Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[deliverable/linux.git] / drivers / net / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25
26 -----------------------------------------------------------
27
28 Linux kernel-specific changes:
29
30 LK1.1.1 (jgarzik):
31 - Use PCI driver interface
32 - Fix MOD_xxx races
33 - softnet fixups
34
35 LK1.1.2 (jgarzik):
36 - Merge Becker version 0.15
37
38 LK1.1.3 (Andrew Morton)
39 - Timer cleanups
40
41 LK1.1.4 (jgarzik):
42 - Merge Becker version 1.03
43
44 LK1.2.1 (Ion Badulescu <ionut@cs.columbia.edu>)
45 - Support hardware Rx/Tx checksumming
46 - Use the GFP firmware taken from Adaptec's Netware driver
47
48 LK1.2.2 (Ion Badulescu)
49 - Backported to 2.2.x
50
51 LK1.2.3 (Ion Badulescu)
52 - Fix the flaky mdio interface
53 - More compat clean-ups
54
55 LK1.2.4 (Ion Badulescu)
56 - More 2.2.x initialization fixes
57
58 LK1.2.5 (Ion Badulescu)
59 - Several fixes from Manfred Spraul
60
61 LK1.2.6 (Ion Badulescu)
62 - Fixed ifup/ifdown/ifup problem in 2.4.x
63
64 LK1.2.7 (Ion Badulescu)
65 - Removed unused code
66 - Made more functions static and __init
67
68 LK1.2.8 (Ion Badulescu)
69 - Quell bogus error messages, inform about the Tx threshold
70 - Removed #ifdef CONFIG_PCI, this driver is PCI only
71
72 LK1.2.9 (Ion Badulescu)
73 - Merged Jeff Garzik's changes from 2.4.4-pre5
74 - Added 2.2.x compatibility stuff required by the above changes
75
76 LK1.2.9a (Ion Badulescu)
77 - More updates from Jeff Garzik
78
79 LK1.3.0 (Ion Badulescu)
80 - Merged zerocopy support
81
82 LK1.3.1 (Ion Badulescu)
83 - Added ethtool support
84 - Added GPIO (media change) interrupt support
85
86 LK1.3.2 (Ion Badulescu)
87 - Fixed 2.2.x compatibility issues introduced in 1.3.1
88 - Fixed ethtool ioctl returning uninitialized memory
89
90 LK1.3.3 (Ion Badulescu)
91 - Initialize the TxMode register properly
92 - Don't dereference dev->priv after freeing it
93
94 LK1.3.4 (Ion Badulescu)
95 - Fixed initialization timing problems
96 - Fixed interrupt mask definitions
97
98 LK1.3.5 (jgarzik)
99 - ethtool NWAY_RST, GLINK, [GS]MSGLVL support
100
101 LK1.3.6:
102 - Sparc64 support and fixes (Ion Badulescu)
103 - Better stats and error handling (Ion Badulescu)
104 - Use new pci_set_mwi() PCI API function (jgarzik)
105
106 LK1.3.7 (Ion Badulescu)
107 - minimal implementation of tx_timeout()
108 - correctly shutdown the Rx/Tx engines in netdev_close()
109 - added calls to netif_carrier_on/off
110 (patch from Stefan Rompf <srompf@isg.de>)
111 - VLAN support
112
113 LK1.3.8 (Ion Badulescu)
114 - adjust DMA burst size on sparc64
115 - 64-bit support
116 - reworked zerocopy support for 64-bit buffers
117 - working and usable interrupt mitigation/latency
118 - reduced Tx interrupt frequency for lower interrupt overhead
119
120 LK1.3.9 (Ion Badulescu)
121 - bugfix for mcast filter
122 - enable the right kind of Tx interrupts (TxDMADone, not TxDone)
123
124 LK1.4.0 (Ion Badulescu)
125 - NAPI support
126
127 LK1.4.1 (Ion Badulescu)
128 - flush PCI posting buffers after disabling Rx interrupts
129 - put the chip to a D3 slumber on driver unload
130 - added config option to enable/disable NAPI
131
132 LK1.4.2 (Ion Badulescu)
133 - finally added firmware (GPL'ed by Adaptec)
134 - removed compatibility code for 2.2.x
135
136 LK1.4.2.1 (Ion Badulescu)
137 - fixed 32/64 bit issues on i386 + CONFIG_HIGHMEM
138 - added 32-bit padding to outgoing skb's, removed previous workaround
139
140 TODO: - fix forced speed/duplexing code (broken a long time ago, when
141 somebody converted the driver to use the generic MII code)
142 - fix VLAN support
143 */
144
145 #define DRV_NAME "starfire"
146 #define DRV_VERSION "1.03+LK1.4.2.1"
147 #define DRV_RELDATE "October 3, 2005"
148
149 #include <linux/config.h>
150 #include <linux/version.h>
151 #include <linux/module.h>
152 #include <linux/kernel.h>
153 #include <linux/pci.h>
154 #include <linux/netdevice.h>
155 #include <linux/etherdevice.h>
156 #include <linux/init.h>
157 #include <linux/delay.h>
158 #include <linux/crc32.h>
159 #include <linux/ethtool.h>
160 #include <linux/mii.h>
161 #include <linux/if_vlan.h>
162 #include <asm/processor.h> /* Processor type for cache alignment. */
163 #include <asm/uaccess.h>
164 #include <asm/io.h>
165
166 #include "starfire_firmware.h"
167 /*
168 * The current frame processor firmware fails to checksum a fragment
169 * of length 1. If and when this is fixed, the #define below can be removed.
170 */
171 #define HAS_BROKEN_FIRMWARE
172
173 /*
174 * If using the broken firmware, data must be padded to the next 32-bit boundary.
175 */
176 #ifdef HAS_BROKEN_FIRMWARE
177 #define PADDING_MASK 3
178 #endif
179
180 /*
181 * Define this if using the driver with the zero-copy patch
182 */
183 #define ZEROCOPY
184
185 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
186 #define VLAN_SUPPORT
187 #endif
188
189 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
190 #undef HAVE_NETDEV_POLL
191 #endif
192
193 /* The user-configurable values.
194 These may be modified when a driver module is loaded.*/
195
196 /* Used for tuning interrupt latency vs. overhead. */
197 static int intr_latency;
198 static int small_frames;
199
200 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
201 static int max_interrupt_work = 20;
202 static int mtu;
203 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
204 The Starfire has a 512 element hash table based on the Ethernet CRC. */
205 static int multicast_filter_limit = 512;
206 /* Whether to do TCP/UDP checksums in hardware */
207 static int enable_hw_cksum = 1;
208
209 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
210 /*
211 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 * Setting to > 1518 effectively disables this feature.
213 *
214 * NOTE:
215 * The ia64 doesn't allow for unaligned loads even of integers being
216 * misaligned on a 2 byte boundary. Thus always force copying of
217 * packets as the starfire doesn't allow for misaligned DMAs ;-(
218 * 23/10/2000 - Jes
219 *
220 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
221 * at least, having unaligned frames leads to a rather serious performance
222 * penalty. -Ion
223 */
224 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
225 static int rx_copybreak = PKT_BUF_SZ;
226 #else
227 static int rx_copybreak /* = 0 */;
228 #endif
229
230 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
231 #ifdef __sparc__
232 #define DMA_BURST_SIZE 64
233 #else
234 #define DMA_BURST_SIZE 128
235 #endif
236
237 /* Used to pass the media type, etc.
238 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
239 The media type is usually passed in 'options[]'.
240 These variables are deprecated, use ethtool instead. -Ion
241 */
242 #define MAX_UNITS 8 /* More are supported, limit only on options */
243 static int options[MAX_UNITS] = {0, };
244 static int full_duplex[MAX_UNITS] = {0, };
245
246 /* Operational parameters that are set at compile time. */
247
248 /* The "native" ring sizes are either 256 or 2048.
249 However in some modes a descriptor may be marked to wrap the ring earlier.
250 */
251 #define RX_RING_SIZE 256
252 #define TX_RING_SIZE 32
253 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
254 #define DONE_Q_SIZE 1024
255 /* All queues must be aligned on a 256-byte boundary */
256 #define QUEUE_ALIGN 256
257
258 #if RX_RING_SIZE > 256
259 #define RX_Q_ENTRIES Rx2048QEntries
260 #else
261 #define RX_Q_ENTRIES Rx256QEntries
262 #endif
263
264 /* Operational parameters that usually are not changed. */
265 /* Time in jiffies before concluding the transmitter is hung. */
266 #define TX_TIMEOUT (2 * HZ)
267
268 /*
269 * This SUCKS.
