Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / drivers / net / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/mm.h>
45 #include <linux/firmware.h>
46 #include <asm/processor.h> /* Processor type for cache alignment. */
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49
50 /*
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
53 */
54 #define HAS_BROKEN_FIRMWARE
55
56 /*
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
58 */
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
61 #endif
62
63 /*
64 * Define this if using the driver with the zero-copy patch
65 */
66 #define ZEROCOPY
67
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
69 #define VLAN_SUPPORT
70 #endif
71
72 /* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
74
75 /* Used for tuning interrupt latency vs. overhead. */
76 static int intr_latency;
77 static int small_frames;
78
79 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80 static int max_interrupt_work = 20;
81 static int mtu;
82 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
84 static const int multicast_filter_limit = 512;
85 /* Whether to do TCP/UDP checksums in hardware */
86 static int enable_hw_cksum = 1;
87
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89 /*
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
92 *
93 * NOTE:
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
97 * 23/10/2000 - Jes
98 *
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
101 * penalty. -Ion
102 */
103 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104 static int rx_copybreak = PKT_BUF_SZ;
105 #else
106 static int rx_copybreak /* = 0 */;
107 #endif
108
109 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
110 #ifdef __sparc__
111 #define DMA_BURST_SIZE 64
112 #else
113 #define DMA_BURST_SIZE 128
114 #endif
115
116 /* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
120 */
121 #define MAX_UNITS 8 /* More are supported, limit only on options */
122 static int options[MAX_UNITS] = {0, };
123 static int full_duplex[MAX_UNITS] = {0, };
124
125 /* Operational parameters that are set at compile time. */
126
127 /* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
129 */
130 #define RX_RING_SIZE 256
131 #define TX_RING_SIZE 32
132 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133 #define DONE_Q_SIZE 1024
134 /* All queues must be aligned on a 256-byte boundary */
135 #define QUEUE_ALIGN 256
136
137 #if RX_RING_SIZE > 256
138 #define RX_Q_ENTRIES Rx2048QEntries
139 #else
140 #define RX_Q_ENTRIES Rx256QEntries
141 #endif
142
143 /* Operational parameters that usually are not changed. */
144 /* Time in jiffies before concluding the transmitter is hung. */
145 #define TX_TIMEOUT (2 * HZ)
146
147 /*
148 * This SUCKS.
149 * We need a much better method to determine if dma_addr_t is 64-bit.
150 */
151 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
152 /* 64-bit dma_addr_t */
153 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
154 #define netdrv_addr_t __le64
155 #define cpu_to_dma(x) cpu_to_le64(x)
156 #define dma_to_cpu(x) le64_to_cpu(x)
157 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
162 #else /* 32-bit dma_addr_t */
163 #define netdrv_addr_t __le32
164 #define cpu_to_dma(x) cpu_to_le32(x)
165 #define dma_to_cpu(x) le32_to_cpu(x)
166 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
171 #endif
172
173 #define skb_first_frag_len(skb) skb_headlen(skb)
174 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
175
176 /* Firmware names */
177 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
178 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
179
180 /* These identify the driver base version and may not be removed. */
181 static char version[] =
182 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
183 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
184
185 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
186 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
187 MODULE_LICENSE("GPL");
188 MODULE_VERSION(DRV_VERSION);
189 MODULE_FIRMWARE(FIRMWARE_RX);
190 MODULE_FIRMWARE(FIRMWARE_TX);
191
192 module_param(max_interrupt_work, int, 0);
193 module_param(mtu, int, 0);
194 module_param(debug, int, 0);
195 module_param(rx_copybreak, int, 0);
196 module_param(intr_latency, int, 0);
197 module_param(small_frames, int, 0);
198 module_param_array(options, int, NULL, 0);
199 module_param_array(full_duplex, int, NULL, 0);
200 module_param(enable_hw_cksum, int, 0);
201 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
202 MODULE_PARM_DESC(mtu, "MTU (all boards)");
203 MODULE_PARM_DESC(debug, "Debug level (0-6)");
204 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
205 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
206 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
207 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
208 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
209 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
210
211 /*
212 Theory of Operation
213
214 I. Board Compatibility
215
216 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
217
218 II. Board-specific settings
219
220 III. Driver operation
221
222 IIIa. Ring buffers
223
224 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
225 ring sizes are set fixed by the hardware, but may optionally be wrapped
226 earlier by the END bit in the descriptor.
227 This driver uses that hardware queue size for the Rx ring, where a large
228 number of entries has no ill effect beyond increases the potential backlog.
229 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
230 disables the queue layer priority ordering and we have no mechanism to
231 utilize the hardware two-level priority queue. When modifying the
232 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
233 levels.
234
235 IIIb/c. Transmit/Receive Structure
236
237 See the Adaptec manual for the many possible structures, and options for
238 each structure. There are far too many to document all of them here.
239
240 For transmit this driver uses type 0/1 transmit descriptors (depending
241 on the 32/64 bitness of the architecture), and relies on automatic
242 minimum-length padding. It does not use the completion queue
243 consumer index, but instead checks for non-zero status entries.
