Merge master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #include <linux/config.h>
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/mii.h>
42 #include <asm/irq.h>
43
44 #include "skge.h"
45
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.5"
48 #define PFX DRV_NAME " "
49
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
60 #define BLINK_MS 250
61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
66
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
83 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
85 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
86 { 0 }
87 };
88 MODULE_DEVICE_TABLE(pci, skge_id_table);
89
90 static int skge_up(struct net_device *dev);
91 static int skge_down(struct net_device *dev);
92 static void skge_phy_reset(struct skge_port *skge);
93 static void skge_tx_clean(struct skge_port *skge);
94 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
95 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static void genesis_get_stats(struct skge_port *skge, u64 *data);
97 static void yukon_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_init(struct skge_hw *hw, int port);
99 static void genesis_mac_init(struct skge_hw *hw, int port);
100 static void genesis_link_up(struct skge_port *skge);
101
102 /* Avoid conditionals by using array */
103 static const int txqaddr[] = { Q_XA1, Q_XA2 };
104 static const int rxqaddr[] = { Q_R1, Q_R2 };
105 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
106 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
107
108 static int skge_get_regs_len(struct net_device *dev)
109 {
110 return 0x4000;
111 }
112
113 /*
114 * Returns copy of whole control register region
115 * Note: skip RAM address register because accessing it will
116 * cause bus hangs!
117 */
118 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
119 void *p)
120 {
121 const struct skge_port *skge = netdev_priv(dev);
122 const void __iomem *io = skge->hw->regs;
123
124 regs->version = 1;
125 memset(p, 0, regs->len);
126 memcpy_fromio(p, io, B3_RAM_ADDR);
127
128 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
129 regs->len - B3_RI_WTO_R1);
130 }
131
132 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
133 static int wol_supported(const struct skge_hw *hw)
134 {
135 return !((hw->chip_id == CHIP_ID_GENESIS ||
136 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
137 }
138
139 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
140 {
141 struct skge_port *skge = netdev_priv(dev);
142
143 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
144 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
145 }
146
147 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
148 {
149 struct skge_port *skge = netdev_priv(dev);
150 struct skge_hw *hw = skge->hw;
151
152 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
153 return -EOPNOTSUPP;
154
155 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
156 return -EOPNOTSUPP;
157
158 skge->wol = wol->wolopts == WAKE_MAGIC;
159
160 if (skge->wol) {
161 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
162
163 skge_write16(hw, WOL_CTRL_STAT,
164 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
165 WOL_CTL_ENA_MAGIC_PKT_UNIT);
166 } else
167 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
168
169 return 0;
170 }
171
172 /* Determine supported/advertised modes based on hardware.
173 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
174 */
175 static u32 skge_supported_modes(const struct skge_hw *hw)
176 {
177 u32 supported;
178
179 if (hw->copper) {
180 supported = SUPPORTED_10baseT_Half
181 | SUPPORTED_10baseT_Full
182 | SUPPORTED_100baseT_Half
183 | SUPPORTED_100baseT_Full
184 | SUPPORTED_1000baseT_Half
185 | SUPPORTED_1000baseT_Full
186 | SUPPORTED_Autoneg| SUPPORTED_TP;
187
188 if (hw->chip_id == CHIP_ID_GENESIS)
189 supported &= ~(SUPPORTED_10baseT_Half
190 | SUPPORTED_10baseT_Full
191 | SUPPORTED_100baseT_Half
192 | SUPPORTED_100baseT_Full);
193
194 else if (hw->chip_id == CHIP_ID_YUKON)
195 supported &= ~SUPPORTED_1000baseT_Half;
196 } else
197 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
198 | SUPPORTED_Autoneg;
199
200 return supported;
201 }
202
203 static int skge_get_settings(struct net_device *dev,
204 struct ethtool_cmd *ecmd)
205 {
206 struct skge_port *skge = netdev_priv(dev);
207 struct skge_hw *hw = skge->hw;
208
209 ecmd->transceiver = XCVR_INTERNAL;
210 ecmd->supported = skge_supported_modes(hw);
211
212 if (hw->copper) {
213 ecmd->port = PORT_TP;
214 ecmd->phy_address = hw->phy_addr;
215 } else
216 ecmd->port = PORT_FIBRE;
217
218 ecmd->advertising = skge->advertising;
219 ecmd->autoneg = skge->autoneg;
220 ecmd->speed = skge->speed;
221 ecmd->duplex = skge->duplex;
222 return 0;
223 }
224
225 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
226 {
227 struct skge_port *skge = netdev_priv(dev);
228 const struct skge_hw *hw = skge->hw;
229 u32 supported = skge_supported_modes(hw);
230
231 if (ecmd->autoneg == AUTONEG_ENABLE) {
232 ecmd->advertising = supported;
233 skge->duplex = -1;
234 skge->speed = -1;
235 } else {
236 u32 setting;
237
238 switch (ecmd->speed) {
239 case SPEED_1000:
240 if (ecmd->duplex == DUPLEX_FULL)
241 setting = SUPPORTED_1000baseT_Full;
242 else if (ecmd->duplex == DUPLEX_HALF)
243 setting = SUPPORTED_1000baseT_Half;
244 else
245 return -EINVAL;
246 break;
247 case SPEED_100:
248 if (ecmd->duplex == DUPLEX_FULL)
249 setting = SUPPORTED_100baseT_Full;
250 else if (ecmd->duplex == DUPLEX_HALF)
251 setting = SUPPORTED_100baseT_Half;
252 else
253 return -EINVAL;
254 break;
255
256 case SPEED_10:
257 if (ecmd->duplex == DUPLEX_FULL)
258 setting = SUPPORTED_10baseT_Full;
259 else if (ecmd->duplex == DUPLEX_HALF)
260 setting = SUPPORTED_10baseT_Half;
261 else
262 return -EINVAL;
263 break;
264 default:
265 return -EINVAL;
266 }
267
268 if ((setting & supported) == 0)
269 return -EINVAL;
270
271 skge->speed = ecmd->speed;
272 skge->duplex = ecmd->duplex;
273 }
274
275 skge->autoneg = ecmd->autoneg;
276 skge->advertising = ecmd->advertising;
277
278 if (netif_running(dev))
279 skge_phy_reset(skge);
280
281 return (0);
282 }
283
284 static void skge_get_drvinfo(struct net_device *dev,
285 struct ethtool_drvinfo *info)
286 {
287 struct skge_port *skge = netdev_priv(dev);
288
289 strcpy(info->driver, DRV_NAME);
290 strcpy(info->version, DRV_VERSION);
291 strcpy(info->fw_version, "N/A");
292 strcpy(info->bus_info, pci_name(skge->hw->pdev));
293 }
294
295 static const struct skge_stat {
296 char name[ETH_GSTRING_LEN];
297 u16 xmac_offset;
298 u16 gma_offset;
299 } skge_stats[] = {
300 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
301 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
302
303 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
304 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
305 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
306 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
307 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
308 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
309 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
310 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
311
312 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
313 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
314 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
315 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
316 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
317 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
318
319 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
320 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
321 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
322 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
323 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
324 };
325
326 static int skge_get_stats_count(struct net_device *dev)
327 {
328 return ARRAY_SIZE(skge_stats);
329 }
330
331 static void skge_get_ethtool_stats(struct net_device *dev,
332 struct ethtool_stats *stats, u64 *data)
333 {
334 struct skge_port *skge = netdev_priv(dev);
335
336 if (skge->hw->chip_id == CHIP_ID_GENESIS)
337 genesis_get_stats(skge, data);
338 else
339 yukon_get_stats(skge, data);
340 }
341
342 /* Use hardware MIB variables for critical path statistics and
343 * transmit feedback not reported at interrupt.
344 * Other errors are accounted for in interrupt handler.
345 */
346 static struct net_device_stats *skge_get_stats(struct net_device *dev)
347 {
348 struct skge_port *skge = netdev_priv(dev);
349 u64 data[ARRAY_SIZE(skge_stats)];
350
351 if (skge->hw->chip_id == CHIP_ID_GENESIS)
352 genesis_get_stats(skge, data);
353 else
354 yukon_get_stats(skge, data);
355
356 skge->net_stats.tx_bytes = data[0];
357 skge->net_stats.rx_bytes = data[1];
358 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
359 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
360 skge->net_stats.multicast = data[3] + data[5];
361 skge->net_stats.collisions = data[10];
362 skge->net_stats.tx_aborted_errors = data[12];
363
364 return &skge->net_stats;
365 }
366
367 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
368 {
369 int i;
370
371 switch (stringset) {
372 case ETH_SS_STATS:
373 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
374 memcpy(data + i * ETH_GSTRING_LEN,
375 skge_stats[i].name, ETH_GSTRING_LEN);
376 break;
377 }
378 }
379
380 static void skge_get_ring_param(struct net_device *dev,
381 struct ethtool_ringparam *p)
382 {
383 struct skge_port *skge = netdev_priv(dev);
384
385 p->rx_max_pending = MAX_RX_RING_SIZE;
386 p->tx_max_pending = MAX_TX_RING_SIZE;
387 p->rx_mini_max_pending = 0;
388 p->rx_jumbo_max_pending = 0;
389
390 p->rx_pending = skge->rx_ring.count;
391 p->tx_pending = skge->tx_ring.count;
392 p->rx_mini_pending = 0;
393 p->rx_jumbo_pending = 0;
394 }
395
396 static int skge_set_ring_param(struct net_device *dev,
397 struct ethtool_ringparam *p)
398 {
399 struct skge_port *skge = netdev_priv(dev);
400 int err;
401
402 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
403 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
404 return -EINVAL;
405
406 skge->rx_ring.count = p->rx_pending;
407 skge->tx_ring.count = p->tx_pending;
408
409 if (netif_running(dev)) {
410 skge_down(dev);
411 err = skge_up(dev);
412 if (err)
413 dev_close(dev);
414 }
415
416 return 0;
417 }
418
419 static u32 skge_get_msglevel(struct net_device *netdev)
420 {
421 struct skge_port *skge = netdev_priv(netdev);
422 return skge->msg_enable;
423 }
424
425 static void skge_set_msglevel(struct net_device *netdev, u32 value)
426 {
427 struct skge_port *skge = netdev_priv(netdev);
428 skge->msg_enable = value;
429 }
430
431 static int skge_nway_reset(struct net_device *dev)
432 {
433 struct skge_port *skge = netdev_priv(dev);
434
435 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