270 * We need a much better method to determine if dma_addr_t is 64-bit.
271 */
272 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
273 /* 64-bit dma_addr_t */
274 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
275 #define netdrv_addr_t u64
276 #define cpu_to_dma(x) cpu_to_le64(x)
277 #define dma_to_cpu(x) le64_to_cpu(x)
278 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
279 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
280 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
281 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
282 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
283 #else /* 32-bit dma_addr_t */
284 #define netdrv_addr_t u32
285 #define cpu_to_dma(x) cpu_to_le32(x)
286 #define dma_to_cpu(x) le32_to_cpu(x)
287 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
288 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
289 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
290 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
291 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
292 #endif
293
294 #define skb_first_frag_len(skb) skb_headlen(skb)
295 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
296
297 #ifdef HAVE_NETDEV_POLL
298 #define init_poll(dev) \
299 do { \
300 dev->poll = &netdev_poll; \
301 dev->weight = max_interrupt_work; \
302 } while (0)
303 #define netdev_rx(dev, ioaddr) \
304 do { \
305 u32 intr_enable; \
306 if (netif_rx_schedule_prep(dev)) { \
307 __netif_rx_schedule(dev); \
308 intr_enable = readl(ioaddr + IntrEnable); \
309 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
310 writel(intr_enable, ioaddr + IntrEnable); \
311 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
312 } else { \
313 /* Paranoia check */ \
314 intr_enable = readl(ioaddr + IntrEnable); \
315 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
316 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
317 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
318 writel(intr_enable, ioaddr + IntrEnable); \
319 } \
320 } \
321 } while (0)
322 #define netdev_receive_skb(skb) netif_receive_skb(skb)
323 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
324 static int netdev_poll(struct net_device *dev, int *budget);
325 #else /* not HAVE_NETDEV_POLL */
326 #define init_poll(dev)
327 #define netdev_receive_skb(skb) netif_rx(skb)
328 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
329 #define netdev_rx(dev, ioaddr) \
330 do { \
331 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
332 __netdev_rx(dev, &quota);\
333 } while (0)
334 #endif /* not HAVE_NETDEV_POLL */
335 /* end of compatibility code */
336
337
338 /* These identify the driver base version and may not be removed. */
339 static char version[] __devinitdata =
340 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
341 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
342
343 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
344 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
345 MODULE_LICENSE("GPL");
346 MODULE_VERSION(DRV_VERSION);
347
348 module_param(max_interrupt_work, int, 0);
349 module_param(mtu, int, 0);
350 module_param(debug, int, 0);
351 module_param(rx_copybreak, int, 0);
352 module_param(intr_latency, int, 0);
353 module_param(small_frames, int, 0);
354 module_param_array(options, int, NULL, 0);
355 module_param_array(full_duplex, int, NULL, 0);
356 module_param(enable_hw_cksum, int, 0);
357 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
358 MODULE_PARM_DESC(mtu, "MTU (all boards)");
359 MODULE_PARM_DESC(debug, "Debug level (0-6)");
360 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
361 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
362 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
363 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
364 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
365 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
366
367 /*
368 Theory of Operation
369
370 I. Board Compatibility
371
372 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
373
374 II. Board-specific settings
375
376 III. Driver operation
377
378 IIIa. Ring buffers
379
380 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
381 ring sizes are set fixed by the hardware, but may optionally be wrapped
382 earlier by the END bit in the descriptor.
383 This driver uses that hardware queue size for the Rx ring, where a large
384 number of entries has no ill effect beyond increases the potential backlog.
385 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
386 disables the queue layer priority ordering and we have no mechanism to
387 utilize the hardware two-level priority queue. When modifying the
388 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
389 levels.
390
391 IIIb/c. Transmit/Receive Structure
392
393 See the Adaptec manual for the many possible structures, and options for
394 each structure. There are far too many to document all of them here.
395
396 For transmit this driver uses type 0/1 transmit descriptors (depending
397 on the 32/64 bitness of the architecture), and relies on automatic
398 minimum-length padding. It does not use the completion queue
399 consumer index, but instead checks for non-zero status entries.
400
401 For receive this driver uses type 2/3 receive descriptors. The driver
402 allocates full frame size skbuffs for the Rx ring buffers, so all frames
403 should fit in a single descriptor. The driver does not use the completion
404 queue consumer index, but instead checks for non-zero status entries.
405
406 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
407 is allocated and the frame is copied to the new skbuff. When the incoming
408 frame is larger, the skbuff is passed directly up the protocol stack.
409 Buffers consumed this way are replaced by newly allocated skbuffs in a later
410 phase of receive.
411
412 A notable aspect of operation is that unaligned buffers are not permitted by
413 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
414 isn't longword aligned, which may cause problems on some machine
415 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
416 the frame into a new skbuff unconditionally. Copied frames are put into the
417 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
418
419 IIId. Synchronization
420
421 The driver runs as two independent, single-threaded flows of control. One
422 is the send-packet routine, which enforces single-threaded use by the
423 dev->tbusy flag. The other thread is the interrupt handler, which is single
424 threaded by the hardware and interrupt handling software.
425
426 The send packet thread has partial control over the Tx ring and the netif_queue
427 status. If the number of free Tx slots in the ring falls below a certain number
428 (currently hardcoded to 4), it signals the upper layer to stop the queue.
429
430 The interrupt handler has exclusive control over the Rx ring and records stats
431 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
432 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
433 number of free Tx slow is above the threshold, it signals the upper layer to
434 restart the queue.
435
436 IV. Notes
437
438 IVb. References
439
440 The Adaptec Starfire manuals, available only from Adaptec.
441 http://www.scyld.com/expert/100mbps.html
442 http://www.scyld.com/expert/NWay.html
443
444 IVc. Errata
445
446 - StopOnPerr is broken, don't enable
447 - Hardware ethernet padding exposes random data, perform software padding
448 instead (unverified -- works correctly for all the hardware I have)
449
450 */
451
452
453
454 enum chip_capability_flags {CanHaveMII=1, };
455
456 enum chipset {
457 CH_6915 = 0,
458 };
459
460 static struct pci_device_id starfire_pci_tbl[] = {
461 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
462 { 0, }
463 };
464 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
465
466 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
467 static struct chip_info {
468 const char *name;
469 int drv_flags;
470 } netdrv_tbl[] __devinitdata = {
471 { "Adaptec Starfire 6915", CanHaveMII },
472 };
473
474
475 /* Offsets to the device registers.
476 Unlike software-only systems, device drivers interact with complex hardware.
477 It's not useful to define symbolic names for every register bit in the
478 device. The name can only partially document the semantics and make
479 the driver longer and more difficult to read.
480 In general, only the important configuration values or bits changed
481 multiple times should be defined symbolically.
482 */
483 enum register_offsets {
484 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
485 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
486 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
487 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
488 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
489 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
490 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
491 TxThreshold=0x500B0,
492 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
493 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
494 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
495 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
496 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
497 TxMode=0x55000, VlanType=0x55064,
498 PerfFilterTable=0x56000, HashTable=0x56100,
499 TxGfpMem=0x58000, RxGfpMem=0x5a000,
500 };
501
502 /*
503 * Bits in the interrupt status/mask registers.
504 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
505 * enables all the interrupt sources that are or'ed into those status bits.
