skge: changing MTU while running causes problems
[deliverable/linux.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/in.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
35 #include <linux/ip.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
40 #include <asm/irq.h>
41
42 #include "skge.h"
43
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.11"
46 #define PFX DRV_NAME " "
47
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
59 #define BLINK_MS 250
60 #define LINK_HZ (HZ/2)
61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
66
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
87 { 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
109 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
110
111 static int skge_get_regs_len(struct net_device *dev)
112 {
113 return 0x4000;
114 }
115
116 /*
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
119 * cause bus hangs!
120 */
121 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
122 void *p)
123 {
124 const struct skge_port *skge = netdev_priv(dev);
125 const void __iomem *io = skge->hw->regs;
126
127 regs->version = 1;
128 memset(p, 0, regs->len);
129 memcpy_fromio(p, io, B3_RAM_ADDR);
130
131 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
132 regs->len - B3_RI_WTO_R1);
133 }
134
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static u32 wol_supported(const struct skge_hw *hw)
137 {
138 if (hw->chip_id == CHIP_ID_GENESIS)
139 return 0;
140
141 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
142 return 0;
143
144 return WAKE_MAGIC | WAKE_PHY;
145 }
146
147 static u32 pci_wake_enabled(struct pci_dev *dev)
148 {
149 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
150 u16 value;
151
152 /* If device doesn't support PM Capabilities, but request is to disable
153 * wake events, it's a nop; otherwise fail */
154 if (!pm)
155 return 0;
156
157 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
158
159 value &= PCI_PM_CAP_PME_MASK;
160 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
161
162 return value != 0;
163 }
164
165 static void skge_wol_init(struct skge_port *skge)
166 {
167 struct skge_hw *hw = skge->hw;
168 int port = skge->port;
169 u16 ctrl;
170
171 skge_write16(hw, B0_CTST, CS_RST_CLR);
172 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
173
174 /* Turn on Vaux */
175 skge_write8(hw, B0_POWER_CTRL,
176 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
177
178 /* WA code for COMA mode -- clear PHY reset */
179 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
180 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
181 u32 reg = skge_read32(hw, B2_GP_IO);
182 reg |= GP_DIR_9;
183 reg &= ~GP_IO_9;
184 skge_write32(hw, B2_GP_IO, reg);
185 }
186
187 skge_write32(hw, SK_REG(port, GPHY_CTRL),
188 GPC_DIS_SLEEP |
189 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 GPC_ANEG_1 | GPC_RST_SET);
191
192 skge_write32(hw, SK_REG(port, GPHY_CTRL),
193 GPC_DIS_SLEEP |
194 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
195 GPC_ANEG_1 | GPC_RST_CLR);
196
197 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
198
199 /* Force to 10/100 skge_reset will re-enable on resume */
200 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
201 PHY_AN_100FULL | PHY_AN_100HALF |
202 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
203 /* no 1000 HD/FD */
204 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
205 gm_phy_write(hw, port, PHY_MARV_CTRL,
206 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
207 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
208
209
210 /* Set GMAC to no flow control and auto update for speed/duplex */
211 gma_write16(hw, port, GM_GP_CTRL,
212 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
213 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
214
215 /* Set WOL address */
216 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
217 skge->netdev->dev_addr, ETH_ALEN);
218
219 /* Turn on appropriate WOL control bits */
220 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
221 ctrl = 0;
222 if (skge->wol & WAKE_PHY)
223 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
224 else
225 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
226
227 if (skge->wol & WAKE_MAGIC)
228 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
229 else
230 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
231
232 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
233 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
234
235 /* block receiver */
236 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
237 }
238
239 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
240 {
241 struct skge_port *skge = netdev_priv(dev);
242
243 wol->supported = wol_supported(skge->hw);
244 wol->wolopts = skge->wol;
245 }
246
247 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
248 {
249 struct skge_port *skge = netdev_priv(dev);
250 struct skge_hw *hw = skge->hw;
251
252 if (wol->wolopts & ~wol_supported(hw))
253 return -EOPNOTSUPP;
254
255 skge->wol = wol->wolopts;
256 return 0;
257 }
258
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261 */
262 static u32 skge_supported_modes(const struct skge_hw *hw)
263 {
264 u32 supported;
265
266 if (hw->copper) {
267 supported = SUPPORTED_10baseT_Half
268 | SUPPORTED_10baseT_Full
269 | SUPPORTED_100baseT_Half
270 | SUPPORTED_100baseT_Full
271 | SUPPORTED_1000baseT_Half
272 | SUPPORTED_1000baseT_Full
273 | SUPPORTED_Autoneg| SUPPORTED_TP;
274
275 if (hw->chip_id == CHIP_ID_GENESIS)
276 supported &= ~(SUPPORTED_10baseT_Half
277 | SUPPORTED_10baseT_Full
278 | SUPPORTED_100baseT_Half
279 | SUPPORTED_100baseT_Full);
280
281 else if (hw->chip_id == CHIP_ID_YUKON)
282 supported &= ~SUPPORTED_1000baseT_Half;
283 } else
284 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
285 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
286
287 return supported;
288 }
289
290 static int skge_get_settings(struct net_device *dev,
291 struct ethtool_cmd *ecmd)
292 {
293 struct skge_port *skge = netdev_priv(dev);
294 struct skge_hw *hw = skge->hw;
295
296 ecmd->transceiver = XCVR_INTERNAL;
297 ecmd->supported = skge_supported_modes(hw);
298
299 if (hw->copper) {
300 ecmd->port = PORT_TP;
301 ecmd->phy_address = hw->phy_addr;
302 } else
303 ecmd->port = PORT_FIBRE;
304
305 ecmd->advertising = skge->advertising;
306 ecmd->autoneg = skge->autoneg;
307 ecmd->speed = skge->speed;
308 ecmd->duplex = skge->duplex;
309 return 0;
310 }
311
312 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
313 {
314 struct skge_port *skge = netdev_priv(dev);
315 const struct skge_hw *hw = skge->hw;
316 u32 supported = skge_supported_modes(hw);
317
318 if (ecmd->autoneg == AUTONEG_ENABLE) {
319 ecmd->advertising = supported;
320 skge->duplex = -1;
321 skge->speed = -1;
322 } else {
323 u32 setting;
324
325 switch (ecmd->speed) {
326 case SPEED_1000:
327 if (ecmd->duplex == DUPLEX_FULL)
328 setting = SUPPORTED_1000baseT_Full;
329 else if (ecmd->duplex == DUPLEX_HALF)
330 setting = SUPPORTED_1000baseT_Half;
331 else
332 return -EINVAL;
333 break;
334 case SPEED_100:
335 if (ecmd->duplex == DUPLEX_FULL)
336 setting = SUPPORTED_100baseT_Full;
337 else if (ecmd->duplex == DUPLEX_HALF)
338 setting = SUPPORTED_100baseT_Half;
339 else
340 return -EINVAL;
341 break;
342
343 case SPEED_10:
344 if (ecmd->duplex == DUPLEX_FULL)
345 setting = SUPPORTED_10baseT_Full;
346 else if (ecmd->duplex == DUPLEX_HALF)
347 setting = SUPPORTED_10baseT_Half;
348 else
349 return -EINVAL;
350 break;
351 default:
352 return -EINVAL;
353 }
354
355 if ((setting & supported) == 0)
356 return -EINVAL;
357
358 skge->speed = ecmd->speed;
359 skge->duplex = ecmd->duplex;
360 }
361
362 skge->autoneg = ecmd->autoneg;
363 skge->advertising = ecmd->advertising;
364
365 if (netif_running(dev))
366 skge_phy_reset(skge);
367
368 return (0);
369 }
370
371 static void skge_get_drvinfo(struct net_device *dev,
372 struct ethtool_drvinfo *info)
373 {
374 struct skge_port *skge = netdev_priv(dev);
375
376 strcpy(info->driver, DRV_NAME);
377 strcpy(info->version, DRV_VERSION);
378 strcpy(info->fw_version, "N/A");
379 strcpy(info->bus_info, pci_name(skge->hw->pdev));
380 }
381
382 static const struct skge_stat {
383 char name[ETH_GSTRING_LEN];
384 u16 xmac_offset;
385 u16 gma_offset;
386 } skge_stats[] = {
387 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
388 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
389
390 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
391 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
392 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
393 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
394 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
395 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
396 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
397 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
398
399 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
400 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
401 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
402 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
403 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
404 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
405
406 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
407 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
408 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
409 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
410 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
411 };
412
413 static int skge_get_sset_count(struct net_device *dev, int sset)
414 {
415 switch (sset) {
416 case ETH_SS_STATS:
417 return ARRAY_SIZE(skge_stats);
418 default:
419 return -EOPNOTSUPP;
420 }
421 }
422
423 static void skge_get_ethtool_stats(struct net_device *dev,
424 struct ethtool_stats *stats, u64 *data)
425 {
426 struct skge_port *skge = netdev_priv(dev);
427
428 if (skge->hw->chip_id == CHIP_ID_GENESIS)
429 genesis_get_stats(skge, data);
430 else
431 yukon_get_stats(skge, data);
432 }
433
434 /* Use hardware MIB variables for critical path statistics and
435 * transmit feedback not reported at interrupt.
436 * Other errors are accounted for in interrupt handler.
437 */
438 static struct net_device_stats *skge_get_stats(struct net_device *dev)
439 {
440 struct skge_port *skge = netdev_priv(dev);
441 u64 data[ARRAY_SIZE(skge_stats)];
442
443 if (skge->hw->chip_id == CHIP_ID_GENESIS)
444 genesis_get_stats(skge, data);
445 else
446 yukon_get_stats(skge, data);
447
448 skge->net_stats.tx_bytes = data[0];
449 skge->net_stats.rx_bytes = data[1];
450 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
451 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
452 skge->net_stats.multicast = data[3] + data[5];
453 skge->net_stats.collisions = data[10];
454 skge->net_stats.tx_aborted_errors = data[12];
455
456 return &skge->net_stats;
457 }
458
459 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
460 {
461 int i;
462
463 switch (stringset) {
464 case ETH_SS_STATS:
465 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
466 memcpy(data + i * ETH_GSTRING_LEN,
467 skge_stats[i].name, ETH_GSTRING_LEN);
468 break;
469 }
470 }
471
472 static void skge_get_ring_param(struct net_device *dev,
473 struct ethtool_ringparam *p)
474 {
475 struct skge_port *skge = netdev_priv(dev);
476
477 p->rx_max_pending = MAX_RX_RING_SIZE;
478 p->tx_max_pending = MAX_TX_RING_SIZE;
479 p->rx_mini_max_pending = 0;
480 p->rx_jumbo_max_pending = 0;
481
482 p->rx_pending = skge->rx_ring.count;
483 p->tx_pending = skge->tx_ring.count;
484 p->rx_mini_pending = 0;
485 p->rx_jumbo_pending = 0;
486 }
487
488 static int skge_set_ring_param(struct net_device *dev,
489 struct ethtool_ringparam *p)
490 {
491 struct skge_port *skge = netdev_priv(dev);
492 int err;
493
494 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