436 return -EINVAL;
437
438 skge_phy_reset(skge);
439 return 0;
440 }
441
442 static int skge_set_sg(struct net_device *dev, u32 data)
443 {
444 struct skge_port *skge = netdev_priv(dev);
445 struct skge_hw *hw = skge->hw;
446
447 if (hw->chip_id == CHIP_ID_GENESIS && data)
448 return -EOPNOTSUPP;
449 return ethtool_op_set_sg(dev, data);
450 }
451
452 static int skge_set_tx_csum(struct net_device *dev, u32 data)
453 {
454 struct skge_port *skge = netdev_priv(dev);
455 struct skge_hw *hw = skge->hw;
456
457 if (hw->chip_id == CHIP_ID_GENESIS && data)
458 return -EOPNOTSUPP;
459
460 return ethtool_op_set_tx_csum(dev, data);
461 }
462
463 static u32 skge_get_rx_csum(struct net_device *dev)
464 {
465 struct skge_port *skge = netdev_priv(dev);
466
467 return skge->rx_csum;
468 }
469
470 /* Only Yukon supports checksum offload. */
471 static int skge_set_rx_csum(struct net_device *dev, u32 data)
472 {
473 struct skge_port *skge = netdev_priv(dev);
474
475 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
476 return -EOPNOTSUPP;
477
478 skge->rx_csum = data;
479 return 0;
480 }
481
482 static void skge_get_pauseparam(struct net_device *dev,
483 struct ethtool_pauseparam *ecmd)
484 {
485 struct skge_port *skge = netdev_priv(dev);
486
487 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
488 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
489 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
490 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
491
492 ecmd->autoneg = skge->autoneg;
493 }
494
495 static int skge_set_pauseparam(struct net_device *dev,
496 struct ethtool_pauseparam *ecmd)
497 {
498 struct skge_port *skge = netdev_priv(dev);
499
500 skge->autoneg = ecmd->autoneg;
501 if (ecmd->rx_pause && ecmd->tx_pause)
502 skge->flow_control = FLOW_MODE_SYMMETRIC;
503 else if (ecmd->rx_pause && !ecmd->tx_pause)
504 skge->flow_control = FLOW_MODE_REM_SEND;
505 else if (!ecmd->rx_pause && ecmd->tx_pause)
506 skge->flow_control = FLOW_MODE_LOC_SEND;
507 else
508 skge->flow_control = FLOW_MODE_NONE;
509
510 if (netif_running(dev))
511 skge_phy_reset(skge);
512 return 0;
513 }
514
515 /* Chip internal frequency for clock calculations */
516 static inline u32 hwkhz(const struct skge_hw *hw)
517 {
518 if (hw->chip_id == CHIP_ID_GENESIS)
519 return 53215; /* or: 53.125 MHz */
520 else
521 return 78215; /* or: 78.125 MHz */
522 }
523
524 /* Chip HZ to microseconds */
525 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
526 {
527 return (ticks * 1000) / hwkhz(hw);
528 }
529
530 /* Microseconds to chip HZ */
531 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
532 {
533 return hwkhz(hw) * usec / 1000;
534 }
535
536 static int skge_get_coalesce(struct net_device *dev,
537 struct ethtool_coalesce *ecmd)
538 {
539 struct skge_port *skge = netdev_priv(dev);
540 struct skge_hw *hw = skge->hw;
541 int port = skge->port;
542
543 ecmd->rx_coalesce_usecs = 0;
544 ecmd->tx_coalesce_usecs = 0;
545
546 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
547 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
548 u32 msk = skge_read32(hw, B2_IRQM_MSK);
549
550 if (msk & rxirqmask[port])
551 ecmd->rx_coalesce_usecs = delay;
552 if (msk & txirqmask[port])
553 ecmd->tx_coalesce_usecs = delay;
554 }
555
556 return 0;
557 }
558
559 /* Note: interrupt timer is per board, but can turn on/off per port */
560 static int skge_set_coalesce(struct net_device *dev,
561 struct ethtool_coalesce *ecmd)
562 {
563 struct skge_port *skge = netdev_priv(dev);
564 struct skge_hw *hw = skge->hw;
565 int port = skge->port;
566 u32 msk = skge_read32(hw, B2_IRQM_MSK);
567 u32 delay = 25;
568
569 if (ecmd->rx_coalesce_usecs == 0)
570 msk &= ~rxirqmask[port];
571 else if (ecmd->rx_coalesce_usecs < 25 ||
572 ecmd->rx_coalesce_usecs > 33333)
573 return -EINVAL;
574 else {
575 msk |= rxirqmask[port];
576 delay = ecmd->rx_coalesce_usecs;
577 }
578
579 if (ecmd->tx_coalesce_usecs == 0)
580 msk &= ~txirqmask[port];
581 else if (ecmd->tx_coalesce_usecs < 25 ||
582 ecmd->tx_coalesce_usecs > 33333)
583 return -EINVAL;
584 else {
585 msk |= txirqmask[port];
586 delay = min(delay, ecmd->rx_coalesce_usecs);
587 }
588
589 skge_write32(hw, B2_IRQM_MSK, msk);
590 if (msk == 0)
591 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
592 else {
593 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
594 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
595 }
596 return 0;
597 }
598
599 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
600 static void skge_led(struct skge_port *skge, enum led_mode mode)
601 {
602 struct skge_hw *hw = skge->hw;
603 int port = skge->port;
604
605 spin_lock_bh(&hw->phy_lock);
606 if (hw->chip_id == CHIP_ID_GENESIS) {
607 switch (mode) {
608 case LED_MODE_OFF:
609 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
610 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
611 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
612 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
613 break;
614
615 case LED_MODE_ON:
616 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
617 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
618
619 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
620 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
621
622 break;
623
624 case LED_MODE_TST:
625 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
626 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
627 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
628
629 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
630 break;
631 }
632 } else {
633 switch (mode) {
634 case LED_MODE_OFF:
635 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
636 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
637 PHY_M_LED_MO_DUP(MO_LED_OFF) |
638 PHY_M_LED_MO_10(MO_LED_OFF) |
639 PHY_M_LED_MO_100(MO_LED_OFF) |
640 PHY_M_LED_MO_1000(MO_LED_OFF) |
641 PHY_M_LED_MO_RX(MO_LED_OFF));
642 break;
643 case LED_MODE_ON:
644 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
645 PHY_M_LED_PULS_DUR(PULS_170MS) |
646 PHY_M_LED_BLINK_RT(BLINK_84MS) |
647 PHY_M_LEDC_TX_CTRL |
648 PHY_M_LEDC_DP_CTRL);
649
650 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
651 PHY_M_LED_MO_RX(MO_LED_OFF) |
652 (skge->speed == SPEED_100 ?
653 PHY_M_LED_MO_100(MO_LED_ON) : 0));
654 break;
655 case LED_MODE_TST:
656 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
657 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
658 PHY_M_LED_MO_DUP(MO_LED_ON) |
659 PHY_M_LED_MO_10(MO_LED_ON) |
660 PHY_M_LED_MO_100(MO_LED_ON) |
661 PHY_M_LED_MO_1000(MO_LED_ON) |
662 PHY_M_LED_MO_RX(MO_LED_ON));
663 }
664 }
665 spin_unlock_bh(&hw->phy_lock);
666 }
667
668 /* blink LED's for finding board */
669 static int skge_phys_id(struct net_device *dev, u32 data)
670 {
671 struct skge_port *skge = netdev_priv(dev);
672 unsigned long ms;
673 enum led_mode mode = LED_MODE_TST;
674
675 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
676 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
677 else
678 ms = data * 1000;
679
680 while (ms > 0) {
681 skge_led(skge, mode);
682 mode ^= LED_MODE_TST;
683
684 if (msleep_interruptible(BLINK_MS))
685 break;
686 ms -= BLINK_MS;
687 }
688
689 /* back to regular LED state */
690 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
691
692 return 0;
693 }
694
695 static struct ethtool_ops skge_ethtool_ops = {
696 .get_settings = skge_get_settings,
697 .set_settings = skge_set_settings,
698 .get_drvinfo = skge_get_drvinfo,
699 .get_regs_len = skge_get_regs_len,
700 .get_regs = skge_get_regs,
701 .get_wol = skge_get_wol,
702 .set_wol = skge_set_wol,
703 .get_msglevel = skge_get_msglevel,
704 .set_msglevel = skge_set_msglevel,
705 .nway_reset = skge_nway_reset,
706 .get_link = ethtool_op_get_link,
707 .get_ringparam = skge_get_ring_param,
708 .set_ringparam = skge_set_ring_param,
709 .get_pauseparam = skge_get_pauseparam,
710 .set_pauseparam = skge_set_pauseparam,
711 .get_coalesce = skge_get_coalesce,
712 .set_coalesce = skge_set_coalesce,
713 .get_sg = ethtool_op_get_sg,
714 .set_sg = skge_set_sg,
715 .get_tx_csum = ethtool_op_get_tx_csum,
716 .set_tx_csum = skge_set_tx_csum,
717 .get_rx_csum = skge_get_rx_csum,
718 .set_rx_csum = skge_set_rx_csum,
719 .get_strings = skge_get_strings,
720 .phys_id = skge_phys_id,
721 .get_stats_count = skge_get_stats_count,
722 .get_ethtool_stats = skge_get_ethtool_stats,
723 .get_perm_addr = ethtool_op_get_perm_addr,
724 };
725
726 /*
727 * Allocate ring elements and chain them together
728 * One-to-one association of board descriptors with ring elements
729 */
730 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
731 {
732 struct skge_tx_desc *d;
733 struct skge_element *e;
734 int i;
735
736 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
737 if (!ring->start)
738 return -ENOMEM;
739
740 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
741 e->desc = d;
742 if (i == ring->count - 1) {
743 e->next = ring->start;
744 d->next_offset = base;
745 } else {
746 e->next = e + 1;
747 d->next_offset = base + (i+1) * sizeof(*d);
748 }
749 }
750 ring->to_use = ring->to_clean = ring->start;
751
752 return 0;
753 }
754
755 /* Allocate and setup a new buffer for receiving */
756 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
757 struct sk_buff *skb, unsigned int bufsize)
758 {
759 struct skge_rx_desc *rd = e->desc;
760 u64 map;
761
762 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
763 PCI_DMA_FROMDEVICE);
764
765 rd->dma_lo = map;
766 rd->dma_hi = map >> 32;
767 e->skb = skb;
768 rd->csum1_start = ETH_HLEN;
769 rd->csum2_start = ETH_HLEN;
770 rd->csum1 = 0;
771 rd->csum2 = 0;
772
773 wmb();
774
775 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
776 pci_unmap_addr_set(e, mapaddr, map);
777 pci_unmap_len_set(e, maplen, bufsize);
778 }
779
780 /* Resume receiving using existing skb,
781 * Note: DMA address is not changed by chip.
782 * MTU not changed while receiver active.
783 */
784 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
785 {
786 struct skge_rx_desc *rd = e->desc;
787
788 rd->csum2 = 0;
789 rd->csum2_start = ETH_HLEN;
790
791 wmb();
792
793 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
794 }
795
796
797 /* Free all buffers in receive ring, assumes receiver stopped */
798 static void skge_rx_clean(struct skge_port *skge)
799 {
800 struct skge_hw *hw = skge->hw;
801 struct skge_ring *ring = &skge->rx_ring;
802 struct skge_element *e;
803
804 e = ring->start;
805 do {
806 struct skge_rx_desc *rd = e->desc;
807 rd->control = 0;
808 if (e->skb) {
809 pci_unmap_single(hw->pdev,
810 pci_unmap_addr(e, mapaddr),
811 pci_unmap_len(e, maplen),
812 PCI_DMA_FROMDEVICE);
813 dev_kfree_skb(e->skb);
814 e->skb = NULL;
815 }
816 } while ((e = e->next) != ring->start);
817 }
818
819
820 /* Allocate buffers for receive ring
821 * For receive: to_clean is next received frame.