506 */
507 enum intr_status_bits {
508 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
509 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
510 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
511 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
512 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
513 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
514 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
515 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
516 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
517 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
518 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
519 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
520 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
521 IntrTxGfp=0x02, IntrPCIPad=0x01,
522 /* not quite bits */
523 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
524 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
525 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
526 };
527
528 /* Bits in the RxFilterMode register. */
529 enum rx_mode_bits {
530 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
531 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
532 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
533 WakeupOnGFP=0x0800,
534 };
535
536 /* Bits in the TxMode register */
537 enum tx_mode_bits {
538 MiiSoftReset=0x8000, MIILoopback=0x4000,
539 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
540 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
541 };
542
543 /* Bits in the TxDescCtrl register. */
544 enum tx_ctrl_bits {
545 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
546 TxDescSpace128=0x30, TxDescSpace256=0x40,
547 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
548 TxDescType3=0x03, TxDescType4=0x04,
549 TxNoDMACompletion=0x08,
550 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
551 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
552 TxDMABurstSizeShift=8,
553 };
554
555 /* Bits in the RxDescQCtrl register. */
556 enum rx_ctrl_bits {
557 RxBufferLenShift=16, RxMinDescrThreshShift=0,
558 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
559 Rx2048QEntries=0x4000, Rx256QEntries=0,
560 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
561 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
562 RxDescSpace4=0x000, RxDescSpace8=0x100,
563 RxDescSpace16=0x200, RxDescSpace32=0x300,
564 RxDescSpace64=0x400, RxDescSpace128=0x500,
565 RxConsumerWrEn=0x80,
566 };
567
568 /* Bits in the RxDMACtrl register. */
569 enum rx_dmactrl_bits {
570 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
571 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
572 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
573 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
574 RxChecksumRejectTCPOnly=0x01000000,
575 RxCompletionQ2Enable=0x800000,
576 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
577 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
578 RxDMAQ2NonIP=0x400000,
579 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
580 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
581 RxBurstSizeShift=0,
582 };
583
584 /* Bits in the RxCompletionAddr register */
585 enum rx_compl_bits {
586 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
587 RxComplProducerWrEn=0x40,
588 RxComplType0=0x00, RxComplType1=0x10,
589 RxComplType2=0x20, RxComplType3=0x30,
590 RxComplThreshShift=0,
591 };
592
593 /* Bits in the TxCompletionAddr register */
594 enum tx_compl_bits {
595 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
596 TxComplProducerWrEn=0x40,
597 TxComplIntrStatus=0x20,
598 CommonQueueMode=0x10,
599 TxComplThreshShift=0,
600 };
601
602 /* Bits in the GenCtrl register */
603 enum gen_ctrl_bits {
604 RxEnable=0x05, TxEnable=0x0a,
605 RxGFPEnable=0x10, TxGFPEnable=0x20,
606 };
607
608 /* Bits in the IntrTimerCtrl register */
609 enum intr_ctrl_bits {
610 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
611 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
612 IntrLatencyMask=0x1f,
613 };
614
615 /* The Rx and Tx buffer descriptors. */
616 struct starfire_rx_desc {
617 dma_addr_t rxaddr;
618 };
619 enum rx_desc_bits {
620 RxDescValid=1, RxDescEndRing=2,
621 };
622
623 /* Completion queue entry. */
624 struct short_rx_done_desc {
625 u32 status; /* Low 16 bits is length. */
626 };
627 struct basic_rx_done_desc {
628 u32 status; /* Low 16 bits is length. */
629 u16 vlanid;
630 u16 status2;
631 };
632 struct csum_rx_done_desc {
633 u32 status; /* Low 16 bits is length. */
634 u16 csum; /* Partial checksum */
635 u16 status2;
636 };
637 struct full_rx_done_desc {
638 u32 status; /* Low 16 bits is length. */
639 u16 status3;
640 u16 status2;
641 u16 vlanid;
642 u16 csum; /* partial checksum */
643 u32 timestamp;
644 };
645 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
646 #ifdef VLAN_SUPPORT
647 typedef struct full_rx_done_desc rx_done_desc;
648 #define RxComplType RxComplType3
649 #else /* not VLAN_SUPPORT */
650 typedef struct csum_rx_done_desc rx_done_desc;
651 #define RxComplType RxComplType2
652 #endif /* not VLAN_SUPPORT */
653
654 enum rx_done_bits {
655 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
656 };
657
658 /* Type 1 Tx descriptor. */
659 struct starfire_tx_desc_1 {
660 u32 status; /* Upper bits are status, lower 16 length. */
661 u32 addr;
662 };
663
664 /* Type 2 Tx descriptor. */
665 struct starfire_tx_desc_2 {
666 u32 status; /* Upper bits are status, lower 16 length. */
667 u32 reserved;
668 u64 addr;
669 };
670
671 #ifdef ADDR_64BITS
672 typedef struct starfire_tx_desc_2 starfire_tx_desc;
673 #define TX_DESC_TYPE TxDescType2
674 #else /* not ADDR_64BITS */
675 typedef struct starfire_tx_desc_1 starfire_tx_desc;
676 #define TX_DESC_TYPE TxDescType1
677 #endif /* not ADDR_64BITS */
678 #define TX_DESC_SPACING TxDescSpaceUnlim
679
680 enum tx_desc_bits {
681 TxDescID=0xB0000000,
682 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
683 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
684 };
685 struct tx_done_desc {
686 u32 status; /* timestamp, index. */
687 #if 0
688 u32 intrstatus; /* interrupt status */
689 #endif
690 };
691
692 struct rx_ring_info {
693 struct sk_buff *skb;
694 dma_addr_t mapping;
695 };
696 struct tx_ring_info {
697 struct sk_buff *skb;
698 dma_addr_t mapping;
699 unsigned int used_slots;
700 };
701
702 #define PHY_CNT 2
703 struct netdev_private {
704 /* Descriptor rings first for alignment. */
705 struct starfire_rx_desc *rx_ring;
706 starfire_tx_desc *tx_ring;
707 dma_addr_t rx_ring_dma;
708 dma_addr_t tx_ring_dma;
709 /* The addresses of rx/tx-in-place skbuffs. */
710 struct rx_ring_info rx_info[RX_RING_SIZE];
711 struct tx_ring_info tx_info[TX_RING_SIZE];
712 /* Pointers to completion queues (full pages). */
713 rx_done_desc *rx_done_q;
714 dma_addr_t rx_done_q_dma;
715 unsigned int rx_done;
716 struct tx_done_desc *tx_done_q;
717 dma_addr_t tx_done_q_dma;
718 unsigned int tx_done;
719 struct net_device_stats stats;
720 struct pci_dev *pci_dev;
721 #ifdef VLAN_SUPPORT
722 struct vlan_group *vlgrp;
723 #endif
724 void *queue_mem;
725 dma_addr_t queue_mem_dma;
726 size_t queue_mem_size;
727
728 /* Frequently used values: keep some adjacent for cache effect. */
729 spinlock_t lock;
730 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
731 unsigned int cur_tx, dirty_tx, reap_tx;
732 unsigned int rx_buf_sz; /* Based on MTU+slack. */
733 /* These values keep track of the transceiver/media in use. */
734 int speed100; /* Set if speed == 100MBit. */
735 u32 tx_mode;
736 u32 intr_timer_ctrl;
737 u8 tx_threshold;
738 /* MII transceiver section. */
739 struct mii_if_info mii_if; /* MII lib hooks/info */
740 int phy_cnt; /* MII device addresses. */
741 unsigned char phys[PHY_CNT]; /* MII device addresses. */
742 void __iomem *base;
743 };
744
745
746 static int mdio_read(struct net_device *dev, int phy_id, int location);
747 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
748 static int netdev_open(struct net_device *dev);
749 static void check_duplex(struct net_device *dev);
750 static void tx_timeout(struct net_device *dev);
751 static void init_ring(struct net_device *dev);
752 static int start_tx(struct sk_buff *skb, struct net_device *dev);
753 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
754 static void netdev_error(struct net_device *dev, int intr_status);
755 static int __netdev_rx(struct net_device *dev, int *quota);
756 static void refill_rx_ring(struct net_device *dev);
757 static void netdev_error(struct net_device *dev, int intr_status);
758 static void set_rx_mode(struct net_device *dev);
759 static struct net_device_stats *get_stats(struct net_device *dev);
760 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
761 static int netdev_close(struct net_device *dev);
762 static void netdev_media_change(struct net_device *dev);
