ret = sis96x_get_mac_addr(pci_dev, net_dev);
508 else
509 ret = sis900_get_mac_addr(pci_dev, net_dev);
510
511 if (ret == 0) {
512 printk(KERN_WARNING "%s: Cannot read MAC address.\n", dev_name);
513 ret = -ENODEV;
514 goto err_unmap_rx;
515 }
516
517 /* 630ET : set the mii access mode as software-mode */
518 if (sis_priv->chipset_rev == SIS630ET_900_REV)
519 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
520
521 /* probe for mii transceiver */
522 if (sis900_mii_probe(net_dev) == 0) {
523 printk(KERN_WARNING "%s: Error probing MII device.\n",
524 dev_name);
525 ret = -ENODEV;
526 goto err_unmap_rx;
527 }
528
529 /* save our host bridge revision */
530 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
531 if (dev) {
532 pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
533 pci_dev_put(dev);
534 }
535
536 ret = register_netdev(net_dev);
537 if (ret)
538 goto err_unmap_rx;
539
540 /* print some information about our NIC */
541 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
542 net_dev->name, card_name, ioaddr, net_dev->irq,
543 net_dev->dev_addr);
544
545 /* Detect Wake on Lan support */
546 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
547 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
548 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
549
550 return 0;
551
552 err_unmap_rx:
553 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
554 sis_priv->rx_ring_dma);
555 err_unmap_tx:
556 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
557 sis_priv->tx_ring_dma);
558 err_out_cleardev:
559 pci_set_drvdata(pci_dev, NULL);
560 pci_release_regions(pci_dev);
561 err_out:
562 free_netdev(net_dev);
563 return ret;
564 }
565
566 /**
567 * sis900_mii_probe - Probe MII PHY for sis900
568 * @net_dev: the net device to probe for
569 *
570 * Search for total of 32 possible mii phy addresses.
571 * Identify and set current phy if found one,
572 * return error if it failed to found.
573 */
574
575 static int __devinit sis900_mii_probe(struct net_device * net_dev)
576 {
577 struct sis900_private *sis_priv = netdev_priv(net_dev);
578 const char *dev_name = pci_name(sis_priv->pci_dev);
579 u16 poll_bit = MII_STAT_LINK, status = 0;
580 unsigned long timeout = jiffies + 5 * HZ;
581 int phy_addr;
582
583 sis_priv->mii = NULL;
584
585 /* search for total of 32 possible mii phy addresses */
586 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
587 struct mii_phy * mii_phy = NULL;
588 u16 mii_status;
589 int i;
590
591 mii_phy = NULL;
592 for(i = 0; i < 2; i++)
593 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
594
595 if (mii_status == 0xffff || mii_status == 0x0000) {
596 if (netif_msg_probe(sis_priv))
597 printk(KERN_DEBUG "%s: MII at address %d"
598 " not accessible\n",
599 dev_name, phy_addr);
600 continue;
601 }
602
603 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
604 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
605 mii_phy = sis_priv->first_mii;
606 while (mii_phy) {
607 struct mii_phy *phy;
608 phy = mii_phy;
609 mii_phy = mii_phy->next;
610 kfree(phy);
611 }
612 return 0;
613 }
614
615 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
616 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
617 mii_phy->phy_addr = phy_addr;
618 mii_phy->status = mii_status;
619 mii_phy->next = sis_priv->mii;
620 sis_priv->mii = mii_phy;
621 sis_priv->first_mii = mii_phy;
622
623 for (i = 0; mii_chip_table[i].phy_id1; i++)
624 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
625 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
626 mii_phy->phy_types = mii_chip_table[i].phy_types;
627 if (mii_chip_table[i].phy_types == MIX)
628 mii_phy->phy_types =
629 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
630 printk(KERN_INFO "%s: %s transceiver found "
631 "at address %d.\n",
632 dev_name,
633 mii_chip_table[i].name,
634 phy_addr);
635 break;
636 }
637
638 if( !mii_chip_table[i].phy_id1 ) {
639 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
640 dev_name, phy_addr);
641 mii_phy->phy_types = UNKNOWN;
642 }
643 }
644
645 if (sis_priv->mii == NULL) {
646 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
647 return 0;
648 }
649
650 /* select default PHY for mac */
651 sis_priv->mii = NULL;
652 sis900_default_phy( net_dev );
653
654 /* Reset phy if default phy is internal sis900 */
655 if ((sis_priv->mii->phy_id0 == 0x001D) &&
656 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
657 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
658
659 /* workaround for ICS1893 PHY */
660 if ((sis_priv->mii->phy_id0 == 0x0015) &&
661 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
662 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
663
664 if(status & MII_STAT_LINK){
665 while (poll_bit) {
666 yield();
667
668 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
669 if (time_after_eq(jiffies, timeout)) {
670 printk(KERN_WARNING "%s: reset phy and link down now\n",
671 dev_name);
672 return -ETIME;
673 }
674 }
675 }
676
677 if (sis_priv->chipset_rev == SIS630E_900_REV) {
678 /* SiS 630E has some bugs on default value of PHY registers */
679 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
680 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
681 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
682 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
683 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
684 }
685
686 if (sis_priv->mii->status & MII_STAT_LINK)
687 netif_carrier_on(net_dev);
688 else
689 netif_carrier_off(net_dev);
690
691 return 1;
692 }
693
694 /**
695 * sis900_default_phy - Select default PHY for sis900 mac.
696 * @net_dev: the net device to probe for
697 *
698 * Select first detected PHY with link as default.
699 * If no one is link on, select PHY whose types is HOME as default.
700 * If HOME doesn't exist, select LAN.
701 */
702
703 static u16 sis900_default_phy(struct net_device * net_dev)
704 {
705 struct sis900_private *sis_priv = netdev_priv(net_dev);
706 struct mii_phy *phy = NULL, *phy_home = NULL,
707 *default_phy = NULL, *phy_lan = NULL;
708 u16 status;
709
710 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
711 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
712 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
713
714 /* Link ON & Not select default PHY & not ghost PHY */
715 if ((status & MII_STAT_LINK) && !default_phy &&
716 (phy->phy_types != UNKNOWN))
717 default_phy = phy;
718 else {
719 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
720 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
721 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
722 if (phy->phy_types == HOME)
723 phy_home = phy;
724 else if(phy->phy_types == LAN)
725 phy_lan = phy;
726 }
727 }
728
729 if (!default_phy && phy_home)
730 default_phy = phy_home;
731 else if (!default_phy && phy_lan)
732 default_phy = phy_lan;
733 else if (!default_phy)
734 default_phy = sis_priv->first_mii;
735
736 if (sis_priv->mii != default_phy) {
737 sis_priv->mii = default_phy;
738 sis_priv->cur_phy = default_phy->phy_addr;
739 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
740 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
741 }
742
743 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
744
745 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
746 status &= (~MII_CNTL_ISOLATE);
747
748 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
749 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
750 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
751
752 return status;
753 }
754
755
756 /**
757 * sis900_set_capability - set the media capability of network adapter.
758 * @net_dev : the net device to probe for
759 * @phy : default PHY
760 *
761 * Set the media capability of network adapter according to
762 * mii status register. It's necessary before auto-negotiate.
763 */
764
765 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
766 {
767 u16 cap;
768 u16 status;
769
770 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
771 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
772
773 cap = MII_NWAY_CSMA_CD |
774 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
775 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
776 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
777 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
778
779 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
780 }
781
782
783 /* Delay between EEPROM clock transitions. */
784 #define eeprom_delay() inl(ee_addr)
785
786 /**
787 * read_eeprom - Read Serial EEPROM
788 * @ioaddr: base i/o address
789 * @location: the EEPROM location to read
790 *
791 * Read Serial EEPROM through EEPROM Access Register.