244
245 For receive this driver uses type 2/3 receive descriptors. The driver
246 allocates full frame size skbuffs for the Rx ring buffers, so all frames
247 should fit in a single descriptor. The driver does not use the completion
248 queue consumer index, but instead checks for non-zero status entries.
249
250 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
251 is allocated and the frame is copied to the new skbuff. When the incoming
252 frame is larger, the skbuff is passed directly up the protocol stack.
253 Buffers consumed this way are replaced by newly allocated skbuffs in a later
254 phase of receive.
255
256 A notable aspect of operation is that unaligned buffers are not permitted by
257 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
258 isn't longword aligned, which may cause problems on some machine
259 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
260 the frame into a new skbuff unconditionally. Copied frames are put into the
261 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
262
263 IIId. Synchronization
264
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and interrupt handling software.
269
270 The send packet thread has partial control over the Tx ring and the netif_queue
271 status. If the number of free Tx slots in the ring falls below a certain number
272 (currently hardcoded to 4), it signals the upper layer to stop the queue.
273
274 The interrupt handler has exclusive control over the Rx ring and records stats
275 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
276 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
277 number of free Tx slow is above the threshold, it signals the upper layer to
278 restart the queue.
279
280 IV. Notes
281
282 IVb. References
283
284 The Adaptec Starfire manuals, available only from Adaptec.
285 http://www.scyld.com/expert/100mbps.html
286 http://www.scyld.com/expert/NWay.html
287
288 IVc. Errata
289
290 - StopOnPerr is broken, don't enable
291 - Hardware ethernet padding exposes random data, perform software padding
292 instead (unverified -- works correctly for all the hardware I have)
293
294 */
295
296
297
298 enum chip_capability_flags {CanHaveMII=1, };
299
300 enum chipset {
301 CH_6915 = 0,
302 };
303
304 static struct pci_device_id starfire_pci_tbl[] = {
305 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
306 { 0, }
307 };
308 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
309
310 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
311 static const struct chip_info {
312 const char *name;
313 int drv_flags;
314 } netdrv_tbl[] __devinitdata = {
315 { "Adaptec Starfire 6915", CanHaveMII },
316 };
317
318
319 /* Offsets to the device registers.
320 Unlike software-only systems, device drivers interact with complex hardware.
321 It's not useful to define symbolic names for every register bit in the
322 device. The name can only partially document the semantics and make
323 the driver longer and more difficult to read.
324 In general, only the important configuration values or bits changed
325 multiple times should be defined symbolically.
326 */
327 enum register_offsets {
328 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
329 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
330 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
331 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
332 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
333 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
334 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
335 TxThreshold=0x500B0,
336 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
337 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
338 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
339 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
340 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
341 TxMode=0x55000, VlanType=0x55064,
342 PerfFilterTable=0x56000, HashTable=0x56100,
343 TxGfpMem=0x58000, RxGfpMem=0x5a000,
344 };
345
346 /*
347 * Bits in the interrupt status/mask registers.
348 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
349 * enables all the interrupt sources that are or'ed into those status bits.
350 */
351 enum intr_status_bits {
352 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
353 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
354 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
355 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
356 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
357 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
358 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
359 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
360 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
361 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
362 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
363 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
364 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
365 IntrTxGfp=0x02, IntrPCIPad=0x01,
366 /* not quite bits */
367 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
368 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
369 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
370 };
371
372 /* Bits in the RxFilterMode register. */
373 enum rx_mode_bits {
