ae734393475876a6c0bd9ce521fb714967c15f21
[deliverable/linux.git] / drivers / net / sk98lin / skge.c
1 /******************************************************************************
2 *
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
8 *
9 ******************************************************************************/
10
11 /******************************************************************************
12 *
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
15 *
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
18 *
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
23 *
24 * Address all question to: linux@syskonnect.de
25 *
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * The information in this file is provided "AS IS" without warranty.
36 *
37 ******************************************************************************/
38
39 /******************************************************************************
40 *
41 * Possible compiler options (#define xxx / -Dxxx):
42 *
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
45 *
46 ******************************************************************************/
47
48 /******************************************************************************
49 *
50 * Description:
51 *
52 * This is the main module of the Linux GE driver.
53 *
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
61 *
62 * Include file hierarchy:
63 *
64 * <linux/module.h>
65 *
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
86 *
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
92 *
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skrlmt.h"
105 *
106 ******************************************************************************/
107
108 #include "h/skversion.h"
109
110 #include <linux/module.h>
111 #include <linux/moduleparam.h>
112 #include <linux/init.h>
113 #include <linux/proc_fs.h>
114 #include <linux/dma-mapping.h>
115 #include <linux/ip.h>
116
117 #include "h/skdrv1st.h"
118 #include "h/skdrv2nd.h"
119
120 /*******************************************************************************
121 *
122 * Defines
123 *
124 ******************************************************************************/
125
126 /* for debuging on x86 only */
127 /* #define BREAKPOINT() asm(" int $3"); */
128
129 /* use the transmit hw checksum driver functionality */
130 #define USE_SK_TX_CHECKSUM
131
132 /* use the receive hw checksum driver functionality */
133 #define USE_SK_RX_CHECKSUM
134
135 /* use the scatter-gather functionality with sendfile() */
136 #define SK_ZEROCOPY
137
138 /* use of a transmit complete interrupt */
139 #define USE_TX_COMPLETE
140
141 /*
142 * threshold for copying small receive frames
143 * set to 0 to avoid copying, set to 9001 to copy all frames
144 */
145 #define SK_COPY_THRESHOLD 50
146
147 /* number of adapters that can be configured via command line params */
148 #define SK_MAX_CARD_PARAM 16
149
150
151
152 /*
153 * use those defines for a compile-in version of the driver instead
154 * of command line parameters
155 */
156 // #define LINK_SPEED_A {"Auto", }
157 // #define LINK_SPEED_B {"Auto", }
158 // #define AUTO_NEG_A {"Sense", }
159 // #define AUTO_NEG_B {"Sense", }
160 // #define DUP_CAP_A {"Both", }
161 // #define DUP_CAP_B {"Both", }
162 // #define FLOW_CTRL_A {"SymOrRem", }
163 // #define FLOW_CTRL_B {"SymOrRem", }
164 // #define ROLE_A {"Auto", }
165 // #define ROLE_B {"Auto", }
166 // #define PREF_PORT {"A", }
167 // #define CON_TYPE {"Auto", }
168 // #define RLMT_MODE {"CheckLinkState", }
169
170 #define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
171 #define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
172 #define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
173
174
175 /* Set blink mode*/
176 #define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
177 SK_DUP_LED_NORMAL | \
178 SK_LED_LINK100_ON)
179
180
181 /* Isr return value */
182 #define SkIsrRetVar irqreturn_t
183 #define SkIsrRetNone IRQ_NONE
184 #define SkIsrRetHandled IRQ_HANDLED
185
186
187 /*******************************************************************************
188 *
189 * Local Function Prototypes
190 *
191 ******************************************************************************/
192
193 static void FreeResources(struct SK_NET_DEVICE *dev);
194 static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
195 static SK_BOOL BoardAllocMem(SK_AC *pAC);
196 static void BoardFreeMem(SK_AC *pAC);
197 static void BoardInitMem(SK_AC *pAC);
198 static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
199 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
200 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
201 static int SkGeOpen(struct SK_NET_DEVICE *dev);
202 static int SkGeClose(struct SK_NET_DEVICE *dev);
203 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
204 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
205 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
206 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
207 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
208 static void GetConfiguration(SK_AC*);
209 static void ProductStr(SK_AC*);
210 static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
211 static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
212 static void FillRxRing(SK_AC*, RX_PORT*);
213 static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
214 static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
215 static void ClearAndStartRx(SK_AC*, int);
216 static void ClearTxIrq(SK_AC*, int, int);
217 static void ClearRxRing(SK_AC*, RX_PORT*);
218 static void ClearTxRing(SK_AC*, TX_PORT*);
219 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
220 static void PortReInitBmu(SK_AC*, int);
221 static int SkGeIocMib(DEV_NET*, unsigned int, int);
222 static int SkGeInitPCI(SK_AC *pAC);
223 static void StartDrvCleanupTimer(SK_AC *pAC);
224 static void StopDrvCleanupTimer(SK_AC *pAC);
225 static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
226
227 #ifdef SK_DIAG_SUPPORT
228 static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
229 static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
230 static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
231 #endif
232
233 /*******************************************************************************
234 *
235 * Extern Function Prototypes
236 *
237 ******************************************************************************/
238 static const char SKRootName[] = "net/sk98lin";
239 static struct proc_dir_entry *pSkRootDir;
240 extern struct file_operations sk_proc_fops;
241
242 static inline void SkGeProcCreate(struct net_device *dev)
243 {
244 struct proc_dir_entry *pe;
245
246 if (pSkRootDir &&
247 (pe = create_proc_entry(dev->name, S_IRUGO, pSkRootDir))) {
248 pe->proc_fops = &sk_proc_fops;
249 pe->data = dev;
250 pe->owner = THIS_MODULE;
251 }
252 }
253
254 static inline void SkGeProcRemove(struct net_device *dev)
255 {
256 if (pSkRootDir)
257 remove_proc_entry(dev->name, pSkRootDir);
258 }
259
260 extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
261 extern void SkDimDisplayModerationSettings(SK_AC *pAC);
262 extern void SkDimStartModerationTimer(SK_AC *pAC);
263 extern void SkDimModerate(SK_AC *pAC);
264 extern void SkGeBlinkTimer(unsigned long data);
265
266 #ifdef DEBUG
267 static void DumpMsg(struct sk_buff*, char*);
268 static void DumpData(char*, int);
269 static void DumpLong(char*, int);
270 #endif
271
272 /* global variables *********************************************************/
273 static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
274 extern struct ethtool_ops SkGeEthtoolOps;
275
276 /* local variables **********************************************************/
277 static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
278 static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
279
280 /*****************************************************************************
281 *
282 * SkGeInitPCI - Init the PCI resources
283 *
284 * Description:
285 * This function initialize the PCI resources and IO
286 *
287 * Returns: N/A
288 *
289 */
290 int SkGeInitPCI(SK_AC *pAC)
291 {
292 struct SK_NET_DEVICE *dev = pAC->dev[0];
293 struct pci_dev *pdev = pAC->PciDev;
294 int retval;
295
296 if (pci_enable_device(pdev) != 0) {
297 return 1;
298 }
299
300 dev->mem_start = pci_resource_start (pdev, 0);
301 pci_set_master(pdev);
302
303 if (pci_request_regions(pdev, pAC->Name) != 0) {
304 retval = 2;
305 goto out_disable;
306 }
307
308 #ifdef SK_BIG_ENDIAN
309 /*
310 * On big endian machines, we use the adapter's aibility of
311 * reading the descriptors as big endian.
312 */
313 {
314 SK_U32 our2;
315 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
316 our2 |= PCI_REV_DESC;
317 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
318 }
319 #endif
320
321 /*
322 * Remap the regs into kernel space.
323 */
324 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
325
326 if (!pAC->IoBase){
327 retval = 3;
328 goto out_release;
329 }
330
331 return 0;
332
333 out_release:
334 pci_release_regions(pdev);
335 out_disable:
336 pci_disable_device(pdev);
337 return retval;
338 }
339
340
341 /*****************************************************************************
342 *
343 * FreeResources - release resources allocated for adapter
344 *
345 * Description:
346 * This function releases the IRQ, unmaps the IO and
347 * frees the desriptor ring.
348 *
349 * Returns: N/A
350 *
351 */
352 static void FreeResources(struct SK_NET_DEVICE *dev)
353 {
354 SK_U32 AllocFlag;
355 DEV_NET *pNet;
356 SK_AC *pAC;
357
358 pNet = netdev_priv(dev);
359 pAC = pNet->pAC;
360 AllocFlag = pAC->AllocFlag;
361 if (pAC->PciDev) {
362 pci_release_regions(pAC->PciDev);
363 }
364 if (AllocFlag & SK_ALLOC_IRQ) {
365 free_irq(dev->irq, dev);
366 }
367 if (pAC->IoBase) {
368 iounmap(pAC->IoBase);
369 }
370 if (pAC->pDescrMem) {
371 BoardFreeMem(pAC);
372 }
373
374 } /* FreeResources */
375
376 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
377 MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
378 MODULE_LICENSE("GPL");
379
380 #ifdef LINK_SPEED_A
381 static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
382 #else
383 static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
384 #endif
385
386 #ifdef LINK_SPEED_B
387 static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
388 #else
389 static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
390 #endif
391
392 #ifdef AUTO_NEG_A
393 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
394 #else
395 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
396 #endif
397
398 #ifdef DUP_CAP_A
399 static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
400 #else
401 static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
402 #endif
403
404 #ifdef FLOW_CTRL_A
405 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
406 #else
407 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
408 #endif
409
410 #ifdef ROLE_A
411 static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
412 #else
413 static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
414 #endif
415
416 #ifdef AUTO_NEG_B
417 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
418 #else
419 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
420 #endif
421
422 #ifdef DUP_CAP_B
423 static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
424 #else
425 static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
426 #endif
427
428 #ifdef FLOW_CTRL_B
429 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
430 #else
431 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
432 #endif
433
434 #ifdef ROLE_B
435 static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
436 #else
437 static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
438 #endif
439
440 #ifdef CON_TYPE
441 static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
442 #else
443 static char *ConType[SK_MAX_CARD_PARAM] = {"", };
444 #endif
445
446 #ifdef PREF_PORT
447 static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
448 #else
449 static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
450 #endif
451
452 #ifdef RLMT_MODE
453 static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
454 #else
455 static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
456 #endif
457
458 static int IntsPerSec[SK_MAX_CARD_PARAM];
459 static char *Moderation[SK_MAX_CARD_PARAM];
460 static char *ModerationMask[SK_MAX_CARD_PARAM];
461 static char *AutoSizing[SK_MAX_CARD_PARAM];
462 static char *Stats[SK_MAX_CARD_PARAM];
463
464 module_param_array(Speed_A, charp, NULL, 0);
465 module_param_array(Speed_B, charp, NULL, 0);
466 module_param_array(AutoNeg_A, charp, NULL, 0);
467 module_param_array(AutoNeg_B, charp, NULL, 0);
468 module_param_array(DupCap_A, charp, NULL, 0);
469 module_param_array(DupCap_B, charp, NULL, 0);
470 module_param_array(FlowCtrl_A, charp, NULL, 0);
471 module_param_array(FlowCtrl_B, charp, NULL, 0);
472 module_param_array(Role_A, charp, NULL, 0);
473 module_param_array(Role_B, charp, NULL, 0);
474 module_param_array(ConType, charp, NULL, 0);
475 module_param_array(PrefPort, charp, NULL, 0);
476 module_param_array(RlmtMode, charp, NULL, 0);
477 /* used for interrupt moderation */
478 module_param_array(IntsPerSec, int, NULL, 0);
479 module_param_array(Moderation, charp, NULL, 0);
480 module_param_array(Stats, charp, NULL, 0);
481 module_param_array(ModerationMask, charp, NULL, 0);
482 module_param_array(AutoSizing, charp, NULL, 0);
483
484 /*****************************************************************************
485 *
486 * SkGeBoardInit - do level 0 and 1 initialization
487 *
488 * Description:
489 * This function prepares the board hardware for running. The desriptor
490 * ring is set up, the IRQ is allocated and the configuration settings
491 * are examined.
492 *
493 * Returns:
494 * 0, if everything is ok
495 * !=0, on error
496 */
497 static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
498 {
499 short i;
500 unsigned long Flags;
501 char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
502 char *VerStr = VER_STRING;
503 int Ret; /* return code of request_irq */
504 SK_BOOL DualNet;
505
506 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
507 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
508 for (i=0; i<SK_MAX_MACS; i++) {
509 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
510 pAC->TxPort[i][0].PortIndex = i;
511 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
512 pAC->RxPort[i].PortIndex = i;
513 }
514
515 /* Initialize the mutexes */
516 for (i=0; i<SK_MAX_MACS; i++) {
517 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
518 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
519 }
520 spin_lock_init(&pAC->SlowPathLock);
521
522 /* setup phy_id blink timer */
523 pAC->BlinkTimer.function = SkGeBlinkTimer;
524 pAC->BlinkTimer.data = (unsigned long) dev;
525 init_timer(&pAC->BlinkTimer);
526
527 /* level 0 init common modules here */
528
529 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
530 /* Does a RESET on board ...*/
531 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
532 printk("HWInit (0) failed.\n");
533 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
534 return(-EAGAIN);
535 }
536 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
537 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
538 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
539 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
540 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
541 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
542
543 pAC->BoardLevel = SK_INIT_DATA;
544 pAC->RxBufSize = ETH_BUF_SIZE;
545
546 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
547 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
548
549 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
550
551 /* level 1 init common modules here (HW init) */
552 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
553 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
554 printk("sk98lin: HWInit (1) failed.\n");
555 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
556 return(-EAGAIN);
557 }
558 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
559 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
560 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
561 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
562 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
563 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
564
565 /* Set chipset type support */
566 pAC->ChipsetType = 0;
567 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
568 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
569 pAC->ChipsetType = 1;
570 }
571
572 GetConfiguration(pAC);
573 if (pAC->RlmtNets == 2) {
574 pAC->GIni.GIPortUsage = SK_MUL_LINK;
575 }
576
577 pAC->BoardLevel = SK_INIT_IO;
578 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
579
580 if (pAC->GIni.GIMacsFound == 2) {
581 Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
582 } else if (pAC->GIni.GIMacsFound == 1) {
583 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
584 pAC->Name, dev);
585 } else {
586 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
587 pAC->GIni.GIMacsFound);
588 return -EAGAIN;
589 }
590
591 if (Ret) {
592 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
593 dev->irq);
594 return -EAGAIN;
595 }
596 pAC->AllocFlag |= SK_ALLOC_IRQ;
597
598 /* Alloc memory for this board (Mem for RxD/TxD) : */
599 if(!BoardAllocMem(pAC)) {
600 printk("No memory for descriptor rings.\n");
601 return(-EAGAIN);
602 }
603
604 BoardInitMem(pAC);
605 /* tschilling: New common function with minimum size check. */
606 DualNet = SK_FALSE;
607 if (pAC->RlmtNets == 2) {
608 DualNet = SK_TRUE;
609 }
610
611 if (SkGeInitAssignRamToQueues(
612 pAC,
613 pAC->ActivePort,
614 DualNet)) {
615 BoardFreeMem(pAC);
616 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
617 return(-EAGAIN);
618 }
619
620 return (0);
621 } /* SkGeBoardInit */
622
623
624 /*****************************************************************************
625 *
626 * BoardAllocMem - allocate the memory for the descriptor rings
627 *
628 * Description:
629 * This function allocates the memory for all descriptor rings.
630 * Each ring is aligned for the desriptor alignment and no ring
631 * has a 4 GByte boundary in it (because the upper 32 bit must
632 * be constant for all descriptiors in one rings).
633 *
634 * Returns:
635 * SK_TRUE, if all memory could be allocated
636 * SK_FALSE, if not
637 */
638 static SK_BOOL BoardAllocMem(
639 SK_AC *pAC)
640 {
641 caddr_t pDescrMem; /* pointer to descriptor memory area */
642 size_t AllocLength; /* length of complete descriptor area */
643 int i; /* loop counter */
644 unsigned long BusAddr;
645
646
647 /* rings plus one for alignment (do not cross 4 GB boundary) */
648 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
649 #if (BITS_PER_LONG == 32)
650 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
651 #else
652 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
653 + RX_RING_SIZE + 8;
654 #endif
655
656 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
657 &pAC->pDescrMemDMA);
658
659 if (pDescrMem == NULL) {
660 return (SK_FALSE);
661 }
662 pAC->pDescrMem = pDescrMem;
663 BusAddr = (unsigned long) pAC->pDescrMemDMA;
664
665 /* Descriptors need 8 byte alignment, and this is ensured
666 * by pci_alloc_consistent.
667 */
668 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
669 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
670 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
671 i, (unsigned long) pDescrMem,
672 BusAddr));
673 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
674 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
675 pDescrMem += TX_RING_SIZE;
676 BusAddr += TX_RING_SIZE;
677
678 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
679 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
680 i, (unsigned long) pDescrMem,
681 (unsigned long)BusAddr));
682 pAC->RxPort[i].pRxDescrRing = pDescrMem;
683 pAC->RxPort[i].VRxDescrRing = BusAddr;
684 pDescrMem += RX_RING_SIZE;
685 BusAddr += RX_RING_SIZE;
686 } /* for */
687
688 return (SK_TRUE);
689 } /* BoardAllocMem */
690
691
692 /****************************************************************************
693 *
694 * BoardFreeMem - reverse of BoardAllocMem
695 *
696 * Description:
697 * Free all memory allocated in BoardAllocMem: adapter context,
698 * descriptor rings, locks.
699 *
700 * Returns: N/A
701 */
702 static void BoardFreeMem(
703 SK_AC *pAC)
704 {
705 size_t AllocLength; /* length of complete descriptor area */
706
707 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
708 ("BoardFreeMem\n"));
709 #if (BITS_PER_LONG == 32)
710 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
711 #else
712 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
713 + RX_RING_SIZE + 8;
714 #endif
715
716 pci_free_consistent(pAC->PciDev, AllocLength,
717 pAC->pDescrMem, pAC->pDescrMemDMA);
718 pAC->pDescrMem = NULL;
719 } /* BoardFreeMem */
720
721
722 /*****************************************************************************
723 *
724 * BoardInitMem - initiate the descriptor rings
725 *
726 * Description:
727 * This function sets the descriptor rings up in memory.
728 * The adapter is initialized with the descriptor start addresses.