763 static struct ethtool_ops ethtool_ops;
764
765
766 #ifdef VLAN_SUPPORT
767 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
768 {
769 struct netdev_private *np = netdev_priv(dev);
770
771 spin_lock(&np->lock);
772 if (debug > 2)
773 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
774 np->vlgrp = grp;
775 set_rx_mode(dev);
776 spin_unlock(&np->lock);
777 }
778
779 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
780 {
781 struct netdev_private *np = netdev_priv(dev);
782
783 spin_lock(&np->lock);
784 if (debug > 1)
785 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
786 set_rx_mode(dev);
787 spin_unlock(&np->lock);
788 }
789
790 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
791 {
792 struct netdev_private *np = netdev_priv(dev);
793
794 spin_lock(&np->lock);
795 if (debug > 1)
796 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
797 if (np->vlgrp)
798 np->vlgrp->vlan_devices[vid] = NULL;
799 set_rx_mode(dev);
800 spin_unlock(&np->lock);
801 }
802 #endif /* VLAN_SUPPORT */
803
804
805 static int __devinit starfire_init_one(struct pci_dev *pdev,
806 const struct pci_device_id *ent)
807 {
808 struct netdev_private *np;
809 int i, irq, option, chip_idx = ent->driver_data;
810 struct net_device *dev;
811 static int card_idx = -1;
812 long ioaddr;
813 void __iomem *base;
814 int drv_flags, io_size;
815 int boguscnt;
816
817 /* when built into the kernel, we only print version if device is found */
818 #ifndef MODULE
819 static int printed_version;
820 if (!printed_version++)
821 printk(version);
822 #endif
823
824 card_idx++;
825
826 if (pci_enable_device (pdev))
827 return -EIO;
828
829 ioaddr = pci_resource_start(pdev, 0);
830 io_size = pci_resource_len(pdev, 0);
831 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
832 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
833 return -ENODEV;
834 }
835
836 dev = alloc_etherdev(sizeof(*np));
837 if (!dev) {
838 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
839 return -ENOMEM;
840 }
841 SET_MODULE_OWNER(dev);
842 SET_NETDEV_DEV(dev, &pdev->dev);
843
844 irq = pdev->irq;
845
846 if (pci_request_regions (pdev, DRV_NAME)) {
847 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
848 goto err_out_free_netdev;
849 }
850
851 /* ioremap is borken in Linux-2.2.x/sparc64 */
852 base = ioremap(ioaddr, io_size);
853 if (!base) {
854 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
855 card_idx, io_size, ioaddr);
856 goto err_out_free_res;
857 }
858
859 pci_set_master(pdev);
860
861 /* enable MWI -- it vastly improves Rx performance on sparc64 */
862 pci_set_mwi(pdev);
863
864 #ifdef ZEROCOPY
865 /* Starfire can do TCP/UDP checksumming */
866 if (enable_hw_cksum)
867 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
868 #endif /* ZEROCOPY */
869 #ifdef VLAN_SUPPORT
870 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
871 dev->vlan_rx_register = netdev_vlan_rx_register;
872 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
873 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
874 #endif /* VLAN_RX_KILL_VID */
875 #ifdef ADDR_64BITS
876 dev->features |= NETIF_F_HIGHDMA;
877 #endif /* ADDR_64BITS */
878
879 /* Serial EEPROM reads are hidden by the hardware. */
880 for (i = 0; i < 6; i++)
881 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
882
883 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
884 if (debug > 4)
885 for (i = 0; i < 0x20; i++)
886 printk("%2.2x%s",
887 (unsigned int)readb(base + EEPROMCtrl + i),
888 i % 16 != 15 ? " " : "\n");
889 #endif
890
891 /* Issue soft reset */
892 writel(MiiSoftReset, base + TxMode);
893 udelay(1000);
894 writel(0, base + TxMode);
895
896 /* Reset the chip to erase previous misconfiguration. */
897 writel(1, base + PCIDeviceConfig);
898 boguscnt = 1000;
899 while (--boguscnt > 0) {
900 udelay(10);
901 if ((readl(base + PCIDeviceConfig) & 1) == 0)
902 break;
903 }
904 if (boguscnt == 0)
905 printk("%s: chipset reset never completed!\n", dev->name);
906 /* wait a little longer */
907 udelay(1000);
908
909 dev->base_addr = (unsigned long)base;
910 dev->irq = irq;
911
912 np = netdev_priv(dev);
913 np->base = base;
914 spin_lock_init(&np->lock);
915 pci_set_drvdata(pdev, dev);
916
917 np->pci_dev = pdev;
918
919 np->mii_if.dev = dev;
920 np->mii_if.mdio_read = mdio_read;
921 np->mii_if.mdio_write = mdio_write;
922 np->mii_if.phy_id_mask = 0x1f;
923 np->mii_if.reg_num_mask = 0x1f;
924
925 drv_flags = netdrv_tbl[chip_idx].drv_flags;
926
927 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
928 if (dev->mem_start)
929 option = dev->mem_start;
930
931 /* The lower four bits are the media type. */
932 if (option & 0x200)
933 np->mii_if.full_duplex = 1;
934
935 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
936 np->mii_if.full_duplex = 1;
937
938 if (np->mii_if.full_duplex)
939 np->mii_if.force_media = 1;
940 else
941 np->mii_if.force_media = 0;
942 np->speed100 = 1;
943
944 /* timer resolution is 128 * 0.8us */
945 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
946 Timer10X | EnableIntrMasking;
947
948 if (small_frames > 0) {
949 np->intr_timer_ctrl |= SmallFrameBypass;
950 switch (small_frames) {
951 case 1 ... 64:
952 np->intr_timer_ctrl |= SmallFrame64;
953 break;
954 case 65 ... 128:
955 np->intr_timer_ctrl |= SmallFrame128;
956 break;
957 case 129 ... 256:
958 np->intr_timer_ctrl |= SmallFrame256;
959 break;
960 default:
961 np->intr_timer_ctrl |= SmallFrame512;
962 if (small_frames > 512)
963 printk("Adjusting small_frames down to 512\n");
964 break;
965 }
966 }
967
968 /* The chip-specific entries in the device structure. */
969 dev->open = &netdev_open;
970 dev->hard_start_xmit = &start_tx;
971 dev->tx_timeout = tx_timeout;
972 dev->watchdog_timeo = TX_TIMEOUT;
973 init_poll(dev);
974 dev->stop = &netdev_close;
975 dev->get_stats = &get_stats;
976 dev->set_multicast_list = &set_rx_mode;
977 dev->do_ioctl = &netdev_ioctl;
978 SET_ETHTOOL_OPS(dev, &ethtool_ops);
979
980 if (mtu)
981 dev->mtu = mtu;
982
983 if (register_netdev(dev))
984 goto err_out_cleardev;
985
986 printk(KERN_INFO "%s: %s at %p, ",
987 dev->name, netdrv_tbl[chip_idx].name, base);
988 for (i = 0; i < 5; i++)
989 printk("%2.2x:", dev->dev_addr[i]);
990 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
991
992 if (drv_flags & CanHaveMII) {
993 int phy, phy_idx = 0;
994 int mii_status;
995 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
996 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
997 mdelay(100);
998 boguscnt = 1000;
999 while (--boguscnt > 0)
1000 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
1001 break;
1002 if (boguscnt == 0) {
1003 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1004 continue;
1005 }
1006 mii_status = mdio_read(dev, phy, MII_BMSR);
1007 if (mii_status != 0) {
1008 np->phys[phy_idx++] = phy;
1009 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
1010 printk(KERN_INFO "%s: MII PHY found at address %d, status "
1011 "%#4.4x advertising %#4.4x.\n",
1012 dev->name, phy, mii_status, np->mii_if.advertising);
1013 /* there can be only one PHY on-board */
1014 break;
1015 }
1016 }
1017 np->phy_cnt = phy_idx;
1018 if (np->phy_cnt > 0)
1019 np->mii_if.phy_id = np->phys[0];
1020 else
1021 memset(&np->mii_if, 0, sizeof(np->mii_if));
1022 }
1023
1024 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
1025 dev->name, enable_hw_cksum ? "enabled" : "disabled");
1026 return 0;
1027
1028 err_out_cleardev:
1029 pci_set_drvdata(pdev, NULL);
1030 iounmap(base);
1031 err_out_free_res:
1032 pci_release_regions (pdev);
1033 err_out_free_netdev:
1034 free_netdev(dev);
1035 return -ENODEV;
1036 }
1037
1038
1039 /* Read the MII Management Data I/O (MDIO) interfaces. */
1040 static int mdio_read(struct net_device *dev, int phy_id, int location)
1041 {
1042 struct netdev_private *np = netdev_priv(dev);
1043 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1044 int result, boguscnt=1000;
1045 /* ??? Should we add a busy-wait here? */
1046 do
1047 result = readl(mdio_addr);
1048 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1049 if (boguscnt == 0)
1050 return 0;
1051 if ((result & 0xffff) == 0xffff)
1052 return 0;
1053 return result & 0xffff;
1054 }
1055
1056
1057 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
1058 {
1059 struct netdev_private *np = netdev_priv(dev);
1060 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1061 writel(value, mdio_addr);
1062 /* The busy-wait will occur before a read. */
1063 }
1064
1065
1066 static int netdev_open(struct net_device *dev)
1067 {
1068 struct netdev_private *np = netdev_priv(dev);
1069 void __iomem *ioaddr = np->base;
1070 int i, retval;
1071 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
1072
1073 /* Do we ever need to reset the chip??? */
1074
1075 retval = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1076 if (retval)
1077 return retval;
1078
1079 /* Disable the Rx and Tx, and reset the chip. */