374 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
375 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
376 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
377 WakeupOnGFP=0x0800,
378 };
379
380 /* Bits in the TxMode register */
381 enum tx_mode_bits {
382 MiiSoftReset=0x8000, MIILoopback=0x4000,
383 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
384 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
385 };
386
387 /* Bits in the TxDescCtrl register. */
388 enum tx_ctrl_bits {
389 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
390 TxDescSpace128=0x30, TxDescSpace256=0x40,
391 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
392 TxDescType3=0x03, TxDescType4=0x04,
393 TxNoDMACompletion=0x08,
394 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
395 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
396 TxDMABurstSizeShift=8,
397 };
398
399 /* Bits in the RxDescQCtrl register. */
400 enum rx_ctrl_bits {
401 RxBufferLenShift=16, RxMinDescrThreshShift=0,
402 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
403 Rx2048QEntries=0x4000, Rx256QEntries=0,
404 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
405 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
406 RxDescSpace4=0x000, RxDescSpace8=0x100,
407 RxDescSpace16=0x200, RxDescSpace32=0x300,
408 RxDescSpace64=0x400, RxDescSpace128=0x500,
409 RxConsumerWrEn=0x80,
410 };
411
412 /* Bits in the RxDMACtrl register. */
413 enum rx_dmactrl_bits {
414 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
415 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
416 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
417 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
418 RxChecksumRejectTCPOnly=0x01000000,
419 RxCompletionQ2Enable=0x800000,
420 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
421 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
422 RxDMAQ2NonIP=0x400000,
423 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
424 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
425 RxBurstSizeShift=0,
426 };
427
428 /* Bits in the RxCompletionAddr register */
429 enum rx_compl_bits {
430 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
431 RxComplProducerWrEn=0x40,
432 RxComplType0=0x00, RxComplType1=0x10,
433 RxComplType2=0x20, RxComplType3=0x30,
434 RxComplThreshShift=0,
435 };
436
437 /* Bits in the TxCompletionAddr register */
438 enum tx_compl_bits {
439 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
440 TxComplProducerWrEn=0x40,
441 TxComplIntrStatus=0x20,
442 CommonQueueMode=0x10,
443 TxComplThreshShift=0,
444 };
445
446 /* Bits in the GenCtrl register */
447 enum gen_ctrl_bits {
448 RxEnable=0x05, TxEnable=0x0a,
449 RxGFPEnable=0x10, TxGFPEnable=0x20,
450 };
451
452 /* Bits in the IntrTimerCtrl register */
453 enum intr_ctrl_bits {
454 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
455 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
456 IntrLatencyMask=0x1f,
457 };
458
459 /* The Rx and Tx buffer descriptors. */
460 struct starfire_rx_desc {
461 netdrv_addr_t rxaddr;
462 };
463 enum rx_desc_bits {
464 RxDescValid=1, RxDescEndRing=2,
465 };
466
467 /* Completion queue entry. */
468 struct short_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
470 };
471 struct basic_rx_done_desc {
472 __le32 status; /* Low 16 bits is length. */
473 __le16 vlanid;
474 __le16 status2;
475 };
476 struct csum_rx_done_desc {
477 __le32 status; /* Low 16 bits is length. */
478 __le16 csum; /* Partial checksum */
479 __le16 status2;
480 };
481 struct full_rx_done_desc {
482 __le32 status; /* Low 16 bits is length. */
483 __le16 status3;
484 __le16 status2;
485 __le16 vlanid;
486 __le16 csum; /* partial checksum */
487 __le32 timestamp;
488 };
489 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
490 #ifdef VLAN_SUPPORT
491 typedef struct full_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType3
493 #else /* not VLAN_SUPPORT */
494 typedef struct csum_rx_done_desc rx_done_desc;
495 #define RxComplType RxComplType2
496 #endif /* not VLAN_SUPPORT */
497
498 enum rx_done_bits {
499 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
500 };
501
502 /* Type 1 Tx descriptor. */
503 struct starfire_tx_desc_1 {
504 __le32 status; /* Upper bits are status, lower 16 length. */
505 __le32 addr;
506 };
507
508 /* Type 2 Tx descriptor. */
509 struct starfire_tx_desc_2 {
510 __le32 status; /* Upper bits are status, lower 16 length. */
511 __le32 reserved;
512 __le64 addr;
513 };
514
515 #ifdef ADDR_64BITS
516 typedef struct starfire_tx_desc_2 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType2
518 #else /* not ADDR_64BITS */
519 typedef struct starfire_tx_desc_1 starfire_tx_desc;
520 #define TX_DESC_TYPE TxDescType1
521 #endif /* not ADDR_64BITS */
522 #define TX_DESC_SPACING TxDescSpaceUnlim
523
524 enum tx_desc_bits {
525 TxDescID=0xB0000000,
526 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
527 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
528 };
529 struct tx_done_desc {
530 __le32 status; /* timestamp, index. */
531 #if 0
532 __le32 intrstatus; /* interrupt status */
533 #endif
534 };
535
536 struct rx_ring_info {
537 struct sk_buff *skb;
538 dma_addr_t mapping;
539 };
540 struct tx_ring_info {
541 struct sk_buff *skb;
542 dma_addr_t mapping;
543 unsigned int used_slots;
544 };