792 * Note that location is in word (16 bits) unit
793 */
794
795 static u16 __devinit read_eeprom(long ioaddr, int location)
796 {
797 int i;
798 u16 retval = 0;
799 long ee_addr = ioaddr + mear;
800 u32 read_cmd = location | EEread;
801
802 outl(0, ee_addr);
803 eeprom_delay();
804 outl(EECS, ee_addr);
805 eeprom_delay();
806
807 /* Shift the read command (9) bits out. */
808 for (i = 8; i >= 0; i--) {
809 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
810 outl(dataval, ee_addr);
811 eeprom_delay();
812 outl(dataval | EECLK, ee_addr);
813 eeprom_delay();
814 }
815 outl(EECS, ee_addr);
816 eeprom_delay();
817
818 /* read the 16-bits data in */
819 for (i = 16; i > 0; i--) {
820 outl(EECS, ee_addr);
821 eeprom_delay();
822 outl(EECS | EECLK, ee_addr);
823 eeprom_delay();
824 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
825 eeprom_delay();
826 }
827
828 /* Terminate the EEPROM access. */
829 outl(0, ee_addr);
830 eeprom_delay();
831
832 return (retval);
833 }
834
835 /* Read and write the MII management registers using software-generated
836 serial MDIO protocol. Note that the command bits and data bits are
837 send out separately */
838 #define mdio_delay() inl(mdio_addr)
839
840 static void mdio_idle(long mdio_addr)
841 {
842 outl(MDIO | MDDIR, mdio_addr);
843 mdio_delay();
844 outl(MDIO | MDDIR | MDC, mdio_addr);
845 }
846
847 /* Syncronize the MII management interface by shifting 32 one bits out. */
848 static void mdio_reset(long mdio_addr)
849 {
850 int i;
851
852 for (i = 31; i >= 0; i--) {
853 outl(MDDIR | MDIO, mdio_addr);
854 mdio_delay();
855 outl(MDDIR | MDIO | MDC, mdio_addr);
856 mdio_delay();
857 }
858 return;
859 }
860
861 /**
862 * mdio_read - read MII PHY register
863 * @net_dev: the net device to read
864 * @phy_id: the phy address to read
865 * @location: the phy regiester id to read
866 *
867 * Read MII registers through MDIO and MDC
868 * using MDIO management frame structure and protocol(defined by ISO/IEC).
869 * Please see SiS7014 or ICS spec
870 */
871
872 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
873 {
874 long mdio_addr = net_dev->base_addr + mear;
875 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
876 u16 retval = 0;
877 int i;
878
879 mdio_reset(mdio_addr);
880 mdio_idle(mdio_addr);
881
882 for (i = 15; i >= 0; i--) {
883 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
884 outl(dataval, mdio_addr);
885 mdio_delay();
886 outl(dataval | MDC, mdio_addr);
887 mdio_delay();
888 }
889
890 /* Read the 16 data bits. */
891 for (i = 16; i > 0; i--) {
892 outl(0, mdio_addr);
893 mdio_delay();
894 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
895 outl(MDC, mdio_addr);
896 mdio_delay();
897 }
898 outl(0x00, mdio_addr);
899
900 return retval;
901 }
902
903 /**
904 * mdio_write - write MII PHY register
905 * @net_dev: the net device to write
906 * @phy_id: the phy address to write
907 * @location: the phy regiester id to write
908 * @value: the register value to write with
909 *
910 * Write MII registers with @value through MDIO and MDC
911 * using MDIO management frame structure and protocol(defined by ISO/IEC)
912 * please see SiS7014 or ICS spec
913 */
914
915 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
916 int value)
917 {
918 long mdio_addr = net_dev->base_addr + mear;
919 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
920 int i;
921
922 mdio_reset(mdio_addr);
923 mdio_idle(mdio_addr);
924
925 /* Shift the command bits out. */
926 for (i = 15; i >= 0; i--) {
927 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
928 outb(dataval, mdio_addr);
929 mdio_delay();
930 outb(dataval | MDC, mdio_addr);
931 mdio_delay();
932 }
933 mdio_delay();
934
935 /* Shift the value bits out. */
936 for (i = 15; i >= 0; i--) {
937 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
938 outl(dataval, mdio_addr);
939 mdio_delay();
940 outl(dataval | MDC, mdio_addr);
941 mdio_delay();
942 }
943 mdio_delay();
944
945 /* Clear out extra bits. */
946 for (i = 2; i > 0; i--) {
947 outb(0, mdio_addr);
948 mdio_delay();
949 outb(MDC, mdio_addr);
950 mdio_delay();
951 }
952 outl(0x00, mdio_addr);
953
954 return;
955 }
956
957
958 /**
959 * sis900_reset_phy - reset sis900 mii phy.
960 * @net_dev: the net device to write
961 * @phy_addr: default phy address
962 *
963 * Some specific phy can't work properly without reset.
964 * This function will be called during initialization and
965 * link status change from ON to DOWN.
966 */
967
968 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
969 {
970 int i;
971 u16 status;
972
973 for (i = 0; i < 2; i++)
974 status = mdio_read(net_dev, phy_addr, MII_STATUS);
975
976 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
977
978 return status;
979 }
980
981 #ifdef CONFIG_NET_POLL_CONTROLLER
982 /*
983 * Polling 'interrupt' - used by things like netconsole to send skbs
984 * without having to re-enable interrupts. It's not called while
985 * the interrupt routine is executing.
986 */
987 static void sis900_poll(struct net_device *dev)
988 {
989 disable_irq(dev->irq);
990 sis900_interrupt(dev->irq, dev);
991 enable_irq(dev->irq);
992 }
993 #endif
994
995 /**
996 * sis900_open - open sis900 device
997 * @net_dev: the net device to open
998 *
999 * Do some initialization and start net interface.
1000 * enable interrupts and set sis900 timer.
1001 */
1002
1003 static int
1004 sis900_open(struct net_device *net_dev)
1005 {
1006 struct sis900_private *sis_priv = netdev_priv(net_dev);
1007 long ioaddr = net_dev->base_addr;
1008 int ret;
1009
1010 /* Soft reset the chip. */
1011 sis900_reset(net_dev);
1012
1013 /* Equalizer workaround Rule */
1014 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1015
1016 ret = request_irq(net_dev->irq, &sis900_interrupt, IRQF_SHARED,
1017 net_dev->name, net_dev);
1018 if (ret)
1019 return ret;
1020
1021 sis900_init_rxfilter(net_dev);
1022
1023 sis900_init_tx_ring(net_dev);
1024 sis900_init_rx_ring(net_dev);
1025
1026 set_rx_mode(net_dev);
1027
1028 netif_start_queue(net_dev);
1029
1030 /* Workaround for EDB */
1031 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1032
1033 /* Enable all known interrupts by setting the interrupt mask. */
1034 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1035 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1036 outl(IE, ioaddr + ier);
1037
1038 sis900_check_mode(net_dev, sis_priv->mii);
1039
1040 /* Set the timer to switch to check for link beat and perhaps switch
1041 to an alternate media type. */
1042 init_timer(&sis_priv->timer);
1043 sis_priv->timer.expires = jiffies + HZ;
1044 sis_priv->timer.data = (unsigned long)net_dev;
1045 sis_priv->timer.function = &sis900_timer;
1046 add_timer(&sis_priv->timer);
1047
1048 return 0;
1049 }
1050
1051 /**
1052 * sis900_init_rxfilter - Initialize the Rx filter
1053 * @net_dev: the net device to initialize for
1054 *
1055 * Set receive filter address to our MAC address
1056 * and enable packet filtering.