1080 writel(0, ioaddr + GenCtrl);
1081 writel(1, ioaddr + PCIDeviceConfig);
1082 if (debug > 1)
1083 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1084 dev->name, dev->irq);
1085
1086 /* Allocate the various queues. */
1087 if (np->queue_mem == 0) {
1088 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1089 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1090 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1091 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
1092 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
1093 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
1094 if (np->queue_mem == NULL) {
1095 free_irq(dev->irq, dev);
1096 return -ENOMEM;
1097 }
1098
1099 np->tx_done_q = np->queue_mem;
1100 np->tx_done_q_dma = np->queue_mem_dma;
1101 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
1102 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
1103 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
1104 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
1105 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
1106 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
1107 }
1108
1109 /* Start with no carrier, it gets adjusted later */
1110 netif_carrier_off(dev);
1111 init_ring(dev);
1112 /* Set the size of the Rx buffers. */
1113 writel((np->rx_buf_sz << RxBufferLenShift) |
1114 (0 << RxMinDescrThreshShift) |
1115 RxPrefetchMode | RxVariableQ |
1116 RX_Q_ENTRIES |
1117 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
1118 RxDescSpace4,
1119 ioaddr + RxDescQCtrl);
1120
1121 /* Set up the Rx DMA controller. */
1122 writel(RxChecksumIgnore |
1123 (0 << RxEarlyIntThreshShift) |
1124 (6 << RxHighPrioThreshShift) |
1125 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1126 ioaddr + RxDMACtrl);
1127
1128 /* Set Tx descriptor */
1129 writel((2 << TxHiPriFIFOThreshShift) |
1130 (0 << TxPadLenShift) |
1131 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1132 TX_DESC_Q_ADDR_SIZE |
1133 TX_DESC_SPACING | TX_DESC_TYPE,
1134 ioaddr + TxDescCtrl);
1135
1136 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1137 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1138 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1139 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1140 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1141
1142 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1143 writel(np->rx_done_q_dma |
1144 RxComplType |
1145 (0 << RxComplThreshShift),
1146 ioaddr + RxCompletionAddr);
1147
1148 if (debug > 1)
1149 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1150
1151 /* Fill both the Tx SA register and the Rx perfect filter. */
1152 for (i = 0; i < 6; i++)
1153 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1154 /* The first entry is special because it bypasses the VLAN filter.
1155 Don't use it. */
1156 writew(0, ioaddr + PerfFilterTable);
1157 writew(0, ioaddr + PerfFilterTable + 4);
1158 writew(0, ioaddr + PerfFilterTable + 8);
1159 for (i = 1; i < 16; i++) {
1160 u16 *eaddrs = (u16 *)dev->dev_addr;
1161 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1162 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1163 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1164 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1165 }
1166
1167 /* Initialize other registers. */
1168 /* Configure the PCI bus bursts and FIFO thresholds. */
1169 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1170 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1171 udelay(1000);
1172 writel(np->tx_mode, ioaddr + TxMode);
1173 np->tx_threshold = 4;
1174 writel(np->tx_threshold, ioaddr + TxThreshold);
1175
1176 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1177
1178 netif_start_queue(dev);
1179
1180 if (debug > 1)
1181 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1182 set_rx_mode(dev);
1183
1184 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1185 check_duplex(dev);
1186
1187 /* Enable GPIO interrupts on link change */
1188 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1189
1190 /* Set the interrupt mask */
1191 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1192 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1193 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1194 ioaddr + IntrEnable);
1195 /* Enable PCI interrupts. */
1196 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1197 ioaddr + PCIDeviceConfig);
1198
1199 #ifdef VLAN_SUPPORT
1200 /* Set VLAN type to 802.1q */
1201 writel(ETH_P_8021Q, ioaddr + VlanType);
1202 #endif /* VLAN_SUPPORT */
1203
1204 /* Load Rx/Tx firmware into the frame processors */
1205 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1206 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1207 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1208 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1209 if (enable_hw_cksum)
1210 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1211 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1212 else
1213 /* Enable the Rx and Tx units only. */
1214 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1215
1216 if (debug > 1)
1217 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1218 dev->name);
1219
1220 return 0;
1221 }
1222
1223
1224 static void check_duplex(struct net_device *dev)
1225 {
1226 struct netdev_private *np = netdev_priv(dev);
1227 u16 reg0;
1228 int silly_count = 1000;
1229
1230 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1231 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1232 udelay(500);
1233 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1234 /* do nothing */;
1235 if (!silly_count) {
1236 printk("%s: MII reset failed!\n", dev->name);
1237 return;
1238 }
1239
1240 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1241
1242 if (!np->mii_if.force_media) {
1243 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1244 } else {
1245 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1246 if (np->speed100)
1247 reg0 |= BMCR_SPEED100;
1248 if (np->mii_if.full_duplex)
1249 reg0 |= BMCR_FULLDPLX;
1250 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1251 dev->name,
1252 np->speed100 ? "100" : "10",
1253 np->mii_if.full_duplex ? "full" : "half");
1254 }
1255 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1256 }
1257
1258
1259 static void tx_timeout(struct net_device *dev)
1260 {
1261 struct netdev_private *np = netdev_priv(dev);
1262 void __iomem *ioaddr = np->base;
1263 int old_debug;
1264
1265 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1266 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1267
1268 /* Perhaps we should reinitialize the hardware here. */
1269
1270 /*
1271 * Stop and restart the interface.
1272 * Cheat and increase the debug level temporarily.
1273 */
1274 old_debug = debug;
1275 debug = 2;
1276 netdev_close(dev);
1277 netdev_open(dev);
1278 debug = old_debug;
1279
1280 /* Trigger an immediate transmit demand. */
1281
1282 dev->trans_start = jiffies;
1283 np->stats.tx_errors++;
1284 netif_wake_queue(dev);
1285 }
1286
1287
1288 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1289 static void init_ring(struct net_device *dev)
1290 {
1291 struct netdev_private *np = netdev_priv(dev);
1292 int i;
1293
1294 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1295 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1296
1297 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1298
1299 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1300 for (i = 0; i < RX_RING_SIZE; i++) {
1301 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1302 np->rx_info[i].skb = skb;
1303 if (skb == NULL)
1304 break;
1305 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1306 skb->dev = dev; /* Mark as being used by this device. */
1307 /* Grrr, we cannot offset to correctly align the IP header. */
1308 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1309 }
1310 writew(i - 1, np->base + RxDescQIdx);
1311 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1312
1313 /* Clear the remainder of the Rx buffer ring. */
1314 for ( ; i < RX_RING_SIZE; i++) {
1315 np->rx_ring[i].rxaddr = 0;
1316 np->rx_info[i].skb = NULL;
1317 np->rx_info[i].mapping = 0;
1318 }
1319 /* Mark the last entry as wrapping the ring. */
1320 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1321
1322 /* Clear the completion rings. */
1323 for (i = 0; i < DONE_Q_SIZE; i++) {
1324 np->rx_done_q[i].status = 0;
1325 np->tx_done_q[i].status = 0;
1326 }
1327
1328 for (i = 0; i < TX_RING_SIZE; i++)
1329 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1330
1331 return;
1332 }
1333
1334
1335 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct netdev_private *np = netdev_priv(dev);
1338 unsigned int entry;
1339 u32 status;
1340 int i;
1341
1342 /*
1343 * be cautious here, wrapping the queue has weird semantics
1344 * and we may not have enough slots even when it seems we do.