822 */
823 static int skge_rx_fill(struct skge_port *skge)
824 {
825 struct skge_ring *ring = &skge->rx_ring;
826 struct skge_element *e;
827
828 e = ring->start;
829 do {
830 struct sk_buff *skb;
831
832 skb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_KERNEL);
833 if (!skb)
834 return -ENOMEM;
835
836 skb_reserve(skb, NET_IP_ALIGN);
837 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
838 } while ( (e = e->next) != ring->start);
839
840 ring->to_clean = ring->start;
841 return 0;
842 }
843
844 static void skge_link_up(struct skge_port *skge)
845 {
846 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
847 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
848
849 netif_carrier_on(skge->netdev);
850 netif_wake_queue(skge->netdev);
851
852 if (netif_msg_link(skge))
853 printk(KERN_INFO PFX
854 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
855 skge->netdev->name, skge->speed,
856 skge->duplex == DUPLEX_FULL ? "full" : "half",
857 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
858 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
859 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
860 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
861 "unknown");
862 }
863
864 static void skge_link_down(struct skge_port *skge)
865 {
866 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
867 netif_carrier_off(skge->netdev);
868 netif_stop_queue(skge->netdev);
869
870 if (netif_msg_link(skge))
871 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
872 }
873
874 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
875 {
876 int i;
877
878 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
879 *val = xm_read16(hw, port, XM_PHY_DATA);
880
881 for (i = 0; i < PHY_RETRIES; i++) {
882 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
883 goto ready;
884 udelay(1);
885 }
886
887 return -ETIMEDOUT;
888 ready:
889 *val = xm_read16(hw, port, XM_PHY_DATA);
890
891 return 0;
892 }
893
894 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
895 {
896 u16 v = 0;
897 if (__xm_phy_read(hw, port, reg, &v))
898 printk(KERN_WARNING PFX "%s: phy read timed out\n",
899 hw->dev[port]->name);
900 return v;
901 }
902
903 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
904 {
905 int i;
906
907 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
908 for (i = 0; i < PHY_RETRIES; i++) {
909 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
910 goto ready;
911 udelay(1);
912 }
913 return -EIO;
914
915 ready:
916 xm_write16(hw, port, XM_PHY_DATA, val);
917 for (i = 0; i < PHY_RETRIES; i++) {
918 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
919 return 0;
920 udelay(1);
921 }
922 return -ETIMEDOUT;
923 }
924
925 static void genesis_init(struct skge_hw *hw)
926 {
927 /* set blink source counter */
928 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
929 skge_write8(hw, B2_BSC_CTRL, BSC_START);
930
931 /* configure mac arbiter */
932 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
933
934 /* configure mac arbiter timeout values */
935 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
936 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
937 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
938 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
939
940 skge_write8(hw, B3_MA_RCINI_RX1, 0);
941 skge_write8(hw, B3_MA_RCINI_RX2, 0);
942 skge_write8(hw, B3_MA_RCINI_TX1, 0);
943 skge_write8(hw, B3_MA_RCINI_TX2, 0);
944
945 /* configure packet arbiter timeout */
946 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
947 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
948 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
949 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
950 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
951 }
952
953 static void genesis_reset(struct skge_hw *hw, int port)
954 {
955 const u8 zero[8] = { 0 };
956
957 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
958
959 /* reset the statistics module */
960 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
961 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
962 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
963 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
964 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
965
966 /* disable Broadcom PHY IRQ */
967 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
968
969 xm_outhash(hw, port, XM_HSM, zero);
970 }
971
972
973 /* Convert mode to MII values */
974 static const u16 phy_pause_map[] = {
975 [FLOW_MODE_NONE] = 0,
976 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
977 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
978 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
979 };
980
981
982 /* Check status of Broadcom phy link */
983 static void bcom_check_link(struct skge_hw *hw, int port)
984 {
985 struct net_device *dev = hw->dev[port];
986 struct skge_port *skge = netdev_priv(dev);
987 u16 status;
988
989 /* read twice because of latch */
990 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
991 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
992
993 if ((status & PHY_ST_LSYNC) == 0) {
994 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
995 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
996 xm_write16(hw, port, XM_MMU_CMD, cmd);
997 /* dummy read to ensure writing */
998 (void) xm_read16(hw, port, XM_MMU_CMD);
999
1000 if (netif_carrier_ok(dev))
1001 skge_link_down(skge);
1002 } else {
1003 if (skge->autoneg == AUTONEG_ENABLE &&
1004 (status & PHY_ST_AN_OVER)) {
1005 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1006 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1007
1008 if (lpa & PHY_B_AN_RF) {
1009 printk(KERN_NOTICE PFX "%s: remote fault\n",
1010 dev->name);
1011 return;
1012 }
1013
1014 /* Check Duplex mismatch */
1015 switch (aux & PHY_B_AS_AN_RES_MSK) {
1016 case PHY_B_RES_1000FD:
1017 skge->duplex = DUPLEX_FULL;
1018 break;
1019 case PHY_B_RES_1000HD:
1020 skge->duplex = DUPLEX_HALF;
1021 break;
1022 default:
1023 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1024 dev->name);
1025 return;
1026 }
1027
1028
1029 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1030 switch (aux & PHY_B_AS_PAUSE_MSK) {
1031 case PHY_B_AS_PAUSE_MSK:
1032 skge->flow_control = FLOW_MODE_SYMMETRIC;
1033 break;
1034 case PHY_B_AS_PRR:
1035 skge->flow_control = FLOW_MODE_REM_SEND;
1036 break;
1037 case PHY_B_AS_PRT:
1038 skge->flow_control = FLOW_MODE_LOC_SEND;
1039 break;
1040 default:
1041 skge->flow_control = FLOW_MODE_NONE;
1042 }
1043
1044 skge->speed = SPEED_1000;
1045 }
1046
1047 if (!netif_carrier_ok(dev))
1048 genesis_link_up(skge);
1049 }
1050 }
1051
1052 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1053 * Phy on for 100 or 10Mbit operation
1054 */
1055 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1056 {
1057 struct skge_hw *hw = skge->hw;
1058 int port = skge->port;
1059 int i;
1060 u16 id1, r, ext, ctl;
1061
1062 /* magic workaround patterns for Broadcom */
1063 static const struct {
1064 u16 reg;
1065 u16 val;
1066 } A1hack[] = {
1067 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1068 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1069 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1070 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1071 }, C0hack[] = {
1072 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1073 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1074 };
1075
1076 /* read Id from external PHY (all have the same address) */
1077 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1078
1079 /* Optimize MDIO transfer by suppressing preamble. */
1080 r = xm_read16(hw, port, XM_MMU_CMD);
1081 r |= XM_MMU_NO_PRE;
1082 xm_write16(hw, port, XM_MMU_CMD,r);
1083
1084 switch (id1) {
1085 case PHY_BCOM_ID1_C0:
1086 /*
1087 * Workaround BCOM Errata for the C0 type.
1088 * Write magic patterns to reserved registers.
1089 */
1090 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1091 xm_phy_write(hw, port,
1092 C0hack[i].reg, C0hack[i].val);
1093
1094 break;
1095 case PHY_BCOM_ID1_A1:
1096 /*
1097 * Workaround BCOM Errata for the A1 type.
1098 * Write magic patterns to reserved registers.
1099 */
1100 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1101 xm_phy_write(hw, port,
1102 A1hack[i].reg, A1hack[i].val);
1103 break;
1104 }
1105
1106 /*
1107 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1108 * Disable Power Management after reset.
1109 */
1110 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1111 r |= PHY_B_AC_DIS_PM;
1112 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1113
1114 /* Dummy read */
1115 xm_read16(hw, port, XM_ISRC);
1116
1117 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1118 ctl = PHY_CT_SP1000; /* always 1000mbit */
1119
1120 if (skge->autoneg == AUTONEG_ENABLE) {
1121 /*
1122 * Workaround BCOM Errata #1 for the C5 type.
1123 * 1000Base-T Link Acquisition Failure in Slave Mode
1124 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1125 */
1126 u16 adv = PHY_B_1000C_RD;
1127 if (skge->advertising & ADVERTISED_1000baseT_Half)
1128 adv |= PHY_B_1000C_AHD;
1129 if (skge->advertising & ADVERTISED_1000baseT_Full)
1130 adv |= PHY_B_1000C_AFD;
1131 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1132
1133 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1134 } else {
1135 if (skge->duplex == DUPLEX_FULL)
1136 ctl |= PHY_CT_DUP_MD;
1137 /* Force to slave */
1138 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1139 }
1140
1141 /* Set autonegotiation pause parameters */
1142 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1143 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1144
1145 /* Handle Jumbo frames */
1146 if (jumbo) {
1147 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1148 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1149
1150 ext |= PHY_B_PEC_HIGH_LA;
1151
1152 }
1153
1154 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1155 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1156
1157 /* Use link status change interrupt */
1158 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1159
1160 bcom_check_link(hw, port);
1161 }
1162
1163 static void genesis_mac_init(struct skge_hw *hw, int port)
1164 {
1165 struct net_device *dev = hw->dev[port];
1166 struct skge_port *skge = netdev_priv(dev);
1167 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1168 int i;
1169 u32 r;
1170 const u8 zero[6] = { 0 };
1171
1172 for (i = 0; i < 10; i++) {
1173 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1174 MFF_SET_MAC_RST);
1175 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1176 goto reset_ok;
1177 udelay(1);
1178 }
1179
1180 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1181
1182 reset_ok:
1183 /* Unreset the XMAC. */
1184 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1185
1186 /*
1187 * Perform additional initialization for external PHYs,
1188 * namely for the 1000baseTX cards that use the XMAC's
1189 * GMII mode.
1190 */
1191 /* Take external Phy out of reset */
1192 r = skge_read32(hw, B2_GP_IO);
1193 if (port == 0)
1194 r |= GP_DIR_0|GP_IO_0;
1195 else
1196 r |= GP_DIR_2|GP_IO_2;
1197
1198 skge_write32(hw, B2_GP_IO, r);
1199
1200
1201 /* Enable GMII interface */
1202 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1203
1204 bcom_phy_init(skge, jumbo);
1205
1206 /* Set Station Address */
1207 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1208
1209 /* We don't use match addresses so clear */
1210 for (i = 1; i < 16; i++)
1211 xm_outaddr(hw, port, XM_EXM(i), zero);
1212
1213 /* Clear MIB counters */
1214 xm_write16(hw, port, XM_STAT_CMD,
1215 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1216 /* Clear two times according to Errata #3 */
1217 xm_write16(hw, port, XM_STAT_CMD,
1218 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1219
1220 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1221 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1222
1223 /* We don't need the FCS appended to the packet. */
1224 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1225 if (jumbo)
1226 r |= XM_RX_BIG_PK_OK;
1227
1228 if (skge->duplex == DUPLEX_HALF) {
1229 /*
1230 * If in manual half duplex mode the other side might be in
1231 * full duplex mode, so ignore if a carrier extension is not seen
1232 * on frames received
1233 */
1234 r |= XM_RX_DIS_CEXT;
1235 }
1236 xm_write16(hw, port, XM_RX_CMD, r);
1237
1238
1239 /* We want short frames padded to 60 bytes. */
1240 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1241
1242 /*
1243 * Bump up the transmit threshold. This helps hold off transmit
1244 * underruns when we're blasting traffic from both ports at once.
1245 */
1246 xm_write16(hw, port, XM_TX_THR, 512);
1247
1248 /*
1249 * Enable the reception of all error frames. This is is
1250 * a necessary evil due to the design of the XMAC. The
1251 * XMAC's receive FIFO is only 8K in size, however jumbo
1252 * frames can be up to 9000 bytes in length. When bad
1253 * frame filtering is enabled, the XMAC's RX FIFO operates
1254 * in 'store and forward' mode. For this to work, the
1255 * entire frame has to fit into the FIFO, but that means
1256 * that jumbo frames larger than 8192 bytes will be
1257 * truncated. Disabling all bad frame filtering causes
1258 * the RX FIFO to operate in streaming mode, in which
1259 * case the XMAC will start transferring frames out of the
1260 * RX FIFO as soon as the FIFO threshold is reached.
1261 */
1262 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1263
1264
1265 /*
1266 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1267 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1268 * and 'Octets Rx OK Hi Cnt Ov'.
1269 */
1270 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1271
1272 /*
1273 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1274 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1275 * and 'Octets Tx OK Hi Cnt Ov'.
1276 */
1277 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1278
1279 /* Configure MAC arbiter */
1280 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1281
1282 /* configure timeout values */
1283 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1284 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1285 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1286 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1287
1288 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1289 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1290 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1291 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1292
1293 /* Configure Rx MAC FIFO */
1294 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1295 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1296 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1297
1298 /* Configure Tx MAC FIFO */
1299 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1300 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1301 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1302
1303 if (jumbo) {
1304 /* Enable frame flushing if jumbo frames used */
1305 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1306 } else {
1307 /* enable timeout timers if normal frames */
1308 skge_write16(hw, B3_PA_CTRL,
1309 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1310 }
1311 }
1312
1313 static void genesis_stop(struct skge_port *skge)
1314 {
1315 struct skge_hw *hw = skge->hw;
1316 int port = skge->port;
1317 u32 reg;
1318
1319 genesis_reset(hw, port);
1320
1321 /* Clear Tx packet arbiter timeout IRQ */
1322 skge_write16(hw, B3_PA_CTRL,
1323 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1324
1325 /*
1326 * If the transfer sticks at the MAC the STOP command will not
1327 * terminate if we don't flush the XMAC's transmit FIFO !