545
546 #define PHY_CNT 2
547 struct netdev_private {
548 /* Descriptor rings first for alignment. */
549 struct starfire_rx_desc *rx_ring;
550 starfire_tx_desc *tx_ring;
551 dma_addr_t rx_ring_dma;
552 dma_addr_t tx_ring_dma;
553 /* The addresses of rx/tx-in-place skbuffs. */
554 struct rx_ring_info rx_info[RX_RING_SIZE];
555 struct tx_ring_info tx_info[TX_RING_SIZE];
556 /* Pointers to completion queues (full pages). */
557 rx_done_desc *rx_done_q;
558 dma_addr_t rx_done_q_dma;
559 unsigned int rx_done;
560 struct tx_done_desc *tx_done_q;
561 dma_addr_t tx_done_q_dma;
562 unsigned int tx_done;
563 struct napi_struct napi;
564 struct net_device *dev;
565 struct net_device_stats stats;
566 struct pci_dev *pci_dev;
567 #ifdef VLAN_SUPPORT
568 struct vlan_group *vlgrp;
569 #endif
570 void *queue_mem;
571 dma_addr_t queue_mem_dma;
572 size_t queue_mem_size;
573
574 /* Frequently used values: keep some adjacent for cache effect. */
575 spinlock_t lock;
576 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
577 unsigned int cur_tx, dirty_tx, reap_tx;
578 unsigned int rx_buf_sz; /* Based on MTU+slack. */
579 /* These values keep track of the transceiver/media in use. */
580 int speed100; /* Set if speed == 100MBit. */
581 u32 tx_mode;
582 u32 intr_timer_ctrl;
583 u8 tx_threshold;
584 /* MII transceiver section. */
585 struct mii_if_info mii_if; /* MII lib hooks/info */
586 int phy_cnt; /* MII device addresses. */
587 unsigned char phys[PHY_CNT]; /* MII device addresses. */
588 void __iomem *base;
589 };
590
591
592 static int mdio_read(struct net_device *dev, int phy_id, int location);
593 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
594 static int netdev_open(struct net_device *dev);
595 static void check_duplex(struct net_device *dev);
596 static void tx_timeout(struct net_device *dev);
597 static void init_ring(struct net_device *dev);
598 static int start_tx(struct sk_buff *skb, struct net_device *dev);
599 static irqreturn_t intr_handler(int irq, void *dev_instance);
600 static void netdev_error(struct net_device *dev, int intr_status);
601 static int __netdev_rx(struct net_device *dev, int *quota);
602 static int netdev_poll(struct napi_struct *napi, int budget);
603 static void refill_rx_ring(struct net_device *dev);
604 static void netdev_error(struct net_device *dev, int intr_status);
605 static void set_rx_mode(struct net_device *dev);
606 static struct net_device_stats *get_stats(struct net_device *dev);
607 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
608 static int netdev_close(struct net_device *dev);
609 static void netdev_media_change(struct net_device *dev);
610 static const struct ethtool_ops ethtool_ops;
611
612
613 #ifdef VLAN_SUPPORT
614 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
615 {
616 struct netdev_private *np = netdev_priv(dev);
617
618 spin_lock(&np->lock);
619 if (debug > 2)
620 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
621 np->vlgrp = grp;
622 set_rx_mode(dev);
623 spin_unlock(&np->lock);
624 }
625
626 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
627 {
628 struct netdev_private *np = netdev_priv(dev);
629
630 spin_lock(&np->lock);
631 if (debug > 1)
632 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
633 set_rx_mode(dev);
634 spin_unlock(&np->lock);
635 }
636
637 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
638 {
639 struct netdev_private *np = netdev_priv(dev);
640
641 spin_lock(&np->lock);
642 if (debug > 1)
643 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
644 vlan_group_set_device(np->vlgrp, vid, NULL);
645 set_rx_mode(dev);
646 spin_unlock(&np->lock);
647 }
648 #endif /* VLAN_SUPPORT */
649
650
651 static int __devinit starfire_init_one(struct pci_dev *pdev,
652 const struct pci_device_id *ent)
653 {
654 struct netdev_private *np;
655 int i, irq, option, chip_idx = ent->driver_data;
656 struct net_device *dev;
657 static int card_idx = -1;
658 long ioaddr;
659 void __iomem *base;
660 int drv_flags, io_size;
661 int boguscnt;
662
663 /* when built into the kernel, we only print version if device is found */
664 #ifndef MODULE
665 static int printed_version;
666 if (!printed_version++)
667 printk(version);
668 #endif
669
670 card_idx++;
671
672 if (pci_enable_device (pdev))
673 return -EIO;
674
675 ioaddr = pci_resource_start(pdev, 0);
676 io_size = pci_resource_len(pdev, 0);
677 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
678 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
679 return -ENODEV;
680 }
681
682 dev = alloc_etherdev(sizeof(*np));
683 if (!dev) {
684 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
685 return -ENOMEM;
686 }
687 SET_NETDEV_DEV(dev, &pdev->dev);
688
689 irq = pdev->irq;
690
691 if (pci_request_regions (pdev, DRV_NAME)) {
692 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
693 goto err_out_free_netdev;
694 }
695
696 base = ioremap(ioaddr, io_size);
697 if (!base) {
698 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
699 card_idx, io_size, ioaddr);
700 goto err_out_free_res;
701 }
702
703 pci_set_master(pdev);
704
705 /* enable MWI -- it vastly improves Rx performance on sparc64 */
706 pci_try_set_mwi(pdev);
707
708 #ifdef ZEROCOPY
709 /* Starfire can do TCP/UDP checksumming */
710 if (enable_hw_cksum)
711 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