1057 */
1058
1059 static void
1060 sis900_init_rxfilter (struct net_device * net_dev)
1061 {
1062 struct sis900_private *sis_priv = netdev_priv(net_dev);
1063 long ioaddr = net_dev->base_addr;
1064 u32 rfcrSave;
1065 u32 i;
1066
1067 rfcrSave = inl(rfcr + ioaddr);
1068
1069 /* disable packet filtering before setting filter */
1070 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1071
1072 /* load MAC addr to filter data register */
1073 for (i = 0 ; i < 3 ; i++) {
1074 u32 w;
1075
1076 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1077 outl((i << RFADDR_shift), ioaddr + rfcr);
1078 outl(w, ioaddr + rfdr);
1079
1080 if (netif_msg_hw(sis_priv)) {
1081 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1082 net_dev->name, i, inl(ioaddr + rfdr));
1083 }
1084 }
1085
1086 /* enable packet filtering */
1087 outl(rfcrSave | RFEN, rfcr + ioaddr);
1088 }
1089
1090 /**
1091 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1092 * @net_dev: the net device to initialize for
1093 *
1094 * Initialize the Tx descriptor ring,
1095 */
1096
1097 static void
1098 sis900_init_tx_ring(struct net_device *net_dev)
1099 {
1100 struct sis900_private *sis_priv = netdev_priv(net_dev);
1101 long ioaddr = net_dev->base_addr;
1102 int i;
1103
1104 sis_priv->tx_full = 0;
1105 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1106
1107 for (i = 0; i < NUM_TX_DESC; i++) {
1108 sis_priv->tx_skbuff[i] = NULL;
1109
1110 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1111 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1112 sis_priv->tx_ring[i].cmdsts = 0;
1113 sis_priv->tx_ring[i].bufptr = 0;
1114 }
1115
1116 /* load Transmit Descriptor Register */
1117 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1118 if (netif_msg_hw(sis_priv))
1119 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1120 net_dev->name, inl(ioaddr + txdp));
1121 }
1122
1123 /**
1124 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1125 * @net_dev: the net device to initialize for
1126 *
1127 * Initialize the Rx descriptor ring,
1128 * and pre-allocate recevie buffers (socket buffer)
1129 */
1130
1131 static void
1132 sis900_init_rx_ring(struct net_device *net_dev)
1133 {
1134 struct sis900_private *sis_priv = netdev_priv(net_dev);
1135 long ioaddr = net_dev->base_addr;
1136 int i;
1137
1138 sis_priv->cur_rx = 0;
1139 sis_priv->dirty_rx = 0;
1140
1141 /* init RX descriptor */
1142 for (i = 0; i < NUM_RX_DESC; i++) {
1143 sis_priv->rx_skbuff[i] = NULL;
1144
1145 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1146 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1147 sis_priv->rx_ring[i].cmdsts = 0;
1148 sis_priv->rx_ring[i].bufptr = 0;
1149 }
1150
1151 /* allocate sock buffers */
1152 for (i = 0; i < NUM_RX_DESC; i++) {
1153 struct sk_buff *skb;
1154
1155 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1156 /* not enough memory for skbuff, this makes a "hole"
1157 on the buffer ring, it is not clear how the
1158 hardware will react to this kind of degenerated
1159 buffer */
1160 break;
1161 }
1162 sis_priv->rx_skbuff[i] = skb;
1163 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1164 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1165 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1166 }
1167 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1168
1169 /* load Receive Descriptor Register */
1170 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1171 if (netif_msg_hw(sis_priv))
1172 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1173 net_dev->name, inl(ioaddr + rxdp));
1174 }
1175
1176 /**
1177 * sis630_set_eq - set phy equalizer value for 630 LAN
1178 * @net_dev: the net device to set equalizer value
1179 * @revision: 630 LAN revision number
1180 *
1181 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1182 * PHY register 14h(Test)
1183 * Bit 14: 0 -- Automatically dectect (default)
1184 * 1 -- Manually set Equalizer filter
1185 * Bit 13: 0 -- (Default)
1186 * 1 -- Speed up convergence of equalizer setting
1187 * Bit 9 : 0 -- (Default)
1188 * 1 -- Disable Baseline Wander
1189 * Bit 3~7 -- Equalizer filter setting
1190 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1191 * Then calculate equalizer value
1192 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1193 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1194 * Calculate Equalizer value:
1195 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1196 * When the equalizer is stable, this value is not a fixed value. It will be within
1197 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1198 * 0 <= max <= 4 --> set equalizer to max
1199 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1200 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1201 */
1202
1203 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1204 {
1205 struct sis900_private *sis_priv = netdev_priv(net_dev);
1206 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1207 int i, maxcount=10;
1208
1209 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1210 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1211 return;
1212
1213 if (netif_carrier_ok(net_dev)) {
1214 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1215 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1216 (0x2200 | reg14h) & 0xBFFF);
1217 for (i=0; i < maxcount; i++) {
1218 eq_value = (0x00F8 & mdio_read(net_dev,
1219 sis_priv->cur_phy, MII_RESV)) >> 3;
1220 if (i == 0)
1221 max_value=min_value=eq_value;
1222 max_value = (eq_value > max_value) ?
1223 eq_value : max_value;
1224 min_value = (eq_value < min_value) ?
1225 eq_value : min_value;
1226 }
1227 /* 630E rule to determine the equalizer value */
1228 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1229 revision == SIS630ET_900_REV) {
1230 if (max_value < 5)
1231 eq_value = max_value;
1232 else if (max_value >= 5 && max_value < 15)
1233 eq_value = (max_value == min_value) ?
1234 max_value+2 : max_value+1;
1235 else if (max_value >= 15)
1236 eq_value=(max_value == min_value) ?
1237 max_value+6 : max_value+5;
1238 }
1239 /* 630B0&B1 rule to determine the equalizer value */
1240 if (revision == SIS630A_900_REV &&
1241 (sis_priv->host_bridge_rev == SIS630B0 ||
1242 sis_priv->host_bridge_rev == SIS630B1)) {
1243 if (max_value == 0)
1244 eq_value = 3;
1245 else
1246 eq_value = (max_value + min_value + 1)/2;
1247 }
1248 /* write equalizer value and setting */
1249 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1250 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1251 reg14h = (reg14h | 0x6000) & 0xFDFF;
1252 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1253 } else {
1254 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1255 if (revision == SIS630A_900_REV &&
1256 (sis_priv->host_bridge_rev == SIS630B0 ||
1257 sis_priv->host_bridge_rev == SIS630B1))
1258 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1259 (reg14h | 0x2200) & 0xBFFF);
1260 else
1261 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1262 (reg14h | 0x2000) & 0xBFFF);
1263 }
1264 return;
1265 }
1266
1267 /**
1268 * sis900_timer - sis900 timer routine
1269 * @data: pointer to sis900 net device
1270 *
1271 * On each timer ticks we check two things,
1272 * link status (ON/OFF) and link mode (10/100/Full/Half)
1273 */
1274
1275 static void sis900_timer(unsigned long data)
1276 {
1277 struct net_device *net_dev = (struct net_device *)data;
1278 struct sis900_private *sis_priv = netdev_priv(net_dev);
1279 struct mii_phy *mii_phy = sis_priv->mii;
1280 static const int next_tick = 5*HZ;
1281 u16 status;
1282
1283 if (!sis_priv->autong_complete){
1284 int uninitialized_var(speed), duplex = 0;
1285
1286 sis900_read_mode(net_dev, &speed, &duplex);
1287 if (duplex){
1288 sis900_set_mode(net_dev->base_addr, speed, duplex);
1289 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1290 netif_start_queue(net_dev);
1291 }
1292
1293 sis_priv->timer.expires = jiffies + HZ;
1294 add_timer(&sis_priv->timer);
1295 return;
1296 }
1297
1298 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1299 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1300
1301 /* Link OFF -> ON */
1302 if (!netif_carrier_ok(net_dev)) {
1303 LookForLink:
1304 /* Search for new PHY */
1305 status = sis900_default_phy(net_dev);
1306 mii_phy = sis_priv->mii;
1307
1308 if (status & MII_STAT_LINK){
1309 sis900_check_mode(net_dev, mii_phy);
1310 netif_carrier_on(net_dev);
1311 }
1312 } else {
1313 /* Link ON -> OFF */
1314 if (!(status & MII_STAT_LINK)){
1315 netif_carrier_off(net_dev);
1316 if(netif_msg_link(sis_priv))
1317 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1318
1319 /* Change mode issue */
1320 if ((mii_phy->phy_id0 == 0x001D) &&
1321 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1322 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1323
1324 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1325
1326 goto LookForLink;
1327 }
1328 }
1329
1330 sis_priv->timer.expires = jiffies + next_tick;
1331 add_timer(&sis_priv->timer);
1332 }
1333
1334 /**
1335 * sis900_check_mode - check the media mode for sis900
1336 * @net_dev: the net device to be checked
1337 * @mii_phy: the mii phy
1338 *
1339 * Older driver gets the media mode from mii status output
1340 * register. Now we set our media capability and auto-negotiate
1341 * to get the upper bound of speed and duplex between two ends.