1328 */
1329 xm_write32(hw, port, XM_MODE,
1330 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1331
1332
1333 /* Reset the MAC */
1334 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1335
1336 /* For external PHYs there must be special handling */
1337 reg = skge_read32(hw, B2_GP_IO);
1338 if (port == 0) {
1339 reg |= GP_DIR_0;
1340 reg &= ~GP_IO_0;
1341 } else {
1342 reg |= GP_DIR_2;
1343 reg &= ~GP_IO_2;
1344 }
1345 skge_write32(hw, B2_GP_IO, reg);
1346 skge_read32(hw, B2_GP_IO);
1347
1348 xm_write16(hw, port, XM_MMU_CMD,
1349 xm_read16(hw, port, XM_MMU_CMD)
1350 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1351
1352 xm_read16(hw, port, XM_MMU_CMD);
1353 }
1354
1355
1356 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1357 {
1358 struct skge_hw *hw = skge->hw;
1359 int port = skge->port;
1360 int i;
1361 unsigned long timeout = jiffies + HZ;
1362
1363 xm_write16(hw, port,
1364 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1365
1366 /* wait for update to complete */
1367 while (xm_read16(hw, port, XM_STAT_CMD)
1368 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1369 if (time_after(jiffies, timeout))
1370 break;
1371 udelay(10);
1372 }
1373
1374 /* special case for 64 bit octet counter */
1375 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1376 | xm_read32(hw, port, XM_TXO_OK_LO);
1377 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1378 | xm_read32(hw, port, XM_RXO_OK_LO);
1379
1380 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1381 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1382 }
1383
1384 static void genesis_mac_intr(struct skge_hw *hw, int port)
1385 {
1386 struct skge_port *skge = netdev_priv(hw->dev[port]);
1387 u16 status = xm_read16(hw, port, XM_ISRC);
1388
1389 if (netif_msg_intr(skge))
1390 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1391 skge->netdev->name, status);
1392
1393 if (status & XM_IS_TXF_UR) {
1394 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1395 ++skge->net_stats.tx_fifo_errors;
1396 }
1397 if (status & XM_IS_RXF_OV) {
1398 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1399 ++skge->net_stats.rx_fifo_errors;
1400 }
1401 }
1402
1403 static void genesis_link_up(struct skge_port *skge)
1404 {
1405 struct skge_hw *hw = skge->hw;
1406 int port = skge->port;
1407 u16 cmd;
1408 u32 mode, msk;
1409
1410 cmd = xm_read16(hw, port, XM_MMU_CMD);
1411
1412 /*
1413 * enabling pause frame reception is required for 1000BT
1414 * because the XMAC is not reset if the link is going down
1415 */
1416 if (skge->flow_control == FLOW_MODE_NONE ||
1417 skge->flow_control == FLOW_MODE_LOC_SEND)
1418 /* Disable Pause Frame Reception */
1419 cmd |= XM_MMU_IGN_PF;
1420 else
1421 /* Enable Pause Frame Reception */
1422 cmd &= ~XM_MMU_IGN_PF;
1423
1424 xm_write16(hw, port, XM_MMU_CMD, cmd);
1425
1426 mode = xm_read32(hw, port, XM_MODE);
1427 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1428 skge->flow_control == FLOW_MODE_LOC_SEND) {
1429 /*
1430 * Configure Pause Frame Generation
1431 * Use internal and external Pause Frame Generation.
1432 * Sending pause frames is edge triggered.
1433 * Send a Pause frame with the maximum pause time if
1434 * internal oder external FIFO full condition occurs.
1435 * Send a zero pause time frame to re-start transmission.
1436 */
1437 /* XM_PAUSE_DA = '010000C28001' (default) */
1438 /* XM_MAC_PTIME = 0xffff (maximum) */
1439 /* remember this value is defined in big endian (!) */
1440 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1441
1442 mode |= XM_PAUSE_MODE;
1443 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1444 } else {
1445 /*
1446 * disable pause frame generation is required for 1000BT
1447 * because the XMAC is not reset if the link is going down
1448 */
1449 /* Disable Pause Mode in Mode Register */
1450 mode &= ~XM_PAUSE_MODE;
1451
1452 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1453 }
1454
1455 xm_write32(hw, port, XM_MODE, mode);
1456
1457 msk = XM_DEF_MSK;
1458 /* disable GP0 interrupt bit for external Phy */
1459 msk |= XM_IS_INP_ASS;
1460
1461 xm_write16(hw, port, XM_IMSK, msk);
1462 xm_read16(hw, port, XM_ISRC);
1463
1464 /* get MMU Command Reg. */
1465 cmd = xm_read16(hw, port, XM_MMU_CMD);
1466 if (skge->duplex == DUPLEX_FULL)
1467 cmd |= XM_MMU_GMII_FD;
1468
1469 /*
1470 * Workaround BCOM Errata (#10523) for all BCom Phys
1471 * Enable Power Management after link up
1472 */
1473 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1474 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1475 & ~PHY_B_AC_DIS_PM);
1476 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1477
1478 /* enable Rx/Tx */
1479 xm_write16(hw, port, XM_MMU_CMD,
1480 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1481 skge_link_up(skge);
1482 }
1483
1484
1485 static inline void bcom_phy_intr(struct skge_port *skge)
1486 {
1487 struct skge_hw *hw = skge->hw;
1488 int port = skge->port;
1489 u16 isrc;
1490
1491 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1492 if (netif_msg_intr(skge))
1493 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1494 skge->netdev->name, isrc);
1495
1496 if (isrc & PHY_B_IS_PSE)
1497 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1498 hw->dev[port]->name);
1499
1500 /* Workaround BCom Errata:
1501 * enable and disable loopback mode if "NO HCD" occurs.
1502 */
1503 if (isrc & PHY_B_IS_NO_HDCL) {
1504 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1505 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1506 ctrl | PHY_CT_LOOP);
1507 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1508 ctrl & ~PHY_CT_LOOP);
1509 }
1510
1511 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1512 bcom_check_link(hw, port);
1513
1514 }
1515
1516 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1517 {
1518 int i;
1519
1520 gma_write16(hw, port, GM_SMI_DATA, val);
1521 gma_write16(hw, port, GM_SMI_CTRL,
1522 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1523 for (i = 0; i < PHY_RETRIES; i++) {
1524 udelay(1);
1525
1526 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1527 return 0;
1528 }
1529
1530 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1531 hw->dev[port]->name);
1532 return -EIO;
1533 }
1534
1535 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1536 {
1537 int i;
1538
1539 gma_write16(hw, port, GM_SMI_CTRL,
1540 GM_SMI_CT_PHY_AD(hw->phy_addr)
1541 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1542
1543 for (i = 0; i < PHY_RETRIES; i++) {
1544 udelay(1);
1545 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1546 goto ready;
1547 }
1548
1549 return -ETIMEDOUT;
1550 ready:
1551 *val = gma_read16(hw, port, GM_SMI_DATA);
1552 return 0;
1553 }
1554
1555 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1556 {
1557 u16 v = 0;
1558 if (__gm_phy_read(hw, port, reg, &v))
1559 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1560 hw->dev[port]->name);
1561 return v;
1562 }
1563
1564 /* Marvell Phy Initialization */
1565 static void yukon_init(struct skge_hw *hw, int port)
1566 {
1567 struct skge_port *skge = netdev_priv(hw->dev[port]);
1568 u16 ctrl, ct1000, adv;
1569
1570 if (skge->autoneg == AUTONEG_ENABLE) {
1571 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1572
1573 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1574 PHY_M_EC_MAC_S_MSK);
1575 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1576
1577 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1578
1579 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1580 }
1581
1582 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1583 if (skge->autoneg == AUTONEG_DISABLE)
1584 ctrl &= ~PHY_CT_ANE;
1585
1586 ctrl |= PHY_CT_RESET;
1587 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1588
1589 ctrl = 0;
1590 ct1000 = 0;
1591 adv = PHY_AN_CSMA;
1592
1593 if (skge->autoneg == AUTONEG_ENABLE) {
1594 if (hw->copper) {
1595 if (skge->advertising & ADVERTISED_1000baseT_Full)
1596 ct1000 |= PHY_M_1000C_AFD;
1597 if (skge->advertising & ADVERTISED_1000baseT_Half)
1598 ct1000 |= PHY_M_1000C_AHD;
1599 if (skge->advertising & ADVERTISED_100baseT_Full)
1600 adv |= PHY_M_AN_100_FD;
1601 if (skge->advertising & ADVERTISED_100baseT_Half)
1602 adv |= PHY_M_AN_100_HD;
1603 if (skge->advertising & ADVERTISED_10baseT_Full)
1604 adv |= PHY_M_AN_10_FD;
1605 if (skge->advertising & ADVERTISED_10baseT_Half)
1606 adv |= PHY_M_AN_10_HD;
1607 } else /* special defines for FIBER (88E1011S only) */
1608 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1609
1610 /* Set Flow-control capabilities */
1611 adv |= phy_pause_map[skge->flow_control];
1612
1613 /* Restart Auto-negotiation */
1614 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1615 } else {
1616 /* forced speed/duplex settings */
1617 ct1000 = PHY_M_1000C_MSE;
1618
1619 if (skge->duplex == DUPLEX_FULL)
1620 ctrl |= PHY_CT_DUP_MD;
1621
1622 switch (skge->speed) {
1623 case SPEED_1000:
1624 ctrl |= PHY_CT_SP1000;
1625 break;
1626 case SPEED_100:
1627 ctrl |= PHY_CT_SP100;
1628 break;
1629 }
1630
1631 ctrl |= PHY_CT_RESET;
1632 }
1633
1634 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1635
1636 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1637 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1638
1639 /* Enable phy interrupt on autonegotiation complete (or link up) */
1640 if (skge->autoneg == AUTONEG_ENABLE)
1641 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1642 else
1643 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1644 }
1645
1646 static void yukon_reset(struct skge_hw *hw, int port)
1647 {
1648 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1649 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1650 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1651 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1652 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1653
1654 gma_write16(hw, port, GM_RX_CTRL,
1655 gma_read16(hw, port, GM_RX_CTRL)
1656 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1657 }
1658
1659 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1660 static int is_yukon_lite_a0(struct skge_hw *hw)
1661 {
1662 u32 reg;
1663 int ret;
1664
1665 if (hw->chip_id != CHIP_ID_YUKON)
1666 return 0;
1667
1668 reg = skge_read32(hw, B2_FAR);
1669 skge_write8(hw, B2_FAR + 3, 0xff);
1670 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1671 skge_write32(hw, B2_FAR, reg);
1672 return ret;
1673 }
1674
1675 static void yukon_mac_init(struct skge_hw *hw, int port)
1676 {
1677 struct skge_port *skge = netdev_priv(hw->dev[port]);
1678 int i;
1679 u32 reg;
1680 const u8 *addr = hw->dev[port]->dev_addr;
1681
1682 /* WA code for COMA mode -- set PHY reset */
1683 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1684 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1685 reg = skge_read32(hw, B2_GP_IO);
1686 reg |= GP_DIR_9 | GP_IO_9;
1687 skge_write32(hw, B2_GP_IO, reg);
1688 }
1689
1690 /* hard reset */
1691 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1692 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1693
1694 /* WA code for COMA mode -- clear PHY reset */
1695 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1696 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1697 reg = skge_read32(hw, B2_GP_IO);
1698 reg |= GP_DIR_9;
1699 reg &= ~GP_IO_9;
1700 skge_write32(hw, B2_GP_IO, reg);
1701 }
1702
1703 /* Set hardware config mode */
1704 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1705 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1706 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1707
1708 /* Clear GMC reset */
1709 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1710 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1711 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1712
1713 if (skge->autoneg == AUTONEG_DISABLE) {
1714 reg = GM_GPCR_AU_ALL_DIS;
1715 gma_write16(hw, port, GM_GP_CTRL,
1716 gma_read16(hw, port, GM_GP_CTRL) | reg);
1717
1718 switch (skge->speed) {
1719 case SPEED_1000:
1720 reg &= ~GM_GPCR_SPEED_100;
1721 reg |= GM_GPCR_SPEED_1000;
1722 break;
1723 case SPEED_100:
1724 reg &= ~GM_GPCR_SPEED_1000;
1725 reg |= GM_GPCR_SPEED_100;
1726 break;
1727 case SPEED_10:
1728 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1729 break;
1730 }
1731
1732 if (skge->duplex == DUPLEX_FULL)
1733 reg |= GM_GPCR_DUP_FULL;
1734 } else
1735 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1736
1737 switch (skge->flow_control) {
1738 case FLOW_MODE_NONE:
1739 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1740 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1741 break;
1742 case FLOW_MODE_LOC_SEND:
1743 /* disable Rx flow-control */
1744 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1745 }
1746
1747 gma_write16(hw, port, GM_GP_CTRL, reg);
1748 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1749
1750 yukon_init(hw, port);
1751
1752 /* MIB clear */
1753 reg = gma_read16(hw, port, GM_PHY_ADDR);
1754 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1755
1756 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1757 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1758 gma_write16(hw, port, GM_PHY_ADDR, reg);
1759
1760 /* transmit control */
1761 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1762
1763 /* receive control reg: unicast + multicast + no FCS */
1764 gma_write16(hw, port, GM_RX_CTRL,
1765 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1766
1767 /* transmit flow control */
1768 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1769
1770 /* transmit parameter */
1771 gma_write16(hw, port, GM_TX_PARAM,
1772 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1773 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1774 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1775
1776 /* serial mode register */
1777 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1778 if (hw->dev[port]->mtu > 1500)
1779 reg |= GM_SMOD_JUMBO_ENA;
1780
1781 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1782
1783 /* physical address: used for pause frames */
1784 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1785 /* virtual address for data */
1786 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1787
1788 /* enable interrupt mask for counter overflows */
1789 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1790 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1791 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1792
1793 /* Initialize Mac Fifo */
1794
1795 /* Configure Rx MAC FIFO */
1796 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1797 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1798
1799 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1800 if (is_yukon_lite_a0(hw))
1801 reg &= ~GMF_RX_F_FL_ON;
1802
1803 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1804 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1805 /*
1806 * because Pause Packet Truncation in GMAC is not working
1807 * we have to increase the Flush Threshold to 64 bytes
1808 * in order to flush pause packets in Rx FIFO on Yukon-1
1809 */
1810 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1811
1812 /* Configure Tx MAC FIFO */
1813 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1814 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1815 }
1816
1817 /* Go into power down mode */
