Merge branch 'upstream-fixes'
[deliverable/linux.git] / drivers / net / sk98lin / skge.c
1 /******************************************************************************
2 *
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
8 *
9 ******************************************************************************/
10
11 /******************************************************************************
12 *
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
15 *
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
18 *
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
23 *
24 * Address all question to: linux@syskonnect.de
25 *
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * The information in this file is provided "AS IS" without warranty.
36 *
37 ******************************************************************************/
38
39 /******************************************************************************
40 *
41 * Possible compiler options (#define xxx / -Dxxx):
42 *
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
45 *
46 ******************************************************************************/
47
48 /******************************************************************************
49 *
50 * Description:
51 *
52 * This is the main module of the Linux GE driver.
53 *
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
61 *
62 * Include file hierarchy:
63 *
64 * <linux/module.h>
65 *
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
86 *
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
92 *
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skrlmt.h"
105 *
106 ******************************************************************************/
107
108 #include "h/skversion.h"
109
110 #include <linux/module.h>
111 #include <linux/moduleparam.h>
112 #include <linux/init.h>
113 #include <linux/dma-mapping.h>
114 #include <linux/ip.h>
115
116 #include "h/skdrv1st.h"
117 #include "h/skdrv2nd.h"
118
119 /*******************************************************************************
120 *
121 * Defines
122 *
123 ******************************************************************************/
124
125 /* for debuging on x86 only */
126 /* #define BREAKPOINT() asm(" int $3"); */
127
128 /* use the transmit hw checksum driver functionality */
129 #define USE_SK_TX_CHECKSUM
130
131 /* use the receive hw checksum driver functionality */
132 #define USE_SK_RX_CHECKSUM
133
134 /* use the scatter-gather functionality with sendfile() */
135 #define SK_ZEROCOPY
136
137 /* use of a transmit complete interrupt */
138 #define USE_TX_COMPLETE
139
140 /*
141 * threshold for copying small receive frames
142 * set to 0 to avoid copying, set to 9001 to copy all frames
143 */
144 #define SK_COPY_THRESHOLD 50
145
146 /* number of adapters that can be configured via command line params */
147 #define SK_MAX_CARD_PARAM 16
148
149
150
151 /*
152 * use those defines for a compile-in version of the driver instead
153 * of command line parameters
154 */
155 // #define LINK_SPEED_A {"Auto", }
156 // #define LINK_SPEED_B {"Auto", }
157 // #define AUTO_NEG_A {"Sense", }
158 // #define AUTO_NEG_B {"Sense", }
159 // #define DUP_CAP_A {"Both", }
160 // #define DUP_CAP_B {"Both", }
161 // #define FLOW_CTRL_A {"SymOrRem", }
162 // #define FLOW_CTRL_B {"SymOrRem", }
163 // #define ROLE_A {"Auto", }
164 // #define ROLE_B {"Auto", }
165 // #define PREF_PORT {"A", }
166 // #define CON_TYPE {"Auto", }
167 // #define RLMT_MODE {"CheckLinkState", }
168
169 #define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
170 #define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
171 #define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
172
173
174 /* Set blink mode*/
175 #define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
176 SK_DUP_LED_NORMAL | \
177 SK_LED_LINK100_ON)
178
179
180 /* Isr return value */
181 #define SkIsrRetVar irqreturn_t
182 #define SkIsrRetNone IRQ_NONE
183 #define SkIsrRetHandled IRQ_HANDLED
184
185
186 /*******************************************************************************
187 *
188 * Local Function Prototypes
189 *
190 ******************************************************************************/
191
192 static void FreeResources(struct SK_NET_DEVICE *dev);
193 static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
194 static SK_BOOL BoardAllocMem(SK_AC *pAC);
195 static void BoardFreeMem(SK_AC *pAC);
196 static void BoardInitMem(SK_AC *pAC);
197 static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
198 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
199 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
200 static int SkGeOpen(struct SK_NET_DEVICE *dev);
201 static int SkGeClose(struct SK_NET_DEVICE *dev);
202 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
203 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
204 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
205 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
206 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
207 static void GetConfiguration(SK_AC*);
208 static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
209 static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
210 static void FillRxRing(SK_AC*, RX_PORT*);
211 static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
212 static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
213 static void ClearAndStartRx(SK_AC*, int);
214 static void ClearTxIrq(SK_AC*, int, int);
215 static void ClearRxRing(SK_AC*, RX_PORT*);
216 static void ClearTxRing(SK_AC*, TX_PORT*);
217 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
218 static void PortReInitBmu(SK_AC*, int);
219 static int SkGeIocMib(DEV_NET*, unsigned int, int);
220 static int SkGeInitPCI(SK_AC *pAC);
221 static void StartDrvCleanupTimer(SK_AC *pAC);
222 static void StopDrvCleanupTimer(SK_AC *pAC);
223 static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
224
225 #ifdef SK_DIAG_SUPPORT
226 static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
227 static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
228 static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
229 #endif
230
231 /*******************************************************************************
232 *
233 * Extern Function Prototypes
234 *
235 ******************************************************************************/
236 extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
237 extern void SkDimDisplayModerationSettings(SK_AC *pAC);
238 extern void SkDimStartModerationTimer(SK_AC *pAC);
239 extern void SkDimModerate(SK_AC *pAC);
240 extern void SkGeBlinkTimer(unsigned long data);
241
242 #ifdef DEBUG
243 static void DumpMsg(struct sk_buff*, char*);
244 static void DumpData(char*, int);
245 static void DumpLong(char*, int);
246 #endif
247
248 /* global variables *********************************************************/
249 static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
250 extern struct ethtool_ops SkGeEthtoolOps;
251
252 /* local variables **********************************************************/
253 static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
254 static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
255
256 /*****************************************************************************
257 *
258 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
259 *
260 * Description:
261 * This routine writes a 32 bit value to the pci configuration
262 * space.
263 *
264 * Returns:
265 * 0 - indicate everything worked ok.
266 * != 0 - error indication
267 */
268 static inline int SkPciWriteCfgDWord(
269 SK_AC *pAC, /* Adapter Control structure pointer */
270 int PciAddr, /* PCI register address */
271 SK_U32 Val) /* pointer to store the read value */
272 {
273 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
274 return(0);
275 } /* SkPciWriteCfgDWord */
276
277 /*****************************************************************************
278 *
279 * SkGeInitPCI - Init the PCI resources
280 *
281 * Description:
282 * This function initialize the PCI resources and IO
283 *
284 * Returns: N/A
285 *
286 */
287 int SkGeInitPCI(SK_AC *pAC)
288 {
289 struct SK_NET_DEVICE *dev = pAC->dev[0];
290 struct pci_dev *pdev = pAC->PciDev;
291 int retval;
292
293 if (pci_enable_device(pdev) != 0) {
294 return 1;
295 }
296
297 dev->mem_start = pci_resource_start (pdev, 0);
298 pci_set_master(pdev);
299
300 if (pci_request_regions(pdev, "sk98lin") != 0) {
301 retval = 2;
302 goto out_disable;
303 }
304
305 #ifdef SK_BIG_ENDIAN
306 /*
307 * On big endian machines, we use the adapter's aibility of
308 * reading the descriptors as big endian.
309 */
310 {
311 SK_U32 our2;
312 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
313 our2 |= PCI_REV_DESC;
314 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
315 }
316 #endif
317
318 /*
319 * Remap the regs into kernel space.
320 */
321 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
322
323 if (!pAC->IoBase){
324 retval = 3;
325 goto out_release;
326 }
327
328 return 0;
329
330 out_release:
331 pci_release_regions(pdev);
332 out_disable:
333 pci_disable_device(pdev);
334 return retval;
335 }
336
337
338 /*****************************************************************************
339 *
340 * FreeResources - release resources allocated for adapter
341 *
342 * Description:
343 * This function releases the IRQ, unmaps the IO and
344 * frees the desriptor ring.
345 *
346 * Returns: N/A
347 *
348 */
349 static void FreeResources(struct SK_NET_DEVICE *dev)
350 {
351 SK_U32 AllocFlag;
352 DEV_NET *pNet;
353 SK_AC *pAC;
354
355 pNet = netdev_priv(dev);
356 pAC = pNet->pAC;
357 AllocFlag = pAC->AllocFlag;
358 if (pAC->PciDev) {
359 pci_release_regions(pAC->PciDev);
360 }
361 if (AllocFlag & SK_ALLOC_IRQ) {
362 free_irq(dev->irq, dev);
363 }
364 if (pAC->IoBase) {
365 iounmap(pAC->IoBase);
366 }
367 if (pAC->pDescrMem) {
368 BoardFreeMem(pAC);
369 }
370
371 } /* FreeResources */
372
373 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
374 MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
375 MODULE_LICENSE("GPL");
376
377 #ifdef LINK_SPEED_A
378 static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
379 #else
380 static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
381 #endif
382
383 #ifdef LINK_SPEED_B
384 static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
385 #else
386 static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
387 #endif
388
389 #ifdef AUTO_NEG_A
390 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
391 #else
392 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
393 #endif
394
395 #ifdef DUP_CAP_A
396 static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
397 #else
398 static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
399 #endif
400
401 #ifdef FLOW_CTRL_A
402 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
403 #else
404 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
405 #endif
406
407 #ifdef ROLE_A
408 static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
409 #else
410 static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
411 #endif
412
413 #ifdef AUTO_NEG_B
414 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
415 #else
416 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
417 #endif
418
419 #ifdef DUP_CAP_B
420 static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
421 #else
422 static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
423 #endif
424
425 #ifdef FLOW_CTRL_B
426 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
427 #else
428 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
429 #endif
430
431 #ifdef ROLE_B
432 static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
433 #else
434 static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
435 #endif
436
437 #ifdef CON_TYPE
438 static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
439 #else
440 static char *ConType[SK_MAX_CARD_PARAM] = {"", };
441 #endif
442
443 #ifdef PREF_PORT
444 static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
445 #else
446 static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
447 #endif
448
449 #ifdef RLMT_MODE
450 static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
451 #else
452 static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
453 #endif
454
455 static int IntsPerSec[SK_MAX_CARD_PARAM];
456 static char *Moderation[SK_MAX_CARD_PARAM];
457 static char *ModerationMask[SK_MAX_CARD_PARAM];
458 static char *AutoSizing[SK_MAX_CARD_PARAM];
459 static char *Stats[SK_MAX_CARD_PARAM];
460
461 module_param_array(Speed_A, charp, NULL, 0);
462 module_param_array(Speed_B, charp, NULL, 0);
463 module_param_array(AutoNeg_A, charp, NULL, 0);
464 module_param_array(AutoNeg_B, charp, NULL, 0);
465 module_param_array(DupCap_A, charp, NULL, 0);
466 module_param_array(DupCap_B, charp, NULL, 0);
467 module_param_array(FlowCtrl_A, charp, NULL, 0);
468 module_param_array(FlowCtrl_B, charp, NULL, 0);
469 module_param_array(Role_A, charp, NULL, 0);
470 module_param_array(Role_B, charp, NULL, 0);
471 module_param_array(ConType, charp, NULL, 0);
472 module_param_array(PrefPort, charp, NULL, 0);
473 module_param_array(RlmtMode, charp, NULL, 0);
474 /* used for interrupt moderation */
475 module_param_array(IntsPerSec, int, NULL, 0);
476 module_param_array(Moderation, charp, NULL, 0);
477 module_param_array(Stats, charp, NULL, 0);
478 module_param_array(ModerationMask, charp, NULL, 0);
479 module_param_array(AutoSizing, charp, NULL, 0);
480
481 /*****************************************************************************
482 *
483 * SkGeBoardInit - do level 0 and 1 initialization
484 *
485 * Description:
486 * This function prepares the board hardware for running. The desriptor
487 * ring is set up, the IRQ is allocated and the configuration settings
488 * are examined.
489 *
490 * Returns:
491 * 0, if everything is ok
492 * !=0, on error
493 */
494 static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
495 {
496 short i;
497 unsigned long Flags;
498 char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
499 char *VerStr = VER_STRING;
500 int Ret; /* return code of request_irq */
501 SK_BOOL DualNet;
502
503 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
504 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
505 for (i=0; i<SK_MAX_MACS; i++) {
506 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
507 pAC->TxPort[i][0].PortIndex = i;
508 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
509 pAC->RxPort[i].PortIndex = i;
510 }
511
512 /* Initialize the mutexes */
513 for (i=0; i<SK_MAX_MACS; i++) {
514 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
515 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
516 }
517 spin_lock_init(&pAC->SlowPathLock);
518
519 /* setup phy_id blink timer */
520 pAC->BlinkTimer.function = SkGeBlinkTimer;
521 pAC->BlinkTimer.data = (unsigned long) dev;
522 init_timer(&pAC->BlinkTimer);
523
524 /* level 0 init common modules here */
525
526 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
527 /* Does a RESET on board ...*/
528 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
529 printk("HWInit (0) failed.\n");
530 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
531 return(-EAGAIN);
532 }
533 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
534 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
535 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
536 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
537 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
538 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
539
540 pAC->BoardLevel = SK_INIT_DATA;
541 pAC->RxBufSize = ETH_BUF_SIZE;
542
543 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
544 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
545
546 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
547
548 /* level 1 init common modules here (HW init) */
549 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
550 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
551 printk("sk98lin: HWInit (1) failed.\n");
552 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
553 return(-EAGAIN);
554 }
555 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
556 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
557 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
558 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
559 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
560 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
561
562 /* Set chipset type support */
563 pAC->ChipsetType = 0;
564 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
565 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
566 pAC->ChipsetType = 1;
567 }
568
569 GetConfiguration(pAC);
570 if (pAC->RlmtNets == 2) {
571 pAC->GIni.GIPortUsage = SK_MUL_LINK;
572 }
573
574 pAC->BoardLevel = SK_INIT_IO;
575 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
576
577 if (pAC->GIni.GIMacsFound == 2) {
578 Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, "sk98lin", dev);
579 } else if (pAC->GIni.GIMacsFound == 1) {
580 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
581 "sk98lin", dev);
582 } else {
583 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
584 pAC->GIni.GIMacsFound);
585 return -EAGAIN;
586 }
587
588 if (Ret) {
589 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
590 dev->irq);
591 return -EAGAIN;
592 }
593 pAC->AllocFlag |= SK_ALLOC_IRQ;
594
595 /* Alloc memory for this board (Mem for RxD/TxD) : */
596 if(!BoardAllocMem(pAC)) {
597 printk("No memory for descriptor rings.\n");
598 return(-EAGAIN);
599 }
600
601 BoardInitMem(pAC);
602 /* tschilling: New common function with minimum size check. */
603 DualNet = SK_FALSE;
604 if (pAC->RlmtNets == 2) {
605 DualNet = SK_TRUE;
606 }
607
608 if (SkGeInitAssignRamToQueues(
609 pAC,
610 pAC->ActivePort,
611 DualNet)) {
612 BoardFreeMem(pAC);
613 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
614 return(-EAGAIN);
615 }
616
617 return (0);
618 } /* SkGeBoardInit */
619
620
621 /*****************************************************************************
622 *
623 * BoardAllocMem - allocate the memory for the descriptor rings
624 *
625 * Description:
626 * This function allocates the memory for all descriptor rings.
627 * Each ring is aligned for the desriptor alignment and no ring
628 * has a 4 GByte boundary in it (because the upper 32 bit must
629 * be constant for all descriptiors in one rings).
630 *
631 * Returns:
632 * SK_TRUE, if all memory could be allocated
633 * SK_FALSE, if not
634 */
635 static SK_BOOL BoardAllocMem(
636 SK_AC *pAC)
637 {
638 caddr_t pDescrMem; /* pointer to descriptor memory area */
639 size_t AllocLength; /* length of complete descriptor area */
640 int i; /* loop counter */
641 unsigned long BusAddr;
642
643
644 /* rings plus one for alignment (do not cross 4 GB boundary) */
645 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
646 #if (BITS_PER_LONG == 32)
647 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
648 #else
649 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
650 + RX_RING_SIZE + 8;
651 #endif
652
653 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
654 &pAC->pDescrMemDMA);
655
656 if (pDescrMem == NULL) {
657 return (SK_FALSE);
658 }
659 pAC->pDescrMem = pDescrMem;
660 BusAddr = (unsigned long) pAC->pDescrMemDMA;
661
662 /* Descriptors need 8 byte alignment, and this is ensured
663 * by pci_alloc_consistent.
664 */
665 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
666 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
667 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
668 i, (unsigned long) pDescrMem,
669 BusAddr));
670 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
671 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
672 pDescrMem += TX_RING_SIZE;
673 BusAddr += TX_RING_SIZE;
674
675 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
676 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
677 i, (unsigned long) pDescrMem,
678 (unsigned long)BusAddr));
679 pAC->RxPort[i].pRxDescrRing = pDescrMem;
680 pAC->RxPort[i].VRxDescrRing = BusAddr;
681 pDescrMem += RX_RING_SIZE;
682 BusAddr += RX_RING_SIZE;
683 } /* for */
684
685 return (SK_TRUE);
686 } /* BoardAllocMem */
687
688
689 /****************************************************************************
690 *
691 * BoardFreeMem - reverse of BoardAllocMem
692 *
693 * Description:
694 * Free all memory allocated in BoardAllocMem: adapter context,
695 * descriptor rings, locks.
696 *
697 * Returns: N/A
698 */
699 static void BoardFreeMem(
700 SK_AC *pAC)
701 {
702 size_t AllocLength; /* length of complete descriptor area */
703
704 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
705 ("BoardFreeMem\n"));
706 #if (BITS_PER_LONG == 32)
707 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
708 #else
709 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
710 + RX_RING_SIZE + 8;
711 #endif
712
713 pci_free_consistent(pAC->PciDev, AllocLength,
714 pAC->pDescrMem, pAC->pDescrMemDMA);
715 pAC->pDescrMem = NULL;
716 } /* BoardFreeMem */
717
718
719 /*****************************************************************************
720 *
721 * BoardInitMem - initiate the descriptor rings
722 *
723 * Description:
724 * This function sets the descriptor rings up in memory.
725 * The adapter is initialized with the descriptor start addresses.