495 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
496 return -EINVAL;
497
498 skge->rx_ring.count = p->rx_pending;
499 skge->tx_ring.count = p->tx_pending;
500
501 if (netif_running(dev)) {
502 skge_down(dev);
503 err = skge_up(dev);
504 if (err)
505 dev_close(dev);
506 }
507
508 return 0;
509 }
510
511 static u32 skge_get_msglevel(struct net_device *netdev)
512 {
513 struct skge_port *skge = netdev_priv(netdev);
514 return skge->msg_enable;
515 }
516
517 static void skge_set_msglevel(struct net_device *netdev, u32 value)
518 {
519 struct skge_port *skge = netdev_priv(netdev);
520 skge->msg_enable = value;
521 }
522
523 static int skge_nway_reset(struct net_device *dev)
524 {
525 struct skge_port *skge = netdev_priv(dev);
526
527 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
528 return -EINVAL;
529
530 skge_phy_reset(skge);
531 return 0;
532 }
533
534 static int skge_set_sg(struct net_device *dev, u32 data)
535 {
536 struct skge_port *skge = netdev_priv(dev);
537 struct skge_hw *hw = skge->hw;
538
539 if (hw->chip_id == CHIP_ID_GENESIS && data)
540 return -EOPNOTSUPP;
541 return ethtool_op_set_sg(dev, data);
542 }
543
544 static int skge_set_tx_csum(struct net_device *dev, u32 data)
545 {
546 struct skge_port *skge = netdev_priv(dev);
547 struct skge_hw *hw = skge->hw;
548
549 if (hw->chip_id == CHIP_ID_GENESIS && data)
550 return -EOPNOTSUPP;
551
552 return ethtool_op_set_tx_csum(dev, data);
553 }
554
555 static u32 skge_get_rx_csum(struct net_device *dev)
556 {
557 struct skge_port *skge = netdev_priv(dev);
558
559 return skge->rx_csum;
560 }
561
562 /* Only Yukon supports checksum offload. */
563 static int skge_set_rx_csum(struct net_device *dev, u32 data)
564 {
565 struct skge_port *skge = netdev_priv(dev);
566
567 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
568 return -EOPNOTSUPP;
569
570 skge->rx_csum = data;
571 return 0;
572 }
573
574 static void skge_get_pauseparam(struct net_device *dev,
575 struct ethtool_pauseparam *ecmd)
576 {
577 struct skge_port *skge = netdev_priv(dev);
578
579 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
580 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
581 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
582
583 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
584 }
585
586 static int skge_set_pauseparam(struct net_device *dev,
587 struct ethtool_pauseparam *ecmd)
588 {
589 struct skge_port *skge = netdev_priv(dev);
590 struct ethtool_pauseparam old;
591
592 skge_get_pauseparam(dev, &old);
593
594 if (ecmd->autoneg != old.autoneg)
595 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
596 else {
597 if (ecmd->rx_pause && ecmd->tx_pause)
598 skge->flow_control = FLOW_MODE_SYMMETRIC;
599 else if (ecmd->rx_pause && !ecmd->tx_pause)
600 skge->flow_control = FLOW_MODE_SYM_OR_REM;
601 else if (!ecmd->rx_pause && ecmd->tx_pause)
602 skge->flow_control = FLOW_MODE_LOC_SEND;
603 else
604 skge->flow_control = FLOW_MODE_NONE;
605 }
606
607 if (netif_running(dev))
608 skge_phy_reset(skge);
609
610 return 0;
611 }
612
613 /* Chip internal frequency for clock calculations */
614 static inline u32 hwkhz(const struct skge_hw *hw)
615 {
616 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
617 }
618
619 /* Chip HZ to microseconds */
620 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
621 {
622 return (ticks * 1000) / hwkhz(hw);
623 }
624
625 /* Microseconds to chip HZ */
626 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
627 {
628 return hwkhz(hw) * usec / 1000;
629 }
630
631 static int skge_get_coalesce(struct net_device *dev,
632 struct ethtool_coalesce *ecmd)
633 {
634 struct skge_port *skge = netdev_priv(dev);
635 struct skge_hw *hw = skge->hw;
636 int port = skge->port;
637
638 ecmd->rx_coalesce_usecs = 0;
639 ecmd->tx_coalesce_usecs = 0;
640
641 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
642 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
643 u32 msk = skge_read32(hw, B2_IRQM_MSK);
644
645 if (msk & rxirqmask[port])
646 ecmd->rx_coalesce_usecs = delay;
647 if (msk & txirqmask[port])
648 ecmd->tx_coalesce_usecs = delay;
649 }
650
651 return 0;
652 }
653
654 /* Note: interrupt timer is per board, but can turn on/off per port */
655 static int skge_set_coalesce(struct net_device *dev,
656 struct ethtool_coalesce *ecmd)
657 {
658 struct skge_port *skge = netdev_priv(dev);
659 struct skge_hw *hw = skge->hw;
660 int port = skge->port;
661 u32 msk = skge_read32(hw, B2_IRQM_MSK);
662 u32 delay = 25;
663
664 if (ecmd->rx_coalesce_usecs == 0)
665 msk &= ~rxirqmask[port];
666 else if (ecmd->rx_coalesce_usecs < 25 ||
667 ecmd->rx_coalesce_usecs > 33333)
668 return -EINVAL;
669 else {
670 msk |= rxirqmask[port];
671 delay = ecmd->rx_coalesce_usecs;
672 }
673
674 if (ecmd->tx_coalesce_usecs == 0)
675 msk &= ~txirqmask[port];
676 else if (ecmd->tx_coalesce_usecs < 25 ||
677 ecmd->tx_coalesce_usecs > 33333)
678 return -EINVAL;
679 else {
680 msk |= txirqmask[port];
681 delay = min(delay, ecmd->rx_coalesce_usecs);
682 }
683
684 skge_write32(hw, B2_IRQM_MSK, msk);
685 if (msk == 0)
686 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
687 else {
688 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
689 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
690 }
691 return 0;
692 }
693
694 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
695 static void skge_led(struct skge_port *skge, enum led_mode mode)
696 {
697 struct skge_hw *hw = skge->hw;
698 int port = skge->port;
699
700 spin_lock_bh(&hw->phy_lock);
701 if (hw->chip_id == CHIP_ID_GENESIS) {
702 switch (mode) {
703 case LED_MODE_OFF:
704 if (hw->phy_type == SK_PHY_BCOM)
705 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
706 else {
707 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
708 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
709 }
710 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
711 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
713 break;
714
715 case LED_MODE_ON:
716 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
717 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
718
719 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
720 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
721
722 break;
723
724 case LED_MODE_TST:
725 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
726 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
727 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
728
729 if (hw->phy_type == SK_PHY_BCOM)
730 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
731 else {
732 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
733 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
734 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
735 }
736
737 }
738 } else {
739 switch (mode) {
740 case LED_MODE_OFF:
741 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
742 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743 PHY_M_LED_MO_DUP(MO_LED_OFF) |
744 PHY_M_LED_MO_10(MO_LED_OFF) |
745 PHY_M_LED_MO_100(MO_LED_OFF) |
746 PHY_M_LED_MO_1000(MO_LED_OFF) |
747 PHY_M_LED_MO_RX(MO_LED_OFF));
748 break;
749 case LED_MODE_ON:
750 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
751 PHY_M_LED_PULS_DUR(PULS_170MS) |
752 PHY_M_LED_BLINK_RT(BLINK_84MS) |
753 PHY_M_LEDC_TX_CTRL |
754 PHY_M_LEDC_DP_CTRL);
755
756 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
757 PHY_M_LED_MO_RX(MO_LED_OFF) |
758 (skge->speed == SPEED_100 ?
759 PHY_M_LED_MO_100(MO_LED_ON) : 0));
760 break;
761 case LED_MODE_TST:
762 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
763 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
764 PHY_M_LED_MO_DUP(MO_LED_ON) |
765 PHY_M_LED_MO_10(MO_LED_ON) |
766 PHY_M_LED_MO_100(MO_LED_ON) |
767 PHY_M_LED_MO_1000(MO_LED_ON) |
768 PHY_M_LED_MO_RX(MO_LED_ON));
769 }
770 }
771 spin_unlock_bh(&hw->phy_lock);
772 }
773
774 /* blink LED's for finding board */
775 static int skge_phys_id(struct net_device *dev, u32 data)
776 {
777 struct skge_port *skge = netdev_priv(dev);
778 unsigned long ms;
779 enum led_mode mode = LED_MODE_TST;
780
781 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
782 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
783 else
784 ms = data * 1000;
785
786 while (ms > 0) {
787 skge_led(skge, mode);
788 mode ^= LED_MODE_TST;
789
790 if (msleep_interruptible(BLINK_MS))
791 break;
792 ms -= BLINK_MS;
793 }
794
795 /* back to regular LED state */
796 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
797
798 return 0;
799 }
800
801 static const struct ethtool_ops skge_ethtool_ops = {
802 .get_settings = skge_get_settings,
803 .set_settings = skge_set_settings,
804 .get_drvinfo = skge_get_drvinfo,
805 .get_regs_len = skge_get_regs_len,
806 .get_regs = skge_get_regs,
807 .get_wol = skge_get_wol,
808 .set_wol = skge_set_wol,
809 .get_msglevel = skge_get_msglevel,
810 .set_msglevel = skge_set_msglevel,
811 .nway_reset = skge_nway_reset,
812 .get_link = ethtool_op_get_link,
813 .get_ringparam = skge_get_ring_param,
814 .set_ringparam = skge_set_ring_param,
815 .get_pauseparam = skge_get_pauseparam,
816 .set_pauseparam = skge_set_pauseparam,
817 .get_coalesce = skge_get_coalesce,
818 .set_coalesce = skge_set_coalesce,
819 .set_sg = skge_set_sg,
820 .set_tx_csum = skge_set_tx_csum,
821 .get_rx_csum = skge_get_rx_csum,
822 .set_rx_csum = skge_set_rx_csum,
823 .get_strings = skge_get_strings,
824 .phys_id = skge_phys_id,
825 .get_sset_count = skge_get_sset_count,
826 .get_ethtool_stats = skge_get_ethtool_stats,
827 };
828
829 /*
830 * Allocate ring elements and chain them together
831 * One-to-one association of board descriptors with ring elements
832 */
833 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
834 {
835 struct skge_tx_desc *d;
836 struct skge_element *e;
837 int i;
838
839 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
840 if (!ring->start)
841 return -ENOMEM;
842
843 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
844 e->desc = d;
845 if (i == ring->count - 1) {
846 e->next = ring->start;
847 d->next_offset = base;
848 } else {
849 e->next = e + 1;
850 d->next_offset = base + (i+1) * sizeof(*d);
851 }
852 }
853 ring->to_use = ring->to_clean = ring->start;
854
855 return 0;
856 }
857
858 /* Allocate and setup a new buffer for receiving */
859 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
860 struct sk_buff *skb, unsigned int bufsize)
861 {
862 struct skge_rx_desc *rd = e->desc;
863 u64 map;
864
865 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
866 PCI_DMA_FROMDEVICE);
867
868 rd->dma_lo = map;
869 rd->dma_hi = map >> 32;
870 e->skb = skb;
871 rd->csum1_start = ETH_HLEN;
872 rd->csum2_start = ETH_HLEN;
873 rd->csum1 = 0;
874 rd->csum2 = 0;
875
876 wmb();
877
878 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
879 pci_unmap_addr_set(e, mapaddr, map);
880 pci_unmap_len_set(e, maplen, bufsize);
881 }
882
883 /* Resume receiving using existing skb,
884 * Note: DMA address is not changed by chip.
885 * MTU not changed while receiver active.
886 */
887 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
888 {
889 struct skge_rx_desc *rd = e->desc;
890
891 rd->csum2 = 0;
892 rd->csum2_start = ETH_HLEN;
893
894 wmb();
895
896 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
897 }
898
899
900 /* Free all buffers in receive ring, assumes receiver stopped */
901 static void skge_rx_clean(struct skge_port *skge)
902 {
903 struct skge_hw *hw = skge->hw;
904 struct skge_ring *ring = &skge->rx_ring;
905 struct skge_element *e;
906
907 e = ring->start;
908 do {
909 struct skge_rx_desc *rd = e->desc;
910 rd->control = 0;
911 if (e->skb) {
912 pci_unmap_single(hw->pdev,
913 pci_unmap_addr(e, mapaddr),
914 pci_unmap_len(e, maplen),
915 PCI_DMA_FROMDEVICE);
916 dev_kfree_skb(e->skb);
917 e->skb = NULL;
918 }
919 } while ((e = e->next) != ring->start);
920 }
921
922
923 /* Allocate buffers for receive ring
924 * For receive: to_clean is next received frame.