1818 static void yukon_suspend(struct skge_hw *hw, int port)
1819 {
1820 u16 ctrl;
1821
1822 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1823 ctrl |= PHY_M_PC_POL_R_DIS;
1824 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1825
1826 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1827 ctrl |= PHY_CT_RESET;
1828 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1829
1830 /* switch IEEE compatible power down mode on */
1831 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1832 ctrl |= PHY_CT_PDOWN;
1833 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1834 }
1835
1836 static void yukon_stop(struct skge_port *skge)
1837 {
1838 struct skge_hw *hw = skge->hw;
1839 int port = skge->port;
1840
1841 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1842 yukon_reset(hw, port);
1843
1844 gma_write16(hw, port, GM_GP_CTRL,
1845 gma_read16(hw, port, GM_GP_CTRL)
1846 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1847 gma_read16(hw, port, GM_GP_CTRL);
1848
1849 yukon_suspend(hw, port);
1850
1851 /* set GPHY Control reset */
1852 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1853 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1854 }
1855
1856 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1857 {
1858 struct skge_hw *hw = skge->hw;
1859 int port = skge->port;
1860 int i;
1861
1862 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1863 | gma_read32(hw, port, GM_TXO_OK_LO);
1864 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1865 | gma_read32(hw, port, GM_RXO_OK_LO);
1866
1867 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1868 data[i] = gma_read32(hw, port,
1869 skge_stats[i].gma_offset);
1870 }
1871
1872 static void yukon_mac_intr(struct skge_hw *hw, int port)
1873 {
1874 struct net_device *dev = hw->dev[port];
1875 struct skge_port *skge = netdev_priv(dev);
1876 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1877
1878 if (netif_msg_intr(skge))
1879 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1880 dev->name, status);
1881
1882 if (status & GM_IS_RX_FF_OR) {
1883 ++skge->net_stats.rx_fifo_errors;
1884 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1885 }
1886
1887 if (status & GM_IS_TX_FF_UR) {
1888 ++skge->net_stats.tx_fifo_errors;
1889 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1890 }
1891
1892 }
1893
1894 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1895 {
1896 switch (aux & PHY_M_PS_SPEED_MSK) {
1897 case PHY_M_PS_SPEED_1000:
1898 return SPEED_1000;
1899 case PHY_M_PS_SPEED_100:
1900 return SPEED_100;
1901 default:
1902 return SPEED_10;
1903 }
1904 }
1905
1906 static void yukon_link_up(struct skge_port *skge)
1907 {
1908 struct skge_hw *hw = skge->hw;
1909 int port = skge->port;
1910 u16 reg;
1911
1912 /* Enable Transmit FIFO Underrun */
1913 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1914
1915 reg = gma_read16(hw, port, GM_GP_CTRL);
1916 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1917 reg |= GM_GPCR_DUP_FULL;
1918
1919 /* enable Rx/Tx */
1920 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1921 gma_write16(hw, port, GM_GP_CTRL, reg);
1922
1923 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1924 skge_link_up(skge);
1925 }
1926
1927 static void yukon_link_down(struct skge_port *skge)
1928 {
1929 struct skge_hw *hw = skge->hw;
1930 int port = skge->port;
1931 u16 ctrl;
1932
1933 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1934
1935 ctrl = gma_read16(hw, port, GM_GP_CTRL);
1936 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1937 gma_write16(hw, port, GM_GP_CTRL, ctrl);
1938
1939 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1940 /* restore Asymmetric Pause bit */
1941 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1942 gm_phy_read(hw, port,
1943 PHY_MARV_AUNE_ADV)
1944 | PHY_M_AN_ASP);
1945
1946 }
1947
1948 yukon_reset(hw, port);
1949 skge_link_down(skge);
1950
1951 yukon_init(hw, port);
1952 }
1953
1954 static void yukon_phy_intr(struct skge_port *skge)
1955 {
1956 struct skge_hw *hw = skge->hw;
1957 int port = skge->port;
1958 const char *reason = NULL;
1959 u16 istatus, phystat;
1960
1961 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1962 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1963
1964 if (netif_msg_intr(skge))
1965 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1966 skge->netdev->name, istatus, phystat);
1967
1968 if (istatus & PHY_M_IS_AN_COMPL) {
1969 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1970 & PHY_M_AN_RF) {
1971 reason = "remote fault";
1972 goto failed;
1973 }
1974
1975 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1976 reason = "master/slave fault";
1977 goto failed;
1978 }
1979
1980 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1981 reason = "speed/duplex";
1982 goto failed;
1983 }
1984
1985 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1986 ? DUPLEX_FULL : DUPLEX_HALF;
1987 skge->speed = yukon_speed(hw, phystat);
1988
1989 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1990 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1991 case PHY_M_PS_PAUSE_MSK:
1992 skge->flow_control = FLOW_MODE_SYMMETRIC;
1993 break;
1994 case PHY_M_PS_RX_P_EN:
1995 skge->flow_control = FLOW_MODE_REM_SEND;
1996 break;
1997 case PHY_M_PS_TX_P_EN:
1998 skge->flow_control = FLOW_MODE_LOC_SEND;
1999 break;
2000 default:
2001 skge->flow_control = FLOW_MODE_NONE;
2002 }
2003
2004 if (skge->flow_control == FLOW_MODE_NONE ||
2005 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2006 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2007 else
2008 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2009 yukon_link_up(skge);
2010 return;
2011 }
2012
2013 if (istatus & PHY_M_IS_LSP_CHANGE)
2014 skge->speed = yukon_speed(hw, phystat);
2015
2016 if (istatus & PHY_M_IS_DUP_CHANGE)
2017 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2018 if (istatus & PHY_M_IS_LST_CHANGE) {
2019 if (phystat & PHY_M_PS_LINK_UP)
2020 yukon_link_up(skge);
2021 else
2022 yukon_link_down(skge);
2023 }
2024 return;
2025 failed:
2026 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2027 skge->netdev->name, reason);
2028
2029 /* XXX restart autonegotiation? */
2030 }
2031
2032 static void skge_phy_reset(struct skge_port *skge)
2033 {
2034 struct skge_hw *hw = skge->hw;
2035 int port = skge->port;
2036
2037 netif_stop_queue(skge->netdev);
2038 netif_carrier_off(skge->netdev);
2039
2040 spin_lock_bh(&hw->phy_lock);
2041 if (hw->chip_id == CHIP_ID_GENESIS) {
2042 genesis_reset(hw, port);
2043 genesis_mac_init(hw, port);
2044 } else {
2045 yukon_reset(hw, port);
2046 yukon_init(hw, port);
2047 }
2048 spin_unlock_bh(&hw->phy_lock);
2049 }
2050
2051 /* Basic MII support */
2052 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2053 {
2054 struct mii_ioctl_data *data = if_mii(ifr);
2055 struct skge_port *skge = netdev_priv(dev);
2056 struct skge_hw *hw = skge->hw;
2057 int err = -EOPNOTSUPP;
2058
2059 if (!netif_running(dev))
2060 return -ENODEV; /* Phy still in reset */
2061
2062 switch(cmd) {
2063 case SIOCGMIIPHY:
2064 data->phy_id = hw->phy_addr;
2065
2066 /* fallthru */
2067 case SIOCGMIIREG: {
2068 u16 val = 0;
2069 spin_lock_bh(&hw->phy_lock);
2070 if (hw->chip_id == CHIP_ID_GENESIS)
2071 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2072 else
2073 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2074 spin_unlock_bh(&hw->phy_lock);
2075 data->val_out = val;
2076 break;
2077 }
2078
2079 case SIOCSMIIREG:
2080 if (!capable(CAP_NET_ADMIN))
2081 return -EPERM;
2082
2083 spin_lock_bh(&hw->phy_lock);
2084 if (hw->chip_id == CHIP_ID_GENESIS)
2085 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2086 data->val_in);
2087 else
2088 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2089 data->val_in);
2090 spin_unlock_bh(&hw->phy_lock);
2091 break;
2092 }
2093 return err;
2094 }
2095
2096 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2097 {
2098 u32 end;
2099
2100 start /= 8;
2101 len /= 8;
2102 end = start + len - 1;
2103
2104 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2105 skge_write32(hw, RB_ADDR(q, RB_START), start);
2106 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2107 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2108 skge_write32(hw, RB_ADDR(q, RB_END), end);
2109
2110 if (q == Q_R1 || q == Q_R2) {
2111 /* Set thresholds on receive queue's */
2112 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2113 start + (2*len)/3);
2114 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2115 start + (len/3));
2116 } else {
2117 /* Enable store & forward on Tx queue's because
2118 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2119 */
2120 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2121 }
2122
2123 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2124 }
2125
2126 /* Setup Bus Memory Interface */
2127 static void skge_qset(struct skge_port *skge, u16 q,
2128 const struct skge_element *e)
2129 {
2130 struct skge_hw *hw = skge->hw;
2131 u32 watermark = 0x600;
2132 u64 base = skge->dma + (e->desc - skge->mem);
2133
2134 /* optimization to reduce window on 32bit/33mhz */
2135 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2136 watermark /= 2;
2137
2138 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2139 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2140 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2141 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2142 }
2143
2144 static int skge_up(struct net_device *dev)
2145 {
2146 struct skge_port *skge = netdev_priv(dev);
2147 struct skge_hw *hw = skge->hw;
2148 int port = skge->port;
2149 u32 chunk, ram_addr;
2150 size_t rx_size, tx_size;
2151 int err;
2152
2153 if (netif_msg_ifup(skge))
2154 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2155
2156 if (dev->mtu > RX_BUF_SIZE)
2157 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2158 else
2159 skge->rx_buf_size = RX_BUF_SIZE;
2160
2161
2162 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2163 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2164 skge->mem_size = tx_size + rx_size;
2165 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2166 if (!skge->mem)
2167 return -ENOMEM;
2168
2169 BUG_ON(skge->dma & 7);
2170
2171 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2172 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2173 err = -EINVAL;
2174 goto free_pci_mem;
2175 }
2176
2177 memset(skge->mem, 0, skge->mem_size);
2178
2179 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2180 if (err)
2181 goto free_pci_mem;
2182
2183 err = skge_rx_fill(skge);
2184 if (err)
2185 goto free_rx_ring;
2186
2187 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2188 skge->dma + rx_size);
2189 if (err)
2190 goto free_rx_ring;
2191
2192 /* Initialize MAC */
2193 spin_lock_bh(&hw->phy_lock);
2194 if (hw->chip_id == CHIP_ID_GENESIS)
2195 genesis_mac_init(hw, port);
2196 else
2197 yukon_mac_init(hw, port);
2198 spin_unlock_bh(&hw->phy_lock);
2199
2200 /* Configure RAMbuffers */
2201 chunk = hw->ram_size / ((hw->ports + 1)*2);
2202 ram_addr = hw->ram_offset + 2 * chunk * port;
2203
2204 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2205 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2206
2207 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2208 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2209 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2210
2211 /* Start receiver BMU */
2212 wmb();
2213 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2214 skge_led(skge, LED_MODE_ON);
2215
2216 return 0;
2217
2218 free_rx_ring:
2219 skge_rx_clean(skge);
2220 kfree(skge->rx_ring.start);
2221 free_pci_mem:
2222 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2223 skge->mem = NULL;
2224
2225 return err;
2226 }
2227
2228 static int skge_down(struct net_device *dev)
2229 {
2230 struct skge_port *skge = netdev_priv(dev);
2231 struct skge_hw *hw = skge->hw;
2232 int port = skge->port;
2233
2234 if (skge->mem == NULL)
2235 return 0;
2236
2237 if (netif_msg_ifdown(skge))
2238 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2239
2240 netif_stop_queue(dev);
2241
2242 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2243 if (hw->chip_id == CHIP_ID_GENESIS)
2244 genesis_stop(skge);
2245 else
2246 yukon_stop(skge);
2247
2248 /* Stop transmitter */
2249 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2250 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2251 RB_RST_SET|RB_DIS_OP_MD);
2252
2253
2254 /* Disable Force Sync bit and Enable Alloc bit */
2255 skge_write8(hw, SK_REG(port, TXA_CTRL),
2256 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2257
2258 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2259 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2260 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2261
2262 /* Reset PCI FIFO */
2263 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2264 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2265
2266 /* Reset the RAM Buffer async Tx queue */
2267 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2268 /* stop receiver */
2269 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2270 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2271 RB_RST_SET|RB_DIS_OP_MD);
2272 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2273
2274 if (hw->chip_id == CHIP_ID_GENESIS) {
2275 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2276 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2277 } else {
2278 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2279 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2280 }
2281
2282 skge_led(skge, LED_MODE_OFF);
2283
2284 skge_tx_clean(skge);
2285 skge_rx_clean(skge);
2286
2287 kfree(skge->rx_ring.start);
2288 kfree(skge->tx_ring.start);
2289 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2290 skge->mem = NULL;
2291 return 0;
2292 }
2293
2294 static inline int skge_avail(const struct skge_ring *ring)
2295 {
2296 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2297 + (ring->to_clean - ring->to_use) - 1;
2298 }
2299
2300 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2301 {
2302 struct skge_port *skge = netdev_priv(dev);
2303 struct skge_hw *hw = skge->hw;
2304 struct skge_ring *ring = &skge->tx_ring;
2305 struct skge_element *e;
2306 struct skge_tx_desc *td;
2307 int i;
2308 u32 control, len;
2309 u64 map;
2310
2311 skb = skb_padto(skb, ETH_ZLEN);
2312 if (!skb)
2313 return NETDEV_TX_OK;
2314
2315 if (!spin_trylock(&skge->tx_lock)) {
2316 /* Collision - tell upper layer to requeue */
2317 return NETDEV_TX_LOCKED;
2318 }
2319
2320 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
2321 if (!netif_queue_stopped(dev)) {
2322 netif_stop_queue(dev);
2323
2324 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2325 dev->name);
2326 }
2327 spin_unlock(&skge->tx_lock);
2328 return NETDEV_TX_BUSY;
2329 }
2330
2331 e = ring->to_use;
2332 td = e->desc;
2333 e->skb = skb;
2334 len = skb_headlen(skb);
2335 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2336 pci_unmap_addr_set(e, mapaddr, map);
2337 pci_unmap_len_set(e, maplen, len);
2338
2339 td->dma_lo = map;
2340 td->dma_hi = map >> 32;
2341
2342 if (skb->ip_summed == CHECKSUM_HW) {
2343 int offset = skb->h.raw - skb->data;
2344
2345 /* This seems backwards, but it is what the sk98lin
2346 * does. Looks like hardware is wrong?
