skge: XM PHY handling fixes
[deliverable/linux.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/in.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
35 #include <linux/ip.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
40 #include <asm/irq.h>
41
42 #include "skge.h"
43
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.11"
46 #define PFX DRV_NAME " "
47
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
59 #define BLINK_MS 250
60 #define LINK_HZ HZ
61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
66
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
87 { 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
109 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
110
111 static int skge_get_regs_len(struct net_device *dev)
112 {
113 return 0x4000;
114 }
115
116 /*
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
119 * cause bus hangs!
120 */
121 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
122 void *p)
123 {
124 const struct skge_port *skge = netdev_priv(dev);
125 const void __iomem *io = skge->hw->regs;
126
127 regs->version = 1;
128 memset(p, 0, regs->len);
129 memcpy_fromio(p, io, B3_RAM_ADDR);
130
131 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
132 regs->len - B3_RI_WTO_R1);
133 }
134
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static u32 wol_supported(const struct skge_hw *hw)
137 {
138 if (hw->chip_id == CHIP_ID_GENESIS)
139 return 0;
140
141 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
142 return 0;
143
144 return WAKE_MAGIC | WAKE_PHY;
145 }
146
147 static u32 pci_wake_enabled(struct pci_dev *dev)
148 {
149 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
150 u16 value;
151
152 /* If device doesn't support PM Capabilities, but request is to disable
153 * wake events, it's a nop; otherwise fail */
154 if (!pm)
155 return 0;
156
157 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
158
159 value &= PCI_PM_CAP_PME_MASK;
160 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
161
162 return value != 0;
163 }
164
165 static void skge_wol_init(struct skge_port *skge)
166 {
167 struct skge_hw *hw = skge->hw;
168 int port = skge->port;
169 u16 ctrl;
170
171 skge_write16(hw, B0_CTST, CS_RST_CLR);
172 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
173
174 /* Turn on Vaux */
175 skge_write8(hw, B0_POWER_CTRL,
176 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
177
178 /* WA code for COMA mode -- clear PHY reset */
179 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
180 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
181 u32 reg = skge_read32(hw, B2_GP_IO);
182 reg |= GP_DIR_9;
183 reg &= ~GP_IO_9;
184 skge_write32(hw, B2_GP_IO, reg);
185 }
186
187 skge_write32(hw, SK_REG(port, GPHY_CTRL),
188 GPC_DIS_SLEEP |
189 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 GPC_ANEG_1 | GPC_RST_SET);
191
192 skge_write32(hw, SK_REG(port, GPHY_CTRL),
193 GPC_DIS_SLEEP |
194 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
195 GPC_ANEG_1 | GPC_RST_CLR);
196
197 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
198
199 /* Force to 10/100 skge_reset will re-enable on resume */
200 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
201 PHY_AN_100FULL | PHY_AN_100HALF |
202 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
203 /* no 1000 HD/FD */
204 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
205 gm_phy_write(hw, port, PHY_MARV_CTRL,
206 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
207 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
208
209
210 /* Set GMAC to no flow control and auto update for speed/duplex */
211 gma_write16(hw, port, GM_GP_CTRL,
212 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
213 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
214
215 /* Set WOL address */
216 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
217 skge->netdev->dev_addr, ETH_ALEN);
218
219 /* Turn on appropriate WOL control bits */
220 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
221 ctrl = 0;
222 if (skge->wol & WAKE_PHY)
223 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
224 else
225 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
226
227 if (skge->wol & WAKE_MAGIC)
228 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
229 else
230 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
231
232 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
233 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
234
235 /* block receiver */
236 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
237 }
238
239 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
240 {
241 struct skge_port *skge = netdev_priv(dev);
242
243 wol->supported = wol_supported(skge->hw);
244 wol->wolopts = skge->wol;
245 }
246
247 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
248 {
249 struct skge_port *skge = netdev_priv(dev);
250 struct skge_hw *hw = skge->hw;
251
252 if (wol->wolopts & ~wol_supported(hw))
253 return -EOPNOTSUPP;
254
255 skge->wol = wol->wolopts;
256 return 0;
257 }
258
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261 */
262 static u32 skge_supported_modes(const struct skge_hw *hw)
263 {
264 u32 supported;
265
266 if (hw->copper) {
267 supported = SUPPORTED_10baseT_Half
268 | SUPPORTED_10baseT_Full
269 | SUPPORTED_100baseT_Half
270 | SUPPORTED_100baseT_Full
271 | SUPPORTED_1000baseT_Half
272 | SUPPORTED_1000baseT_Full
273 | SUPPORTED_Autoneg| SUPPORTED_TP;
274
275 if (hw->chip_id == CHIP_ID_GENESIS)
276 supported &= ~(SUPPORTED_10baseT_Half
277 | SUPPORTED_10baseT_Full
278 | SUPPORTED_100baseT_Half
279 | SUPPORTED_100baseT_Full);
280
281 else if (hw->chip_id == CHIP_ID_YUKON)
282 supported &= ~SUPPORTED_1000baseT_Half;
283 } else
284 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
285 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
286
287 return supported;
288 }
289
290 static int skge_get_settings(struct net_device *dev,
291 struct ethtool_cmd *ecmd)
292 {
293 struct skge_port *skge = netdev_priv(dev);
294 struct skge_hw *hw = skge->hw;
295
296 ecmd->transceiver = XCVR_INTERNAL;
297 ecmd->supported = skge_supported_modes(hw);
298
299 if (hw->copper) {
300 ecmd->port = PORT_TP;
301 ecmd->phy_address = hw->phy_addr;
302 } else
303 ecmd->port = PORT_FIBRE;
304
305 ecmd->advertising = skge->advertising;
306 ecmd->autoneg = skge->autoneg;
307 ecmd->speed = skge->speed;
308 ecmd->duplex = skge->duplex;
309 return 0;
310 }
311
312 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
313 {
314 struct skge_port *skge = netdev_priv(dev);
315 const struct skge_hw *hw = skge->hw;
316 u32 supported = skge_supported_modes(hw);
317
318 if (ecmd->autoneg == AUTONEG_ENABLE) {
319 ecmd->advertising = supported;
320 skge->duplex = -1;
321 skge->speed = -1;
322 } else {
323 u32 setting;
324
325 switch (ecmd->speed) {
326 case SPEED_1000:
327 if (ecmd->duplex == DUPLEX_FULL)
328 setting = SUPPORTED_1000baseT_Full;
329 else if (ecmd->duplex == DUPLEX_HALF)
330 setting = SUPPORTED_1000baseT_Half;
331 else
332 return -EINVAL;
333 break;
334 case SPEED_100:
335 if (ecmd->duplex == DUPLEX_FULL)
336 setting = SUPPORTED_100baseT_Full;
337 else if (ecmd->duplex == DUPLEX_HALF)
338 setting = SUPPORTED_100baseT_Half;
339 else
340 return -EINVAL;
341 break;
342
343 case SPEED_10:
344 if (ecmd->duplex == DUPLEX_FULL)
345 setting = SUPPORTED_10baseT_Full;
346 else if (ecmd->duplex == DUPLEX_HALF)
347 setting = SUPPORTED_10baseT_Half;
348 else
349 return -EINVAL;
350 break;
351 default:
352 return -EINVAL;
353 }
354
355 if ((setting & supported) == 0)
356 return -EINVAL;
357
358 skge->speed = ecmd->speed;
359 skge->duplex = ecmd->duplex;
360 }
361
362 skge->autoneg = ecmd->autoneg;
363 skge->advertising = ecmd->advertising;
364
365 if (netif_running(dev))
366 skge_phy_reset(skge);
367
368 return (0);
369 }
370
371 static void skge_get_drvinfo(struct net_device *dev,
372 struct ethtool_drvinfo *info)
373 {
374 struct skge_port *skge = netdev_priv(dev);
375
376 strcpy(info->driver, DRV_NAME);
377 strcpy(info->version, DRV_VERSION);
378 strcpy(info->fw_version, "N/A");
379 strcpy(info->bus_info, pci_name(skge->hw->pdev));
380 }
381
382 static const struct skge_stat {
383 char name[ETH_GSTRING_LEN];
384 u16 xmac_offset;
385 u16 gma_offset;
386 } skge_stats[] = {
387 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
388 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
389
390 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
391 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
392 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
393 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
394 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
395 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
396 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
397 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
398
399 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
400 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
401 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
402 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
403 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
404 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
405
406 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
407 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
408 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
409 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
410 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
411 };
412
413 static int skge_get_sset_count(struct net_device *dev, int sset)
414 {
415 switch (sset) {
416 case ETH_SS_STATS:
417 return ARRAY_SIZE(skge_stats);
418 default:
419 return -EOPNOTSUPP;
420 }
421 }
422
423 static void skge_get_ethtool_stats(struct net_device *dev,
424 struct ethtool_stats *stats, u64 *data)
425 {
426 struct skge_port *skge = netdev_priv(dev);
427
428 if (skge->hw->chip_id == CHIP_ID_GENESIS)
429 genesis_get_stats(skge, data);
430 else
431 yukon_get_stats(skge, data);
432 }
433
434 /* Use hardware MIB variables for critical path statistics and
435 * transmit feedback not reported at interrupt.
436 * Other errors are accounted for in interrupt handler.
437 */
438 static struct net_device_stats *skge_get_stats(struct net_device *dev)
439 {
440 struct skge_port *skge = netdev_priv(dev);
441 u64 data[ARRAY_SIZE(skge_stats)];
442
443 if (skge->hw->chip_id == CHIP_ID_GENESIS)
444 genesis_get_stats(skge, data);
445 else
446 yukon_get_stats(skge, data);
447
448 skge->net_stats.tx_bytes = data[0];
449 skge->net_stats.rx_bytes = data[1];
450 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
451 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
452 skge->net_stats.multicast = data[3] + data[5];
453 skge->net_stats.collisions = data[10];
454 skge->net_stats.tx_aborted_errors = data[12];
455
456 return &skge->net_stats;
457 }
458
459 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
460 {
461 int i;
462
463 switch (stringset) {
464 case ETH_SS_STATS:
465 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
466 memcpy(data + i * ETH_GSTRING_LEN,
467 skge_stats[i].name, ETH_GSTRING_LEN);
468 break;
469 }
470 }
471
472 static void skge_get_ring_param(struct net_device *dev,
473 struct ethtool_ringparam *p)
474 {
475 struct skge_port *skge = netdev_priv(dev);
476
477 p->rx_max_pending = MAX_RX_RING_SIZE;
478 p->tx_max_pending = MAX_TX_RING_SIZE;
479 p->rx_mini_max_pending = 0;
480 p->rx_jumbo_max_pending = 0;
481
482 p->rx_pending = skge->rx_ring.count;
483 p->tx_pending = skge->tx_ring.count;
484 p->rx_mini_pending = 0;
485 p->rx_jumbo_pending = 0;
486 }
487
488 static int skge_set_ring_param(struct net_device *dev,
489 struct ethtool_ringparam *p)
490 {
491 struct skge_port *skge = netdev_priv(dev);
492 int err;
493
494 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
495 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
496 return -EINVAL;
497
498 skge->rx_ring.count = p->rx_pending;
499 skge->tx_ring.count = p->tx_pending;
500
501 if (netif_running(dev)) {
502 skge_down(dev);
503 err = skge_up(dev);
504 if (err)
505 dev_close(dev);
506 }
507
508 return 0;
509 }
510
511 static u32 skge_get_msglevel(struct net_device *netdev)
512 {
513 struct skge_port *skge = netdev_priv(netdev);
514 return skge->msg_enable;
515 }
516
517 static void skge_set_msglevel(struct net_device *netdev, u32 value)
518 {
519 struct skge_port *skge = netdev_priv(netdev);
520 skge->msg_enable = value;
521 }
522
523 static int skge_nway_reset(struct net_device *dev)
524 {
525 struct skge_port *skge = netdev_priv(dev);
526
527 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
528 return -EINVAL;
529
530 skge_phy_reset(skge);
531 return 0;
532 }
533
534 static int skge_set_sg(struct net_device *dev, u32 data)
535 {
536 struct skge_port *skge = netdev_priv(dev);
537 struct skge_hw *hw = skge->hw;
538
539 if (hw->chip_id == CHIP_ID_GENESIS && data)
540 return -EOPNOTSUPP;
541 return ethtool_op_set_sg(dev, data);
542 }
543
544 static int skge_set_tx_csum(struct net_device *dev, u32 data)
545 {
546 struct skge_port *skge = netdev_priv(dev);
547 struct skge_hw *hw = skge->hw;
548
549 if (hw->chip_id == CHIP_ID_GENESIS && data)
550 return -EOPNOTSUPP;
551
552 return ethtool_op_set_tx_csum(dev, data);
553 }
554
555 static u32 skge_get_rx_csum(struct net_device *dev)
556 {
557 struct skge_port *skge = netdev_priv(dev);
558
559 return skge->rx_csum;
560 }
561
562 /* Only Yukon supports checksum offload. */
563 static int skge_set_rx_csum(struct net_device *dev, u32 data)
564 {
565 struct skge_port *skge = netdev_priv(dev);
566
567 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
568 return -EOPNOTSUPP;
569
570 skge->rx_csum = data;
571 return 0;
572 }
573
574 static void skge_get_pauseparam(struct net_device *dev,
575 struct ethtool_pauseparam *ecmd)
576 {
577 struct skge_port *skge = netdev_priv(dev);
578
579 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
580 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
581 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
582
583 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
584 }
585
586 static int skge_set_pauseparam(struct net_device *dev,
587 struct ethtool_pauseparam *ecmd)
588 {
589 struct skge_port *skge = netdev_priv(dev);
590 struct ethtool_pauseparam old;
591
592 skge_get_pauseparam(dev, &old);
593
594 if (ecmd->autoneg != old.autoneg)
595 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
596 else {
597 if (ecmd->rx_pause && ecmd->tx_pause)
598 skge->flow_control = FLOW_MODE_SYMMETRIC;
599 else if (ecmd->rx_pause && !ecmd->tx_pause)
600 skge->flow_control = FLOW_MODE_SYM_OR_REM;
601 else if (!ecmd->rx_pause && ecmd->tx_pause)
602 skge->flow_control = FLOW_MODE_LOC_SEND;
603 else
604 skge->flow_control = FLOW_MODE_NONE;
605 }
606
607 if (netif_running(dev))
608 skge_phy_reset(skge);
609
610 return 0;
611 }
612
613 /* Chip internal frequency for clock calculations */
614 static inline u32 hwkhz(const struct skge_hw *hw)
615 {
616 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
617 }
618
619 /* Chip HZ to microseconds */
620 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
621 {
622 return (ticks * 1000) / hwkhz(hw);
623 }
624
625 /* Microseconds to chip HZ */
626 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
627 {
628 return hwkhz(hw) * usec / 1000;
629 }
630
631 static int skge_get_coalesce(struct net_device *dev,
632 struct ethtool_coalesce *ecmd)
633 {
634 struct skge_port *skge = netdev_priv(dev);
635 struct skge_hw *hw = skge->hw;
636 int port = skge->port;
637
638 ecmd->rx_coalesce_usecs = 0;
639 ecmd->tx_coalesce_usecs = 0;
640
641 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
642 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
643 u32 msk = skge_read32(hw, B2_IRQM_MSK);
644
645 if (msk & rxirqmask[port])
646 ecmd->rx_coalesce_usecs = delay;
647 if (msk & txirqmask[port])
648 ecmd->tx_coalesce_usecs = delay;
649 }
650
651 return 0;
652 }
653
654 /* Note: interrupt timer is per board, but can turn on/off per port */
655 static int skge_set_coalesce(struct net_device *dev,
656 struct ethtool_coalesce *ecmd)
657 {
658 struct skge_port *skge = netdev_priv(dev);
659 struct skge_hw *hw = skge->hw;
660 int port = skge->port;
661 u32 msk = skge_read32(hw, B2_IRQM_MSK);
662 u32 delay = 25;
663
664 if (ecmd->rx_coalesce_usecs == 0)