726 *
727 * Returns: N/A
728 */
729 static void BoardInitMem(
730 SK_AC *pAC) /* pointer to adapter context */
731 {
732 int i; /* loop counter */
733 int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
734 int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
735
736 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
737 ("BoardInitMem\n"));
738
739 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
740 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
741 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
742 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
743
744 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
745 SetupRing(
746 pAC,
747 pAC->TxPort[i][0].pTxDescrRing,
748 pAC->TxPort[i][0].VTxDescrRing,
749 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
750 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
751 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
752 &pAC->TxPort[i][0].TxdRingFree,
753 SK_TRUE);
754 SetupRing(
755 pAC,
756 pAC->RxPort[i].pRxDescrRing,
757 pAC->RxPort[i].VRxDescrRing,
758 &pAC->RxPort[i].pRxdRingHead,
759 &pAC->RxPort[i].pRxdRingTail,
760 &pAC->RxPort[i].pRxdRingPrev,
761 &pAC->RxPort[i].RxdRingFree,
762 SK_FALSE);
763 }
764 } /* BoardInitMem */
765
766
767 /*****************************************************************************
768 *
769 * SetupRing - create one descriptor ring
770 *
771 * Description:
772 * This function creates one descriptor ring in the given memory area.
773 * The head, tail and number of free descriptors in the ring are set.
774 *
775 * Returns:
776 * none
777 */
778 static void SetupRing(
779 SK_AC *pAC,
780 void *pMemArea, /* a pointer to the memory area for the ring */
781 uintptr_t VMemArea, /* the virtual bus address of the memory area */
782 RXD **ppRingHead, /* address where the head should be written */
783 RXD **ppRingTail, /* address where the tail should be written */
784 RXD **ppRingPrev, /* address where the tail should be written */
785 int *pRingFree, /* address where the # of free descr. goes */
786 SK_BOOL IsTx) /* flag: is this a tx ring */
787 {
788 int i; /* loop counter */
789 int DescrSize; /* the size of a descriptor rounded up to alignment*/
790 int DescrNum; /* number of descriptors per ring */
791 RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
792 RXD *pNextDescr; /* pointer to the next descriptor */
793 RXD *pPrevDescr; /* pointer to the previous descriptor */
794 uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
795
796 if (IsTx == SK_TRUE) {
797 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
798 DESCR_ALIGN;
799 DescrNum = TX_RING_SIZE / DescrSize;
800 } else {
801 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
802 DESCR_ALIGN;
803 DescrNum = RX_RING_SIZE / DescrSize;
804 }
805
806 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
807 ("Descriptor size: %d Descriptor Number: %d\n",
808 DescrSize,DescrNum));
809
810 pDescr = (RXD*) pMemArea;
811 pPrevDescr = NULL;
812 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
813 VNextDescr = VMemArea + DescrSize;
814 for(i=0; i<DescrNum; i++) {
815 /* set the pointers right */
816 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
817 pDescr->pNextRxd = pNextDescr;
818 if (!IsTx) pDescr->TcpSumStarts = ETH_HLEN << 16 | ETH_HLEN;
819
820 /* advance one step */
821 pPrevDescr = pDescr;
822 pDescr = pNextDescr;
823 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
824 VNextDescr += DescrSize;
825 }
826 pPrevDescr->pNextRxd = (RXD*) pMemArea;
827 pPrevDescr->VNextRxd = VMemArea;
828 pDescr = (RXD*) pMemArea;
829 *ppRingHead = (RXD*) pMemArea;
830 *ppRingTail = *ppRingHead;
831 *ppRingPrev = pPrevDescr;
832 *pRingFree = DescrNum;
833 } /* SetupRing */
834
835
836 /*****************************************************************************
837 *
838 * PortReInitBmu - re-initiate the descriptor rings for one port
839 *
840 * Description:
841 * This function reinitializes the descriptor rings of one port
842 * in memory. The port must be stopped before.
843 * The HW is initialized with the descriptor start addresses.
844 *
845 * Returns:
846 * none
847 */
848 static void PortReInitBmu(
849 SK_AC *pAC, /* pointer to adapter context */
850 int PortIndex) /* index of the port for which to re-init */
851 {
852 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
853 ("PortReInitBmu "));
854
855 /* set address of first descriptor of ring in BMU */
856 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
857 (uint32_t)(((caddr_t)
858 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
859 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
860 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
861 0xFFFFFFFF));
862 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
863 (uint32_t)(((caddr_t)
864 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
865 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
866 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
867 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
868 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
869 pAC->RxPort[PortIndex].pRxDescrRing +
870 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
871 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
872 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
873 pAC->RxPort[PortIndex].pRxDescrRing +
874 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
875 } /* PortReInitBmu */
876
877
878 /****************************************************************************
879 *
880 * SkGeIsr - handle adapter interrupts
881 *
882 * Description:
883 * The interrupt routine is called when the network adapter
884 * generates an interrupt. It may also be called if another device
885 * shares this interrupt vector with the driver.
886 *
887 * Returns: N/A
888 *
889 */
890 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
891 {
892 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
893 DEV_NET *pNet;
894 SK_AC *pAC;
895 SK_U32 IntSrc; /* interrupts source register contents */
896
897 pNet = netdev_priv(dev);
898 pAC = pNet->pAC;
899
900 /*
901 * Check and process if its our interrupt
902 */
903 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
904 if (IntSrc == 0) {
905 return SkIsrRetNone;
906 }
907
908 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
909 #if 0 /* software irq currently not used */
910 if (IntSrc & IS_IRQ_SW) {
911 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
912 SK_DBGCAT_DRV_INT_SRC,
913 ("Software IRQ\n"));
914 }
915 #endif
916 if (IntSrc & IS_R1_F) {
917 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
918 SK_DBGCAT_DRV_INT_SRC,
919 ("EOF RX1 IRQ\n"));
920 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
921 SK_PNMI_CNT_RX_INTR(pAC, 0);
922 }
923 if (IntSrc & IS_R2_F) {
924 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
925 SK_DBGCAT_DRV_INT_SRC,
926 ("EOF RX2 IRQ\n"));
927 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
928 SK_PNMI_CNT_RX_INTR(pAC, 1);
929 }
930 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
931 if (IntSrc & IS_XA1_F) {
932 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
933 SK_DBGCAT_DRV_INT_SRC,
934 ("EOF AS TX1 IRQ\n"));
935 SK_PNMI_CNT_TX_INTR(pAC, 0);
936 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
937 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
938 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
939 }
940 if (IntSrc & IS_XA2_F) {
941 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
942 SK_DBGCAT_DRV_INT_SRC,
943 ("EOF AS TX2 IRQ\n"));
944 SK_PNMI_CNT_TX_INTR(pAC, 1);
945 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
946 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
947 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
948 }
949 #if 0 /* only if sync. queues used */
950 if (IntSrc & IS_XS1_F) {
951 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
952 SK_DBGCAT_DRV_INT_SRC,
953 ("EOF SY TX1 IRQ\n"));
954 SK_PNMI_CNT_TX_INTR(pAC, 1);
955 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
956 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
957 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
958 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
959 }
960 if (IntSrc & IS_XS2_F) {
961 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
962 SK_DBGCAT_DRV_INT_SRC,
963 ("EOF SY TX2 IRQ\n"));
964 SK_PNMI_CNT_TX_INTR(pAC, 1);
965 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
966 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
967 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
968 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
969 }
970 #endif
971 #endif
972
973 /* do all IO at once */
974 if (IntSrc & IS_R1_F)
975 ClearAndStartRx(pAC, 0);
976 if (IntSrc & IS_R2_F)
977 ClearAndStartRx(pAC, 1);
978 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
979 if (IntSrc & IS_XA1_F)
980 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
981 if (IntSrc & IS_XA2_F)
982 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
983 #endif
984 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
985 } /* while (IntSrc & IRQ_MASK != 0) */
986
987 IntSrc &= pAC->GIni.GIValIrqMask;
988 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
989 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
990 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
991 pAC->CheckQueue = SK_FALSE;
992 spin_lock(&pAC->SlowPathLock);
993 if (IntSrc & SPECIAL_IRQS)
994 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
995
996 SkEventDispatcher(pAC, pAC->IoBase);
997 spin_unlock(&pAC->SlowPathLock);
998 }
999 /*
1000 * do it all again is case we cleared an interrupt that
1001 * came in after handling the ring (OUTs may be delayed
1002 * in hardware buffers, but are through after IN)
1003 *
1004 * rroesler: has been commented out and shifted to
1005 * SkGeDrvEvent(), because it is timer
1006 * guarded now
1007 *
1008 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1009 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1010 */
1011
1012 if (pAC->CheckQueue) {
1013 pAC->CheckQueue = SK_FALSE;
1014 spin_lock(&pAC->SlowPathLock);
1015 SkEventDispatcher(pAC, pAC->IoBase);
1016 spin_unlock(&pAC->SlowPathLock);
1017 }
1018
1019 /* IRQ is processed - Enable IRQs again*/
1020 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1021
1022 return SkIsrRetHandled;
1023 } /* SkGeIsr */
1024
1025
1026 /****************************************************************************
1027 *
1028 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1029 *
1030 * Description:
1031 * The interrupt routine is called when the network adapter
1032 * generates an interrupt. It may also be called if another device
1033 * shares this interrupt vector with the driver.
1034 * This is the same as above, but handles only one port.
1035 *
1036 * Returns: N/A
1037 *
1038 */
1039 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1040 {
1041 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1042 DEV_NET *pNet;
1043 SK_AC *pAC;
1044 SK_U32 IntSrc; /* interrupts source register contents */
1045
1046 pNet = netdev_priv(dev);
1047 pAC = pNet->pAC;
1048
1049 /*
1050 * Check and process if its our interrupt
1051 */
1052 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1053 if (IntSrc == 0) {
1054 return SkIsrRetNone;
1055 }
1056
1057 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1058 #if 0 /* software irq currently not used */
1059 if (IntSrc & IS_IRQ_SW) {
1060 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1061 SK_DBGCAT_DRV_INT_SRC,
1062 ("Software IRQ\n"));
1063 }
1064 #endif
1065 if (IntSrc & IS_R1_F) {
1066 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1067 SK_DBGCAT_DRV_INT_SRC,
1068 ("EOF RX1 IRQ\n"));
1069 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1070 SK_PNMI_CNT_RX_INTR(pAC, 0);
1071 }
1072 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1073 if (IntSrc & IS_XA1_F) {
1074 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1075 SK_DBGCAT_DRV_INT_SRC,
1076 ("EOF AS TX1 IRQ\n"));
1077 SK_PNMI_CNT_TX_INTR(pAC, 0);
1078 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1079 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1080 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1081 }
1082 #if 0 /* only if sync. queues used */
1083 if (IntSrc & IS_XS1_F) {
1084 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1085 SK_DBGCAT_DRV_INT_SRC,
1086 ("EOF SY TX1 IRQ\n"));
1087 SK_PNMI_CNT_TX_INTR(pAC, 0);
1088 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1089 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1090 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1091 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1092 }
1093 #endif
1094 #endif
1095
1096 /* do all IO at once */
1097 if (IntSrc & IS_R1_F)
1098 ClearAndStartRx(pAC, 0);
1099 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1100 if (IntSrc & IS_XA1_F)
1101 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1102 #endif
1103 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1104 } /* while (IntSrc & IRQ_MASK != 0) */
1105
1106 IntSrc &= pAC->GIni.GIValIrqMask;
1107 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1108 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1109 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1110 pAC->CheckQueue = SK_FALSE;
1111 spin_lock(&pAC->SlowPathLock);
1112 if (IntSrc & SPECIAL_IRQS)
1113 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1114
1115 SkEventDispatcher(pAC, pAC->IoBase);
1116 spin_unlock(&pAC->SlowPathLock);
1117 }
1118 /*
1119 * do it all again is case we cleared an interrupt that
1120 * came in after handling the ring (OUTs may be delayed
1121 * in hardware buffers, but are through after IN)
1122 *
1123 * rroesler: has been commented out and shifted to
1124 * SkGeDrvEvent(), because it is timer
1125 * guarded now
1126 *
1127 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1128 */
1129
1130 /* IRQ is processed - Enable IRQs again*/
1131 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1132
1133 return SkIsrRetHandled;
1134 } /* SkGeIsrOnePort */
1135
1136 #ifdef CONFIG_NET_POLL_CONTROLLER
1137 /****************************************************************************
1138 *
1139 * SkGePollController - polling receive, for netconsole
1140 *
1141 * Description:
1142 * Polling receive - used by netconsole and other diagnostic tools
1143 * to allow network i/o with interrupts disabled.
1144 *
1145 * Returns: N/A
1146 */
1147 static void SkGePollController(struct net_device *dev)
1148 {
1149 disable_irq(dev->irq);
1150 SkGeIsr(dev->irq, dev, NULL);
1151 enable_irq(dev->irq);
1152 }
1153 #endif
1154
1155 /****************************************************************************
1156 *
1157 * SkGeOpen - handle start of initialized adapter
1158 *
1159 * Description:
1160 * This function starts the initialized adapter.
1161 * The board level variable is set and the adapter is
1162 * brought to full functionality.
1163 * The device flags are set for operation.
1164 * Do all necessary level 2 initialization, enable interrupts and
1165 * give start command to RLMT.
1166 *
1167 * Returns:
1168 * 0 on success
1169 * != 0 on error
1170 */
1171 static int SkGeOpen(
1172 struct SK_NET_DEVICE *dev)
1173 {
1174 DEV_NET *pNet;
1175 SK_AC *pAC;
1176 unsigned long Flags; /* for spin lock */
1177 int i;
1178 SK_EVPARA EvPara; /* an event parameter union */
1179
1180 pNet = netdev_priv(dev);
1181 pAC = pNet->pAC;
1182
1183 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1184 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1185
1186 #ifdef SK_DIAG_SUPPORT
1187 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1188 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1189 return (-1); /* still in use by diag; deny actions */
1190 }
1191 }
1192 #endif
1193
1194 /* Set blink mode */
1195 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1196 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1197
1198 if (pAC->BoardLevel == SK_INIT_DATA) {
1199 /* level 1 init common modules here */
1200 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1201 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1202 return (-1);
1203 }
1204 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1205 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1206 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1207 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1208 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1209 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1210 pAC->BoardLevel = SK_INIT_IO;
1211 }
1212
1213 if (pAC->BoardLevel != SK_INIT_RUN) {
1214 /* tschilling: Level 2 init modules here, check return value. */
1215 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1216 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1217 return (-1);
1218 }
1219 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1220 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1221 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1222 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1223 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1224 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1225 pAC->BoardLevel = SK_INIT_RUN;
1226 }
1227
1228 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1229 /* Enable transmit descriptor polling. */
1230 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1231 FillRxRing(pAC, &pAC->RxPort[i]);
1232 }
1233 SkGeYellowLED(pAC, pAC->IoBase, 1);
1234
1235 StartDrvCleanupTimer(pAC);
1236 SkDimEnableModerationIfNeeded(pAC);
1237 SkDimDisplayModerationSettings(pAC);
1238
1239 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1240
1241 /* enable Interrupts */
1242 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1243 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1244
1245 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1246
1247 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1248 EvPara.Para32[0] = pAC->RlmtNets;
1249 EvPara.Para32[1] = -1;
1250 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1251 EvPara);
1252 EvPara.Para32[0] = pAC->RlmtMode;
1253 EvPara.Para32[1] = 0;
1254 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1255 EvPara);
1256 }
1257
1258 EvPara.Para32[0] = pNet->NetNr;
1259 EvPara.Para32[1] = -1;
1260 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1261 SkEventDispatcher(pAC, pAC->IoBase);
1262 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1263
1264 pAC->MaxPorts++;
1265
1266
1267 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1268 ("SkGeOpen suceeded\n"));
1269
1270 return (0);
1271 } /* SkGeOpen */
1272
1273
1274 /****************************************************************************
1275 *
1276 * SkGeClose - Stop initialized adapter
1277 *
1278 * Description:
1279 * Close initialized adapter.
1280 *
1281 * Returns:
1282 * 0 - on success
1283 * error code - on error
1284 */
1285 static int SkGeClose(
1286 struct SK_NET_DEVICE *dev)
1287 {
1288 DEV_NET *pNet;
1289 DEV_NET *newPtrNet;
1290 SK_AC *pAC;
1291
1292 unsigned long Flags; /* for spin lock */
1293 int i;
1294 int PortIdx;
1295 SK_EVPARA EvPara;
1296
1297 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1298 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1299
1300 pNet = netdev_priv(dev);
1301 pAC = pNet->pAC;
1302
1303 #ifdef SK_DIAG_SUPPORT
1304 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1305 if (pAC->DiagFlowCtrl == SK_FALSE) {
1306 /*
1307 ** notify that the interface which has been closed
1308 ** by operator interaction must not be started up
1309 ** again when the DIAG has finished.
1310 */
1311 newPtrNet = netdev_priv(pAC->dev[0]);
1312 if (newPtrNet == pNet) {
1313 pAC->WasIfUp[0] = SK_FALSE;
1314 } else {
1315 pAC->WasIfUp[1] = SK_FALSE;
1316 }
1317 return 0; /* return to system everything is fine... */
1318 } else {
1319 pAC->DiagFlowCtrl = SK_FALSE;
1320 }
1321 }
1322 #endif
1323
1324 netif_stop_queue(dev);
1325
1326 if (pAC->RlmtNets == 1)
1327 PortIdx = pAC->ActivePort;
1328 else
1329 PortIdx = pNet->NetNr;
1330
1331 StopDrvCleanupTimer(pAC);
1332
1333 /*
1334 * Clear multicast table, promiscuous mode ....
1335 */
1336 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1337 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1338 SK_PROM_MODE_NONE);
1339
1340 if (pAC->MaxPorts == 1) {
1341 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1342 /* disable interrupts */
1343 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1344 EvPara.Para32[0] = pNet->NetNr;
1345 EvPara.Para32[1] = -1;
1346 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1347 SkEventDispatcher(pAC, pAC->IoBase);
1348 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1349 /* stop the hardware */
1350 SkGeDeInit(pAC, pAC->IoBase);
1351 pAC->BoardLevel = SK_INIT_DATA;
1352 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1353 } else {
1354
1355 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1356 EvPara.Para32[0] = pNet->NetNr;
1357 EvPara.Para32[1] = -1;
1358 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1359 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1360 SkEventDispatcher(pAC, pAC->IoBase);
1361 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1362
1363 /* Stop port */
1364 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1365 [TX_PRIO_LOW].TxDesRingLock, Flags);
1366 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1367 SK_STOP_ALL, SK_HARD_RST);
1368 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1369 [TX_PRIO_LOW].TxDesRingLock, Flags);
1370 }
1371
1372 if (pAC->RlmtNets == 1) {
1373 /* clear all descriptor rings */
1374 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1375 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1376 ClearRxRing(pAC, &pAC->RxPort[i]);
1377 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1378 }
1379 } else {
1380 /* clear port descriptor rings */
1381 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1382 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1383 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1384 }
1385
1386 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1387 ("SkGeClose: done "));
1388
1389 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1390 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1391 sizeof(SK_PNMI_STRUCT_DATA));
1392
1393 pAC->MaxPorts--;
1394
1395 return (0);
1396 } /* SkGeClose */
1397
1398
1399 /*****************************************************************************
1400 *
1401 * SkGeXmit - Linux frame transmit function
1402 *
1403 * Description:
1404 * The system calls this function to send frames onto the wire.