729 *
730 * Returns: N/A
731 */
732 static void BoardInitMem(
733 SK_AC *pAC) /* pointer to adapter context */
734 {
735 int i; /* loop counter */
736 int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
737 int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
738
739 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
740 ("BoardInitMem\n"));
741
742 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
743 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
744 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
745 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
746
747 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
748 SetupRing(
749 pAC,
750 pAC->TxPort[i][0].pTxDescrRing,
751 pAC->TxPort[i][0].VTxDescrRing,
752 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
753 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
754 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
755 &pAC->TxPort[i][0].TxdRingFree,
756 SK_TRUE);
757 SetupRing(
758 pAC,
759 pAC->RxPort[i].pRxDescrRing,
760 pAC->RxPort[i].VRxDescrRing,
761 &pAC->RxPort[i].pRxdRingHead,
762 &pAC->RxPort[i].pRxdRingTail,
763 &pAC->RxPort[i].pRxdRingPrev,
764 &pAC->RxPort[i].RxdRingFree,
765 SK_FALSE);
766 }
767 } /* BoardInitMem */
768
769
770 /*****************************************************************************
771 *
772 * SetupRing - create one descriptor ring
773 *
774 * Description:
775 * This function creates one descriptor ring in the given memory area.
776 * The head, tail and number of free descriptors in the ring are set.
777 *
778 * Returns:
779 * none
780 */
781 static void SetupRing(
782 SK_AC *pAC,
783 void *pMemArea, /* a pointer to the memory area for the ring */
784 uintptr_t VMemArea, /* the virtual bus address of the memory area */
785 RXD **ppRingHead, /* address where the head should be written */
786 RXD **ppRingTail, /* address where the tail should be written */
787 RXD **ppRingPrev, /* address where the tail should be written */
788 int *pRingFree, /* address where the # of free descr. goes */
789 SK_BOOL IsTx) /* flag: is this a tx ring */
790 {
791 int i; /* loop counter */
792 int DescrSize; /* the size of a descriptor rounded up to alignment*/
793 int DescrNum; /* number of descriptors per ring */
794 RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
795 RXD *pNextDescr; /* pointer to the next descriptor */
796 RXD *pPrevDescr; /* pointer to the previous descriptor */
797 uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
798
799 if (IsTx == SK_TRUE) {
800 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
801 DESCR_ALIGN;
802 DescrNum = TX_RING_SIZE / DescrSize;
803 } else {
804 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
805 DESCR_ALIGN;
806 DescrNum = RX_RING_SIZE / DescrSize;
807 }
808
809 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
810 ("Descriptor size: %d Descriptor Number: %d\n",
811 DescrSize,DescrNum));
812
813 pDescr = (RXD*) pMemArea;
814 pPrevDescr = NULL;
815 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
816 VNextDescr = VMemArea + DescrSize;
817 for(i=0; i<DescrNum; i++) {
818 /* set the pointers right */
819 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
820 pDescr->pNextRxd = pNextDescr;
821 if (!IsTx) pDescr->TcpSumStarts = ETH_HLEN << 16 | ETH_HLEN;
822
823 /* advance one step */
824 pPrevDescr = pDescr;
825 pDescr = pNextDescr;
826 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
827 VNextDescr += DescrSize;
828 }
829 pPrevDescr->pNextRxd = (RXD*) pMemArea;
830 pPrevDescr->VNextRxd = VMemArea;
831 pDescr = (RXD*) pMemArea;
832 *ppRingHead = (RXD*) pMemArea;
833 *ppRingTail = *ppRingHead;
834 *ppRingPrev = pPrevDescr;
835 *pRingFree = DescrNum;
836 } /* SetupRing */
837
838
839 /*****************************************************************************
840 *
841 * PortReInitBmu - re-initiate the descriptor rings for one port
842 *
843 * Description:
844 * This function reinitializes the descriptor rings of one port
845 * in memory. The port must be stopped before.
846 * The HW is initialized with the descriptor start addresses.
847 *
848 * Returns:
849 * none
850 */
851 static void PortReInitBmu(
852 SK_AC *pAC, /* pointer to adapter context */
853 int PortIndex) /* index of the port for which to re-init */
854 {
855 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
856 ("PortReInitBmu "));
857
858 /* set address of first descriptor of ring in BMU */
859 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
860 (uint32_t)(((caddr_t)
861 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
862 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
863 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
864 0xFFFFFFFF));
865 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
866 (uint32_t)(((caddr_t)
867 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
868 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
869 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
870 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
871 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
872 pAC->RxPort[PortIndex].pRxDescrRing +
873 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
874 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
875 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
876 pAC->RxPort[PortIndex].pRxDescrRing +
877 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
878 } /* PortReInitBmu */
879
880
881 /****************************************************************************
882 *
883 * SkGeIsr - handle adapter interrupts
884 *
885 * Description:
886 * The interrupt routine is called when the network adapter
887 * generates an interrupt. It may also be called if another device
888 * shares this interrupt vector with the driver.
889 *
890 * Returns: N/A
891 *
892 */
893 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
894 {
895 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
896 DEV_NET *pNet;
897 SK_AC *pAC;
898 SK_U32 IntSrc; /* interrupts source register contents */
899
900 pNet = netdev_priv(dev);
901 pAC = pNet->pAC;
902
903 /*
904 * Check and process if its our interrupt
905 */
906 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
907 if (IntSrc == 0) {
908 return SkIsrRetNone;
909 }
910
911 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
912 #if 0 /* software irq currently not used */
913 if (IntSrc & IS_IRQ_SW) {
914 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
915 SK_DBGCAT_DRV_INT_SRC,
916 ("Software IRQ\n"));
917 }
918 #endif
919 if (IntSrc & IS_R1_F) {
920 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
921 SK_DBGCAT_DRV_INT_SRC,
922 ("EOF RX1 IRQ\n"));
923 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
924 SK_PNMI_CNT_RX_INTR(pAC, 0);
925 }
926 if (IntSrc & IS_R2_F) {
927 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
928 SK_DBGCAT_DRV_INT_SRC,
929 ("EOF RX2 IRQ\n"));
930 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
931 SK_PNMI_CNT_RX_INTR(pAC, 1);
932 }
933 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
934 if (IntSrc & IS_XA1_F) {
935 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
936 SK_DBGCAT_DRV_INT_SRC,
937 ("EOF AS TX1 IRQ\n"));
938 SK_PNMI_CNT_TX_INTR(pAC, 0);
939 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
940 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
941 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
942 }
943 if (IntSrc & IS_XA2_F) {
944 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
945 SK_DBGCAT_DRV_INT_SRC,
946 ("EOF AS TX2 IRQ\n"));
947 SK_PNMI_CNT_TX_INTR(pAC, 1);
948 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
949 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
950 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
951 }
952 #if 0 /* only if sync. queues used */
953 if (IntSrc & IS_XS1_F) {
954 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
955 SK_DBGCAT_DRV_INT_SRC,
956 ("EOF SY TX1 IRQ\n"));
957 SK_PNMI_CNT_TX_INTR(pAC, 1);
958 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
959 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
960 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
961 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
962 }
963 if (IntSrc & IS_XS2_F) {
964 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
965 SK_DBGCAT_DRV_INT_SRC,
966 ("EOF SY TX2 IRQ\n"));
967 SK_PNMI_CNT_TX_INTR(pAC, 1);
968 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
969 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
970 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
971 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
972 }
973 #endif
974 #endif
975
976 /* do all IO at once */
977 if (IntSrc & IS_R1_F)
978 ClearAndStartRx(pAC, 0);
979 if (IntSrc & IS_R2_F)
980 ClearAndStartRx(pAC, 1);
981 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
982 if (IntSrc & IS_XA1_F)
983 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
984 if (IntSrc & IS_XA2_F)
985 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
986 #endif
987 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
988 } /* while (IntSrc & IRQ_MASK != 0) */
989
990 IntSrc &= pAC->GIni.GIValIrqMask;
991 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
992 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
993 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
994 pAC->CheckQueue = SK_FALSE;
995 spin_lock(&pAC->SlowPathLock);
996 if (IntSrc & SPECIAL_IRQS)
997 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
998
999 SkEventDispatcher(pAC, pAC->IoBase);
1000 spin_unlock(&pAC->SlowPathLock);
1001 }
1002 /*
1003 * do it all again is case we cleared an interrupt that
1004 * came in after handling the ring (OUTs may be delayed
1005 * in hardware buffers, but are through after IN)
1006 *
1007 * rroesler: has been commented out and shifted to
1008 * SkGeDrvEvent(), because it is timer
1009 * guarded now
1010 *
1011 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1012 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1013 */
1014
1015 if (pAC->CheckQueue) {
1016 pAC->CheckQueue = SK_FALSE;
1017 spin_lock(&pAC->SlowPathLock);
1018 SkEventDispatcher(pAC, pAC->IoBase);
1019 spin_unlock(&pAC->SlowPathLock);
1020 }
1021
1022 /* IRQ is processed - Enable IRQs again*/
1023 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1024
1025 return SkIsrRetHandled;
1026 } /* SkGeIsr */
1027
1028
1029 /****************************************************************************
1030 *
1031 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1032 *
1033 * Description:
1034 * The interrupt routine is called when the network adapter
1035 * generates an interrupt. It may also be called if another device
1036 * shares this interrupt vector with the driver.
1037 * This is the same as above, but handles only one port.
1038 *
1039 * Returns: N/A
1040 *
1041 */
1042 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1043 {
1044 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1045 DEV_NET *pNet;
1046 SK_AC *pAC;
1047 SK_U32 IntSrc; /* interrupts source register contents */
1048
1049 pNet = netdev_priv(dev);
1050 pAC = pNet->pAC;
1051
1052 /*
1053 * Check and process if its our interrupt
1054 */
1055 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1056 if (IntSrc == 0) {
1057 return SkIsrRetNone;
1058 }
1059
1060 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1061 #if 0 /* software irq currently not used */
1062 if (IntSrc & IS_IRQ_SW) {
1063 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1064 SK_DBGCAT_DRV_INT_SRC,
1065 ("Software IRQ\n"));
1066 }
1067 #endif
1068 if (IntSrc & IS_R1_F) {
1069 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1070 SK_DBGCAT_DRV_INT_SRC,
1071 ("EOF RX1 IRQ\n"));
1072 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1073 SK_PNMI_CNT_RX_INTR(pAC, 0);
1074 }
1075 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1076 if (IntSrc & IS_XA1_F) {
1077 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1078 SK_DBGCAT_DRV_INT_SRC,
1079 ("EOF AS TX1 IRQ\n"));
1080 SK_PNMI_CNT_TX_INTR(pAC, 0);
1081 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1082 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1083 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1084 }
1085 #if 0 /* only if sync. queues used */
1086 if (IntSrc & IS_XS1_F) {
1087 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1088 SK_DBGCAT_DRV_INT_SRC,
1089 ("EOF SY TX1 IRQ\n"));
1090 SK_PNMI_CNT_TX_INTR(pAC, 0);
1091 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1092 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1093 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1094 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1095 }
1096 #endif
1097 #endif
1098
1099 /* do all IO at once */
1100 if (IntSrc & IS_R1_F)
1101 ClearAndStartRx(pAC, 0);
1102 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1103 if (IntSrc & IS_XA1_F)
1104 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1105 #endif
1106 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1107 } /* while (IntSrc & IRQ_MASK != 0) */
1108
1109 IntSrc &= pAC->GIni.GIValIrqMask;
1110 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1111 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1112 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1113 pAC->CheckQueue = SK_FALSE;
1114 spin_lock(&pAC->SlowPathLock);
1115 if (IntSrc & SPECIAL_IRQS)
1116 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1117
1118 SkEventDispatcher(pAC, pAC->IoBase);
1119 spin_unlock(&pAC->SlowPathLock);
1120 }
1121 /*
1122 * do it all again is case we cleared an interrupt that
1123 * came in after handling the ring (OUTs may be delayed
1124 * in hardware buffers, but are through after IN)
1125 *
1126 * rroesler: has been commented out and shifted to
1127 * SkGeDrvEvent(), because it is timer
1128 * guarded now
1129 *
1130 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1131 */
1132
1133 /* IRQ is processed - Enable IRQs again*/
1134 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1135
1136 return SkIsrRetHandled;
1137 } /* SkGeIsrOnePort */
1138
1139 #ifdef CONFIG_NET_POLL_CONTROLLER
1140 /****************************************************************************
1141 *
1142 * SkGePollController - polling receive, for netconsole
1143 *
1144 * Description:
1145 * Polling receive - used by netconsole and other diagnostic tools
1146 * to allow network i/o with interrupts disabled.
1147 *
1148 * Returns: N/A
1149 */
1150 static void SkGePollController(struct net_device *dev)
1151 {
1152 disable_irq(dev->irq);
1153 SkGeIsr(dev->irq, dev, NULL);
1154 enable_irq(dev->irq);
1155 }
1156 #endif
1157
1158 /****************************************************************************
1159 *
1160 * SkGeOpen - handle start of initialized adapter
1161 *
1162 * Description:
1163 * This function starts the initialized adapter.
1164 * The board level variable is set and the adapter is
1165 * brought to full functionality.
1166 * The device flags are set for operation.
1167 * Do all necessary level 2 initialization, enable interrupts and
1168 * give start command to RLMT.
1169 *
1170 * Returns:
1171 * 0 on success
1172 * != 0 on error
1173 */
1174 static int SkGeOpen(
1175 struct SK_NET_DEVICE *dev)
1176 {
1177 DEV_NET *pNet;
1178 SK_AC *pAC;
1179 unsigned long Flags; /* for spin lock */
1180 int i;
1181 SK_EVPARA EvPara; /* an event parameter union */
1182
1183 pNet = netdev_priv(dev);
1184 pAC = pNet->pAC;
1185
1186 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1187 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1188
1189 #ifdef SK_DIAG_SUPPORT
1190 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1191 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1192 return (-1); /* still in use by diag; deny actions */
1193 }
1194 }
1195 #endif
1196
1197 /* Set blink mode */
1198 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1199 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1200
1201 if (pAC->BoardLevel == SK_INIT_DATA) {
1202 /* level 1 init common modules here */
1203 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1204 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1205 return (-1);
1206 }
1207 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1208 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1209 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1210 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1211 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1212 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1213 pAC->BoardLevel = SK_INIT_IO;
1214 }
1215
1216 if (pAC->BoardLevel != SK_INIT_RUN) {
1217 /* tschilling: Level 2 init modules here, check return value. */
1218 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1219 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1220 return (-1);
1221 }
1222 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1223 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1224 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1225 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1226 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1227 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1228 pAC->BoardLevel = SK_INIT_RUN;
1229 }
1230
1231 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1232 /* Enable transmit descriptor polling. */
1233 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1234 FillRxRing(pAC, &pAC->RxPort[i]);
1235 }
1236 SkGeYellowLED(pAC, pAC->IoBase, 1);
1237
1238 StartDrvCleanupTimer(pAC);
1239 SkDimEnableModerationIfNeeded(pAC);
1240 SkDimDisplayModerationSettings(pAC);
1241
1242 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1243
1244 /* enable Interrupts */
1245 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1246 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1247
1248 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1249
1250 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1251 EvPara.Para32[0] = pAC->RlmtNets;
1252 EvPara.Para32[1] = -1;
1253 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1254 EvPara);
1255 EvPara.Para32[0] = pAC->RlmtMode;
1256 EvPara.Para32[1] = 0;
1257 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1258 EvPara);
1259 }
1260
1261 EvPara.Para32[0] = pNet->NetNr;
1262 EvPara.Para32[1] = -1;
1263 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1264 SkEventDispatcher(pAC, pAC->IoBase);
1265 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1266
1267 pAC->MaxPorts++;
1268 pNet->Up = 1;
1269
1270
1271 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1272 ("SkGeOpen suceeded\n"));
1273
1274 return (0);
1275 } /* SkGeOpen */
1276
1277
1278 /****************************************************************************
1279 *
1280 * SkGeClose - Stop initialized adapter
1281 *
1282 * Description:
1283 * Close initialized adapter.
1284 *
1285 * Returns:
1286 * 0 - on success
1287 * error code - on error
1288 */
1289 static int SkGeClose(
1290 struct SK_NET_DEVICE *dev)
1291 {
1292 DEV_NET *pNet;
1293 DEV_NET *newPtrNet;
1294 SK_AC *pAC;
1295
1296 unsigned long Flags; /* for spin lock */
1297 int i;
1298 int PortIdx;
1299 SK_EVPARA EvPara;
1300
1301 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1302 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1303
1304 pNet = netdev_priv(dev);
1305 pAC = pNet->pAC;
1306
1307 #ifdef SK_DIAG_SUPPORT
1308 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1309 if (pAC->DiagFlowCtrl == SK_FALSE) {
1310 /*
1311 ** notify that the interface which has been closed
1312 ** by operator interaction must not be started up
1313 ** again when the DIAG has finished.
1314 */
1315 newPtrNet = netdev_priv(pAC->dev[0]);
1316 if (newPtrNet == pNet) {
1317 pAC->WasIfUp[0] = SK_FALSE;
1318 } else {
1319 pAC->WasIfUp[1] = SK_FALSE;
1320 }
1321 return 0; /* return to system everything is fine... */
1322 } else {
1323 pAC->DiagFlowCtrl = SK_FALSE;
1324 }
1325 }
1326 #endif
1327
1328 netif_stop_queue(dev);
1329
1330 if (pAC->RlmtNets == 1)
1331 PortIdx = pAC->ActivePort;
1332 else
1333 PortIdx = pNet->NetNr;
1334
1335 StopDrvCleanupTimer(pAC);
1336
1337 /*
1338 * Clear multicast table, promiscuous mode ....
1339 */
1340 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1341 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1342 SK_PROM_MODE_NONE);
1343
1344 if (pAC->MaxPorts == 1) {
1345 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1346 /* disable interrupts */
1347 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1348 EvPara.Para32[0] = pNet->NetNr;
1349 EvPara.Para32[1] = -1;
1350 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1351 SkEventDispatcher(pAC, pAC->IoBase);
1352 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1353 /* stop the hardware */
1354 SkGeDeInit(pAC, pAC->IoBase);
1355 pAC->BoardLevel = SK_INIT_DATA;
1356 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1357 } else {
1358
1359 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1360 EvPara.Para32[0] = pNet->NetNr;
1361 EvPara.Para32[1] = -1;
1362 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1363 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1364 SkEventDispatcher(pAC, pAC->IoBase);
1365 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1366
1367 /* Stop port */
1368 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1369 [TX_PRIO_LOW].TxDesRingLock, Flags);
1370 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1371 SK_STOP_ALL, SK_HARD_RST);
1372 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1373 [TX_PRIO_LOW].TxDesRingLock, Flags);
1374 }
1375
1376 if (pAC->RlmtNets == 1) {
1377 /* clear all descriptor rings */
1378 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1379 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1380 ClearRxRing(pAC, &pAC->RxPort[i]);
1381 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1382 }
1383 } else {
1384 /* clear port descriptor rings */
1385 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1386 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1387 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1388 }
1389
1390 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1391 ("SkGeClose: done "));
1392
1393 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1394 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1395 sizeof(SK_PNMI_STRUCT_DATA));
1396
1397 pAC->MaxPorts--;
1398 pNet->Up = 0;
1399
1400 return (0);
1401 } /* SkGeClose */
1402
1403
1404 /*****************************************************************************
1405 *
1406 * SkGeXmit - Linux frame transmit function
1407 *
1408 * Description:
1409 * The system calls this function to send frames onto the wire.