665 msk &= ~rxirqmask[port];
666 else if (ecmd->rx_coalesce_usecs < 25 ||
667 ecmd->rx_coalesce_usecs > 33333)
668 return -EINVAL;
669 else {
670 msk |= rxirqmask[port];
671 delay = ecmd->rx_coalesce_usecs;
672 }
673
674 if (ecmd->tx_coalesce_usecs == 0)
675 msk &= ~txirqmask[port];
676 else if (ecmd->tx_coalesce_usecs < 25 ||
677 ecmd->tx_coalesce_usecs > 33333)
678 return -EINVAL;
679 else {
680 msk |= txirqmask[port];
681 delay = min(delay, ecmd->rx_coalesce_usecs);
682 }
683
684 skge_write32(hw, B2_IRQM_MSK, msk);
685 if (msk == 0)
686 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
687 else {
688 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
689 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
690 }
691 return 0;
692 }
693
694 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
695 static void skge_led(struct skge_port *skge, enum led_mode mode)
696 {
697 struct skge_hw *hw = skge->hw;
698 int port = skge->port;
699
700 spin_lock_bh(&hw->phy_lock);
701 if (hw->chip_id == CHIP_ID_GENESIS) {
702 switch (mode) {
703 case LED_MODE_OFF:
704 if (hw->phy_type == SK_PHY_BCOM)
705 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
706 else {
707 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
708 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
709 }
710 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
711 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
713 break;
714
715 case LED_MODE_ON:
716 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
717 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
718
719 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
720 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
721
722 break;
723
724 case LED_MODE_TST:
725 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
726 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
727 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
728
729 if (hw->phy_type == SK_PHY_BCOM)
730 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
731 else {
732 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
733 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
734 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
735 }
736
737 }
738 } else {
739 switch (mode) {
740 case LED_MODE_OFF:
741 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
742 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743 PHY_M_LED_MO_DUP(MO_LED_OFF) |
744 PHY_M_LED_MO_10(MO_LED_OFF) |
745 PHY_M_LED_MO_100(MO_LED_OFF) |
746 PHY_M_LED_MO_1000(MO_LED_OFF) |
747 PHY_M_LED_MO_RX(MO_LED_OFF));
748 break;
749 case LED_MODE_ON:
750 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
751 PHY_M_LED_PULS_DUR(PULS_170MS) |
752 PHY_M_LED_BLINK_RT(BLINK_84MS) |
753 PHY_M_LEDC_TX_CTRL |
754 PHY_M_LEDC_DP_CTRL);
755
756 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
757 PHY_M_LED_MO_RX(MO_LED_OFF) |
758 (skge->speed == SPEED_100 ?
759 PHY_M_LED_MO_100(MO_LED_ON) : 0));
760 break;
761 case LED_MODE_TST:
762 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
763 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
764 PHY_M_LED_MO_DUP(MO_LED_ON) |
765 PHY_M_LED_MO_10(MO_LED_ON) |
766 PHY_M_LED_MO_100(MO_LED_ON) |
767 PHY_M_LED_MO_1000(MO_LED_ON) |
768 PHY_M_LED_MO_RX(MO_LED_ON));
769 }
770 }
771 spin_unlock_bh(&hw->phy_lock);
772 }
773
774 /* blink LED's for finding board */
775 static int skge_phys_id(struct net_device *dev, u32 data)
776 {
777 struct skge_port *skge = netdev_priv(dev);
778 unsigned long ms;
779 enum led_mode mode = LED_MODE_TST;
780
781 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
782 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
783 else
784 ms = data * 1000;
785
786 while (ms > 0) {
787 skge_led(skge, mode);
788 mode ^= LED_MODE_TST;
789
790 if (msleep_interruptible(BLINK_MS))
791 break;
792 ms -= BLINK_MS;
793 }
794
795 /* back to regular LED state */
796 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
797
798 return 0;
799 }
800
801 static const struct ethtool_ops skge_ethtool_ops = {
802 .get_settings = skge_get_settings,
803 .set_settings = skge_set_settings,
804 .get_drvinfo = skge_get_drvinfo,
805 .get_regs_len = skge_get_regs_len,
806 .get_regs = skge_get_regs,
807 .get_wol = skge_get_wol,
808 .set_wol = skge_set_wol,
809 .get_msglevel = skge_get_msglevel,
810 .set_msglevel = skge_set_msglevel,
811 .nway_reset = skge_nway_reset,
812 .get_link = ethtool_op_get_link,
813 .get_ringparam = skge_get_ring_param,
814 .set_ringparam = skge_set_ring_param,
815 .get_pauseparam = skge_get_pauseparam,
816 .set_pauseparam = skge_set_pauseparam,
817 .get_coalesce = skge_get_coalesce,
818 .set_coalesce = skge_set_coalesce,
819 .set_sg = skge_set_sg,
820 .set_tx_csum = skge_set_tx_csum,
821 .get_rx_csum = skge_get_rx_csum,
822 .set_rx_csum = skge_set_rx_csum,
823 .get_strings = skge_get_strings,
824 .phys_id = skge_phys_id,
825 .get_sset_count = skge_get_sset_count,
826 .get_ethtool_stats = skge_get_ethtool_stats,
827 };
828
829 /*
830 * Allocate ring elements and chain them together
831 * One-to-one association of board descriptors with ring elements
832 */
833 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
834 {
835 struct skge_tx_desc *d;
836 struct skge_element *e;
837 int i;
838
839 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
840 if (!ring->start)
841 return -ENOMEM;
842
843 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
844 e->desc = d;
845 if (i == ring->count - 1) {
846 e->next = ring->start;
847 d->next_offset = base;
848 } else {
849 e->next = e + 1;
850 d->next_offset = base + (i+1) * sizeof(*d);
851 }
852 }
853 ring->to_use = ring->to_clean = ring->start;
854
855 return 0;
856 }
857
858 /* Allocate and setup a new buffer for receiving */
859 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
860 struct sk_buff *skb, unsigned int bufsize)
861 {
862 struct skge_rx_desc *rd = e->desc;
863 u64 map;
864
865 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
866 PCI_DMA_FROMDEVICE);
867
868 rd->dma_lo = map;
869 rd->dma_hi = map >> 32;
870 e->skb = skb;
871 rd->csum1_start = ETH_HLEN;
872 rd->csum2_start = ETH_HLEN;
873 rd->csum1 = 0;
874 rd->csum2 = 0;
875
876 wmb();
877
878 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
879 pci_unmap_addr_set(e, mapaddr, map);
880 pci_unmap_len_set(e, maplen, bufsize);
881 }
882
883 /* Resume receiving using existing skb,
884 * Note: DMA address is not changed by chip.
885 * MTU not changed while receiver active.
886 */
887 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
888 {
889 struct skge_rx_desc *rd = e->desc;
890
891 rd->csum2 = 0;
892 rd->csum2_start = ETH_HLEN;
893
894 wmb();
895
896 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
897 }
898
899
900 /* Free all buffers in receive ring, assumes receiver stopped */
901 static void skge_rx_clean(struct skge_port *skge)
902 {
903 struct skge_hw *hw = skge->hw;
904 struct skge_ring *ring = &skge->rx_ring;
905 struct skge_element *e;
906
907 e = ring->start;
908 do {
909 struct skge_rx_desc *rd = e->desc;
910 rd->control = 0;
911 if (e->skb) {
912 pci_unmap_single(hw->pdev,
913 pci_unmap_addr(e, mapaddr),
914 pci_unmap_len(e, maplen),
915 PCI_DMA_FROMDEVICE);
916 dev_kfree_skb(e->skb);
917 e->skb = NULL;
918 }
919 } while ((e = e->next) != ring->start);
920 }
921
922
923 /* Allocate buffers for receive ring
924 * For receive: to_clean is next received frame.
925 */
926 static int skge_rx_fill(struct net_device *dev)
927 {
928 struct skge_port *skge = netdev_priv(dev);
929 struct skge_ring *ring = &skge->rx_ring;
930 struct skge_element *e;
931
932 e = ring->start;
933 do {
934 struct sk_buff *skb;
935
936 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
937 GFP_KERNEL);
938 if (!skb)
939 return -ENOMEM;
940
941 skb_reserve(skb, NET_IP_ALIGN);
942 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
943 } while ( (e = e->next) != ring->start);
944
945 ring->to_clean = ring->start;
946 return 0;
947 }
948
949 static const char *skge_pause(enum pause_status status)
950 {
951 switch(status) {
952 case FLOW_STAT_NONE:
953 return "none";
954 case FLOW_STAT_REM_SEND:
955 return "rx only";
956 case FLOW_STAT_LOC_SEND:
957 return "tx_only";
958 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
959 return "both";
960 default:
961 return "indeterminated";
962 }
963 }
964
965
966 static void skge_link_up(struct skge_port *skge)
967 {
968 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
969 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
970
971 netif_carrier_on(skge->netdev);
972 netif_wake_queue(skge->netdev);
973
974 if (netif_msg_link(skge)) {
975 printk(KERN_INFO PFX
976 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
977 skge->netdev->name, skge->speed,
978 skge->duplex == DUPLEX_FULL ? "full" : "half",
979 skge_pause(skge->flow_status));
980 }
981 }
982
983 static void skge_link_down(struct skge_port *skge)
984 {
985 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
986 netif_carrier_off(skge->netdev);
987 netif_stop_queue(skge->netdev);
988
989 if (netif_msg_link(skge))
990 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
991 }
992
993
994 static void xm_link_down(struct skge_hw *hw, int port)
995 {
996 struct net_device *dev = hw->dev[port];
997 struct skge_port *skge = netdev_priv(dev);
998 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
999
1000 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1001
1002 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1003 xm_write16(hw, port, XM_MMU_CMD, cmd);
1004
1005 /* dummy read to ensure writing */
1006 xm_read16(hw, port, XM_MMU_CMD);
1007
1008 if (netif_carrier_ok(dev))
1009 skge_link_down(skge);
1010 }
1011
1012 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1013 {
1014 int i;
1015
1016 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1017 *val = xm_read16(hw, port, XM_PHY_DATA);
1018
1019 if (hw->phy_type == SK_PHY_XMAC)
1020 goto ready;
1021
1022 for (i = 0; i < PHY_RETRIES; i++) {
1023 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1024 goto ready;
1025 udelay(1);
1026 }
1027
1028 return -ETIMEDOUT;
1029 ready:
1030 *val = xm_read16(hw, port, XM_PHY_DATA);
1031
1032 return 0;
1033 }
1034
1035 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1036 {
1037 u16 v = 0;
1038 if (__xm_phy_read(hw, port, reg, &v))
1039 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1040 hw->dev[port]->name);
1041 return v;
1042 }
1043
1044 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1045 {
1046 int i;
1047
1048 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1049 for (i = 0; i < PHY_RETRIES; i++) {
1050 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1051 goto ready;
1052 udelay(1);
1053 }
1054 return -EIO;
1055
1056 ready:
1057 xm_write16(hw, port, XM_PHY_DATA, val);
1058 for (i = 0; i < PHY_RETRIES; i++) {
1059 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1060 return 0;
1061 udelay(1);
1062 }
1063 return -ETIMEDOUT;
1064 }
1065
1066 static void genesis_init(struct skge_hw *hw)
1067 {
1068 /* set blink source counter */
1069 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1070 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1071
1072 /* configure mac arbiter */
1073 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1074
1075 /* configure mac arbiter timeout values */
1076 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1077 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1078 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1079 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1080
1081 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1082 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1083 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1084 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1085
1086 /* configure packet arbiter timeout */
1087 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1088 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1089 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1090 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1091 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1092 }
1093
1094 static void genesis_reset(struct skge_hw *hw, int port)
1095 {
1096 const u8 zero[8] = { 0 };
1097
1098 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1099
1100 /* reset the statistics module */
1101 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1102 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1103 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1104 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1105 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1106
1107 /* disable Broadcom PHY IRQ */
1108 if (hw->phy_type == SK_PHY_BCOM)
1109 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1110
1111 xm_outhash(hw, port, XM_HSM, zero);
1112 }
1113
1114
1115 /* Convert mode to MII values */
1116 static const u16 phy_pause_map[] = {
1117 [FLOW_MODE_NONE] = 0,
1118 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1119 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1120 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1121 };
1122
1123 /* special defines for FIBER (88E1011S only) */
1124 static const u16 fiber_pause_map[] = {
1125 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1126 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1127 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1128 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1129 };
1130
1131
1132 /* Check status of Broadcom phy link */
1133 static void bcom_check_link(struct skge_hw *hw, int port)
1134 {
1135 struct net_device *dev = hw->dev[port];
1136 struct skge_port *skge = netdev_priv(dev);
1137 u16 status;
1138
1139 /* read twice because of latch */
1140 xm_phy_read(hw, port, PHY_BCOM_STAT);
1141 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1142
1143 if ((status & PHY_ST_LSYNC) == 0) {
1144 xm_link_down(hw, port);
1145 return;
1146 }
1147
1148 if (skge->autoneg == AUTONEG_ENABLE) {
1149 u16 lpa, aux;
1150
1151 if (!(status & PHY_ST_AN_OVER))
1152 return;
1153
1154 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1155 if (lpa & PHY_B_AN_RF) {
1156 printk(KERN_NOTICE PFX "%s: remote fault\n",
1157 dev->name);
1158 return;
1159 }
1160
1161 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1162
1163 /* Check Duplex mismatch */
1164 switch (aux & PHY_B_AS_AN_RES_MSK) {
1165 case PHY_B_RES_1000FD:
1166 skge->duplex = DUPLEX_FULL;
1167 break;
1168 case PHY_B_RES_1000HD:
1169 skge->duplex = DUPLEX_HALF;
1170 break;
1171 default:
1172 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1173 dev->name);
1174 return;
1175 }
1176
1177 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1178 switch (aux & PHY_B_AS_PAUSE_MSK) {
1179 case PHY_B_AS_PAUSE_MSK:
1180 skge->flow_status = FLOW_STAT_SYMMETRIC;
1181 break;
1182 case PHY_B_AS_PRR:
1183 skge->flow_status = FLOW_STAT_REM_SEND;
1184 break;
1185 case PHY_B_AS_PRT:
1186 skge->flow_status = FLOW_STAT_LOC_SEND;
1187 break;
1188 default:
1189 skge->flow_status = FLOW_STAT_NONE;
1190 }
1191 skge->speed = SPEED_1000;
1192 }
1193
1194 if (!netif_carrier_ok(dev))
1195 genesis_link_up(skge);
1196 }
1197
1198 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1199 * Phy on for 100 or 10Mbit operation
1200 */
1201 static void bcom_phy_init(struct skge_port *skge)
1202 {
1203 struct skge_hw *hw = skge->hw;
1204 int port = skge->port;
1205 int i;
1206 u16 id1, r, ext, ctl;
1207
1208 /* magic workaround patterns for Broadcom */
1209 static const struct {
1210 u16 reg;
1211 u16 val;
1212 } A1hack[] = {
1213 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1214 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1215 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1216 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1217 }, C0hack[] = {
1218 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1219 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1220 };
1221
1222 /* read Id from external PHY (all have the same address) */
1223 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1224
1225 /* Optimize MDIO transfer by suppressing preamble. */
1226 r = xm_read16(hw, port, XM_MMU_CMD);
1227 r |= XM_MMU_NO_PRE;
1228 xm_write16(hw, port, XM_MMU_CMD,r);
1229
1230 switch (id1) {
1231 case PHY_BCOM_ID1_C0:
1232 /*
1233 * Workaround BCOM Errata for the C0 type.