1342 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1343 * and autong_complete should be set to 1.
1344 */
1345
1346 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1347 {
1348 struct sis900_private *sis_priv = netdev_priv(net_dev);
1349 long ioaddr = net_dev->base_addr;
1350 int speed, duplex;
1351
1352 if (mii_phy->phy_types == LAN) {
1353 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1354 sis900_set_capability(net_dev , mii_phy);
1355 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1356 } else {
1357 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1358 speed = HW_SPEED_HOME;
1359 duplex = FDX_CAPABLE_HALF_SELECTED;
1360 sis900_set_mode(ioaddr, speed, duplex);
1361 sis_priv->autong_complete = 1;
1362 }
1363 }
1364
1365 /**
1366 * sis900_set_mode - Set the media mode of mac register.
1367 * @ioaddr: the address of the device
1368 * @speed : the transmit speed to be determined
1369 * @duplex: the duplex mode to be determined
1370 *
1371 * Set the media mode of mac register txcfg/rxcfg according to
1372 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1373 * bus is used instead of PCI bus. When this bit is set 1, the
1374 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1375 * double words.
1376 */
1377
1378 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1379 {
1380 u32 tx_flags = 0, rx_flags = 0;
1381
1382 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1383 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1384 (TX_FILL_THRESH << TxFILLT_shift);
1385 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1386 } else {
1387 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1388 (TX_FILL_THRESH << TxFILLT_shift);
1389 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1390 }
1391
1392 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1393 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1394 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1395 } else {
1396 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1397 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1398 }
1399
1400 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1401 tx_flags |= (TxCSI | TxHBI);
1402 rx_flags |= RxATX;
1403 }
1404
1405 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1406 /* Can accept Jumbo packet */
1407 rx_flags |= RxAJAB;
1408 #endif
1409
1410 outl (tx_flags, ioaddr + txcfg);
1411 outl (rx_flags, ioaddr + rxcfg);
1412 }
1413
1414 /**
1415 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1416 * @net_dev: the net device to read mode for
1417 * @phy_addr: mii phy address
1418 *
1419 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1420 * autong_complete should be set to 0 when starting auto-negotiation.
1421 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1422 * sis900_timer will wait for link on again if autong_complete = 0.
1423 */
1424
1425 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1426 {
1427 struct sis900_private *sis_priv = netdev_priv(net_dev);
1428 int i = 0;
1429 u32 status;
1430
1431 for (i = 0; i < 2; i++)
1432 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1433
1434 if (!(status & MII_STAT_LINK)){
1435 if(netif_msg_link(sis_priv))
1436 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1437 sis_priv->autong_complete = 1;
1438 netif_carrier_off(net_dev);
1439 return;
1440 }
1441
1442 /* (Re)start AutoNegotiate */
1443 mdio_write(net_dev, phy_addr, MII_CONTROL,
1444 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1445 sis_priv->autong_complete = 0;
1446 }
1447
1448
1449 /**
1450 * sis900_read_mode - read media mode for sis900 internal phy
1451 * @net_dev: the net device to read mode for
1452 * @speed : the transmit speed to be determined
1453 * @duplex : the duplex mode to be determined
1454 *
1455 * The capability of remote end will be put in mii register autorec
1456 * after auto-negotiation. Use AND operation to get the upper bound
1457 * of speed and duplex between two ends.
1458 */
1459
1460 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1461 {
1462 struct sis900_private *sis_priv = netdev_priv(net_dev);
1463 struct mii_phy *phy = sis_priv->mii;
1464 int phy_addr = sis_priv->cur_phy;
1465 u32 status;
1466 u16 autoadv, autorec;
1467 int i;
1468
1469 for (i = 0; i < 2; i++)
1470 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1471
1472 if (!(status & MII_STAT_LINK))
1473 return;
1474
1475 /* AutoNegotiate completed */
1476 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1477 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1478 status = autoadv & autorec;
1479
1480 *speed = HW_SPEED_10_MBPS;
1481 *duplex = FDX_CAPABLE_HALF_SELECTED;
1482
1483 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1484 *speed = HW_SPEED_100_MBPS;
1485 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1486 *duplex = FDX_CAPABLE_FULL_SELECTED;
1487
1488 sis_priv->autong_complete = 1;
1489
1490 /* Workaround for Realtek RTL8201 PHY issue */
1491 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1492 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1493 *duplex = FDX_CAPABLE_FULL_SELECTED;
1494 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1495 *speed = HW_SPEED_100_MBPS;
1496 }
1497
1498 if(netif_msg_link(sis_priv))
1499 printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1500 net_dev->name,
1501 *speed == HW_SPEED_100_MBPS ?
1502 "100mbps" : "10mbps",
1503 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1504 "full" : "half");
1505 }
1506
1507 /**
1508 * sis900_tx_timeout - sis900 transmit timeout routine
1509 * @net_dev: the net device to transmit
1510 *
1511 * print transmit timeout status
1512 * disable interrupts and do some tasks
1513 */
1514
1515 static void sis900_tx_timeout(struct net_device *net_dev)
1516 {
1517 struct sis900_private *sis_priv = netdev_priv(net_dev);
1518 long ioaddr = net_dev->base_addr;
1519 unsigned long flags;
1520 int i;
1521
1522 if(netif_msg_tx_err(sis_priv))
1523 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1524 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1525
1526 /* Disable interrupts by clearing the interrupt mask. */
1527 outl(0x0000, ioaddr + imr);
1528
1529 /* use spinlock to prevent interrupt handler accessing buffer ring */
1530 spin_lock_irqsave(&sis_priv->lock, flags);
1531
1532 /* discard unsent packets */
1533 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1534 for (i = 0; i < NUM_TX_DESC; i++) {
1535 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1536
1537 if (skb) {
1538 pci_unmap_single(sis_priv->pci_dev,
1539 sis_priv->tx_ring[i].bufptr, skb->len,
1540 PCI_DMA_TODEVICE);
1541 dev_kfree_skb_irq(skb);
1542 sis_priv->tx_skbuff[i] = NULL;
1543 sis_priv->tx_ring[i].cmdsts = 0;
1544 sis_priv->tx_ring[i].bufptr = 0;
1545 net_dev->stats.tx_dropped++;
1546 }
1547 }
1548 sis_priv->tx_full = 0;
1549 netif_wake_queue(net_dev);
1550
1551 spin_unlock_irqrestore(&sis_priv->lock, flags);
1552
1553 net_dev->trans_start = jiffies;
1554
1555 /* load Transmit Descriptor Register */
1556 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1557
1558 /* Enable all known interrupts by setting the interrupt mask. */
1559 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1560 return;
1561 }
1562
1563 /**
1564 * sis900_start_xmit - sis900 start transmit routine
1565 * @skb: socket buffer pointer to put the data being transmitted
1566 * @net_dev: the net device to transmit with
1567 *
1568 * Set the transmit buffer descriptor,
1569 * and write TxENA to enable transmit state machine.