1405 * It puts the frame in the tx descriptor ring. If the ring is
1406 * full then, the 'tbusy' flag is set.
1407 *
1408 * Returns:
1409 * 0, if everything is ok
1410 * !=0, on error
1411 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1412 * allocated skb's) !!!
1413 */
1414 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1415 {
1416 DEV_NET *pNet;
1417 SK_AC *pAC;
1418 int Rc; /* return code of XmitFrame */
1419
1420 pNet = netdev_priv(dev);
1421 pAC = pNet->pAC;
1422
1423 if ((!skb_shinfo(skb)->nr_frags) ||
1424 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1425 /* Don't activate scatter-gather and hardware checksum */
1426
1427 if (pAC->RlmtNets == 2)
1428 Rc = XmitFrame(
1429 pAC,
1430 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1431 skb);
1432 else
1433 Rc = XmitFrame(
1434 pAC,
1435 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1436 skb);
1437 } else {
1438 /* scatter-gather and hardware TCP checksumming anabled*/
1439 if (pAC->RlmtNets == 2)
1440 Rc = XmitFrameSG(
1441 pAC,
1442 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1443 skb);
1444 else
1445 Rc = XmitFrameSG(
1446 pAC,
1447 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1448 skb);
1449 }
1450
1451 /* Transmitter out of resources? */
1452 if (Rc <= 0) {
1453 netif_stop_queue(dev);
1454 }
1455
1456 /* If not taken, give buffer ownership back to the
1457 * queueing layer.
1458 */
1459 if (Rc < 0)
1460 return (1);
1461
1462 dev->trans_start = jiffies;
1463 return (0);
1464 } /* SkGeXmit */
1465
1466
1467 /*****************************************************************************
1468 *
1469 * XmitFrame - fill one socket buffer into the transmit ring
1470 *
1471 * Description:
1472 * This function puts a message into the transmit descriptor ring
1473 * if there is a descriptors left.
1474 * Linux skb's consist of only one continuous buffer.
1475 * The first step locks the ring. It is held locked
1476 * all time to avoid problems with SWITCH_../PORT_RESET.
1477 * Then the descriptoris allocated.
1478 * The second part is linking the buffer to the descriptor.
1479 * At the very last, the Control field of the descriptor
1480 * is made valid for the BMU and a start TX command is given
1481 * if necessary.
1482 *
1483 * Returns:
1484 * > 0 - on succes: the number of bytes in the message
1485 * = 0 - on resource shortage: this frame sent or dropped, now
1486 * the ring is full ( -> set tbusy)
1487 * < 0 - on failure: other problems ( -> return failure to upper layers)
1488 */
1489 static int XmitFrame(
1490 SK_AC *pAC, /* pointer to adapter context */
1491 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1492 struct sk_buff *pMessage) /* pointer to send-message */
1493 {
1494 TXD *pTxd; /* the rxd to fill */
1495 TXD *pOldTxd;
1496 unsigned long Flags;
1497 SK_U64 PhysAddr;
1498 int BytesSend = pMessage->len;
1499
1500 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1501
1502 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1503 #ifndef USE_TX_COMPLETE
1504 FreeTxDescriptors(pAC, pTxPort);
1505 #endif
1506 if (pTxPort->TxdRingFree == 0) {
1507 /*
1508 ** no enough free descriptors in ring at the moment.
1509 ** Maybe free'ing some old one help?
1510 */
1511 FreeTxDescriptors(pAC, pTxPort);
1512 if (pTxPort->TxdRingFree == 0) {
1513 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1514 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1515 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1516 SK_DBGCAT_DRV_TX_PROGRESS,
1517 ("XmitFrame failed\n"));
1518 /*
1519 ** the desired message can not be sent
1520 ** Because tbusy seems to be set, the message
1521 ** should not be freed here. It will be used
1522 ** by the scheduler of the ethernet handler
1523 */
1524 return (-1);
1525 }
1526 }
1527
1528 /*
1529 ** If the passed socket buffer is of smaller MTU-size than 60,
1530 ** copy everything into new buffer and fill all bytes between
1531 ** the original packet end and the new packet end of 60 with 0x00.
1532 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1533 */
1534 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1535 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1536 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1537 return 0;
1538 }
1539 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1540 }
1541
1542 /*
1543 ** advance head counter behind descriptor needed for this frame,
1544 ** so that needed descriptor is reserved from that on. The next
1545 ** action will be to add the passed buffer to the TX-descriptor
1546 */
1547 pTxd = pTxPort->pTxdRingHead;
1548 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1549 pTxPort->TxdRingFree--;
1550
1551 #ifdef SK_DUMP_TX
1552 DumpMsg(pMessage, "XmitFrame");
1553 #endif
1554
1555 /*
1556 ** First step is to map the data to be sent via the adapter onto
1557 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1558 ** and 2.6 need to use pci_map_page() for that mapping.
1559 */
1560 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1561 virt_to_page(pMessage->data),
1562 ((unsigned long) pMessage->data & ~PAGE_MASK),
1563 pMessage->len,
1564 PCI_DMA_TODEVICE);
1565 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1566 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1567 pTxd->pMBuf = pMessage;
1568
1569 if (pMessage->ip_summed == CHECKSUM_HW) {
1570 u16 hdrlen = pMessage->h.raw - pMessage->data;
1571 u16 offset = hdrlen + pMessage->csum;
1572
1573 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1574 (pAC->GIni.GIChipRev == 0) &&
1575 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1576 pTxd->TBControl = BMU_TCP_CHECK;
1577 } else {
1578 pTxd->TBControl = BMU_UDP_CHECK;
1579 }
1580
1581 pTxd->TcpSumOfs = 0;
1582 pTxd->TcpSumSt = hdrlen;
1583 pTxd->TcpSumWr = offset;
1584
1585 pTxd->TBControl |= BMU_OWN | BMU_STF |
1586 BMU_SW | BMU_EOF |
1587 #ifdef USE_TX_COMPLETE
1588 BMU_IRQ_EOF |
1589 #endif
1590 pMessage->len;
1591 } else {
1592 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1593 BMU_SW | BMU_EOF |
1594 #ifdef USE_TX_COMPLETE
1595 BMU_IRQ_EOF |
1596 #endif
1597 pMessage->len;
1598 }
1599
1600 /*
1601 ** If previous descriptor already done, give TX start cmd
1602 */
1603 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1604 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1605 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1606 }
1607
1608 /*
1609 ** after releasing the lock, the skb may immediately be free'd
1610 */
1611 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1612 if (pTxPort->TxdRingFree != 0) {
1613 return (BytesSend);
1614 } else {
1615 return (0);
1616 }
1617
1618 } /* XmitFrame */
1619
1620 /*****************************************************************************
1621 *
1622 * XmitFrameSG - fill one socket buffer into the transmit ring
1623 * (use SG and TCP/UDP hardware checksumming)
1624 *
1625 * Description:
1626 * This function puts a message into the transmit descriptor ring
1627 * if there is a descriptors left.
1628 *
1629 * Returns:
1630 * > 0 - on succes: the number of bytes in the message
1631 * = 0 - on resource shortage: this frame sent or dropped, now
1632 * the ring is full ( -> set tbusy)
1633 * < 0 - on failure: other problems ( -> return failure to upper layers)
1634 */
1635 static int XmitFrameSG(
1636 SK_AC *pAC, /* pointer to adapter context */
1637 TX_PORT *pTxPort, /* pointer to struct of port to send to */
1638 struct sk_buff *pMessage) /* pointer to send-message */
1639 {
1640
1641 TXD *pTxd;
1642 TXD *pTxdFst;
1643 TXD *pTxdLst;
1644 int CurrFrag;
1645 int BytesSend;
1646 skb_frag_t *sk_frag;
1647 SK_U64 PhysAddr;
1648 unsigned long Flags;
1649 SK_U32 Control;
1650
1651 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1652 #ifndef USE_TX_COMPLETE
1653 FreeTxDescriptors(pAC, pTxPort);
1654 #endif
1655 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1656 FreeTxDescriptors(pAC, pTxPort);
1657 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1658 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1659 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1660 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1661 SK_DBGCAT_DRV_TX_PROGRESS,
1662 ("XmitFrameSG failed - Ring full\n"));
1663 /* this message can not be sent now */
1664 return(-1);
1665 }
1666 }
1667
1668 pTxd = pTxPort->pTxdRingHead;
1669 pTxdFst = pTxd;
1670 pTxdLst = pTxd;
1671 BytesSend = 0;
1672
1673 /*
1674 ** Map the first fragment (header) into the DMA-space
1675 */
1676 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1677 virt_to_page(pMessage->data),
1678 ((unsigned long) pMessage->data & ~PAGE_MASK),
1679 skb_headlen(pMessage),
1680 PCI_DMA_TODEVICE);
1681
1682 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1683 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1684
1685 /*
1686 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1687 */
1688 if (pMessage->ip_summed == CHECKSUM_HW) {
1689 u16 hdrlen = pMessage->h.raw - pMessage->data;
1690 u16 offset = hdrlen + pMessage->csum;
1691
1692 Control = BMU_STFWD;
1693
1694 /*
1695 ** We have to use the opcode for tcp here, because the
1696 ** opcode for udp is not working in the hardware yet
1697 ** (Revision 2.0)
1698 */
1699 if ((pMessage->h.ipiph->protocol == IPPROTO_UDP ) &&
1700 (pAC->GIni.GIChipRev == 0) &&
1701 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1702 Control |= BMU_TCP_CHECK;
1703 } else {
1704 Control |= BMU_UDP_CHECK;
1705 }
1706
1707 pTxd->TcpSumOfs = 0;
1708 pTxd->TcpSumSt = hdrlen;
1709 pTxd->TcpSumWr = offset;
1710 } else
1711 Control = BMU_CHECK | BMU_SW;
1712
1713 pTxd->TBControl = BMU_STF | Control | skb_headlen(pMessage);
1714
1715 pTxd = pTxd->pNextTxd;
1716 pTxPort->TxdRingFree--;
1717 BytesSend += skb_headlen(pMessage);
1718
1719 /*
1720 ** Browse over all SG fragments and map each of them into the DMA space
1721 */
1722 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1723 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1724 /*
1725 ** we already have the proper value in entry
1726 */
1727 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1728 sk_frag->page,
1729 sk_frag->page_offset,
1730 sk_frag->size,
1731 PCI_DMA_TODEVICE);
1732
1733 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1734 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1735 pTxd->pMBuf = pMessage;
1736
1737 pTxd->TBControl = Control | BMU_OWN | sk_frag->size;;
1738
1739 /*
1740 ** Do we have the last fragment?
1741 */
1742 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1743 #ifdef USE_TX_COMPLETE
1744 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF;
1745 #else
1746 pTxd->TBControl |= BMU_EOF;
1747 #endif
1748 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1749 }
1750 pTxdLst = pTxd;
1751 pTxd = pTxd->pNextTxd;
1752 pTxPort->TxdRingFree--;
1753 BytesSend += sk_frag->size;
1754 }
1755
1756 /*
1757 ** If previous descriptor already done, give TX start cmd
1758 */
1759 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1760 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1761 }
1762
1763 pTxPort->pTxdRingPrev = pTxdLst;
1764 pTxPort->pTxdRingHead = pTxd;
1765
1766 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1767
1768 if (pTxPort->TxdRingFree > 0) {
1769 return (BytesSend);
1770 } else {
1771 return (0);
1772 }
1773 }
1774
1775 /*****************************************************************************
1776 *
1777 * FreeTxDescriptors - release descriptors from the descriptor ring
1778 *
1779 * Description:
1780 * This function releases descriptors from a transmit ring if they
1781 * have been sent by the BMU.
1782 * If a descriptors is sent, it can be freed and the message can
1783 * be freed, too.
1784 * The SOFTWARE controllable bit is used to prevent running around a
1785 * completely free ring for ever. If this bit is no set in the
1786 * frame (by XmitFrame), this frame has never been sent or is
1787 * already freed.
1788 * The Tx descriptor ring lock must be held while calling this function !!!
1789 *
1790 * Returns:
1791 * none
1792 */
1793 static void FreeTxDescriptors(
1794 SK_AC *pAC, /* pointer to the adapter context */
1795 TX_PORT *pTxPort) /* pointer to destination port structure */
1796 {
1797 TXD *pTxd; /* pointer to the checked descriptor */
1798 TXD *pNewTail; /* pointer to 'end' of the ring */
1799 SK_U32 Control; /* TBControl field of descriptor */
1800 SK_U64 PhysAddr; /* address of DMA mapping */
1801
1802 pNewTail = pTxPort->pTxdRingTail;
1803 pTxd = pNewTail;
1804 /*
1805 ** loop forever; exits if BMU_SW bit not set in start frame
1806 ** or BMU_OWN bit set in any frame
1807 */
1808 while (1) {
1809 Control = pTxd->TBControl;
1810 if ((Control & BMU_SW) == 0) {
1811 /*
1812 ** software controllable bit is set in first
1813 ** fragment when given to BMU. Not set means that
1814 ** this fragment was never sent or is already
1815 ** freed ( -> ring completely free now).
1816 */
1817 pTxPort->pTxdRingTail = pTxd;
1818 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1819 return;
1820 }
1821 if (Control & BMU_OWN) {
1822 pTxPort->pTxdRingTail = pTxd;
1823 if (pTxPort->TxdRingFree > 0) {
1824 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1825 }
1826 return;
1827 }
1828
1829 /*
1830 ** release the DMA mapping, because until not unmapped
1831 ** this buffer is considered being under control of the
1832 ** adapter card!
1833 */
1834 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1835 PhysAddr |= (SK_U64) pTxd->VDataLow;
1836 pci_unmap_page(pAC->PciDev, PhysAddr,
1837 pTxd->pMBuf->len,
1838 PCI_DMA_TODEVICE);
1839
1840 if (Control & BMU_EOF)
1841 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1842
1843 pTxPort->TxdRingFree++;
1844 pTxd->TBControl &= ~BMU_SW;
1845 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1846 } /* while(forever) */
1847 } /* FreeTxDescriptors */
1848
1849 /*****************************************************************************
1850 *
1851 * FillRxRing - fill the receive ring with valid descriptors
1852 *
1853 * Description:
1854 * This function fills the receive ring descriptors with data
1855 * segments and makes them valid for the BMU.
1856 * The active ring is filled completely, if possible.
1857 * The non-active ring is filled only partial to save memory.
1858 *
1859 * Description of rx ring structure:
1860 * head - points to the descriptor which will be used next by the BMU
1861 * tail - points to the next descriptor to give to the BMU
1862 *
1863 * Returns: N/A
1864 */
1865 static void FillRxRing(
1866 SK_AC *pAC, /* pointer to the adapter context */
1867 RX_PORT *pRxPort) /* ptr to port struct for which the ring
1868 should be filled */
1869 {
1870 unsigned long Flags;
1871
1872 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1873 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1874 if(!FillRxDescriptor(pAC, pRxPort))
1875 break;
1876 }
1877 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1878 } /* FillRxRing */
1879
1880
1881 /*****************************************************************************
1882 *
1883 * FillRxDescriptor - fill one buffer into the receive ring
1884 *
1885 * Description:
1886 * The function allocates a new receive buffer and
1887 * puts it into the next descriptor.
1888 *
1889 * Returns:
1890 * SK_TRUE - a buffer was added to the ring
1891 * SK_FALSE - a buffer could not be added
1892 */
1893 static SK_BOOL FillRxDescriptor(
1894 SK_AC *pAC, /* pointer to the adapter context struct */
1895 RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1896 {
1897 struct sk_buff *pMsgBlock; /* pointer to a new message block */
1898 RXD *pRxd; /* the rxd to fill */
1899 SK_U16 Length; /* data fragment length */
1900 SK_U64 PhysAddr; /* physical address of a rx buffer */
1901
1902 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1903 if (pMsgBlock == NULL) {
1904 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1905 SK_DBGCAT_DRV_ENTRY,
1906 ("%s: Allocation of rx buffer failed !\n",
1907 pAC->dev[pRxPort->PortIndex]->name));
1908 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1909 return(SK_FALSE);
1910 }
1911 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1912 /* skb allocated ok, so add buffer */
1913 pRxd = pRxPort->pRxdRingTail;
1914 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1915 pRxPort->RxdRingFree--;
1916 Length = pAC->RxBufSize;
1917 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1918 virt_to_page(pMsgBlock->data),
1919 ((unsigned long) pMsgBlock->data &
1920 ~PAGE_MASK),
1921 pAC->RxBufSize - 2,
1922 PCI_DMA_FROMDEVICE);
1923
1924 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1925 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1926 pRxd->pMBuf = pMsgBlock;
1927 pRxd->RBControl = BMU_OWN |
1928 BMU_STF |
1929 BMU_IRQ_EOF |
1930 BMU_TCP_CHECK |
1931 Length;
1932 return (SK_TRUE);
1933
1934 } /* FillRxDescriptor */
1935
1936
1937 /*****************************************************************************
1938 *
1939 * ReQueueRxBuffer - fill one buffer back into the receive ring
1940 *
1941 * Description:
1942 * Fill a given buffer back into the rx ring. The buffer
1943 * has been previously allocated and aligned, and its phys.
1944 * address calculated, so this is no more necessary.