1234 * Write magic patterns to reserved registers.
1235 */
1236 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1237 xm_phy_write(hw, port,
1238 C0hack[i].reg, C0hack[i].val);
1239
1240 break;
1241 case PHY_BCOM_ID1_A1:
1242 /*
1243 * Workaround BCOM Errata for the A1 type.
1244 * Write magic patterns to reserved registers.
1245 */
1246 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1247 xm_phy_write(hw, port,
1248 A1hack[i].reg, A1hack[i].val);
1249 break;
1250 }
1251
1252 /*
1253 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1254 * Disable Power Management after reset.
1255 */
1256 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1257 r |= PHY_B_AC_DIS_PM;
1258 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1259
1260 /* Dummy read */
1261 xm_read16(hw, port, XM_ISRC);
1262
1263 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1264 ctl = PHY_CT_SP1000; /* always 1000mbit */
1265
1266 if (skge->autoneg == AUTONEG_ENABLE) {
1267 /*
1268 * Workaround BCOM Errata #1 for the C5 type.
1269 * 1000Base-T Link Acquisition Failure in Slave Mode
1270 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1271 */
1272 u16 adv = PHY_B_1000C_RD;
1273 if (skge->advertising & ADVERTISED_1000baseT_Half)
1274 adv |= PHY_B_1000C_AHD;
1275 if (skge->advertising & ADVERTISED_1000baseT_Full)
1276 adv |= PHY_B_1000C_AFD;
1277 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1278
1279 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1280 } else {
1281 if (skge->duplex == DUPLEX_FULL)
1282 ctl |= PHY_CT_DUP_MD;
1283 /* Force to slave */
1284 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1285 }
1286
1287 /* Set autonegotiation pause parameters */
1288 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1289 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1290
1291 /* Handle Jumbo frames */
1292 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1293 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1294 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1295
1296 ext |= PHY_B_PEC_HIGH_LA;
1297
1298 }
1299
1300 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1301 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1302
1303 /* Use link status change interrupt */
1304 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1305 }
1306
1307 static void xm_phy_init(struct skge_port *skge)
1308 {
1309 struct skge_hw *hw = skge->hw;
1310 int port = skge->port;
1311 u16 ctrl = 0;
1312
1313 if (skge->autoneg == AUTONEG_ENABLE) {
1314 if (skge->advertising & ADVERTISED_1000baseT_Half)
1315 ctrl |= PHY_X_AN_HD;
1316 if (skge->advertising & ADVERTISED_1000baseT_Full)
1317 ctrl |= PHY_X_AN_FD;
1318
1319 ctrl |= fiber_pause_map[skge->flow_control];
1320
1321 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1322
1323 /* Restart Auto-negotiation */
1324 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1325 } else {
1326 /* Set DuplexMode in Config register */
1327 if (skge->duplex == DUPLEX_FULL)
1328 ctrl |= PHY_CT_DUP_MD;
1329 /*
1330 * Do NOT enable Auto-negotiation here. This would hold
1331 * the link down because no IDLEs are transmitted
1332 */
1333 }
1334
1335 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1336
1337 /* Poll PHY for status changes */
1338 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1339 }
1340
1341 static int xm_check_link(struct net_device *dev)
1342 {
1343 struct skge_port *skge = netdev_priv(dev);
1344 struct skge_hw *hw = skge->hw;
1345 int port = skge->port;
1346 u16 status;
1347
1348 /* read twice because of latch */
1349 xm_phy_read(hw, port, PHY_XMAC_STAT);
1350 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1351
1352 if ((status & PHY_ST_LSYNC) == 0) {
1353 xm_link_down(hw, port);
1354 return 0;
1355 }
1356
1357 if (skge->autoneg == AUTONEG_ENABLE) {
1358 u16 lpa, res;
1359
1360 if (!(status & PHY_ST_AN_OVER))
1361 return 0;
1362
1363 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1364 if (lpa & PHY_B_AN_RF) {
1365 printk(KERN_NOTICE PFX "%s: remote fault\n",
1366 dev->name);
1367 return 0;
1368 }
1369
1370 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1371
1372 /* Check Duplex mismatch */
1373 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1374 case PHY_X_RS_FD:
1375 skge->duplex = DUPLEX_FULL;
1376 break;
1377 case PHY_X_RS_HD:
1378 skge->duplex = DUPLEX_HALF;
1379 break;
1380 default:
1381 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1382 dev->name);
1383 return 0;
1384 }
1385
1386 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1387 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1388 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1389 (lpa & PHY_X_P_SYM_MD))
1390 skge->flow_status = FLOW_STAT_SYMMETRIC;
1391 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1392 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1393 /* Enable PAUSE receive, disable PAUSE transmit */
1394 skge->flow_status = FLOW_STAT_REM_SEND;
1395 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1396 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1397 /* Disable PAUSE receive, enable PAUSE transmit */
1398 skge->flow_status = FLOW_STAT_LOC_SEND;
1399 else
1400 skge->flow_status = FLOW_STAT_NONE;
1401
1402 skge->speed = SPEED_1000;
1403 }
1404
1405 if (!netif_carrier_ok(dev))
1406 genesis_link_up(skge);
1407 return 1;
1408 }
1409
1410 /* Poll to check for link coming up.
1411 *
1412 * Since internal PHY is wired to a level triggered pin, can't
1413 * get an interrupt when carrier is detected, need to poll for
1414 * link coming up.
1415 */
1416 static void xm_link_timer(unsigned long arg)
1417 {
1418 struct skge_port *skge = (struct skge_port *) arg;
1419 struct net_device *dev = skge->netdev;
1420 struct skge_hw *hw = skge->hw;
1421 int port = skge->port;
1422 int i;
1423 unsigned long flags;
1424
1425 if (!netif_running(dev))
1426 return;
1427
1428 spin_lock_irqsave(&hw->phy_lock, flags);
1429
1430 /*
1431 * Verify that the link by checking GPIO register three times.
1432 * This pin has the signal from the link_sync pin connected to it.
1433 */
1434 for (i = 0; i < 3; i++) {
1435 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1436 goto link_down;
1437 }
1438
1439 /* Re-enable interrupt to detect link down */
1440 if (xm_check_link(dev)) {
1441 u16 msk = xm_read16(hw, port, XM_IMSK);
1442 msk &= ~XM_IS_INP_ASS;
1443 xm_write16(hw, port, XM_IMSK, msk);
1444 xm_read16(hw, port, XM_ISRC);
1445 } else {
1446 link_down:
1447 mod_timer(&skge->link_timer,
1448 round_jiffies(jiffies + LINK_HZ));
1449 }
1450 spin_unlock_irqrestore(&hw->phy_lock, flags);
1451 }
1452
1453 static void genesis_mac_init(struct skge_hw *hw, int port)
1454 {
1455 struct net_device *dev = hw->dev[port];
1456 struct skge_port *skge = netdev_priv(dev);
1457 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1458 int i;
1459 u32 r;
1460 const u8 zero[6] = { 0 };
1461
1462 for (i = 0; i < 10; i++) {
1463 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1464 MFF_SET_MAC_RST);
1465 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1466 goto reset_ok;
1467 udelay(1);
1468 }
1469
1470 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1471
1472 reset_ok:
1473 /* Unreset the XMAC. */
1474 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1475
1476 /*
1477 * Perform additional initialization for external PHYs,
1478 * namely for the 1000baseTX cards that use the XMAC's
1479 * GMII mode.
1480 */
1481 if (hw->phy_type != SK_PHY_XMAC) {
1482 /* Take external Phy out of reset */
1483 r = skge_read32(hw, B2_GP_IO);
1484 if (port == 0)
1485 r |= GP_DIR_0|GP_IO_0;
1486 else
1487 r |= GP_DIR_2|GP_IO_2;
1488
1489 skge_write32(hw, B2_GP_IO, r);
1490
1491 /* Enable GMII interface */
1492 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1493 }
1494
1495
1496 switch(hw->phy_type) {
1497 case SK_PHY_XMAC:
1498 xm_phy_init(skge);
1499 break;
1500 case SK_PHY_BCOM:
1501 bcom_phy_init(skge);
1502 bcom_check_link(hw, port);
1503 }
1504
1505 /* Set Station Address */
1506 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1507
1508 /* We don't use match addresses so clear */
1509 for (i = 1; i < 16; i++)
1510 xm_outaddr(hw, port, XM_EXM(i), zero);
1511
1512 /* Clear MIB counters */
1513 xm_write16(hw, port, XM_STAT_CMD,
1514 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1515 /* Clear two times according to Errata #3 */
1516 xm_write16(hw, port, XM_STAT_CMD,
1517 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1518
1519 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1520 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1521
1522 /* We don't need the FCS appended to the packet. */
1523 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1524 if (jumbo)
1525 r |= XM_RX_BIG_PK_OK;
1526
1527 if (skge->duplex == DUPLEX_HALF) {
1528 /*
1529 * If in manual half duplex mode the other side might be in
1530 * full duplex mode, so ignore if a carrier extension is not seen
1531 * on frames received
1532 */
1533 r |= XM_RX_DIS_CEXT;
1534 }
1535 xm_write16(hw, port, XM_RX_CMD, r);
1536
1537
1538 /* We want short frames padded to 60 bytes. */
1539 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1540
1541 /*
1542 * Bump up the transmit threshold. This helps hold off transmit
1543 * underruns when we're blasting traffic from both ports at once.
1544 */
1545 xm_write16(hw, port, XM_TX_THR, 512);
1546
1547 /*
1548 * Enable the reception of all error frames. This is is
1549 * a necessary evil due to the design of the XMAC. The
1550 * XMAC's receive FIFO is only 8K in size, however jumbo
1551 * frames can be up to 9000 bytes in length. When bad
1552 * frame filtering is enabled, the XMAC's RX FIFO operates
1553 * in 'store and forward' mode. For this to work, the
1554 * entire frame has to fit into the FIFO, but that means
1555 * that jumbo frames larger than 8192 bytes will be
1556 * truncated. Disabling all bad frame filtering causes
1557 * the RX FIFO to operate in streaming mode, in which
1558 * case the XMAC will start transferring frames out of the
1559 * RX FIFO as soon as the FIFO threshold is reached.
1560 */
1561 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1562
1563
1564 /*
1565 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1566 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1567 * and 'Octets Rx OK Hi Cnt Ov'.