712 #endif /* ZEROCOPY */
713 #ifdef VLAN_SUPPORT
714 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
715 dev->vlan_rx_register = netdev_vlan_rx_register;
716 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
717 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
718 #endif /* VLAN_RX_KILL_VID */
719 #ifdef ADDR_64BITS
720 dev->features |= NETIF_F_HIGHDMA;
721 #endif /* ADDR_64BITS */
722
723 /* Serial EEPROM reads are hidden by the hardware. */
724 for (i = 0; i < 6; i++)
725 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
726
727 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
728 if (debug > 4)
729 for (i = 0; i < 0x20; i++)
730 printk("%2.2x%s",
731 (unsigned int)readb(base + EEPROMCtrl + i),
732 i % 16 != 15 ? " " : "\n");
733 #endif
734
735 /* Issue soft reset */
736 writel(MiiSoftReset, base + TxMode);
737 udelay(1000);
738 writel(0, base + TxMode);
739
740 /* Reset the chip to erase previous misconfiguration. */
741 writel(1, base + PCIDeviceConfig);
742 boguscnt = 1000;
743 while (--boguscnt > 0) {
744 udelay(10);
745 if ((readl(base + PCIDeviceConfig) & 1) == 0)
746 break;
747 }
748 if (boguscnt == 0)
749 printk("%s: chipset reset never completed!\n", dev->name);
750 /* wait a little longer */
751 udelay(1000);
752
753 dev->base_addr = (unsigned long)base;
754 dev->irq = irq;
755
756 np = netdev_priv(dev);
757 np->dev = dev;
758 np->base = base;
759 spin_lock_init(&np->lock);
760 pci_set_drvdata(pdev, dev);
761
762 np->pci_dev = pdev;
763
764 np->mii_if.dev = dev;
765 np->mii_if.mdio_read = mdio_read;
766 np->mii_if.mdio_write = mdio_write;
767 np->mii_if.phy_id_mask = 0x1f;
768 np->mii_if.reg_num_mask = 0x1f;
769
770 drv_flags = netdrv_tbl[chip_idx].drv_flags;
771
772 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
773 if (dev->mem_start)
774 option = dev->mem_start;
775
776 /* The lower four bits are the media type. */
777 if (option & 0x200)
778 np->mii_if.full_duplex = 1;
779
780 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
781 np->mii_if.full_duplex = 1;
782
783 if (np->mii_if.full_duplex)
784 np->mii_if.force_media = 1;
785 else
786 np->mii_if.force_media = 0;
787 np->speed100 = 1;
788
789 /* timer resolution is 128 * 0.8us */
790 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
791 Timer10X | EnableIntrMasking;
792
793 if (small_frames > 0) {
794 np->intr_timer_ctrl |= SmallFrameBypass;
795 switch (small_frames) {
796 case 1 ... 64:
797 np->intr_timer_ctrl |= SmallFrame64;
798 break;
799 case 65 ... 128:
800 np->intr_timer_ctrl |= SmallFrame128;
801 break;
802 case 129 ... 256:
803 np->intr_timer_ctrl |= SmallFrame256;
804 break;
805 default:
806 np->intr_timer_ctrl |= SmallFrame512;
807 if (small_frames > 512)
808 printk("Adjusting small_frames down to 512\n");
809 break;
810 }
811 }
812
813 /* The chip-specific entries in the device structure. */
814 dev->open = &netdev_open;
815 dev->hard_start_xmit = &start_tx;
816 dev->tx_timeout = tx_timeout;
817 dev->watchdog_timeo = TX_TIMEOUT;
818 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
819 dev->stop = &netdev_close;
820 dev->get_stats = &get_stats;
821 dev->set_multicast_list = &set_rx_mode;
822 dev->do_ioctl = &netdev_ioctl;
823 SET_ETHTOOL_OPS(dev, &ethtool_ops);
824
825 if (mtu)
826 dev->mtu = mtu;
827
828 if (register_netdev(dev))
829 goto err_out_cleardev;
830
831 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
832 dev->name, netdrv_tbl[chip_idx].name, base,
833 dev->dev_addr, irq);
834
835 if (drv_flags & CanHaveMII) {
836 int phy, phy_idx = 0;
837 int mii_status;
838 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
839 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
840 mdelay(100);
841 boguscnt = 1000;
842 while (--boguscnt > 0)
843 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
844 break;
845 if (boguscnt == 0) {
846 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
847 continue;
848 }
849 mii_status = mdio_read(dev, phy, MII_BMSR);
850 if (mii_status != 0) {
851 np->phys[phy_idx++] = phy;
852 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
853 printk(KERN_INFO "%s: MII PHY found at address %d, status "
854 "%#4.4x advertising %#4.4x.\n",
855 dev->name, phy, mii_status, np->mii_if.advertising);
856 /* there can be only one PHY on-board */
857 break;
858 }
859 }
860 np->phy_cnt = phy_idx;
861 if (np->phy_cnt > 0)
862 np->mii_if.phy_id = np->phys[0];
863 else
864 memset(&np->mii_if, 0, sizeof(np->mii_if));
865 }
866
867 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
868 dev->name, enable_hw_cksum ? "enabled" : "disabled");
869 return 0;
870
871 err_out_cleardev:
872 pci_set_drvdata(pdev, NULL);
873 iounmap(base);
874 err_out_free_res:
875 pci_release_regions (pdev);
876 err_out_free_netdev:
877 free_netdev(dev);
878 return -ENODEV;
879 }
880
881
882 /* Read the MII Management Data I/O (MDIO) interfaces. */
883 static int mdio_read(struct net_device *dev, int phy_id, int location)
884 {
885 struct netdev_private *np = netdev_priv(dev);
886 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
887 int result, boguscnt=1000;
888 /* ??? Should we add a busy-wait here? */
889 do {
890 result = readl(mdio_addr);
891 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
892 if (boguscnt == 0)
893 return 0;
894 if ((result & 0xffff) == 0xffff)
895 return 0;