1410 * It puts the frame in the tx descriptor ring. If the ring is
1411 * full then, the 'tbusy' flag is set.
1412 *
1413 * Returns:
1414 * 0, if everything is ok
1415 * !=0, on error
1416 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1417 * allocated skb's) !!!
1418 */
1419 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1420 {
1421 DEV_NET *pNet;
1422 SK_AC *pAC;
1423 int Rc; /* return code of XmitFrame */
1424
1425 pNet = netdev_priv(dev);
1426 pAC = pNet->pAC;
1427
1428 if ((!skb_shinfo(skb)->nr_frags) ||
1429 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1430 /* Don't activate scatter-gather and hardware checksum */
1431
1432 if (pAC->RlmtNets == 2)
1433 Rc = XmitFrame(
1434 pAC,
1435 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1436 skb);
1437 else
1438 Rc = XmitFrame(
1439 pAC,
1440 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1441 skb);
1442 } else {
1443 /* scatter-gather and hardware TCP checksumming anabled*/
1444 if (pAC->RlmtNets == 2)
1445 Rc = XmitFrameSG(
1446 pAC,
1447 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1448 skb);
1449 else
1450 Rc = XmitFrameSG(
1451 pAC,
1452 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1453 skb);
1454 }
1455
1456 /* Transmitter out of resources? */
1457 if (Rc <= 0) {
1458 netif_stop_queue(dev);
1459 }
1460
1461 /* If not taken, give buffer ownership back to the
1462 * queueing layer.
1463 */
1464 if (Rc < 0)
1465 return (1);
1466
1467 dev->trans_start = jiffies;
1468 return (0);
1469 } /* SkGeXmit */
1470
1471
1472 /*****************************************************************************
1473 *
1474 * XmitFrame - fill one socket buffer into the transmit ring
1475 *
1476 * Description:
1477 * This function puts a message into the transmit descriptor ring
1478 * if there is a descriptors left.
1479 * Linux skb's consist of only one continuous buffer.
1480 * The first step locks the ring. It is held locked
1481 * all time to avoid problems with SWITCH_../PORT_RESET.
1482 * Then the descriptoris allocated.
1483 * The second part is linking the buffer to the descriptor.
1484 * At the very last, the Control field of the descriptor
1485 * is made valid for the BMU and a start TX command is given
1486 * if necessary.
1487 *
1488 * Returns:
1489 * > 0 - on succes: the number of bytes in the message
1490 * = 0 - on resource shortage: this frame sent or dropped, now
1491 * the ring is full ( -> set tbusy)
1492 * < 0 - on failure: other problems ( -> return failure to upper layers)
1493 */
1494 static int XmitFrame(
1495 SK_AC *pAC, /* pointer to adapter context */
1496 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1497 struct sk_buff *pMessage) /* pointer to send-message */
1498 {
1499 TXD *pTxd; /* the rxd to fill */
1500 TXD *pOldTxd;
1501 unsigned long Flags;
1502 SK_U64 PhysAddr;
1503 int BytesSend = pMessage->len;
1504
1505 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1506
1507 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1508 #ifndef USE_TX_COMPLETE
1509 FreeTxDescriptors(pAC, pTxPort);
1510 #endif
1511 if (pTxPort->TxdRingFree == 0) {
1512 /*
1513 ** no enough free descriptors in ring at the moment.
1514 ** Maybe free'ing some old one help?
1515 */
1516 FreeTxDescriptors(pAC, pTxPort);
1517 if (pTxPort->TxdRingFree == 0) {
1518 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1519 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1520 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1521 SK_DBGCAT_DRV_TX_PROGRESS,
1522 ("XmitFrame failed\n"));
1523 /*
1524 ** the desired message can not be sent
1525 ** Because tbusy seems to be set, the message
1526 ** should not be freed here. It will be used
1527 ** by the scheduler of the ethernet handler
1528 */
1529 return (-1);
1530 }
1531 }
1532
1533 /*
1534 ** If the passed socket buffer is of smaller MTU-size than 60,
1535 ** copy everything into new buffer and fill all bytes between
1536 ** the original packet end and the new packet end of 60 with 0x00.
1537 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1538 */
1539 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1540 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1541 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1542 return 0;
1543 }
1544 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1545 }
1546
1547 /*
1548 ** advance head counter behind descriptor needed for this frame,
1549 ** so that needed descriptor is reserved from that on. The next
1550 ** action will be to add the passed buffer to the TX-descriptor
1551 */
1552 pTxd = pTxPort->pTxdRingHead;
1553 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1554 pTxPort->TxdRingFree--;
1555
1556 #ifdef SK_DUMP_TX
1557 DumpMsg(pMessage, "XmitFrame");
1558 #endif
1559
1560 /*
1561 ** First step is to map the data to be sent via the adapter onto
1562 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1563 ** and 2.6 need to use pci_map_page() for that mapping.
1564 */
1565 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1566 virt_to_page(pMessage->data),
1567 ((unsigned long) pMessage->data & ~PAGE_MASK),
1568 pMessage->len,
1569 PCI_DMA_TODEVICE);
1570 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1571 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1572 pTxd->pMBuf = pMessage;
1573
1574 if (pMessage->ip_summed == CHECKSUM_HW) {
1575 u16 hdrlen = pMessage->h.raw - pMessage->data;
1576 u16 offset = hdrlen + pMessage->csum;
1577
1578 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1579 (pAC->GIni.GIChipRev == 0) &&
1580 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1581 pTxd->TBControl = BMU_TCP_CHECK;
1582 } else {
1583 pTxd->TBControl = BMU_UDP_CHECK;
1584 }
1585
1586 pTxd->TcpSumOfs = 0;
1587 pTxd->TcpSumSt = hdrlen;
1588 pTxd->TcpSumWr = offset;
1589
1590 pTxd->TBControl |= BMU_OWN | BMU_STF |
1591 BMU_SW | BMU_EOF |
1592 #ifdef USE_TX_COMPLETE
1593 BMU_IRQ_EOF |
1594 #endif
1595 pMessage->len;
1596 } else {
1597 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1598 BMU_SW | BMU_EOF |
1599 #ifdef USE_TX_COMPLETE
1600 BMU_IRQ_EOF |
1601 #endif
1602 pMessage->len;
1603 }
1604
1605 /*
1606 ** If previous descriptor already done, give TX start cmd
1607 */
1608 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1609 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1610 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1611 }
1612
1613 /*
1614 ** after releasing the lock, the skb may immediately be free'd
1615 */
1616 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1617 if (pTxPort->TxdRingFree != 0) {
1618 return (BytesSend);
1619 } else {
1620 return (0);
1621 }
1622
1623 } /* XmitFrame */
1624
1625 /*****************************************************************************
1626 *
1627 * XmitFrameSG - fill one socket buffer into the transmit ring
1628 * (use SG and TCP/UDP hardware checksumming)
1629 *
1630 * Description:
1631 * This function puts a message into the transmit descriptor ring
1632 * if there is a descriptors left.
1633 *
1634 * Returns:
1635 * > 0 - on succes: the number of bytes in the message
1636 * = 0 - on resource shortage: this frame sent or dropped, now
1637 * the ring is full ( -> set tbusy)
1638 * < 0 - on failure: other problems ( -> return failure to upper layers)
1639 */
1640 static int XmitFrameSG(
1641 SK_AC *pAC, /* pointer to adapter context */
1642 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1643 struct sk_buff *pMessage) /* pointer to send-message */
1644 {
1645
1646 TXD *pTxd;
1647 TXD *pTxdFst;
1648 TXD *pTxdLst;
1649 int CurrFrag;
1650 int BytesSend;
1651 skb_frag_t *sk_frag;
1652 SK_U64 PhysAddr;
1653 unsigned long Flags;
1654 SK_U32 Control;
1655
1656 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1657 #ifndef USE_TX_COMPLETE
1658 FreeTxDescriptors(pAC, pTxPort);
1659 #endif
1660 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1661 FreeTxDescriptors(pAC, pTxPort);
1662 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1663 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1664 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1665 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1666 SK_DBGCAT_DRV_TX_PROGRESS,
1667 ("XmitFrameSG failed - Ring full\n"));
1668 /* this message can not be sent now */
1669 return(-1);
1670 }
1671 }
1672
1673 pTxd = pTxPort->pTxdRingHead;
1674 pTxdFst = pTxd;
1675 pTxdLst = pTxd;
1676 BytesSend = 0;
1677
1678 /*
1679 ** Map the first fragment (header) into the DMA-space
1680 */
1681 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1682 virt_to_page(pMessage->data),
1683 ((unsigned long) pMessage->data & ~PAGE_MASK),
1684 skb_headlen(pMessage),
1685 PCI_DMA_TODEVICE);
1686
1687 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1688 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1689
1690 /*
1691 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1692 */
1693 if (pMessage->ip_summed == CHECKSUM_HW) {
1694 u16 hdrlen = pMessage->h.raw - pMessage->data;
1695 u16 offset = hdrlen + pMessage->csum;
1696
1697 Control = BMU_STFWD;
1698
1699 /*
1700 ** We have to use the opcode for tcp here, because the
1701 ** opcode for udp is not working in the hardware yet
1702 ** (Revision 2.0)
1703 */
1704 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1705 (pAC->GIni.GIChipRev == 0) &&
1706 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1707 Control |= BMU_TCP_CHECK;
1708 } else {
1709 Control |= BMU_UDP_CHECK;
1710 }
1711
1712 pTxd->TcpSumOfs = 0;
1713 pTxd->TcpSumSt = hdrlen;
1714 pTxd->TcpSumWr = offset;
1715 } else
1716 Control = BMU_CHECK | BMU_SW;
1717
1718 pTxd->TBControl = BMU_STF | Control | skb_headlen(pMessage);
1719
1720 pTxd = pTxd->pNextTxd;
1721 pTxPort->TxdRingFree--;
1722 BytesSend += skb_headlen(pMessage);
1723
1724 /*
1725 ** Browse over all SG fragments and map each of them into the DMA space
1726 */
1727 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1728 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1729 /*
1730 ** we already have the proper value in entry
1731 */
1732 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1733 sk_frag->page,
1734 sk_frag->page_offset,
1735 sk_frag->size,
1736 PCI_DMA_TODEVICE);
1737
1738 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1739 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1740 pTxd->pMBuf = pMessage;
1741
1742 pTxd->TBControl = Control | BMU_OWN | sk_frag->size;;
1743
1744 /*
1745 ** Do we have the last fragment?
1746 */
1747 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1748 #ifdef USE_TX_COMPLETE
1749 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF;
1750 #else
1751 pTxd->TBControl |= BMU_EOF;
1752 #endif
1753 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1754 }
1755 pTxdLst = pTxd;
1756 pTxd = pTxd->pNextTxd;
1757 pTxPort->TxdRingFree--;
1758 BytesSend += sk_frag->size;
1759 }
1760
1761 /*
1762 ** If previous descriptor already done, give TX start cmd
1763 */
1764 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1765 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1766 }
1767
1768 pTxPort->pTxdRingPrev = pTxdLst;
1769 pTxPort->pTxdRingHead = pTxd;
1770
1771 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1772
1773 if (pTxPort->TxdRingFree > 0) {
1774 return (BytesSend);
1775 } else {
1776 return (0);
1777 }
1778 }
1779
1780 /*****************************************************************************
1781 *
1782 * FreeTxDescriptors - release descriptors from the descriptor ring
1783 *
1784 * Description:
1785 * This function releases descriptors from a transmit ring if they
1786 * have been sent by the BMU.
1787 * If a descriptors is sent, it can be freed and the message can
1788 * be freed, too.
1789 * The SOFTWARE controllable bit is used to prevent running around a
1790 * completely free ring for ever. If this bit is no set in the
1791 * frame (by XmitFrame), this frame has never been sent or is
1792 * already freed.
1793 * The Tx descriptor ring lock must be held while calling this function !!!
1794 *
1795 * Returns:
1796 * none
1797 */
1798 static void FreeTxDescriptors(
1799 SK_AC *pAC, /* pointer to the adapter context */
1800 TX_PORT *pTxPort) /* pointer to destination port structure */
1801 {
1802 TXD *pTxd; /* pointer to the checked descriptor */
1803 TXD *pNewTail; /* pointer to 'end' of the ring */
1804 SK_U32 Control; /* TBControl field of descriptor */
1805 SK_U64 PhysAddr; /* address of DMA mapping */
1806
1807 pNewTail = pTxPort->pTxdRingTail;
1808 pTxd = pNewTail;
1809 /*
1810 ** loop forever; exits if BMU_SW bit not set in start frame
1811 ** or BMU_OWN bit set in any frame
1812 */
1813 while (1) {
1814 Control = pTxd->TBControl;
1815 if ((Control & BMU_SW) == 0) {
1816 /*
1817 ** software controllable bit is set in first
1818 ** fragment when given to BMU. Not set means that
1819 ** this fragment was never sent or is already
1820 ** freed ( -> ring completely free now).
1821 */
1822 pTxPort->pTxdRingTail = pTxd;
1823 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1824 return;
1825 }
1826 if (Control & BMU_OWN) {
1827 pTxPort->pTxdRingTail = pTxd;
1828 if (pTxPort->TxdRingFree > 0) {
1829 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1830 }
1831 return;
1832 }
1833
1834 /*
1835 ** release the DMA mapping, because until not unmapped
1836 ** this buffer is considered being under control of the
1837 ** adapter card!
1838 */
1839 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1840 PhysAddr |= (SK_U64) pTxd->VDataLow;
1841 pci_unmap_page(pAC->PciDev, PhysAddr,
1842 pTxd->pMBuf->len,
1843 PCI_DMA_TODEVICE);
1844
1845 if (Control & BMU_EOF)
1846 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1847
1848 pTxPort->TxdRingFree++;
1849 pTxd->TBControl &= ~BMU_SW;
1850 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1851 } /* while(forever) */
1852 } /* FreeTxDescriptors */
1853
1854 /*****************************************************************************
1855 *
1856 * FillRxRing - fill the receive ring with valid descriptors
1857 *
1858 * Description:
1859 * This function fills the receive ring descriptors with data
1860 * segments and makes them valid for the BMU.
1861 * The active ring is filled completely, if possible.
1862 * The non-active ring is filled only partial to save memory.
1863 *
1864 * Description of rx ring structure:
1865 * head - points to the descriptor which will be used next by the BMU
1866 * tail - points to the next descriptor to give to the BMU
1867 *
1868 * Returns: N/A
1869 */
1870 static void FillRxRing(
1871 SK_AC *pAC, /* pointer to the adapter context */
1872 RX_PORT *pRxPort) /* ptr to port struct for which the ring
1873 should be filled */
1874 {
1875 unsigned long Flags;
1876
1877 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1878 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1879 if(!FillRxDescriptor(pAC, pRxPort))
1880 break;
1881 }
1882 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1883 } /* FillRxRing */
1884
1885
1886 /*****************************************************************************
1887 *
1888 * FillRxDescriptor - fill one buffer into the receive ring
1889 *
1890 * Description:
1891 * The function allocates a new receive buffer and
1892 * puts it into the next descriptor.
1893 *
1894 * Returns:
1895 * SK_TRUE - a buffer was added to the ring
1896 * SK_FALSE - a buffer could not be added
1897 */
1898 static SK_BOOL FillRxDescriptor(
1899 SK_AC *pAC, /* pointer to the adapter context struct */
1900 RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1901 {
1902 struct sk_buff *pMsgBlock; /* pointer to a new message block */
1903 RXD *pRxd; /* the rxd to fill */
1904 SK_U16 Length; /* data fragment length */
1905 SK_U64 PhysAddr; /* physical address of a rx buffer */
1906
1907 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1908 if (pMsgBlock == NULL) {
1909 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1910 SK_DBGCAT_DRV_ENTRY,
1911 ("%s: Allocation of rx buffer failed !\n",
1912 pAC->dev[pRxPort->PortIndex]->name));
1913 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1914 return(SK_FALSE);
1915 }
1916 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1917 /* skb allocated ok, so add buffer */
1918 pRxd = pRxPort->pRxdRingTail;
1919 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1920 pRxPort->RxdRingFree--;
1921 Length = pAC->RxBufSize;
1922 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1923 virt_to_page(pMsgBlock->data),
1924 ((unsigned long) pMsgBlock->data &
1925 ~PAGE_MASK),
1926 pAC->RxBufSize - 2,
1927 PCI_DMA_FROMDEVICE);
1928
1929 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1930 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1931 pRxd->pMBuf = pMsgBlock;
1932 pRxd->RBControl = BMU_OWN |
1933 BMU_STF |
1934 BMU_IRQ_EOF |
1935 BMU_TCP_CHECK |
1936 Length;
1937 return (SK_TRUE);
1938
1939 } /* FillRxDescriptor */
1940
1941
1942 /*****************************************************************************
1943 *
1944 * ReQueueRxBuffer - fill one buffer back into the receive ring
1945 *
1946 * Description:
1947 * Fill a given buffer back into the rx ring. The buffer
1948 * has been previously allocated and aligned, and its phys.
1949 * address calculated, so this is no more necessary.
1950 *
1951 * Returns: N/A
1952 */
1953 static void ReQueueRxBuffer(
1954 SK_AC *pAC, /* pointer to the adapter context struct */
1955 RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
1956 struct sk_buff *pMsg, /* pointer to the buffer */
1957 SK_U32 PhysHigh, /* phys address high dword */
1958 SK_U32 PhysLow) /* phys address low dword */
1959 {
1960 RXD *pRxd; /* the rxd to fill */
1961 SK_U16 Length; /* data fragment length */
1962
1963 pRxd = pRxPort->pRxdRingTail;
1964 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1965 pRxPort->RxdRingFree--;
1966 Length = pAC->RxBufSize;
1967
1968 pRxd->VDataLow = PhysLow;
1969 pRxd->VDataHigh = PhysHigh;
1970 pRxd->pMBuf = pMsg;
1971 pRxd->RBControl = BMU_OWN |
1972 BMU_STF |
1973 BMU_IRQ_EOF |
1974 BMU_TCP_CHECK |
1975 Length;
1976 return;
1977 } /* ReQueueRxBuffer */
1978
1979 /*****************************************************************************
1980 *
1981 * ReceiveIrq - handle a receive IRQ
1982 *
1983 * Description:
1984 * This function is called when a receive IRQ is set.