1568 */
1569 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1570
1571 /*
1572 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1573 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1574 * and 'Octets Tx OK Hi Cnt Ov'.
1575 */
1576 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1577
1578 /* Configure MAC arbiter */
1579 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1580
1581 /* configure timeout values */
1582 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1583 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1584 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1585 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1586
1587 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1588 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1589 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1590 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1591
1592 /* Configure Rx MAC FIFO */
1593 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1594 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1595 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1596
1597 /* Configure Tx MAC FIFO */
1598 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1599 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1600 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1601
1602 if (jumbo) {
1603 /* Enable frame flushing if jumbo frames used */
1604 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1605 } else {
1606 /* enable timeout timers if normal frames */
1607 skge_write16(hw, B3_PA_CTRL,
1608 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1609 }
1610 }
1611
1612 static void genesis_stop(struct skge_port *skge)
1613 {
1614 struct skge_hw *hw = skge->hw;
1615 int port = skge->port;
1616 u32 reg;
1617
1618 genesis_reset(hw, port);
1619
1620 /* Clear Tx packet arbiter timeout IRQ */
1621 skge_write16(hw, B3_PA_CTRL,
1622 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1623
1624 /*
1625 * If the transfer sticks at the MAC the STOP command will not
1626 * terminate if we don't flush the XMAC's transmit FIFO !
1627 */
1628 xm_write32(hw, port, XM_MODE,
1629 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1630
1631
1632 /* Reset the MAC */
1633 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1634
1635 /* For external PHYs there must be special handling */
1636 if (hw->phy_type != SK_PHY_XMAC) {
1637 reg = skge_read32(hw, B2_GP_IO);
1638 if (port == 0) {
1639 reg |= GP_DIR_0;
1640 reg &= ~GP_IO_0;
1641 } else {
1642 reg |= GP_DIR_2;
1643 reg &= ~GP_IO_2;
1644 }
1645 skge_write32(hw, B2_GP_IO, reg);
1646 skge_read32(hw, B2_GP_IO);
1647 }
1648
1649 xm_write16(hw, port, XM_MMU_CMD,
1650 xm_read16(hw, port, XM_MMU_CMD)
1651 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1652
1653 xm_read16(hw, port, XM_MMU_CMD);
1654 }
1655
1656
1657 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1658 {
1659 struct skge_hw *hw = skge->hw;
1660 int port = skge->port;
1661 int i;
1662 unsigned long timeout = jiffies + HZ;
1663
1664 xm_write16(hw, port,
1665 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1666
1667 /* wait for update to complete */
1668 while (xm_read16(hw, port, XM_STAT_CMD)
1669 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1670 if (time_after(jiffies, timeout))
1671 break;
1672 udelay(10);
1673 }
1674
1675 /* special case for 64 bit octet counter */
1676 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1677 | xm_read32(hw, port, XM_TXO_OK_LO);
1678 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1679 | xm_read32(hw, port, XM_RXO_OK_LO);
1680
1681 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1682 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1683 }
1684
1685 static void genesis_mac_intr(struct skge_hw *hw, int port)
1686 {
1687 struct skge_port *skge = netdev_priv(hw->dev[port]);
1688 u16 status = xm_read16(hw, port, XM_ISRC);
1689
1690 if (netif_msg_intr(skge))
1691 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1692 skge->netdev->name, status);
1693
1694 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1695 xm_link_down(hw, port);
1696 mod_timer(&skge->link_timer, jiffies + 1);
1697 }
1698
1699 if (status & XM_IS_TXF_UR) {
1700 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1701 ++skge->net_stats.tx_fifo_errors;
1702 }
1703
1704 if (status & XM_IS_RXF_OV) {
1705 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1706 ++skge->net_stats.rx_fifo_errors;
1707 }
1708 }
1709
1710 static void genesis_link_up(struct skge_port *skge)
1711 {
1712 struct skge_hw *hw = skge->hw;
1713 int port = skge->port;
1714 u16 cmd, msk;
1715 u32 mode;
1716
1717 cmd = xm_read16(hw, port, XM_MMU_CMD);
1718
1719 /*
1720 * enabling pause frame reception is required for 1000BT
1721 * because the XMAC is not reset if the link is going down
1722 */
1723 if (skge->flow_status == FLOW_STAT_NONE ||
1724 skge->flow_status == FLOW_STAT_LOC_SEND)
1725 /* Disable Pause Frame Reception */
1726 cmd |= XM_MMU_IGN_PF;
1727 else
1728 /* Enable Pause Frame Reception */
1729 cmd &= ~XM_MMU_IGN_PF;
1730
1731 xm_write16(hw, port, XM_MMU_CMD, cmd);
1732
1733 mode = xm_read32(hw, port, XM_MODE);
1734 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1735 skge->flow_status == FLOW_STAT_LOC_SEND) {
1736 /*
1737 * Configure Pause Frame Generation
1738 * Use internal and external Pause Frame Generation.
1739 * Sending pause frames is edge triggered.
1740 * Send a Pause frame with the maximum pause time if
1741 * internal oder external FIFO full condition occurs.
1742 * Send a zero pause time frame to re-start transmission.
1743 */
1744 /* XM_PAUSE_DA = '010000C28001' (default) */
1745 /* XM_MAC_PTIME = 0xffff (maximum) */
1746 /* remember this value is defined in big endian (!) */
1747 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1748
1749 mode |= XM_PAUSE_MODE;
1750 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1751 } else {
1752 /*
1753 * disable pause frame generation is required for 1000BT
1754 * because the XMAC is not reset if the link is going down
1755 */
1756 /* Disable Pause Mode in Mode Register */
1757 mode &= ~XM_PAUSE_MODE;
1758
1759 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1760 }
1761
1762 xm_write32(hw, port, XM_MODE, mode);
1763
1764 /* Turn on detection of Tx underrun, Rx overrun */
1765 msk = xm_read16(hw, port, XM_IMSK);
1766 msk &= ~(XM_IS_RXF_OV | XM_IS_TXF_UR);
1767 xm_write16(hw, port, XM_IMSK, msk);
1768
1769 xm_read16(hw, port, XM_ISRC);
1770
1771 /* get MMU Command Reg. */
1772 cmd = xm_read16(hw, port, XM_MMU_CMD);
1773 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1774 cmd |= XM_MMU_GMII_FD;
1775
1776 /*
1777 * Workaround BCOM Errata (#10523) for all BCom Phys
1778 * Enable Power Management after link up
1779 */
1780 if (hw->phy_type == SK_PHY_BCOM) {
1781 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1782 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1783 & ~PHY_B_AC_DIS_PM);
1784 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1785 }
1786
1787 /* enable Rx/Tx */
1788 xm_write16(hw, port, XM_MMU_CMD,
1789 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1790 skge_link_up(skge);
1791 }
1792
1793
1794 static inline void bcom_phy_intr(struct skge_port *skge)
1795 {
1796 struct skge_hw *hw = skge->hw;
1797 int port = skge->port;
1798 u16 isrc;
1799
1800 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1801 if (netif_msg_intr(skge))
1802 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1803 skge->netdev->name, isrc);
1804
1805 if (isrc & PHY_B_IS_PSE)
1806 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1807 hw->dev[port]->name);
1808
1809 /* Workaround BCom Errata:
1810 * enable and disable loopback mode if "NO HCD" occurs.
1811 */
1812 if (isrc & PHY_B_IS_NO_HDCL) {
1813 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1814 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1815 ctrl | PHY_CT_LOOP);
1816 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1817 ctrl & ~PHY_CT_LOOP);
1818 }
1819
1820 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1821 bcom_check_link(hw, port);
1822
1823 }
1824
1825 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1826 {
1827 int i;
1828
1829 gma_write16(hw, port, GM_SMI_DATA, val);
1830 gma_write16(hw, port, GM_SMI_CTRL,
1831 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1832 for (i = 0; i < PHY_RETRIES; i++) {
1833 udelay(1);
1834
1835 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1836 return 0;
1837 }
1838
1839 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1840 hw->dev[port]->name);
1841 return -EIO;
1842 }
1843
1844 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1845 {
1846 int i;
1847
1848 gma_write16(hw, port, GM_SMI_CTRL,
1849 GM_SMI_CT_PHY_AD(hw->phy_addr)
1850 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1851
1852 for (i = 0; i < PHY_RETRIES; i++) {
1853 udelay(1);
1854 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1855 goto ready;
1856 }
1857
1858 return -ETIMEDOUT;
1859 ready:
1860 *val = gma_read16(hw, port, GM_SMI_DATA);
1861 return 0;
1862 }
1863
1864 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1865 {
1866 u16 v = 0;
1867 if (__gm_phy_read(hw, port, reg, &v))
1868 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1869 hw->dev[port]->name);
1870 return v;
1871 }
1872
1873 /* Marvell Phy Initialization */
1874 static void yukon_init(struct skge_hw *hw, int port)
1875 {
1876 struct skge_port *skge = netdev_priv(hw->dev[port]);
1877 u16 ctrl, ct1000, adv;
1878
1879 if (skge->autoneg == AUTONEG_ENABLE) {
1880 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1881
1882 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1883 PHY_M_EC_MAC_S_MSK);
1884 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1885
1886 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1887
1888 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1889 }
1890
1891 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1892 if (skge->autoneg == AUTONEG_DISABLE)
1893 ctrl &= ~PHY_CT_ANE;
1894
1895 ctrl |= PHY_CT_RESET;
1896 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1897
1898 ctrl = 0;
1899 ct1000 = 0;
1900 adv = PHY_AN_CSMA;
1901
1902 if (skge->autoneg == AUTONEG_ENABLE) {
1903 if (hw->copper) {
1904 if (skge->advertising & ADVERTISED_1000baseT_Full)
1905 ct1000 |= PHY_M_1000C_AFD;
1906 if (skge->advertising & ADVERTISED_1000baseT_Half)
1907 ct1000 |= PHY_M_1000C_AHD;
1908 if (skge->advertising & ADVERTISED_100baseT_Full)
1909 adv |= PHY_M_AN_100_FD;
1910 if (skge->advertising & ADVERTISED_100baseT_Half)
1911 adv |= PHY_M_AN_100_HD;
1912 if (skge->advertising & ADVERTISED_10baseT_Full)
1913 adv |= PHY_M_AN_10_FD;
1914 if (skge->advertising & ADVERTISED_10baseT_Half)
1915 adv |= PHY_M_AN_10_HD;
1916
1917 /* Set Flow-control capabilities */
1918 adv |= phy_pause_map[skge->flow_control];
1919 } else {
1920 if (skge->advertising & ADVERTISED_1000baseT_Full)
1921 adv |= PHY_M_AN_1000X_AFD;
1922 if (skge->advertising & ADVERTISED_1000baseT_Half)
1923 adv |= PHY_M_AN_1000X_AHD;
1924
1925 adv |= fiber_pause_map[skge->flow_control];
1926 }
1927
1928 /* Restart Auto-negotiation */
1929 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1930 } else {
1931 /* forced speed/duplex settings */
1932 ct1000 = PHY_M_1000C_MSE;
1933
1934 if (skge->duplex == DUPLEX_FULL)
1935 ctrl |= PHY_CT_DUP_MD;
1936
1937 switch (skge->speed) {
1938 case SPEED_1000:
1939 ctrl |= PHY_CT_SP1000;
1940 break;
1941 case SPEED_100:
1942 ctrl |= PHY_CT_SP100;
1943 break;
1944 }
1945
1946 ctrl |= PHY_CT_RESET;
1947 }
1948
1949 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1950
1951 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1952 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1953
1954 /* Enable phy interrupt on autonegotiation complete (or link up) */
1955 if (skge->autoneg == AUTONEG_ENABLE)
1956 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1957 else
1958 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1959 }
1960
1961 static void yukon_reset(struct skge_hw *hw, int port)
1962 {
1963 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1964 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1965 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1966 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1967 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1968
1969 gma_write16(hw, port, GM_RX_CTRL,
1970 gma_read16(hw, port, GM_RX_CTRL)
1971 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1972 }
1973
1974 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1975 static int is_yukon_lite_a0(struct skge_hw *hw)
1976 {
1977 u32 reg;
1978 int ret;
1979
1980 if (hw->chip_id != CHIP_ID_YUKON)
1981 return 0;
1982
1983 reg = skge_read32(hw, B2_FAR);
1984 skge_write8(hw, B2_FAR + 3, 0xff);
1985 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1986 skge_write32(hw, B2_FAR, reg);
1987 return ret;
1988 }
1989
1990 static void yukon_mac_init(struct skge_hw *hw, int port)
1991 {
1992 struct skge_port *skge = netdev_priv(hw->dev[port]);
1993 int i;
1994 u32 reg;
1995 const u8 *addr = hw->dev[port]->dev_addr;
1996
1997 /* WA code for COMA mode -- set PHY reset */
1998 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1999 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2000 reg = skge_read32(hw, B2_GP_IO);
2001 reg |= GP_DIR_9 | GP_IO_9;
2002 skge_write32(hw, B2_GP_IO, reg);
2003 }
2004
2005 /* hard reset */
2006 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2007 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2008
2009 /* WA code for COMA mode -- clear PHY reset */
2010 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2011 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2012 reg = skge_read32(hw, B2_GP_IO);
2013 reg |= GP_DIR_9;
2014 reg &= ~GP_IO_9;
2015 skge_write32(hw, B2_GP_IO, reg);
2016 }
2017
2018 /* Set hardware config mode */
2019 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2020 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2021 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2022
2023 /* Clear GMC reset */
2024 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2025 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2026 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2027
2028 if (skge->autoneg == AUTONEG_DISABLE) {
2029 reg = GM_GPCR_AU_ALL_DIS;
2030 gma_write16(hw, port, GM_GP_CTRL,
2031 gma_read16(hw, port, GM_GP_CTRL) | reg);
2032
2033 switch (skge->speed) {
2034 case SPEED_1000:
2035 reg &= ~GM_GPCR_SPEED_100;
2036 reg |= GM_GPCR_SPEED_1000;
2037 break;
2038 case SPEED_100:
2039 reg &= ~GM_GPCR_SPEED_1000;
2040 reg |= GM_GPCR_SPEED_100;
2041 break;
2042 case SPEED_10:
2043 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2044 break;
2045 }
2046
2047 if (skge->duplex == DUPLEX_FULL)
2048 reg |= GM_GPCR_DUP_FULL;
2049 } else
2050 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2051
2052 switch (skge->flow_control) {
2053 case FLOW_MODE_NONE:
2054 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2055 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2056 break;
2057 case FLOW_MODE_LOC_SEND:
2058 /* disable Rx flow-control */
2059 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2060 break;
2061 case FLOW_MODE_SYMMETRIC:
2062 case FLOW_MODE_SYM_OR_REM:
2063 /* enable Tx & Rx flow-control */
2064 break;
2065 }
2066
2067 gma_write16(hw, port, GM_GP_CTRL, reg);
2068 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2069
2070 yukon_init(hw, port);
2071
2072 /* MIB clear */
2073 reg = gma_read16(hw, port, GM_PHY_ADDR);
2074 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2075
2076 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2077 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2078 gma_write16(hw, port, GM_PHY_ADDR, reg);
2079
2080 /* transmit control */
2081 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2082
2083 /* receive control reg: unicast + multicast + no FCS */
2084 gma_write16(hw, port, GM_RX_CTRL,
2085 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2086
2087 /* transmit flow control */
2088 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2089
2090 /* transmit parameter */
2091 gma_write16(hw, port, GM_TX_PARAM,
2092 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2093 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2094 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2095
2096 /* serial mode register */
2097 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2098 if (hw->dev[port]->mtu > 1500)
2099 reg |= GM_SMOD_JUMBO_ENA;
2100
2101 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2102
2103 /* physical address: used for pause frames */
2104 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2105 /* virtual address for data */
2106 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2107
2108 /* enable interrupt mask for counter overflows */