1945 *
1946 * Returns: N/A
1947 */
1948 static void ReQueueRxBuffer(
1949 SK_AC *pAC, /* pointer to the adapter context struct */
1950 RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
1951 struct sk_buff *pMsg, /* pointer to the buffer */
1952 SK_U32 PhysHigh, /* phys address high dword */
1953 SK_U32 PhysLow) /* phys address low dword */
1954 {
1955 RXD *pRxd; /* the rxd to fill */
1956 SK_U16 Length; /* data fragment length */
1957
1958 pRxd = pRxPort->pRxdRingTail;
1959 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1960 pRxPort->RxdRingFree--;
1961 Length = pAC->RxBufSize;
1962
1963 pRxd->VDataLow = PhysLow;
1964 pRxd->VDataHigh = PhysHigh;
1965 pRxd->pMBuf = pMsg;
1966 pRxd->RBControl = BMU_OWN |
1967 BMU_STF |
1968 BMU_IRQ_EOF |
1969 BMU_TCP_CHECK |
1970 Length;
1971 return;
1972 } /* ReQueueRxBuffer */
1973
1974 /*****************************************************************************
1975 *
1976 * ReceiveIrq - handle a receive IRQ
1977 *
1978 * Description:
1979 * This function is called when a receive IRQ is set.
1980 * It walks the receive descriptor ring and sends up all
1981 * frames that are complete.
1982 *
1983 * Returns: N/A
1984 */
1985 static void ReceiveIrq(
1986 SK_AC *pAC, /* pointer to adapter context */
1987 RX_PORT *pRxPort, /* pointer to receive port struct */
1988 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
1989 {
1990 RXD *pRxd; /* pointer to receive descriptors */
1991 SK_U32 Control; /* control field of descriptor */
1992 struct sk_buff *pMsg; /* pointer to message holding frame */
1993 struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
1994 int FrameLength; /* total length of received frame */
1995 SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
1996 SK_EVPARA EvPara; /* an event parameter union */
1997 unsigned long Flags; /* for spin lock */
1998 int PortIndex = pRxPort->PortIndex;
1999 unsigned int Offset;
2000 unsigned int NumBytes;
2001 unsigned int ForRlmt;
2002 SK_BOOL IsBc;
2003 SK_BOOL IsMc;
2004 SK_BOOL IsBadFrame; /* Bad frame */
2005
2006 SK_U32 FrameStat;
2007 SK_U64 PhysAddr;
2008
2009 rx_start:
2010 /* do forever; exit if BMU_OWN found */
2011 for ( pRxd = pRxPort->pRxdRingHead ;
2012 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2013 pRxd = pRxd->pNextRxd,
2014 pRxPort->pRxdRingHead = pRxd,
2015 pRxPort->RxdRingFree ++) {
2016
2017 /*
2018 * For a better understanding of this loop
2019 * Go through every descriptor beginning at the head
2020 * Please note: the ring might be completely received so the OWN bit
2021 * set is not a good crirteria to leave that loop.
2022 * Therefore the RingFree counter is used.
2023 * On entry of this loop pRxd is a pointer to the Rxd that needs
2024 * to be checked next.
2025 */
2026
2027 Control = pRxd->RBControl;
2028
2029 /* check if this descriptor is ready */
2030 if ((Control & BMU_OWN) != 0) {
2031 /* this descriptor is not yet ready */
2032 /* This is the usual end of the loop */
2033 /* We don't need to start the ring again */
2034 FillRxRing(pAC, pRxPort);
2035 return;
2036 }
2037 pAC->DynIrqModInfo.NbrProcessedDescr++;
2038
2039 /* get length of frame and check it */
2040 FrameLength = Control & BMU_BBC;
2041 if (FrameLength > pAC->RxBufSize) {
2042 goto rx_failed;
2043 }
2044
2045 /* check for STF and EOF */
2046 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2047 goto rx_failed;
2048 }
2049
2050 /* here we have a complete frame in the ring */
2051 pMsg = pRxd->pMBuf;
2052
2053 FrameStat = pRxd->FrameStat;
2054
2055 /* check for frame length mismatch */
2056 #define XMR_FS_LEN_SHIFT 18
2057 #define GMR_FS_LEN_SHIFT 16
2058 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2059 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2060 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2061 SK_DBGCAT_DRV_RX_PROGRESS,
2062 ("skge: Frame length mismatch (%u/%u).\n",
2063 FrameLength,
2064 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2065 goto rx_failed;
2066 }
2067 }
2068 else {
2069 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2070 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2071 SK_DBGCAT_DRV_RX_PROGRESS,
2072 ("skge: Frame length mismatch (%u/%u).\n",
2073 FrameLength,
2074 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2075 goto rx_failed;
2076 }
2077 }
2078
2079 /* Set Rx Status */
2080 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2081 IsBc = (FrameStat & XMR_FS_BC) != 0;
2082 IsMc = (FrameStat & XMR_FS_MC) != 0;
2083 IsBadFrame = (FrameStat &
2084 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2085 } else {
2086 IsBc = (FrameStat & GMR_FS_BC) != 0;
2087 IsMc = (FrameStat & GMR_FS_MC) != 0;
2088 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2089 ((FrameStat & GMR_FS_RX_OK) == 0));
2090 }
2091
2092 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2093 ("Received frame of length %d on port %d\n",
2094 FrameLength, PortIndex));
2095 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2096 ("Number of free rx descriptors: %d\n",
2097 pRxPort->RxdRingFree));
2098 /* DumpMsg(pMsg, "Rx"); */
2099
2100 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2101 #if 0
2102 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2103 #endif
2104 /* there is a receive error in this frame */
2105 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2106 SK_DBGCAT_DRV_RX_PROGRESS,
2107 ("skge: Error in received frame, dropped!\n"
2108 "Control: %x\nRxStat: %x\n",
2109 Control, FrameStat));
2110
2111 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2112 pRxd->VDataHigh, pRxd->VDataLow);
2113
2114 continue;
2115 }
2116
2117 /*
2118 * if short frame then copy data to reduce memory waste
2119 */
2120 if ((FrameLength < SK_COPY_THRESHOLD) &&
2121 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2122 /*
2123 * Short frame detected and allocation successfull
2124 */
2125 /* use new skb and copy data */
2126 skb_reserve(pNewMsg, 2);
2127 skb_put(pNewMsg, FrameLength);
2128 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2129 PhysAddr |= (SK_U64) pRxd->VDataLow;
2130
2131 pci_dma_sync_single_for_cpu(pAC->PciDev,
2132 (dma_addr_t) PhysAddr,
2133 FrameLength,
2134 PCI_DMA_FROMDEVICE);
2135 memcpy(pNewMsg->data, pMsg, FrameLength);
2136
2137 pci_dma_sync_single_for_device(pAC->PciDev,
2138 (dma_addr_t) PhysAddr,
2139 FrameLength,
2140 PCI_DMA_FROMDEVICE);
2141 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2142 pRxd->VDataHigh, pRxd->VDataLow);
2143
2144 pMsg = pNewMsg;
2145
2146 }
2147 else {
2148 /*
2149 * if large frame, or SKB allocation failed, pass
2150 * the SKB directly to the networking
2151 */
2152
2153 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2154 PhysAddr |= (SK_U64) pRxd->VDataLow;
2155
2156 /* release the DMA mapping */
2157 pci_unmap_single(pAC->PciDev,
2158 PhysAddr,
2159 pAC->RxBufSize - 2,
2160 PCI_DMA_FROMDEVICE);
2161
2162 /* set length in message */
2163 skb_put(pMsg, FrameLength);
2164 } /* frame > SK_COPY_TRESHOLD */
2165
2166 #ifdef USE_SK_RX_CHECKSUM
2167 pMsg->csum = pRxd->TcpSums & 0xffff;
2168 pMsg->ip_summed = CHECKSUM_HW;
2169 #else
2170 pMsg->ip_summed = CHECKSUM_NONE;
2171 #endif
2172
2173 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2174 ForRlmt = SK_RLMT_RX_PROTOCOL;
2175 #if 0
2176 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2177 #endif
2178 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2179 IsBc, &Offset, &NumBytes);
2180 if (NumBytes != 0) {
2181 #if 0
2182 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2183 #endif
2184 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2185 &pMsg->data[Offset],
2186 IsBc, IsMc, &ForRlmt);
2187 }
2188 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2189 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2190 /* send up only frames from active port */
2191 if ((PortIndex == pAC->ActivePort) ||
2192 (pAC->RlmtNets == 2)) {
2193 /* frame for upper layer */
2194 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2195 #ifdef xDEBUG
2196 DumpMsg(pMsg, "Rx");
2197 #endif
2198 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2199 FrameLength, pRxPort->PortIndex);
2200
2201 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2202 pMsg->protocol = eth_type_trans(pMsg,
2203 pAC->dev[pRxPort->PortIndex]);
2204 netif_rx(pMsg);
2205 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2206 }
2207 else {
2208 /* drop frame */
2209 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2210 SK_DBGCAT_DRV_RX_PROGRESS,
2211 ("D"));
2212 DEV_KFREE_SKB(pMsg);
2213 }
2214
2215 } /* if not for rlmt */
2216 else {
2217 /* packet for rlmt */
2218 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2219 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2220 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2221 pAC->IoBase, FrameLength);
2222 if (pRlmtMbuf != NULL) {
2223 pRlmtMbuf->pNext = NULL;
2224 pRlmtMbuf->Length = FrameLength;
2225 pRlmtMbuf->PortIdx = PortIndex;
2226 EvPara.pParaPtr = pRlmtMbuf;
2227 memcpy((char*)(pRlmtMbuf->pData),
2228 (char*)(pMsg->data),
2229 FrameLength);
2230
2231 /* SlowPathLock needed? */
2232 if (SlowPathLock == SK_TRUE) {
2233 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2234 SkEventQueue(pAC, SKGE_RLMT,
2235 SK_RLMT_PACKET_RECEIVED,
2236 EvPara);
2237 pAC->CheckQueue = SK_TRUE;
2238 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2239 } else {
2240 SkEventQueue(pAC, SKGE_RLMT,
2241 SK_RLMT_PACKET_RECEIVED,
2242 EvPara);
2243 pAC->CheckQueue = SK_TRUE;
2244 }
2245
2246 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2247 SK_DBGCAT_DRV_RX_PROGRESS,
2248 ("Q"));
2249 }
2250 if ((pAC->dev[pRxPort->PortIndex]->flags &
2251 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2252 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2253 SK_RLMT_RX_PROTOCOL) {
2254 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2255 pMsg->protocol = eth_type_trans(pMsg,
2256 pAC->dev[pRxPort->PortIndex]);
2257 netif_rx(pMsg);
2258 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2259 }
2260 else {
2261 DEV_KFREE_SKB(pMsg);
2262 }
2263
2264 } /* if packet for rlmt */
2265 } /* for ... scanning the RXD ring */
2266
2267 /* RXD ring is empty -> fill and restart */
2268 FillRxRing(pAC, pRxPort);
2269 /* do not start if called from Close */
2270 if (pAC->BoardLevel > SK_INIT_DATA) {
2271 ClearAndStartRx(pAC, PortIndex);
2272 }
2273 return;
2274
2275 rx_failed:
2276 /* remove error frame */
2277 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2278 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2279
2280 /* release the DMA mapping */
2281
2282 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2283 PhysAddr |= (SK_U64) pRxd->VDataLow;
2284 pci_unmap_page(pAC->PciDev,
2285 PhysAddr,
2286 pAC->RxBufSize - 2,
2287 PCI_DMA_FROMDEVICE);
2288 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2289 pRxd->pMBuf = NULL;
2290 pRxPort->RxdRingFree++;
2291 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2292 goto rx_start;
2293
2294 } /* ReceiveIrq */
2295
2296
2297 /*****************************************************************************
2298 *
2299 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2300 *
2301 * Description:
2302 * This function sends a start command and a clear interrupt
2303 * command for one receive queue to the BMU.
2304 *
2305 * Returns: N/A
2306 * none
2307 */
2308 static void ClearAndStartRx(
2309 SK_AC *pAC, /* pointer to the adapter context */
2310 int PortIndex) /* index of the receive port (XMAC) */
2311 {
2312 SK_OUT8(pAC->IoBase,
2313 RxQueueAddr[PortIndex]+Q_CSR,
2314 CSR_START | CSR_IRQ_CL_F);
2315 } /* ClearAndStartRx */
2316
2317
2318 /*****************************************************************************
2319 *
2320 * ClearTxIrq - give a clear transmit IRQ command to BMU
2321 *
2322 * Description:
2323 * This function sends a clear tx IRQ command for one
2324 * transmit queue to the BMU.
2325 *
2326 * Returns: N/A
2327 */
2328 static void ClearTxIrq(
2329 SK_AC *pAC, /* pointer to the adapter context */
2330 int PortIndex, /* index of the transmit port (XMAC) */
2331 int Prio) /* priority or normal queue */
2332 {
2333 SK_OUT8(pAC->IoBase,
2334 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2335 CSR_IRQ_CL_F);
2336 } /* ClearTxIrq */
2337
2338
2339 /*****************************************************************************
2340 *
2341 * ClearRxRing - remove all buffers from the receive ring
2342 *
2343 * Description:
2344 * This function removes all receive buffers from the ring.
2345 * The receive BMU must be stopped before calling this function.
2346 *
2347 * Returns: N/A
2348 */
2349 static void ClearRxRing(
2350 SK_AC *pAC, /* pointer to adapter context */
2351 RX_PORT *pRxPort) /* pointer to rx port struct */
2352 {
2353 RXD *pRxd; /* pointer to the current descriptor */
2354 unsigned long Flags;
2355 SK_U64 PhysAddr;
2356
2357 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2358 return;
2359 }
2360 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2361 pRxd = pRxPort->pRxdRingHead;
2362 do {
2363 if (pRxd->pMBuf != NULL) {
2364
2365 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2366 PhysAddr |= (SK_U64) pRxd->VDataLow;
2367 pci_unmap_page(pAC->PciDev,
2368 PhysAddr,
2369 pAC->RxBufSize - 2,
2370 PCI_DMA_FROMDEVICE);
2371 DEV_KFREE_SKB(pRxd->pMBuf);
2372 pRxd->pMBuf = NULL;
2373 }
2374 pRxd->RBControl &= BMU_OWN;
2375 pRxd = pRxd->pNextRxd;
2376 pRxPort->RxdRingFree++;
2377 } while (pRxd != pRxPort->pRxdRingTail);
2378 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2379 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2380 } /* ClearRxRing */
2381
2382 /*****************************************************************************
2383 *
2384 * ClearTxRing - remove all buffers from the transmit ring
2385 *
2386 * Description:
2387 * This function removes all transmit buffers from the ring.
2388 * The transmit BMU must be stopped before calling this function
2389 * and transmitting at the upper level must be disabled.
2390 * The BMU own bit of all descriptors is cleared, the rest is
2391 * done by calling FreeTxDescriptors.
2392 *
2393 * Returns: N/A
2394 */
2395 static void ClearTxRing(
2396 SK_AC *pAC, /* pointer to adapter context */
2397 TX_PORT *pTxPort) /* pointer to tx prt struct */
2398 {
2399 TXD *pTxd; /* pointer to the current descriptor */
2400 int i;
2401 unsigned long Flags;
2402
2403 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2404 pTxd = pTxPort->pTxdRingHead;
2405 for (i=0; i<pAC->TxDescrPerRing; i++) {
2406 pTxd->TBControl &= ~BMU_OWN;
2407 pTxd = pTxd->pNextTxd;
2408 }
2409 FreeTxDescriptors(pAC, pTxPort);
2410 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2411 } /* ClearTxRing */
2412
2413 /*****************************************************************************
2414 *
2415 * SkGeSetMacAddr - Set the hardware MAC address
2416 *
2417 * Description:
2418 * This function sets the MAC address used by the adapter.
2419 *
2420 * Returns:
2421 * 0, if everything is ok
2422 * !=0, on error
2423 */
2424 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2425 {
2426
2427 DEV_NET *pNet = netdev_priv(dev);
2428 SK_AC *pAC = pNet->pAC;
2429
2430 struct sockaddr *addr = p;
2431 unsigned long Flags;
2432
2433 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2434 ("SkGeSetMacAddr starts now...\n"));
2435 if(netif_running(dev))
2436 return -EBUSY;
2437
2438 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2439
2440 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2441
2442 if (pAC->RlmtNets == 2)
2443 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2444 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2445 else
2446 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2447 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2448
2449
2450
2451 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2452 return 0;
2453 } /* SkGeSetMacAddr */
2454
2455
2456 /*****************************************************************************
2457 *
2458 * SkGeSetRxMode - set receive mode
2459 *
2460 * Description:
2461 * This function sets the receive mode of an adapter. The adapter
2462 * supports promiscuous mode, allmulticast mode and a number of
2463 * multicast addresses. If more multicast addresses the available
2464 * are selected, a hash function in the hardware is used.
2465 *
2466 * Returns:
2467 * 0, if everything is ok
2468 * !=0, on error
2469 */
2470 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2471 {
2472
2473 DEV_NET *pNet;
2474 SK_AC *pAC;
2475
2476 struct dev_mc_list *pMcList;
2477 int i;
2478 int PortIdx;
2479 unsigned long Flags;
2480
2481 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2482 ("SkGeSetRxMode starts now... "));
2483
2484 pNet = netdev_priv(dev);
2485 pAC = pNet->pAC;
2486 if (pAC->RlmtNets == 1)
2487 PortIdx = pAC->ActivePort;
2488 else
2489 PortIdx = pNet->NetNr;
2490
2491 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2492 if (dev->flags & IFF_PROMISC) {
2493 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2494 ("PROMISCUOUS mode\n"));
2495 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2496 SK_PROM_MODE_LLC);
2497 } else if (dev->flags & IFF_ALLMULTI) {
2498 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2499 ("ALLMULTI mode\n"));
2500 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2501 SK_PROM_MODE_ALL_MC);
2502 } else {
2503 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2504 SK_PROM_MODE_NONE);
2505 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2506
2507 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2508 ("Number of MC entries: %d ", dev->mc_count));
2509
2510 pMcList = dev->mc_list;
2511 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2512 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2513 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2514 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2515 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2516 pMcList->dmi_addr[0],
2517 pMcList->dmi_addr[1],
2518 pMcList->dmi_addr[2],
2519 pMcList->dmi_addr[3],
2520 pMcList->dmi_addr[4],
2521 pMcList->dmi_addr[5]));
2522 }
2523 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2524 }
2525 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2526
2527 return;
2528 } /* SkGeSetRxMode */
2529
2530
2531 /*****************************************************************************
2532 *
2533 * SkGeChangeMtu - set the MTU to another value
2534 *
2535 * Description:
2536 * This function sets is called whenever the MTU size is changed
2537 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2538 * ethernet MTU size, long frame support is activated.