1570 * tell upper layer if the buffer is full
1571 */
1572
1573 static int
1574 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1575 {
1576 struct sis900_private *sis_priv = netdev_priv(net_dev);
1577 long ioaddr = net_dev->base_addr;
1578 unsigned int entry;
1579 unsigned long flags;
1580 unsigned int index_cur_tx, index_dirty_tx;
1581 unsigned int count_dirty_tx;
1582
1583 /* Don't transmit data before the complete of auto-negotiation */
1584 if(!sis_priv->autong_complete){
1585 netif_stop_queue(net_dev);
1586 return 1;
1587 }
1588
1589 spin_lock_irqsave(&sis_priv->lock, flags);
1590
1591 /* Calculate the next Tx descriptor entry. */
1592 entry = sis_priv->cur_tx % NUM_TX_DESC;
1593 sis_priv->tx_skbuff[entry] = skb;
1594
1595 /* set the transmit buffer descriptor and enable Transmit State Machine */
1596 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1597 skb->data, skb->len, PCI_DMA_TODEVICE);
1598 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1599 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1600
1601 sis_priv->cur_tx ++;
1602 index_cur_tx = sis_priv->cur_tx;
1603 index_dirty_tx = sis_priv->dirty_tx;
1604
1605 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1606 count_dirty_tx ++;
1607
1608 if (index_cur_tx == index_dirty_tx) {
1609 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1610 sis_priv->tx_full = 1;
1611 netif_stop_queue(net_dev);
1612 } else if (count_dirty_tx < NUM_TX_DESC) {
1613 /* Typical path, tell upper layer that more transmission is possible */
1614 netif_start_queue(net_dev);
1615 } else {
1616 /* buffer full, tell upper layer no more transmission */
1617 sis_priv->tx_full = 1;
1618 netif_stop_queue(net_dev);
1619 }
1620
1621 spin_unlock_irqrestore(&sis_priv->lock, flags);
1622
1623 net_dev->trans_start = jiffies;
1624
1625 if (netif_msg_tx_queued(sis_priv))
1626 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1627 "to slot %d.\n",
1628 net_dev->name, skb->data, (int)skb->len, entry);
1629
1630 return 0;
1631 }
1632
1633 /**
1634 * sis900_interrupt - sis900 interrupt handler
1635 * @irq: the irq number
1636 * @dev_instance: the client data object
1637 *
1638 * The interrupt handler does all of the Rx thread work,
1639 * and cleans up after the Tx thread
1640 */
1641
1642 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1643 {
1644 struct net_device *net_dev = dev_instance;
1645 struct sis900_private *sis_priv = netdev_priv(net_dev);
1646 int boguscnt = max_interrupt_work;
1647 long ioaddr = net_dev->base_addr;
1648 u32 status;
1649 unsigned int handled = 0;
1650
1651 spin_lock (&sis_priv->lock);
1652
1653 do {
1654 status = inl(ioaddr + isr);
1655
1656 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1657 /* nothing intresting happened */
1658 break;
1659 handled = 1;
1660
1661 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1662 if (status & (RxORN | RxERR | RxOK))
1663 /* Rx interrupt */
1664 sis900_rx(net_dev);
1665
1666 if (status & (TxURN | TxERR | TxIDLE))
1667 /* Tx interrupt */
1668 sis900_finish_xmit(net_dev);
1669
1670 /* something strange happened !!! */
1671 if (status & HIBERR) {
1672 if(netif_msg_intr(sis_priv))
1673 printk(KERN_INFO "%s: Abnormal interrupt, "
1674 "status %#8.8x.\n", net_dev->name, status);
1675 break;
1676 }
1677 if (--boguscnt < 0) {
1678 if(netif_msg_intr(sis_priv))
1679 printk(KERN_INFO "%s: Too much work at interrupt, "
1680 "interrupt status = %#8.8x.\n",
1681 net_dev->name, status);
1682 break;
1683 }
1684 } while (1);
1685
1686 if(netif_msg_intr(sis_priv))
1687 printk(KERN_DEBUG "%s: exiting interrupt, "
1688 "interrupt status = 0x%#8.8x.\n",
1689 net_dev->name, inl(ioaddr + isr));
1690
1691 spin_unlock (&sis_priv->lock);
1692 return IRQ_RETVAL(handled);
1693 }
1694
1695 /**
1696 * sis900_rx - sis900 receive routine
1697 * @net_dev: the net device which receives data
1698 *
1699 * Process receive interrupt events,
1700 * put buffer to higher layer and refill buffer pool
1701 * Note: This function is called by interrupt handler,
1702 * don't do "too much" work here
1703 */
1704
1705 static int sis900_rx(struct net_device *net_dev)
1706 {
1707 struct sis900_private *sis_priv = netdev_priv(net_dev);
1708 long ioaddr = net_dev->base_addr;
1709 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1710 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1711 int rx_work_limit;
1712
1713 if (netif_msg_rx_status(sis_priv))
1714 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1715 "status:0x%8.8x\n",
1716 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1717 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1718
1719 while (rx_status & OWN) {
1720 unsigned int rx_size;
1721 unsigned int data_size;
1722
1723 if (--rx_work_limit < 0)
1724 break;
1725
1726 data_size = rx_status & DSIZE;
1727 rx_size = data_size - CRC_SIZE;
1728
1729 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1730 /* ``TOOLONG'' flag means jumbo packet recived. */
1731 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1732 rx_status &= (~ ((unsigned int)TOOLONG));
1733 #endif
1734
1735 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1736 /* corrupted packet received */
1737 if (netif_msg_rx_err(sis_priv))
1738 printk(KERN_DEBUG "%s: Corrupted packet "
1739 "received, buffer status = 0x%8.8x/%d.\n",
1740 net_dev->name, rx_status, data_size);
1741 net_dev->stats.rx_errors++;
1742 if (rx_status & OVERRUN)
1743 net_dev->stats.rx_over_errors++;
1744 if (rx_status & (TOOLONG|RUNT))
1745 net_dev->stats.rx_length_errors++;
1746 if (rx_status & (RXISERR | FAERR))
1747 net_dev->stats.rx_frame_errors++;
1748 if (rx_status & CRCERR)
1749 net_dev->stats.rx_crc_errors++;
1750 /* reset buffer descriptor state */
1751 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1752 } else {
1753 struct sk_buff * skb;
1754 struct sk_buff * rx_skb;
1755
1756 pci_unmap_single(sis_priv->pci_dev,
1757 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1758 PCI_DMA_FROMDEVICE);
1759
1760 /* refill the Rx buffer, what if there is not enought
1761 * memory for new socket buffer ?? */
1762 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1763 /*
1764 * Not enough memory to refill the buffer
1765 * so we need to recycle the old one so
1766 * as to avoid creating a memory hole
1767 * in the rx ring
1768 */
1769 skb = sis_priv->rx_skbuff[entry];
1770 net_dev->stats.rx_dropped++;
1771 goto refill_rx_ring;
1772 }
1773
1774 /* This situation should never happen, but due to
1775 some unknow bugs, it is possible that
1776 we are working on NULL sk_buff :-( */
1777 if (sis_priv->rx_skbuff[entry] == NULL) {
1778 if (netif_msg_rx_err(sis_priv))
1779 printk(KERN_WARNING "%s: NULL pointer "
1780 "encountered in Rx ring\n"
1781 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1782 net_dev->name, sis_priv->cur_rx,
1783 sis_priv->dirty_rx);
1784 break;
1785 }
1786
1787 /* give the socket buffer to upper layers */
1788 rx_skb = sis_priv->rx_skbuff[entry];
1789 skb_put(rx_skb, rx_size);
1790 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1791 netif_rx(rx_skb);
1792
1793 /* some network statistics */
1794 if ((rx_status & BCAST) == MCAST)
1795 net_dev->stats.multicast++;
1796 net_dev->stats.rx_bytes += rx_size;
1797 net_dev->stats.rx_packets++;
1798 sis_priv->dirty_rx++;
1799 refill_rx_ring:
1800 sis_priv->rx_skbuff[entry] = skb;
1801 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1802 sis_priv->rx_ring[entry].bufptr =