2109 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2110 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2111 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2112
2113 /* Initialize Mac Fifo */
2114
2115 /* Configure Rx MAC FIFO */
2116 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2117 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2118
2119 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2120 if (is_yukon_lite_a0(hw))
2121 reg &= ~GMF_RX_F_FL_ON;
2122
2123 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2124 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2125 /*
2126 * because Pause Packet Truncation in GMAC is not working
2127 * we have to increase the Flush Threshold to 64 bytes
2128 * in order to flush pause packets in Rx FIFO on Yukon-1
2129 */
2130 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2131
2132 /* Configure Tx MAC FIFO */
2133 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2134 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2135 }
2136
2137 /* Go into power down mode */
2138 static void yukon_suspend(struct skge_hw *hw, int port)
2139 {
2140 u16 ctrl;
2141
2142 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2143 ctrl |= PHY_M_PC_POL_R_DIS;
2144 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2145
2146 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2147 ctrl |= PHY_CT_RESET;
2148 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2149
2150 /* switch IEEE compatible power down mode on */
2151 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2152 ctrl |= PHY_CT_PDOWN;
2153 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2154 }
2155
2156 static void yukon_stop(struct skge_port *skge)
2157 {
2158 struct skge_hw *hw = skge->hw;
2159 int port = skge->port;
2160
2161 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2162 yukon_reset(hw, port);
2163
2164 gma_write16(hw, port, GM_GP_CTRL,
2165 gma_read16(hw, port, GM_GP_CTRL)
2166 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2167 gma_read16(hw, port, GM_GP_CTRL);
2168
2169 yukon_suspend(hw, port);
2170
2171 /* set GPHY Control reset */
2172 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2173 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2174 }
2175
2176 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2177 {
2178 struct skge_hw *hw = skge->hw;
2179 int port = skge->port;
2180 int i;
2181
2182 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2183 | gma_read32(hw, port, GM_TXO_OK_LO);
2184 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2185 | gma_read32(hw, port, GM_RXO_OK_LO);
2186
2187 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2188 data[i] = gma_read32(hw, port,
2189 skge_stats[i].gma_offset);
2190 }
2191
2192 static void yukon_mac_intr(struct skge_hw *hw, int port)
2193 {
2194 struct net_device *dev = hw->dev[port];
2195 struct skge_port *skge = netdev_priv(dev);
2196 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2197
2198 if (netif_msg_intr(skge))
2199 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2200 dev->name, status);
2201
2202 if (status & GM_IS_RX_FF_OR) {
2203 ++skge->net_stats.rx_fifo_errors;
2204 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2205 }
2206
2207 if (status & GM_IS_TX_FF_UR) {
2208 ++skge->net_stats.tx_fifo_errors;
2209 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2210 }
2211
2212 }
2213
2214 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2215 {
2216 switch (aux & PHY_M_PS_SPEED_MSK) {
2217 case PHY_M_PS_SPEED_1000:
2218 return SPEED_1000;
2219 case PHY_M_PS_SPEED_100:
2220 return SPEED_100;
2221 default:
2222 return SPEED_10;
2223 }
2224 }
2225
2226 static void yukon_link_up(struct skge_port *skge)
2227 {
2228 struct skge_hw *hw = skge->hw;
2229 int port = skge->port;
2230 u16 reg;
2231
2232 /* Enable Transmit FIFO Underrun */
2233 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2234
2235 reg = gma_read16(hw, port, GM_GP_CTRL);
2236 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2237 reg |= GM_GPCR_DUP_FULL;
2238
2239 /* enable Rx/Tx */
2240 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2241 gma_write16(hw, port, GM_GP_CTRL, reg);
2242
2243 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2244 skge_link_up(skge);
2245 }
2246
2247 static void yukon_link_down(struct skge_port *skge)
2248 {
2249 struct skge_hw *hw = skge->hw;
2250 int port = skge->port;
2251 u16 ctrl;
2252
2253 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2254 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2255 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2256
2257 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2258 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2259 ctrl |= PHY_M_AN_ASP;
2260 /* restore Asymmetric Pause bit */
2261 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2262 }
2263
2264 skge_link_down(skge);
2265
2266 yukon_init(hw, port);
2267 }
2268
2269 static void yukon_phy_intr(struct skge_port *skge)
2270 {
2271 struct skge_hw *hw = skge->hw;
2272 int port = skge->port;
2273 const char *reason = NULL;
2274 u16 istatus, phystat;
2275
2276 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2277 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2278
2279 if (netif_msg_intr(skge))
2280 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2281 skge->netdev->name, istatus, phystat);
2282
2283 if (istatus & PHY_M_IS_AN_COMPL) {
2284 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2285 & PHY_M_AN_RF) {
2286 reason = "remote fault";
2287 goto failed;
2288 }
2289
2290 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2291 reason = "master/slave fault";
2292 goto failed;
2293 }
2294
2295 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2296 reason = "speed/duplex";
2297 goto failed;
2298 }
2299
2300 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2301 ? DUPLEX_FULL : DUPLEX_HALF;
2302 skge->speed = yukon_speed(hw, phystat);
2303
2304 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2305 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2306 case PHY_M_PS_PAUSE_MSK:
2307 skge->flow_status = FLOW_STAT_SYMMETRIC;
2308 break;
2309 case PHY_M_PS_RX_P_EN:
2310 skge->flow_status = FLOW_STAT_REM_SEND;
2311 break;
2312 case PHY_M_PS_TX_P_EN:
2313 skge->flow_status = FLOW_STAT_LOC_SEND;
2314 break;
2315 default:
2316 skge->flow_status = FLOW_STAT_NONE;
2317 }
2318
2319 if (skge->flow_status == FLOW_STAT_NONE ||
2320 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2321 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2322 else
2323 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2324 yukon_link_up(skge);
2325 return;
2326 }
2327
2328 if (istatus & PHY_M_IS_LSP_CHANGE)
2329 skge->speed = yukon_speed(hw, phystat);
2330
2331 if (istatus & PHY_M_IS_DUP_CHANGE)
2332 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2333 if (istatus & PHY_M_IS_LST_CHANGE) {
2334 if (phystat & PHY_M_PS_LINK_UP)
2335 yukon_link_up(skge);
2336 else
2337 yukon_link_down(skge);
2338 }
2339 return;
2340 failed:
2341 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2342 skge->netdev->name, reason);
2343
2344 /* XXX restart autonegotiation? */
2345 }
2346
2347 static void skge_phy_reset(struct skge_port *skge)
2348 {
2349 struct skge_hw *hw = skge->hw;
2350 int port = skge->port;
2351 struct net_device *dev = hw->dev[port];
2352
2353 netif_stop_queue(skge->netdev);
2354 netif_carrier_off(skge->netdev);
2355
2356 spin_lock_bh(&hw->phy_lock);
2357 if (hw->chip_id == CHIP_ID_GENESIS) {
2358 genesis_reset(hw, port);
2359 genesis_mac_init(hw, port);
2360 } else {
2361 yukon_reset(hw, port);
2362 yukon_init(hw, port);
2363 }
2364 spin_unlock_bh(&hw->phy_lock);
2365
2366 dev->set_multicast_list(dev);
2367 }
2368
2369 /* Basic MII support */
2370 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2371 {
2372 struct mii_ioctl_data *data = if_mii(ifr);
2373 struct skge_port *skge = netdev_priv(dev);
2374 struct skge_hw *hw = skge->hw;
2375 int err = -EOPNOTSUPP;
2376
2377 if (!netif_running(dev))
2378 return -ENODEV; /* Phy still in reset */
2379
2380 switch(cmd) {
2381 case SIOCGMIIPHY:
2382 data->phy_id = hw->phy_addr;
2383
2384 /* fallthru */
2385 case SIOCGMIIREG: {
2386 u16 val = 0;
2387 spin_lock_bh(&hw->phy_lock);
2388 if (hw->chip_id == CHIP_ID_GENESIS)
2389 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2390 else
2391 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2392 spin_unlock_bh(&hw->phy_lock);
2393 data->val_out = val;
2394 break;
2395 }
2396
2397 case SIOCSMIIREG:
2398 if (!capable(CAP_NET_ADMIN))
2399 return -EPERM;
2400
2401 spin_lock_bh(&hw->phy_lock);
2402 if (hw->chip_id == CHIP_ID_GENESIS)
2403 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2404 data->val_in);
2405 else
2406 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2407 data->val_in);
2408 spin_unlock_bh(&hw->phy_lock);
2409 break;
2410 }
2411 return err;
2412 }
2413
2414 /* Assign Ram Buffer allocation to queue */
2415 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, u32 space)
2416 {
2417 u32 end;
2418
2419 /* convert from K bytes to qwords used for hw register */
2420 start *= 1024/8;
2421 space *= 1024/8;
2422 end = start + space - 1;
2423
2424 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2425 skge_write32(hw, RB_ADDR(q, RB_START), start);
2426 skge_write32(hw, RB_ADDR(q, RB_END), end);
2427 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2428 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2429
2430 if (q == Q_R1 || q == Q_R2) {
2431 u32 tp = space - space/4;
2432
2433 /* Set thresholds on receive queue's */
2434 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
2435 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
2436 } else if (hw->chip_id != CHIP_ID_GENESIS)
2437 /* Genesis Tx Fifo is too small for normal store/forward */
2438 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2439
2440 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2441 }
2442
2443 /* Setup Bus Memory Interface */
2444 static void skge_qset(struct skge_port *skge, u16 q,
2445 const struct skge_element *e)
2446 {
2447 struct skge_hw *hw = skge->hw;
2448 u32 watermark = 0x600;
2449 u64 base = skge->dma + (e->desc - skge->mem);
2450
2451 /* optimization to reduce window on 32bit/33mhz */
2452 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2453 watermark /= 2;
2454
2455 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2456 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2457 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2458 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2459 }
2460
2461 static int skge_up(struct net_device *dev)
2462 {
2463 struct skge_port *skge = netdev_priv(dev);
2464 struct skge_hw *hw = skge->hw;
2465 int port = skge->port;
2466 u32 ramaddr, ramsize, rxspace;
2467 size_t rx_size, tx_size;
2468 int err;
2469
2470 if (!is_valid_ether_addr(dev->dev_addr))
2471 return -EINVAL;
2472
2473 if (netif_msg_ifup(skge))
2474 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2475
2476 if (dev->mtu > RX_BUF_SIZE)
2477 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2478 else
2479 skge->rx_buf_size = RX_BUF_SIZE;
2480
2481
2482 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2483 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2484 skge->mem_size = tx_size + rx_size;
2485 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2486 if (!skge->mem)
2487 return -ENOMEM;
2488
2489 BUG_ON(skge->dma & 7);
2490
2491 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2492 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2493 err = -EINVAL;
2494 goto free_pci_mem;
2495 }
2496
2497 memset(skge->mem, 0, skge->mem_size);
2498
2499 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2500 if (err)
2501 goto free_pci_mem;
2502
2503 err = skge_rx_fill(dev);
2504 if (err)
2505 goto free_rx_ring;
2506
2507 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2508 skge->dma + rx_size);
2509 if (err)
2510 goto free_rx_ring;
2511
2512 /* Initialize MAC */
2513 spin_lock_bh(&hw->phy_lock);
2514 if (hw->chip_id == CHIP_ID_GENESIS)
2515 genesis_mac_init(hw, port);
2516 else
2517 yukon_mac_init(hw, port);
2518 spin_unlock_bh(&hw->phy_lock);
2519
2520 /* Configure RAMbuffers */
2521 ramsize = (hw->ram_size - hw->ram_offset) / hw->ports;
2522 ramaddr = hw->ram_offset + port * ramsize;
2523 rxspace = 8 + (2*(ramsize - 16))/3;
2524
2525 skge_ramset(hw, rxqaddr[port], ramaddr, rxspace);
2526 skge_ramset(hw, txqaddr[port], ramaddr + rxspace, ramsize - rxspace);
2527
2528 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2529 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2530 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2531
2532 /* Start receiver BMU */
2533 wmb();
2534 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2535 skge_led(skge, LED_MODE_ON);
2536
2537 spin_lock_irq(&hw->hw_lock);
2538 hw->intr_mask |= portmask[port];
2539 skge_write32(hw, B0_IMSK, hw->intr_mask);
2540 spin_unlock_irq(&hw->hw_lock);
2541
2542 napi_enable(&skge->napi);
2543 return 0;
2544
2545 free_rx_ring:
2546 skge_rx_clean(skge);
2547 kfree(skge->rx_ring.start);
2548 free_pci_mem:
2549 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2550 skge->mem = NULL;
2551
2552 return err;
2553 }
2554
2555 /* stop receiver */
2556 static void skge_rx_stop(struct skge_hw *hw, int port)
2557 {
2558 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2559 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2560 RB_RST_SET|RB_DIS_OP_MD);
2561 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2562 }
2563
2564 static int skge_down(struct net_device *dev)
2565 {
2566 struct skge_port *skge = netdev_priv(dev);
2567 struct skge_hw *hw = skge->hw;
2568 int port = skge->port;
2569
2570 if (skge->mem == NULL)
2571 return 0;
2572
2573 if (netif_msg_ifdown(skge))
2574 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2575
2576 netif_stop_queue(dev);
2577
2578 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2579 del_timer_sync(&skge->link_timer);
2580
2581 napi_disable(&skge->napi);
2582 netif_carrier_off(dev);
2583
2584 spin_lock_irq(&hw->hw_lock);
2585 hw->intr_mask &= ~portmask[port];
2586 skge_write32(hw, B0_IMSK, hw->intr_mask);
2587 spin_unlock_irq(&hw->hw_lock);
2588
2589 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2590 if (hw->chip_id == CHIP_ID_GENESIS)
2591 genesis_stop(skge);
2592 else
2593 yukon_stop(skge);
2594
2595 /* Stop transmitter */
2596 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2597 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2598 RB_RST_SET|RB_DIS_OP_MD);
2599
2600
2601 /* Disable Force Sync bit and Enable Alloc bit */
2602 skge_write8(hw, SK_REG(port, TXA_CTRL),
2603 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2604
2605 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2606 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2607 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2608
2609 /* Reset PCI FIFO */
2610 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2611 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2612
2613 /* Reset the RAM Buffer async Tx queue */
2614 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2615
2616 skge_rx_stop(hw, port);
2617
2618 if (hw->chip_id == CHIP_ID_GENESIS) {
2619 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2620 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2621 } else {
2622 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2623 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2624 }
2625
2626 skge_led(skge, LED_MODE_OFF);
2627
2628 netif_tx_lock_bh(dev);
2629 skge_tx_clean(dev);
2630 netif_tx_unlock_bh(dev);
2631
2632 skge_rx_clean(skge);
2633
2634 kfree(skge->rx_ring.start);
2635 kfree(skge->tx_ring.start);
2636 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2637 skge->mem = NULL;
2638 return 0;
2639 }
2640
2641 static inline int skge_avail(const struct skge_ring *ring)
2642 {
2643 smp_mb();
2644 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2645 + (ring->to_clean - ring->to_use) - 1;
2646 }
2647
2648 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2649 {
2650 struct skge_port *skge = netdev_priv(dev);
2651 struct skge_hw *hw = skge->hw;
2652 struct skge_element *e;
2653 struct skge_tx_desc *td;
2654 int i;
2655 u32 control, len;
2656 u64 map;
2657
2658 if (skb_padto(skb, ETH_ZLEN))
2659 return NETDEV_TX_OK;
2660
2661 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2662 return NETDEV_TX_BUSY;
2663
2664 e = skge->tx_ring.to_use;
2665 td = e->desc;
2666 BUG_ON(td->control & BMU_OWN);
2667 e->skb = skb;
2668 len = skb_headlen(skb);
2669 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2670 pci_unmap_addr_set(e, mapaddr, map);
2671 pci_unmap_len_set(e, maplen, len);
2672
2673 td->dma_lo = map;
2674 td->dma_hi = map >> 32;
2675
2676 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2677 const int offset = skb_transport_offset(skb);
2678
2679 /* This seems backwards, but it is what the sk98lin
2680 * does. Looks like hardware is wrong?