2539 *
2540 * Returns:
2541 * 0, if everything is ok
2542 * !=0, on error
2543 */
2544 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2545 {
2546 DEV_NET *pNet;
2547 struct net_device *pOtherDev;
2548 SK_AC *pAC;
2549 unsigned long Flags;
2550 int i;
2551 SK_EVPARA EvPara;
2552
2553 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2554 ("SkGeChangeMtu starts now...\n"));
2555
2556 pNet = netdev_priv(dev);
2557 pAC = pNet->pAC;
2558
2559 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2560 return -EINVAL;
2561 }
2562
2563 if(pAC->BoardLevel != SK_INIT_RUN) {
2564 return -EINVAL;
2565 }
2566
2567 #ifdef SK_DIAG_SUPPORT
2568 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2569 if (pAC->DiagFlowCtrl == SK_FALSE) {
2570 return -1; /* still in use, deny any actions of MTU */
2571 } else {
2572 pAC->DiagFlowCtrl = SK_FALSE;
2573 }
2574 }
2575 #endif
2576
2577 pOtherDev = pAC->dev[1 - pNet->NetNr];
2578
2579 if ( netif_running(pOtherDev) && (pOtherDev->mtu > 1500)
2580 && (NewMtu <= 1500))
2581 return 0;
2582
2583 pAC->RxBufSize = NewMtu + 32;
2584 dev->mtu = NewMtu;
2585
2586 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2587 ("New MTU: %d\n", NewMtu));
2588
2589 /*
2590 ** Prevent any reconfiguration while changing the MTU
2591 ** by disabling any interrupts
2592 */
2593 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2594 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2595
2596 /*
2597 ** Notify RLMT that any ports are to be stopped
2598 */
2599 EvPara.Para32[0] = 0;
2600 EvPara.Para32[1] = -1;
2601 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2602 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2603 EvPara.Para32[0] = 1;
2604 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2605 } else {
2606 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2607 }
2608
2609 /*
2610 ** After calling the SkEventDispatcher(), RLMT is aware about
2611 ** the stopped ports -> configuration can take place!
2612 */
2613 SkEventDispatcher(pAC, pAC->IoBase);
2614
2615 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2616 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2617 netif_stop_queue(pAC->dev[i]);
2618
2619 }
2620
2621 /*
2622 ** Depending on the desired MTU size change, a different number of
2623 ** RX buffers need to be allocated
2624 */
2625 if (NewMtu > 1500) {
2626 /*
2627 ** Use less rx buffers
2628 */
2629 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2630 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2631 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2632 (pAC->RxDescrPerRing / 4);
2633 } else {
2634 if (i == pAC->ActivePort) {
2635 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2636 (pAC->RxDescrPerRing / 4);
2637 } else {
2638 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2639 (pAC->RxDescrPerRing / 10);
2640 }
2641 }
2642 }
2643 } else {
2644 /*
2645 ** Use the normal amount of rx buffers
2646 */
2647 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2648 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2649 pAC->RxPort[i].RxFillLimit = 1;
2650 } else {
2651 if (i == pAC->ActivePort) {
2652 pAC->RxPort[i].RxFillLimit = 1;
2653 } else {
2654 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2655 (pAC->RxDescrPerRing / 4);
2656 }
2657 }
2658 }
2659 }
2660
2661 SkGeDeInit(pAC, pAC->IoBase);
2662
2663 /*
2664 ** enable/disable hardware support for long frames
2665 */
2666 if (NewMtu > 1500) {
2667 // pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2668 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2669 } else {
2670 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2671 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2672 } else {
2673 pAC->GIni.GIPortUsage = SK_RED_LINK;
2674 }
2675 }
2676
2677 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2678 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2679 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2680 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2681 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2682 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2683 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2684
2685 /*
2686 ** tschilling:
2687 ** Speed and others are set back to default in level 1 init!
2688 */
2689 GetConfiguration(pAC);
2690
2691 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2692 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2693 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2694 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2695 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2696 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2697 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2698
2699 /*
2700 ** clear and reinit the rx rings here
2701 */
2702 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2703 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2704 ClearRxRing(pAC, &pAC->RxPort[i]);
2705 FillRxRing(pAC, &pAC->RxPort[i]);
2706
2707 /*
2708 ** Enable transmit descriptor polling
2709 */
2710 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2711 FillRxRing(pAC, &pAC->RxPort[i]);
2712 };
2713
2714 SkGeYellowLED(pAC, pAC->IoBase, 1);
2715 SkDimEnableModerationIfNeeded(pAC);
2716 SkDimDisplayModerationSettings(pAC);
2717
2718 netif_start_queue(pAC->dev[pNet->PortNr]);
2719 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2720 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2721 }
2722
2723 /*
2724 ** Enable Interrupts again
2725 */
2726 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2727 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2728
2729 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2730 SkEventDispatcher(pAC, pAC->IoBase);
2731
2732 /*
2733 ** Notify RLMT about the changing and restarting one (or more) ports
2734 */
2735 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2736 EvPara.Para32[0] = pAC->RlmtNets;
2737 EvPara.Para32[1] = -1;
2738 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2739 EvPara.Para32[0] = pNet->PortNr;
2740 EvPara.Para32[1] = -1;
2741 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2742
2743 if (netif_running(pOtherDev)) {
2744 DEV_NET *pOtherNet = netdev_priv(pOtherDev);
2745 EvPara.Para32[0] = pOtherNet->PortNr;
2746 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2747 }
2748 } else {
2749 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2750 }
2751
2752 SkEventDispatcher(pAC, pAC->IoBase);
2753 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2754
2755 /*
2756 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2757 ** seems as if upper layers have a problem to handle a successful
2758 ** return value of '0'. If such a zero is returned, the complete
2759 ** system hangs for several minutes (!), which is in acceptable.
2760 **
2761 ** Currently it is not clear, what the exact reason for this problem
2762 ** is. The implemented workaround for 2.5 is to return the desired
2763 ** new MTU size if all needed changes for the new MTU size where
2764 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2765 ** which indicates the successful change of the mtu-size.
2766 */
2767 return NewMtu;
2768
2769 } /* SkGeChangeMtu */
2770
2771
2772 /*****************************************************************************
2773 *
2774 * SkGeStats - return ethernet device statistics
2775 *
2776 * Description:
2777 * This function return statistic data about the ethernet device
2778 * to the operating system.
2779 *
2780 * Returns:
2781 * pointer to the statistic structure.
2782 */
2783 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2784 {
2785 DEV_NET *pNet = netdev_priv(dev);
2786 SK_AC *pAC = pNet->pAC;
2787 SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2788 SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2789 SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2790 unsigned int Size; /* size of pnmi struct */
2791 unsigned long Flags; /* for spin lock */
2792
2793 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2794 ("SkGeStats starts now...\n"));
2795 pPnmiStruct = &pAC->PnmiStruct;
2796
2797 #ifdef SK_DIAG_SUPPORT
2798 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2799 (pAC->BoardLevel == SK_INIT_RUN)) {
2800 #endif
2801 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2802 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2803 Size = SK_PNMI_STRUCT_SIZE;
2804 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2805 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2806 #ifdef SK_DIAG_SUPPORT
2807 }
2808 #endif
2809
2810 pPnmiStat = &pPnmiStruct->Stat[0];
2811 pPnmiConf = &pPnmiStruct->Conf[0];
2812
2813 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2814 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2815 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2816 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2817
2818 if (dev->mtu <= 1500) {
2819 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2820 } else {
2821 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2822 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2823 }
2824
2825
2826 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2827 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2828
2829 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2830 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2831 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2832 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2833 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2834
2835 /* detailed rx_errors: */
2836 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2837 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2838 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2839 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2840 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2841 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2842
2843 /* detailed tx_errors */
2844 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2845 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2846 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2847 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2848 pAC->stats.tx_window_errors = (SK_U32) 0;
2849
2850 return(&pAC->stats);
2851 } /* SkGeStats */
2852
2853
2854 /*****************************************************************************
2855 *
2856 * SkGeIoctl - IO-control function
2857 *
2858 * Description:
2859 * This function is called if an ioctl is issued on the device.
2860 * There are three subfunction for reading, writing and test-writing
2861 * the private MIB data structure (usefull for SysKonnect-internal tools).
2862 *
2863 * Returns:
2864 * 0, if everything is ok
2865 * !=0, on error
2866 */
2867 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2868 {
2869 DEV_NET *pNet;
2870 SK_AC *pAC;
2871 void *pMemBuf;
2872 struct pci_dev *pdev = NULL;
2873 SK_GE_IOCTL Ioctl;
2874 unsigned int Err = 0;
2875 int Size = 0;
2876 int Ret = 0;
2877 unsigned int Length = 0;
2878 int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2879
2880 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2881 ("SkGeIoctl starts now...\n"));
2882
2883 pNet = netdev_priv(dev);
2884 pAC = pNet->pAC;
2885
2886 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2887 return -EFAULT;
2888 }
2889
2890 switch(cmd) {
2891 case SK_IOCTL_SETMIB:
2892 case SK_IOCTL_PRESETMIB:
2893 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2894 case SK_IOCTL_GETMIB:
2895 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2896 Ioctl.Len<sizeof(pAC->PnmiStruct)?
2897 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2898 return -EFAULT;
2899 }
2900 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2901 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
2902 Ioctl.Len<Size? Ioctl.Len : Size)) {
2903 return -EFAULT;
2904 }
2905 Ioctl.Len = Size;
2906 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2907 return -EFAULT;
2908 }
2909 break;
2910 case SK_IOCTL_GEN:
2911 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2912 Length = Ioctl.Len;
2913 } else {
2914 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2915 }
2916 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2917 return -ENOMEM;
2918 }
2919 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2920 Err = -EFAULT;
2921 goto fault_gen;
2922 }
2923 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
2924 Err = -EFAULT;
2925 goto fault_gen;
2926 }
2927 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2928 Err = -EFAULT;
2929 goto fault_gen;
2930 }
2931 Ioctl.Len = Length;
2932 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2933 Err = -EFAULT;
2934 goto fault_gen;
2935 }
2936 fault_gen:
2937 kfree(pMemBuf); /* cleanup everything */
2938 break;
2939 #ifdef SK_DIAG_SUPPORT
2940 case SK_IOCTL_DIAG:
2941 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2942 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2943 Length = Ioctl.Len;
2944 } else {
2945 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2946 }
2947 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2948 return -ENOMEM;
2949 }
2950 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2951 Err = -EFAULT;
2952 goto fault_diag;
2953 }
2954 pdev = pAC->PciDev;
2955 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
2956 /*
2957 ** While coding this new IOCTL interface, only a few lines of code
2958 ** are to to be added. Therefore no dedicated function has been
2959 ** added. If more functionality is added, a separate function
2960 ** should be used...
2961 */
2962 * ((SK_U32 *)pMemBuf) = 0;
2963 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
2964 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
2965 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2966 Err = -EFAULT;
2967 goto fault_diag;
2968 }
2969 Ioctl.Len = Length;
2970 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2971 Err = -EFAULT;
2972 goto fault_diag;
2973 }
2974 fault_diag:
2975 kfree(pMemBuf); /* cleanup everything */
2976 break;
2977 #endif
2978 default:
2979 Err = -EOPNOTSUPP;
2980 }
2981
2982 return(Err);
2983
2984 } /* SkGeIoctl */
2985
2986
2987 /*****************************************************************************
2988 *
2989 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
2990 *
2991 * Description:
2992 * This function reads/writes the MIB data using PNMI (Private Network
2993 * Management Interface).
2994 * The destination for the data must be provided with the
2995 * ioctl call and is given to the driver in the form of
2996 * a user space address.
2997 * Copying from the user-provided data area into kernel messages
2998 * and back is done by copy_from_user and copy_to_user calls in
2999 * SkGeIoctl.
3000 *
3001 * Returns:
3002 * returned size from PNMI call
3003 */
3004 static int SkGeIocMib(
3005 DEV_NET *pNet, /* pointer to the adapter context */
3006 unsigned int Size, /* length of ioctl data */
3007 int mode) /* flag for set/preset */
3008 {
3009 unsigned long Flags; /* for spin lock */
3010 SK_AC *pAC;
3011
3012 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3013 ("SkGeIocMib starts now...\n"));
3014 pAC = pNet->pAC;
3015 /* access MIB */
3016 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3017 switch(mode) {
3018 case SK_IOCTL_GETMIB:
3019 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3020 pNet->NetNr);
3021 break;
3022 case SK_IOCTL_PRESETMIB:
3023 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3024 pNet->NetNr);
3025 break;
3026 case SK_IOCTL_SETMIB:
3027 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3028 pNet->NetNr);
3029 break;
3030 default:
3031 break;
3032 }
3033 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3034 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3035 ("MIB data access succeeded\n"));
3036 return (Size);
3037 } /* SkGeIocMib */
3038
3039
3040 /*****************************************************************************
3041 *
3042 * GetConfiguration - read configuration information
3043 *
3044 * Description:
3045 * This function reads per-adapter configuration information from
3046 * the options provided on the command line.
3047 *
3048 * Returns:
3049 * none
3050 */
3051 static void GetConfiguration(
3052 SK_AC *pAC) /* pointer to the adapter context structure */
3053 {
3054 SK_I32 Port; /* preferred port */
3055 SK_BOOL AutoSet;
3056 SK_BOOL DupSet;
3057 int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3058 int AutoNeg = 1; /* autoneg off (0) or on (1) */
3059 int DuplexCap = 0; /* 0=both,1=full,2=half */
3060 int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3061 int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3062
3063 SK_BOOL IsConTypeDefined = SK_TRUE;
3064 SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3065 SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3066 SK_BOOL IsRoleDefined = SK_TRUE;
3067 SK_BOOL IsModeDefined = SK_TRUE;
3068 /*
3069 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3070 * parameter. The mapping is described by this table:
3071 * DuplexCap -> | both | full | half |
3072 * AutoNeg | | | |
3073 * -----------------------------------------------------------------
3074 * Off | illegal | Full | Half |
3075 * -----------------------------------------------------------------
3076 * On | AutoBoth | AutoFull | AutoHalf |
3077 * -----------------------------------------------------------------
3078 * Sense | AutoSense | AutoSense | AutoSense |
3079 */
3080 int Capabilities[3][3] =
3081 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3082 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3083 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3084
3085 #define DC_BOTH 0
3086 #define DC_FULL 1
3087 #define DC_HALF 2
3088 #define AN_OFF 0
3089 #define AN_ON 1
3090 #define AN_SENS 2
3091 #define M_CurrPort pAC->GIni.GP[Port]
3092
3093
3094 /*
3095 ** Set the default values first for both ports!
3096 */
3097 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3098 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3099 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3100 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3101 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3102 }
3103
3104 /*
3105 ** Check merged parameter ConType. If it has not been used,
3106 ** verify any other parameter (e.g. AutoNeg) and use default values.
3107 **
3108 ** Stating both ConType and other lowlevel link parameters is also
3109 ** possible. If this is the case, the passed ConType-parameter is
3110 ** overwritten by the lowlevel link parameter.
3111 **
3112 ** The following settings are used for a merged ConType-parameter:
3113 **
3114 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3115 ** ------- ------ ------- -------- ---------- -----
3116 ** Auto Both On SymOrRem Auto Auto
3117 ** 100FD Full Off None <ignored> 100
3118 ** 100HD Half Off None <ignored> 100
3119 ** 10FD Full Off None <ignored> 10
3120 ** 10HD Half Off None <ignored> 10
3121 **
3122 ** This ConType parameter is used for all ports of the adapter!
3123 */
3124 if ( (ConType != NULL) &&
3125 (pAC->Index < SK_MAX_CARD_PARAM) &&
3126 (ConType[pAC->Index] != NULL) ) {
3127
3128 /* Check chipset family */
3129 if ((!pAC->ChipsetType) &&
3130 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3131 (strcmp(ConType[pAC->Index],"")!=0)) {
3132 /* Set the speed parameter back */
3133 printk("sk98lin: Illegal value \"%s\" "
3134 "for ConType."
3135 " Using Auto.\n",
3136 ConType[pAC->Index]);
3137
3138 sprintf(ConType[pAC->Index], "Auto");
3139 }
3140
3141 if (strcmp(ConType[pAC->Index],"")==0) {
3142 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3143 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3144 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3145 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3146 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3147 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3148 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3149 }
3150 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3151 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3152 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3153 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3154 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3155 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3156 }
3157 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3158 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3159 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3160 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3161 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3162 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3163 }
3164 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3165 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3166 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3167 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3168 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3169 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3170 }
3171 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3172 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3173 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3174 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3175 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3176 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3177 }
3178 } else {
3179 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3180 ConType[pAC->Index]);
3181 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3182 }
3183 } else {
3184 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3185 }
3186
3187 /*
3188 ** Parse any parameter settings for port A:
3189 ** a) any LinkSpeed stated?
3190 */
3191 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3192 Speed_A[pAC->Index] != NULL) {
3193 if (strcmp(Speed_A[pAC->Index],"")==0) {
3194 IsLinkSpeedDefined = SK_FALSE;
3195 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3196 LinkSpeed = SK_LSPEED_AUTO;
3197 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3198 LinkSpeed = SK_LSPEED_10MBPS;
3199 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3200 LinkSpeed = SK_LSPEED_100MBPS;
3201 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3202 LinkSpeed = SK_LSPEED_1000MBPS;
3203 } else {
3204 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3205 Speed_A[pAC->Index]);
3206 IsLinkSpeedDefined = SK_FALSE;
3207 }
3208 } else {
3209 IsLinkSpeedDefined = SK_FALSE;
3210 }
3211
3212 /*
3213 ** Check speed parameter:
3214 ** Only copper type adapter and GE V2 cards
3215 */
3216 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3217 ((LinkSpeed != SK_LSPEED_AUTO) &&
3218 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3219 printk("sk98lin: Illegal value for Speed_A. "
3220 "Not a copper card or GE V2 card\n Using "
3221 "speed 1000\n");
3222 LinkSpeed = SK_LSPEED_1000MBPS;
3223 }
3224
3225 /*
3226 ** Decide whether to set new config value if somethig valid has
3227 ** been received.
3228 */
3229 if (IsLinkSpeedDefined) {
3230 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3231 }
3232
3233 /*
3234 ** b) Any Autonegotiation and DuplexCapabilities set?
3235 ** Please note that both belong together...