925 */
926 static int skge_rx_fill(struct net_device *dev)
927 {
928 struct skge_port *skge = netdev_priv(dev);
929 struct skge_ring *ring = &skge->rx_ring;
930 struct skge_element *e;
931
932 e = ring->start;
933 do {
934 struct sk_buff *skb;
935
936 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
937 GFP_KERNEL);
938 if (!skb)
939 return -ENOMEM;
940
941 skb_reserve(skb, NET_IP_ALIGN);
942 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
943 } while ( (e = e->next) != ring->start);
944
945 ring->to_clean = ring->start;
946 return 0;
947 }
948
949 static const char *skge_pause(enum pause_status status)
950 {
951 switch(status) {
952 case FLOW_STAT_NONE:
953 return "none";
954 case FLOW_STAT_REM_SEND:
955 return "rx only";
956 case FLOW_STAT_LOC_SEND:
957 return "tx_only";
958 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
959 return "both";
960 default:
961 return "indeterminated";
962 }
963 }
964
965
966 static void skge_link_up(struct skge_port *skge)
967 {
968 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
969 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
970
971 netif_carrier_on(skge->netdev);
972 netif_wake_queue(skge->netdev);
973
974 if (netif_msg_link(skge)) {
975 printk(KERN_INFO PFX
976 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
977 skge->netdev->name, skge->speed,
978 skge->duplex == DUPLEX_FULL ? "full" : "half",
979 skge_pause(skge->flow_status));
980 }
981 }
982
983 static void skge_link_down(struct skge_port *skge)
984 {
985 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
986 netif_carrier_off(skge->netdev);
987 netif_stop_queue(skge->netdev);
988
989 if (netif_msg_link(skge))
990 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
991 }
992
993
994 static void xm_link_down(struct skge_hw *hw, int port)
995 {
996 struct net_device *dev = hw->dev[port];
997 struct skge_port *skge = netdev_priv(dev);
998 u16 cmd, msk;
999
1000 if (hw->phy_type == SK_PHY_XMAC) {
1001 msk = xm_read16(hw, port, XM_IMSK);
1002 msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
1003 xm_write16(hw, port, XM_IMSK, msk);
1004 }
1005
1006 cmd = xm_read16(hw, port, XM_MMU_CMD);
1007 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1008 xm_write16(hw, port, XM_MMU_CMD, cmd);
1009 /* dummy read to ensure writing */
1010 (void) xm_read16(hw, port, XM_MMU_CMD);
1011
1012 if (netif_carrier_ok(dev))
1013 skge_link_down(skge);
1014 }
1015
1016 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1017 {
1018 int i;
1019
1020 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1021 *val = xm_read16(hw, port, XM_PHY_DATA);
1022
1023 if (hw->phy_type == SK_PHY_XMAC)
1024 goto ready;
1025
1026 for (i = 0; i < PHY_RETRIES; i++) {
1027 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1028 goto ready;
1029 udelay(1);
1030 }
1031
1032 return -ETIMEDOUT;
1033 ready:
1034 *val = xm_read16(hw, port, XM_PHY_DATA);
1035
1036 return 0;
1037 }
1038
1039 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1040 {
1041 u16 v = 0;
1042 if (__xm_phy_read(hw, port, reg, &v))
1043 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1044 hw->dev[port]->name);
1045 return v;
1046 }
1047
1048 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1049 {
1050 int i;
1051
1052 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1053 for (i = 0; i < PHY_RETRIES; i++) {
1054 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1055 goto ready;
1056 udelay(1);
1057 }
1058 return -EIO;
1059
1060 ready:
1061 xm_write16(hw, port, XM_PHY_DATA, val);
1062 for (i = 0; i < PHY_RETRIES; i++) {
1063 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1064 return 0;
1065 udelay(1);
1066 }
1067 return -ETIMEDOUT;
1068 }
1069
1070 static void genesis_init(struct skge_hw *hw)
1071 {
1072 /* set blink source counter */
1073 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1074 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1075
1076 /* configure mac arbiter */
1077 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1078
1079 /* configure mac arbiter timeout values */
1080 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1081 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1082 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1083 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1084
1085 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1086 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1087 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1088 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1089
1090 /* configure packet arbiter timeout */
1091 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1092 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1093 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1094 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1095 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1096 }
1097
1098 static void genesis_reset(struct skge_hw *hw, int port)
1099 {
1100 const u8 zero[8] = { 0 };
1101
1102 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1103
1104 /* reset the statistics module */
1105 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1106 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1107 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1108 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1109 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1110
1111 /* disable Broadcom PHY IRQ */
1112 if (hw->phy_type == SK_PHY_BCOM)
1113 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1114
1115 xm_outhash(hw, port, XM_HSM, zero);
1116 }
1117
1118
1119 /* Convert mode to MII values */
1120 static const u16 phy_pause_map[] = {
1121 [FLOW_MODE_NONE] = 0,
1122 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1123 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1124 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1125 };
1126
1127 /* special defines for FIBER (88E1011S only) */
1128 static const u16 fiber_pause_map[] = {
1129 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1130 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1131 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1132 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1133 };
1134
1135
1136 /* Check status of Broadcom phy link */
1137 static void bcom_check_link(struct skge_hw *hw, int port)
1138 {
1139 struct net_device *dev = hw->dev[port];
1140 struct skge_port *skge = netdev_priv(dev);
1141 u16 status;
1142
1143 /* read twice because of latch */
1144 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1145 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1146
1147 if ((status & PHY_ST_LSYNC) == 0) {
1148 xm_link_down(hw, port);
1149 return;
1150 }
1151
1152 if (skge->autoneg == AUTONEG_ENABLE) {
1153 u16 lpa, aux;
1154
1155 if (!(status & PHY_ST_AN_OVER))
1156 return;
1157
1158 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1159 if (lpa & PHY_B_AN_RF) {
1160 printk(KERN_NOTICE PFX "%s: remote fault\n",
1161 dev->name);
1162 return;
1163 }
1164
1165 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1166
1167 /* Check Duplex mismatch */
1168 switch (aux & PHY_B_AS_AN_RES_MSK) {
1169 case PHY_B_RES_1000FD:
1170 skge->duplex = DUPLEX_FULL;
1171 break;
1172 case PHY_B_RES_1000HD:
1173 skge->duplex = DUPLEX_HALF;
1174 break;
1175 default:
1176 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1177 dev->name);
1178 return;
1179 }
1180
1181 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1182 switch (aux & PHY_B_AS_PAUSE_MSK) {
1183 case PHY_B_AS_PAUSE_MSK:
1184 skge->flow_status = FLOW_STAT_SYMMETRIC;
1185 break;
1186 case PHY_B_AS_PRR:
1187 skge->flow_status = FLOW_STAT_REM_SEND;
1188 break;
1189 case PHY_B_AS_PRT:
1190 skge->flow_status = FLOW_STAT_LOC_SEND;
1191 break;
1192 default:
1193 skge->flow_status = FLOW_STAT_NONE;
1194 }
1195 skge->speed = SPEED_1000;
1196 }
1197
1198 if (!netif_carrier_ok(dev))
1199 genesis_link_up(skge);
1200 }
1201
1202 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1203 * Phy on for 100 or 10Mbit operation
1204 */
1205 static void bcom_phy_init(struct skge_port *skge)
1206 {
1207 struct skge_hw *hw = skge->hw;
1208 int port = skge->port;
1209 int i;
1210 u16 id1, r, ext, ctl;
1211
1212 /* magic workaround patterns for Broadcom */
1213 static const struct {
1214 u16 reg;
1215 u16 val;
1216 } A1hack[] = {
1217 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1218 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1219 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1220 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1221 }, C0hack[] = {
1222 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1223 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1224 };
1225
1226 /* read Id from external PHY (all have the same address) */
1227 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1228
1229 /* Optimize MDIO transfer by suppressing preamble. */
1230 r = xm_read16(hw, port, XM_MMU_CMD);
1231 r |= XM_MMU_NO_PRE;
1232 xm_write16(hw, port, XM_MMU_CMD,r);
1233
1234 switch (id1) {
1235 case PHY_BCOM_ID1_C0:
1236 /*
1237 * Workaround BCOM Errata for the C0 type.
1238 * Write magic patterns to reserved registers.
1239 */
1240 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1241 xm_phy_write(hw, port,
1242 C0hack[i].reg, C0hack[i].val);
1243
1244 break;
1245 case PHY_BCOM_ID1_A1:
1246 /*
1247 * Workaround BCOM Errata for the A1 type.
1248 * Write magic patterns to reserved registers.
1249 */
1250 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1251 xm_phy_write(hw, port,
1252 A1hack[i].reg, A1hack[i].val);
1253 break;
1254 }
1255
1256 /*
1257 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1258 * Disable Power Management after reset.
1259 */
1260 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1261 r |= PHY_B_AC_DIS_PM;
1262 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1263
1264 /* Dummy read */
1265 xm_read16(hw, port, XM_ISRC);
1266
1267 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1268 ctl = PHY_CT_SP1000; /* always 1000mbit */
1269
1270 if (skge->autoneg == AUTONEG_ENABLE) {
1271 /*
1272 * Workaround BCOM Errata #1 for the C5 type.
1273 * 1000Base-T Link Acquisition Failure in Slave Mode
1274 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1275 */
1276 u16 adv = PHY_B_1000C_RD;
1277 if (skge->advertising & ADVERTISED_1000baseT_Half)
1278 adv |= PHY_B_1000C_AHD;
1279 if (skge->advertising & ADVERTISED_1000baseT_Full)
1280 adv |= PHY_B_1000C_AFD;
1281 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1282
1283 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1284 } else {
1285 if (skge->duplex == DUPLEX_FULL)
1286 ctl |= PHY_CT_DUP_MD;
1287 /* Force to slave */
1288 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1289 }
1290
1291 /* Set autonegotiation pause parameters */
1292 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1293 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1294
1295 /* Handle Jumbo frames */
1296 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1297 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1298 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1299
1300 ext |= PHY_B_PEC_HIGH_LA;
1301
1302 }
1303
1304 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1305 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1306
1307 /* Use link status change interrupt */
1308 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1309 }
1310
1311 static void xm_phy_init(struct skge_port *skge)
1312 {
1313 struct skge_hw *hw = skge->hw;
1314 int port = skge->port;
1315 u16 ctrl = 0;
1316
1317 if (skge->autoneg == AUTONEG_ENABLE) {
1318 if (skge->advertising & ADVERTISED_1000baseT_Half)
1319 ctrl |= PHY_X_AN_HD;
1320 if (skge->advertising & ADVERTISED_1000baseT_Full)
1321 ctrl |= PHY_X_AN_FD;
1322
1323 ctrl |= fiber_pause_map[skge->flow_control];
1324
1325 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1326
1327 /* Restart Auto-negotiation */
1328 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1329 } else {
1330 /* Set DuplexMode in Config register */
1331 if (skge->duplex == DUPLEX_FULL)
1332 ctrl |= PHY_CT_DUP_MD;
1333 /*
1334 * Do NOT enable Auto-negotiation here. This would hold
1335 * the link down because no IDLEs are transmitted
1336 */
1337 }
1338
1339 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1340
1341 /* Poll PHY for status changes */
1342 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1343 }
1344
1345 static void xm_check_link(struct net_device *dev)
1346 {
1347 struct skge_port *skge = netdev_priv(dev);
1348 struct skge_hw *hw = skge->hw;
1349 int port = skge->port;
1350 u16 status;
1351
1352 /* read twice because of latch */
1353 (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
1354 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1355
1356 if ((status & PHY_ST_LSYNC) == 0) {
1357 xm_link_down(hw, port);
1358 return;
1359 }
1360
1361 if (skge->autoneg == AUTONEG_ENABLE) {
1362 u16 lpa, res;
1363
1364 if (!(status & PHY_ST_AN_OVER))
1365 return;
1366
1367 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1368 if (lpa & PHY_B_AN_RF) {
1369 printk(KERN_NOTICE PFX "%s: remote fault\n",
1370 dev->name);
1371 return;
1372 }
1373
1374 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1375
1376 /* Check Duplex mismatch */
1377 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1378 case PHY_X_RS_FD:
1379 skge->duplex = DUPLEX_FULL;
1380 break;
1381 case PHY_X_RS_HD:
1382 skge->duplex = DUPLEX_HALF;
1383 break;
1384 default:
1385 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1386 dev->name);
1387 return;
1388 }
1389
1390 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1391 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1392 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1393 (lpa & PHY_X_P_SYM_MD))
1394 skge->flow_status = FLOW_STAT_SYMMETRIC;
1395 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1396 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1397 /* Enable PAUSE receive, disable PAUSE transmit */
1398 skge->flow_status = FLOW_STAT_REM_SEND;
1399 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1400 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1401 /* Disable PAUSE receive, enable PAUSE transmit */
1402 skge->flow_status = FLOW_STAT_LOC_SEND;
1403 else
1404 skge->flow_status = FLOW_STAT_NONE;
1405
1406 skge->speed = SPEED_1000;
1407 }
1408
1409 if (!netif_carrier_ok(dev))
1410 genesis_link_up(skge);
1411 }
1412
1413 /* Poll to check for link coming up.
1414 * Since internal PHY is wired to a level triggered pin, can't
1415 * get an interrupt when carrier is detected.
1416 */
1417 static void xm_link_timer(unsigned long arg)
1418 {
1419 struct skge_port *skge = (struct skge_port *) arg;
1420 struct net_device *dev = skge->netdev;
1421 struct skge_hw *hw = skge->hw;
1422 int port = skge->port;
1423
1424 if (!netif_running(dev))
1425 return;
1426
1427 if (netif_carrier_ok(dev)) {
1428 xm_read16(hw, port, XM_ISRC);
1429 if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
1430 goto nochange;
1431 } else {
1432 if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1433 goto nochange;
1434 xm_read16(hw, port, XM_ISRC);
1435 if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1436 goto nochange;
1437 }
1438
1439 spin_lock(&hw->phy_lock);
1440 xm_check_link(dev);
1441 spin_unlock(&hw->phy_lock);
1442
1443 nochange:
1444 if (netif_running(dev))
1445 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1446 }
1447
1448 static void genesis_mac_init(struct skge_hw *hw, int port)
1449 {
1450 struct net_device *dev = hw->dev[port];
1451 struct skge_port *skge = netdev_priv(dev);
1452 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1453 int i;
1454 u32 r;
1455 const u8 zero[6] = { 0 };
1456
1457 for (i = 0; i < 10; i++) {
1458 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1459 MFF_SET_MAC_RST);
1460 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1461 goto reset_ok;
1462 udelay(1);
1463 }
1464
1465 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1466
1467 reset_ok:
1468 /* Unreset the XMAC. */
1469 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1470
1471 /*
1472 * Perform additional initialization for external PHYs,
1473 * namely for the 1000baseTX cards that use the XMAC's
1474 * GMII mode.
1475 */
1476 if (hw->phy_type != SK_PHY_XMAC) {
1477 /* Take external Phy out of reset */
1478 r = skge_read32(hw, B2_GP_IO);
1479 if (port == 0)
1480 r |= GP_DIR_0|GP_IO_0;
1481 else
1482 r |= GP_DIR_2|GP_IO_2;
1483
1484 skge_write32(hw, B2_GP_IO, r);
1485
1486 /* Enable GMII interface */
1487 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1488 }
1489
1490
1491 switch(hw->phy_type) {
1492 case SK_PHY_XMAC:
1493 xm_phy_init(skge);
1494 break;
1495 case SK_PHY_BCOM:
1496 bcom_phy_init(skge);
1497 bcom_check_link(hw, port);
1498 }
1499
1500 /* Set Station Address */
1501 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1502
1503 /* We don't use match addresses so clear */
1504 for (i = 1; i < 16; i++)
1505 xm_outaddr(hw, port, XM_EXM(i), zero);
1506
1507 /* Clear MIB counters */
1508 xm_write16(hw, port, XM_STAT_CMD,
1509 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1510 /* Clear two times according to Errata #3 */
1511 xm_write16(hw, port, XM_STAT_CMD,
1512 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1513
1514 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1515 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1516
1517 /* We don't need the FCS appended to the packet. */
1518 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1519 if (jumbo)
1520 r |= XM_RX_BIG_PK_OK;
1521
1522 if (skge->duplex == DUPLEX_HALF) {
1523 /*
1524 * If in manual half duplex mode the other side might be in
1525 * full duplex mode, so ignore if a carrier extension is not seen
1526 * on frames received
1527 */
1528 r |= XM_RX_DIS_CEXT;
1529 }
1530 xm_write16(hw, port, XM_RX_CMD, r);
1531
1532
1533 /* We want short frames padded to 60 bytes. */
1534 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1535
1536 /*
1537 * Bump up the transmit threshold. This helps hold off transmit
1538 * underruns when we're blasting traffic from both ports at once.
1539 */
1540 xm_write16(hw, port, XM_TX_THR, 512);
1541
1542 /*
1543 * Enable the reception of all error frames. This is is
1544 * a necessary evil due to the design of the XMAC. The
1545 * XMAC's receive FIFO is only 8K in size, however jumbo
1546 * frames can be up to 9000 bytes in length. When bad
1547 * frame filtering is enabled, the XMAC's RX FIFO operates
1548 * in 'store and forward' mode. For this to work, the
1549 * entire frame has to fit into the FIFO, but that means
1550 * that jumbo frames larger than 8192 bytes will be
1551 * truncated. Disabling all bad frame filtering causes
1552 * the RX FIFO to operate in streaming mode, in which
1553 * case the XMAC will start transferring frames out of the
1554 * RX FIFO as soon as the FIFO threshold is reached.
1555 */
1556 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1557
1558
1559 /*
1560 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1561 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1562 * and 'Octets Rx OK Hi Cnt Ov'.
1563 */
1564 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1565
1566 /*
1567 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1568 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1569 * and 'Octets Tx OK Hi Cnt Ov'.