1345 */
1346 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1347 netif_stop_queue(dev);
1348 return 1;
1349 }
1350
1351 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1352 if (skb->ip_summed == CHECKSUM_HW) {
1353 skb = skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK);
1354 if (skb == NULL)
1355 return NETDEV_TX_OK;
1356 }
1357 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1358
1359 entry = np->cur_tx % TX_RING_SIZE;
1360 for (i = 0; i < skb_num_frags(skb); i++) {
1361 int wrap_ring = 0;
1362 status = TxDescID;
1363
1364 if (i == 0) {
1365 np->tx_info[entry].skb = skb;
1366 status |= TxCRCEn;
1367 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1368 status |= TxRingWrap;
1369 wrap_ring = 1;
1370 }
1371 if (np->reap_tx) {
1372 status |= TxDescIntr;
1373 np->reap_tx = 0;
1374 }
1375 if (skb->ip_summed == CHECKSUM_HW) {
1376 status |= TxCalTCP;
1377 np->stats.tx_compressed++;
1378 }
1379 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1380
1381 np->tx_info[entry].mapping =
1382 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1383 } else {
1384 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1385 status |= this_frag->size;
1386 np->tx_info[entry].mapping =
1387 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1388 }
1389
1390 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1391 np->tx_ring[entry].status = cpu_to_le32(status);
1392 if (debug > 3)
1393 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1394 dev->name, np->cur_tx, np->dirty_tx,
1395 entry, status);
1396 if (wrap_ring) {
1397 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1398 np->cur_tx += np->tx_info[entry].used_slots;
1399 entry = 0;
1400 } else {
1401 np->tx_info[entry].used_slots = 1;
1402 np->cur_tx += np->tx_info[entry].used_slots;
1403 entry++;
1404 }
1405 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1406 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1407 np->reap_tx = 1;
1408 }
1409
1410 /* Non-x86: explicitly flush descriptor cache lines here. */
1411 /* Ensure all descriptors are written back before the transmit is
1412 initiated. - Jes */
1413 wmb();
1414
1415 /* Update the producer index. */
1416 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1417
1418 /* 4 is arbitrary, but should be ok */
1419 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1420 netif_stop_queue(dev);
1421
1422 dev->trans_start = jiffies;
1423
1424 return 0;
1425 }
1426
1427
1428 /* The interrupt handler does all of the Rx thread work and cleans up
1429 after the Tx thread. */
1430 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1431 {
1432 struct net_device *dev = dev_instance;
1433 struct netdev_private *np = netdev_priv(dev);
1434 void __iomem *ioaddr = np->base;
1435 int boguscnt = max_interrupt_work;
1436 int consumer;
1437 int tx_status;
1438 int handled = 0;
1439
1440 do {
1441 u32 intr_status = readl(ioaddr + IntrClear);
1442
1443 if (debug > 4)
1444 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1445 dev->name, intr_status);
1446
1447 if (intr_status == 0 || intr_status == (u32) -1)
1448 break;
1449
1450 handled = 1;
1451
1452 if (intr_status & (IntrRxDone | IntrRxEmpty))
1453 netdev_rx(dev, ioaddr);
1454
1455 /* Scavenge the skbuff list based on the Tx-done queue.
1456 There are redundant checks here that may be cleaned up
1457 after the driver has proven to be reliable. */
1458 consumer = readl(ioaddr + TxConsumerIdx);
1459 if (debug > 3)
1460 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1461 dev->name, consumer);
1462
1463 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1464 if (debug > 3)
1465 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1466 dev->name, np->dirty_tx, np->tx_done, tx_status);
1467 if ((tx_status & 0xe0000000) == 0xa0000000) {
1468 np->stats.tx_packets++;
1469 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1470 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1471 struct sk_buff *skb = np->tx_info[entry].skb;
1472 np->tx_info[entry].skb = NULL;
1473 pci_unmap_single(np->pci_dev,
1474 np->tx_info[entry].mapping,
1475 skb_first_frag_len(skb),
1476 PCI_DMA_TODEVICE);
1477 np->tx_info[entry].mapping = 0;
1478 np->dirty_tx += np->tx_info[entry].used_slots;
1479 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1480 {
1481 int i;
1482 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1483 pci_unmap_single(np->pci_dev,
1484 np->tx_info[entry].mapping,
1485 skb_shinfo(skb)->frags[i].size,
1486 PCI_DMA_TODEVICE);
1487 np->dirty_tx++;
1488 entry++;
1489 }
1490 }
1491
1492 dev_kfree_skb_irq(skb);
1493 }
1494 np->tx_done_q[np->tx_done].status = 0;
1495 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1496 }
1497 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1498
1499 if (netif_queue_stopped(dev) &&
1500 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1501 /* The ring is no longer full, wake the queue. */
1502 netif_wake_queue(dev);
1503 }
1504
1505 /* Stats overflow */
1506 if (intr_status & IntrStatsMax)
1507 get_stats(dev);
1508
1509 /* Media change interrupt. */
1510 if (intr_status & IntrLinkChange)
1511 netdev_media_change(dev);
1512
1513 /* Abnormal error summary/uncommon events handlers. */
1514 if (intr_status & IntrAbnormalSummary)
1515 netdev_error(dev, intr_status);
1516
1517 if (--boguscnt < 0) {
1518 if (debug > 1)
1519 printk(KERN_WARNING "%s: Too much work at interrupt, "
1520 "status=%#8.8x.\n",
1521 dev->name, intr_status);
1522 break;
1523 }
1524 } while (1);
1525
1526 if (debug > 4)
1527 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1528 dev->name, (int) readl(ioaddr + IntrStatus));
1529 return IRQ_RETVAL(handled);
1530 }
1531
1532
1533 /* This routine is logically part of the interrupt/poll handler, but separated
1534 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1535 static int __netdev_rx(struct net_device *dev, int *quota)
1536 {
1537 struct netdev_private *np = netdev_priv(dev);
1538 u32 desc_status;
1539 int retcode = 0;
1540
1541 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1542 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1543 struct sk_buff *skb;
1544 u16 pkt_len;
1545 int entry;
1546 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1547
1548 if (debug > 4)
1549 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1550 if (!(desc_status & RxOK)) {
1551 /* There was an error. */
1552 if (debug > 2)
1553 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1554 np->stats.rx_errors++;
1555 if (desc_status & RxFIFOErr)
1556 np->stats.rx_fifo_errors++;
1557 goto next_rx;
1558 }
1559
1560 if (*quota <= 0) { /* out of rx quota */
1561 retcode = 1;
1562 goto out;
1563 }
1564 (*quota)--;
1565
1566 pkt_len = desc_status; /* Implicitly Truncate */
1567 entry = (desc_status >> 16) & 0x7ff;
1568
1569 if (debug > 4)
1570 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1571 /* Check if the packet is long enough to accept without copying
1572 to a minimally-sized skbuff. */
1573 if (pkt_len < rx_copybreak
1574 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1575 skb->dev = dev;
1576 skb_reserve(skb, 2); /* 16 byte align the IP header */
1577 pci_dma_sync_single_for_cpu(np->pci_dev,
1578 np->rx_info[entry].mapping,
1579 pkt_len, PCI_DMA_FROMDEVICE);
1580 eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
1581 pci_dma_sync_single_for_device(np->pci_dev,
1582 np->rx_info[entry].mapping,
1583 pkt_len, PCI_DMA_FROMDEVICE);
1584 skb_put(skb, pkt_len);
1585 } else {
1586 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1587 skb = np->rx_info[entry].skb;
1588 skb_put(skb, pkt_len);
1589 np->rx_info[entry].skb = NULL;
1590 np->rx_info[entry].mapping = 0;
1591 }
1592 #ifndef final_version /* Remove after testing. */
1593 /* You will want this info for the initial debug. */
1594 if (debug > 5)
1595 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1596 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1597 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1598 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1599 skb->data[8], skb->data[9], skb->data[10],
1600 skb->data[11], skb->data[12], skb->data[13]);
1601 #endif
1602
1603 skb->protocol = eth_type_trans(skb, dev);
1604 #ifdef VLAN_SUPPORT
1605 if (debug > 4)
1606 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1607 #endif
1608 if (le16_to_cpu(desc->status2) & 0x0100) {
1609 skb->ip_summed = CHECKSUM_UNNECESSARY;
1610 np->stats.rx_compressed++;
1611 }
1612 /*
1613 * This feature doesn't seem to be working, at least
1614 * with the two firmware versions I have. If the GFP sees
1615 * an IP fragment, it either ignores it completely, or reports
1616 * "bad checksum" on it.