3236 */
3237 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3238 AutoSet = SK_FALSE;
3239 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3240 AutoNeg_A[pAC->Index] != NULL) {
3241 AutoSet = SK_TRUE;
3242 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3243 AutoSet = SK_FALSE;
3244 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3245 AutoNeg = AN_ON;
3246 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3247 AutoNeg = AN_OFF;
3248 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3249 AutoNeg = AN_SENS;
3250 } else {
3251 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3252 AutoNeg_A[pAC->Index]);
3253 }
3254 }
3255
3256 DuplexCap = DC_BOTH;
3257 DupSet = SK_FALSE;
3258 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3259 DupCap_A[pAC->Index] != NULL) {
3260 DupSet = SK_TRUE;
3261 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3262 DupSet = SK_FALSE;
3263 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3264 DuplexCap = DC_BOTH;
3265 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3266 DuplexCap = DC_FULL;
3267 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3268 DuplexCap = DC_HALF;
3269 } else {
3270 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3271 DupCap_A[pAC->Index]);
3272 }
3273 }
3274
3275 /*
3276 ** Check for illegal combinations
3277 */
3278 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3279 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3280 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3281 (pAC->ChipsetType)) {
3282 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3283 " Using Full Duplex.\n");
3284 DuplexCap = DC_FULL;
3285 }
3286
3287 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3288 printk("sk98lin, Port A: DuplexCapabilities"
3289 " ignored using Sense mode\n");
3290 }
3291
3292 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3293 printk("sk98lin: Port A: Illegal combination"
3294 " of values AutoNeg. and DuplexCap.\n Using "
3295 "Full Duplex\n");
3296 DuplexCap = DC_FULL;
3297 }
3298
3299 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3300 DuplexCap = DC_FULL;
3301 }
3302
3303 if (!AutoSet && DupSet) {
3304 printk("sk98lin: Port A: Duplex setting not"
3305 " possible in\n default AutoNegotiation mode"
3306 " (Sense).\n Using AutoNegotiation On\n");
3307 AutoNeg = AN_ON;
3308 }
3309
3310 /*
3311 ** set the desired mode
3312 */
3313 if (AutoSet || DupSet) {
3314 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3315 }
3316
3317 /*
3318 ** c) Any Flowcontrol-parameter set?
3319 */
3320 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3321 FlowCtrl_A[pAC->Index] != NULL) {
3322 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3323 IsFlowCtrlDefined = SK_FALSE;
3324 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3325 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3326 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3327 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3328 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3329 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3330 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3331 FlowCtrl = SK_FLOW_MODE_NONE;
3332 } else {
3333 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3334 FlowCtrl_A[pAC->Index]);
3335 IsFlowCtrlDefined = SK_FALSE;
3336 }
3337 } else {
3338 IsFlowCtrlDefined = SK_FALSE;
3339 }
3340
3341 if (IsFlowCtrlDefined) {
3342 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3343 printk("sk98lin: Port A: FlowControl"
3344 " impossible without AutoNegotiation,"
3345 " disabled\n");
3346 FlowCtrl = SK_FLOW_MODE_NONE;
3347 }
3348 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3349 }
3350
3351 /*
3352 ** d) What is with the RoleParameter?
3353 */
3354 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3355 Role_A[pAC->Index] != NULL) {
3356 if (strcmp(Role_A[pAC->Index],"")==0) {
3357 IsRoleDefined = SK_FALSE;
3358 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3359 MSMode = SK_MS_MODE_AUTO;
3360 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3361 MSMode = SK_MS_MODE_MASTER;
3362 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3363 MSMode = SK_MS_MODE_SLAVE;
3364 } else {
3365 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3366 Role_A[pAC->Index]);
3367 IsRoleDefined = SK_FALSE;
3368 }
3369 } else {
3370 IsRoleDefined = SK_FALSE;
3371 }
3372
3373 if (IsRoleDefined == SK_TRUE) {
3374 pAC->GIni.GP[0].PMSMode = MSMode;
3375 }
3376
3377
3378
3379 /*
3380 ** Parse any parameter settings for port B:
3381 ** a) any LinkSpeed stated?
3382 */
3383 IsConTypeDefined = SK_TRUE;
3384 IsLinkSpeedDefined = SK_TRUE;
3385 IsFlowCtrlDefined = SK_TRUE;
3386 IsModeDefined = SK_TRUE;
3387
3388 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3389 Speed_B[pAC->Index] != NULL) {
3390 if (strcmp(Speed_B[pAC->Index],"")==0) {
3391 IsLinkSpeedDefined = SK_FALSE;
3392 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3393 LinkSpeed = SK_LSPEED_AUTO;
3394 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3395 LinkSpeed = SK_LSPEED_10MBPS;
3396 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3397 LinkSpeed = SK_LSPEED_100MBPS;
3398 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3399 LinkSpeed = SK_LSPEED_1000MBPS;
3400 } else {
3401 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3402 Speed_B[pAC->Index]);
3403 IsLinkSpeedDefined = SK_FALSE;
3404 }
3405 } else {
3406 IsLinkSpeedDefined = SK_FALSE;
3407 }
3408
3409 /*
3410 ** Check speed parameter:
3411 ** Only copper type adapter and GE V2 cards
3412 */
3413 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3414 ((LinkSpeed != SK_LSPEED_AUTO) &&
3415 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3416 printk("sk98lin: Illegal value for Speed_B. "
3417 "Not a copper card or GE V2 card\n Using "
3418 "speed 1000\n");
3419 LinkSpeed = SK_LSPEED_1000MBPS;
3420 }
3421
3422 /*
3423 ** Decide whether to set new config value if somethig valid has
3424 ** been received.
3425 */
3426 if (IsLinkSpeedDefined) {
3427 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3428 }
3429
3430 /*
3431 ** b) Any Autonegotiation and DuplexCapabilities set?
3432 ** Please note that both belong together...
3433 */
3434 AutoNeg = AN_SENS; /* default: do auto Sense */
3435 AutoSet = SK_FALSE;
3436 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3437 AutoNeg_B[pAC->Index] != NULL) {
3438 AutoSet = SK_TRUE;
3439 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3440 AutoSet = SK_FALSE;
3441 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3442 AutoNeg = AN_ON;
3443 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3444 AutoNeg = AN_OFF;
3445 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3446 AutoNeg = AN_SENS;
3447 } else {
3448 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3449 AutoNeg_B[pAC->Index]);
3450 }
3451 }
3452
3453 DuplexCap = DC_BOTH;
3454 DupSet = SK_FALSE;
3455 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3456 DupCap_B[pAC->Index] != NULL) {
3457 DupSet = SK_TRUE;
3458 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3459 DupSet = SK_FALSE;
3460 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3461 DuplexCap = DC_BOTH;
3462 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3463 DuplexCap = DC_FULL;
3464 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3465 DuplexCap = DC_HALF;
3466 } else {
3467 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3468 DupCap_B[pAC->Index]);
3469 }
3470 }
3471
3472
3473 /*
3474 ** Check for illegal combinations
3475 */
3476 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3477 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3478 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3479 (pAC->ChipsetType)) {
3480 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3481 " Using Full Duplex.\n");
3482 DuplexCap = DC_FULL;
3483 }
3484
3485 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3486 printk("sk98lin, Port B: DuplexCapabilities"
3487 " ignored using Sense mode\n");
3488 }
3489
3490 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3491 printk("sk98lin: Port B: Illegal combination"
3492 " of values AutoNeg. and DuplexCap.\n Using "
3493 "Full Duplex\n");
3494 DuplexCap = DC_FULL;
3495 }
3496
3497 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3498 DuplexCap = DC_FULL;
3499 }
3500
3501 if (!AutoSet && DupSet) {
3502 printk("sk98lin: Port B: Duplex setting not"
3503 " possible in\n default AutoNegotiation mode"
3504 " (Sense).\n Using AutoNegotiation On\n");
3505 AutoNeg = AN_ON;
3506 }
3507
3508 /*
3509 ** set the desired mode
3510 */
3511 if (AutoSet || DupSet) {
3512 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3513 }
3514
3515 /*
3516 ** c) Any FlowCtrl parameter set?
3517 */
3518 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3519 FlowCtrl_B[pAC->Index] != NULL) {
3520 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3521 IsFlowCtrlDefined = SK_FALSE;
3522 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3523 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3524 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3525 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3526 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3527 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3528 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3529 FlowCtrl = SK_FLOW_MODE_NONE;
3530 } else {
3531 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3532 FlowCtrl_B[pAC->Index]);
3533 IsFlowCtrlDefined = SK_FALSE;
3534 }
3535 } else {
3536 IsFlowCtrlDefined = SK_FALSE;
3537 }
3538
3539 if (IsFlowCtrlDefined) {
3540 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3541 printk("sk98lin: Port B: FlowControl"
3542 " impossible without AutoNegotiation,"
3543 " disabled\n");
3544 FlowCtrl = SK_FLOW_MODE_NONE;
3545 }
3546 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3547 }
3548
3549 /*
3550 ** d) What is the RoleParameter?
3551 */
3552 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3553 Role_B[pAC->Index] != NULL) {
3554 if (strcmp(Role_B[pAC->Index],"")==0) {
3555 IsRoleDefined = SK_FALSE;
3556 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3557 MSMode = SK_MS_MODE_AUTO;
3558 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3559 MSMode = SK_MS_MODE_MASTER;
3560 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3561 MSMode = SK_MS_MODE_SLAVE;
3562 } else {
3563 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3564 Role_B[pAC->Index]);
3565 IsRoleDefined = SK_FALSE;
3566 }
3567 } else {
3568 IsRoleDefined = SK_FALSE;
3569 }
3570
3571 if (IsRoleDefined) {
3572 pAC->GIni.GP[1].PMSMode = MSMode;
3573 }
3574
3575 /*
3576 ** Evaluate settings for both ports
3577 */
3578 pAC->ActivePort = 0;
3579 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3580 PrefPort[pAC->Index] != NULL) {
3581 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3582 pAC->ActivePort = 0;
3583 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3584 pAC->Rlmt.Net[0].PrefPort = 0;
3585 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3586 /*
3587 ** do not set ActivePort here, thus a port
3588 ** switch is issued after net up.
3589 */
3590 Port = 0;
3591 pAC->Rlmt.Net[0].Preference = Port;
3592 pAC->Rlmt.Net[0].PrefPort = Port;
3593 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3594 /*
3595 ** do not set ActivePort here, thus a port
3596 ** switch is issued after net up.
3597 */
3598 if (pAC->GIni.GIMacsFound == 1) {
3599 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3600 " Port B not available on single port adapters.\n");
3601
3602 pAC->ActivePort = 0;
3603 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3604 pAC->Rlmt.Net[0].PrefPort = 0;
3605 } else {
3606 Port = 1;
3607 pAC->Rlmt.Net[0].Preference = Port;
3608 pAC->Rlmt.Net[0].PrefPort = Port;
3609 }
3610 } else {
3611 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3612 PrefPort[pAC->Index]);
3613 }
3614 }
3615
3616 pAC->RlmtNets = 1;
3617
3618 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3619 RlmtMode[pAC->Index] != NULL) {
3620 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3621 pAC->RlmtMode = 0;
3622 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3623 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3624 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3625 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3626 SK_RLMT_CHECK_LOC_LINK;
3627 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3628 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3629 SK_RLMT_CHECK_LOC_LINK |
3630 SK_RLMT_CHECK_SEG;
3631 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3632 (pAC->GIni.GIMacsFound == 2)) {
3633 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3634 pAC->RlmtNets = 2;
3635 } else {
3636 printk("sk98lin: Illegal value \"%s\" for"
3637 " RlmtMode, using default\n",
3638 RlmtMode[pAC->Index]);
3639 pAC->RlmtMode = 0;
3640 }
3641 } else {
3642 pAC->RlmtMode = 0;
3643 }
3644
3645 /*
3646 ** Check the interrupt moderation parameters
3647 */
3648 if (Moderation[pAC->Index] != NULL) {
3649 if (strcmp(Moderation[pAC->Index], "") == 0) {
3650 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3651 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3652 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3653 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3654 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3655 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3656 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3657 } else {
3658 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3659 " Disable interrupt moderation.\n",
3660 Moderation[pAC->Index]);
3661 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3662 }
3663 } else {
3664 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3665 }
3666
3667 if (Stats[pAC->Index] != NULL) {
3668 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3669 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3670 } else {
3671 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3672 }
3673 } else {
3674 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3675 }
3676
3677 if (ModerationMask[pAC->Index] != NULL) {
3678 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3679 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3680 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3681 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3682 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3683 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3684 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3685 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3686 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3687 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3688 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3689 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3690 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3691 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3692 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3693 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3694 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3695 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3696 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3697 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3698 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3699 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3700 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3701 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3702 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3703 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3704 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3705 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3706 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3707 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3708 } else { /* some rubbish */
3709 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3710 }
3711 } else { /* operator has stated nothing */
3712 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3713 }
3714
3715 if (AutoSizing[pAC->Index] != NULL) {
3716 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3717 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3718 } else {
3719 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3720 }
3721 } else { /* operator has stated nothing */
3722 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3723 }
3724
3725 if (IntsPerSec[pAC->Index] != 0) {
3726 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3727 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3728 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3729 " Using default value of %i.\n",
3730 IntsPerSec[pAC->Index],
3731 C_INT_MOD_IPS_LOWER_RANGE,
3732 C_INT_MOD_IPS_UPPER_RANGE,
3733 C_INTS_PER_SEC_DEFAULT);
3734 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3735 } else {
3736 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3737 }
3738 } else {
3739 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3740 }
3741
3742 /*
3743 ** Evaluate upper and lower moderation threshold
3744 */
3745 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3746 pAC->DynIrqModInfo.MaxModIntsPerSec +
3747 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3748
3749 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3750 pAC->DynIrqModInfo.MaxModIntsPerSec -
3751 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3752
3753 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3754
3755
3756 } /* GetConfiguration */
3757
3758
3759 /*****************************************************************************
3760 *
3761 * ProductStr - return a adapter identification string from vpd
3762 *
3763 * Description:
3764 * This function reads the product name string from the vpd area
3765 * and puts it the field pAC->DeviceString.
3766 *
3767 * Returns: N/A
3768 */
3769 static inline int ProductStr(
3770 SK_AC *pAC, /* pointer to adapter context */
3771 char *DeviceStr, /* result string */
3772 int StrLen /* length of the string */
3773 )
3774 {
3775 char Keyword[] = VPD_NAME; /* vpd productname identifier */
3776 int ReturnCode; /* return code from vpd_read */
3777 unsigned long Flags;
3778
3779 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3780 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, DeviceStr, &StrLen);
3781 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3782
3783 return ReturnCode;
3784 } /* ProductStr */
3785
3786 /*****************************************************************************
3787 *
3788 * StartDrvCleanupTimer - Start timer to check for descriptors which
3789 * might be placed in descriptor ring, but
3790 * havent been handled up to now
3791 *
3792 * Description:
3793 * This function requests a HW-timer fo the Yukon card. The actions to
3794 * perform when this timer expires, are located in the SkDrvEvent().
3795 *
3796 * Returns: N/A
3797 */
3798 static void
3799 StartDrvCleanupTimer(SK_AC *pAC) {
3800 SK_EVPARA EventParam; /* Event struct for timer event */
3801
3802 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3803 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3804 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3805 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3806 SKGE_DRV, SK_DRV_TIMER, EventParam);
3807 }
3808
3809 /*****************************************************************************
3810 *
3811 * StopDrvCleanupTimer - Stop timer to check for descriptors
3812 *
3813 * Description:
3814 * This function requests a HW-timer fo the Yukon card. The actions to
3815 * perform when this timer expires, are located in the SkDrvEvent().
3816 *
3817 * Returns: N/A
3818 */
3819 static void
3820 StopDrvCleanupTimer(SK_AC *pAC) {
3821 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3822 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3823 }
3824
3825 /****************************************************************************/
3826 /* functions for common modules *********************************************/
3827 /****************************************************************************/
3828
3829
3830 /*****************************************************************************
3831 *
3832 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3833 *
3834 * Description:
3835 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3836 * is embedded into a socket buff data area.
3837 *
3838 * Context:
3839 * runtime
3840 *
3841 * Returns:
3842 * NULL or pointer to Mbuf.
3843 */
3844 SK_MBUF *SkDrvAllocRlmtMbuf(
3845 SK_AC *pAC, /* pointer to adapter context */
3846 SK_IOC IoC, /* the IO-context */
3847 unsigned BufferSize) /* size of the requested buffer */
3848 {
3849 SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3850 struct sk_buff *pMsgBlock; /* pointer to a new message block */
3851
3852 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3853 if (pMsgBlock == NULL) {
3854 return (NULL);
3855 }
3856 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3857 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3858 pRlmtMbuf->pNext = NULL;
3859 pRlmtMbuf->pOs = pMsgBlock;
3860 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3861 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3862 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3863 return (pRlmtMbuf);
3864
3865 } /* SkDrvAllocRlmtMbuf */
3866
3867
3868 /*****************************************************************************
3869 *
3870 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3871 *
3872 * Description:
3873 * This routine frees one or more RLMT mbuf(s).
3874 *
3875 * Context:
3876 * runtime
3877 *
3878 * Returns:
3879 * Nothing
3880 */
3881 void SkDrvFreeRlmtMbuf(
3882 SK_AC *pAC, /* pointer to adapter context */
3883 SK_IOC IoC, /* the IO-context */
3884 SK_MBUF *pMbuf) /* size of the requested buffer */
3885 {
3886 SK_MBUF *pFreeMbuf;
3887 SK_MBUF *pNextMbuf;
3888
3889 pFreeMbuf = pMbuf;
3890 do {
3891 pNextMbuf = pFreeMbuf->pNext;
3892 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3893 pFreeMbuf = pNextMbuf;
3894 } while ( pFreeMbuf != NULL );
3895 } /* SkDrvFreeRlmtMbuf */
3896
3897
3898 /*****************************************************************************
3899 *
3900 * SkOsGetTime - provide a time value
3901 *
3902 * Description:
3903 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
3904 * It is not used for absolute time, but only for time differences.
3905 *
3906 *
3907 * Returns:
3908 * Time value
3909 */
3910 SK_U64 SkOsGetTime(SK_AC *pAC)
3911 {
3912 SK_U64 PrivateJiffies;
3913 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
3914 return PrivateJiffies;
3915 } /* SkOsGetTime */
3916
3917
3918 /*****************************************************************************
3919 *
3920 * SkPciReadCfgDWord - read a 32 bit value from pci config space
3921 *
3922 * Description:
3923 * This routine reads a 32 bit value from the pci configuration
3924 * space.