896 return result & 0xffff;
897 }
898
899
900 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
901 {
902 struct netdev_private *np = netdev_priv(dev);
903 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
904 writel(value, mdio_addr);
905 /* The busy-wait will occur before a read. */
906 }
907
908
909 static int netdev_open(struct net_device *dev)
910 {
911 const struct firmware *fw_rx, *fw_tx;
912 const __be32 *fw_rx_data, *fw_tx_data;
913 struct netdev_private *np = netdev_priv(dev);
914 void __iomem *ioaddr = np->base;
915 int i, retval;
916 size_t tx_size, rx_size;
917 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
918
919 /* Do we ever need to reset the chip??? */
920
921 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
922 if (retval)
923 return retval;
924
925 /* Disable the Rx and Tx, and reset the chip. */
926 writel(0, ioaddr + GenCtrl);
927 writel(1, ioaddr + PCIDeviceConfig);
928 if (debug > 1)
929 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
930 dev->name, dev->irq);
931
932 /* Allocate the various queues. */
933 if (!np->queue_mem) {
934 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
935 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
936 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
937 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
938 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
939 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
940 if (np->queue_mem == NULL) {
941 free_irq(dev->irq, dev);
942 return -ENOMEM;
943 }
944
945 np->tx_done_q = np->queue_mem;
946 np->tx_done_q_dma = np->queue_mem_dma;
947 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
948 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
949 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
950 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
951 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
952 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
953 }
954
955 /* Start with no carrier, it gets adjusted later */
956 netif_carrier_off(dev);
957 init_ring(dev);
958 /* Set the size of the Rx buffers. */
959 writel((np->rx_buf_sz << RxBufferLenShift) |
960 (0 << RxMinDescrThreshShift) |
961 RxPrefetchMode | RxVariableQ |
962 RX_Q_ENTRIES |
963 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
964 RxDescSpace4,
965 ioaddr + RxDescQCtrl);
966
967 /* Set up the Rx DMA controller. */
968 writel(RxChecksumIgnore |
969 (0 << RxEarlyIntThreshShift) |
970 (6 << RxHighPrioThreshShift) |
971 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
972 ioaddr + RxDMACtrl);
973
974 /* Set Tx descriptor */
975 writel((2 << TxHiPriFIFOThreshShift) |
976 (0 << TxPadLenShift) |
977 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
978 TX_DESC_Q_ADDR_SIZE |
979 TX_DESC_SPACING | TX_DESC_TYPE,
980 ioaddr + TxDescCtrl);
981
982 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
983 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
984 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
985 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
986 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
987
988 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
989 writel(np->rx_done_q_dma |
990 RxComplType |
991 (0 << RxComplThreshShift),
992 ioaddr + RxCompletionAddr);
993
994 if (debug > 1)
995 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
996
997 /* Fill both the Tx SA register and the Rx perfect filter. */
998 for (i = 0; i < 6; i++)
999 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1000 /* The first entry is special because it bypasses the VLAN filter.
1001 Don't use it. */
1002 writew(0, ioaddr + PerfFilterTable);
1003 writew(0, ioaddr + PerfFilterTable + 4);
1004 writew(0, ioaddr + PerfFilterTable + 8);
1005 for (i = 1; i < 16; i++) {
1006 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1007 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1008 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1009 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1010 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1011 }
1012
1013 /* Initialize other registers. */
1014 /* Configure the PCI bus bursts and FIFO thresholds. */
1015 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1016 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1017 udelay(1000);
1018 writel(np->tx_mode, ioaddr + TxMode);
1019 np->tx_threshold = 4;
1020 writel(np->tx_threshold, ioaddr + TxThreshold);
1021
1022 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1023
1024 napi_enable(&np->napi);
1025
1026 netif_start_queue(dev);
1027
1028 if (debug > 1)
1029 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1030 set_rx_mode(dev);
1031
1032 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1033 check_duplex(dev);
1034
1035 /* Enable GPIO interrupts on link change */
1036 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1037
1038 /* Set the interrupt mask */
1039 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1040 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1041 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1042 ioaddr + IntrEnable);
1043 /* Enable PCI interrupts. */
1044 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1045 ioaddr + PCIDeviceConfig);
1046
1047 #ifdef VLAN_SUPPORT
1048 /* Set VLAN type to 802.1q */