1803 pci_map_single(sis_priv->pci_dev, skb->data,
1804 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1805 }
1806 sis_priv->cur_rx++;
1807 entry = sis_priv->cur_rx % NUM_RX_DESC;
1808 rx_status = sis_priv->rx_ring[entry].cmdsts;
1809 } // while
1810
1811 /* refill the Rx buffer, what if the rate of refilling is slower
1812 * than consuming ?? */
1813 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1814 struct sk_buff *skb;
1815
1816 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1817
1818 if (sis_priv->rx_skbuff[entry] == NULL) {
1819 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1820 /* not enough memory for skbuff, this makes a
1821 * "hole" on the buffer ring, it is not clear
1822 * how the hardware will react to this kind
1823 * of degenerated buffer */
1824 if (netif_msg_rx_err(sis_priv))
1825 printk(KERN_INFO "%s: Memory squeeze, "
1826 "deferring packet.\n",
1827 net_dev->name);
1828 net_dev->stats.rx_dropped++;
1829 break;
1830 }
1831 sis_priv->rx_skbuff[entry] = skb;
1832 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1833 sis_priv->rx_ring[entry].bufptr =
1834 pci_map_single(sis_priv->pci_dev, skb->data,
1835 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1836 }
1837 }
1838 /* re-enable the potentially idle receive state matchine */
1839 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1840
1841 return 0;
1842 }
1843
1844 /**
1845 * sis900_finish_xmit - finish up transmission of packets
1846 * @net_dev: the net device to be transmitted on
1847 *
1848 * Check for error condition and free socket buffer etc
1849 * schedule for more transmission as needed
1850 * Note: This function is called by interrupt handler,
1851 * don't do "too much" work here
1852 */
1853
1854 static void sis900_finish_xmit (struct net_device *net_dev)
1855 {
1856 struct sis900_private *sis_priv = netdev_priv(net_dev);
1857
1858 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1859 struct sk_buff *skb;
1860 unsigned int entry;
1861 u32 tx_status;
1862
1863 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1864 tx_status = sis_priv->tx_ring[entry].cmdsts;
1865
1866 if (tx_status & OWN) {
1867 /* The packet is not transmitted yet (owned by hardware) !
1868 * Note: the interrupt is generated only when Tx Machine
1869 * is idle, so this is an almost impossible case */
1870 break;
1871 }
1872
1873 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1874 /* packet unsuccessfully transmitted */
1875 if (netif_msg_tx_err(sis_priv))
1876 printk(KERN_DEBUG "%s: Transmit "
1877 "error, Tx status %8.8x.\n",
1878 net_dev->name, tx_status);
1879 net_dev->stats.tx_errors++;
1880 if (tx_status & UNDERRUN)
1881 net_dev->stats.tx_fifo_errors++;
1882 if (tx_status & ABORT)
1883 net_dev->stats.tx_aborted_errors++;
1884 if (tx_status & NOCARRIER)
1885 net_dev->stats.tx_carrier_errors++;
1886 if (tx_status & OWCOLL)
1887 net_dev->stats.tx_window_errors++;
1888 } else {
1889 /* packet successfully transmitted */
1890 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1891 net_dev->stats.tx_bytes += tx_status & DSIZE;
1892 net_dev->stats.tx_packets++;
1893 }
1894 /* Free the original skb. */
1895 skb = sis_priv->tx_skbuff[entry];
1896 pci_unmap_single(sis_priv->pci_dev,
1897 sis_priv->tx_ring[entry].bufptr, skb->len,
1898 PCI_DMA_TODEVICE);
1899 dev_kfree_skb_irq(skb);
1900 sis_priv->tx_skbuff[entry] = NULL;
1901 sis_priv->tx_ring[entry].bufptr = 0;
1902 sis_priv->tx_ring[entry].cmdsts = 0;
1903 }
1904
1905 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1906 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1907 /* The ring is no longer full, clear tx_full and schedule
1908 * more transmission by netif_wake_queue(net_dev) */
1909 sis_priv->tx_full = 0;
1910 netif_wake_queue (net_dev);
1911 }
1912 }
1913
1914 /**
1915 * sis900_close - close sis900 device
1916 * @net_dev: the net device to be closed
1917 *
1918 * Disable interrupts, stop the Tx and Rx Status Machine
1919 * free Tx and RX socket buffer
1920 */
1921
1922 static int sis900_close(struct net_device *net_dev)
1923 {
1924 long ioaddr = net_dev->base_addr;
1925 struct sis900_private *sis_priv = netdev_priv(net_dev);
1926 struct sk_buff *skb;
1927 int i;
1928
1929 netif_stop_queue(net_dev);
1930
1931 /* Disable interrupts by clearing the interrupt mask. */
1932 outl(0x0000, ioaddr + imr);
1933 outl(0x0000, ioaddr + ier);
1934
1935 /* Stop the chip's Tx and Rx Status Machine */
1936 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1937
1938 del_timer(&sis_priv->timer);
1939
1940 free_irq(net_dev->irq, net_dev);
1941
1942 /* Free Tx and RX skbuff */
1943 for (i = 0; i < NUM_RX_DESC; i++) {
1944 skb = sis_priv->rx_skbuff[i];
1945 if (skb) {
1946 pci_unmap_single(sis_priv->pci_dev,
1947 sis_priv->rx_ring[i].bufptr,
1948 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1949 dev_kfree_skb(skb);
1950 sis_priv->rx_skbuff[i] = NULL;
1951 }
1952 }
1953 for (i = 0; i < NUM_TX_DESC; i++) {
1954 skb = sis_priv->tx_skbuff[i];
1955 if (skb) {
1956 pci_unmap_single(sis_priv->pci_dev,
1957 sis_priv->tx_ring[i].bufptr, skb->len,
1958 PCI_DMA_TODEVICE);
1959 dev_kfree_skb(skb);
1960 sis_priv->tx_skbuff[i] = NULL;
1961 }
1962 }
1963
1964 /* Green! Put the chip in low-power mode. */
1965
1966 return 0;
1967 }
1968
1969 /**
1970 * sis900_get_drvinfo - Return information about driver
1971 * @net_dev: the net device to probe
1972 * @info: container for info returned
1973 *
1974 * Process ethtool command such as "ehtool -i" to show information
1975 */
1976
1977 static void sis900_get_drvinfo(struct net_device *net_dev,
1978 struct ethtool_drvinfo *info)
1979 {
1980 struct sis900_private *sis_priv = netdev_priv(net_dev);
1981
1982 strcpy (info->driver, SIS900_MODULE_NAME);
1983 strcpy (info->version, SIS900_DRV_VERSION);
1984 strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1985 }
1986
1987 static u32 sis900_get_msglevel(struct net_device *net_dev)
1988 {
1989 struct sis900_private *sis_priv = netdev_priv(net_dev);
1990 return sis_priv->msg_enable;
1991 }
1992
1993 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1994 {
1995 struct sis900_private *sis_priv = netdev_priv(net_dev);
1996 sis_priv->msg_enable = value;
1997 }
1998
1999 static u32 sis900_get_link(struct net_device *net_dev)
2000 {
2001 struct sis900_private *sis_priv = netdev_priv(net_dev);
2002 return mii_link_ok(&sis_priv->mii_info);
2003 }
2004
2005 static int sis900_get_settings(struct net_device *net_dev,
2006 struct ethtool_cmd *cmd)
2007 {
2008 struct sis900_private *sis_priv = netdev_priv(net_dev);
2009 spin_lock_irq(&sis_priv->lock);
2010 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2011 spin_unlock_irq(&sis_priv->lock);
2012 return 0;
2013 }
2014
2015 static int sis900_set_settings(struct net_device *net_dev,
2016 struct ethtool_cmd *cmd)
2017 {
2018 struct sis900_private *sis_priv = netdev_priv(net_dev);
2019 int rt;
2020 spin_lock_irq(&sis_priv->lock);
2021 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2022 spin_unlock_irq(&sis_priv->lock);
2023 return rt;
2024 }
2025
2026 static int sis900_nway_reset(struct net_device *net_dev)
2027 {
2028 struct sis900_private *sis_priv = netdev_priv(net_dev);
2029 return mii_nway_restart(&sis_priv->mii_info);
2030 }
2031
2032 /**
2033 * sis900_set_wol - Set up Wake on Lan registers
2034 * @net_dev: the net device to probe
2035 * @wol: container for info passed to the driver
2036 *
2037 * Process ethtool command "wol" to setup wake on lan features.