3925 *
3926 * Returns:
3927 * 0 - indicate everything worked ok.
3928 * != 0 - error indication
3929 */
3930 int SkPciReadCfgDWord(
3931 SK_AC *pAC, /* Adapter Control structure pointer */
3932 int PciAddr, /* PCI register address */
3933 SK_U32 *pVal) /* pointer to store the read value */
3934 {
3935 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
3936 return(0);
3937 } /* SkPciReadCfgDWord */
3938
3939
3940 /*****************************************************************************
3941 *
3942 * SkPciReadCfgWord - read a 16 bit value from pci config space
3943 *
3944 * Description:
3945 * This routine reads a 16 bit value from the pci configuration
3946 * space.
3947 *
3948 * Returns:
3949 * 0 - indicate everything worked ok.
3950 * != 0 - error indication
3951 */
3952 int SkPciReadCfgWord(
3953 SK_AC *pAC, /* Adapter Control structure pointer */
3954 int PciAddr, /* PCI register address */
3955 SK_U16 *pVal) /* pointer to store the read value */
3956 {
3957 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
3958 return(0);
3959 } /* SkPciReadCfgWord */
3960
3961
3962 /*****************************************************************************
3963 *
3964 * SkPciReadCfgByte - read a 8 bit value from pci config space
3965 *
3966 * Description:
3967 * This routine reads a 8 bit value from the pci configuration
3968 * space.
3969 *
3970 * Returns:
3971 * 0 - indicate everything worked ok.
3972 * != 0 - error indication
3973 */
3974 int SkPciReadCfgByte(
3975 SK_AC *pAC, /* Adapter Control structure pointer */
3976 int PciAddr, /* PCI register address */
3977 SK_U8 *pVal) /* pointer to store the read value */
3978 {
3979 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
3980 return(0);
3981 } /* SkPciReadCfgByte */
3982
3983
3984 /*****************************************************************************
3985 *
3986 * SkPciWriteCfgWord - write a 16 bit value to pci config space
3987 *
3988 * Description:
3989 * This routine writes a 16 bit value to the pci configuration
3990 * space. The flag PciConfigUp indicates whether the config space
3991 * is accesible or must be set up first.
3992 *
3993 * Returns:
3994 * 0 - indicate everything worked ok.
3995 * != 0 - error indication
3996 */
3997 int SkPciWriteCfgWord(
3998 SK_AC *pAC, /* Adapter Control structure pointer */
3999 int PciAddr, /* PCI register address */
4000 SK_U16 Val) /* pointer to store the read value */
4001 {
4002 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4003 return(0);
4004 } /* SkPciWriteCfgWord */
4005
4006
4007 /*****************************************************************************
4008 *
4009 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4010 *
4011 * Description:
4012 * This routine writes a 8 bit value to the pci configuration
4013 * space. The flag PciConfigUp indicates whether the config space
4014 * is accesible or must be set up first.
4015 *
4016 * Returns:
4017 * 0 - indicate everything worked ok.
4018 * != 0 - error indication
4019 */
4020 int SkPciWriteCfgByte(
4021 SK_AC *pAC, /* Adapter Control structure pointer */
4022 int PciAddr, /* PCI register address */
4023 SK_U8 Val) /* pointer to store the read value */
4024 {
4025 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4026 return(0);
4027 } /* SkPciWriteCfgByte */
4028
4029
4030 /*****************************************************************************
4031 *
4032 * SkDrvEvent - handle driver events
4033 *
4034 * Description:
4035 * This function handles events from all modules directed to the driver
4036 *
4037 * Context:
4038 * Is called under protection of slow path lock.
4039 *
4040 * Returns:
4041 * 0 if everything ok
4042 * < 0 on error
4043 *
4044 */
4045 int SkDrvEvent(
4046 SK_AC *pAC, /* pointer to adapter context */
4047 SK_IOC IoC, /* io-context */
4048 SK_U32 Event, /* event-id */
4049 SK_EVPARA Param) /* event-parameter */
4050 {
4051 SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4052 struct sk_buff *pMsg; /* pointer to a message block */
4053 int FromPort; /* the port from which we switch away */
4054 int ToPort; /* the port we switch to */
4055 SK_EVPARA NewPara; /* parameter for further events */
4056 int Stat;
4057 unsigned long Flags;
4058 SK_BOOL DualNet;
4059
4060 switch (Event) {
4061 case SK_DRV_ADAP_FAIL:
4062 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4063 ("ADAPTER FAIL EVENT\n"));
4064 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4065 /* disable interrupts */
4066 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4067 /* cgoos */
4068 break;
4069 case SK_DRV_PORT_FAIL:
4070 FromPort = Param.Para32[0];
4071 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4072 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4073 if (FromPort == 0) {
4074 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4075 } else {
4076 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4077 }
4078 /* cgoos */
4079 break;
4080 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4081 /* action list 4 */
4082 FromPort = Param.Para32[0];
4083 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4084 ("PORT RESET EVENT, Port: %d ", FromPort));
4085 NewPara.Para64 = FromPort;
4086 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4087 spin_lock_irqsave(
4088 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4089 Flags);
4090
4091 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
4092 netif_carrier_off(pAC->dev[Param.Para32[0]]);
4093 spin_unlock_irqrestore(
4094 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4095 Flags);
4096
4097 /* clear rx ring from received frames */
4098 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4099
4100 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4101 spin_lock_irqsave(
4102 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4103 Flags);
4104
4105 /* tschilling: Handling of return value inserted. */
4106 if (SkGeInitPort(pAC, IoC, FromPort)) {
4107 if (FromPort == 0) {
4108 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4109 } else {
4110 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4111 }
4112 }
4113 SkAddrMcUpdate(pAC,IoC, FromPort);
4114 PortReInitBmu(pAC, FromPort);
4115 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4116 ClearAndStartRx(pAC, FromPort);
4117 spin_unlock_irqrestore(
4118 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4119 Flags);
4120 break;
4121 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4122 { struct net_device *dev = pAC->dev[Param.Para32[0]];
4123 /* action list 5 */
4124 FromPort = Param.Para32[0];
4125 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4126 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4127 /* Mac update */
4128 SkAddrMcUpdate(pAC,IoC, FromPort);
4129
4130 if (DoPrintInterfaceChange) {
4131 printk("%s: network connection up using"
4132 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4133
4134 /* tschilling: Values changed according to LinkSpeedUsed. */
4135 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4136 if (Stat == SK_LSPEED_STAT_10MBPS) {
4137 printk(" speed: 10\n");
4138 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4139 printk(" speed: 100\n");
4140 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4141 printk(" speed: 1000\n");
4142 } else {
4143 printk(" speed: unknown\n");
4144 }
4145
4146
4147 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4148 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4149 Stat == SK_LMODE_STAT_AUTOFULL) {
4150 printk(" autonegotiation: yes\n");
4151 }
4152 else {
4153 printk(" autonegotiation: no\n");
4154 }
4155 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4156 Stat == SK_LMODE_STAT_HALF) {
4157 printk(" duplex mode: half\n");
4158 }
4159 else {
4160 printk(" duplex mode: full\n");
4161 }
4162 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4163 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4164 printk(" flowctrl: remote send\n");
4165 }
4166 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4167 printk(" flowctrl: local send\n");
4168 }
4169 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4170 printk(" flowctrl: symmetric\n");
4171 }
4172 else {
4173 printk(" flowctrl: none\n");
4174 }
4175
4176 /* tschilling: Check against CopperType now. */
4177 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4178 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4179 SK_LSPEED_STAT_1000MBPS)) {
4180 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4181 if (Stat == SK_MS_STAT_MASTER ) {
4182 printk(" role: master\n");
4183 }
4184 else if (Stat == SK_MS_STAT_SLAVE ) {
4185 printk(" role: slave\n");
4186 }
4187 else {
4188 printk(" role: ???\n");
4189 }
4190 }
4191
4192 /*
4193 Display dim (dynamic interrupt moderation)
4194 informations
4195 */
4196 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4197 printk(" irq moderation: static (%d ints/sec)\n",
4198 pAC->DynIrqModInfo.MaxModIntsPerSec);
4199 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4200 printk(" irq moderation: dynamic (%d ints/sec)\n",
4201 pAC->DynIrqModInfo.MaxModIntsPerSec);
4202 else
4203 printk(" irq moderation: disabled\n");
4204
4205
4206 printk(" scatter-gather: %s\n",
4207 (dev->features & NETIF_F_SG) ? "enabled" : "disabled");
4208 printk(" tx-checksum: %s\n",
4209 (dev->features & NETIF_F_IP_CSUM) ? "enabled" : "disabled");
4210 printk(" rx-checksum: %s\n",
4211 pAC->RxPort[Param.Para32[0]].RxCsum ? "enabled" : "disabled");
4212
4213 } else {
4214 DoPrintInterfaceChange = SK_TRUE;
4215 }
4216
4217 if ((Param.Para32[0] != pAC->ActivePort) &&
4218 (pAC->RlmtNets == 1)) {
4219 NewPara.Para32[0] = pAC->ActivePort;
4220 NewPara.Para32[1] = Param.Para32[0];
4221 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4222 NewPara);
4223 }
4224
4225 /* Inform the world that link protocol is up. */
4226 netif_carrier_on(dev);
4227 break;
4228 }
4229 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4230 /* action list 7 */
4231 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4232 ("NET DOWN EVENT "));
4233 if (DoPrintInterfaceChange) {
4234 printk("%s: network connection down\n",
4235 pAC->dev[Param.Para32[1]]->name);
4236 } else {
4237 DoPrintInterfaceChange = SK_TRUE;
4238 }
4239 netif_carrier_off(pAC->dev[Param.Para32[1]]);
4240 break;
4241 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4242 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4243 ("PORT SWITCH HARD "));
4244 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4245 /* action list 6 */
4246 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4247 'A'+Param.Para32[1]);
4248 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4249 FromPort = Param.Para32[0];
4250 ToPort = Param.Para32[1];
4251 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4252 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4253 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4254 NewPara.Para64 = FromPort;
4255 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4256 NewPara.Para64 = ToPort;
4257 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4258 spin_lock_irqsave(
4259 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4260 Flags);
4261 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4262 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4263 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4264 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4265 spin_unlock_irqrestore(
4266 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4267 Flags);
4268
4269 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4270 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4271
4272 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4273 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4274 spin_lock_irqsave(
4275 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4276 Flags);
4277 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4278 pAC->ActivePort = ToPort;
4279 #if 0
4280 SetQueueSizes(pAC);
4281 #else
4282 /* tschilling: New common function with minimum size check. */
4283 DualNet = SK_FALSE;
4284 if (pAC->RlmtNets == 2) {
4285 DualNet = SK_TRUE;
4286 }
4287
4288 if (SkGeInitAssignRamToQueues(
4289 pAC,
4290 pAC->ActivePort,
4291 DualNet)) {
4292 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4293 spin_unlock_irqrestore(
4294 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4295 Flags);
4296 printk("SkGeInitAssignRamToQueues failed.\n");
4297 break;
4298 }
4299 #endif
4300 /* tschilling: Handling of return values inserted. */
4301 if (SkGeInitPort(pAC, IoC, FromPort) ||
4302 SkGeInitPort(pAC, IoC, ToPort)) {
4303 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4304 }
4305 if (Event == SK_DRV_SWITCH_SOFT) {
4306 SkMacRxTxEnable(pAC, IoC, FromPort);
4307 }
4308 SkMacRxTxEnable(pAC, IoC, ToPort);
4309 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4310 SkAddrMcUpdate(pAC, IoC, FromPort);
4311 SkAddrMcUpdate(pAC, IoC, ToPort);
4312 PortReInitBmu(pAC, FromPort);
4313 PortReInitBmu(pAC, ToPort);
4314 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4315 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4316 ClearAndStartRx(pAC, FromPort);
4317 ClearAndStartRx(pAC, ToPort);
4318 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4319 spin_unlock_irqrestore(
4320 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4321 Flags);
4322 break;
4323 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4324 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4325 ("RLS "));
4326 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4327 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4328 skb_put(pMsg, pRlmtMbuf->Length);
4329 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4330 pMsg) < 0)
4331
4332 DEV_KFREE_SKB_ANY(pMsg);
4333 break;
4334 case SK_DRV_TIMER:
4335 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4336 /*
4337 ** expiration of the moderation timer implies that
4338 ** dynamic moderation is to be applied
4339 */
4340 SkDimStartModerationTimer(pAC);
4341 SkDimModerate(pAC);
4342 if (pAC->DynIrqModInfo.DisplayStats) {
4343 SkDimDisplayModerationSettings(pAC);
4344 }
4345 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4346 /*
4347 ** check if we need to check for descriptors which
4348 ** haven't been handled the last millisecs
4349 */
4350 StartDrvCleanupTimer(pAC);
4351 if (pAC->GIni.GIMacsFound == 2) {
4352 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4353 }
4354 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4355 } else {
4356 printk("Expiration of unknown timer\n");
4357 }
4358 break;
4359 default:
4360 break;
4361 }
4362 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4363 ("END EVENT "));
4364
4365 return (0);
4366 } /* SkDrvEvent */
4367
4368
4369 /*****************************************************************************
4370 *
4371 * SkErrorLog - log errors
4372 *
4373 * Description:
4374 * This function logs errors to the system buffer and to the console
4375 *
4376 * Returns:
4377 * 0 if everything ok
4378 * < 0 on error
4379 *
4380 */
4381 void SkErrorLog(
4382 SK_AC *pAC,
4383 int ErrClass,
4384 int ErrNum,
4385 char *pErrorMsg)
4386 {
4387 char ClassStr[80];
4388
4389 switch (ErrClass) {
4390 case SK_ERRCL_OTHER:
4391 strcpy(ClassStr, "Other error");
4392 break;
4393 case SK_ERRCL_CONFIG:
4394 strcpy(ClassStr, "Configuration error");
4395 break;
4396 case SK_ERRCL_INIT:
4397 strcpy(ClassStr, "Initialization error");
4398 break;
4399 case SK_ERRCL_NORES:
4400 strcpy(ClassStr, "Out of resources error");
4401 break;
4402 case SK_ERRCL_SW:
4403 strcpy(ClassStr, "internal Software error");
4404 break;
4405 case SK_ERRCL_HW:
4406 strcpy(ClassStr, "Hardware failure");
4407 break;
4408 case SK_ERRCL_COMM:
4409 strcpy(ClassStr, "Communication error");
4410 break;
4411 }
4412 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4413 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4414 ClassStr, ErrNum, pErrorMsg);
4415
4416 } /* SkErrorLog */
4417
4418 #ifdef SK_DIAG_SUPPORT
4419
4420 /*****************************************************************************
4421 *
4422 * SkDrvEnterDiagMode - handles DIAG attach request
4423 *
4424 * Description:
4425 * Notify the kernel to NOT access the card any longer due to DIAG
4426 * Deinitialize the Card
4427 *
4428 * Returns:
4429 * int
4430 */
4431 int SkDrvEnterDiagMode(
4432 SK_AC *pAc) /* pointer to adapter context */
4433 {
4434 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4435 SK_AC *pAC = pNet->pAC;
4436
4437 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4438 sizeof(SK_PNMI_STRUCT_DATA));
4439
4440 pAC->DiagModeActive = DIAG_ACTIVE;
4441 if (pAC->BoardLevel > SK_INIT_DATA) {
4442 if (netif_running(pAC->dev[0])) {
4443 pAC->WasIfUp[0] = SK_TRUE;
4444 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4445 DoPrintInterfaceChange = SK_FALSE;
4446 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4447 } else {
4448 pAC->WasIfUp[0] = SK_FALSE;
4449 }
4450 if (pNet != netdev_priv(pAC->dev[1])) {
4451 pNet = netdev_priv(pAC->dev[1]);
4452 if (netif_running(pAC->dev[1])) {
4453 pAC->WasIfUp[1] = SK_TRUE;
4454 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4455 DoPrintInterfaceChange = SK_FALSE;
4456 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4457 } else {
4458 pAC->WasIfUp[1] = SK_FALSE;
4459 }
4460 }
4461 pAC->BoardLevel = SK_INIT_DATA;
4462 }
4463 return(0);
4464 }
4465
4466 /*****************************************************************************
4467 *
4468 * SkDrvLeaveDiagMode - handles DIAG detach request
4469 *
4470 * Description:
4471 * Notify the kernel to may access the card again after use by DIAG
4472 * Initialize the Card
4473 *
4474 * Returns:
4475 * int
4476 */
4477 int SkDrvLeaveDiagMode(
4478 SK_AC *pAc) /* pointer to adapter control context */
4479 {
4480 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4481 sizeof(SK_PNMI_STRUCT_DATA));
4482 pAc->DiagModeActive = DIAG_NOTACTIVE;
4483 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4484 if (pAc->WasIfUp[0] == SK_TRUE) {
4485 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4486 DoPrintInterfaceChange = SK_FALSE;
4487 SkDrvInitAdapter(pAc, 0); /* first device */
4488 }
4489 if (pAc->WasIfUp[1] == SK_TRUE) {
4490 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4491 DoPrintInterfaceChange = SK_FALSE;
4492 SkDrvInitAdapter(pAc, 1); /* second device */
4493 }
4494 return(0);
4495 }
4496
4497 /*****************************************************************************
4498 *
4499 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4500 *
4501 * Description:
4502 * This function parses the PCI slot name information string and will
4503 * retrieve the devcie number out of it. The slot_name maintianed by
4504 * linux is in the form of '02:0a.0', whereas the first two characters
4505 * represent the bus number in hex (in the sample above this is
4506 * pci bus 0x02) and the next two characters the device number (0x0a).