1570 */
1571 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1572
1573 /* Configure MAC arbiter */
1574 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1575
1576 /* configure timeout values */
1577 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1578 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1579 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1580 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1581
1582 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1583 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1584 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1585 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1586
1587 /* Configure Rx MAC FIFO */
1588 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1589 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1590 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1591
1592 /* Configure Tx MAC FIFO */
1593 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1594 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1595 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1596
1597 if (jumbo) {
1598 /* Enable frame flushing if jumbo frames used */
1599 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1600 } else {
1601 /* enable timeout timers if normal frames */
1602 skge_write16(hw, B3_PA_CTRL,
1603 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1604 }
1605 }
1606
1607 static void genesis_stop(struct skge_port *skge)
1608 {
1609 struct skge_hw *hw = skge->hw;
1610 int port = skge->port;
1611 u32 reg;
1612
1613 genesis_reset(hw, port);
1614
1615 /* Clear Tx packet arbiter timeout IRQ */
1616 skge_write16(hw, B3_PA_CTRL,
1617 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1618
1619 /*
1620 * If the transfer sticks at the MAC the STOP command will not
1621 * terminate if we don't flush the XMAC's transmit FIFO !
1622 */
1623 xm_write32(hw, port, XM_MODE,
1624 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1625
1626
1627 /* Reset the MAC */
1628 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1629
1630 /* For external PHYs there must be special handling */
1631 if (hw->phy_type != SK_PHY_XMAC) {
1632 reg = skge_read32(hw, B2_GP_IO);
1633 if (port == 0) {
1634 reg |= GP_DIR_0;
1635 reg &= ~GP_IO_0;
1636 } else {
1637 reg |= GP_DIR_2;
1638 reg &= ~GP_IO_2;
1639 }
1640 skge_write32(hw, B2_GP_IO, reg);
1641 skge_read32(hw, B2_GP_IO);
1642 }
1643
1644 xm_write16(hw, port, XM_MMU_CMD,
1645 xm_read16(hw, port, XM_MMU_CMD)
1646 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1647
1648 xm_read16(hw, port, XM_MMU_CMD);
1649 }
1650
1651
1652 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1653 {
1654 struct skge_hw *hw = skge->hw;
1655 int port = skge->port;
1656 int i;
1657 unsigned long timeout = jiffies + HZ;
1658
1659 xm_write16(hw, port,
1660 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1661
1662 /* wait for update to complete */
1663 while (xm_read16(hw, port, XM_STAT_CMD)
1664 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1665 if (time_after(jiffies, timeout))
1666 break;
1667 udelay(10);
1668 }
1669
1670 /* special case for 64 bit octet counter */
1671 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1672 | xm_read32(hw, port, XM_TXO_OK_LO);
1673 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1674 | xm_read32(hw, port, XM_RXO_OK_LO);
1675
1676 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1677 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1678 }
1679
1680 static void genesis_mac_intr(struct skge_hw *hw, int port)
1681 {
1682 struct skge_port *skge = netdev_priv(hw->dev[port]);
1683 u16 status = xm_read16(hw, port, XM_ISRC);
1684
1685 if (netif_msg_intr(skge))
1686 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1687 skge->netdev->name, status);
1688
1689 if (hw->phy_type == SK_PHY_XMAC &&
1690 (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
1691 xm_link_down(hw, port);
1692
1693 if (status & XM_IS_TXF_UR) {
1694 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1695 ++skge->net_stats.tx_fifo_errors;
1696 }
1697 if (status & XM_IS_RXF_OV) {
1698 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1699 ++skge->net_stats.rx_fifo_errors;
1700 }
1701 }
1702
1703 static void genesis_link_up(struct skge_port *skge)
1704 {
1705 struct skge_hw *hw = skge->hw;
1706 int port = skge->port;
1707 u16 cmd, msk;
1708 u32 mode;
1709
1710 cmd = xm_read16(hw, port, XM_MMU_CMD);
1711
1712 /*
1713 * enabling pause frame reception is required for 1000BT
1714 * because the XMAC is not reset if the link is going down
1715 */
1716 if (skge->flow_status == FLOW_STAT_NONE ||
1717 skge->flow_status == FLOW_STAT_LOC_SEND)
1718 /* Disable Pause Frame Reception */
1719 cmd |= XM_MMU_IGN_PF;
1720 else
1721 /* Enable Pause Frame Reception */
1722 cmd &= ~XM_MMU_IGN_PF;
1723
1724 xm_write16(hw, port, XM_MMU_CMD, cmd);
1725
1726 mode = xm_read32(hw, port, XM_MODE);
1727 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1728 skge->flow_status == FLOW_STAT_LOC_SEND) {
1729 /*
1730 * Configure Pause Frame Generation
1731 * Use internal and external Pause Frame Generation.
1732 * Sending pause frames is edge triggered.
1733 * Send a Pause frame with the maximum pause time if
1734 * internal oder external FIFO full condition occurs.
1735 * Send a zero pause time frame to re-start transmission.
1736 */
1737 /* XM_PAUSE_DA = '010000C28001' (default) */
1738 /* XM_MAC_PTIME = 0xffff (maximum) */
1739 /* remember this value is defined in big endian (!) */
1740 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1741
1742 mode |= XM_PAUSE_MODE;
1743 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1744 } else {
1745 /*
1746 * disable pause frame generation is required for 1000BT
1747 * because the XMAC is not reset if the link is going down
1748 */
1749 /* Disable Pause Mode in Mode Register */
1750 mode &= ~XM_PAUSE_MODE;
1751
1752 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1753 }
1754
1755 xm_write32(hw, port, XM_MODE, mode);
1756 msk = XM_DEF_MSK;
1757 if (hw->phy_type != SK_PHY_XMAC)
1758 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1759
1760 xm_write16(hw, port, XM_IMSK, msk);
1761 xm_read16(hw, port, XM_ISRC);
1762
1763 /* get MMU Command Reg. */
1764 cmd = xm_read16(hw, port, XM_MMU_CMD);
1765 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1766 cmd |= XM_MMU_GMII_FD;
1767
1768 /*
1769 * Workaround BCOM Errata (#10523) for all BCom Phys
1770 * Enable Power Management after link up
1771 */
1772 if (hw->phy_type == SK_PHY_BCOM) {
1773 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1774 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1775 & ~PHY_B_AC_DIS_PM);
1776 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1777 }
1778
1779 /* enable Rx/Tx */
1780 xm_write16(hw, port, XM_MMU_CMD,
1781 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1782 skge_link_up(skge);
1783 }
1784
1785
1786 static inline void bcom_phy_intr(struct skge_port *skge)
1787 {
1788 struct skge_hw *hw = skge->hw;
1789 int port = skge->port;
1790 u16 isrc;
1791
1792 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1793 if (netif_msg_intr(skge))
1794 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1795 skge->netdev->name, isrc);
1796
1797 if (isrc & PHY_B_IS_PSE)
1798 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1799 hw->dev[port]->name);
1800
1801 /* Workaround BCom Errata:
1802 * enable and disable loopback mode if "NO HCD" occurs.
1803 */
1804 if (isrc & PHY_B_IS_NO_HDCL) {
1805 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1806 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1807 ctrl | PHY_CT_LOOP);
1808 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1809 ctrl & ~PHY_CT_LOOP);
1810 }
1811
1812 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1813 bcom_check_link(hw, port);
1814
1815 }
1816
1817 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1818 {
1819 int i;
1820
1821 gma_write16(hw, port, GM_SMI_DATA, val);
1822 gma_write16(hw, port, GM_SMI_CTRL,
1823 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1824 for (i = 0; i < PHY_RETRIES; i++) {
1825 udelay(1);
1826
1827 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1828 return 0;
1829 }
1830
1831 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1832 hw->dev[port]->name);
1833 return -EIO;
1834 }
1835
1836 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1837 {
1838 int i;
1839
1840 gma_write16(hw, port, GM_SMI_CTRL,
1841 GM_SMI_CT_PHY_AD(hw->phy_addr)
1842 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1843
1844 for (i = 0; i < PHY_RETRIES; i++) {
1845 udelay(1);
1846 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1847 goto ready;
1848 }
1849
1850 return -ETIMEDOUT;
1851 ready:
1852 *val = gma_read16(hw, port, GM_SMI_DATA);
1853 return 0;
1854 }
1855
1856 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1857 {
1858 u16 v = 0;
1859 if (__gm_phy_read(hw, port, reg, &v))
1860 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1861 hw->dev[port]->name);
1862 return v;
1863 }
1864
1865 /* Marvell Phy Initialization */
1866 static void yukon_init(struct skge_hw *hw, int port)
1867 {
1868 struct skge_port *skge = netdev_priv(hw->dev[port]);
1869 u16 ctrl, ct1000, adv;
1870
1871 if (skge->autoneg == AUTONEG_ENABLE) {
1872 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1873
1874 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1875 PHY_M_EC_MAC_S_MSK);
1876 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1877
1878 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1879
1880 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1881 }
1882
1883 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1884 if (skge->autoneg == AUTONEG_DISABLE)
1885 ctrl &= ~PHY_CT_ANE;
1886
1887 ctrl |= PHY_CT_RESET;
1888 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1889
1890 ctrl = 0;
1891 ct1000 = 0;
1892 adv = PHY_AN_CSMA;
1893
1894 if (skge->autoneg == AUTONEG_ENABLE) {
1895 if (hw->copper) {
1896 if (skge->advertising & ADVERTISED_1000baseT_Full)
1897 ct1000 |= PHY_M_1000C_AFD;
1898 if (skge->advertising & ADVERTISED_1000baseT_Half)
1899 ct1000 |= PHY_M_1000C_AHD;
1900 if (skge->advertising & ADVERTISED_100baseT_Full)
1901 adv |= PHY_M_AN_100_FD;
1902 if (skge->advertising & ADVERTISED_100baseT_Half)
1903 adv |= PHY_M_AN_100_HD;
1904 if (skge->advertising & ADVERTISED_10baseT_Full)
1905 adv |= PHY_M_AN_10_FD;
1906 if (skge->advertising & ADVERTISED_10baseT_Half)
1907 adv |= PHY_M_AN_10_HD;
1908
1909 /* Set Flow-control capabilities */
1910 adv |= phy_pause_map[skge->flow_control];
1911 } else {
1912 if (skge->advertising & ADVERTISED_1000baseT_Full)
1913 adv |= PHY_M_AN_1000X_AFD;
1914 if (skge->advertising & ADVERTISED_1000baseT_Half)
1915 adv |= PHY_M_AN_1000X_AHD;
1916
1917 adv |= fiber_pause_map[skge->flow_control];
1918 }
1919
1920 /* Restart Auto-negotiation */
1921 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1922 } else {
1923 /* forced speed/duplex settings */
1924 ct1000 = PHY_M_1000C_MSE;
1925
1926 if (skge->duplex == DUPLEX_FULL)
1927 ctrl |= PHY_CT_DUP_MD;
1928
1929 switch (skge->speed) {
1930 case SPEED_1000:
1931 ctrl |= PHY_CT_SP1000;
1932 break;
1933 case SPEED_100:
1934 ctrl |= PHY_CT_SP100;
1935 break;
1936 }
1937
1938 ctrl |= PHY_CT_RESET;
1939 }
1940
1941 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1942
1943 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1944 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1945
1946 /* Enable phy interrupt on autonegotiation complete (or link up) */
1947 if (skge->autoneg == AUTONEG_ENABLE)
1948 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1949 else
1950 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1951 }
1952
1953 static void yukon_reset(struct skge_hw *hw, int port)
1954 {
1955 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1956 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1957 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1958 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1959 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1960
1961 gma_write16(hw, port, GM_RX_CTRL,
1962 gma_read16(hw, port, GM_RX_CTRL)
1963 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1964 }
1965
1966 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1967 static int is_yukon_lite_a0(struct skge_hw *hw)
1968 {
1969 u32 reg;
1970 int ret;
1971
1972 if (hw->chip_id != CHIP_ID_YUKON)
1973 return 0;
1974
1975 reg = skge_read32(hw, B2_FAR);
1976 skge_write8(hw, B2_FAR + 3, 0xff);
1977 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1978 skge_write32(hw, B2_FAR, reg);
1979 return ret;
1980 }
1981
1982 static void yukon_mac_init(struct skge_hw *hw, int port)
1983 {
1984 struct skge_port *skge = netdev_priv(hw->dev[port]);
1985 int i;
1986 u32 reg;
1987 const u8 *addr = hw->dev[port]->dev_addr;
1988
1989 /* WA code for COMA mode -- set PHY reset */
1990 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1991 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1992 reg = skge_read32(hw, B2_GP_IO);
1993 reg |= GP_DIR_9 | GP_IO_9;
1994 skge_write32(hw, B2_GP_IO, reg);
1995 }
1996
1997 /* hard reset */
1998 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1999 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2000
2001 /* WA code for COMA mode -- clear PHY reset */
2002 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2003 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2004 reg = skge_read32(hw, B2_GP_IO);
2005 reg |= GP_DIR_9;
2006 reg &= ~GP_IO_9;
2007 skge_write32(hw, B2_GP_IO, reg);
2008 }
2009
2010 /* Set hardware config mode */
2011 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2012 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2013 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2014
2015 /* Clear GMC reset */
2016 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2017 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2018 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2019
2020 if (skge->autoneg == AUTONEG_DISABLE) {
2021 reg = GM_GPCR_AU_ALL_DIS;
2022 gma_write16(hw, port, GM_GP_CTRL,
2023 gma_read16(hw, port, GM_GP_CTRL) | reg);
2024
2025 switch (skge->speed) {
2026 case SPEED_1000:
2027 reg &= ~GM_GPCR_SPEED_100;
2028 reg |= GM_GPCR_SPEED_1000;
2029 break;
2030 case SPEED_100:
2031 reg &= ~GM_GPCR_SPEED_1000;
2032 reg |= GM_GPCR_SPEED_100;
2033 break;
2034 case SPEED_10:
2035 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2036 break;
2037 }
2038
2039 if (skge->duplex == DUPLEX_FULL)
2040 reg |= GM_GPCR_DUP_FULL;
2041 } else
2042 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2043
2044 switch (skge->flow_control) {
2045 case FLOW_MODE_NONE:
2046 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2047 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2048 break;
2049 case FLOW_MODE_LOC_SEND:
2050 /* disable Rx flow-control */
2051 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2052 break;
2053 case FLOW_MODE_SYMMETRIC:
2054 case FLOW_MODE_SYM_OR_REM:
2055 /* enable Tx & Rx flow-control */
2056 break;
2057 }
2058
2059 gma_write16(hw, port, GM_GP_CTRL, reg);
2060 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2061
2062 yukon_init(hw, port);
2063
2064 /* MIB clear */
2065 reg = gma_read16(hw, port, GM_PHY_ADDR);
2066 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2067
2068 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2069 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2070 gma_write16(hw, port, GM_PHY_ADDR, reg);
2071
2072 /* transmit control */
2073 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2074
2075 /* receive control reg: unicast + multicast + no FCS */
2076 gma_write16(hw, port, GM_RX_CTRL,
2077 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2078
2079 /* transmit flow control */
2080 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2081
2082 /* transmit parameter */
2083 gma_write16(hw, port, GM_TX_PARAM,
2084 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2085 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2086 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2087
2088 /* serial mode register */
2089 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2090 if (hw->dev[port]->mtu > 1500)
2091 reg |= GM_SMOD_JUMBO_ENA;
2092
2093 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2094
2095 /* physical address: used for pause frames */
2096 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2097 /* virtual address for data */
2098 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2099
2100 /* enable interrupt mask for counter overflows */
2101 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2102 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2103 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2104
2105 /* Initialize Mac Fifo */
2106