2681 */
2682 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2683 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2684 control = BMU_TCP_CHECK;
2685 else
2686 control = BMU_UDP_CHECK;
2687
2688 td->csum_offs = 0;
2689 td->csum_start = offset;
2690 td->csum_write = offset + skb->csum_offset;
2691 } else
2692 control = BMU_CHECK;
2693
2694 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2695 control |= BMU_EOF| BMU_IRQ_EOF;
2696 else {
2697 struct skge_tx_desc *tf = td;
2698
2699 control |= BMU_STFWD;
2700 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2701 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2702
2703 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2704 frag->size, PCI_DMA_TODEVICE);
2705
2706 e = e->next;
2707 e->skb = skb;
2708 tf = e->desc;
2709 BUG_ON(tf->control & BMU_OWN);
2710
2711 tf->dma_lo = map;
2712 tf->dma_hi = (u64) map >> 32;
2713 pci_unmap_addr_set(e, mapaddr, map);
2714 pci_unmap_len_set(e, maplen, frag->size);
2715
2716 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2717 }
2718 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2719 }
2720 /* Make sure all the descriptors written */
2721 wmb();
2722 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2723 wmb();
2724
2725 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2726
2727 if (unlikely(netif_msg_tx_queued(skge)))
2728 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2729 dev->name, e - skge->tx_ring.start, skb->len);
2730
2731 skge->tx_ring.to_use = e->next;
2732 smp_wmb();
2733
2734 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2735 pr_debug("%s: transmit queue full\n", dev->name);
2736 netif_stop_queue(dev);
2737 }
2738
2739 dev->trans_start = jiffies;
2740
2741 return NETDEV_TX_OK;
2742 }
2743
2744
2745 /* Free resources associated with this reing element */
2746 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2747 u32 control)
2748 {
2749 struct pci_dev *pdev = skge->hw->pdev;
2750
2751 /* skb header vs. fragment */
2752 if (control & BMU_STF)
2753 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2754 pci_unmap_len(e, maplen),
2755 PCI_DMA_TODEVICE);
2756 else
2757 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2758 pci_unmap_len(e, maplen),
2759 PCI_DMA_TODEVICE);
2760
2761 if (control & BMU_EOF) {
2762 if (unlikely(netif_msg_tx_done(skge)))
2763 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2764 skge->netdev->name, e - skge->tx_ring.start);
2765
2766 dev_kfree_skb(e->skb);
2767 }
2768 }
2769
2770 /* Free all buffers in transmit ring */
2771 static void skge_tx_clean(struct net_device *dev)
2772 {
2773 struct skge_port *skge = netdev_priv(dev);
2774 struct skge_element *e;
2775
2776 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2777 struct skge_tx_desc *td = e->desc;
2778 skge_tx_free(skge, e, td->control);
2779 td->control = 0;
2780 }
2781
2782 skge->tx_ring.to_clean = e;
2783 netif_wake_queue(dev);
2784 }
2785
2786 static void skge_tx_timeout(struct net_device *dev)
2787 {
2788 struct skge_port *skge = netdev_priv(dev);
2789
2790 if (netif_msg_timer(skge))
2791 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2792
2793 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2794 skge_tx_clean(dev);
2795 }
2796
2797 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2798 {
2799 struct skge_port *skge = netdev_priv(dev);
2800 struct skge_hw *hw = skge->hw;
2801 int port = skge->port;
2802 int err;
2803 u16 ctl, reg;
2804
2805 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2806 return -EINVAL;
2807
2808 if (!netif_running(dev)) {
2809 dev->mtu = new_mtu;
2810 return 0;
2811 }
2812
2813 skge_write32(hw, B0_IMSK, 0);
2814 dev->trans_start = jiffies; /* prevent tx timeout */
2815 netif_stop_queue(dev);
2816 napi_disable(&skge->napi);
2817
2818 ctl = gma_read16(hw, port, GM_GP_CTRL);
2819 gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
2820
2821 skge_rx_clean(skge);
2822 skge_rx_stop(hw, port);
2823
2824 dev->mtu = new_mtu;
2825
2826 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2827 if (new_mtu > 1500)
2828 reg |= GM_SMOD_JUMBO_ENA;
2829 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2830
2831 skge_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
2832
2833 err = skge_rx_fill(dev);
2834 wmb();
2835 if (!err)
2836 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2837 skge_write32(hw, B0_IMSK, hw->intr_mask);
2838
2839 if (err)
2840 dev_close(dev);
2841 else {
2842 gma_write16(hw, port, GM_GP_CTRL, ctl);
2843
2844 napi_enable(&skge->napi);
2845 netif_wake_queue(dev);
2846 }
2847
2848 return err;
2849 }
2850
2851 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2852
2853 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2854 {
2855 u32 crc, bit;
2856
2857 crc = ether_crc_le(ETH_ALEN, addr);
2858 bit = ~crc & 0x3f;
2859 filter[bit/8] |= 1 << (bit%8);
2860 }
2861
2862 static void genesis_set_multicast(struct net_device *dev)
2863 {
2864 struct skge_port *skge = netdev_priv(dev);
2865 struct skge_hw *hw = skge->hw;
2866 int port = skge->port;
2867 int i, count = dev->mc_count;
2868 struct dev_mc_list *list = dev->mc_list;
2869 u32 mode;
2870 u8 filter[8];
2871
2872 mode = xm_read32(hw, port, XM_MODE);
2873 mode |= XM_MD_ENA_HASH;
2874 if (dev->flags & IFF_PROMISC)
2875 mode |= XM_MD_ENA_PROM;
2876 else
2877 mode &= ~XM_MD_ENA_PROM;
2878
2879 if (dev->flags & IFF_ALLMULTI)
2880 memset(filter, 0xff, sizeof(filter));
2881 else {
2882 memset(filter, 0, sizeof(filter));
2883
2884 if (skge->flow_status == FLOW_STAT_REM_SEND
2885 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2886 genesis_add_filter(filter, pause_mc_addr);
2887
2888 for (i = 0; list && i < count; i++, list = list->next)
2889 genesis_add_filter(filter, list->dmi_addr);
2890 }
2891
2892 xm_write32(hw, port, XM_MODE, mode);
2893 xm_outhash(hw, port, XM_HSM, filter);
2894 }
2895
2896 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2897 {
2898 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2899 filter[bit/8] |= 1 << (bit%8);
2900 }
2901
2902 static void yukon_set_multicast(struct net_device *dev)
2903 {
2904 struct skge_port *skge = netdev_priv(dev);
2905 struct skge_hw *hw = skge->hw;
2906 int port = skge->port;
2907 struct dev_mc_list *list = dev->mc_list;
2908 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
2909 || skge->flow_status == FLOW_STAT_SYMMETRIC);
2910 u16 reg;
2911 u8 filter[8];
2912
2913 memset(filter, 0, sizeof(filter));
2914
2915 reg = gma_read16(hw, port, GM_RX_CTRL);
2916 reg |= GM_RXCR_UCF_ENA;
2917
2918 if (dev->flags & IFF_PROMISC) /* promiscuous */
2919 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2920 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2921 memset(filter, 0xff, sizeof(filter));
2922 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
2923 reg &= ~GM_RXCR_MCF_ENA;
2924 else {
2925 int i;
2926 reg |= GM_RXCR_MCF_ENA;
2927
2928 if (rx_pause)
2929 yukon_add_filter(filter, pause_mc_addr);
2930
2931 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
2932 yukon_add_filter(filter, list->dmi_addr);
2933 }
2934
2935
2936 gma_write16(hw, port, GM_MC_ADDR_H1,
2937 (u16)filter[0] | ((u16)filter[1] << 8));
2938 gma_write16(hw, port, GM_MC_ADDR_H2,
2939 (u16)filter[2] | ((u16)filter[3] << 8));
2940 gma_write16(hw, port, GM_MC_ADDR_H3,
2941 (u16)filter[4] | ((u16)filter[5] << 8));
2942 gma_write16(hw, port, GM_MC_ADDR_H4,
2943 (u16)filter[6] | ((u16)filter[7] << 8));
2944
2945 gma_write16(hw, port, GM_RX_CTRL, reg);
2946 }
2947
2948 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2949 {
2950 if (hw->chip_id == CHIP_ID_GENESIS)
2951 return status >> XMR_FS_LEN_SHIFT;
2952 else
2953 return status >> GMR_FS_LEN_SHIFT;
2954 }
2955
2956 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2957 {
2958 if (hw->chip_id == CHIP_ID_GENESIS)
2959 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2960 else
2961 return (status & GMR_FS_ANY_ERR) ||
2962 (status & GMR_FS_RX_OK) == 0;
2963 }
2964
2965
2966 /* Get receive buffer from descriptor.