4507 *
4508 * Returns:
4509 * SK_U32: The device number from the PCI slot name
4510 */
4511
4512 static SK_U32 ParseDeviceNbrFromSlotName(
4513 const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4514 {
4515 char *CurrCharPos = (char *) SlotName;
4516 int FirstNibble = -1;
4517 int SecondNibble = -1;
4518 SK_U32 Result = 0;
4519
4520 while (*CurrCharPos != '\0') {
4521 if (*CurrCharPos == ':') {
4522 while (*CurrCharPos != '.') {
4523 CurrCharPos++;
4524 if ( (*CurrCharPos >= '0') &&
4525 (*CurrCharPos <= '9')) {
4526 if (FirstNibble == -1) {
4527 /* dec. value for '0' */
4528 FirstNibble = *CurrCharPos - 48;
4529 } else {
4530 SecondNibble = *CurrCharPos - 48;
4531 }
4532 } else if ( (*CurrCharPos >= 'a') &&
4533 (*CurrCharPos <= 'f') ) {
4534 if (FirstNibble == -1) {
4535 FirstNibble = *CurrCharPos - 87;
4536 } else {
4537 SecondNibble = *CurrCharPos - 87;
4538 }
4539 } else {
4540 Result = 0;
4541 }
4542 }
4543
4544 Result = FirstNibble;
4545 Result = Result << 4; /* first nibble is higher one */
4546 Result = Result | SecondNibble;
4547 }
4548 CurrCharPos++; /* next character */
4549 }
4550 return (Result);
4551 }
4552
4553 /****************************************************************************
4554 *
4555 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4556 * called if Diag attaches to that card)
4557 *
4558 * Description:
4559 * Close initialized adapter.
4560 *
4561 * Returns:
4562 * 0 - on success
4563 * error code - on error
4564 */
4565 static int SkDrvDeInitAdapter(
4566 SK_AC *pAC, /* pointer to adapter context */
4567 int devNbr) /* what device is to be handled */
4568 {
4569 struct SK_NET_DEVICE *dev;
4570
4571 dev = pAC->dev[devNbr];
4572
4573 /* On Linux 2.6 the network driver does NOT mess with reference
4574 ** counts. The driver MUST be able to be unloaded at any time
4575 ** due to the possibility of hotplug.
4576 */
4577 if (SkGeClose(dev) != 0) {
4578 return (-1);
4579 }
4580 return (0);
4581
4582 } /* SkDrvDeInitAdapter() */
4583
4584 /****************************************************************************
4585 *
4586 * SkDrvInitAdapter - Initialize adapter (this function is only
4587 * called if Diag deattaches from that card)
4588 *
4589 * Description:
4590 * Close initialized adapter.
4591 *
4592 * Returns:
4593 * 0 - on success
4594 * error code - on error
4595 */
4596 static int SkDrvInitAdapter(
4597 SK_AC *pAC, /* pointer to adapter context */
4598 int devNbr) /* what device is to be handled */
4599 {
4600 struct SK_NET_DEVICE *dev;
4601
4602 dev = pAC->dev[devNbr];
4603
4604 if (SkGeOpen(dev) != 0) {
4605 return (-1);
4606 }
4607
4608 /*
4609 ** Use correct MTU size and indicate to kernel TX queue can be started
4610 */
4611 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4612 return (-1);
4613 }
4614 return (0);
4615
4616 } /* SkDrvInitAdapter */
4617
4618 #endif
4619
4620 #ifdef DEBUG
4621 /****************************************************************************/
4622 /* "debug only" section *****************************************************/
4623 /****************************************************************************/
4624
4625
4626 /*****************************************************************************
4627 *
4628 * DumpMsg - print a frame
4629 *
4630 * Description:
4631 * This function prints frames to the system logfile/to the console.
4632 *
4633 * Returns: N/A
4634 *
4635 */
4636 static void DumpMsg(struct sk_buff *skb, char *str)
4637 {
4638 int msglen;
4639
4640 if (skb == NULL) {
4641 printk("DumpMsg(): NULL-Message\n");
4642 return;
4643 }
4644
4645 if (skb->data == NULL) {
4646 printk("DumpMsg(): Message empty\n");
4647 return;
4648 }
4649
4650 msglen = skb->len;
4651 if (msglen > 64)
4652 msglen = 64;
4653
4654 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4655
4656 DumpData((char *)skb->data, msglen);
4657
4658 printk("------- End of message ---------\n");
4659 } /* DumpMsg */
4660
4661
4662
4663 /*****************************************************************************
4664 *
4665 * DumpData - print a data area
4666 *
4667 * Description:
4668 * This function prints a area of data to the system logfile/to the
4669 * console.
4670 *
4671 * Returns: N/A
4672 *
4673 */
4674 static void DumpData(char *p, int size)
4675 {
4676 register int i;
4677 int haddr, addr;
4678 char hex_buffer[180];
4679 char asc_buffer[180];
4680 char HEXCHAR[] = "0123456789ABCDEF";
4681
4682 addr = 0;
4683 haddr = 0;
4684 hex_buffer[0] = 0;
4685 asc_buffer[0] = 0;
4686 for (i=0; i < size; ) {
4687 if (*p >= '0' && *p <='z')
4688 asc_buffer[addr] = *p;
4689 else
4690 asc_buffer[addr] = '.';
4691 addr++;
4692 asc_buffer[addr] = 0;
4693 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4694 haddr++;
4695 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4696 haddr++;
4697 hex_buffer[haddr] = ' ';
4698 haddr++;
4699 hex_buffer[haddr] = 0;
4700 p++;
4701 i++;
4702 if (i%16 == 0) {
4703 printk("%s %s\n", hex_buffer, asc_buffer);
4704 addr = 0;
4705 haddr = 0;
4706 }
4707 }
4708 } /* DumpData */
4709
4710
4711 /*****************************************************************************
4712 *
4713 * DumpLong - print a data area as long values
4714 *
4715 * Description:
4716 * This function prints a area of data to the system logfile/to the
4717 * console.
4718 *
4719 * Returns: N/A
4720 *
4721 */
4722 static void DumpLong(char *pc, int size)
4723 {
4724 register int i;
4725 int haddr, addr;
4726 char hex_buffer[180];
4727 char asc_buffer[180];
4728 char HEXCHAR[] = "0123456789ABCDEF";
4729 long *p;
4730 int l;
4731
4732 addr = 0;
4733 haddr = 0;
4734 hex_buffer[0] = 0;
4735 asc_buffer[0] = 0;
4736 p = (long*) pc;
4737 for (i=0; i < size; ) {
4738 l = (long) *p;
4739 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4740 haddr++;
4741 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4742 haddr++;
4743 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4744 haddr++;
4745 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4746 haddr++;
4747 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4748 haddr++;
4749 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4750 haddr++;
4751 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4752 haddr++;
4753 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4754 haddr++;
4755 hex_buffer[haddr] = ' ';
4756 haddr++;
4757 hex_buffer[haddr] = 0;
4758 p++;
4759 i++;
4760 if (i%8 == 0) {
4761 printk("%4x %s\n", (i-8)*4, hex_buffer);
4762 haddr = 0;
4763 }
4764 }
4765 printk("------------------------\n");
4766 } /* DumpLong */
4767
4768 #endif
4769
4770 static int __devinit skge_probe_one(struct pci_dev *pdev,
4771 const struct pci_device_id *ent)
4772 {
4773 SK_AC *pAC;
4774 DEV_NET *pNet = NULL;
4775 struct net_device *dev = NULL;
4776 static int boards_found = 0;
4777 int error = -ENODEV;
4778 char DeviceStr[80];
4779
4780 if (pci_enable_device(pdev))
4781 goto out;
4782
4783 /* Configure DMA attributes. */
4784 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
4785 pci_set_dma_mask(pdev, DMA_32BIT_MASK))
4786 goto out_disable_device;
4787
4788
4789 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
4790 printk(KERN_ERR "Unable to allocate etherdev "
4791 "structure!\n");
4792 goto out_disable_device;
4793 }
4794
4795 pNet = netdev_priv(dev);
4796 pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
4797 if (!pNet->pAC) {
4798 printk(KERN_ERR "Unable to allocate adapter "
4799 "structure!\n");
4800 goto out_free_netdev;
4801 }
4802
4803 memset(pNet->pAC, 0, sizeof(SK_AC));
4804 pAC = pNet->pAC;
4805 pAC->PciDev = pdev;
4806
4807 pAC->dev[0] = dev;
4808 pAC->dev[1] = dev;
4809 pAC->CheckQueue = SK_FALSE;
4810
4811 dev->irq = pdev->irq;
4812 error = SkGeInitPCI(pAC);
4813 if (error) {
4814 printk(KERN_ERR "sk98lin: PCI setup failed: %i\n", error);
4815 goto out_free_netdev;
4816 }
4817
4818 SET_MODULE_OWNER(dev);
4819 dev->open = &SkGeOpen;
4820 dev->stop = &SkGeClose;
4821 dev->hard_start_xmit = &SkGeXmit;
4822 dev->get_stats = &SkGeStats;
4823 dev->set_multicast_list = &SkGeSetRxMode;
4824 dev->set_mac_address = &SkGeSetMacAddr;
4825 dev->do_ioctl = &SkGeIoctl;
4826 dev->change_mtu = &SkGeChangeMtu;
4827 #ifdef CONFIG_NET_POLL_CONTROLLER
4828 dev->poll_controller = &SkGePollController;
4829 #endif
4830 SET_NETDEV_DEV(dev, &pdev->dev);
4831 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4832
4833 /* Use only if yukon hardware */
4834 if (pAC->ChipsetType) {
4835 #ifdef USE_SK_TX_CHECKSUM
4836 dev->features |= NETIF_F_IP_CSUM;
4837 #endif
4838 #ifdef SK_ZEROCOPY
4839 dev->features |= NETIF_F_SG;
4840 #endif
4841 #ifdef USE_SK_RX_CHECKSUM
4842 pAC->RxPort[0].RxCsum = 1;
4843 #endif
4844 }
4845
4846 pAC->Index = boards_found++;
4847
4848 if (SkGeBoardInit(dev, pAC))
4849 goto out_free_netdev;
4850
4851 /* Read Adapter name from VPD */
4852 if (ProductStr(pAC, DeviceStr, sizeof(DeviceStr)) != 0) {
4853 printk(KERN_ERR "sk98lin: Could not read VPD data.\n");
4854 goto out_free_resources;
4855 }
4856
4857 /* Register net device */
4858 if (register_netdev(dev)) {
4859 printk(KERN_ERR "sk98lin: Could not register device.\n");
4860 goto out_free_resources;
4861 }
4862
4863 /* Print adapter specific string from vpd */
4864 printk("%s: %s\n", dev->name, DeviceStr);
4865
4866 /* Print configuration settings */
4867 printk(" PrefPort:%c RlmtMode:%s\n",
4868 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4869 (pAC->RlmtMode==0) ? "Check Link State" :
4870 ((pAC->RlmtMode==1) ? "Check Link State" :
4871 ((pAC->RlmtMode==3) ? "Check Local Port" :
4872 ((pAC->RlmtMode==7) ? "Check Segmentation" :
4873 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
4874
4875 SkGeYellowLED(pAC, pAC->IoBase, 1);
4876
4877 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
4878 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4879
4880 pNet->PortNr = 0;
4881 pNet->NetNr = 0;
4882
4883 boards_found++;
4884
4885 /* More then one port found */
4886 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
4887 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == 0) {
4888 printk(KERN_ERR "Unable to allocate etherdev "
4889 "structure!\n");
4890 goto out;
4891 }
4892
4893 pAC->dev[1] = dev;
4894 pNet = netdev_priv(dev);
4895 pNet->PortNr = 1;
4896 pNet->NetNr = 1;
4897 pNet->pAC = pAC;
4898
4899 dev->open = &SkGeOpen;
4900 dev->stop = &SkGeClose;
4901 dev->hard_start_xmit = &SkGeXmit;
4902 dev->get_stats = &SkGeStats;
4903 dev->set_multicast_list = &SkGeSetRxMode;
4904 dev->set_mac_address = &SkGeSetMacAddr;
4905 dev->do_ioctl = &SkGeIoctl;
4906 dev->change_mtu = &SkGeChangeMtu;
4907 SET_NETDEV_DEV(dev, &pdev->dev);
4908 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4909
4910 if (pAC->ChipsetType) {
4911 #ifdef USE_SK_TX_CHECKSUM
4912 dev->features |= NETIF_F_IP_CSUM;
4913 #endif
4914 #ifdef SK_ZEROCOPY
4915 dev->features |= NETIF_F_SG;
4916 #endif
4917 #ifdef USE_SK_RX_CHECKSUM
4918 pAC->RxPort[1].RxCsum = 1;
4919 #endif
4920 }
4921
4922 if (register_netdev(dev)) {
4923 printk(KERN_ERR "sk98lin: Could not register device for seconf port.\n");
4924 free_netdev(dev);
4925 pAC->dev[1] = pAC->dev[0];
4926 } else {
4927 memcpy(&dev->dev_addr,
4928 &pAC->Addr.Net[1].CurrentMacAddress, 6);
4929 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4930
4931 printk("%s: %s\n", dev->name, DeviceStr);
4932 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
4933 }
4934 }
4935
4936 /* Save the hardware revision */
4937 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
4938 (pAC->GIni.GIPciHwRev & 0x0F);
4939
4940 /* Set driver globals */
4941 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
4942 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
4943
4944 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
4945 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
4946
4947 pci_set_drvdata(pdev, dev);
4948 return 0;
4949
4950 out_free_resources:
4951 FreeResources(dev);
4952 out_free_netdev:
4953 free_netdev(dev);
4954 out_disable_device:
4955 pci_disable_device(pdev);
4956 out:
4957 return error;
4958 }
4959
4960 static void __devexit skge_remove_one(struct pci_dev *pdev)
4961 {
4962 struct net_device *dev = pci_get_drvdata(pdev);
4963 DEV_NET *pNet = netdev_priv(dev);
4964 SK_AC *pAC = pNet->pAC;
4965 struct net_device *otherdev = pAC->dev[1];
4966
4967 unregister_netdev(dev);
4968
4969 SkGeYellowLED(pAC, pAC->IoBase, 0);
4970
4971 if (pAC->BoardLevel == SK_INIT_RUN) {
4972 SK_EVPARA EvPara;
4973 unsigned long Flags;
4974
4975 /* board is still alive */
4976 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
4977 EvPara.Para32[0] = 0;
4978 EvPara.Para32[1] = -1;
4979 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
4980 EvPara.Para32[0] = 1;
4981 EvPara.Para32[1] = -1;
4982 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
4983 SkEventDispatcher(pAC, pAC->IoBase);
4984 /* disable interrupts */
4985 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4986 SkGeDeInit(pAC, pAC->IoBase);
4987 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
4988 pAC->BoardLevel = SK_INIT_DATA;
4989 /* We do NOT check here, if IRQ was pending, of course*/
4990 }
4991
4992 if (pAC->BoardLevel == SK_INIT_IO) {
4993 /* board is still alive */
4994 SkGeDeInit(pAC, pAC->IoBase);
4995 pAC->BoardLevel = SK_INIT_DATA;
4996 }
4997
4998 FreeResources(dev);
4999 free_netdev(dev);
5000 if (otherdev != dev)
5001 free_netdev(otherdev);
5002 kfree(pAC);
5003 }
5004
5005 #ifdef CONFIG_PM
5006 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
5007 {
5008 struct net_device *dev = pci_get_drvdata(pdev);
5009 DEV_NET *pNet = netdev_priv(dev);
5010 SK_AC *pAC = pNet->pAC;
5011 struct net_device *otherdev = pAC->dev[1];
5012
5013 if (netif_running(dev)) {
5014 netif_carrier_off(dev);
5015 DoPrintInterfaceChange = SK_FALSE;
5016 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
5017 netif_device_detach(dev);
5018 }
5019 if (otherdev != dev) {
5020 if (netif_running(otherdev)) {
5021 netif_carrier_off(otherdev);
5022 DoPrintInterfaceChange = SK_FALSE;
5023 SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
5024 netif_device_detach(otherdev);
5025 }
5026 }
5027
5028 pci_save_state(pdev);
5029 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
5030 if (pAC->AllocFlag & SK_ALLOC_IRQ) {
5031 free_irq(dev->irq, dev);
5032 }
5033 pci_disable_device(pdev);
5034 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5035
5036 return 0;
5037 }
5038
5039 static int skge_resume(struct pci_dev *pdev)
5040 {
5041 struct net_device *dev = pci_get_drvdata(pdev);
5042 DEV_NET *pNet = netdev_priv(dev);
5043 SK_AC *pAC = pNet->pAC;
5044 struct net_device *otherdev = pAC->dev[1];
5045 int ret;
5046
5047 pci_set_power_state(pdev, PCI_D0);
5048 pci_restore_state(pdev);
5049 pci_enable_device(pdev);
5050 pci_set_master(pdev);
5051 if (pAC->GIni.GIMacsFound == 2)
5052 ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, "sk98lin", dev);
5053 else
5054 ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ, "sk98lin", dev);
5055 if (ret) {
5056 printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
5057 pAC->AllocFlag &= ~SK_ALLOC_IRQ;
5058 dev->irq = 0;
5059 pci_disable_device(pdev);
5060 return -EBUSY;
5061 }
5062
5063 netif_device_attach(dev);
5064 if (netif_running(dev)) {
5065 DoPrintInterfaceChange = SK_FALSE;
5066 SkDrvInitAdapter(pAC, 0); /* first device */
5067 }
5068 if (otherdev != dev) {
5069 netif_device_attach(otherdev);
5070 if (netif_running(otherdev)) {
5071 DoPrintInterfaceChange = SK_FALSE;
5072 SkDrvInitAdapter(pAC, 1); /* second device */
5073 }
5074 }
5075
5076 return 0;
5077 }
5078 #else
5079 #define skge_suspend NULL
5080 #define skge_resume NULL
5081 #endif
5082
5083 static struct pci_device_id skge_pci_tbl[] = {
5084 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5085 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5086 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5087 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5088 /* DLink card does not have valid VPD so this driver gags
5089 * { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5090 */
5091 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5092 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5093 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5094 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
5095 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5096 { 0 }
5097 };
5098
5099 MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5100
5101 static struct pci_driver skge_driver = {
5102 .name = "sk98lin",
5103 .id_table = skge_pci_tbl,
5104 .probe = skge_probe_one,
5105 .remove = __devexit_p(skge_remove_one),
5106 .suspend = skge_suspend,
5107 .resume = skge_resume,
5108 };
5109
5110 static int __init skge_init(void)
5111 {
5112 return pci_module_init(&skge_driver);
5113 }
5114
5115 static void __exit skge_exit(void)
5116 {
5117 pci_unregister_driver(&skge_driver);
5118 }
5119
5120 module_init(skge_init);
5121 module_exit(skge_exit);
This page took 0.144306 seconds and 5 git commands to generate.