1049 writel(ETH_P_8021Q, ioaddr + VlanType);
1050 #endif /* VLAN_SUPPORT */
1051
1052 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1053 if (retval) {
1054 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1055 FIRMWARE_RX);
1056 return retval;
1057 }
1058 if (fw_rx->size % 4) {
1059 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1060 fw_rx->size, FIRMWARE_RX);
1061 retval = -EINVAL;
1062 goto out_rx;
1063 }
1064 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1065 if (retval) {
1066 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1067 FIRMWARE_TX);
1068 goto out_rx;
1069 }
1070 if (fw_tx->size % 4) {
1071 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1072 fw_tx->size, FIRMWARE_TX);
1073 retval = -EINVAL;
1074 goto out_tx;
1075 }
1076 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1077 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1078 rx_size = fw_rx->size / 4;
1079 tx_size = fw_tx->size / 4;
1080
1081 /* Load Rx/Tx firmware into the frame processors */
1082 for (i = 0; i < rx_size; i++)
1083 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1084 for (i = 0; i < tx_size; i++)
1085 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1086 if (enable_hw_cksum)
1087 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1088 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1089 else
1090 /* Enable the Rx and Tx units only. */
1091 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1092
1093 if (debug > 1)
1094 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1095 dev->name);
1096
1097 out_tx:
1098 release_firmware(fw_tx);
1099 out_rx:
1100 release_firmware(fw_rx);
1101 return retval;
1102 }
1103
1104
1105 static void check_duplex(struct net_device *dev)
1106 {
1107 struct netdev_private *np = netdev_priv(dev);
1108 u16 reg0;
1109 int silly_count = 1000;
1110
1111 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1112 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1113 udelay(500);
1114 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1115 /* do nothing */;
1116 if (!silly_count) {
1117 printk("%s: MII reset failed!\n", dev->name);
1118 return;
1119 }
1120
1121 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1122
1123 if (!np->mii_if.force_media) {
1124 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1125 } else {
1126 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1127 if (np->speed100)
1128 reg0 |= BMCR_SPEED100;
1129 if (np->mii_if.full_duplex)
1130 reg0 |= BMCR_FULLDPLX;
1131 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1132 dev->name,
1133 np->speed100 ? "100" : "10",
1134 np->mii_if.full_duplex ? "full" : "half");
1135 }
1136 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1137 }
1138
1139
1140 static void tx_timeout(struct net_device *dev)
1141 {
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = np->base;
1144 int old_debug;
1145
1146 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1147 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1148
1149 /* Perhaps we should reinitialize the hardware here. */
1150
1151 /*
1152 * Stop and restart the interface.
1153 * Cheat and increase the debug level temporarily.
1154 */
1155 old_debug = debug;
1156 debug = 2;
1157 netdev_close(dev);
1158 netdev_open(dev);
1159 debug = old_debug;
1160
1161 /* Trigger an immediate transmit demand. */
1162
1163 dev->trans_start = jiffies;
1164 np->stats.tx_errors++;
1165 netif_wake_queue(dev);
1166 }
1167
1168
1169 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1170 static void init_ring(struct net_device *dev)
1171 {
1172 struct netdev_private *np = netdev_priv(dev);
1173 int i;
1174
1175 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1176 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1177
1178 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1179
1180 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1181 for (i = 0; i < RX_RING_SIZE; i++) {
1182 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1183 np->rx_info[i].skb = skb;
1184 if (skb == NULL)
1185 break;
1186 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1187 skb->dev = dev; /* Mark as being used by this device. */
1188 /* Grrr, we cannot offset to correctly align the IP header. */
1189 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1190 }
1191 writew(i - 1, np->base + RxDescQIdx);
1192 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1193
1194 /* Clear the remainder of the Rx buffer ring. */
1195 for ( ; i < RX_RING_SIZE; i++) {
1196 np->rx_ring[i].rxaddr = 0;
1197 np->rx_info[i].skb = NULL;
1198 np->rx_info[i].mapping = 0;
1199 }
1200 /* Mark the last entry as wrapping the ring. */
1201 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1202
1203 /* Clear the completion rings. */
1204 for (i = 0; i < DONE_Q_SIZE; i++) {
1205 np->rx_done_q[i].status = 0;
1206 np->tx_done_q[i].status = 0;
1207 }
1208
1209 for (i = 0; i < TX_RING_SIZE; i++)
1210 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1211
1212 return;
1213 }
1214
1215
1216 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1217 {
1218 struct netdev_private *np = netdev_priv(dev);
1219 unsigned int entry;
1220 u32 status;
1221 int i;
1222
1223 /*
1224 * be cautious here, wrapping the queue has weird semantics
1225 * and we may not have enough slots even when it seems we do.