2347 */
2348 if (skb->h.ipiph->protocol == IPPROTO_UDP
2349 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2350 control = BMU_TCP_CHECK;
2351 else
2352 control = BMU_UDP_CHECK;
2353
2354 td->csum_offs = 0;
2355 td->csum_start = offset;
2356 td->csum_write = offset + skb->csum;
2357 } else
2358 control = BMU_CHECK;
2359
2360 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2361 control |= BMU_EOF| BMU_IRQ_EOF;
2362 else {
2363 struct skge_tx_desc *tf = td;
2364
2365 control |= BMU_STFWD;
2366 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2367 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2368
2369 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2370 frag->size, PCI_DMA_TODEVICE);
2371
2372 e = e->next;
2373 e->skb = NULL;
2374 tf = e->desc;
2375 tf->dma_lo = map;
2376 tf->dma_hi = (u64) map >> 32;
2377 pci_unmap_addr_set(e, mapaddr, map);
2378 pci_unmap_len_set(e, maplen, frag->size);
2379
2380 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2381 }
2382 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2383 }
2384 /* Make sure all the descriptors written */
2385 wmb();
2386 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2387 wmb();
2388
2389 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2390
2391 if (netif_msg_tx_queued(skge))
2392 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2393 dev->name, e - ring->start, skb->len);
2394
2395 ring->to_use = e->next;
2396 if (skge_avail(&skge->tx_ring) <= MAX_SKB_FRAGS + 1) {
2397 pr_debug("%s: transmit queue full\n", dev->name);
2398 netif_stop_queue(dev);
2399 }
2400
2401 mmiowb();
2402 spin_unlock(&skge->tx_lock);
2403
2404 dev->trans_start = jiffies;
2405
2406 return NETDEV_TX_OK;
2407 }
2408
2409 static void skge_tx_complete(struct skge_port *skge, struct skge_element *last)
2410 {
2411 struct pci_dev *pdev = skge->hw->pdev;
2412 struct skge_element *e;
2413
2414 for (e = skge->tx_ring.to_clean; e != last; e = e->next) {
2415 struct sk_buff *skb = e->skb;
2416 int i;
2417
2418 e->skb = NULL;
2419 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2420 skb_headlen(skb), PCI_DMA_TODEVICE);
2421
2422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2423 e = e->next;
2424 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2425 skb_shinfo(skb)->frags[i].size,
2426 PCI_DMA_TODEVICE);
2427 }
2428
2429 dev_kfree_skb(skb);
2430 }
2431 skge->tx_ring.to_clean = e;
2432 }
2433
2434 static void skge_tx_clean(struct skge_port *skge)
2435 {
2436
2437 spin_lock_bh(&skge->tx_lock);
2438 skge_tx_complete(skge, skge->tx_ring.to_use);
2439 netif_wake_queue(skge->netdev);
2440 spin_unlock_bh(&skge->tx_lock);
2441 }
2442
2443 static void skge_tx_timeout(struct net_device *dev)
2444 {
2445 struct skge_port *skge = netdev_priv(dev);
2446
2447 if (netif_msg_timer(skge))
2448 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2449
2450 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2451 skge_tx_clean(skge);
2452 }
2453
2454 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2455 {
2456 int err;
2457
2458 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2459 return -EINVAL;
2460
2461 if (!netif_running(dev)) {
2462 dev->mtu = new_mtu;
2463 return 0;
2464 }
2465
2466 skge_down(dev);
2467
2468 dev->mtu = new_mtu;
2469
2470 err = skge_up(dev);
2471 if (err)
2472 dev_close(dev);
2473
2474 return err;
2475 }
2476
2477 static void genesis_set_multicast(struct net_device *dev)
2478 {
2479 struct skge_port *skge = netdev_priv(dev);
2480 struct skge_hw *hw = skge->hw;
2481 int port = skge->port;
2482 int i, count = dev->mc_count;
2483 struct dev_mc_list *list = dev->mc_list;
2484 u32 mode;
2485 u8 filter[8];
2486
2487 mode = xm_read32(hw, port, XM_MODE);
2488 mode |= XM_MD_ENA_HASH;
2489 if (dev->flags & IFF_PROMISC)
2490 mode |= XM_MD_ENA_PROM;
2491 else
2492 mode &= ~XM_MD_ENA_PROM;
2493
2494 if (dev->flags & IFF_ALLMULTI)
2495 memset(filter, 0xff, sizeof(filter));
2496 else {
2497 memset(filter, 0, sizeof(filter));
2498 for (i = 0; list && i < count; i++, list = list->next) {
2499 u32 crc, bit;
2500 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2501 bit = ~crc & 0x3f;
2502 filter[bit/8] |= 1 << (bit%8);
2503 }
2504 }
2505
2506 xm_write32(hw, port, XM_MODE, mode);
2507 xm_outhash(hw, port, XM_HSM, filter);
2508 }
2509
2510 static void yukon_set_multicast(struct net_device *dev)
2511 {
2512 struct skge_port *skge = netdev_priv(dev);
2513 struct skge_hw *hw = skge->hw;
2514 int port = skge->port;
2515 struct dev_mc_list *list = dev->mc_list;
2516 u16 reg;
2517 u8 filter[8];
2518
2519 memset(filter, 0, sizeof(filter));
2520
2521 reg = gma_read16(hw, port, GM_RX_CTRL);
2522 reg |= GM_RXCR_UCF_ENA;
2523
2524 if (dev->flags & IFF_PROMISC) /* promiscuous */
2525 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2526 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2527 memset(filter, 0xff, sizeof(filter));
2528 else if (dev->mc_count == 0) /* no multicast */
2529 reg &= ~GM_RXCR_MCF_ENA;
2530 else {
2531 int i;
2532 reg |= GM_RXCR_MCF_ENA;
2533
2534 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2535 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2536 filter[bit/8] |= 1 << (bit%8);
2537 }
2538 }
2539
2540
2541 gma_write16(hw, port, GM_MC_ADDR_H1,
2542 (u16)filter[0] | ((u16)filter[1] << 8));
2543 gma_write16(hw, port, GM_MC_ADDR_H2,
2544 (u16)filter[2] | ((u16)filter[3] << 8));
2545 gma_write16(hw, port, GM_MC_ADDR_H3,
2546 (u16)filter[4] | ((u16)filter[5] << 8));
2547 gma_write16(hw, port, GM_MC_ADDR_H4,
2548 (u16)filter[6] | ((u16)filter[7] << 8));
2549
2550 gma_write16(hw, port, GM_RX_CTRL, reg);
2551 }
2552
2553 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2554 {
2555 if (hw->chip_id == CHIP_ID_GENESIS)
2556 return status >> XMR_FS_LEN_SHIFT;
2557 else
2558 return status >> GMR_FS_LEN_SHIFT;
2559 }
2560
2561 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2562 {
2563 if (hw->chip_id == CHIP_ID_GENESIS)
2564 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2565 else
2566 return (status & GMR_FS_ANY_ERR) ||
2567 (status & GMR_FS_RX_OK) == 0;
2568 }
2569
2570
2571 /* Get receive buffer from descriptor.