2967 * Handles copy of small buffers and reallocation failures
2968 */
2969 static struct sk_buff *skge_rx_get(struct net_device *dev,
2970 struct skge_element *e,
2971 u32 control, u32 status, u16 csum)
2972 {
2973 struct skge_port *skge = netdev_priv(dev);
2974 struct sk_buff *skb;
2975 u16 len = control & BMU_BBC;
2976
2977 if (unlikely(netif_msg_rx_status(skge)))
2978 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2979 dev->name, e - skge->rx_ring.start,
2980 status, len);
2981
2982 if (len > skge->rx_buf_size)
2983 goto error;
2984
2985 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2986 goto error;
2987
2988 if (bad_phy_status(skge->hw, status))
2989 goto error;
2990
2991 if (phy_length(skge->hw, status) != len)
2992 goto error;
2993
2994 if (len < RX_COPY_THRESHOLD) {
2995 skb = netdev_alloc_skb(dev, len + 2);
2996 if (!skb)
2997 goto resubmit;
2998
2999 skb_reserve(skb, 2);
3000 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3001 pci_unmap_addr(e, mapaddr),
3002 len, PCI_DMA_FROMDEVICE);
3003 skb_copy_from_linear_data(e->skb, skb->data, len);
3004 pci_dma_sync_single_for_device(skge->hw->pdev,
3005 pci_unmap_addr(e, mapaddr),
3006 len, PCI_DMA_FROMDEVICE);
3007 skge_rx_reuse(e, skge->rx_buf_size);
3008 } else {
3009 struct sk_buff *nskb;
3010 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
3011 if (!nskb)
3012 goto resubmit;
3013
3014 skb_reserve(nskb, NET_IP_ALIGN);
3015 pci_unmap_single(skge->hw->pdev,
3016 pci_unmap_addr(e, mapaddr),
3017 pci_unmap_len(e, maplen),
3018 PCI_DMA_FROMDEVICE);
3019 skb = e->skb;
3020 prefetch(skb->data);
3021 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3022 }
3023
3024 skb_put(skb, len);
3025 if (skge->rx_csum) {
3026 skb->csum = csum;
3027 skb->ip_summed = CHECKSUM_COMPLETE;
3028 }
3029
3030 skb->protocol = eth_type_trans(skb, dev);
3031
3032 return skb;
3033 error:
3034
3035 if (netif_msg_rx_err(skge))
3036 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
3037 dev->name, e - skge->rx_ring.start,
3038 control, status);
3039
3040 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3041 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3042 skge->net_stats.rx_length_errors++;
3043 if (status & XMR_FS_FRA_ERR)
3044 skge->net_stats.rx_frame_errors++;
3045 if (status & XMR_FS_FCS_ERR)
3046 skge->net_stats.rx_crc_errors++;
3047 } else {
3048 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3049 skge->net_stats.rx_length_errors++;
3050 if (status & GMR_FS_FRAGMENT)
3051 skge->net_stats.rx_frame_errors++;
3052 if (status & GMR_FS_CRC_ERR)
3053 skge->net_stats.rx_crc_errors++;
3054 }
3055
3056 resubmit:
3057 skge_rx_reuse(e, skge->rx_buf_size);
3058 return NULL;
3059 }
3060
3061 /* Free all buffers in Tx ring which are no longer owned by device */
3062 static void skge_tx_done(struct net_device *dev)
3063 {
3064 struct skge_port *skge = netdev_priv(dev);
3065 struct skge_ring *ring = &skge->tx_ring;
3066 struct skge_element *e;
3067
3068 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3069
3070 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3071 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3072
3073 if (control & BMU_OWN)
3074 break;
3075
3076 skge_tx_free(skge, e, control);
3077 }
3078 skge->tx_ring.to_clean = e;
3079
3080 /* Can run lockless until we need to synchronize to restart queue. */
3081 smp_mb();
3082
3083 if (unlikely(netif_queue_stopped(dev) &&
3084 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3085 netif_tx_lock(dev);
3086 if (unlikely(netif_queue_stopped(dev) &&
3087 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3088 netif_wake_queue(dev);
3089
3090 }
3091 netif_tx_unlock(dev);
3092 }
3093 }
3094
3095 static int skge_poll(struct napi_struct *napi, int to_do)
3096 {
3097 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3098 struct net_device *dev = skge->netdev;
3099 struct skge_hw *hw = skge->hw;
3100 struct skge_ring *ring = &skge->rx_ring;
3101 struct skge_element *e;
3102 int work_done = 0;
3103
3104 skge_tx_done(dev);
3105
3106 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3107
3108 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3109 struct skge_rx_desc *rd = e->desc;
3110 struct sk_buff *skb;
3111 u32 control;
3112
3113 rmb();
3114 control = rd->control;
3115 if (control & BMU_OWN)
3116 break;
3117
3118 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3119 if (likely(skb)) {
3120 dev->last_rx = jiffies;
3121 netif_receive_skb(skb);
3122
3123 ++work_done;
3124 }
3125 }
3126 ring->to_clean = e;
3127
3128 /* restart receiver */
3129 wmb();
3130 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3131
3132 if (work_done < to_do) {
3133 spin_lock_irq(&hw->hw_lock);
3134 __netif_rx_complete(dev, napi);
3135 hw->intr_mask |= napimask[skge->port];
3136 skge_write32(hw, B0_IMSK, hw->intr_mask);
3137 skge_read32(hw, B0_IMSK);
3138 spin_unlock_irq(&hw->hw_lock);
3139 }
3140
3141 return work_done;
3142 }
3143
3144 /* Parity errors seem to happen when Genesis is connected to a switch
3145 * with no other ports present. Heartbeat error??
3146 */
3147 static void skge_mac_parity(struct skge_hw *hw, int port)
3148 {
3149 struct net_device *dev = hw->dev[port];
3150
3151 if (dev) {
3152 struct skge_port *skge = netdev_priv(dev);
3153 ++skge->net_stats.tx_heartbeat_errors;
3154 }
3155
3156 if (hw->chip_id == CHIP_ID_GENESIS)
3157 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3158 MFF_CLR_PERR);
3159 else
3160 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3161 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3162 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3163 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3164 }
3165
3166 static void skge_mac_intr(struct skge_hw *hw, int port)
3167 {
3168 if (hw->chip_id == CHIP_ID_GENESIS)
3169 genesis_mac_intr(hw, port);
3170 else
3171 yukon_mac_intr(hw, port);
3172 }
3173
3174 /* Handle device specific framing and timeout interrupts */
3175 static void skge_error_irq(struct skge_hw *hw)
3176 {
3177 struct pci_dev *pdev = hw->pdev;
3178 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3179
3180 if (hw->chip_id == CHIP_ID_GENESIS) {
3181 /* clear xmac errors */
3182 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3183 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3184 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3185 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3186 } else {
3187 /* Timestamp (unused) overflow */
3188 if (hwstatus & IS_IRQ_TIST_OV)
3189 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3190 }
3191
3192 if (hwstatus & IS_RAM_RD_PAR) {
3193 dev_err(&pdev->dev, "Ram read data parity error\n");
3194 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3195 }
3196
3197 if (hwstatus & IS_RAM_WR_PAR) {
3198 dev_err(&pdev->dev, "Ram write data parity error\n");
3199 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3200 }
3201
3202 if (hwstatus & IS_M1_PAR_ERR)
3203 skge_mac_parity(hw, 0);
3204
3205 if (hwstatus & IS_M2_PAR_ERR)
3206 skge_mac_parity(hw, 1);
3207
3208 if (hwstatus & IS_R1_PAR_ERR) {
3209 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3210 hw->dev[0]->name);
3211 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3212 }
3213
3214 if (hwstatus & IS_R2_PAR_ERR) {
3215 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3216 hw->dev[1]->name);
3217 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3218 }
3219
3220 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3221 u16 pci_status, pci_cmd;
3222
3223 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3224 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3225
3226 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3227 pci_cmd, pci_status);
3228
3229 /* Write the error bits back to clear them. */
3230 pci_status &= PCI_STATUS_ERROR_BITS;
3231 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3232 pci_write_config_word(pdev, PCI_COMMAND,
3233 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3234 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3235 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3236
3237 /* if error still set then just ignore it */
3238 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3239 if (hwstatus & IS_IRQ_STAT) {
3240 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3241 hw->intr_mask &= ~IS_HW_ERR;
3242 }
3243 }
3244 }
3245
3246 /*
3247 * Interrupt from PHY are handled in tasklet (softirq)
3248 * because accessing phy registers requires spin wait which might
3249 * cause excess interrupt latency.
3250 */
3251 static void skge_extirq(unsigned long arg)
3252 {
3253 struct skge_hw *hw = (struct skge_hw *) arg;
3254 int port;
3255
3256 for (port = 0; port < hw->ports; port++) {
3257 struct net_device *dev = hw->dev[port];
3258
3259 if (netif_running(dev)) {
3260 struct skge_port *skge = netdev_priv(dev);
3261
3262 spin_lock(&hw->phy_lock);
3263 if (hw->chip_id != CHIP_ID_GENESIS)
3264 yukon_phy_intr(skge);
3265 else if (hw->phy_type == SK_PHY_BCOM)
3266 bcom_phy_intr(skge);
3267 spin_unlock(&hw->phy_lock);
3268 }
3269 }
3270
3271 spin_lock_irq(&hw->hw_lock);
3272 hw->intr_mask |= IS_EXT_REG;
3273 skge_write32(hw, B0_IMSK, hw->intr_mask);
3274 skge_read32(hw, B0_IMSK);
3275 spin_unlock_irq(&hw->hw_lock);
3276 }
3277
3278 static irqreturn_t skge_intr(int irq, void *dev_id)
3279 {
3280 struct skge_hw *hw = dev_id;
3281 u32 status;
3282 int handled = 0;
3283
3284 spin_lock(&hw->hw_lock);
3285 /* Reading this register masks IRQ */
3286 status = skge_read32(hw, B0_SP_ISRC);
3287 if (status == 0 || status == ~0)
3288 goto out;
3289
3290 handled = 1;
3291 status &= hw->intr_mask;
3292 if (status & IS_EXT_REG) {
3293 hw->intr_mask &= ~IS_EXT_REG;
3294 tasklet_schedule(&hw->phy_task);
3295 }
3296
3297 if (status & (IS_XA1_F|IS_R1_F)) {
3298 struct skge_port *skge = netdev_priv(hw->dev[0]);
3299 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3300 netif_rx_schedule(hw->dev[0], &skge->napi);
3301 }
3302
3303 if (status & IS_PA_TO_TX1)
3304 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3305
3306 if (status & IS_PA_TO_RX1) {
3307 struct skge_port *skge = netdev_priv(hw->dev[0]);
3308
3309 ++skge->net_stats.rx_over_errors;
3310 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3311 }
3312
3313
3314 if (status & IS_MAC1)
3315 skge_mac_intr(hw, 0);
3316
3317 if (hw->dev[1]) {
3318 struct skge_port *skge = netdev_priv(hw->dev[1]);
3319
3320 if (status & (IS_XA2_F|IS_R2_F)) {
3321 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3322 netif_rx_schedule(hw->dev[1], &skge->napi);
3323 }
3324
3325 if (status & IS_PA_TO_RX2) {
3326 ++skge->net_stats.rx_over_errors;
3327 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3328 }
3329
3330 if (status & IS_PA_TO_TX2)
3331 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3332
3333 if (status & IS_MAC2)
3334 skge_mac_intr(hw, 1);
3335 }
3336
3337 if (status & IS_HW_ERR)
3338 skge_error_irq(hw);
3339
3340 skge_write32(hw, B0_IMSK, hw->intr_mask);
3341 skge_read32(hw, B0_IMSK);
3342 out:
3343 spin_unlock(&hw->hw_lock);
3344
3345 return IRQ_RETVAL(handled);
3346 }
3347
3348 #ifdef CONFIG_NET_POLL_CONTROLLER
3349 static void skge_netpoll(struct net_device *dev)
3350 {
3351 struct skge_port *skge = netdev_priv(dev);
3352
3353 disable_irq(dev->irq);
3354 skge_intr(dev->irq, skge->hw);
3355 enable_irq(dev->irq);
3356 }
3357 #endif
3358
3359 static int skge_set_mac_address(struct net_device *dev, void *p)
3360 {
3361 struct skge_port *skge = netdev_priv(dev);
3362 struct skge_hw *hw = skge->hw;
3363 unsigned port = skge->port;
3364 const struct sockaddr *addr = p;
3365 u16 ctrl;
3366
3367 if (!is_valid_ether_addr(addr->sa_data))
3368 return -EADDRNOTAVAIL;
3369
3370 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3371
3372 if (!netif_running(dev)) {
3373 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3374 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3375 } else {
3376 /* disable Rx */
3377 spin_lock_bh(&hw->phy_lock);
3378 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3379 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3380
3381 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3382 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3383
3384 if (hw->chip_id == CHIP_ID_GENESIS)
3385 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3386 else {
3387 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3388 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3389 }
3390
3391 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3392 spin_unlock_bh(&hw->phy_lock);
3393 }
3394
3395 return 0;
3396 }
3397
3398 static const struct {
3399 u8 id;
3400 const char *name;
3401 } skge_chips[] = {
3402 { CHIP_ID_GENESIS, "Genesis" },
3403 { CHIP_ID_YUKON, "Yukon" },
3404 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3405 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3406 };
3407
3408 static const char *skge_board_name(const struct skge_hw *hw)
3409 {
3410 int i;
3411 static char buf[16];
3412
3413 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3414 if (skge_chips[i].id == hw->chip_id)
3415 return skge_chips[i].name;
3416
3417 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3418 return buf;
3419 }
3420
3421
3422 /*
3423 * Setup the board data structure, but don't bring up
3424 * the port(s)
3425 */
3426 static int skge_reset(struct skge_hw *hw)
3427 {
3428 u32 reg;
3429 u16 ctst, pci_status;
3430 u8 t8, mac_cfg, pmd_type;
3431 int i;
3432
3433 ctst = skge_read16(hw, B0_CTST);
3434
3435 /* do a SW reset */
3436 skge_write8(hw, B0_CTST, CS_RST_SET);
3437 skge_write8(hw, B0_CTST, CS_RST_CLR);
3438
3439 /* clear PCI errors, if any */
3440 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3441 skge_write8(hw, B2_TST_CTRL2, 0);
3442
3443 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3444 pci_write_config_word(hw->pdev, PCI_STATUS,
3445 pci_status | PCI_STATUS_ERROR_BITS);
3446 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3447 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3448
3449 /* restore CLK_RUN bits (for Yukon-Lite) */
3450 skge_write16(hw, B0_CTST,