1985 * It walks the receive descriptor ring and sends up all
1986 * frames that are complete.
1987 *
1988 * Returns: N/A
1989 */
1990 static void ReceiveIrq(
1991 SK_AC *pAC, /* pointer to adapter context */
1992 RX_PORT *pRxPort, /* pointer to receive port struct */
1993 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
1994 {
1995 RXD *pRxd; /* pointer to receive descriptors */
1996 SK_U32 Control; /* control field of descriptor */
1997 struct sk_buff *pMsg; /* pointer to message holding frame */
1998 struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
1999 int FrameLength; /* total length of received frame */
2000 SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
2001 SK_EVPARA EvPara; /* an event parameter union */
2002 unsigned long Flags; /* for spin lock */
2003 int PortIndex = pRxPort->PortIndex;
2004 unsigned int Offset;
2005 unsigned int NumBytes;
2006 unsigned int ForRlmt;
2007 SK_BOOL IsBc;
2008 SK_BOOL IsMc;
2009 SK_BOOL IsBadFrame; /* Bad frame */
2010
2011 SK_U32 FrameStat;
2012 SK_U64 PhysAddr;
2013
2014 rx_start:
2015 /* do forever; exit if BMU_OWN found */
2016 for ( pRxd = pRxPort->pRxdRingHead ;
2017 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2018 pRxd = pRxd->pNextRxd,
2019 pRxPort->pRxdRingHead = pRxd,
2020 pRxPort->RxdRingFree ++) {
2021
2022 /*
2023 * For a better understanding of this loop
2024 * Go through every descriptor beginning at the head
2025 * Please note: the ring might be completely received so the OWN bit
2026 * set is not a good crirteria to leave that loop.
2027 * Therefore the RingFree counter is used.
2028 * On entry of this loop pRxd is a pointer to the Rxd that needs
2029 * to be checked next.
2030 */
2031
2032 Control = pRxd->RBControl;
2033
2034 /* check if this descriptor is ready */
2035 if ((Control & BMU_OWN) != 0) {
2036 /* this descriptor is not yet ready */
2037 /* This is the usual end of the loop */
2038 /* We don't need to start the ring again */
2039 FillRxRing(pAC, pRxPort);
2040 return;
2041 }
2042 pAC->DynIrqModInfo.NbrProcessedDescr++;
2043
2044 /* get length of frame and check it */
2045 FrameLength = Control & BMU_BBC;
2046 if (FrameLength > pAC->RxBufSize) {
2047 goto rx_failed;
2048 }
2049
2050 /* check for STF and EOF */
2051 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2052 goto rx_failed;
2053 }
2054
2055 /* here we have a complete frame in the ring */
2056 pMsg = pRxd->pMBuf;
2057
2058 FrameStat = pRxd->FrameStat;
2059
2060 /* check for frame length mismatch */
2061 #define XMR_FS_LEN_SHIFT 18
2062 #define GMR_FS_LEN_SHIFT 16
2063 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2064 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2065 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2066 SK_DBGCAT_DRV_RX_PROGRESS,
2067 ("skge: Frame length mismatch (%u/%u).\n",
2068 FrameLength,
2069 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2070 goto rx_failed;
2071 }
2072 }
2073 else {
2074 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2075 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2076 SK_DBGCAT_DRV_RX_PROGRESS,
2077 ("skge: Frame length mismatch (%u/%u).\n",
2078 FrameLength,
2079 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2080 goto rx_failed;
2081 }
2082 }
2083
2084 /* Set Rx Status */
2085 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2086 IsBc = (FrameStat & XMR_FS_BC) != 0;
2087 IsMc = (FrameStat & XMR_FS_MC) != 0;
2088 IsBadFrame = (FrameStat &
2089 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2090 } else {
2091 IsBc = (FrameStat & GMR_FS_BC) != 0;
2092 IsMc = (FrameStat & GMR_FS_MC) != 0;
2093 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2094 ((FrameStat & GMR_FS_RX_OK) == 0));
2095 }
2096
2097 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2098 ("Received frame of length %d on port %d\n",
2099 FrameLength, PortIndex));
2100 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2101 ("Number of free rx descriptors: %d\n",
2102 pRxPort->RxdRingFree));
2103 /* DumpMsg(pMsg, "Rx"); */
2104
2105 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2106 #if 0
2107 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2108 #endif
2109 /* there is a receive error in this frame */
2110 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2111 SK_DBGCAT_DRV_RX_PROGRESS,
2112 ("skge: Error in received frame, dropped!\n"
2113 "Control: %x\nRxStat: %x\n",
2114 Control, FrameStat));
2115
2116 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2117 pRxd->VDataHigh, pRxd->VDataLow);
2118
2119 continue;
2120 }
2121
2122 /*
2123 * if short frame then copy data to reduce memory waste
2124 */
2125 if ((FrameLength < SK_COPY_THRESHOLD) &&
2126 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2127 /*
2128 * Short frame detected and allocation successfull
2129 */
2130 /* use new skb and copy data */
2131 skb_reserve(pNewMsg, 2);
2132 skb_put(pNewMsg, FrameLength);
2133 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2134 PhysAddr |= (SK_U64) pRxd->VDataLow;
2135
2136 pci_dma_sync_single_for_cpu(pAC->PciDev,
2137 (dma_addr_t) PhysAddr,
2138 FrameLength,
2139 PCI_DMA_FROMDEVICE);
2140 memcpy(pNewMsg->data, pMsg, FrameLength);
2141
2142 pci_dma_sync_single_for_device(pAC->PciDev,
2143 (dma_addr_t) PhysAddr,
2144 FrameLength,
2145 PCI_DMA_FROMDEVICE);
2146 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2147 pRxd->VDataHigh, pRxd->VDataLow);
2148
2149 pMsg = pNewMsg;
2150
2151 }
2152 else {
2153 /*
2154 * if large frame, or SKB allocation failed, pass
2155 * the SKB directly to the networking
2156 */
2157
2158 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2159 PhysAddr |= (SK_U64) pRxd->VDataLow;
2160
2161 /* release the DMA mapping */
2162 pci_unmap_single(pAC->PciDev,
2163 PhysAddr,
2164 pAC->RxBufSize - 2,
2165 PCI_DMA_FROMDEVICE);
2166
2167 /* set length in message */
2168 skb_put(pMsg, FrameLength);
2169 } /* frame > SK_COPY_TRESHOLD */
2170
2171 #ifdef USE_SK_RX_CHECKSUM
2172 pMsg->csum = pRxd->TcpSums & 0xffff;
2173 pMsg->ip_summed = CHECKSUM_HW;
2174 #else
2175 pMsg->ip_summed = CHECKSUM_NONE;
2176 #endif
2177
2178
2179 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2180 ForRlmt = SK_RLMT_RX_PROTOCOL;
2181 #if 0
2182 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2183 #endif
2184 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2185 IsBc, &Offset, &NumBytes);
2186 if (NumBytes != 0) {
2187 #if 0
2188 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2189 #endif
2190 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2191 &pMsg->data[Offset],
2192 IsBc, IsMc, &ForRlmt);
2193 }
2194 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2195 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2196 /* send up only frames from active port */
2197 if ((PortIndex == pAC->ActivePort) ||
2198 (pAC->RlmtNets == 2)) {
2199 /* frame for upper layer */
2200 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2201 #ifdef xDEBUG
2202 DumpMsg(pMsg, "Rx");
2203 #endif
2204 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2205 FrameLength, pRxPort->PortIndex);
2206
2207 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2208 pMsg->protocol = eth_type_trans(pMsg,
2209 pAC->dev[pRxPort->PortIndex]);
2210 netif_rx(pMsg);
2211 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2212 }
2213 else {
2214 /* drop frame */
2215 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2216 SK_DBGCAT_DRV_RX_PROGRESS,
2217 ("D"));
2218 DEV_KFREE_SKB(pMsg);
2219 }
2220
2221 } /* if not for rlmt */
2222 else {
2223 /* packet for rlmt */
2224 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2225 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2226 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2227 pAC->IoBase, FrameLength);
2228 if (pRlmtMbuf != NULL) {
2229 pRlmtMbuf->pNext = NULL;
2230 pRlmtMbuf->Length = FrameLength;
2231 pRlmtMbuf->PortIdx = PortIndex;
2232 EvPara.pParaPtr = pRlmtMbuf;
2233 memcpy((char*)(pRlmtMbuf->pData),
2234 (char*)(pMsg->data),
2235 FrameLength);
2236
2237 /* SlowPathLock needed? */
2238 if (SlowPathLock == SK_TRUE) {
2239 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2240 SkEventQueue(pAC, SKGE_RLMT,
2241 SK_RLMT_PACKET_RECEIVED,
2242 EvPara);
2243 pAC->CheckQueue = SK_TRUE;
2244 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2245 } else {
2246 SkEventQueue(pAC, SKGE_RLMT,
2247 SK_RLMT_PACKET_RECEIVED,
2248 EvPara);
2249 pAC->CheckQueue = SK_TRUE;
2250 }
2251
2252 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2253 SK_DBGCAT_DRV_RX_PROGRESS,
2254 ("Q"));
2255 }
2256 if ((pAC->dev[pRxPort->PortIndex]->flags &
2257 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2258 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2259 SK_RLMT_RX_PROTOCOL) {
2260 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2261 pMsg->protocol = eth_type_trans(pMsg,
2262 pAC->dev[pRxPort->PortIndex]);
2263 netif_rx(pMsg);
2264 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2265 }
2266 else {
2267 DEV_KFREE_SKB(pMsg);
2268 }
2269
2270 } /* if packet for rlmt */
2271 } /* for ... scanning the RXD ring */
2272
2273 /* RXD ring is empty -> fill and restart */
2274 FillRxRing(pAC, pRxPort);
2275 /* do not start if called from Close */
2276 if (pAC->BoardLevel > SK_INIT_DATA) {
2277 ClearAndStartRx(pAC, PortIndex);
2278 }
2279 return;
2280
2281 rx_failed:
2282 /* remove error frame */
2283 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2284 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2285
2286 /* release the DMA mapping */
2287
2288 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2289 PhysAddr |= (SK_U64) pRxd->VDataLow;
2290 pci_unmap_page(pAC->PciDev,
2291 PhysAddr,
2292 pAC->RxBufSize - 2,
2293 PCI_DMA_FROMDEVICE);
2294 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2295 pRxd->pMBuf = NULL;
2296 pRxPort->RxdRingFree++;
2297 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2298 goto rx_start;
2299
2300 } /* ReceiveIrq */
2301
2302
2303 /*****************************************************************************
2304 *
2305 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2306 *
2307 * Description:
2308 * This function sends a start command and a clear interrupt
2309 * command for one receive queue to the BMU.
2310 *
2311 * Returns: N/A
2312 * none
2313 */
2314 static void ClearAndStartRx(
2315 SK_AC *pAC, /* pointer to the adapter context */
2316 int PortIndex) /* index of the receive port (XMAC) */
2317 {
2318 SK_OUT8(pAC->IoBase,
2319 RxQueueAddr[PortIndex]+Q_CSR,
2320 CSR_START | CSR_IRQ_CL_F);
2321 } /* ClearAndStartRx */
2322
2323
2324 /*****************************************************************************
2325 *
2326 * ClearTxIrq - give a clear transmit IRQ command to BMU
2327 *
2328 * Description:
2329 * This function sends a clear tx IRQ command for one
2330 * transmit queue to the BMU.
2331 *
2332 * Returns: N/A
2333 */
2334 static void ClearTxIrq(
2335 SK_AC *pAC, /* pointer to the adapter context */
2336 int PortIndex, /* index of the transmit port (XMAC) */
2337 int Prio) /* priority or normal queue */
2338 {
2339 SK_OUT8(pAC->IoBase,
2340 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2341 CSR_IRQ_CL_F);
2342 } /* ClearTxIrq */
2343
2344
2345 /*****************************************************************************
2346 *
2347 * ClearRxRing - remove all buffers from the receive ring
2348 *
2349 * Description:
2350 * This function removes all receive buffers from the ring.
2351 * The receive BMU must be stopped before calling this function.
2352 *
2353 * Returns: N/A
2354 */
2355 static void ClearRxRing(
2356 SK_AC *pAC, /* pointer to adapter context */
2357 RX_PORT *pRxPort) /* pointer to rx port struct */
2358 {
2359 RXD *pRxd; /* pointer to the current descriptor */
2360 unsigned long Flags;
2361 SK_U64 PhysAddr;
2362
2363 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2364 return;
2365 }
2366 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2367 pRxd = pRxPort->pRxdRingHead;
2368 do {
2369 if (pRxd->pMBuf != NULL) {
2370
2371 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2372 PhysAddr |= (SK_U64) pRxd->VDataLow;
2373 pci_unmap_page(pAC->PciDev,
2374 PhysAddr,
2375 pAC->RxBufSize - 2,
2376 PCI_DMA_FROMDEVICE);
2377 DEV_KFREE_SKB(pRxd->pMBuf);
2378 pRxd->pMBuf = NULL;
2379 }
2380 pRxd->RBControl &= BMU_OWN;
2381 pRxd = pRxd->pNextRxd;
2382 pRxPort->RxdRingFree++;
2383 } while (pRxd != pRxPort->pRxdRingTail);
2384 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2385 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2386 } /* ClearRxRing */
2387
2388 /*****************************************************************************
2389 *
2390 * ClearTxRing - remove all buffers from the transmit ring
2391 *
2392 * Description:
2393 * This function removes all transmit buffers from the ring.
2394 * The transmit BMU must be stopped before calling this function
2395 * and transmitting at the upper level must be disabled.
2396 * The BMU own bit of all descriptors is cleared, the rest is
2397 * done by calling FreeTxDescriptors.
2398 *
2399 * Returns: N/A
2400 */
2401 static void ClearTxRing(
2402 SK_AC *pAC, /* pointer to adapter context */
2403 TX_PORT *pTxPort) /* pointer to tx prt struct */
2404 {
2405 TXD *pTxd; /* pointer to the current descriptor */
2406 int i;
2407 unsigned long Flags;
2408
2409 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2410 pTxd = pTxPort->pTxdRingHead;
2411 for (i=0; i<pAC->TxDescrPerRing; i++) {
2412 pTxd->TBControl &= ~BMU_OWN;
2413 pTxd = pTxd->pNextTxd;
2414 }
2415 FreeTxDescriptors(pAC, pTxPort);
2416 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2417 } /* ClearTxRing */
2418
2419 /*****************************************************************************
2420 *
2421 * SkGeSetMacAddr - Set the hardware MAC address
2422 *
2423 * Description:
2424 * This function sets the MAC address used by the adapter.
2425 *
2426 * Returns:
2427 * 0, if everything is ok
2428 * !=0, on error
2429 */
2430 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2431 {
2432
2433 DEV_NET *pNet = netdev_priv(dev);
2434 SK_AC *pAC = pNet->pAC;
2435
2436 struct sockaddr *addr = p;
2437 unsigned long Flags;
2438
2439 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2440 ("SkGeSetMacAddr starts now...\n"));
2441 if(netif_running(dev))
2442 return -EBUSY;
2443
2444 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2445
2446 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2447
2448 if (pAC->RlmtNets == 2)
2449 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2450 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2451 else
2452 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2453 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2454
2455
2456
2457 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2458 return 0;
2459 } /* SkGeSetMacAddr */
2460
2461
2462 /*****************************************************************************
2463 *
2464 * SkGeSetRxMode - set receive mode
2465 *
2466 * Description:
2467 * This function sets the receive mode of an adapter. The adapter
2468 * supports promiscuous mode, allmulticast mode and a number of
2469 * multicast addresses. If more multicast addresses the available
2470 * are selected, a hash function in the hardware is used.
2471 *
2472 * Returns:
2473 * 0, if everything is ok
2474 * !=0, on error
2475 */
2476 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2477 {
2478
2479 DEV_NET *pNet;
2480 SK_AC *pAC;
2481
2482 struct dev_mc_list *pMcList;
2483 int i;
2484 int PortIdx;
2485 unsigned long Flags;
2486
2487 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2488 ("SkGeSetRxMode starts now... "));
2489
2490 pNet = netdev_priv(dev);
2491 pAC = pNet->pAC;
2492 if (pAC->RlmtNets == 1)
2493 PortIdx = pAC->ActivePort;
2494 else
2495 PortIdx = pNet->NetNr;
2496
2497 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2498 if (dev->flags & IFF_PROMISC) {
2499 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2500 ("PROMISCUOUS mode\n"));
2501 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2502 SK_PROM_MODE_LLC);
2503 } else if (dev->flags & IFF_ALLMULTI) {
2504 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2505 ("ALLMULTI mode\n"));
2506 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2507 SK_PROM_MODE_ALL_MC);
2508 } else {
2509 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2510 SK_PROM_MODE_NONE);
2511 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2512
2513 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2514 ("Number of MC entries: %d ", dev->mc_count));
2515
2516 pMcList = dev->mc_list;
2517 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2518 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2519 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2520 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2521 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2522 pMcList->dmi_addr[0],
2523 pMcList->dmi_addr[1],
2524 pMcList->dmi_addr[2],
2525 pMcList->dmi_addr[3],
2526 pMcList->dmi_addr[4],
2527 pMcList->dmi_addr[5]));
2528 }
2529 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2530 }
2531 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2532
2533 return;
2534 } /* SkGeSetRxMode */
2535
2536
2537 /*****************************************************************************
2538 *
2539 * SkGeChangeMtu - set the MTU to another value
2540 *
2541 * Description:
2542 * This function sets is called whenever the MTU size is changed
2543 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2544 * ethernet MTU size, long frame support is activated.