1617 *
1618 * Maybe I missed something -- corrections are welcome.
1619 * Until then, the printk stays. :-) -Ion
1620 */
1621 else if (le16_to_cpu(desc->status2) & 0x0040) {
1622 skb->ip_summed = CHECKSUM_HW;
1623 skb->csum = le16_to_cpu(desc->csum);
1624 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1625 }
1626 #ifdef VLAN_SUPPORT
1627 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1628 if (debug > 4)
1629 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1630 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1631 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1632 } else
1633 #endif /* VLAN_SUPPORT */
1634 netdev_receive_skb(skb);
1635 dev->last_rx = jiffies;
1636 np->stats.rx_packets++;
1637
1638 next_rx:
1639 np->cur_rx++;
1640 desc->status = 0;
1641 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1642 }
1643 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1644
1645 out:
1646 refill_rx_ring(dev);
1647 if (debug > 5)
1648 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1649 retcode, np->rx_done, desc_status);
1650 return retcode;
1651 }
1652
1653
1654 #ifdef HAVE_NETDEV_POLL
1655 static int netdev_poll(struct net_device *dev, int *budget)
1656 {
1657 u32 intr_status;
1658 struct netdev_private *np = netdev_priv(dev);
1659 void __iomem *ioaddr = np->base;
1660 int retcode = 0, quota = dev->quota;
1661
1662 do {
1663 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1664
1665 retcode = __netdev_rx(dev, &quota);
1666 *budget -= (dev->quota - quota);
1667 dev->quota = quota;
1668 if (retcode)
1669 goto out;
1670
1671 intr_status = readl(ioaddr + IntrStatus);
1672 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1673
1674 netif_rx_complete(dev);
1675 intr_status = readl(ioaddr + IntrEnable);
1676 intr_status |= IntrRxDone | IntrRxEmpty;
1677 writel(intr_status, ioaddr + IntrEnable);
1678
1679 out:
1680 if (debug > 5)
1681 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", retcode);
1682
1683 /* Restart Rx engine if stopped. */
1684 return retcode;
1685 }
1686 #endif /* HAVE_NETDEV_POLL */
1687
1688
1689 static void refill_rx_ring(struct net_device *dev)
1690 {
1691 struct netdev_private *np = netdev_priv(dev);
1692 struct sk_buff *skb;
1693 int entry = -1;
1694
1695 /* Refill the Rx ring buffers. */
1696 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1697 entry = np->dirty_rx % RX_RING_SIZE;
1698 if (np->rx_info[entry].skb == NULL) {
1699 skb = dev_alloc_skb(np->rx_buf_sz);
1700 np->rx_info[entry].skb = skb;
1701 if (skb == NULL)
1702 break; /* Better luck next round. */
1703 np->rx_info[entry].mapping =
1704 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1705 skb->dev = dev; /* Mark as being used by this device. */
1706 np->rx_ring[entry].rxaddr =
1707 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1708 }
1709 if (entry == RX_RING_SIZE - 1)
1710 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1711 }
1712 if (entry >= 0)
1713 writew(entry, np->base + RxDescQIdx);
1714 }
1715
1716
1717 static void netdev_media_change(struct net_device *dev)
1718 {
1719 struct netdev_private *np = netdev_priv(dev);
1720 void __iomem *ioaddr = np->base;
1721 u16 reg0, reg1, reg4, reg5;
1722 u32 new_tx_mode;
1723 u32 new_intr_timer_ctrl;
1724
1725 /* reset status first */
1726 mdio_read(dev, np->phys[0], MII_BMCR);
1727 mdio_read(dev, np->phys[0], MII_BMSR);
1728
1729 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1730 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1731
1732 if (reg1 & BMSR_LSTATUS) {
1733 /* link is up */
1734 if (reg0 & BMCR_ANENABLE) {
1735 /* autonegotiation is enabled */
1736 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1737 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1738 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1739 np->speed100 = 1;
1740 np->mii_if.full_duplex = 1;
1741 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1742 np->speed100 = 1;
1743 np->mii_if.full_duplex = 0;
1744 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1745 np->speed100 = 0;
1746 np->mii_if.full_duplex = 1;
1747 } else {
1748 np->speed100 = 0;
1749 np->mii_if.full_duplex = 0;
1750 }
1751 } else {
1752 /* autonegotiation is disabled */
1753 if (reg0 & BMCR_SPEED100)
1754 np->speed100 = 1;
1755 else
1756 np->speed100 = 0;
1757 if (reg0 & BMCR_FULLDPLX)
1758 np->mii_if.full_duplex = 1;
1759 else
1760 np->mii_if.full_duplex = 0;
1761 }
1762 netif_carrier_on(dev);
1763 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1764 dev->name,
1765 np->speed100 ? "100" : "10",
1766 np->mii_if.full_duplex ? "full" : "half");
1767
1768 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1769 if (np->mii_if.full_duplex)
1770 new_tx_mode |= FullDuplex;
1771 if (np->tx_mode != new_tx_mode) {
1772 np->tx_mode = new_tx_mode;
1773 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1774 udelay(1000);
1775 writel(np->tx_mode, ioaddr + TxMode);
1776 }
1777
1778 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1779 if (np->speed100)
1780 new_intr_timer_ctrl |= Timer10X;
1781 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1782 np->intr_timer_ctrl = new_intr_timer_ctrl;
1783 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1784 }
1785 } else {
1786 netif_carrier_off(dev);
1787 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1788 }
1789 }
1790
1791
1792 static void netdev_error(struct net_device *dev, int intr_status)
1793 {
1794 struct netdev_private *np = netdev_priv(dev);
1795
1796 /* Came close to underrunning the Tx FIFO, increase threshold. */
1797 if (intr_status & IntrTxDataLow) {
1798 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1799 writel(++np->tx_threshold, np->base + TxThreshold);
1800 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1801 dev->name, np->tx_threshold * 16);
1802 } else
1803 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1804 }
1805 if (intr_status & IntrRxGFPDead) {
1806 np->stats.rx_fifo_errors++;
1807 np->stats.rx_errors++;
1808 }
1809 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1810 np->stats.tx_fifo_errors++;
1811 np->stats.tx_errors++;
1812 }
1813 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1814 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1815 dev->name, intr_status);
1816 }
1817
1818
1819 static struct net_device_stats *get_stats(struct net_device *dev)
1820 {
1821 struct netdev_private *np = netdev_priv(dev);
1822 void __iomem *ioaddr = np->base;
1823
1824 /* This adapter architecture needs no SMP locks. */
1825 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1826 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1827 np->stats.tx_packets = readl(ioaddr + 0x57000);
1828 np->stats.tx_aborted_errors =
1829 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1830 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1831 np->stats.collisions =
1832 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1833
1834 /* The chip only need report frame silently dropped. */
1835 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1836 writew(0, ioaddr + RxDMAStatus);
1837 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1838 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1839 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1840 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1841
1842 return &np->stats;
1843 }
1844
1845
1846 static void set_rx_mode(struct net_device *dev)
1847 {
1848 struct netdev_private *np = netdev_priv(dev);
1849 void __iomem *ioaddr = np->base;
1850 u32 rx_mode = MinVLANPrio;
1851 struct dev_mc_list *mclist;
1852 int i;
1853 #ifdef VLAN_SUPPORT
1854
1855 rx_mode |= VlanMode;
1856 if (np->vlgrp) {
1857 int vlan_count = 0;
1858 void __iomem *filter_addr = ioaddr + HashTable + 8;
1859 for (i = 0; i < VLAN_VID_MASK; i++) {
1860 if (np->vlgrp->vlan_devices[i]) {
1861 if (vlan_count >= 32)
1862 break;
1863 writew(cpu_to_be16(i), filter_addr);
1864 filter_addr += 16;
1865 vlan_count++;
1866 }
1867 }
1868 if (i == VLAN_VID_MASK) {
1869 rx_mode |= PerfectFilterVlan;
1870 while (vlan_count < 32) {
1871 writew(0, filter_addr);
1872 filter_addr += 16;
1873 vlan_count++;
1874 }
1875 }
1876 }
1877 #endif /* VLAN_SUPPORT */
1878
1879 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1880 rx_mode |= AcceptAll;
1881 } else if ((dev->mc_count > multicast_filter_limit)
1882 || (dev->flags & IFF_ALLMULTI)) {