2038 * SiS900 supports sending WoL events if a correct packet is received,
2039 * but there is no simple way to filter them to only a subset (broadcast,
2040 * multicast, unicast or arp).
2041 */
2042
2043 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2044 {
2045 struct sis900_private *sis_priv = netdev_priv(net_dev);
2046 long pmctrl_addr = net_dev->base_addr + pmctrl;
2047 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2048
2049 if (wol->wolopts == 0) {
2050 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2051 cfgpmcsr &= ~PME_EN;
2052 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2053 outl(pmctrl_bits, pmctrl_addr);
2054 if (netif_msg_wol(sis_priv))
2055 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2056 return 0;
2057 }
2058
2059 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2060 | WAKE_BCAST | WAKE_ARP))
2061 return -EINVAL;
2062
2063 if (wol->wolopts & WAKE_MAGIC)
2064 pmctrl_bits |= MAGICPKT;
2065 if (wol->wolopts & WAKE_PHY)
2066 pmctrl_bits |= LINKON;
2067
2068 outl(pmctrl_bits, pmctrl_addr);
2069
2070 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2071 cfgpmcsr |= PME_EN;
2072 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2073 if (netif_msg_wol(sis_priv))
2074 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2075
2076 return 0;
2077 }
2078
2079 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2080 {
2081 long pmctrl_addr = net_dev->base_addr + pmctrl;
2082 u32 pmctrl_bits;
2083
2084 pmctrl_bits = inl(pmctrl_addr);
2085 if (pmctrl_bits & MAGICPKT)
2086 wol->wolopts |= WAKE_MAGIC;
2087 if (pmctrl_bits & LINKON)
2088 wol->wolopts |= WAKE_PHY;
2089
2090 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2091 }
2092
2093 static const struct ethtool_ops sis900_ethtool_ops = {
2094 .get_drvinfo = sis900_get_drvinfo,
2095 .get_msglevel = sis900_get_msglevel,
2096 .set_msglevel = sis900_set_msglevel,
2097 .get_link = sis900_get_link,
2098 .get_settings = sis900_get_settings,
2099 .set_settings = sis900_set_settings,
2100 .nway_reset = sis900_nway_reset,
2101 .get_wol = sis900_get_wol,
2102 .set_wol = sis900_set_wol
2103 };
2104
2105 /**
2106 * mii_ioctl - process MII i/o control command
2107 * @net_dev: the net device to command for
2108 * @rq: parameter for command
2109 * @cmd: the i/o command
2110 *
2111 * Process MII command like read/write MII register
2112 */
2113
2114 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2115 {
2116 struct sis900_private *sis_priv = netdev_priv(net_dev);
2117 struct mii_ioctl_data *data = if_mii(rq);
2118
2119 switch(cmd) {
2120 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2121 data->phy_id = sis_priv->mii->phy_addr;
2122 /* Fall Through */
2123
2124 case SIOCGMIIREG: /* Read MII PHY register. */
2125 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2126 return 0;
2127
2128 case SIOCSMIIREG: /* Write MII PHY register. */
2129 if (!capable(CAP_NET_ADMIN))
2130 return -EPERM;
2131 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2132 return 0;
2133 default:
2134 return -EOPNOTSUPP;
2135 }
2136 }
2137
2138 /**
2139 * sis900_set_config - Set media type by net_device.set_config
2140 * @dev: the net device for media type change
2141 * @map: ifmap passed by ifconfig
2142 *
2143 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2144 * we support only port changes. All other runtime configuration
2145 * changes will be ignored
2146 */
2147
2148 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2149 {
2150 struct sis900_private *sis_priv = netdev_priv(dev);
2151 struct mii_phy *mii_phy = sis_priv->mii;
2152
2153 u16 status;
2154
2155 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2156 /* we switch on the ifmap->port field. I couldn't find anything
2157 * like a definition or standard for the values of that field.
2158 * I think the meaning of those values is device specific. But
2159 * since I would like to change the media type via the ifconfig
2160 * command I use the definition from linux/netdevice.h
2161 * (which seems to be different from the ifport(pcmcia) definition) */
2162 switch(map->port){
2163 case IF_PORT_UNKNOWN: /* use auto here */
2164 dev->if_port = map->port;
2165 /* we are going to change the media type, so the Link
2166 * will be temporary down and we need to reflect that
2167 * here. When the Link comes up again, it will be
2168 * sensed by the sis_timer procedure, which also does
2169 * all the rest for us */
2170 netif_carrier_off(dev);
2171
2172 /* read current state */
2173 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2174
2175 /* enable auto negotiation and reset the negotioation
2176 * (I don't really know what the auto negatiotiation
2177 * reset really means, but it sounds for me right to
2178 * do one here) */
2179 mdio_write(dev, mii_phy->phy_addr,
2180 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2181
2182 break;
2183
2184 case IF_PORT_10BASET: /* 10BaseT */
2185 dev->if_port = map->port;
2186
2187 /* we are going to change the media type, so the Link
2188 * will be temporary down and we need to reflect that
2189 * here. When the Link comes up again, it will be
2190 * sensed by the sis_timer procedure, which also does
2191 * all the rest for us */
2192 netif_carrier_off(dev);
2193
2194 /* set Speed to 10Mbps */
2195 /* read current state */
2196 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2197
2198 /* disable auto negotiation and force 10MBit mode*/
2199 mdio_write(dev, mii_phy->phy_addr,
2200 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2201 MII_CNTL_AUTO));
2202 break;
2203
2204 case IF_PORT_100BASET: /* 100BaseT */
2205 case IF_PORT_100BASETX: /* 100BaseTx */
2206 dev->if_port = map->port;
2207
2208 /* we are going to change the media type, so the Link
2209 * will be temporary down and we need to reflect that
2210 * here. When the Link comes up again, it will be
2211 * sensed by the sis_timer procedure, which also does
2212 * all the rest for us */
2213 netif_carrier_off(dev);
2214
2215 /* set Speed to 100Mbps */
2216 /* disable auto negotiation and enable 100MBit Mode */
2217 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2218 mdio_write(dev, mii_phy->phy_addr,
2219 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2220 MII_CNTL_SPEED);
2221
2222 break;
2223
2224 case IF_PORT_10BASE2: /* 10Base2 */
2225 case IF_PORT_AUI: /* AUI */
2226 case IF_PORT_100BASEFX: /* 100BaseFx */
2227 /* These Modes are not supported (are they?)*/
2228 return -EOPNOTSUPP;
2229 break;
2230
2231 default:
2232 return -EINVAL;
2233 }
2234 }
2235 return 0;
2236 }
2237
2238 /**
2239 * sis900_mcast_bitnr - compute hashtable index
2240 * @addr: multicast address
2241 * @revision: revision id of chip
2242 *
2243 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2244 * hash table, which makes this function a little bit different from other drivers
2245 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2246 * multicast hash table.