2545 *
2546 * Returns:
2547 * 0, if everything is ok
2548 * !=0, on error
2549 */
2550 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2551 {
2552 DEV_NET *pNet;
2553 DEV_NET *pOtherNet;
2554 SK_AC *pAC;
2555 unsigned long Flags;
2556 int i;
2557 SK_EVPARA EvPara;
2558
2559 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2560 ("SkGeChangeMtu starts now...\n"));
2561
2562 pNet = netdev_priv(dev);
2563 pAC = pNet->pAC;
2564
2565 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2566 return -EINVAL;
2567 }
2568
2569 if(pAC->BoardLevel != SK_INIT_RUN) {
2570 return -EINVAL;
2571 }
2572
2573 #ifdef SK_DIAG_SUPPORT
2574 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2575 if (pAC->DiagFlowCtrl == SK_FALSE) {
2576 return -1; /* still in use, deny any actions of MTU */
2577 } else {
2578 pAC->DiagFlowCtrl = SK_FALSE;
2579 }
2580 }
2581 #endif
2582
2583 pNet->Mtu = NewMtu;
2584 pOtherNet = netdev_priv(pAC->dev[1 - pNet->NetNr]);
2585 if ((pOtherNet->Mtu>1500) && (NewMtu<=1500) && (pOtherNet->Up==1)) {
2586 return(0);
2587 }
2588
2589 pAC->RxBufSize = NewMtu + 32;
2590 dev->mtu = NewMtu;
2591
2592 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2593 ("New MTU: %d\n", NewMtu));
2594
2595 /*
2596 ** Prevent any reconfiguration while changing the MTU
2597 ** by disabling any interrupts
2598 */
2599 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2600 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2601
2602 /*
2603 ** Notify RLMT that any ports are to be stopped
2604 */
2605 EvPara.Para32[0] = 0;
2606 EvPara.Para32[1] = -1;
2607 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2608 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2609 EvPara.Para32[0] = 1;
2610 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2611 } else {
2612 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2613 }
2614
2615 /*
2616 ** After calling the SkEventDispatcher(), RLMT is aware about
2617 ** the stopped ports -> configuration can take place!
2618 */
2619 SkEventDispatcher(pAC, pAC->IoBase);
2620
2621 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2622 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2623 netif_stop_queue(pAC->dev[i]);
2624
2625 }
2626
2627 /*
2628 ** Depending on the desired MTU size change, a different number of
2629 ** RX buffers need to be allocated
2630 */
2631 if (NewMtu > 1500) {
2632 /*
2633 ** Use less rx buffers
2634 */
2635 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2636 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2637 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2638 (pAC->RxDescrPerRing / 4);
2639 } else {
2640 if (i == pAC->ActivePort) {
2641 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2642 (pAC->RxDescrPerRing / 4);
2643 } else {
2644 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2645 (pAC->RxDescrPerRing / 10);
2646 }
2647 }
2648 }
2649 } else {
2650 /*
2651 ** Use the normal amount of rx buffers
2652 */
2653 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2654 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2655 pAC->RxPort[i].RxFillLimit = 1;
2656 } else {
2657 if (i == pAC->ActivePort) {
2658 pAC->RxPort[i].RxFillLimit = 1;
2659 } else {
2660 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2661 (pAC->RxDescrPerRing / 4);
2662 }
2663 }
2664 }
2665 }
2666
2667 SkGeDeInit(pAC, pAC->IoBase);
2668
2669 /*
2670 ** enable/disable hardware support for long frames
2671 */
2672 if (NewMtu > 1500) {
2673 // pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2674 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2675 } else {
2676 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2677 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2678 } else {
2679 pAC->GIni.GIPortUsage = SK_RED_LINK;
2680 }
2681 }
2682
2683 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2684 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2685 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2686 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2687 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2688 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2689 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2690
2691 /*
2692 ** tschilling:
2693 ** Speed and others are set back to default in level 1 init!
2694 */
2695 GetConfiguration(pAC);
2696
2697 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2698 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2699 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2700 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2701 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2702 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2703 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2704
2705 /*
2706 ** clear and reinit the rx rings here
2707 */
2708 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2709 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2710 ClearRxRing(pAC, &pAC->RxPort[i]);
2711 FillRxRing(pAC, &pAC->RxPort[i]);
2712
2713 /*
2714 ** Enable transmit descriptor polling
2715 */
2716 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2717 FillRxRing(pAC, &pAC->RxPort[i]);
2718 };
2719
2720 SkGeYellowLED(pAC, pAC->IoBase, 1);
2721 SkDimEnableModerationIfNeeded(pAC);
2722 SkDimDisplayModerationSettings(pAC);
2723
2724 netif_start_queue(pAC->dev[pNet->PortNr]);
2725 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2726 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2727 }
2728
2729 /*
2730 ** Enable Interrupts again
2731 */
2732 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2733 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2734
2735 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2736 SkEventDispatcher(pAC, pAC->IoBase);
2737
2738 /*
2739 ** Notify RLMT about the changing and restarting one (or more) ports
2740 */
2741 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2742 EvPara.Para32[0] = pAC->RlmtNets;
2743 EvPara.Para32[1] = -1;
2744 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2745 EvPara.Para32[0] = pNet->PortNr;
2746 EvPara.Para32[1] = -1;
2747 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2748
2749 if (pOtherNet->Up) {
2750 EvPara.Para32[0] = pOtherNet->PortNr;
2751 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2752 }
2753 } else {
2754 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2755 }
2756
2757 SkEventDispatcher(pAC, pAC->IoBase);
2758 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2759
2760 /*
2761 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2762 ** seems as if upper layers have a problem to handle a successful
2763 ** return value of '0'. If such a zero is returned, the complete
2764 ** system hangs for several minutes (!), which is in acceptable.
2765 **
2766 ** Currently it is not clear, what the exact reason for this problem
2767 ** is. The implemented workaround for 2.5 is to return the desired
2768 ** new MTU size if all needed changes for the new MTU size where
2769 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2770 ** which indicates the successful change of the mtu-size.
2771 */
2772 return NewMtu;
2773
2774 } /* SkGeChangeMtu */
2775
2776
2777 /*****************************************************************************
2778 *
2779 * SkGeStats - return ethernet device statistics
2780 *
2781 * Description:
2782 * This function return statistic data about the ethernet device
2783 * to the operating system.
2784 *
2785 * Returns:
2786 * pointer to the statistic structure.
2787 */
2788 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2789 {
2790 DEV_NET *pNet = netdev_priv(dev);
2791 SK_AC *pAC = pNet->pAC;
2792 SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2793 SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2794 SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2795 unsigned int Size; /* size of pnmi struct */
2796 unsigned long Flags; /* for spin lock */
2797
2798 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2799 ("SkGeStats starts now...\n"));
2800 pPnmiStruct = &pAC->PnmiStruct;
2801
2802 #ifdef SK_DIAG_SUPPORT
2803 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2804 (pAC->BoardLevel == SK_INIT_RUN)) {
2805 #endif
2806 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2807 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2808 Size = SK_PNMI_STRUCT_SIZE;
2809 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2810 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2811 #ifdef SK_DIAG_SUPPORT
2812 }
2813 #endif
2814
2815 pPnmiStat = &pPnmiStruct->Stat[0];
2816 pPnmiConf = &pPnmiStruct->Conf[0];
2817
2818 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2819 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2820 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2821 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2822
2823 if (pNet->Mtu <= 1500) {
2824 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2825 } else {
2826 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2827 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2828 }
2829
2830
2831 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2832 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2833
2834 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2835 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2836 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2837 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2838 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2839
2840 /* detailed rx_errors: */
2841 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2842 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2843 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2844 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2845 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2846 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2847
2848 /* detailed tx_errors */
2849 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2850 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2851 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2852 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2853 pAC->stats.tx_window_errors = (SK_U32) 0;
2854
2855 return(&pAC->stats);
2856 } /* SkGeStats */
2857
2858
2859 /*****************************************************************************
2860 *
2861 * SkGeIoctl - IO-control function
2862 *
2863 * Description:
2864 * This function is called if an ioctl is issued on the device.
2865 * There are three subfunction for reading, writing and test-writing
2866 * the private MIB data structure (usefull for SysKonnect-internal tools).
2867 *
2868 * Returns:
2869 * 0, if everything is ok
2870 * !=0, on error
2871 */
2872 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2873 {
2874 DEV_NET *pNet;
2875 SK_AC *pAC;
2876 void *pMemBuf;
2877 struct pci_dev *pdev = NULL;
2878 SK_GE_IOCTL Ioctl;
2879 unsigned int Err = 0;
2880 int Size = 0;
2881 int Ret = 0;
2882 unsigned int Length = 0;
2883 int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2884
2885 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2886 ("SkGeIoctl starts now...\n"));
2887
2888 pNet = netdev_priv(dev);
2889 pAC = pNet->pAC;
2890
2891 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2892 return -EFAULT;
2893 }
2894
2895 switch(cmd) {
2896 case SK_IOCTL_SETMIB:
2897 case SK_IOCTL_PRESETMIB:
2898 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2899 case SK_IOCTL_GETMIB:
2900 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2901 Ioctl.Len<sizeof(pAC->PnmiStruct)?
2902 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2903 return -EFAULT;
2904 }
2905 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2906 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
2907 Ioctl.Len<Size? Ioctl.Len : Size)) {
2908 return -EFAULT;
2909 }
2910 Ioctl.Len = Size;
2911 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2912 return -EFAULT;
2913 }
2914 break;
2915 case SK_IOCTL_GEN:
2916 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2917 Length = Ioctl.Len;
2918 } else {
2919 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2920 }
2921 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2922 return -ENOMEM;
2923 }
2924 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2925 Err = -EFAULT;
2926 goto fault_gen;
2927 }
2928 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
2929 Err = -EFAULT;
2930 goto fault_gen;
2931 }
2932 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2933 Err = -EFAULT;
2934 goto fault_gen;
2935 }
2936 Ioctl.Len = Length;
2937 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2938 Err = -EFAULT;
2939 goto fault_gen;
2940 }
2941 fault_gen:
2942 kfree(pMemBuf); /* cleanup everything */
2943 break;
2944 #ifdef SK_DIAG_SUPPORT
2945 case SK_IOCTL_DIAG:
2946 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2947 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2948 Length = Ioctl.Len;
2949 } else {
2950 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2951 }
2952 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2953 return -ENOMEM;
2954 }
2955 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2956 Err = -EFAULT;
2957 goto fault_diag;
2958 }
2959 pdev = pAC->PciDev;
2960 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
2961 /*
2962 ** While coding this new IOCTL interface, only a few lines of code
2963 ** are to to be added. Therefore no dedicated function has been
2964 ** added. If more functionality is added, a separate function
2965 ** should be used...
2966 */
2967 * ((SK_U32 *)pMemBuf) = 0;
2968 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
2969 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
2970 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2971 Err = -EFAULT;
2972 goto fault_diag;
2973 }
2974 Ioctl.Len = Length;
2975 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2976 Err = -EFAULT;
2977 goto fault_diag;
2978 }
2979 fault_diag:
2980 kfree(pMemBuf); /* cleanup everything */
2981 break;
2982 #endif
2983 default:
2984 Err = -EOPNOTSUPP;
2985 }
2986
2987 return(Err);
2988
2989 } /* SkGeIoctl */
2990
2991
2992 /*****************************************************************************
2993 *
2994 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
2995 *
2996 * Description:
2997 * This function reads/writes the MIB data using PNMI (Private Network
2998 * Management Interface).
2999 * The destination for the data must be provided with the
3000 * ioctl call and is given to the driver in the form of
3001 * a user space address.
3002 * Copying from the user-provided data area into kernel messages
3003 * and back is done by copy_from_user and copy_to_user calls in
3004 * SkGeIoctl.
3005 *
3006 * Returns:
3007 * returned size from PNMI call
3008 */
3009 static int SkGeIocMib(
3010 DEV_NET *pNet, /* pointer to the adapter context */
3011 unsigned int Size, /* length of ioctl data */
3012 int mode) /* flag for set/preset */
3013 {
3014 unsigned long Flags; /* for spin lock */
3015 SK_AC *pAC;
3016
3017 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3018 ("SkGeIocMib starts now...\n"));
3019 pAC = pNet->pAC;
3020 /* access MIB */
3021 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3022 switch(mode) {
3023 case SK_IOCTL_GETMIB:
3024 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3025 pNet->NetNr);
3026 break;
3027 case SK_IOCTL_PRESETMIB:
3028 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3029 pNet->NetNr);
3030 break;
3031 case SK_IOCTL_SETMIB:
3032 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3033 pNet->NetNr);
3034 break;
3035 default:
3036 break;
3037 }
3038 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3039 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3040 ("MIB data access succeeded\n"));
3041 return (Size);
3042 } /* SkGeIocMib */
3043
3044
3045 /*****************************************************************************
3046 *
3047 * GetConfiguration - read configuration information
3048 *
3049 * Description:
3050 * This function reads per-adapter configuration information from
3051 * the options provided on the command line.
3052 *
3053 * Returns:
3054 * none
3055 */
3056 static void GetConfiguration(
3057 SK_AC *pAC) /* pointer to the adapter context structure */
3058 {
3059 SK_I32 Port; /* preferred port */
3060 SK_BOOL AutoSet;
3061 SK_BOOL DupSet;
3062 int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3063 int AutoNeg = 1; /* autoneg off (0) or on (1) */
3064 int DuplexCap = 0; /* 0=both,1=full,2=half */
3065 int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3066 int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3067
3068 SK_BOOL IsConTypeDefined = SK_TRUE;
3069 SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3070 SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3071 SK_BOOL IsRoleDefined = SK_TRUE;
3072 SK_BOOL IsModeDefined = SK_TRUE;
3073 /*
3074 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3075 * parameter. The mapping is described by this table:
3076 * DuplexCap -> | both | full | half |
3077 * AutoNeg | | | |
3078 * -----------------------------------------------------------------
3079 * Off | illegal | Full | Half |
3080 * -----------------------------------------------------------------
3081 * On | AutoBoth | AutoFull | AutoHalf |
3082 * -----------------------------------------------------------------
3083 * Sense | AutoSense | AutoSense | AutoSense |
3084 */
3085 int Capabilities[3][3] =
3086 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3087 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3088 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3089
3090 #define DC_BOTH 0
3091 #define DC_FULL 1
3092 #define DC_HALF 2
3093 #define AN_OFF 0
3094 #define AN_ON 1
3095 #define AN_SENS 2
3096 #define M_CurrPort pAC->GIni.GP[Port]
3097
3098
3099 /*
3100 ** Set the default values first for both ports!
3101 */
3102 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3103 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3104 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3105 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3106 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3107 }
3108
3109 /*
3110 ** Check merged parameter ConType. If it has not been used,
3111 ** verify any other parameter (e.g. AutoNeg) and use default values.
3112 **
3113 ** Stating both ConType and other lowlevel link parameters is also
3114 ** possible. If this is the case, the passed ConType-parameter is
3115 ** overwritten by the lowlevel link parameter.
3116 **
3117 ** The following settings are used for a merged ConType-parameter:
3118 **
3119 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3120 ** ------- ------ ------- -------- ---------- -----
3121 ** Auto Both On SymOrRem Auto Auto
3122 ** 100FD Full Off None <ignored> 100
3123 ** 100HD Half Off None <ignored> 100
3124 ** 10FD Full Off None <ignored> 10
3125 ** 10HD Half Off None <ignored> 10
3126 **
3127 ** This ConType parameter is used for all ports of the adapter!
3128 */
3129 if ( (ConType != NULL) &&
3130 (pAC->Index < SK_MAX_CARD_PARAM) &&
3131 (ConType[pAC->Index] != NULL) ) {
3132
3133 /* Check chipset family */
3134 if ((!pAC->ChipsetType) &&
3135 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3136 (strcmp(ConType[pAC->Index],"")!=0)) {
3137 /* Set the speed parameter back */
3138 printk("sk98lin: Illegal value \"%s\" "
3139 "for ConType."
3140 " Using Auto.\n",
3141 ConType[pAC->Index]);
3142
3143 sprintf(ConType[pAC->Index], "Auto");
3144 }
3145
3146 if (strcmp(ConType[pAC->Index],"")==0) {
3147 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3148 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3149 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3150 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3151 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3152 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3153 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3154 }
3155 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3156 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3157 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3158 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3159 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3160 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3161 }
3162 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3163 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3164 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3165 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3166 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3167 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3168 }
3169 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3170 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3171 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3172 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3173 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3174 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3175 }
3176 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3177 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3178 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3179 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3180 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3181 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3182 }
3183 } else {
3184 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3185 ConType[pAC->Index]);
3186 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3187 }
3188 } else {
3189 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3190 }
3191
3192 /*
3193 ** Parse any parameter settings for port A:
3194 ** a) any LinkSpeed stated?
3195 */
3196 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3197 Speed_A[pAC->Index] != NULL) {
3198 if (strcmp(Speed_A[pAC->Index],"")==0) {
3199 IsLinkSpeedDefined = SK_FALSE;
3200 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3201 LinkSpeed = SK_LSPEED_AUTO;
3202 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3203 LinkSpeed = SK_LSPEED_10MBPS;
3204 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3205 LinkSpeed = SK_LSPEED_100MBPS;
3206 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3207 LinkSpeed = SK_LSPEED_1000MBPS;
3208 } else {
3209 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3210 Speed_A[pAC->Index]);
3211 IsLinkSpeedDefined = SK_FALSE;
3212 }
3213 } else {
3214 IsLinkSpeedDefined = SK_FALSE;
3215 }
3216
3217 /*
3218 ** Check speed parameter:
3219 ** Only copper type adapter and GE V2 cards
3220 */
3221 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3222 ((LinkSpeed != SK_LSPEED_AUTO) &&
3223 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3224 printk("sk98lin: Illegal value for Speed_A. "
3225 "Not a copper card or GE V2 card\n Using "
3226 "speed 1000\n");
3227 LinkSpeed = SK_LSPEED_1000MBPS;
3228 }
3229
3230 /*
3231 ** Decide whether to set new config value if somethig valid has
3232 ** been received.
3233 */
3234 if (IsLinkSpeedDefined) {
3235 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3236 }
3237
3238 /*
3239 ** b) Any Autonegotiation and DuplexCapabilities set?
3240 ** Please note that both belong together...