2107 /* Configure Rx MAC FIFO */
2108 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2109 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2110
2111 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2112 if (is_yukon_lite_a0(hw))
2113 reg &= ~GMF_RX_F_FL_ON;
2114
2115 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2116 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2117 /*
2118 * because Pause Packet Truncation in GMAC is not working
2119 * we have to increase the Flush Threshold to 64 bytes
2120 * in order to flush pause packets in Rx FIFO on Yukon-1
2121 */
2122 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2123
2124 /* Configure Tx MAC FIFO */
2125 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2126 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2127 }
2128
2129 /* Go into power down mode */
2130 static void yukon_suspend(struct skge_hw *hw, int port)
2131 {
2132 u16 ctrl;
2133
2134 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2135 ctrl |= PHY_M_PC_POL_R_DIS;
2136 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2137
2138 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2139 ctrl |= PHY_CT_RESET;
2140 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2141
2142 /* switch IEEE compatible power down mode on */
2143 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2144 ctrl |= PHY_CT_PDOWN;
2145 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2146 }
2147
2148 static void yukon_stop(struct skge_port *skge)
2149 {
2150 struct skge_hw *hw = skge->hw;
2151 int port = skge->port;
2152
2153 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2154 yukon_reset(hw, port);
2155
2156 gma_write16(hw, port, GM_GP_CTRL,
2157 gma_read16(hw, port, GM_GP_CTRL)
2158 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2159 gma_read16(hw, port, GM_GP_CTRL);
2160
2161 yukon_suspend(hw, port);
2162
2163 /* set GPHY Control reset */
2164 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2165 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2166 }
2167
2168 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2169 {
2170 struct skge_hw *hw = skge->hw;
2171 int port = skge->port;
2172 int i;
2173
2174 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2175 | gma_read32(hw, port, GM_TXO_OK_LO);
2176 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2177 | gma_read32(hw, port, GM_RXO_OK_LO);
2178
2179 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2180 data[i] = gma_read32(hw, port,
2181 skge_stats[i].gma_offset);
2182 }
2183
2184 static void yukon_mac_intr(struct skge_hw *hw, int port)
2185 {
2186 struct net_device *dev = hw->dev[port];
2187 struct skge_port *skge = netdev_priv(dev);
2188 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2189
2190 if (netif_msg_intr(skge))
2191 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2192 dev->name, status);
2193
2194 if (status & GM_IS_RX_FF_OR) {
2195 ++skge->net_stats.rx_fifo_errors;
2196 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2197 }
2198
2199 if (status & GM_IS_TX_FF_UR) {
2200 ++skge->net_stats.tx_fifo_errors;
2201 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2202 }
2203
2204 }
2205
2206 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2207 {
2208 switch (aux & PHY_M_PS_SPEED_MSK) {
2209 case PHY_M_PS_SPEED_1000:
2210 return SPEED_1000;
2211 case PHY_M_PS_SPEED_100:
2212 return SPEED_100;
2213 default:
2214 return SPEED_10;
2215 }
2216 }
2217
2218 static void yukon_link_up(struct skge_port *skge)
2219 {
2220 struct skge_hw *hw = skge->hw;
2221 int port = skge->port;
2222 u16 reg;
2223
2224 /* Enable Transmit FIFO Underrun */
2225 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2226
2227 reg = gma_read16(hw, port, GM_GP_CTRL);
2228 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2229 reg |= GM_GPCR_DUP_FULL;
2230
2231 /* enable Rx/Tx */
2232 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2233 gma_write16(hw, port, GM_GP_CTRL, reg);
2234
2235 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2236 skge_link_up(skge);
2237 }
2238
2239 static void yukon_link_down(struct skge_port *skge)
2240 {
2241 struct skge_hw *hw = skge->hw;
2242 int port = skge->port;
2243 u16 ctrl;
2244
2245 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2246 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2247 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2248
2249 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2250 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2251 ctrl |= PHY_M_AN_ASP;
2252 /* restore Asymmetric Pause bit */
2253 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2254 }
2255
2256 skge_link_down(skge);
2257
2258 yukon_init(hw, port);
2259 }
2260
2261 static void yukon_phy_intr(struct skge_port *skge)
2262 {
2263 struct skge_hw *hw = skge->hw;
2264 int port = skge->port;
2265 const char *reason = NULL;
2266 u16 istatus, phystat;
2267
2268 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2269 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2270
2271 if (netif_msg_intr(skge))
2272 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2273 skge->netdev->name, istatus, phystat);
2274
2275 if (istatus & PHY_M_IS_AN_COMPL) {
2276 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2277 & PHY_M_AN_RF) {
2278 reason = "remote fault";
2279 goto failed;
2280 }
2281
2282 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2283 reason = "master/slave fault";
2284 goto failed;
2285 }
2286
2287 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2288 reason = "speed/duplex";
2289 goto failed;
2290 }
2291
2292 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2293 ? DUPLEX_FULL : DUPLEX_HALF;
2294 skge->speed = yukon_speed(hw, phystat);
2295
2296 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2297 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2298 case PHY_M_PS_PAUSE_MSK:
2299 skge->flow_status = FLOW_STAT_SYMMETRIC;
2300 break;
2301 case PHY_M_PS_RX_P_EN:
2302 skge->flow_status = FLOW_STAT_REM_SEND;
2303 break;
2304 case PHY_M_PS_TX_P_EN:
2305 skge->flow_status = FLOW_STAT_LOC_SEND;
2306 break;
2307 default:
2308 skge->flow_status = FLOW_STAT_NONE;
2309 }
2310
2311 if (skge->flow_status == FLOW_STAT_NONE ||
2312 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2313 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2314 else
2315 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2316 yukon_link_up(skge);
2317 return;
2318 }
2319
2320 if (istatus & PHY_M_IS_LSP_CHANGE)
2321 skge->speed = yukon_speed(hw, phystat);
2322
2323 if (istatus & PHY_M_IS_DUP_CHANGE)
2324 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2325 if (istatus & PHY_M_IS_LST_CHANGE) {
2326 if (phystat & PHY_M_PS_LINK_UP)
2327 yukon_link_up(skge);
2328 else
2329 yukon_link_down(skge);
2330 }
2331 return;
2332 failed:
2333 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2334 skge->netdev->name, reason);
2335
2336 /* XXX restart autonegotiation? */
2337 }
2338
2339 static void skge_phy_reset(struct skge_port *skge)
2340 {
2341 struct skge_hw *hw = skge->hw;
2342 int port = skge->port;
2343 struct net_device *dev = hw->dev[port];
2344
2345 netif_stop_queue(skge->netdev);
2346 netif_carrier_off(skge->netdev);
2347
2348 spin_lock_bh(&hw->phy_lock);
2349 if (hw->chip_id == CHIP_ID_GENESIS) {
2350 genesis_reset(hw, port);
2351 genesis_mac_init(hw, port);
2352 } else {
2353 yukon_reset(hw, port);
2354 yukon_init(hw, port);
2355 }
2356 spin_unlock_bh(&hw->phy_lock);
2357
2358 dev->set_multicast_list(dev);
2359 }
2360
2361 /* Basic MII support */
2362 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2363 {
2364 struct mii_ioctl_data *data = if_mii(ifr);
2365 struct skge_port *skge = netdev_priv(dev);
2366 struct skge_hw *hw = skge->hw;
2367 int err = -EOPNOTSUPP;
2368
2369 if (!netif_running(dev))
2370 return -ENODEV; /* Phy still in reset */
2371
2372 switch(cmd) {
2373 case SIOCGMIIPHY:
2374 data->phy_id = hw->phy_addr;
2375
2376 /* fallthru */
2377 case SIOCGMIIREG: {
2378 u16 val = 0;
2379 spin_lock_bh(&hw->phy_lock);
2380 if (hw->chip_id == CHIP_ID_GENESIS)
2381 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2382 else
2383 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2384 spin_unlock_bh(&hw->phy_lock);
2385 data->val_out = val;
2386 break;
2387 }
2388
2389 case SIOCSMIIREG:
2390 if (!capable(CAP_NET_ADMIN))
2391 return -EPERM;
2392
2393 spin_lock_bh(&hw->phy_lock);
2394 if (hw->chip_id == CHIP_ID_GENESIS)
2395 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2396 data->val_in);
2397 else
2398 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2399 data->val_in);
2400 spin_unlock_bh(&hw->phy_lock);
2401 break;
2402 }
2403 return err;
2404 }
2405
2406 /* Assign Ram Buffer allocation to queue */
2407 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, u32 space)
2408 {
2409 u32 end;
2410
2411 /* convert from K bytes to qwords used for hw register */
2412 start *= 1024/8;
2413 space *= 1024/8;
2414 end = start + space - 1;
2415
2416 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2417 skge_write32(hw, RB_ADDR(q, RB_START), start);
2418 skge_write32(hw, RB_ADDR(q, RB_END), end);
2419 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2420 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2421
2422 if (q == Q_R1 || q == Q_R2) {
2423 u32 tp = space - space/4;
2424
2425 /* Set thresholds on receive queue's */
2426 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
2427 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
2428 } else if (hw->chip_id != CHIP_ID_GENESIS)
2429 /* Genesis Tx Fifo is too small for normal store/forward */
2430 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2431
2432 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2433 }
2434
2435 /* Setup Bus Memory Interface */
2436 static void skge_qset(struct skge_port *skge, u16 q,
2437 const struct skge_element *e)
2438 {
2439 struct skge_hw *hw = skge->hw;
2440 u32 watermark = 0x600;
2441 u64 base = skge->dma + (e->desc - skge->mem);
2442
2443 /* optimization to reduce window on 32bit/33mhz */
2444 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2445 watermark /= 2;
2446
2447 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2448 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2449 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2450 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2451 }
2452
2453 static int skge_up(struct net_device *dev)
2454 {
2455 struct skge_port *skge = netdev_priv(dev);
2456 struct skge_hw *hw = skge->hw;
2457 int port = skge->port;
2458 u32 ramaddr, ramsize, rxspace;
2459 size_t rx_size, tx_size;
2460 int err;
2461
2462 if (!is_valid_ether_addr(dev->dev_addr))
2463 return -EINVAL;
2464
2465 if (netif_msg_ifup(skge))
2466 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2467
2468 if (dev->mtu > RX_BUF_SIZE)
2469 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2470 else
2471 skge->rx_buf_size = RX_BUF_SIZE;
2472
2473
2474 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2475 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2476 skge->mem_size = tx_size + rx_size;
2477 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2478 if (!skge->mem)
2479 return -ENOMEM;
2480
2481 BUG_ON(skge->dma & 7);
2482
2483 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2484 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2485 err = -EINVAL;
2486 goto free_pci_mem;
2487 }
2488
2489 memset(skge->mem, 0, skge->mem_size);
2490
2491 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2492 if (err)
2493 goto free_pci_mem;
2494
2495 err = skge_rx_fill(dev);
2496 if (err)
2497 goto free_rx_ring;
2498
2499 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2500 skge->dma + rx_size);
2501 if (err)
2502 goto free_rx_ring;
2503
2504 /* Initialize MAC */
2505 spin_lock_bh(&hw->phy_lock);
2506 if (hw->chip_id == CHIP_ID_GENESIS)
2507 genesis_mac_init(hw, port);
2508 else
2509 yukon_mac_init(hw, port);
2510 spin_unlock_bh(&hw->phy_lock);
2511
2512 /* Configure RAMbuffers */
2513 ramsize = (hw->ram_size - hw->ram_offset) / hw->ports;
2514 ramaddr = hw->ram_offset + port * ramsize;
2515 rxspace = 8 + (2*(ramsize - 16))/3;
2516
2517 skge_ramset(hw, rxqaddr[port], ramaddr, rxspace);
2518 skge_ramset(hw, txqaddr[port], ramaddr + rxspace, ramsize - rxspace);
2519
2520 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2521 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2522 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2523
2524 /* Start receiver BMU */
2525 wmb();
2526 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2527 skge_led(skge, LED_MODE_ON);
2528
2529 spin_lock_irq(&hw->hw_lock);
2530 hw->intr_mask |= portmask[port];
2531 skge_write32(hw, B0_IMSK, hw->intr_mask);
2532 spin_unlock_irq(&hw->hw_lock);
2533
2534 napi_enable(&skge->napi);
2535 return 0;
2536
2537 free_rx_ring:
2538 skge_rx_clean(skge);
2539 kfree(skge->rx_ring.start);
2540 free_pci_mem:
2541 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2542 skge->mem = NULL;
2543
2544 return err;
2545 }
2546
2547 /* stop receiver */
2548 static void skge_rx_stop(struct skge_hw *hw, int port)
2549 {
2550 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2551 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2552 RB_RST_SET|RB_DIS_OP_MD);
2553 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2554 }
2555
2556 static int skge_down(struct net_device *dev)
2557 {
2558 struct skge_port *skge = netdev_priv(dev);
2559 struct skge_hw *hw = skge->hw;
2560 int port = skge->port;
2561
2562 if (skge->mem == NULL)
2563 return 0;
2564
2565 if (netif_msg_ifdown(skge))
2566 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2567
2568 netif_stop_queue(dev);
2569
2570 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2571 del_timer_sync(&skge->link_timer);
2572
2573 napi_disable(&skge->napi);
2574 netif_carrier_off(dev);
2575
2576 spin_lock_irq(&hw->hw_lock);
2577 hw->intr_mask &= ~portmask[port];
2578 skge_write32(hw, B0_IMSK, hw->intr_mask);
2579 spin_unlock_irq(&hw->hw_lock);
2580
2581 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2582 if (hw->chip_id == CHIP_ID_GENESIS)
2583 genesis_stop(skge);
2584 else
2585 yukon_stop(skge);
2586
2587 /* Stop transmitter */
2588 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2589 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2590 RB_RST_SET|RB_DIS_OP_MD);
2591
2592
2593 /* Disable Force Sync bit and Enable Alloc bit */
2594 skge_write8(hw, SK_REG(port, TXA_CTRL),
2595 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2596
2597 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2598 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2599 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2600
2601 /* Reset PCI FIFO */
2602 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2603 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2604
2605 /* Reset the RAM Buffer async Tx queue */
2606 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2607
2608 skge_rx_stop(hw, port);
2609
2610 if (hw->chip_id == CHIP_ID_GENESIS) {
2611 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2612 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2613 } else {
2614 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2615 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2616 }
2617
2618 skge_led(skge, LED_MODE_OFF);
2619
2620 netif_tx_lock_bh(dev);
2621 skge_tx_clean(dev);
2622 netif_tx_unlock_bh(dev);
2623
2624 skge_rx_clean(skge);
2625
2626 kfree(skge->rx_ring.start);
2627 kfree(skge->tx_ring.start);
2628 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2629 skge->mem = NULL;
2630 return 0;
2631 }
2632
2633 static inline int skge_avail(const struct skge_ring *ring)
2634 {
2635 smp_mb();
2636 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2637 + (ring->to_clean - ring->to_use) - 1;
2638 }
2639
2640 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2641 {
2642 struct skge_port *skge = netdev_priv(dev);
2643 struct skge_hw *hw = skge->hw;
2644 struct skge_element *e;
2645 struct skge_tx_desc *td;
2646 int i;
2647 u32 control, len;
2648 u64 map;
2649
2650 if (skb_padto(skb, ETH_ZLEN))
2651 return NETDEV_TX_OK;
2652
2653 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2654 return NETDEV_TX_BUSY;
2655
2656 e = skge->tx_ring.to_use;
2657 td = e->desc;
2658 BUG_ON(td->control & BMU_OWN);
2659 e->skb = skb;
2660 len = skb_headlen(skb);
2661 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2662 pci_unmap_addr_set(e, mapaddr, map);
2663 pci_unmap_len_set(e, maplen, len);
2664
2665 td->dma_lo = map;
2666 td->dma_hi = map >> 32;
2667
2668 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2669 const int offset = skb_transport_offset(skb);
2670
2671 /* This seems backwards, but it is what the sk98lin
2672 * does. Looks like hardware is wrong?