3451 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3452
3453 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3454 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3455 pmd_type = skge_read8(hw, B2_PMD_TYP);
3456 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3457
3458 switch (hw->chip_id) {
3459 case CHIP_ID_GENESIS:
3460 switch (hw->phy_type) {
3461 case SK_PHY_XMAC:
3462 hw->phy_addr = PHY_ADDR_XMAC;
3463 break;
3464 case SK_PHY_BCOM:
3465 hw->phy_addr = PHY_ADDR_BCOM;
3466 break;
3467 default:
3468 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3469 hw->phy_type);
3470 return -EOPNOTSUPP;
3471 }
3472 break;
3473
3474 case CHIP_ID_YUKON:
3475 case CHIP_ID_YUKON_LITE:
3476 case CHIP_ID_YUKON_LP:
3477 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3478 hw->copper = 1;
3479
3480 hw->phy_addr = PHY_ADDR_MARV;
3481 break;
3482
3483 default:
3484 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3485 hw->chip_id);
3486 return -EOPNOTSUPP;
3487 }
3488
3489 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3490 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3491 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3492
3493 /* read the adapters RAM size */
3494 t8 = skge_read8(hw, B2_E_0);
3495 if (hw->chip_id == CHIP_ID_GENESIS) {
3496 if (t8 == 3) {
3497 /* special case: 4 x 64k x 36, offset = 0x80000 */
3498 hw->ram_size = 1024;
3499 hw->ram_offset = 512;
3500 } else
3501 hw->ram_size = t8 * 512;
3502 } else /* Yukon */
3503 hw->ram_size = t8 ? t8 * 4 : 128;
3504
3505 hw->intr_mask = IS_HW_ERR;
3506
3507 /* Use PHY IRQ for all but fiber based Genesis board */
3508 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3509 hw->intr_mask |= IS_EXT_REG;
3510
3511 if (hw->chip_id == CHIP_ID_GENESIS)
3512 genesis_init(hw);
3513 else {
3514 /* switch power to VCC (WA for VAUX problem) */
3515 skge_write8(hw, B0_POWER_CTRL,
3516 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3517
3518 /* avoid boards with stuck Hardware error bits */
3519 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3520 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3521 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3522 hw->intr_mask &= ~IS_HW_ERR;
3523 }
3524
3525 /* Clear PHY COMA */
3526 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3527 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3528 reg &= ~PCI_PHY_COMA;
3529 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3530 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3531
3532
3533 for (i = 0; i < hw->ports; i++) {
3534 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3535 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3536 }
3537 }
3538
3539 /* turn off hardware timer (unused) */
3540 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3541 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3542 skge_write8(hw, B0_LED, LED_STAT_ON);
3543
3544 /* enable the Tx Arbiters */
3545 for (i = 0; i < hw->ports; i++)
3546 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3547
3548 /* Initialize ram interface */
3549 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3550
3551 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3552 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3553 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3554 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3555 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3556 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3557 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3558 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3559 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3560 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3561 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3562 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3563
3564 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3565
3566 /* Set interrupt moderation for Transmit only
3567 * Receive interrupts avoided by NAPI
3568 */
3569 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3570 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3571 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3572
3573 skge_write32(hw, B0_IMSK, hw->intr_mask);
3574
3575 for (i = 0; i < hw->ports; i++) {
3576 if (hw->chip_id == CHIP_ID_GENESIS)
3577 genesis_reset(hw, i);
3578 else
3579 yukon_reset(hw, i);
3580 }
3581
3582 return 0;
3583 }
3584
3585 /* Initialize network device */
3586 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3587 int highmem)
3588 {
3589 struct skge_port *skge;
3590 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3591
3592 if (!dev) {
3593 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3594 return NULL;
3595 }
3596
3597 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3598 dev->open = skge_up;
3599 dev->stop = skge_down;
3600 dev->do_ioctl = skge_ioctl;
3601 dev->hard_start_xmit = skge_xmit_frame;
3602 dev->get_stats = skge_get_stats;
3603 if (hw->chip_id == CHIP_ID_GENESIS)
3604 dev->set_multicast_list = genesis_set_multicast;
3605 else
3606 dev->set_multicast_list = yukon_set_multicast;
3607
3608 dev->set_mac_address = skge_set_mac_address;
3609 dev->change_mtu = skge_change_mtu;
3610 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3611 dev->tx_timeout = skge_tx_timeout;
3612 dev->watchdog_timeo = TX_WATCHDOG;
3613 #ifdef CONFIG_NET_POLL_CONTROLLER
3614 dev->poll_controller = skge_netpoll;
3615 #endif
3616 dev->irq = hw->pdev->irq;
3617
3618 if (highmem)
3619 dev->features |= NETIF_F_HIGHDMA;
3620
3621 skge = netdev_priv(dev);
3622 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3623 skge->netdev = dev;
3624 skge->hw = hw;
3625 skge->msg_enable = netif_msg_init(debug, default_msg);
3626
3627 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3628 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3629
3630 /* Auto speed and flow control */
3631 skge->autoneg = AUTONEG_ENABLE;
3632 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3633 skge->duplex = -1;
3634 skge->speed = -1;
3635 skge->advertising = skge_supported_modes(hw);
3636
3637 if (pci_wake_enabled(hw->pdev))
3638 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3639
3640 hw->dev[port] = dev;
3641
3642 skge->port = port;
3643
3644 /* Only used for Genesis XMAC */
3645 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3646
3647 if (hw->chip_id != CHIP_ID_GENESIS) {
3648 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3649 skge->rx_csum = 1;
3650 }
3651
3652 /* read the mac address */
3653 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3654 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3655
3656 /* device is off until link detection */
3657 netif_carrier_off(dev);
3658 netif_stop_queue(dev);
3659
3660 return dev;
3661 }
3662
3663 static void __devinit skge_show_addr(struct net_device *dev)
3664 {
3665 const struct skge_port *skge = netdev_priv(dev);
3666 DECLARE_MAC_BUF(mac);
3667
3668 if (netif_msg_probe(skge))
3669 printk(KERN_INFO PFX "%s: addr %s\n",
3670 dev->name, print_mac(mac, dev->dev_addr));
3671 }
3672
3673 static int __devinit skge_probe(struct pci_dev *pdev,
3674 const struct pci_device_id *ent)
3675 {
3676 struct net_device *dev, *dev1;
3677 struct skge_hw *hw;
3678 int err, using_dac = 0;
3679
3680 err = pci_enable_device(pdev);
3681 if (err) {
3682 dev_err(&pdev->dev, "cannot enable PCI device\n");
3683 goto err_out;
3684 }
3685
3686 err = pci_request_regions(pdev, DRV_NAME);
3687 if (err) {
3688 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3689 goto err_out_disable_pdev;
3690 }
3691
3692 pci_set_master(pdev);
3693
3694 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3695 using_dac = 1;
3696 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3697 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3698 using_dac = 0;
3699 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3700 }
3701
3702 if (err) {
3703 dev_err(&pdev->dev, "no usable DMA configuration\n");
3704 goto err_out_free_regions;
3705 }
3706
3707 #ifdef __BIG_ENDIAN
3708 /* byte swap descriptors in hardware */
3709 {
3710 u32 reg;
3711
3712 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3713 reg |= PCI_REV_DESC;
3714 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3715 }
3716 #endif
3717
3718 err = -ENOMEM;
3719 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3720 if (!hw) {
3721 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3722 goto err_out_free_regions;
3723 }
3724
3725 hw->pdev = pdev;
3726 spin_lock_init(&hw->hw_lock);
3727 spin_lock_init(&hw->phy_lock);
3728 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3729
3730 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3731 if (!hw->regs) {
3732 dev_err(&pdev->dev, "cannot map device registers\n");
3733 goto err_out_free_hw;
3734 }
3735
3736 err = skge_reset(hw);
3737 if (err)
3738 goto err_out_iounmap;
3739
3740 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3741 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3742 skge_board_name(hw), hw->chip_rev);
3743
3744 dev = skge_devinit(hw, 0, using_dac);
3745 if (!dev)
3746 goto err_out_led_off;
3747
3748 /* Some motherboards are broken and has zero in ROM. */
3749 if (!is_valid_ether_addr(dev->dev_addr))
3750 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3751
3752 err = register_netdev(dev);
3753 if (err) {
3754 dev_err(&pdev->dev, "cannot register net device\n");
3755 goto err_out_free_netdev;
3756 }
3757
3758 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3759 if (err) {
3760 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3761 dev->name, pdev->irq);
3762 goto err_out_unregister;
3763 }
3764 skge_show_addr(dev);
3765
3766 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3767 if (register_netdev(dev1) == 0)
3768 skge_show_addr(dev1);
3769 else {
3770 /* Failure to register second port need not be fatal */
3771 dev_warn(&pdev->dev, "register of second port failed\n");
3772 hw->dev[1] = NULL;
3773 free_netdev(dev1);
3774 }
3775 }
3776 pci_set_drvdata(pdev, hw);
3777
3778 return 0;
3779
3780 err_out_unregister:
3781 unregister_netdev(dev);
3782 err_out_free_netdev:
3783 free_netdev(dev);
3784 err_out_led_off:
3785 skge_write16(hw, B0_LED, LED_STAT_OFF);
3786 err_out_iounmap:
3787 iounmap(hw->regs);
3788 err_out_free_hw:
3789 kfree(hw);
3790 err_out_free_regions:
3791 pci_release_regions(pdev);
3792 err_out_disable_pdev:
3793 pci_disable_device(pdev);
3794 pci_set_drvdata(pdev, NULL);
3795 err_out:
3796 return err;
3797 }
3798
3799 static void __devexit skge_remove(struct pci_dev *pdev)
3800 {
3801 struct skge_hw *hw = pci_get_drvdata(pdev);
3802 struct net_device *dev0, *dev1;
3803
3804 if (!hw)
3805 return;
3806
3807 flush_scheduled_work();
3808
3809 if ((dev1 = hw->dev[1]))
3810 unregister_netdev(dev1);
3811 dev0 = hw->dev[0];
3812 unregister_netdev(dev0);
3813
3814 tasklet_disable(&hw->phy_task);
3815
3816 spin_lock_irq(&hw->hw_lock);
3817 hw->intr_mask = 0;
3818 skge_write32(hw, B0_IMSK, 0);
3819 skge_read32(hw, B0_IMSK);
3820 spin_unlock_irq(&hw->hw_lock);
3821
3822 skge_write16(hw, B0_LED, LED_STAT_OFF);
3823 skge_write8(hw, B0_CTST, CS_RST_SET);
3824
3825 free_irq(pdev->irq, hw);
3826 pci_release_regions(pdev);
3827 pci_disable_device(pdev);
3828 if (dev1)
3829 free_netdev(dev1);
3830 free_netdev(dev0);
3831
3832 iounmap(hw->regs);
3833 kfree(hw);
3834 pci_set_drvdata(pdev, NULL);
3835 }
3836
3837 #ifdef CONFIG_PM
3838 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3839 {
3840 struct skge_hw *hw = pci_get_drvdata(pdev);
3841 int i, err, wol = 0;
3842
3843 if (!hw)
3844 return 0;
3845
3846 err = pci_save_state(pdev);
3847 if (err)
3848 return err;
3849
3850 for (i = 0; i < hw->ports; i++) {
3851 struct net_device *dev = hw->dev[i];
3852 struct skge_port *skge = netdev_priv(dev);
3853
3854 if (netif_running(dev))
3855 skge_down(dev);
3856 if (skge->wol)
3857 skge_wol_init(skge);
3858
3859 wol |= skge->wol;
3860 }
3861
3862 skge_write32(hw, B0_IMSK, 0);
3863 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3864 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3865
3866 return 0;
3867 }
3868
3869 static int skge_resume(struct pci_dev *pdev)
3870 {
3871 struct skge_hw *hw = pci_get_drvdata(pdev);
3872 int i, err;
3873
3874 if (!hw)
3875 return 0;
3876
3877 err = pci_set_power_state(pdev, PCI_D0);
3878 if (err)
3879 goto out;
3880
3881 err = pci_restore_state(pdev);
3882 if (err)
3883 goto out;
3884
3885 pci_enable_wake(pdev, PCI_D0, 0);
3886
3887 err = skge_reset(hw);
3888 if (err)
3889 goto out;
3890
3891 for (i = 0; i < hw->ports; i++) {
3892 struct net_device *dev = hw->dev[i];
3893
3894 if (netif_running(dev)) {
3895 err = skge_up(dev);
3896
3897 if (err) {
3898 printk(KERN_ERR PFX "%s: could not up: %d\n",
3899 dev->name, err);
3900 dev_close(dev);
3901 goto out;
3902 }
3903 }
3904 }
3905 out:
3906 return err;
3907 }
3908 #endif
3909
3910 static void skge_shutdown(struct pci_dev *pdev)
3911 {
3912 struct skge_hw *hw = pci_get_drvdata(pdev);
3913 int i, wol = 0;
3914
3915 if (!hw)
3916 return;
3917
3918 for (i = 0; i < hw->ports; i++) {
3919 struct net_device *dev = hw->dev[i];
3920 struct skge_port *skge = netdev_priv(dev);
3921
3922 if (skge->wol)
3923 skge_wol_init(skge);
3924 wol |= skge->wol;
3925 }
3926
3927 pci_enable_wake(pdev, PCI_D3hot, wol);
3928 pci_enable_wake(pdev, PCI_D3cold, wol);
3929
3930 pci_disable_device(pdev);
3931 pci_set_power_state(pdev, PCI_D3hot);
3932
3933 }
3934
3935 static struct pci_driver skge_driver = {
3936 .name = DRV_NAME,
3937 .id_table = skge_id_table,
3938 .probe = skge_probe,
3939 .remove = __devexit_p(skge_remove),
3940 #ifdef CONFIG_PM
3941 .suspend = skge_suspend,
3942 .resume = skge_resume,
3943 #endif
3944 .shutdown = skge_shutdown,
3945 };
3946
3947 static int __init skge_init_module(void)
3948 {
3949 return pci_register_driver(&skge_driver);
3950 }
3951
3952 static void __exit skge_cleanup_module(void)
3953 {
3954 pci_unregister_driver(&skge_driver);
3955 }
3956
3957 module_init(skge_init_module);
3958 module_exit(skge_cleanup_module);
This page took 0.134397 seconds and 6 git commands to generate.