3241 */
3242 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3243 AutoSet = SK_FALSE;
3244 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3245 AutoNeg_A[pAC->Index] != NULL) {
3246 AutoSet = SK_TRUE;
3247 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3248 AutoSet = SK_FALSE;
3249 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3250 AutoNeg = AN_ON;
3251 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3252 AutoNeg = AN_OFF;
3253 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3254 AutoNeg = AN_SENS;
3255 } else {
3256 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3257 AutoNeg_A[pAC->Index]);
3258 }
3259 }
3260
3261 DuplexCap = DC_BOTH;
3262 DupSet = SK_FALSE;
3263 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3264 DupCap_A[pAC->Index] != NULL) {
3265 DupSet = SK_TRUE;
3266 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3267 DupSet = SK_FALSE;
3268 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3269 DuplexCap = DC_BOTH;
3270 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3271 DuplexCap = DC_FULL;
3272 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3273 DuplexCap = DC_HALF;
3274 } else {
3275 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3276 DupCap_A[pAC->Index]);
3277 }
3278 }
3279
3280 /*
3281 ** Check for illegal combinations
3282 */
3283 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3284 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3285 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3286 (pAC->ChipsetType)) {
3287 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3288 " Using Full Duplex.\n");
3289 DuplexCap = DC_FULL;
3290 }
3291
3292 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3293 printk("sk98lin, Port A: DuplexCapabilities"
3294 " ignored using Sense mode\n");
3295 }
3296
3297 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3298 printk("sk98lin: Port A: Illegal combination"
3299 " of values AutoNeg. and DuplexCap.\n Using "
3300 "Full Duplex\n");
3301 DuplexCap = DC_FULL;
3302 }
3303
3304 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3305 DuplexCap = DC_FULL;
3306 }
3307
3308 if (!AutoSet && DupSet) {
3309 printk("sk98lin: Port A: Duplex setting not"
3310 " possible in\n default AutoNegotiation mode"
3311 " (Sense).\n Using AutoNegotiation On\n");
3312 AutoNeg = AN_ON;
3313 }
3314
3315 /*
3316 ** set the desired mode
3317 */
3318 if (AutoSet || DupSet) {
3319 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3320 }
3321
3322 /*
3323 ** c) Any Flowcontrol-parameter set?
3324 */
3325 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3326 FlowCtrl_A[pAC->Index] != NULL) {
3327 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3328 IsFlowCtrlDefined = SK_FALSE;
3329 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3330 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3331 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3332 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3333 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3334 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3335 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3336 FlowCtrl = SK_FLOW_MODE_NONE;
3337 } else {
3338 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3339 FlowCtrl_A[pAC->Index]);
3340 IsFlowCtrlDefined = SK_FALSE;
3341 }
3342 } else {
3343 IsFlowCtrlDefined = SK_FALSE;
3344 }
3345
3346 if (IsFlowCtrlDefined) {
3347 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3348 printk("sk98lin: Port A: FlowControl"
3349 " impossible without AutoNegotiation,"
3350 " disabled\n");
3351 FlowCtrl = SK_FLOW_MODE_NONE;
3352 }
3353 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3354 }
3355
3356 /*
3357 ** d) What is with the RoleParameter?
3358 */
3359 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3360 Role_A[pAC->Index] != NULL) {
3361 if (strcmp(Role_A[pAC->Index],"")==0) {
3362 IsRoleDefined = SK_FALSE;
3363 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3364 MSMode = SK_MS_MODE_AUTO;
3365 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3366 MSMode = SK_MS_MODE_MASTER;
3367 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3368 MSMode = SK_MS_MODE_SLAVE;
3369 } else {
3370 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3371 Role_A[pAC->Index]);
3372 IsRoleDefined = SK_FALSE;
3373 }
3374 } else {
3375 IsRoleDefined = SK_FALSE;
3376 }
3377
3378 if (IsRoleDefined == SK_TRUE) {
3379 pAC->GIni.GP[0].PMSMode = MSMode;
3380 }
3381
3382
3383
3384 /*
3385 ** Parse any parameter settings for port B:
3386 ** a) any LinkSpeed stated?
3387 */
3388 IsConTypeDefined = SK_TRUE;
3389 IsLinkSpeedDefined = SK_TRUE;
3390 IsFlowCtrlDefined = SK_TRUE;
3391 IsModeDefined = SK_TRUE;
3392
3393 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3394 Speed_B[pAC->Index] != NULL) {
3395 if (strcmp(Speed_B[pAC->Index],"")==0) {
3396 IsLinkSpeedDefined = SK_FALSE;
3397 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3398 LinkSpeed = SK_LSPEED_AUTO;
3399 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3400 LinkSpeed = SK_LSPEED_10MBPS;
3401 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3402 LinkSpeed = SK_LSPEED_100MBPS;
3403 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3404 LinkSpeed = SK_LSPEED_1000MBPS;
3405 } else {
3406 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3407 Speed_B[pAC->Index]);
3408 IsLinkSpeedDefined = SK_FALSE;
3409 }
3410 } else {
3411 IsLinkSpeedDefined = SK_FALSE;
3412 }
3413
3414 /*
3415 ** Check speed parameter:
3416 ** Only copper type adapter and GE V2 cards
3417 */
3418 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3419 ((LinkSpeed != SK_LSPEED_AUTO) &&
3420 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3421 printk("sk98lin: Illegal value for Speed_B. "
3422 "Not a copper card or GE V2 card\n Using "
3423 "speed 1000\n");
3424 LinkSpeed = SK_LSPEED_1000MBPS;
3425 }
3426
3427 /*
3428 ** Decide whether to set new config value if somethig valid has
3429 ** been received.
3430 */
3431 if (IsLinkSpeedDefined) {
3432 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3433 }
3434
3435 /*
3436 ** b) Any Autonegotiation and DuplexCapabilities set?
3437 ** Please note that both belong together...
3438 */
3439 AutoNeg = AN_SENS; /* default: do auto Sense */
3440 AutoSet = SK_FALSE;
3441 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3442 AutoNeg_B[pAC->Index] != NULL) {
3443 AutoSet = SK_TRUE;
3444 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3445 AutoSet = SK_FALSE;
3446 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3447 AutoNeg = AN_ON;
3448 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3449 AutoNeg = AN_OFF;
3450 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3451 AutoNeg = AN_SENS;
3452 } else {
3453 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3454 AutoNeg_B[pAC->Index]);
3455 }
3456 }
3457
3458 DuplexCap = DC_BOTH;
3459 DupSet = SK_FALSE;
3460 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3461 DupCap_B[pAC->Index] != NULL) {
3462 DupSet = SK_TRUE;
3463 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3464 DupSet = SK_FALSE;
3465 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3466 DuplexCap = DC_BOTH;
3467 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3468 DuplexCap = DC_FULL;
3469 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3470 DuplexCap = DC_HALF;
3471 } else {
3472 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3473 DupCap_B[pAC->Index]);
3474 }
3475 }
3476
3477
3478 /*
3479 ** Check for illegal combinations
3480 */
3481 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3482 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3483 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3484 (pAC->ChipsetType)) {
3485 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3486 " Using Full Duplex.\n");
3487 DuplexCap = DC_FULL;
3488 }
3489
3490 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3491 printk("sk98lin, Port B: DuplexCapabilities"
3492 " ignored using Sense mode\n");
3493 }
3494
3495 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3496 printk("sk98lin: Port B: Illegal combination"
3497 " of values AutoNeg. and DuplexCap.\n Using "
3498 "Full Duplex\n");
3499 DuplexCap = DC_FULL;
3500 }
3501
3502 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3503 DuplexCap = DC_FULL;
3504 }
3505
3506 if (!AutoSet && DupSet) {
3507 printk("sk98lin: Port B: Duplex setting not"
3508 " possible in\n default AutoNegotiation mode"
3509 " (Sense).\n Using AutoNegotiation On\n");
3510 AutoNeg = AN_ON;
3511 }
3512
3513 /*
3514 ** set the desired mode
3515 */
3516 if (AutoSet || DupSet) {
3517 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3518 }
3519
3520 /*
3521 ** c) Any FlowCtrl parameter set?
3522 */
3523 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3524 FlowCtrl_B[pAC->Index] != NULL) {
3525 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3526 IsFlowCtrlDefined = SK_FALSE;
3527 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3528 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3529 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3530 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3531 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3532 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3533 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3534 FlowCtrl = SK_FLOW_MODE_NONE;
3535 } else {
3536 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3537 FlowCtrl_B[pAC->Index]);
3538 IsFlowCtrlDefined = SK_FALSE;
3539 }
3540 } else {
3541 IsFlowCtrlDefined = SK_FALSE;
3542 }
3543
3544 if (IsFlowCtrlDefined) {
3545 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3546 printk("sk98lin: Port B: FlowControl"
3547 " impossible without AutoNegotiation,"
3548 " disabled\n");
3549 FlowCtrl = SK_FLOW_MODE_NONE;
3550 }
3551 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3552 }
3553
3554 /*
3555 ** d) What is the RoleParameter?
3556 */
3557 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3558 Role_B[pAC->Index] != NULL) {
3559 if (strcmp(Role_B[pAC->Index],"")==0) {
3560 IsRoleDefined = SK_FALSE;
3561 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3562 MSMode = SK_MS_MODE_AUTO;
3563 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3564 MSMode = SK_MS_MODE_MASTER;
3565 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3566 MSMode = SK_MS_MODE_SLAVE;
3567 } else {
3568 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3569 Role_B[pAC->Index]);
3570 IsRoleDefined = SK_FALSE;
3571 }
3572 } else {
3573 IsRoleDefined = SK_FALSE;
3574 }
3575
3576 if (IsRoleDefined) {
3577 pAC->GIni.GP[1].PMSMode = MSMode;
3578 }
3579
3580 /*
3581 ** Evaluate settings for both ports
3582 */
3583 pAC->ActivePort = 0;
3584 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3585 PrefPort[pAC->Index] != NULL) {
3586 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3587 pAC->ActivePort = 0;
3588 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3589 pAC->Rlmt.Net[0].PrefPort = 0;
3590 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3591 /*
3592 ** do not set ActivePort here, thus a port
3593 ** switch is issued after net up.
3594 */
3595 Port = 0;
3596 pAC->Rlmt.Net[0].Preference = Port;
3597 pAC->Rlmt.Net[0].PrefPort = Port;
3598 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3599 /*
3600 ** do not set ActivePort here, thus a port
3601 ** switch is issued after net up.
3602 */
3603 if (pAC->GIni.GIMacsFound == 1) {
3604 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3605 " Port B not available on single port adapters.\n");
3606
3607 pAC->ActivePort = 0;
3608 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3609 pAC->Rlmt.Net[0].PrefPort = 0;
3610 } else {
3611 Port = 1;
3612 pAC->Rlmt.Net[0].Preference = Port;
3613 pAC->Rlmt.Net[0].PrefPort = Port;
3614 }
3615 } else {
3616 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3617 PrefPort[pAC->Index]);
3618 }
3619 }
3620
3621 pAC->RlmtNets = 1;
3622
3623 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3624 RlmtMode[pAC->Index] != NULL) {
3625 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3626 pAC->RlmtMode = 0;
3627 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3628 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3629 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3630 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3631 SK_RLMT_CHECK_LOC_LINK;
3632 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3633 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3634 SK_RLMT_CHECK_LOC_LINK |
3635 SK_RLMT_CHECK_SEG;
3636 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3637 (pAC->GIni.GIMacsFound == 2)) {
3638 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3639 pAC->RlmtNets = 2;
3640 } else {
3641 printk("sk98lin: Illegal value \"%s\" for"
3642 " RlmtMode, using default\n",
3643 RlmtMode[pAC->Index]);
3644 pAC->RlmtMode = 0;
3645 }
3646 } else {
3647 pAC->RlmtMode = 0;
3648 }
3649
3650 /*
3651 ** Check the interrupt moderation parameters
3652 */
3653 if (Moderation[pAC->Index] != NULL) {
3654 if (strcmp(Moderation[pAC->Index], "") == 0) {
3655 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3656 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3657 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3658 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3659 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3660 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3661 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3662 } else {
3663 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3664 " Disable interrupt moderation.\n",
3665 Moderation[pAC->Index]);
3666 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3667 }
3668 } else {
3669 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3670 }
3671
3672 if (Stats[pAC->Index] != NULL) {
3673 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3674 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3675 } else {
3676 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3677 }
3678 } else {
3679 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3680 }
3681
3682 if (ModerationMask[pAC->Index] != NULL) {
3683 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3684 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3685 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3686 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3687 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3688 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3689 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3690 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3691 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3692 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3693 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3694 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3695 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3696 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3697 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3698 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3699 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3700 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3701 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3702 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3703 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3704 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3705 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3706 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3707 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3708 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3709 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3710 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3711 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3712 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3713 } else { /* some rubbish */
3714 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3715 }
3716 } else { /* operator has stated nothing */
3717 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3718 }
3719
3720 if (AutoSizing[pAC->Index] != NULL) {
3721 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3722 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3723 } else {
3724 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3725 }
3726 } else { /* operator has stated nothing */
3727 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3728 }
3729
3730 if (IntsPerSec[pAC->Index] != 0) {
3731 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3732 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3733 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3734 " Using default value of %i.\n",
3735 IntsPerSec[pAC->Index],
3736 C_INT_MOD_IPS_LOWER_RANGE,
3737 C_INT_MOD_IPS_UPPER_RANGE,
3738 C_INTS_PER_SEC_DEFAULT);
3739 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3740 } else {
3741 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3742 }
3743 } else {
3744 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3745 }
3746
3747 /*
3748 ** Evaluate upper and lower moderation threshold
3749 */
3750 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3751 pAC->DynIrqModInfo.MaxModIntsPerSec +
3752 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3753
3754 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3755 pAC->DynIrqModInfo.MaxModIntsPerSec -
3756 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3757
3758 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3759
3760
3761 } /* GetConfiguration */
3762
3763
3764 /*****************************************************************************
3765 *
3766 * ProductStr - return a adapter identification string from vpd
3767 *
3768 * Description:
3769 * This function reads the product name string from the vpd area
3770 * and puts it the field pAC->DeviceString.
3771 *
3772 * Returns: N/A
3773 */
3774 static void ProductStr(
3775 SK_AC *pAC /* pointer to adapter context */
3776 )
3777 {
3778 int StrLen = 80; /* length of the string, defined in SK_AC */
3779 char Keyword[] = VPD_NAME; /* vpd productname identifier */
3780 int ReturnCode; /* return code from vpd_read */
3781 unsigned long Flags;
3782
3783 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3784 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
3785 &StrLen);
3786 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3787 if (ReturnCode != 0) {
3788 /* there was an error reading the vpd data */
3789 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
3790 ("Error reading VPD data: %d\n", ReturnCode));
3791 pAC->DeviceStr[0] = '\0';
3792 }
3793 } /* ProductStr */
3794
3795 /*****************************************************************************
3796 *
3797 * StartDrvCleanupTimer - Start timer to check for descriptors which
3798 * might be placed in descriptor ring, but
3799 * havent been handled up to now
3800 *
3801 * Description:
3802 * This function requests a HW-timer fo the Yukon card. The actions to
3803 * perform when this timer expires, are located in the SkDrvEvent().
3804 *
3805 * Returns: N/A
3806 */
3807 static void
3808 StartDrvCleanupTimer(SK_AC *pAC) {
3809 SK_EVPARA EventParam; /* Event struct for timer event */
3810
3811 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3812 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3813 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3814 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3815 SKGE_DRV, SK_DRV_TIMER, EventParam);
3816 }
3817
3818 /*****************************************************************************
3819 *
3820 * StopDrvCleanupTimer - Stop timer to check for descriptors
3821 *
3822 * Description:
3823 * This function requests a HW-timer fo the Yukon card. The actions to
3824 * perform when this timer expires, are located in the SkDrvEvent().
3825 *
3826 * Returns: N/A
3827 */
3828 static void
3829 StopDrvCleanupTimer(SK_AC *pAC) {
3830 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3831 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3832 }
3833
3834 /****************************************************************************/
3835 /* functions for common modules *********************************************/
3836 /****************************************************************************/
3837
3838
3839 /*****************************************************************************
3840 *
3841 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3842 *
3843 * Description:
3844 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3845 * is embedded into a socket buff data area.
3846 *
3847 * Context:
3848 * runtime
3849 *
3850 * Returns:
3851 * NULL or pointer to Mbuf.
3852 */
3853 SK_MBUF *SkDrvAllocRlmtMbuf(
3854 SK_AC *pAC, /* pointer to adapter context */
3855 SK_IOC IoC, /* the IO-context */
3856 unsigned BufferSize) /* size of the requested buffer */
3857 {
3858 SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3859 struct sk_buff *pMsgBlock; /* pointer to a new message block */
3860
3861 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3862 if (pMsgBlock == NULL) {
3863 return (NULL);
3864 }
3865 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3866 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3867 pRlmtMbuf->pNext = NULL;
3868 pRlmtMbuf->pOs = pMsgBlock;
3869 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3870 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3871 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3872 return (pRlmtMbuf);
3873
3874 } /* SkDrvAllocRlmtMbuf */
3875
3876
3877 /*****************************************************************************
3878 *
3879 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3880 *
3881 * Description:
3882 * This routine frees one or more RLMT mbuf(s).
3883 *
3884 * Context:
3885 * runtime
3886 *
3887 * Returns:
3888 * Nothing
3889 */
3890 void SkDrvFreeRlmtMbuf(
3891 SK_AC *pAC, /* pointer to adapter context */
3892 SK_IOC IoC, /* the IO-context */
3893 SK_MBUF *pMbuf) /* size of the requested buffer */
3894 {
3895 SK_MBUF *pFreeMbuf;
3896 SK_MBUF *pNextMbuf;
3897
3898 pFreeMbuf = pMbuf;
3899 do {
3900 pNextMbuf = pFreeMbuf->pNext;
3901 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3902 pFreeMbuf = pNextMbuf;
3903 } while ( pFreeMbuf != NULL );
3904 } /* SkDrvFreeRlmtMbuf */
3905
3906
3907 /*****************************************************************************
3908 *
3909 * SkOsGetTime - provide a time value
3910 *
3911 * Description:
3912 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
3913 * It is not used for absolute time, but only for time differences.
3914 *
3915 *
3916 * Returns:
3917 * Time value
3918 */
3919 SK_U64 SkOsGetTime(SK_AC *pAC)
3920 {
3921 SK_U64 PrivateJiffies;
3922 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
3923 return PrivateJiffies;
3924 } /* SkOsGetTime */
3925
3926
3927 /*****************************************************************************
3928 *
3929 * SkPciReadCfgDWord - read a 32 bit value from pci config space
3930 *
3931 * Description:
3932 * This routine reads a 32 bit value from the pci configuration
3933 * space.
3934 *
3935 * Returns:
3936 * 0 - indicate everything worked ok.