2572 * Handles copy of small buffers and reallocation failures
2573 */
2574 static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
2575 struct skge_element *e,
2576 u32 control, u32 status, u16 csum)
2577 {
2578 struct sk_buff *skb;
2579 u16 len = control & BMU_BBC;
2580
2581 if (unlikely(netif_msg_rx_status(skge)))
2582 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2583 skge->netdev->name, e - skge->rx_ring.start,
2584 status, len);
2585
2586 if (len > skge->rx_buf_size)
2587 goto error;
2588
2589 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2590 goto error;
2591
2592 if (bad_phy_status(skge->hw, status))
2593 goto error;
2594
2595 if (phy_length(skge->hw, status) != len)
2596 goto error;
2597
2598 if (len < RX_COPY_THRESHOLD) {
2599 skb = alloc_skb(len + 2, GFP_ATOMIC);
2600 if (!skb)
2601 goto resubmit;
2602
2603 skb_reserve(skb, 2);
2604 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2605 pci_unmap_addr(e, mapaddr),
2606 len, PCI_DMA_FROMDEVICE);
2607 memcpy(skb->data, e->skb->data, len);
2608 pci_dma_sync_single_for_device(skge->hw->pdev,
2609 pci_unmap_addr(e, mapaddr),
2610 len, PCI_DMA_FROMDEVICE);
2611 skge_rx_reuse(e, skge->rx_buf_size);
2612 } else {
2613 struct sk_buff *nskb;
2614 nskb = alloc_skb(skge->rx_buf_size + NET_IP_ALIGN, GFP_ATOMIC);
2615 if (!nskb)
2616 goto resubmit;
2617
2618 skb_reserve(nskb, NET_IP_ALIGN);
2619 pci_unmap_single(skge->hw->pdev,
2620 pci_unmap_addr(e, mapaddr),
2621 pci_unmap_len(e, maplen),
2622 PCI_DMA_FROMDEVICE);
2623 skb = e->skb;
2624 prefetch(skb->data);
2625 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2626 }
2627
2628 skb_put(skb, len);
2629 skb->dev = skge->netdev;
2630 if (skge->rx_csum) {
2631 skb->csum = csum;
2632 skb->ip_summed = CHECKSUM_HW;
2633 }
2634
2635 skb->protocol = eth_type_trans(skb, skge->netdev);
2636
2637 return skb;
2638 error:
2639
2640 if (netif_msg_rx_err(skge))
2641 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2642 skge->netdev->name, e - skge->rx_ring.start,
2643 control, status);
2644
2645 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2646 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2647 skge->net_stats.rx_length_errors++;
2648 if (status & XMR_FS_FRA_ERR)
2649 skge->net_stats.rx_frame_errors++;
2650 if (status & XMR_FS_FCS_ERR)
2651 skge->net_stats.rx_crc_errors++;
2652 } else {
2653 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2654 skge->net_stats.rx_length_errors++;
2655 if (status & GMR_FS_FRAGMENT)
2656 skge->net_stats.rx_frame_errors++;
2657 if (status & GMR_FS_CRC_ERR)
2658 skge->net_stats.rx_crc_errors++;
2659 }
2660
2661 resubmit:
2662 skge_rx_reuse(e, skge->rx_buf_size);
2663 return NULL;
2664 }
2665
2666 static void skge_tx_done(struct skge_port *skge)
2667 {
2668 struct skge_ring *ring = &skge->tx_ring;
2669 struct skge_element *e, *last;
2670
2671 spin_lock(&skge->tx_lock);
2672 last = ring->to_clean;
2673 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2674 struct skge_tx_desc *td = e->desc;
2675
2676 if (td->control & BMU_OWN)
2677 break;
2678
2679 if (td->control & BMU_EOF) {
2680 last = e->next;
2681 if (unlikely(netif_msg_tx_done(skge)))
2682 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2683 skge->netdev->name, e - ring->start);
2684 }
2685 }
2686
2687 skge_tx_complete(skge, last);
2688
2689 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2690
2691 if (skge_avail(&skge->tx_ring) > MAX_SKB_FRAGS + 1)
2692 netif_wake_queue(skge->netdev);
2693
2694 spin_unlock(&skge->tx_lock);
2695 }
2696
2697 static int skge_poll(struct net_device *dev, int *budget)
2698 {
2699 struct skge_port *skge = netdev_priv(dev);
2700 struct skge_hw *hw = skge->hw;
2701 struct skge_ring *ring = &skge->rx_ring;
2702 struct skge_element *e;
2703 int to_do = min(dev->quota, *budget);
2704 int work_done = 0;
2705
2706 skge_tx_done(skge);
2707
2708 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2709 struct skge_rx_desc *rd = e->desc;
2710 struct sk_buff *skb;
2711 u32 control;
2712
2713 rmb();
2714 control = rd->control;
2715 if (control & BMU_OWN)
2716 break;
2717
2718 skb = skge_rx_get(skge, e, control, rd->status,
2719 le16_to_cpu(rd->csum2));
2720 if (likely(skb)) {
2721 dev->last_rx = jiffies;
2722 netif_receive_skb(skb);
2723
2724 ++work_done;
2725 }
2726 }
2727 ring->to_clean = e;
2728
2729 /* restart receiver */
2730 wmb();
2731 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2732
2733 *budget -= work_done;
2734 dev->quota -= work_done;
2735
2736 if (work_done >= to_do)
2737 return 1; /* not done */
2738
2739 netif_rx_complete(dev);
2740 mmiowb();
2741
2742 hw->intr_mask |= skge->port == 0 ? (IS_R1_F|IS_XA1_F) : (IS_R2_F|IS_XA2_F);
2743 skge_write32(hw, B0_IMSK, hw->intr_mask);
2744
2745 return 0;
2746 }
2747
2748 /* Parity errors seem to happen when Genesis is connected to a switch
2749 * with no other ports present. Heartbeat error??
2750 */
2751 static void skge_mac_parity(struct skge_hw *hw, int port)
2752 {
2753 struct net_device *dev = hw->dev[port];
2754
2755 if (dev) {
2756 struct skge_port *skge = netdev_priv(dev);
2757 ++skge->net_stats.tx_heartbeat_errors;
2758 }
2759
2760 if (hw->chip_id == CHIP_ID_GENESIS)
2761 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2762 MFF_CLR_PERR);
2763 else
2764 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2765 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2766 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2767 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2768 }
2769
2770 static void skge_mac_intr(struct skge_hw *hw, int port)
2771 {
2772 if (hw->chip_id == CHIP_ID_GENESIS)
2773 genesis_mac_intr(hw, port);
2774 else
2775 yukon_mac_intr(hw, port);
2776 }
2777
2778 /* Handle device specific framing and timeout interrupts */
2779 static void skge_error_irq(struct skge_hw *hw)
2780 {
2781 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2782
2783 if (hw->chip_id == CHIP_ID_GENESIS) {
2784 /* clear xmac errors */
2785 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2786 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2787 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2788 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2789 } else {
2790 /* Timestamp (unused) overflow */
2791 if (hwstatus & IS_IRQ_TIST_OV)
2792 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2793 }
2794
2795 if (hwstatus & IS_RAM_RD_PAR) {
2796 printk(KERN_ERR PFX "Ram read data parity error\n");
2797 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2798 }
2799
2800 if (hwstatus & IS_RAM_WR_PAR) {
2801 printk(KERN_ERR PFX "Ram write data parity error\n");
2802 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2803 }
2804
2805 if (hwstatus & IS_M1_PAR_ERR)
2806 skge_mac_parity(hw, 0);
2807
2808 if (hwstatus & IS_M2_PAR_ERR)
2809 skge_mac_parity(hw, 1);
2810
2811 if (hwstatus & IS_R1_PAR_ERR) {
2812 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2813 hw->dev[0]->name);
2814 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2815 }
2816
2817 if (hwstatus & IS_R2_PAR_ERR) {
2818 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2819 hw->dev[1]->name);
2820 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2821 }
2822
2823 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2824 u16 pci_status, pci_cmd;
2825
2826 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
2827 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
2828
2829 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
2830 pci_name(hw->pdev), pci_cmd, pci_status);
2831
2832 /* Write the error bits back to clear them. */
2833 pci_status &= PCI_STATUS_ERROR_BITS;
2834 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2835 pci_write_config_word(hw->pdev, PCI_COMMAND,
2836 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
2837 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
2838 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2839
2840 /* if error still set then just ignore it */
2841 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2842 if (hwstatus & IS_IRQ_STAT) {
2843 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
2844 hw->intr_mask &= ~IS_HW_ERR;
2845 }
2846 }
2847 }
2848
2849 /*
2850 * Interrupt from PHY are handled in tasklet (soft irq)
2851 * because accessing phy registers requires spin wait which might
2852 * cause excess interrupt latency.
2853 */
2854 static void skge_extirq(unsigned long data)
2855 {
2856 struct skge_hw *hw = (struct skge_hw *) data;
2857 int port;
2858
2859 spin_lock(&hw->phy_lock);
2860 for (port = 0; port < hw->ports; port++) {
2861 struct net_device *dev = hw->dev[port];
2862 struct skge_port *skge = netdev_priv(dev);
2863
2864 if (netif_running(dev)) {
2865 if (hw->chip_id != CHIP_ID_GENESIS)
2866 yukon_phy_intr(skge);
2867 else
2868 bcom_phy_intr(skge);
2869 }
2870 }
2871 spin_unlock(&hw->phy_lock);
2872
2873 hw->intr_mask |= IS_EXT_REG;
2874 skge_write32(hw, B0_IMSK, hw->intr_mask);
2875 }
2876
2877 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2878 {
2879 struct skge_hw *hw = dev_id;
2880 u32 status;
2881
2882 /* Reading this register masks IRQ */
2883 status = skge_read32(hw, B0_SP_ISRC);
2884 if (status == 0)
2885 return IRQ_NONE;
2886
2887 if (status & IS_EXT_REG) {
2888 hw->intr_mask &= ~IS_EXT_REG;
2889 tasklet_schedule(&hw->ext_tasklet);
2890 }
2891
2892 if (status & (IS_R1_F|IS_XA1_F)) {
2893 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
2894 hw->intr_mask &= ~(IS_R1_F|IS_XA1_F);
2895 netif_rx_schedule(hw->dev[0]);
2896 }
2897
2898 if (status & (IS_R2_F|IS_XA2_F)) {
2899 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
2900 hw->intr_mask &= ~(IS_R2_F|IS_XA2_F);
2901 netif_rx_schedule(hw->dev[1]);
2902 }
2903
2904 if (likely((status & hw->intr_mask) == 0))
2905 return IRQ_HANDLED;
2906
2907 if (status & IS_PA_TO_RX1) {
2908 struct skge_port *skge = netdev_priv(hw->dev[0]);
2909 ++skge->net_stats.rx_over_errors;
2910 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2911 }
2912
2913 if (status & IS_PA_TO_RX2) {
2914 struct skge_port *skge = netdev_priv(hw->dev[1]);
2915 ++skge->net_stats.rx_over_errors;
2916 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2917 }
2918
2919 if (status & IS_PA_TO_TX1)
2920 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2921
2922 if (status & IS_PA_TO_TX2)
2923 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2924
2925 if (status & IS_MAC1)
2926 skge_mac_intr(hw, 0);
2927
2928 if (status & IS_MAC2)
2929 skge_mac_intr(hw, 1);
2930
2931 if (status & IS_HW_ERR)
2932 skge_error_irq(hw);
2933
2934 skge_write32(hw, B0_IMSK, hw->intr_mask);
2935
2936 return IRQ_HANDLED;
2937 }
2938
2939 #ifdef CONFIG_NET_POLL_CONTROLLER
2940 static void skge_netpoll(struct net_device *dev)
2941 {
2942 struct skge_port *skge = netdev_priv(dev);
2943
2944 disable_irq(dev->irq);
2945 skge_intr(dev->irq, skge->hw, NULL);
2946 enable_irq(dev->irq);
2947 }
2948 #endif
2949
2950 static int skge_set_mac_address(struct net_device *dev, void *p)
2951 {
2952 struct skge_port *skge = netdev_priv(dev);
2953 struct skge_hw *hw = skge->hw;
2954 unsigned port = skge->port;
2955 const struct sockaddr *addr = p;
2956
2957 if (!is_valid_ether_addr(addr->sa_data))
2958 return -EADDRNOTAVAIL;
2959
2960 spin_lock_bh(&hw->phy_lock);
2961 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2962 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2963 dev->dev_addr, ETH_ALEN);
2964 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2965 dev->dev_addr, ETH_ALEN);
2966
2967 if (hw->chip_id == CHIP_ID_GENESIS)
2968 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2969 else {
2970 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2971 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
2972 }
2973 spin_unlock_bh(&hw->phy_lock);
2974
2975 return 0;
2976 }
2977
2978 static const struct {
2979 u8 id;
2980 const char *name;
2981 } skge_chips[] = {
2982 { CHIP_ID_GENESIS, "Genesis" },
2983 { CHIP_ID_YUKON, "Yukon" },
2984 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
2985 { CHIP_ID_YUKON_LP, "Yukon-LP"},
2986 };
2987
2988 static const char *skge_board_name(const struct skge_hw *hw)
2989 {
2990 int i;
2991 static char buf[16];
2992
2993 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
2994 if (skge_chips[i].id == hw->chip_id)
2995 return skge_chips[i].name;
2996
2997 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
2998 return buf;
2999 }
3000
3001
3002 /*
3003 * Setup the board data structure, but don't bring up
3004 * the port(s)
3005 */
3006 static int skge_reset(struct skge_hw *hw)
3007 {
3008 u32 reg;
3009 u16 ctst, pci_status;
3010 u8 t8, mac_cfg, pmd_type, phy_type;
3011 int i;
3012
3013 ctst = skge_read16(hw, B0_CTST);
3014
3015 /* do a SW reset */
3016 skge_write8(hw, B0_CTST, CS_RST_SET);
3017 skge_write8(hw, B0_CTST, CS_RST_CLR);
3018
3019 /* clear PCI errors, if any */
3020 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3021 skge_write8(hw, B2_TST_CTRL2, 0);
3022
3023 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3024 pci_write_config_word(hw->pdev, PCI_STATUS,
3025 pci_status | PCI_STATUS_ERROR_BITS);