2673 */
2674 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2675 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2676 control = BMU_TCP_CHECK;
2677 else
2678 control = BMU_UDP_CHECK;
2679
2680 td->csum_offs = 0;
2681 td->csum_start = offset;
2682 td->csum_write = offset + skb->csum_offset;
2683 } else
2684 control = BMU_CHECK;
2685
2686 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2687 control |= BMU_EOF| BMU_IRQ_EOF;
2688 else {
2689 struct skge_tx_desc *tf = td;
2690
2691 control |= BMU_STFWD;
2692 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2693 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2694
2695 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2696 frag->size, PCI_DMA_TODEVICE);
2697
2698 e = e->next;
2699 e->skb = skb;
2700 tf = e->desc;
2701 BUG_ON(tf->control & BMU_OWN);
2702
2703 tf->dma_lo = map;
2704 tf->dma_hi = (u64) map >> 32;
2705 pci_unmap_addr_set(e, mapaddr, map);
2706 pci_unmap_len_set(e, maplen, frag->size);
2707
2708 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2709 }
2710 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2711 }
2712 /* Make sure all the descriptors written */
2713 wmb();
2714 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2715 wmb();
2716
2717 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2718
2719 if (unlikely(netif_msg_tx_queued(skge)))
2720 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2721 dev->name, e - skge->tx_ring.start, skb->len);
2722
2723 skge->tx_ring.to_use = e->next;
2724 smp_wmb();
2725
2726 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2727 pr_debug("%s: transmit queue full\n", dev->name);
2728 netif_stop_queue(dev);
2729 }
2730
2731 dev->trans_start = jiffies;
2732
2733 return NETDEV_TX_OK;
2734 }
2735
2736
2737 /* Free resources associated with this reing element */
2738 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2739 u32 control)
2740 {
2741 struct pci_dev *pdev = skge->hw->pdev;
2742
2743 /* skb header vs. fragment */
2744 if (control & BMU_STF)
2745 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2746 pci_unmap_len(e, maplen),
2747 PCI_DMA_TODEVICE);
2748 else
2749 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2750 pci_unmap_len(e, maplen),
2751 PCI_DMA_TODEVICE);
2752
2753 if (control & BMU_EOF) {
2754 if (unlikely(netif_msg_tx_done(skge)))
2755 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2756 skge->netdev->name, e - skge->tx_ring.start);
2757
2758 dev_kfree_skb(e->skb);
2759 }
2760 }
2761
2762 /* Free all buffers in transmit ring */
2763 static void skge_tx_clean(struct net_device *dev)
2764 {
2765 struct skge_port *skge = netdev_priv(dev);
2766 struct skge_element *e;
2767
2768 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2769 struct skge_tx_desc *td = e->desc;
2770 skge_tx_free(skge, e, td->control);
2771 td->control = 0;
2772 }
2773
2774 skge->tx_ring.to_clean = e;
2775 netif_wake_queue(dev);
2776 }
2777
2778 static void skge_tx_timeout(struct net_device *dev)
2779 {
2780 struct skge_port *skge = netdev_priv(dev);
2781
2782 if (netif_msg_timer(skge))
2783 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2784
2785 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2786 skge_tx_clean(dev);
2787 }
2788
2789 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2790 {
2791 struct skge_port *skge = netdev_priv(dev);
2792 struct skge_hw *hw = skge->hw;
2793 int port = skge->port;
2794 int err;
2795 u16 ctl, reg;
2796
2797 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2798 return -EINVAL;
2799
2800 if (!netif_running(dev)) {
2801 dev->mtu = new_mtu;
2802 return 0;
2803 }
2804
2805 skge_write32(hw, B0_IMSK, 0);
2806 dev->trans_start = jiffies; /* prevent tx timeout */
2807 netif_stop_queue(dev);
2808 napi_disable(&skge->napi);
2809
2810 ctl = gma_read16(hw, port, GM_GP_CTRL);
2811 gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
2812
2813 skge_rx_clean(skge);
2814 skge_rx_stop(hw, port);
2815
2816 dev->mtu = new_mtu;
2817
2818 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2819 if (new_mtu > 1500)
2820 reg |= GM_SMOD_JUMBO_ENA;
2821 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2822
2823 skge_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
2824
2825 err = skge_rx_fill(dev);
2826 wmb();
2827 if (!err)
2828 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2829 skge_write32(hw, B0_IMSK, hw->intr_mask);
2830
2831 if (err)
2832 dev_close(dev);
2833 else {
2834 gma_write16(hw, port, GM_GP_CTRL, ctl);
2835
2836 napi_enable(&skge->napi);
2837 netif_wake_queue(dev);
2838 }
2839
2840 return err;
2841 }
2842
2843 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2844
2845 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2846 {
2847 u32 crc, bit;
2848
2849 crc = ether_crc_le(ETH_ALEN, addr);
2850 bit = ~crc & 0x3f;
2851 filter[bit/8] |= 1 << (bit%8);
2852 }
2853
2854 static void genesis_set_multicast(struct net_device *dev)
2855 {
2856 struct skge_port *skge = netdev_priv(dev);
2857 struct skge_hw *hw = skge->hw;
2858 int port = skge->port;
2859 int i, count = dev->mc_count;
2860 struct dev_mc_list *list = dev->mc_list;
2861 u32 mode;
2862 u8 filter[8];
2863
2864 mode = xm_read32(hw, port, XM_MODE);
2865 mode |= XM_MD_ENA_HASH;
2866 if (dev->flags & IFF_PROMISC)
2867 mode |= XM_MD_ENA_PROM;
2868 else
2869 mode &= ~XM_MD_ENA_PROM;
2870
2871 if (dev->flags & IFF_ALLMULTI)
2872 memset(filter, 0xff, sizeof(filter));
2873 else {
2874 memset(filter, 0, sizeof(filter));
2875
2876 if (skge->flow_status == FLOW_STAT_REM_SEND
2877 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2878 genesis_add_filter(filter, pause_mc_addr);
2879
2880 for (i = 0; list && i < count; i++, list = list->next)
2881 genesis_add_filter(filter, list->dmi_addr);
2882 }
2883
2884 xm_write32(hw, port, XM_MODE, mode);
2885 xm_outhash(hw, port, XM_HSM, filter);
2886 }
2887
2888 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2889 {
2890 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2891 filter[bit/8] |= 1 << (bit%8);
2892 }
2893
2894 static void yukon_set_multicast(struct net_device *dev)
2895 {
2896 struct skge_port *skge = netdev_priv(dev);
2897 struct skge_hw *hw = skge->hw;
2898 int port = skge->port;
2899 struct dev_mc_list *list = dev->mc_list;
2900 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
2901 || skge->flow_status == FLOW_STAT_SYMMETRIC);
2902 u16 reg;
2903 u8 filter[8];
2904
2905 memset(filter, 0, sizeof(filter));
2906
2907 reg = gma_read16(hw, port, GM_RX_CTRL);
2908 reg |= GM_RXCR_UCF_ENA;
2909
2910 if (dev->flags & IFF_PROMISC) /* promiscuous */
2911 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2912 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2913 memset(filter, 0xff, sizeof(filter));
2914 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
2915 reg &= ~GM_RXCR_MCF_ENA;
2916 else {
2917 int i;
2918 reg |= GM_RXCR_MCF_ENA;
2919
2920 if (rx_pause)
2921 yukon_add_filter(filter, pause_mc_addr);
2922
2923 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
2924 yukon_add_filter(filter, list->dmi_addr);
2925 }
2926
2927
2928 gma_write16(hw, port, GM_MC_ADDR_H1,
2929 (u16)filter[0] | ((u16)filter[1] << 8));
2930 gma_write16(hw, port, GM_MC_ADDR_H2,
2931 (u16)filter[2] | ((u16)filter[3] << 8));
2932 gma_write16(hw, port, GM_MC_ADDR_H3,
2933 (u16)filter[4] | ((u16)filter[5] << 8));
2934 gma_write16(hw, port, GM_MC_ADDR_H4,
2935 (u16)filter[6] | ((u16)filter[7] << 8));
2936
2937 gma_write16(hw, port, GM_RX_CTRL, reg);
2938 }
2939
2940 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2941 {
2942 if (hw->chip_id == CHIP_ID_GENESIS)
2943 return status >> XMR_FS_LEN_SHIFT;
2944 else
2945 return status >> GMR_FS_LEN_SHIFT;
2946 }
2947
2948 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2949 {
2950 if (hw->chip_id == CHIP_ID_GENESIS)
2951 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2952 else
2953 return (status & GMR_FS_ANY_ERR) ||
2954 (status & GMR_FS_RX_OK) == 0;
2955 }
2956
2957
2958 /* Get receive buffer from descriptor.