3937 * != 0 - error indication
3938 */
3939 int SkPciReadCfgDWord(
3940 SK_AC *pAC, /* Adapter Control structure pointer */
3941 int PciAddr, /* PCI register address */
3942 SK_U32 *pVal) /* pointer to store the read value */
3943 {
3944 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
3945 return(0);
3946 } /* SkPciReadCfgDWord */
3947
3948
3949 /*****************************************************************************
3950 *
3951 * SkPciReadCfgWord - read a 16 bit value from pci config space
3952 *
3953 * Description:
3954 * This routine reads a 16 bit value from the pci configuration
3955 * space.
3956 *
3957 * Returns:
3958 * 0 - indicate everything worked ok.
3959 * != 0 - error indication
3960 */
3961 int SkPciReadCfgWord(
3962 SK_AC *pAC, /* Adapter Control structure pointer */
3963 int PciAddr, /* PCI register address */
3964 SK_U16 *pVal) /* pointer to store the read value */
3965 {
3966 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
3967 return(0);
3968 } /* SkPciReadCfgWord */
3969
3970
3971 /*****************************************************************************
3972 *
3973 * SkPciReadCfgByte - read a 8 bit value from pci config space
3974 *
3975 * Description:
3976 * This routine reads a 8 bit value from the pci configuration
3977 * space.
3978 *
3979 * Returns:
3980 * 0 - indicate everything worked ok.
3981 * != 0 - error indication
3982 */
3983 int SkPciReadCfgByte(
3984 SK_AC *pAC, /* Adapter Control structure pointer */
3985 int PciAddr, /* PCI register address */
3986 SK_U8 *pVal) /* pointer to store the read value */
3987 {
3988 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
3989 return(0);
3990 } /* SkPciReadCfgByte */
3991
3992
3993 /*****************************************************************************
3994 *
3995 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
3996 *
3997 * Description:
3998 * This routine writes a 32 bit value to the pci configuration
3999 * space.
4000 *
4001 * Returns:
4002 * 0 - indicate everything worked ok.
4003 * != 0 - error indication
4004 */
4005 int SkPciWriteCfgDWord(
4006 SK_AC *pAC, /* Adapter Control structure pointer */
4007 int PciAddr, /* PCI register address */
4008 SK_U32 Val) /* pointer to store the read value */
4009 {
4010 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
4011 return(0);
4012 } /* SkPciWriteCfgDWord */
4013
4014
4015 /*****************************************************************************
4016 *
4017 * SkPciWriteCfgWord - write a 16 bit value to pci config space
4018 *
4019 * Description:
4020 * This routine writes a 16 bit value to the pci configuration
4021 * space. The flag PciConfigUp indicates whether the config space
4022 * is accesible or must be set up first.
4023 *
4024 * Returns:
4025 * 0 - indicate everything worked ok.
4026 * != 0 - error indication
4027 */
4028 int SkPciWriteCfgWord(
4029 SK_AC *pAC, /* Adapter Control structure pointer */
4030 int PciAddr, /* PCI register address */
4031 SK_U16 Val) /* pointer to store the read value */
4032 {
4033 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4034 return(0);
4035 } /* SkPciWriteCfgWord */
4036
4037
4038 /*****************************************************************************
4039 *
4040 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4041 *
4042 * Description:
4043 * This routine writes a 8 bit value to the pci configuration
4044 * space. The flag PciConfigUp indicates whether the config space
4045 * is accesible or must be set up first.
4046 *
4047 * Returns:
4048 * 0 - indicate everything worked ok.
4049 * != 0 - error indication
4050 */
4051 int SkPciWriteCfgByte(
4052 SK_AC *pAC, /* Adapter Control structure pointer */
4053 int PciAddr, /* PCI register address */
4054 SK_U8 Val) /* pointer to store the read value */
4055 {
4056 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4057 return(0);
4058 } /* SkPciWriteCfgByte */
4059
4060
4061 /*****************************************************************************
4062 *
4063 * SkDrvEvent - handle driver events
4064 *
4065 * Description:
4066 * This function handles events from all modules directed to the driver
4067 *
4068 * Context:
4069 * Is called under protection of slow path lock.
4070 *
4071 * Returns:
4072 * 0 if everything ok
4073 * < 0 on error
4074 *
4075 */
4076 int SkDrvEvent(
4077 SK_AC *pAC, /* pointer to adapter context */
4078 SK_IOC IoC, /* io-context */
4079 SK_U32 Event, /* event-id */
4080 SK_EVPARA Param) /* event-parameter */
4081 {
4082 SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4083 struct sk_buff *pMsg; /* pointer to a message block */
4084 int FromPort; /* the port from which we switch away */
4085 int ToPort; /* the port we switch to */
4086 SK_EVPARA NewPara; /* parameter for further events */
4087 int Stat;
4088 unsigned long Flags;
4089 SK_BOOL DualNet;
4090
4091 switch (Event) {
4092 case SK_DRV_ADAP_FAIL:
4093 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4094 ("ADAPTER FAIL EVENT\n"));
4095 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4096 /* disable interrupts */
4097 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4098 /* cgoos */
4099 break;
4100 case SK_DRV_PORT_FAIL:
4101 FromPort = Param.Para32[0];
4102 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4103 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4104 if (FromPort == 0) {
4105 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4106 } else {
4107 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4108 }
4109 /* cgoos */
4110 break;
4111 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4112 /* action list 4 */
4113 FromPort = Param.Para32[0];
4114 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4115 ("PORT RESET EVENT, Port: %d ", FromPort));
4116 NewPara.Para64 = FromPort;
4117 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4118 spin_lock_irqsave(
4119 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4120 Flags);
4121
4122 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
4123 netif_carrier_off(pAC->dev[Param.Para32[0]]);
4124 spin_unlock_irqrestore(
4125 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4126 Flags);
4127
4128 /* clear rx ring from received frames */
4129 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4130
4131 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4132 spin_lock_irqsave(
4133 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4134 Flags);
4135
4136 /* tschilling: Handling of return value inserted. */
4137 if (SkGeInitPort(pAC, IoC, FromPort)) {
4138 if (FromPort == 0) {
4139 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4140 } else {
4141 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4142 }
4143 }
4144 SkAddrMcUpdate(pAC,IoC, FromPort);
4145 PortReInitBmu(pAC, FromPort);
4146 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4147 ClearAndStartRx(pAC, FromPort);
4148 spin_unlock_irqrestore(
4149 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4150 Flags);
4151 break;
4152 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4153 /* action list 5 */
4154 FromPort = Param.Para32[0];
4155 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4156 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4157 /* Mac update */
4158 SkAddrMcUpdate(pAC,IoC, FromPort);
4159
4160 if (DoPrintInterfaceChange) {
4161 printk("%s: network connection up using"
4162 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4163
4164 /* tschilling: Values changed according to LinkSpeedUsed. */
4165 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4166 if (Stat == SK_LSPEED_STAT_10MBPS) {
4167 printk(" speed: 10\n");
4168 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4169 printk(" speed: 100\n");
4170 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4171 printk(" speed: 1000\n");
4172 } else {
4173 printk(" speed: unknown\n");
4174 }
4175
4176
4177 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4178 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4179 Stat == SK_LMODE_STAT_AUTOFULL) {
4180 printk(" autonegotiation: yes\n");
4181 }
4182 else {
4183 printk(" autonegotiation: no\n");
4184 }
4185 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4186 Stat == SK_LMODE_STAT_HALF) {
4187 printk(" duplex mode: half\n");
4188 }
4189 else {
4190 printk(" duplex mode: full\n");
4191 }
4192 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4193 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4194 printk(" flowctrl: remote send\n");
4195 }
4196 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4197 printk(" flowctrl: local send\n");
4198 }
4199 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4200 printk(" flowctrl: symmetric\n");
4201 }
4202 else {
4203 printk(" flowctrl: none\n");
4204 }
4205
4206 /* tschilling: Check against CopperType now. */
4207 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4208 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4209 SK_LSPEED_STAT_1000MBPS)) {
4210 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4211 if (Stat == SK_MS_STAT_MASTER ) {
4212 printk(" role: master\n");
4213 }
4214 else if (Stat == SK_MS_STAT_SLAVE ) {
4215 printk(" role: slave\n");
4216 }
4217 else {
4218 printk(" role: ???\n");
4219 }
4220 }
4221
4222 /*
4223 Display dim (dynamic interrupt moderation)
4224 informations
4225 */
4226 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4227 printk(" irq moderation: static (%d ints/sec)\n",
4228 pAC->DynIrqModInfo.MaxModIntsPerSec);
4229 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4230 printk(" irq moderation: dynamic (%d ints/sec)\n",
4231 pAC->DynIrqModInfo.MaxModIntsPerSec);
4232 else
4233 printk(" irq moderation: disabled\n");
4234
4235
4236 #ifdef SK_ZEROCOPY
4237 if (pAC->ChipsetType)
4238 #ifdef USE_SK_TX_CHECKSUM
4239 printk(" scatter-gather: enabled\n");
4240 #else
4241 printk(" tx-checksum: disabled\n");
4242 #endif
4243 else
4244 printk(" scatter-gather: disabled\n");
4245 #else
4246 printk(" scatter-gather: disabled\n");
4247 #endif
4248
4249 #ifndef USE_SK_RX_CHECKSUM
4250 printk(" rx-checksum: disabled\n");
4251 #endif
4252
4253 } else {
4254 DoPrintInterfaceChange = SK_TRUE;
4255 }
4256
4257 if ((Param.Para32[0] != pAC->ActivePort) &&
4258 (pAC->RlmtNets == 1)) {
4259 NewPara.Para32[0] = pAC->ActivePort;
4260 NewPara.Para32[1] = Param.Para32[0];
4261 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4262 NewPara);
4263 }
4264
4265 /* Inform the world that link protocol is up. */
4266 netif_carrier_on(pAC->dev[Param.Para32[0]]);
4267
4268 break;
4269 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4270 /* action list 7 */
4271 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4272 ("NET DOWN EVENT "));
4273 if (DoPrintInterfaceChange) {
4274 printk("%s: network connection down\n",
4275 pAC->dev[Param.Para32[1]]->name);
4276 } else {
4277 DoPrintInterfaceChange = SK_TRUE;
4278 }
4279 netif_carrier_off(pAC->dev[Param.Para32[1]]);
4280 break;
4281 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4282 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4283 ("PORT SWITCH HARD "));
4284 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4285 /* action list 6 */
4286 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4287 'A'+Param.Para32[1]);
4288 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4289 FromPort = Param.Para32[0];
4290 ToPort = Param.Para32[1];
4291 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4292 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4293 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4294 NewPara.Para64 = FromPort;
4295 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4296 NewPara.Para64 = ToPort;
4297 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4298 spin_lock_irqsave(
4299 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4300 Flags);
4301 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4302 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4303 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4304 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4305 spin_unlock_irqrestore(
4306 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4307 Flags);
4308
4309 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4310 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4311
4312 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4313 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4314 spin_lock_irqsave(
4315 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4316 Flags);
4317 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4318 pAC->ActivePort = ToPort;
4319 #if 0
4320 SetQueueSizes(pAC);
4321 #else
4322 /* tschilling: New common function with minimum size check. */
4323 DualNet = SK_FALSE;
4324 if (pAC->RlmtNets == 2) {
4325 DualNet = SK_TRUE;
4326 }
4327
4328 if (SkGeInitAssignRamToQueues(
4329 pAC,
4330 pAC->ActivePort,
4331 DualNet)) {
4332 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4333 spin_unlock_irqrestore(
4334 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4335 Flags);
4336 printk("SkGeInitAssignRamToQueues failed.\n");
4337 break;
4338 }
4339 #endif
4340 /* tschilling: Handling of return values inserted. */
4341 if (SkGeInitPort(pAC, IoC, FromPort) ||
4342 SkGeInitPort(pAC, IoC, ToPort)) {
4343 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4344 }
4345 if (Event == SK_DRV_SWITCH_SOFT) {
4346 SkMacRxTxEnable(pAC, IoC, FromPort);
4347 }
4348 SkMacRxTxEnable(pAC, IoC, ToPort);
4349 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4350 SkAddrMcUpdate(pAC, IoC, FromPort);
4351 SkAddrMcUpdate(pAC, IoC, ToPort);
4352 PortReInitBmu(pAC, FromPort);
4353 PortReInitBmu(pAC, ToPort);
4354 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4355 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4356 ClearAndStartRx(pAC, FromPort);
4357 ClearAndStartRx(pAC, ToPort);
4358 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4359 spin_unlock_irqrestore(
4360 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4361 Flags);
4362 break;
4363 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4364 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4365 ("RLS "));
4366 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4367 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4368 skb_put(pMsg, pRlmtMbuf->Length);
4369 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4370 pMsg) < 0)
4371
4372 DEV_KFREE_SKB_ANY(pMsg);
4373 break;
4374 case SK_DRV_TIMER:
4375 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4376 /*
4377 ** expiration of the moderation timer implies that
4378 ** dynamic moderation is to be applied
4379 */
4380 SkDimStartModerationTimer(pAC);
4381 SkDimModerate(pAC);
4382 if (pAC->DynIrqModInfo.DisplayStats) {
4383 SkDimDisplayModerationSettings(pAC);
4384 }
4385 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4386 /*
4387 ** check if we need to check for descriptors which
4388 ** haven't been handled the last millisecs
4389 */
4390 StartDrvCleanupTimer(pAC);
4391 if (pAC->GIni.GIMacsFound == 2) {
4392 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4393 }
4394 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4395 } else {
4396 printk("Expiration of unknown timer\n");
4397 }
4398 break;
4399 default:
4400 break;
4401 }
4402 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4403 ("END EVENT "));
4404
4405 return (0);
4406 } /* SkDrvEvent */
4407
4408
4409 /*****************************************************************************
4410 *
4411 * SkErrorLog - log errors
4412 *
4413 * Description:
4414 * This function logs errors to the system buffer and to the console
4415 *
4416 * Returns:
4417 * 0 if everything ok
4418 * < 0 on error
4419 *
4420 */
4421 void SkErrorLog(
4422 SK_AC *pAC,
4423 int ErrClass,
4424 int ErrNum,
4425 char *pErrorMsg)
4426 {
4427 char ClassStr[80];
4428
4429 switch (ErrClass) {
4430 case SK_ERRCL_OTHER:
4431 strcpy(ClassStr, "Other error");
4432 break;
4433 case SK_ERRCL_CONFIG:
4434 strcpy(ClassStr, "Configuration error");
4435 break;
4436 case SK_ERRCL_INIT:
4437 strcpy(ClassStr, "Initialization error");
4438 break;
4439 case SK_ERRCL_NORES:
4440 strcpy(ClassStr, "Out of resources error");
4441 break;
4442 case SK_ERRCL_SW:
4443 strcpy(ClassStr, "internal Software error");
4444 break;
4445 case SK_ERRCL_HW:
4446 strcpy(ClassStr, "Hardware failure");
4447 break;
4448 case SK_ERRCL_COMM:
4449 strcpy(ClassStr, "Communication error");
4450 break;
4451 }
4452 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4453 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4454 ClassStr, ErrNum, pErrorMsg);
4455
4456 } /* SkErrorLog */
4457
4458 #ifdef SK_DIAG_SUPPORT
4459
4460 /*****************************************************************************
4461 *
4462 * SkDrvEnterDiagMode - handles DIAG attach request
4463 *
4464 * Description:
4465 * Notify the kernel to NOT access the card any longer due to DIAG
4466 * Deinitialize the Card
4467 *
4468 * Returns:
4469 * int
4470 */
4471 int SkDrvEnterDiagMode(
4472 SK_AC *pAc) /* pointer to adapter context */
4473 {
4474 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4475 SK_AC *pAC = pNet->pAC;
4476
4477 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4478 sizeof(SK_PNMI_STRUCT_DATA));
4479
4480 pAC->DiagModeActive = DIAG_ACTIVE;
4481 if (pAC->BoardLevel > SK_INIT_DATA) {
4482 if (pNet->Up) {
4483 pAC->WasIfUp[0] = SK_TRUE;
4484 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4485 DoPrintInterfaceChange = SK_FALSE;
4486 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4487 } else {
4488 pAC->WasIfUp[0] = SK_FALSE;
4489 }
4490 if (pNet != netdev_priv(pAC->dev[1])) {
4491 pNet = netdev_priv(pAC->dev[1]);
4492 if (pNet->Up) {
4493 pAC->WasIfUp[1] = SK_TRUE;
4494 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4495 DoPrintInterfaceChange = SK_FALSE;
4496 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4497 } else {
4498 pAC->WasIfUp[1] = SK_FALSE;
4499 }
4500 }
4501 pAC->BoardLevel = SK_INIT_DATA;
4502 }
4503 return(0);
4504 }
4505
4506 /*****************************************************************************
4507 *
4508 * SkDrvLeaveDiagMode - handles DIAG detach request
4509 *
4510 * Description:
4511 * Notify the kernel to may access the card again after use by DIAG
4512 * Initialize the Card
4513 *
4514 * Returns:
4515 * int
4516 */
4517 int SkDrvLeaveDiagMode(
4518 SK_AC *pAc) /* pointer to adapter control context */
4519 {
4520 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4521 sizeof(SK_PNMI_STRUCT_DATA));
4522 pAc->DiagModeActive = DIAG_NOTACTIVE;
4523 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4524 if (pAc->WasIfUp[0] == SK_TRUE) {
4525 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4526 DoPrintInterfaceChange = SK_FALSE;
4527 SkDrvInitAdapter(pAc, 0); /* first device */
4528 }
4529 if (pAc->WasIfUp[1] == SK_TRUE) {
4530 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4531 DoPrintInterfaceChange = SK_FALSE;
4532 SkDrvInitAdapter(pAc, 1); /* second device */
4533 }
4534 return(0);
4535 }
4536
4537 /*****************************************************************************
4538 *
4539 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4540 *
4541 * Description:
4542 * This function parses the PCI slot name information string and will
4543 * retrieve the devcie number out of it. The slot_name maintianed by
4544 * linux is in the form of '02:0a.0', whereas the first two characters
4545 * represent the bus number in hex (in the sample above this is
4546 * pci bus 0x02) and the next two characters the device number (0x0a).