3026 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3027 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3028
3029 /* restore CLK_RUN bits (for Yukon-Lite) */
3030 skge_write16(hw, B0_CTST,
3031 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3032
3033 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3034 phy_type = skge_read8(hw, B2_E_1) & 0xf;
3035 pmd_type = skge_read8(hw, B2_PMD_TYP);
3036 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3037
3038 switch (hw->chip_id) {
3039 case CHIP_ID_GENESIS:
3040 switch (phy_type) {
3041 case SK_PHY_BCOM:
3042 hw->phy_addr = PHY_ADDR_BCOM;
3043 break;
3044 default:
3045 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3046 pci_name(hw->pdev), phy_type);
3047 return -EOPNOTSUPP;
3048 }
3049 break;
3050
3051 case CHIP_ID_YUKON:
3052 case CHIP_ID_YUKON_LITE:
3053 case CHIP_ID_YUKON_LP:
3054 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3055 hw->copper = 1;
3056
3057 hw->phy_addr = PHY_ADDR_MARV;
3058 break;
3059
3060 default:
3061 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3062 pci_name(hw->pdev), hw->chip_id);
3063 return -EOPNOTSUPP;
3064 }
3065
3066 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3067 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3068 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3069
3070 /* read the adapters RAM size */
3071 t8 = skge_read8(hw, B2_E_0);
3072 if (hw->chip_id == CHIP_ID_GENESIS) {
3073 if (t8 == 3) {
3074 /* special case: 4 x 64k x 36, offset = 0x80000 */
3075 hw->ram_size = 0x100000;
3076 hw->ram_offset = 0x80000;
3077 } else
3078 hw->ram_size = t8 * 512;
3079 }
3080 else if (t8 == 0)
3081 hw->ram_size = 0x20000;
3082 else
3083 hw->ram_size = t8 * 4096;
3084
3085 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3086 if (hw->ports > 1)
3087 hw->intr_mask |= IS_PORT_2;
3088
3089 if (hw->chip_id == CHIP_ID_GENESIS)
3090 genesis_init(hw);
3091 else {
3092 /* switch power to VCC (WA for VAUX problem) */
3093 skge_write8(hw, B0_POWER_CTRL,
3094 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3095
3096 /* avoid boards with stuck Hardware error bits */
3097 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3098 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3099 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3100 hw->intr_mask &= ~IS_HW_ERR;
3101 }
3102
3103 /* Clear PHY COMA */
3104 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3105 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3106 reg &= ~PCI_PHY_COMA;
3107 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3108 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3109
3110
3111 for (i = 0; i < hw->ports; i++) {
3112 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3113 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3114 }
3115 }
3116
3117 /* turn off hardware timer (unused) */
3118 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3119 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3120 skge_write8(hw, B0_LED, LED_STAT_ON);
3121
3122 /* enable the Tx Arbiters */
3123 for (i = 0; i < hw->ports; i++)
3124 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3125
3126 /* Initialize ram interface */
3127 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3128
3129 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3130 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3131 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3132 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3133 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3134 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3135 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3136 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3137 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3138 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3139 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3140 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3141
3142 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3143
3144 /* Set interrupt moderation for Transmit only
3145 * Receive interrupts avoided by NAPI
3146 */
3147 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3148 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3149 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3150
3151 skge_write32(hw, B0_IMSK, hw->intr_mask);
3152
3153 spin_lock_bh(&hw->phy_lock);
3154 for (i = 0; i < hw->ports; i++) {
3155 if (hw->chip_id == CHIP_ID_GENESIS)
3156 genesis_reset(hw, i);
3157 else
3158 yukon_reset(hw, i);
3159 }
3160 spin_unlock_bh(&hw->phy_lock);
3161
3162 return 0;
3163 }
3164
3165 /* Initialize network device */
3166 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3167 int highmem)
3168 {
3169 struct skge_port *skge;
3170 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3171
3172 if (!dev) {
3173 printk(KERN_ERR "skge etherdev alloc failed");
3174 return NULL;
3175 }
3176
3177 SET_MODULE_OWNER(dev);
3178 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3179 dev->open = skge_up;
3180 dev->stop = skge_down;
3181 dev->do_ioctl = skge_ioctl;
3182 dev->hard_start_xmit = skge_xmit_frame;
3183 dev->get_stats = skge_get_stats;
3184 if (hw->chip_id == CHIP_ID_GENESIS)
3185 dev->set_multicast_list = genesis_set_multicast;
3186 else
3187 dev->set_multicast_list = yukon_set_multicast;
3188
3189 dev->set_mac_address = skge_set_mac_address;
3190 dev->change_mtu = skge_change_mtu;
3191 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3192 dev->tx_timeout = skge_tx_timeout;
3193 dev->watchdog_timeo = TX_WATCHDOG;
3194 dev->poll = skge_poll;
3195 dev->weight = NAPI_WEIGHT;
3196 #ifdef CONFIG_NET_POLL_CONTROLLER
3197 dev->poll_controller = skge_netpoll;
3198 #endif
3199 dev->irq = hw->pdev->irq;
3200 dev->features = NETIF_F_LLTX;
3201 if (highmem)
3202 dev->features |= NETIF_F_HIGHDMA;
3203
3204 skge = netdev_priv(dev);
3205 skge->netdev = dev;
3206 skge->hw = hw;
3207 skge->msg_enable = netif_msg_init(debug, default_msg);
3208 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3209 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3210
3211 /* Auto speed and flow control */
3212 skge->autoneg = AUTONEG_ENABLE;
3213 skge->flow_control = FLOW_MODE_SYMMETRIC;
3214 skge->duplex = -1;
3215 skge->speed = -1;
3216 skge->advertising = skge_supported_modes(hw);
3217
3218 hw->dev[port] = dev;
3219
3220 skge->port = port;
3221
3222 spin_lock_init(&skge->tx_lock);
3223
3224 if (hw->chip_id != CHIP_ID_GENESIS) {
3225 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3226 skge->rx_csum = 1;
3227 }
3228
3229 /* read the mac address */
3230 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3231 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3232
3233 /* device is off until link detection */
3234 netif_carrier_off(dev);
3235 netif_stop_queue(dev);
3236
3237 return dev;
3238 }
3239
3240 static void __devinit skge_show_addr(struct net_device *dev)
3241 {
3242 const struct skge_port *skge = netdev_priv(dev);
3243
3244 if (netif_msg_probe(skge))
3245 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3246 dev->name,
3247 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3248 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3249 }
3250
3251 static int __devinit skge_probe(struct pci_dev *pdev,
3252 const struct pci_device_id *ent)
3253 {
3254 struct net_device *dev, *dev1;
3255 struct skge_hw *hw;
3256 int err, using_dac = 0;
3257
3258 err = pci_enable_device(pdev);
3259 if (err) {
3260 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3261 pci_name(pdev));
3262 goto err_out;
3263 }
3264
3265 err = pci_request_regions(pdev, DRV_NAME);
3266 if (err) {
3267 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3268 pci_name(pdev));
3269 goto err_out_disable_pdev;
3270 }
3271
3272 pci_set_master(pdev);
3273
3274 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3275 using_dac = 1;
3276 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3277 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3278 using_dac = 0;
3279 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3280 }
3281
3282 if (err) {
3283 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3284 pci_name(pdev));
3285 goto err_out_free_regions;
3286 }
3287
3288 #ifdef __BIG_ENDIAN
3289 /* byte swap descriptors in hardware */
3290 {
3291 u32 reg;
3292
3293 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3294 reg |= PCI_REV_DESC;
3295 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3296 }
3297 #endif
3298
3299 err = -ENOMEM;
3300 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3301 if (!hw) {
3302 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3303 pci_name(pdev));
3304 goto err_out_free_regions;
3305 }
3306
3307 hw->pdev = pdev;
3308 spin_lock_init(&hw->phy_lock);
3309 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
3310
3311 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3312 if (!hw->regs) {
3313 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3314 pci_name(pdev));
3315 goto err_out_free_hw;
3316 }
3317
3318 err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw);
3319 if (err) {
3320 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3321 pci_name(pdev), pdev->irq);
3322 goto err_out_iounmap;
3323 }
3324 pci_set_drvdata(pdev, hw);
3325
3326 err = skge_reset(hw);
3327 if (err)
3328 goto err_out_free_irq;
3329
3330 printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
3331 pci_resource_start(pdev, 0), pdev->irq,
3332 skge_board_name(hw), hw->chip_rev);
3333
3334 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3335 goto err_out_led_off;
3336
3337 err = register_netdev(dev);
3338 if (err) {
3339 printk(KERN_ERR PFX "%s: cannot register net device\n",
3340 pci_name(pdev));
3341 goto err_out_free_netdev;
3342 }
3343
3344 skge_show_addr(dev);
3345
3346 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3347 if (register_netdev(dev1) == 0)
3348 skge_show_addr(dev1);
3349 else {
3350 /* Failure to register second port need not be fatal */
3351 printk(KERN_WARNING PFX "register of second port failed\n");
3352 hw->dev[1] = NULL;
3353 free_netdev(dev1);
3354 }
3355 }
3356
3357 return 0;
3358
3359 err_out_free_netdev:
3360 free_netdev(dev);
3361 err_out_led_off:
3362 skge_write16(hw, B0_LED, LED_STAT_OFF);
3363 err_out_free_irq:
3364 free_irq(pdev->irq, hw);
3365 err_out_iounmap:
3366 iounmap(hw->regs);
3367 err_out_free_hw:
3368 kfree(hw);
3369 err_out_free_regions:
3370 pci_release_regions(pdev);
3371 err_out_disable_pdev:
3372 pci_disable_device(pdev);
3373 pci_set_drvdata(pdev, NULL);
3374 err_out:
3375 return err;
3376 }
3377
3378 static void __devexit skge_remove(struct pci_dev *pdev)
3379 {
3380 struct skge_hw *hw = pci_get_drvdata(pdev);
3381 struct net_device *dev0, *dev1;
3382
3383 if (!hw)
3384 return;
3385
3386 if ((dev1 = hw->dev[1]))
3387 unregister_netdev(dev1);
3388 dev0 = hw->dev[0];
3389 unregister_netdev(dev0);
3390
3391 skge_write32(hw, B0_IMSK, 0);
3392 skge_write16(hw, B0_LED, LED_STAT_OFF);
3393 skge_write8(hw, B0_CTST, CS_RST_SET);
3394
3395 tasklet_kill(&hw->ext_tasklet);
3396
3397 free_irq(pdev->irq, hw);
3398 pci_release_regions(pdev);
3399 pci_disable_device(pdev);
3400 if (dev1)
3401 free_netdev(dev1);
3402 free_netdev(dev0);
3403
3404 iounmap(hw->regs);
3405 kfree(hw);
3406 pci_set_drvdata(pdev, NULL);
3407 }
3408
3409 #ifdef CONFIG_PM
3410 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3411 {
3412 struct skge_hw *hw = pci_get_drvdata(pdev);
3413 int i, wol = 0;
3414
3415 for (i = 0; i < 2; i++) {
3416 struct net_device *dev = hw->dev[i];
3417
3418 if (dev) {
3419 struct skge_port *skge = netdev_priv(dev);
3420 if (netif_running(dev)) {
3421 netif_carrier_off(dev);
3422 if (skge->wol)
3423 netif_stop_queue(dev);
3424 else
3425 skge_down(dev);
3426 }
3427 netif_device_detach(dev);
3428 wol |= skge->wol;
3429 }
3430 }
3431
3432 pci_save_state(pdev);
3433 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3434 pci_disable_device(pdev);
3435 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3436
3437 return 0;
3438 }
3439
3440 static int skge_resume(struct pci_dev *pdev)
3441 {
3442 struct skge_hw *hw = pci_get_drvdata(pdev);
3443 int i;
3444
3445 pci_set_power_state(pdev, PCI_D0);
3446 pci_restore_state(pdev);
3447 pci_enable_wake(pdev, PCI_D0, 0);
3448
3449 skge_reset(hw);
3450
3451 for (i = 0; i < 2; i++) {
3452 struct net_device *dev = hw->dev[i];
3453 if (dev) {
3454 netif_device_attach(dev);
3455 if (netif_running(dev) && skge_up(dev))
3456 dev_close(dev);
3457 }
3458 }
3459 return 0;
3460 }
3461 #endif
3462
3463 static struct pci_driver skge_driver = {
3464 .name = DRV_NAME,
3465 .id_table = skge_id_table,
3466 .probe = skge_probe,
3467 .remove = __devexit_p(skge_remove),
3468 #ifdef CONFIG_PM
3469 .suspend = skge_suspend,
3470 .resume = skge_resume,
3471 #endif
3472 };
3473
3474 static int __init skge_init_module(void)
3475 {
3476 return pci_module_init(&skge_driver);
3477 }
3478
3479 static void __exit skge_cleanup_module(void)
3480 {
3481 pci_unregister_driver(&skge_driver);
3482 }
3483
3484 module_init(skge_init_module);
3485 module_exit(skge_cleanup_module);
This page took 0.161692 seconds and 5 git commands to generate.