1883 /* Too many to match, or accept all multicasts. */
1884 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1885 } else if (dev->mc_count <= 14) {
1886 /* Use the 16 element perfect filter, skip first two entries. */
1887 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1888 u16 *eaddrs;
1889 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1890 i++, mclist = mclist->next) {
1891 eaddrs = (u16 *)mclist->dmi_addr;
1892 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1893 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1894 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1895 }
1896 eaddrs = (u16 *)dev->dev_addr;
1897 while (i++ < 16) {
1898 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1899 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1900 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1901 }
1902 rx_mode |= AcceptBroadcast|PerfectFilter;
1903 } else {
1904 /* Must use a multicast hash table. */
1905 void __iomem *filter_addr;
1906 u16 *eaddrs;
1907 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1908
1909 memset(mc_filter, 0, sizeof(mc_filter));
1910 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1911 i++, mclist = mclist->next) {
1912 /* The chip uses the upper 9 CRC bits
1913 as index into the hash table */
1914 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1915 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1916
1917 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1918 }
1919 /* Clear the perfect filter list, skip first two entries. */
1920 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1921 eaddrs = (u16 *)dev->dev_addr;
1922 for (i = 2; i < 16; i++) {
1923 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1924 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1925 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1926 }
1927 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1928 writew(mc_filter[i], filter_addr);
1929 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1930 }
1931 writel(rx_mode, ioaddr + RxFilterMode);
1932 }
1933
1934 static int check_if_running(struct net_device *dev)
1935 {
1936 if (!netif_running(dev))
1937 return -EINVAL;
1938 return 0;
1939 }
1940
1941 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1942 {
1943 struct netdev_private *np = netdev_priv(dev);
1944 strcpy(info->driver, DRV_NAME);
1945 strcpy(info->version, DRV_VERSION);
1946 strcpy(info->bus_info, pci_name(np->pci_dev));
1947 }
1948
1949 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1950 {
1951 struct netdev_private *np = netdev_priv(dev);
1952 spin_lock_irq(&np->lock);
1953 mii_ethtool_gset(&np->mii_if, ecmd);
1954 spin_unlock_irq(&np->lock);
1955 return 0;
1956 }
1957
1958 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1959 {
1960 struct netdev_private *np = netdev_priv(dev);
1961 int res;
1962 spin_lock_irq(&np->lock);
1963 res = mii_ethtool_sset(&np->mii_if, ecmd);
1964 spin_unlock_irq(&np->lock);
1965 check_duplex(dev);
1966 return res;
1967 }
1968
1969 static int nway_reset(struct net_device *dev)
1970 {
1971 struct netdev_private *np = netdev_priv(dev);
1972 return mii_nway_restart(&np->mii_if);
1973 }
1974
1975 static u32 get_link(struct net_device *dev)
1976 {
1977 struct netdev_private *np = netdev_priv(dev);
1978 return mii_link_ok(&np->mii_if);
1979 }
1980
1981 static u32 get_msglevel(struct net_device *dev)
1982 {
1983 return debug;
1984 }
1985
1986 static void set_msglevel(struct net_device *dev, u32 val)
1987 {
1988 debug = val;
1989 }
1990
1991 static struct ethtool_ops ethtool_ops = {
1992 .begin = check_if_running,
1993 .get_drvinfo = get_drvinfo,
1994 .get_settings = get_settings,
1995 .set_settings = set_settings,
1996 .nway_reset = nway_reset,
1997 .get_link = get_link,
1998 .get_msglevel = get_msglevel,
1999 .set_msglevel = set_msglevel,
2000 };
2001
2002 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2003 {
2004 struct netdev_private *np = netdev_priv(dev);
2005 struct mii_ioctl_data *data = if_mii(rq);
2006 int rc;
2007
2008 if (!netif_running(dev))
2009 return -EINVAL;
2010
2011 spin_lock_irq(&np->lock);
2012 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
2013 spin_unlock_irq(&np->lock);
2014
2015 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
2016 check_duplex(dev);
2017
2018 return rc;
2019 }
2020
2021 static int netdev_close(struct net_device *dev)
2022 {
2023 struct netdev_private *np = netdev_priv(dev);
2024 void __iomem *ioaddr = np->base;
2025 int i;
2026
2027 netif_stop_queue(dev);
2028
2029 if (debug > 1) {
2030 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
2031 dev->name, (int) readl(ioaddr + IntrStatus));
2032 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
2033 dev->name, np->cur_tx, np->dirty_tx,
2034 np->cur_rx, np->dirty_rx);
2035 }
2036
2037 /* Disable interrupts by clearing the interrupt mask. */
2038 writel(0, ioaddr + IntrEnable);
2039
2040 /* Stop the chip's Tx and Rx processes. */
2041 writel(0, ioaddr + GenCtrl);
2042 readl(ioaddr + GenCtrl);
2043
2044 if (debug > 5) {
2045 printk(KERN_DEBUG" Tx ring at %#llx:\n",
2046 (long long) np->tx_ring_dma);
2047 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
2048 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
2049 i, le32_to_cpu(np->tx_ring[i].status),
2050 (long long) dma_to_cpu(np->tx_ring[i].addr),
2051 le32_to_cpu(np->tx_done_q[i].status));
2052 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
2053 (long long) np->rx_ring_dma, np->rx_done_q);
2054 if (np->rx_done_q)
2055 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
2056 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
2057 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
2058 }
2059 }
2060
2061 free_irq(dev->irq, dev);
2062
2063 /* Free all the skbuffs in the Rx queue. */
2064 for (i = 0; i < RX_RING_SIZE; i++) {
2065 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
2066 if (np->rx_info[i].skb != NULL) {
2067 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
2068 dev_kfree_skb(np->rx_info[i].skb);
2069 }
2070 np->rx_info[i].skb = NULL;
2071 np->rx_info[i].mapping = 0;
2072 }
2073 for (i = 0; i < TX_RING_SIZE; i++) {
2074 struct sk_buff *skb = np->tx_info[i].skb;
2075 if (skb == NULL)
2076 continue;
2077 pci_unmap_single(np->pci_dev,
2078 np->tx_info[i].mapping,
2079 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
2080 np->tx_info[i].mapping = 0;
2081 dev_kfree_skb(skb);
2082 np->tx_info[i].skb = NULL;
2083 }
2084
2085 return 0;
2086 }
2087
2088
2089 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2090 {
2091 struct net_device *dev = pci_get_drvdata(pdev);
2092 struct netdev_private *np = netdev_priv(dev);
2093
2094 if (!dev)
2095 BUG();
2096
2097 unregister_netdev(dev);
2098
2099 if (np->queue_mem)
2100 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2101
2102
2103 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2104 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2105 pci_disable_device(pdev);
2106
2107 iounmap(np->base);
2108 pci_release_regions(pdev);
2109
2110 pci_set_drvdata(pdev, NULL);
2111 free_netdev(dev); /* Will also free np!! */
2112 }
2113
2114
2115 static struct pci_driver starfire_driver = {
2116 .name = DRV_NAME,
2117 .probe = starfire_init_one,
2118 .remove = __devexit_p(starfire_remove_one),
2119 .id_table = starfire_pci_tbl,
2120 };
2121
2122
2123 static int __init starfire_init (void)
2124 {
2125 /* when a module, this is printed whether or not devices are found in probe */
2126 #ifdef MODULE
2127 printk(version);
2128 #ifdef HAVE_NETDEV_POLL
2129 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2130 #else
2131 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2132 #endif
2133 #endif
2134
2135 /* we can do this test only at run-time... sigh */
2136 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2137 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2138 return -ENODEV;
2139 }
2140
2141 return pci_module_init (&starfire_driver);
2142 }
2143
2144
2145 static void __exit starfire_cleanup (void)
2146 {
2147 pci_unregister_driver (&starfire_driver);
2148 }
2149
2150
2151 module_init(starfire_init);
2152 module_exit(starfire_cleanup);
2153
2154
2155 /*
2156 * Local variables:
2157 * c-basic-offset: 8
2158 * tab-width: 8
2159 * End:
2160 */
This page took 0.113856 seconds and 5 git commands to generate.