4547 *
4548 * Returns:
4549 * SK_U32: The device number from the PCI slot name
4550 */
4551
4552 static SK_U32 ParseDeviceNbrFromSlotName(
4553 const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4554 {
4555 char *CurrCharPos = (char *) SlotName;
4556 int FirstNibble = -1;
4557 int SecondNibble = -1;
4558 SK_U32 Result = 0;
4559
4560 while (*CurrCharPos != '\0') {
4561 if (*CurrCharPos == ':') {
4562 while (*CurrCharPos != '.') {
4563 CurrCharPos++;
4564 if ( (*CurrCharPos >= '0') &&
4565 (*CurrCharPos <= '9')) {
4566 if (FirstNibble == -1) {
4567 /* dec. value for '0' */
4568 FirstNibble = *CurrCharPos - 48;
4569 } else {
4570 SecondNibble = *CurrCharPos - 48;
4571 }
4572 } else if ( (*CurrCharPos >= 'a') &&
4573 (*CurrCharPos <= 'f') ) {
4574 if (FirstNibble == -1) {
4575 FirstNibble = *CurrCharPos - 87;
4576 } else {
4577 SecondNibble = *CurrCharPos - 87;
4578 }
4579 } else {
4580 Result = 0;
4581 }
4582 }
4583
4584 Result = FirstNibble;
4585 Result = Result << 4; /* first nibble is higher one */
4586 Result = Result | SecondNibble;
4587 }
4588 CurrCharPos++; /* next character */
4589 }
4590 return (Result);
4591 }
4592
4593 /****************************************************************************
4594 *
4595 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4596 * called if Diag attaches to that card)
4597 *
4598 * Description:
4599 * Close initialized adapter.
4600 *
4601 * Returns:
4602 * 0 - on success
4603 * error code - on error
4604 */
4605 static int SkDrvDeInitAdapter(
4606 SK_AC *pAC, /* pointer to adapter context */
4607 int devNbr) /* what device is to be handled */
4608 {
4609 struct SK_NET_DEVICE *dev;
4610
4611 dev = pAC->dev[devNbr];
4612
4613 /* On Linux 2.6 the network driver does NOT mess with reference
4614 ** counts. The driver MUST be able to be unloaded at any time
4615 ** due to the possibility of hotplug.
4616 */
4617 if (SkGeClose(dev) != 0) {
4618 return (-1);
4619 }
4620 return (0);
4621
4622 } /* SkDrvDeInitAdapter() */
4623
4624 /****************************************************************************
4625 *
4626 * SkDrvInitAdapter - Initialize adapter (this function is only
4627 * called if Diag deattaches from that card)
4628 *
4629 * Description:
4630 * Close initialized adapter.
4631 *
4632 * Returns:
4633 * 0 - on success
4634 * error code - on error
4635 */
4636 static int SkDrvInitAdapter(
4637 SK_AC *pAC, /* pointer to adapter context */
4638 int devNbr) /* what device is to be handled */
4639 {
4640 struct SK_NET_DEVICE *dev;
4641
4642 dev = pAC->dev[devNbr];
4643
4644 if (SkGeOpen(dev) != 0) {
4645 return (-1);
4646 }
4647
4648 /*
4649 ** Use correct MTU size and indicate to kernel TX queue can be started
4650 */
4651 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4652 return (-1);
4653 }
4654 return (0);
4655
4656 } /* SkDrvInitAdapter */
4657
4658 #endif
4659
4660 #ifdef DEBUG
4661 /****************************************************************************/
4662 /* "debug only" section *****************************************************/
4663 /****************************************************************************/
4664
4665
4666 /*****************************************************************************
4667 *
4668 * DumpMsg - print a frame
4669 *
4670 * Description:
4671 * This function prints frames to the system logfile/to the console.
4672 *
4673 * Returns: N/A
4674 *
4675 */
4676 static void DumpMsg(struct sk_buff *skb, char *str)
4677 {
4678 int msglen;
4679
4680 if (skb == NULL) {
4681 printk("DumpMsg(): NULL-Message\n");
4682 return;
4683 }
4684
4685 if (skb->data == NULL) {
4686 printk("DumpMsg(): Message empty\n");
4687 return;
4688 }
4689
4690 msglen = skb->len;
4691 if (msglen > 64)
4692 msglen = 64;
4693
4694 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4695
4696 DumpData((char *)skb->data, msglen);
4697
4698 printk("------- End of message ---------\n");
4699 } /* DumpMsg */
4700
4701
4702
4703 /*****************************************************************************
4704 *
4705 * DumpData - print a data area
4706 *
4707 * Description:
4708 * This function prints a area of data to the system logfile/to the
4709 * console.
4710 *
4711 * Returns: N/A
4712 *
4713 */
4714 static void DumpData(char *p, int size)
4715 {
4716 register int i;
4717 int haddr, addr;
4718 char hex_buffer[180];
4719 char asc_buffer[180];
4720 char HEXCHAR[] = "0123456789ABCDEF";
4721
4722 addr = 0;
4723 haddr = 0;
4724 hex_buffer[0] = 0;
4725 asc_buffer[0] = 0;
4726 for (i=0; i < size; ) {
4727 if (*p >= '0' && *p <='z')
4728 asc_buffer[addr] = *p;
4729 else
4730 asc_buffer[addr] = '.';
4731 addr++;
4732 asc_buffer[addr] = 0;
4733 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4734 haddr++;
4735 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4736 haddr++;
4737 hex_buffer[haddr] = ' ';
4738 haddr++;
4739 hex_buffer[haddr] = 0;
4740 p++;
4741 i++;
4742 if (i%16 == 0) {
4743 printk("%s %s\n", hex_buffer, asc_buffer);
4744 addr = 0;
4745 haddr = 0;
4746 }
4747 }
4748 } /* DumpData */
4749
4750
4751 /*****************************************************************************
4752 *
4753 * DumpLong - print a data area as long values
4754 *
4755 * Description:
4756 * This function prints a area of data to the system logfile/to the
4757 * console.
4758 *
4759 * Returns: N/A
4760 *
4761 */
4762 static void DumpLong(char *pc, int size)
4763 {
4764 register int i;
4765 int haddr, addr;
4766 char hex_buffer[180];
4767 char asc_buffer[180];
4768 char HEXCHAR[] = "0123456789ABCDEF";
4769 long *p;
4770 int l;
4771
4772 addr = 0;
4773 haddr = 0;
4774 hex_buffer[0] = 0;
4775 asc_buffer[0] = 0;
4776 p = (long*) pc;
4777 for (i=0; i < size; ) {
4778 l = (long) *p;
4779 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4780 haddr++;
4781 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4782 haddr++;
4783 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4784 haddr++;
4785 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4786 haddr++;
4787 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4788 haddr++;
4789 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4790 haddr++;
4791 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4792 haddr++;
4793 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4794 haddr++;
4795 hex_buffer[haddr] = ' ';
4796 haddr++;
4797 hex_buffer[haddr] = 0;
4798 p++;
4799 i++;
4800 if (i%8 == 0) {
4801 printk("%4x %s\n", (i-8)*4, hex_buffer);
4802 haddr = 0;
4803 }
4804 }
4805 printk("------------------------\n");
4806 } /* DumpLong */
4807
4808 #endif
4809
4810 static int __devinit skge_probe_one(struct pci_dev *pdev,
4811 const struct pci_device_id *ent)
4812 {
4813 SK_AC *pAC;
4814 DEV_NET *pNet = NULL;
4815 struct net_device *dev = NULL;
4816 static int boards_found = 0;
4817 int error = -ENODEV;
4818
4819 if (pci_enable_device(pdev))
4820 goto out;
4821
4822 /* Configure DMA attributes. */
4823 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
4824 pci_set_dma_mask(pdev, DMA_32BIT_MASK))
4825 goto out_disable_device;
4826
4827
4828 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
4829 printk(KERN_ERR "Unable to allocate etherdev "
4830 "structure!\n");
4831 goto out_disable_device;
4832 }
4833
4834 pNet = netdev_priv(dev);
4835 pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
4836 if (!pNet->pAC) {
4837 printk(KERN_ERR "Unable to allocate adapter "
4838 "structure!\n");
4839 goto out_free_netdev;
4840 }
4841
4842 memset(pNet->pAC, 0, sizeof(SK_AC));
4843 pAC = pNet->pAC;
4844 pAC->PciDev = pdev;
4845 pAC->PciDevId = pdev->device;
4846 pAC->dev[0] = dev;
4847 pAC->dev[1] = dev;
4848 sprintf(pAC->Name, "SysKonnect SK-98xx");
4849 pAC->CheckQueue = SK_FALSE;
4850
4851 pNet->Mtu = 1500;
4852 pNet->Up = 0;
4853 dev->irq = pdev->irq;
4854 error = SkGeInitPCI(pAC);
4855 if (error) {
4856 printk(KERN_ERR "sk98lin: PCI setup failed: %i\n", error);
4857 goto out_free_netdev;
4858 }
4859
4860 SET_MODULE_OWNER(dev);
4861 dev->open = &SkGeOpen;
4862 dev->stop = &SkGeClose;
4863 dev->hard_start_xmit = &SkGeXmit;
4864 dev->get_stats = &SkGeStats;
4865 dev->set_multicast_list = &SkGeSetRxMode;
4866 dev->set_mac_address = &SkGeSetMacAddr;
4867 dev->do_ioctl = &SkGeIoctl;
4868 dev->change_mtu = &SkGeChangeMtu;
4869 #ifdef CONFIG_NET_POLL_CONTROLLER
4870 dev->poll_controller = &SkGePollController;
4871 #endif
4872 SET_NETDEV_DEV(dev, &pdev->dev);
4873 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4874
4875 #ifdef SK_ZEROCOPY
4876 #ifdef USE_SK_TX_CHECKSUM
4877 if (pAC->ChipsetType) {
4878 /* Use only if yukon hardware */
4879 /* SK and ZEROCOPY - fly baby... */
4880 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
4881 }
4882 #endif
4883 #endif
4884
4885 pAC->Index = boards_found++;
4886
4887 if (SkGeBoardInit(dev, pAC))
4888 goto out_free_netdev;
4889
4890 /* Register net device */
4891 if (register_netdev(dev)) {
4892 printk(KERN_ERR "sk98lin: Could not register device.\n");
4893 goto out_free_resources;
4894 }
4895
4896 /* Print adapter specific string from vpd */
4897 ProductStr(pAC);
4898 printk("%s: %s\n", dev->name, pAC->DeviceStr);
4899
4900 /* Print configuration settings */
4901 printk(" PrefPort:%c RlmtMode:%s\n",
4902 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4903 (pAC->RlmtMode==0) ? "Check Link State" :
4904 ((pAC->RlmtMode==1) ? "Check Link State" :
4905 ((pAC->RlmtMode==3) ? "Check Local Port" :
4906 ((pAC->RlmtMode==7) ? "Check Segmentation" :
4907 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
4908
4909 SkGeYellowLED(pAC, pAC->IoBase, 1);
4910
4911 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
4912 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4913
4914 SkGeProcCreate(dev);
4915
4916 pNet->PortNr = 0;
4917 pNet->NetNr = 0;
4918
4919 boards_found++;
4920
4921 /* More then one port found */
4922 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
4923 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == 0) {
4924 printk(KERN_ERR "Unable to allocate etherdev "
4925 "structure!\n");
4926 goto out;
4927 }
4928
4929 pAC->dev[1] = dev;
4930 pNet = netdev_priv(dev);
4931 pNet->PortNr = 1;
4932 pNet->NetNr = 1;
4933 pNet->pAC = pAC;
4934 pNet->Mtu = 1500;
4935 pNet->Up = 0;
4936
4937 dev->open = &SkGeOpen;
4938 dev->stop = &SkGeClose;
4939 dev->hard_start_xmit = &SkGeXmit;
4940 dev->get_stats = &SkGeStats;
4941 dev->set_multicast_list = &SkGeSetRxMode;
4942 dev->set_mac_address = &SkGeSetMacAddr;
4943 dev->do_ioctl = &SkGeIoctl;
4944 dev->change_mtu = &SkGeChangeMtu;
4945 SET_NETDEV_DEV(dev, &pdev->dev);
4946 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4947
4948 #ifdef SK_ZEROCOPY
4949 #ifdef USE_SK_TX_CHECKSUM
4950 if (pAC->ChipsetType) {
4951 /* SG and ZEROCOPY - fly baby... */
4952 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
4953 }
4954 #endif
4955 #endif
4956
4957 if (register_netdev(dev)) {
4958 printk(KERN_ERR "sk98lin: Could not register device for seconf port.\n");
4959 free_netdev(dev);
4960 pAC->dev[1] = pAC->dev[0];
4961 } else {
4962 SkGeProcCreate(dev);
4963 memcpy(&dev->dev_addr,
4964 &pAC->Addr.Net[1].CurrentMacAddress, 6);
4965 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4966
4967 printk("%s: %s\n", dev->name, pAC->DeviceStr);
4968 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
4969 }
4970 }
4971
4972 /* Save the hardware revision */
4973 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
4974 (pAC->GIni.GIPciHwRev & 0x0F);
4975
4976 /* Set driver globals */
4977 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
4978 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
4979
4980 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
4981 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
4982
4983 pci_set_drvdata(pdev, dev);
4984 return 0;
4985
4986 out_free_resources:
4987 FreeResources(dev);
4988 out_free_netdev:
4989 free_netdev(dev);
4990 out_disable_device:
4991 pci_disable_device(pdev);
4992 out:
4993 return error;
4994 }
4995
4996 static void __devexit skge_remove_one(struct pci_dev *pdev)
4997 {
4998 struct net_device *dev = pci_get_drvdata(pdev);
4999 DEV_NET *pNet = netdev_priv(dev);
5000 SK_AC *pAC = pNet->pAC;
5001 struct net_device *otherdev = pAC->dev[1];
5002
5003 SkGeProcRemove(dev);
5004 unregister_netdev(dev);
5005 if (otherdev != dev)
5006 SkGeProcRemove(otherdev);
5007
5008 SkGeYellowLED(pAC, pAC->IoBase, 0);
5009
5010 if (pAC->BoardLevel == SK_INIT_RUN) {
5011 SK_EVPARA EvPara;
5012 unsigned long Flags;
5013
5014 /* board is still alive */
5015 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5016 EvPara.Para32[0] = 0;
5017 EvPara.Para32[1] = -1;
5018 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5019 EvPara.Para32[0] = 1;
5020 EvPara.Para32[1] = -1;
5021 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5022 SkEventDispatcher(pAC, pAC->IoBase);
5023 /* disable interrupts */
5024 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5025 SkGeDeInit(pAC, pAC->IoBase);
5026 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5027 pAC->BoardLevel = SK_INIT_DATA;
5028 /* We do NOT check here, if IRQ was pending, of course*/
5029 }
5030
5031 if (pAC->BoardLevel == SK_INIT_IO) {
5032 /* board is still alive */
5033 SkGeDeInit(pAC, pAC->IoBase);
5034 pAC->BoardLevel = SK_INIT_DATA;
5035 }
5036
5037 FreeResources(dev);
5038 free_netdev(dev);
5039 if (otherdev != dev)
5040 free_netdev(otherdev);
5041 kfree(pAC);
5042 }
5043
5044 #ifdef CONFIG_PM
5045 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
5046 {
5047 struct net_device *dev = pci_get_drvdata(pdev);
5048 DEV_NET *pNet = netdev_priv(dev);
5049 SK_AC *pAC = pNet->pAC;
5050 struct net_device *otherdev = pAC->dev[1];
5051
5052 if (netif_running(dev)) {
5053 netif_carrier_off(dev);
5054 DoPrintInterfaceChange = SK_FALSE;
5055 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
5056 netif_device_detach(dev);
5057 }
5058 if (otherdev != dev) {
5059 if (netif_running(otherdev)) {
5060 netif_carrier_off(otherdev);
5061 DoPrintInterfaceChange = SK_FALSE;
5062 SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
5063 netif_device_detach(otherdev);
5064 }
5065 }
5066
5067 pci_save_state(pdev);
5068 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
5069 if (pAC->AllocFlag & SK_ALLOC_IRQ) {
5070 free_irq(dev->irq, dev);
5071 }
5072 pci_disable_device(pdev);
5073 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5074
5075 return 0;
5076 }
5077
5078 static int skge_resume(struct pci_dev *pdev)
5079 {
5080 struct net_device *dev = pci_get_drvdata(pdev);
5081 DEV_NET *pNet = netdev_priv(dev);
5082 SK_AC *pAC = pNet->pAC;
5083 struct net_device *otherdev = pAC->dev[1];
5084 int ret;
5085
5086 pci_set_power_state(pdev, PCI_D0);
5087 pci_restore_state(pdev);
5088 pci_enable_device(pdev);
5089 pci_set_master(pdev);
5090 if (pAC->GIni.GIMacsFound == 2)
5091 ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
5092 else
5093 ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ, pAC->Name, dev);
5094 if (ret) {
5095 printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
5096 pAC->AllocFlag &= ~SK_ALLOC_IRQ;
5097 dev->irq = 0;
5098 pci_disable_device(pdev);
5099 return -EBUSY;
5100 }
5101
5102 netif_device_attach(dev);
5103 if (netif_running(dev)) {
5104 DoPrintInterfaceChange = SK_FALSE;
5105 SkDrvInitAdapter(pAC, 0); /* first device */
5106 }
5107 if (otherdev != dev) {
5108 netif_device_attach(otherdev);
5109 if (netif_running(otherdev)) {
5110 DoPrintInterfaceChange = SK_FALSE;
5111 SkDrvInitAdapter(pAC, 1); /* second device */
5112 }
5113 }
5114
5115 return 0;
5116 }
5117 #else
5118 #define skge_suspend NULL
5119 #define skge_resume NULL
5120 #endif
5121
5122 static struct pci_device_id skge_pci_tbl[] = {
5123 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5124 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5125 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5126 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5127 /* DLink card does not have valid VPD so this driver gags
5128 * { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5129 */
5130 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5131 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5132 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5133 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
5134 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5135 { 0 }
5136 };
5137
5138 MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5139
5140 static struct pci_driver skge_driver = {
5141 .name = "sk98lin",
5142 .id_table = skge_pci_tbl,
5143 .probe = skge_probe_one,
5144 .remove = __devexit_p(skge_remove_one),
5145 .suspend = skge_suspend,
5146 .resume = skge_resume,
5147 };
5148
5149 static int __init skge_init(void)
5150 {
5151 int error;
5152
5153 pSkRootDir = proc_mkdir(SKRootName, NULL);
5154 if (pSkRootDir)
5155 pSkRootDir->owner = THIS_MODULE;
5156
5157 error = pci_register_driver(&skge_driver);
5158 if (error)
5159 remove_proc_entry(SKRootName, NULL);
5160 return error;
5161 }
5162
5163 static void __exit skge_exit(void)
5164 {
5165 pci_unregister_driver(&skge_driver);
5166 remove_proc_entry(SKRootName, NULL);
5167
5168 }
5169
5170 module_init(skge_init);
5171 module_exit(skge_exit);
This page took 0.186001 seconds and 5 git commands to generate.