2247 */
2248
2249 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2250 {
2251
2252 u32 crc = ether_crc(6, addr);
2253
2254 /* leave 8 or 7 most siginifant bits */
2255 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2256 return ((int)(crc >> 24));
2257 else
2258 return ((int)(crc >> 25));
2259 }
2260
2261 /**
2262 * set_rx_mode - Set SiS900 receive mode
2263 * @net_dev: the net device to be set
2264 *
2265 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2266 * And set the appropriate multicast filter.
2267 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2268 */
2269
2270 static void set_rx_mode(struct net_device *net_dev)
2271 {
2272 long ioaddr = net_dev->base_addr;
2273 struct sis900_private *sis_priv = netdev_priv(net_dev);
2274 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2275 int i, table_entries;
2276 u32 rx_mode;
2277
2278 /* 635 Hash Table entries = 256(2^16) */
2279 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2280 (sis_priv->chipset_rev == SIS900B_900_REV))
2281 table_entries = 16;
2282 else
2283 table_entries = 8;
2284
2285 if (net_dev->flags & IFF_PROMISC) {
2286 /* Accept any kinds of packets */
2287 rx_mode = RFPromiscuous;
2288 for (i = 0; i < table_entries; i++)
2289 mc_filter[i] = 0xffff;
2290 } else if ((net_dev->mc_count > multicast_filter_limit) ||
2291 (net_dev->flags & IFF_ALLMULTI)) {
2292 /* too many multicast addresses or accept all multicast packet */
2293 rx_mode = RFAAB | RFAAM;
2294 for (i = 0; i < table_entries; i++)
2295 mc_filter[i] = 0xffff;
2296 } else {
2297 /* Accept Broadcast packet, destination address matchs our
2298 * MAC address, use Receive Filter to reject unwanted MCAST
2299 * packets */
2300 struct dev_mc_list *mclist;
2301 rx_mode = RFAAB;
2302 for (i = 0, mclist = net_dev->mc_list;
2303 mclist && i < net_dev->mc_count;
2304 i++, mclist = mclist->next) {
2305 unsigned int bit_nr =
2306 sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2307 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2308 }
2309 }
2310
2311 /* update Multicast Hash Table in Receive Filter */
2312 for (i = 0; i < table_entries; i++) {
2313 /* why plus 0x04 ??, That makes the correct value for hash table. */
2314 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2315 outl(mc_filter[i], ioaddr + rfdr);
2316 }
2317
2318 outl(RFEN | rx_mode, ioaddr + rfcr);
2319
2320 /* sis900 is capable of looping back packets at MAC level for
2321 * debugging purpose */
2322 if (net_dev->flags & IFF_LOOPBACK) {
2323 u32 cr_saved;
2324 /* We must disable Tx/Rx before setting loopback mode */
2325 cr_saved = inl(ioaddr + cr);
2326 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2327 /* enable loopback */
2328 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2329 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2330 /* restore cr */
2331 outl(cr_saved, ioaddr + cr);
2332 }
2333
2334 return;
2335 }
2336
2337 /**
2338 * sis900_reset - Reset sis900 MAC
2339 * @net_dev: the net device to reset
2340 *
2341 * reset sis900 MAC and wait until finished
2342 * reset through command register
2343 * change backoff algorithm for 900B0 & 635 M/B
2344 */
2345
2346 static void sis900_reset(struct net_device *net_dev)
2347 {
2348 struct sis900_private *sis_priv = netdev_priv(net_dev);
2349 long ioaddr = net_dev->base_addr;
2350 int i = 0;
2351 u32 status = TxRCMP | RxRCMP;
2352
2353 outl(0, ioaddr + ier);
2354 outl(0, ioaddr + imr);
2355 outl(0, ioaddr + rfcr);
2356
2357 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2358
2359 /* Check that the chip has finished the reset. */
2360 while (status && (i++ < 1000)) {
2361 status ^= (inl(isr + ioaddr) & status);
2362 }
2363
2364 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2365 (sis_priv->chipset_rev == SIS900B_900_REV) )
2366 outl(PESEL | RND_CNT, ioaddr + cfg);
2367 else
2368 outl(PESEL, ioaddr + cfg);
2369 }
2370
2371 /**
2372 * sis900_remove - Remove sis900 device
2373 * @pci_dev: the pci device to be removed
2374 *
2375 * remove and release SiS900 net device
2376 */
2377
2378 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2379 {
2380 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2381 struct sis900_private *sis_priv = netdev_priv(net_dev);
2382 struct mii_phy *phy = NULL;
2383
2384 while (sis_priv->first_mii) {
2385 phy = sis_priv->first_mii;
2386 sis_priv->first_mii = phy->next;
2387 kfree(phy);
2388 }
2389
2390 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2391 sis_priv->rx_ring_dma);
2392 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2393 sis_priv->tx_ring_dma);
2394 unregister_netdev(net_dev);
2395 free_netdev(net_dev);
2396 pci_release_regions(pci_dev);
2397 pci_set_drvdata(pci_dev, NULL);
2398 }
2399
2400 #ifdef CONFIG_PM
2401
2402 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2403 {
2404 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2405 long ioaddr = net_dev->base_addr;
2406
2407 if(!netif_running(net_dev))
2408 return 0;
2409
2410 netif_stop_queue(net_dev);
2411 netif_device_detach(net_dev);
2412
2413 /* Stop the chip's Tx and Rx Status Machine */
2414 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2415
2416 pci_set_power_state(pci_dev, PCI_D3hot);
2417 pci_save_state(pci_dev);
2418
2419 return 0;
2420 }
2421
2422 static int sis900_resume(struct pci_dev *pci_dev)
2423 {
2424 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2425 struct sis900_private *sis_priv = netdev_priv(net_dev);
2426 long ioaddr = net_dev->base_addr;
2427
2428 if(!netif_running(net_dev))
2429 return 0;
2430 pci_restore_state(pci_dev);
2431 pci_set_power_state(pci_dev, PCI_D0);
2432
2433 sis900_init_rxfilter(net_dev);
2434
2435 sis900_init_tx_ring(net_dev);
2436 sis900_init_rx_ring(net_dev);
2437
2438 set_rx_mode(net_dev);
2439
2440 netif_device_attach(net_dev);
2441 netif_start_queue(net_dev);
2442
2443 /* Workaround for EDB */
2444 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2445
2446 /* Enable all known interrupts by setting the interrupt mask. */
2447 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2448 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2449 outl(IE, ioaddr + ier);
2450
2451 sis900_check_mode(net_dev, sis_priv->mii);
2452
2453 return 0;
2454 }
2455 #endif /* CONFIG_PM */
2456
2457 static struct pci_driver sis900_pci_driver = {
2458 .name = SIS900_MODULE_NAME,
2459 .id_table = sis900_pci_tbl,
2460 .probe = sis900_probe,
2461 .remove = __devexit_p(sis900_remove),
2462 #ifdef CONFIG_PM
2463 .suspend = sis900_suspend,
2464 .resume = sis900_resume,
2465 #endif /* CONFIG_PM */
2466 };
2467
2468 static int __init sis900_init_module(void)
2469 {
2470 /* when a module, this is printed whether or not devices are found in probe */
2471 #ifdef MODULE
2472 printk(version);
2473 #endif
2474
2475 return pci_register_driver(&sis900_pci_driver);
2476 }
2477
2478 static void __exit sis900_cleanup_module(void)
2479 {
2480 pci_unregister_driver(&sis900_pci_driver);
2481 }
2482
2483 module_init(sis900_init_module);
2484 module_exit(sis900_cleanup_module);
2485
This page took 0.137384 seconds and 5 git commands to generate.