2959 * Handles copy of small buffers and reallocation failures
2960 */
2961 static struct sk_buff *skge_rx_get(struct net_device *dev,
2962 struct skge_element *e,
2963 u32 control, u32 status, u16 csum)
2964 {
2965 struct skge_port *skge = netdev_priv(dev);
2966 struct sk_buff *skb;
2967 u16 len = control & BMU_BBC;
2968
2969 if (unlikely(netif_msg_rx_status(skge)))
2970 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2971 dev->name, e - skge->rx_ring.start,
2972 status, len);
2973
2974 if (len > skge->rx_buf_size)
2975 goto error;
2976
2977 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2978 goto error;
2979
2980 if (bad_phy_status(skge->hw, status))
2981 goto error;
2982
2983 if (phy_length(skge->hw, status) != len)
2984 goto error;
2985
2986 if (len < RX_COPY_THRESHOLD) {
2987 skb = netdev_alloc_skb(dev, len + 2);
2988 if (!skb)
2989 goto resubmit;
2990
2991 skb_reserve(skb, 2);
2992 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2993 pci_unmap_addr(e, mapaddr),
2994 len, PCI_DMA_FROMDEVICE);
2995 skb_copy_from_linear_data(e->skb, skb->data, len);
2996 pci_dma_sync_single_for_device(skge->hw->pdev,
2997 pci_unmap_addr(e, mapaddr),
2998 len, PCI_DMA_FROMDEVICE);
2999 skge_rx_reuse(e, skge->rx_buf_size);
3000 } else {
3001 struct sk_buff *nskb;
3002 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
3003 if (!nskb)
3004 goto resubmit;
3005
3006 skb_reserve(nskb, NET_IP_ALIGN);
3007 pci_unmap_single(skge->hw->pdev,
3008 pci_unmap_addr(e, mapaddr),
3009 pci_unmap_len(e, maplen),
3010 PCI_DMA_FROMDEVICE);
3011 skb = e->skb;
3012 prefetch(skb->data);
3013 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3014 }
3015
3016 skb_put(skb, len);
3017 if (skge->rx_csum) {
3018 skb->csum = csum;
3019 skb->ip_summed = CHECKSUM_COMPLETE;
3020 }
3021
3022 skb->protocol = eth_type_trans(skb, dev);
3023
3024 return skb;
3025 error:
3026
3027 if (netif_msg_rx_err(skge))
3028 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
3029 dev->name, e - skge->rx_ring.start,
3030 control, status);
3031
3032 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3033 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3034 skge->net_stats.rx_length_errors++;
3035 if (status & XMR_FS_FRA_ERR)
3036 skge->net_stats.rx_frame_errors++;
3037 if (status & XMR_FS_FCS_ERR)
3038 skge->net_stats.rx_crc_errors++;
3039 } else {
3040 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3041 skge->net_stats.rx_length_errors++;
3042 if (status & GMR_FS_FRAGMENT)
3043 skge->net_stats.rx_frame_errors++;
3044 if (status & GMR_FS_CRC_ERR)
3045 skge->net_stats.rx_crc_errors++;
3046 }
3047
3048 resubmit:
3049 skge_rx_reuse(e, skge->rx_buf_size);
3050 return NULL;
3051 }
3052
3053 /* Free all buffers in Tx ring which are no longer owned by device */
3054 static void skge_tx_done(struct net_device *dev)
3055 {
3056 struct skge_port *skge = netdev_priv(dev);
3057 struct skge_ring *ring = &skge->tx_ring;
3058 struct skge_element *e;
3059
3060 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3061
3062 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3063 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3064
3065 if (control & BMU_OWN)
3066 break;
3067
3068 skge_tx_free(skge, e, control);
3069 }
3070 skge->tx_ring.to_clean = e;
3071
3072 /* Can run lockless until we need to synchronize to restart queue. */
3073 smp_mb();
3074
3075 if (unlikely(netif_queue_stopped(dev) &&
3076 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3077 netif_tx_lock(dev);
3078 if (unlikely(netif_queue_stopped(dev) &&
3079 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3080 netif_wake_queue(dev);
3081
3082 }
3083 netif_tx_unlock(dev);
3084 }
3085 }
3086
3087 static int skge_poll(struct napi_struct *napi, int to_do)
3088 {
3089 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3090 struct net_device *dev = skge->netdev;
3091 struct skge_hw *hw = skge->hw;
3092 struct skge_ring *ring = &skge->rx_ring;
3093 struct skge_element *e;
3094 int work_done = 0;
3095
3096 skge_tx_done(dev);
3097
3098 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3099
3100 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3101 struct skge_rx_desc *rd = e->desc;
3102 struct sk_buff *skb;
3103 u32 control;
3104
3105 rmb();
3106 control = rd->control;
3107 if (control & BMU_OWN)
3108 break;
3109
3110 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3111 if (likely(skb)) {
3112 dev->last_rx = jiffies;
3113 netif_receive_skb(skb);
3114
3115 ++work_done;
3116 }
3117 }
3118 ring->to_clean = e;
3119
3120 /* restart receiver */
3121 wmb();
3122 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3123
3124 if (work_done < to_do) {
3125 spin_lock_irq(&hw->hw_lock);
3126 __netif_rx_complete(dev, napi);
3127 hw->intr_mask |= napimask[skge->port];
3128 skge_write32(hw, B0_IMSK, hw->intr_mask);
3129 skge_read32(hw, B0_IMSK);
3130 spin_unlock_irq(&hw->hw_lock);
3131 }
3132
3133 return work_done;
3134 }
3135
3136 /* Parity errors seem to happen when Genesis is connected to a switch
3137 * with no other ports present. Heartbeat error??
3138 */
3139 static void skge_mac_parity(struct skge_hw *hw, int port)
3140 {
3141 struct net_device *dev = hw->dev[port];
3142
3143 if (dev) {
3144 struct skge_port *skge = netdev_priv(dev);
3145 ++skge->net_stats.tx_heartbeat_errors;
3146 }
3147
3148 if (hw->chip_id == CHIP_ID_GENESIS)
3149 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3150 MFF_CLR_PERR);
3151 else
3152 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3153 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3154 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3155 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3156 }
3157
3158 static void skge_mac_intr(struct skge_hw *hw, int port)
3159 {
3160 if (hw->chip_id == CHIP_ID_GENESIS)
3161 genesis_mac_intr(hw, port);
3162 else
3163 yukon_mac_intr(hw, port);
3164 }
3165
3166 /* Handle device specific framing and timeout interrupts */
3167 static void skge_error_irq(struct skge_hw *hw)
3168 {
3169 struct pci_dev *pdev = hw->pdev;
3170 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3171
3172 if (hw->chip_id == CHIP_ID_GENESIS) {
3173 /* clear xmac errors */
3174 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3175 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3176 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3177 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3178 } else {
3179 /* Timestamp (unused) overflow */
3180 if (hwstatus & IS_IRQ_TIST_OV)
3181 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3182 }
3183
3184 if (hwstatus & IS_RAM_RD_PAR) {
3185 dev_err(&pdev->dev, "Ram read data parity error\n");
3186 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3187 }
3188
3189 if (hwstatus & IS_RAM_WR_PAR) {
3190 dev_err(&pdev->dev, "Ram write data parity error\n");
3191 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3192 }
3193
3194 if (hwstatus & IS_M1_PAR_ERR)
3195 skge_mac_parity(hw, 0);
3196
3197 if (hwstatus & IS_M2_PAR_ERR)
3198 skge_mac_parity(hw, 1);
3199
3200 if (hwstatus & IS_R1_PAR_ERR) {
3201 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3202 hw->dev[0]->name);
3203 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3204 }
3205
3206 if (hwstatus & IS_R2_PAR_ERR) {
3207 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3208 hw->dev[1]->name);
3209 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3210 }
3211
3212 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3213 u16 pci_status, pci_cmd;
3214
3215 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3216 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3217
3218 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3219 pci_cmd, pci_status);
3220
3221 /* Write the error bits back to clear them. */
3222 pci_status &= PCI_STATUS_ERROR_BITS;
3223 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3224 pci_write_config_word(pdev, PCI_COMMAND,
3225 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3226 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3227 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3228
3229 /* if error still set then just ignore it */
3230 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3231 if (hwstatus & IS_IRQ_STAT) {
3232 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3233 hw->intr_mask &= ~IS_HW_ERR;
3234 }
3235 }
3236 }
3237
3238 /*
3239 * Interrupt from PHY are handled in tasklet (softirq)
3240 * because accessing phy registers requires spin wait which might
3241 * cause excess interrupt latency.
3242 */
3243 static void skge_extirq(unsigned long arg)
3244 {
3245 struct skge_hw *hw = (struct skge_hw *) arg;
3246 int port;
3247
3248 for (port = 0; port < hw->ports; port++) {
3249 struct net_device *dev = hw->dev[port];
3250
3251 if (netif_running(dev)) {
3252 struct skge_port *skge = netdev_priv(dev);
3253
3254 spin_lock(&hw->phy_lock);
3255 if (hw->chip_id != CHIP_ID_GENESIS)
3256 yukon_phy_intr(skge);
3257 else if (hw->phy_type == SK_PHY_BCOM)
3258 bcom_phy_intr(skge);
3259 spin_unlock(&hw->phy_lock);
3260 }
3261 }
3262
3263 spin_lock_irq(&hw->hw_lock);
3264 hw->intr_mask |= IS_EXT_REG;
3265 skge_write32(hw, B0_IMSK, hw->intr_mask);
3266 skge_read32(hw, B0_IMSK);
3267 spin_unlock_irq(&hw->hw_lock);
3268 }
3269
3270 static irqreturn_t skge_intr(int irq, void *dev_id)
3271 {
3272 struct skge_hw *hw = dev_id;
3273 u32 status;
3274 int handled = 0;
3275
3276 spin_lock(&hw->hw_lock);
3277 /* Reading this register masks IRQ */
3278 status = skge_read32(hw, B0_SP_ISRC);
3279 if (status == 0 || status == ~0)
3280 goto out;
3281
3282 handled = 1;
3283 status &= hw->intr_mask;
3284 if (status & IS_EXT_REG) {
3285 hw->intr_mask &= ~IS_EXT_REG;
3286 tasklet_schedule(&hw->phy_task);
3287 }
3288
3289 if (status & (IS_XA1_F|IS_R1_F)) {
3290 struct skge_port *skge = netdev_priv(hw->dev[0]);
3291 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3292 netif_rx_schedule(hw->dev[0], &skge->napi);
3293 }
3294
3295 if (status & IS_PA_TO_TX1)
3296 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3297
3298 if (status & IS_PA_TO_RX1) {
3299 struct skge_port *skge = netdev_priv(hw->dev[0]);
3300
3301 ++skge->net_stats.rx_over_errors;
3302 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3303 }
3304
3305
3306 if (status & IS_MAC1)
3307 skge_mac_intr(hw, 0);
3308
3309 if (hw->dev[1]) {
3310 struct skge_port *skge = netdev_priv(hw->dev[1]);
3311
3312 if (status & (IS_XA2_F|IS_R2_F)) {
3313 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3314 netif_rx_schedule(hw->dev[1], &skge->napi);
3315 }
3316
3317 if (status & IS_PA_TO_RX2) {
3318 ++skge->net_stats.rx_over_errors;
3319 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3320 }
3321
3322 if (status & IS_PA_TO_TX2)
3323 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3324
3325 if (status & IS_MAC2)
3326 skge_mac_intr(hw, 1);
3327 }
3328
3329 if (status & IS_HW_ERR)
3330 skge_error_irq(hw);
3331
3332 skge_write32(hw, B0_IMSK, hw->intr_mask);
3333 skge_read32(hw, B0_IMSK);
3334 out:
3335 spin_unlock(&hw->hw_lock);
3336
3337 return IRQ_RETVAL(handled);
3338 }
3339
3340 #ifdef CONFIG_NET_POLL_CONTROLLER
3341 static void skge_netpoll(struct net_device *dev)
3342 {
3343 struct skge_port *skge = netdev_priv(dev);
3344
3345 disable_irq(dev->irq);
3346 skge_intr(dev->irq, skge->hw);
3347 enable_irq(dev->irq);
3348 }
3349 #endif
3350
3351 static int skge_set_mac_address(struct net_device *dev, void *p)
3352 {
3353 struct skge_port *skge = netdev_priv(dev);
3354 struct skge_hw *hw = skge->hw;
3355 unsigned port = skge->port;
3356 const struct sockaddr *addr = p;
3357 u16 ctrl;
3358
3359 if (!is_valid_ether_addr(addr->sa_data))
3360 return -EADDRNOTAVAIL;
3361
3362 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3363
3364 if (!netif_running(dev)) {
3365 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3366 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3367 } else {
3368 /* disable Rx */
3369 spin_lock_bh(&hw->phy_lock);
3370 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3371 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3372
3373 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3374 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3375
3376 if (hw->chip_id == CHIP_ID_GENESIS)
3377 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3378 else {
3379 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3380 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3381 }
3382
3383 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3384 spin_unlock_bh(&hw->phy_lock);
3385 }
3386
3387 return 0;
3388 }
3389
3390 static const struct {
3391 u8 id;
3392 const char *name;
3393 } skge_chips[] = {
3394 { CHIP_ID_GENESIS, "Genesis" },
3395 { CHIP_ID_YUKON, "Yukon" },
3396 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3397 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3398 };
3399
3400 static const char *skge_board_name(const struct skge_hw *hw)
3401 {
3402 int i;
3403 static char buf[16];
3404
3405 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3406 if (skge_chips[i].id == hw->chip_id)
3407 return skge_chips[i].name;
3408
3409 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3410 return buf;
3411 }
3412
3413
3414 /*
3415 * Setup the board data structure, but don't bring up
3416 * the port(s)
3417 */
3418 static int skge_reset(struct skge_hw *hw)
3419 {
3420 u32 reg;
3421 u16 ctst, pci_status;
3422 u8 t8, mac_cfg, pmd_type;
3423 int i;
3424
3425 ctst = skge_read16(hw, B0_CTST);
3426
3427 /* do a SW reset */
3428 skge_write8(hw, B0_CTST, CS_RST_SET);
3429 skge_write8(hw, B0_CTST, CS_RST_CLR);
3430
3431 /* clear PCI errors, if any */
3432 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3433 skge_write8(hw, B2_TST_CTRL2, 0);
3434
3435 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3436 pci_write_config_word(hw->pdev, PCI_STATUS,
3437 pci_status | PCI_STATUS_ERROR_BITS);
3438 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3439 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3440
3441 /* restore CLK_RUN bits (for Yukon-Lite) */
3442 skge_write16(hw, B0_CTST,
3443 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3444
3445 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3446 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3447 pmd_type = skge_read8(hw, B2_PMD_TYP);
3448 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3449
3450 switch (hw->chip_id) {
3451 case CHIP_ID_GENESIS:
3452 switch (hw->phy_type) {
3453 case SK_PHY_XMAC:
3454 hw->phy_addr = PHY_ADDR_XMAC;
3455 break;
3456 case SK_PHY_BCOM:
3457 hw->phy_addr = PHY_ADDR_BCOM;
3458 break;
3459 default:
3460 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3461 hw->phy_type);
3462 return -EOPNOTSUPP;
3463 }
3464 break;
3465
3466 case CHIP_ID_YUKON:
3467 case CHIP_ID_YUKON_LITE:
3468 case CHIP_ID_YUKON_LP:
3469 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3470 hw->copper = 1;
3471
3472 hw->phy_addr = PHY_ADDR_MARV;
3473 break;
3474
3475 default:
3476 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3477 hw->chip_id);
3478 return -EOPNOTSUPP;
3479 }
3480
3481 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3482 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3483 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3484
3485 /* read the adapters RAM size */
3486 t8 = skge_read8(hw, B2_E_0);
3487 if (hw->chip_id == CHIP_ID_GENESIS) {
3488 if (t8 == 3) {
3489 /* special case: 4 x 64k x 36, offset = 0x80000 */
3490 hw->ram_size = 1024;
3491 hw->ram_offset = 512;
3492 } else
3493 hw->ram_size = t8 * 512;
3494 } else /* Yukon */
3495 hw->ram_size = t8 ? t8 * 4 : 128;
3496
3497 hw->intr_mask = IS_HW_ERR;
3498
3499 /* Use PHY IRQ for all but fiber based Genesis board */
3500 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3501 hw->intr_mask |= IS_EXT_REG;
3502
3503 if (hw->chip_id == CHIP_ID_GENESIS)
3504 genesis_init(hw);
3505 else {
3506 /* switch power to VCC (WA for VAUX problem) */
3507 skge_write8(hw, B0_POWER_CTRL,
3508 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3509
3510 /* avoid boards with stuck Hardware error bits */
3511 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3512 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3513 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3514 hw->intr_mask &= ~IS_HW_ERR;
3515 }
3516
3517 /* Clear PHY COMA */
3518 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3519 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3520 reg &= ~PCI_PHY_COMA;
3521 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3522 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3523
3524
3525 for (i = 0; i < hw->ports; i++) {
3526 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3527 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3528 }
3529 }
3530
3531 /* turn off hardware timer (unused) */
3532 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3533 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3534 skge_write8(hw, B0_LED, LED_STAT_ON);
3535
3536 /* enable the Tx Arbiters */
3537 for (i = 0; i < hw->ports; i++)
3538 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3539
3540 /* Initialize ram interface */
3541 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3542
3543 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3544 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3545 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3546 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3547 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3548 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3549 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3550 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3551 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3552 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3553 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3554 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3555
3556 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3557
3558 /* Set interrupt moderation for Transmit only
3559 * Receive interrupts avoided by NAPI
3560 */
3561 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3562 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3563 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3564
3565 skge_write32(hw, B0_IMSK, hw->intr_mask);
3566
3567 for (i = 0; i < hw->ports; i++) {
3568 if (hw->chip_id == CHIP_ID_GENESIS)
3569 genesis_reset(hw, i);
3570 else
3571 yukon_reset(hw, i);
3572 }
3573
3574 return 0;
3575 }
3576
3577 /* Initialize network device */
3578 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3579 int highmem)
3580 {
3581 struct skge_port *skge;
3582 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3583
3584 if (!dev) {
3585 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3586 return NULL;
3587 }
3588
3589 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3590 dev->open = skge_up;
3591 dev->stop = skge_down;
3592 dev->do_ioctl = skge_ioctl;
3593 dev->hard_start_xmit = skge_xmit_frame;
3594 dev->get_stats = skge_get_stats;
3595 if (hw->chip_id == CHIP_ID_GENESIS)
3596 dev->set_multicast_list = genesis_set_multicast;
3597 else
3598 dev->set_multicast_list = yukon_set_multicast;
3599
3600 dev->set_mac_address = skge_set_mac_address;
3601 dev->change_mtu = skge_change_mtu;
3602 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3603 dev->tx_timeout = skge_tx_timeout;
3604 dev->watchdog_timeo = TX_WATCHDOG;
3605 #ifdef CONFIG_NET_POLL_CONTROLLER
3606 dev->poll_controller = skge_netpoll;
3607 #endif
3608 dev->irq = hw->pdev->irq;
3609
3610 if (highmem)
3611 dev->features |= NETIF_F_HIGHDMA;
3612
3613 skge = netdev_priv(dev);
3614 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3615 skge->netdev = dev;
3616 skge->hw = hw;
3617 skge->msg_enable = netif_msg_init(debug, default_msg);
3618
3619 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3620 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3621
3622 /* Auto speed and flow control */
3623 skge->autoneg = AUTONEG_ENABLE;
3624 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3625 skge->duplex = -1;
3626 skge->speed = -1;
3627 skge->advertising = skge_supported_modes(hw);
3628
3629 if (pci_wake_enabled(hw->pdev))
3630 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3631
3632 hw->dev[port] = dev;
3633
3634 skge->port = port;
3635
3636 /* Only used for Genesis XMAC */
3637 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3638
3639 if (hw->chip_id != CHIP_ID_GENESIS) {
3640 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3641 skge->rx_csum = 1;
3642 }
3643
3644 /* read the mac address */
3645 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3646 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3647
3648 /* device is off until link detection */
3649 netif_carrier_off(dev);
3650 netif_stop_queue(dev);
3651
3652 return dev;
3653 }
3654
3655 static void __devinit skge_show_addr(struct net_device *dev)
3656 {
3657 const struct skge_port *skge = netdev_priv(dev);
3658 DECLARE_MAC_BUF(mac);
3659
3660 if (netif_msg_probe(skge))
3661 printk(KERN_INFO PFX "%s: addr %s\n",
3662 dev->name, print_mac(mac, dev->dev_addr));
3663 }
3664
3665 static int __devinit skge_probe(struct pci_dev *pdev,
3666 const struct pci_device_id *ent)
3667 {
3668 struct net_device *dev, *dev1;
3669 struct skge_hw *hw;
3670 int err, using_dac = 0;
3671
3672 err = pci_enable_device(pdev);
3673 if (err) {
3674 dev_err(&pdev->dev, "cannot enable PCI device\n");
3675 goto err_out;
3676 }
3677
3678 err = pci_request_regions(pdev, DRV_NAME);
3679 if (err) {
3680 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3681 goto err_out_disable_pdev;
3682 }
3683
3684 pci_set_master(pdev);
3685
3686 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3687 using_dac = 1;
3688 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3689 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3690 using_dac = 0;
3691 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3692 }
3693
3694 if (err) {
3695 dev_err(&pdev->dev, "no usable DMA configuration\n");
3696 goto err_out_free_regions;
3697 }
3698
3699 #ifdef __BIG_ENDIAN
3700 /* byte swap descriptors in hardware */
3701 {
3702 u32 reg;
3703
3704 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3705 reg |= PCI_REV_DESC;
3706 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3707 }
3708 #endif
3709
3710 err = -ENOMEM;
3711 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3712 if (!hw) {
3713 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3714 goto err_out_free_regions;
3715 }
3716
3717 hw->pdev = pdev;
3718 spin_lock_init(&hw->hw_lock);
3719 spin_lock_init(&hw->phy_lock);
3720 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3721
3722 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3723 if (!hw->regs) {
3724 dev_err(&pdev->dev, "cannot map device registers\n");
3725 goto err_out_free_hw;
3726 }
3727
3728 err = skge_reset(hw);
3729 if (err)
3730 goto err_out_iounmap;
3731
3732 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3733 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3734 skge_board_name(hw), hw->chip_rev);
3735
3736 dev = skge_devinit(hw, 0, using_dac);
3737 if (!dev)
3738 goto err_out_led_off;
3739
3740 /* Some motherboards are broken and has zero in ROM. */
3741 if (!is_valid_ether_addr(dev->dev_addr))
3742 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3743
3744 err = register_netdev(dev);
3745 if (err) {
3746 dev_err(&pdev->dev, "cannot register net device\n");
3747 goto err_out_free_netdev;
3748 }
3749
3750 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3751 if (err) {
3752 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3753 dev->name, pdev->irq);
3754 goto err_out_unregister;
3755 }
3756 skge_show_addr(dev);
3757
3758 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3759 if (register_netdev(dev1) == 0)
3760 skge_show_addr(dev1);
3761 else {
3762 /* Failure to register second port need not be fatal */
3763 dev_warn(&pdev->dev, "register of second port failed\n");
3764 hw->dev[1] = NULL;
3765 free_netdev(dev1);
3766 }
3767 }
3768 pci_set_drvdata(pdev, hw);
3769
3770 return 0;
3771
3772 err_out_unregister:
3773 unregister_netdev(dev);
3774 err_out_free_netdev:
3775 free_netdev(dev);
3776 err_out_led_off:
3777 skge_write16(hw, B0_LED, LED_STAT_OFF);
3778 err_out_iounmap:
3779 iounmap(hw->regs);
3780 err_out_free_hw:
3781 kfree(hw);
3782 err_out_free_regions:
3783 pci_release_regions(pdev);
3784 err_out_disable_pdev:
3785 pci_disable_device(pdev);
3786 pci_set_drvdata(pdev, NULL);
3787 err_out:
3788 return err;
3789 }
3790
3791 static void __devexit skge_remove(struct pci_dev *pdev)
3792 {
3793 struct skge_hw *hw = pci_get_drvdata(pdev);
3794 struct net_device *dev0, *dev1;
3795
3796 if (!hw)
3797 return;
3798
3799 flush_scheduled_work();
3800
3801 if ((dev1 = hw->dev[1]))
3802 unregister_netdev(dev1);
3803 dev0 = hw->dev[0];
3804 unregister_netdev(dev0);
3805
3806 tasklet_disable(&hw->phy_task);
3807
3808 spin_lock_irq(&hw->hw_lock);
3809 hw->intr_mask = 0;
3810 skge_write32(hw, B0_IMSK, 0);
3811 skge_read32(hw, B0_IMSK);
3812 spin_unlock_irq(&hw->hw_lock);
3813
3814 skge_write16(hw, B0_LED, LED_STAT_OFF);
3815 skge_write8(hw, B0_CTST, CS_RST_SET);
3816
3817 free_irq(pdev->irq, hw);
3818 pci_release_regions(pdev);
3819 pci_disable_device(pdev);
3820 if (dev1)
3821 free_netdev(dev1);
3822 free_netdev(dev0);
3823
3824 iounmap(hw->regs);
3825 kfree(hw);
3826 pci_set_drvdata(pdev, NULL);
3827 }
3828
3829 #ifdef CONFIG_PM
3830 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3831 {
3832 struct skge_hw *hw = pci_get_drvdata(pdev);
3833 int i, err, wol = 0;
3834
3835 if (!hw)
3836 return 0;
3837
3838 err = pci_save_state(pdev);
3839 if (err)
3840 return err;
3841
3842 for (i = 0; i < hw->ports; i++) {
3843 struct net_device *dev = hw->dev[i];
3844 struct skge_port *skge = netdev_priv(dev);
3845
3846 if (netif_running(dev))
3847 skge_down(dev);
3848 if (skge->wol)
3849 skge_wol_init(skge);
3850
3851 wol |= skge->wol;
3852 }
3853
3854 skge_write32(hw, B0_IMSK, 0);
3855 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3856 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3857
3858 return 0;
3859 }
3860
3861 static int skge_resume(struct pci_dev *pdev)
3862 {
3863 struct skge_hw *hw = pci_get_drvdata(pdev);
3864 int i, err;
3865
3866 if (!hw)
3867 return 0;
3868
3869 err = pci_set_power_state(pdev, PCI_D0);
3870 if (err)
3871 goto out;
3872
3873 err = pci_restore_state(pdev);
3874 if (err)
3875 goto out;
3876
3877 pci_enable_wake(pdev, PCI_D0, 0);
3878
3879 err = skge_reset(hw);
3880 if (err)
3881 goto out;
3882
3883 for (i = 0; i < hw->ports; i++) {
3884 struct net_device *dev = hw->dev[i];
3885
3886 if (netif_running(dev)) {
3887 err = skge_up(dev);
3888
3889 if (err) {
3890 printk(KERN_ERR PFX "%s: could not up: %d\n",
3891 dev->name, err);
3892 dev_close(dev);
3893 goto out;
3894 }
3895 }
3896 }
3897 out:
3898 return err;
3899 }
3900 #endif
3901
3902 static void skge_shutdown(struct pci_dev *pdev)
3903 {
3904 struct skge_hw *hw = pci_get_drvdata(pdev);
3905 int i, wol = 0;
3906
3907 if (!hw)
3908 return;
3909
3910 for (i = 0; i < hw->ports; i++) {
3911 struct net_device *dev = hw->dev[i];
3912 struct skge_port *skge = netdev_priv(dev);
3913
3914 if (skge->wol)
3915 skge_wol_init(skge);
3916 wol |= skge->wol;
3917 }
3918
3919 pci_enable_wake(pdev, PCI_D3hot, wol);
3920 pci_enable_wake(pdev, PCI_D3cold, wol);
3921
3922 pci_disable_device(pdev);
3923 pci_set_power_state(pdev, PCI_D3hot);
3924
3925 }
3926
3927 static struct pci_driver skge_driver = {
3928 .name = DRV_NAME,
3929 .id_table = skge_id_table,
3930 .probe = skge_probe,
3931 .remove = __devexit_p(skge_remove),
3932 #ifdef CONFIG_PM
3933 .suspend = skge_suspend,
3934 .resume = skge_resume,
3935 #endif
3936 .shutdown = skge_shutdown,
3937 };
3938
3939 static int __init skge_init_module(void)
3940 {
3941 return pci_register_driver(&skge_driver);
3942 }
3943
3944 static void __exit skge_cleanup_module(void)
3945 {
3946 pci_unregister_driver(&skge_driver);
3947 }
3948
3949 module_init(skge_init_module);
3950 module_exit(skge_cleanup_module);
This page took 0.110713 seconds and 5 git commands to generate.