1226 */
1227 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1228 netif_stop_queue(dev);
1229 return 1;
1230 }
1231
1232 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1233 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1234 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1235 return NETDEV_TX_OK;
1236 }
1237 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1238
1239 entry = np->cur_tx % TX_RING_SIZE;
1240 for (i = 0; i < skb_num_frags(skb); i++) {
1241 int wrap_ring = 0;
1242 status = TxDescID;
1243
1244 if (i == 0) {
1245 np->tx_info[entry].skb = skb;
1246 status |= TxCRCEn;
1247 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1248 status |= TxRingWrap;
1249 wrap_ring = 1;
1250 }
1251 if (np->reap_tx) {
1252 status |= TxDescIntr;
1253 np->reap_tx = 0;
1254 }
1255 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1256 status |= TxCalTCP;
1257 np->stats.tx_compressed++;
1258 }
1259 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1260
1261 np->tx_info[entry].mapping =
1262 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1263 } else {
1264 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1265 status |= this_frag->size;
1266 np->tx_info[entry].mapping =
1267 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1268 }
1269
1270 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1271 np->tx_ring[entry].status = cpu_to_le32(status);
1272 if (debug > 3)
1273 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1274 dev->name, np->cur_tx, np->dirty_tx,
1275 entry, status);
1276 if (wrap_ring) {
1277 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1278 np->cur_tx += np->tx_info[entry].used_slots;
1279 entry = 0;
1280 } else {
1281 np->tx_info[entry].used_slots = 1;
1282 np->cur_tx += np->tx_info[entry].used_slots;
1283 entry++;
1284 }
1285 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1286 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1287 np->reap_tx = 1;
1288 }
1289
1290 /* Non-x86: explicitly flush descriptor cache lines here. */
1291 /* Ensure all descriptors are written back before the transmit is
1292 initiated. - Jes */
1293 wmb();
1294
1295 /* Update the producer index. */
1296 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1297
1298 /* 4 is arbitrary, but should be ok */
1299 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1300 netif_stop_queue(dev);
1301
1302 dev->trans_start = jiffies;
1303
1304 return 0;
1305 }
1306
1307
1308 /* The interrupt handler does all of the Rx thread work and cleans up
1309 after the Tx thread. */
1310 static irqreturn_t intr_handler(int irq, void *dev_instance)
1311 {
1312 struct net_device *dev = dev_instance;
1313 struct netdev_private *np = netdev_priv(dev);
1314 void __iomem *ioaddr = np->base;
1315 int boguscnt = max_interrupt_work;
1316 int consumer;
1317 int tx_status;
1318 int handled = 0;
1319
1320 do {
1321 u32 intr_status = readl(ioaddr + IntrClear);
1322
1323 if (debug > 4)
1324 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1325 dev->name, intr_status);
1326
1327 if (intr_status == 0 || intr_status == (u32) -1)
1328 break;
1329
1330 handled = 1;
1331
1332 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1333 u32 enable;
1334
1335 if (likely(netif_rx_schedule_prep(&np->napi))) {
1336 __netif_rx_schedule(&np->napi);
1337 enable = readl(ioaddr + IntrEnable);
1338 enable &= ~(IntrRxDone | IntrRxEmpty);
1339 writel(enable, ioaddr + IntrEnable);
1340 /* flush PCI posting buffers */
1341 readl(ioaddr + IntrEnable);
1342 } else {
1343 /* Paranoia check */
1344 enable = readl(ioaddr + IntrEnable);
1345 if (enable & (IntrRxDone | IntrRxEmpty)) {
1346 printk(KERN_INFO
1347 "%s: interrupt while in poll!\n",
1348 dev->name);
1349 enable &= ~(IntrRxDone | IntrRxEmpty);
1350 writel(enable, ioaddr + IntrEnable);
1351 }
1352 }
1353 }
1354
1355 /* Scavenge the skbuff list based on the Tx-done queue.
1356 There are redundant checks here that may be cleaned up
1357 after the driver has proven to be reliable. */
1358 consumer = readl(ioaddr + TxConsumerIdx);
1359 if (debug > 3)
1360 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1361 dev->name, consumer);
1362
1363 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1364 if (debug > 3)
1365 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1366 dev->name, np->dirty_tx, np->tx_done, tx_status);
1367 if ((tx_status & 0xe0000000) == 0xa0000000) {
1368 np->stats.tx_packets++;
1369 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1370 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1371 struct sk_buff *skb = np->tx_info[entry].skb;
1372 np->tx_info[entry].skb = NULL;
1373 pci_unmap_single(np->pci_dev,
1374 np->tx_info[entry].mapping,
1375 skb_first_frag_len(skb),
1376 PCI_DMA_TODEVICE);
1377 np->tx_info[entry].mapping = 0;
1378 np->dirty_tx += np->tx_info[entry].used_slots;
1379 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1380 {
1381 int i;
1382 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1383 pci_unmap_single(np->pci_dev,
1384 np->tx_info[entry].mapping,
1385 skb_shinfo(skb)->frags[i].size,
1386 PCI_DMA_TODEVICE);
1387 np->dirty_tx++;
1388 entry++;
1389 }
1390 }
1391
1392 dev_kfree_skb_irq(skb);
1393 }
1394 np->tx_done_q[np->tx_done].status = 0;
1395 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1396 }
1397 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1398
1399 if (netif_queue_stopped(dev) &&
1400 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1401 /* The ring is no longer full, wake the queue. */
1402 netif_wake_queue(dev);
1403 }
1404
1405 /* Stats overflow */
1406 if (intr_status & IntrStatsMax)
1407 get_stats(dev);
1408
1409 /* Media change interrupt. */
1410 if (intr_status & IntrLinkChange)
1411 netdev_media_change(dev);
1412
1413 /* Abnormal error summary/uncommon events handlers. */
1414 if (intr_status & IntrAbnormalSummary)
1415 netdev_error(dev, intr_status);
1416
1417 if (--boguscnt < 0) {
1418 if (debug > 1)
1419 printk(KERN_WARNING "%s: Too much work at interrupt, "
1420 "status=%#8.8x.\n",
1421 dev->name, intr_status);
1422 break;
1423 }
1424 } while (1);
1425
1426 if (debug > 4)
1427 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1428 dev->name, (int) readl(ioaddr + IntrStatus));
1429 return IRQ_RETVAL(handled);
1430 }
1431
1432
1433 /*
1434 * This routine is logically part of the interrupt/poll handler, but separated
1435 * for clarity and better register allocation.
1436 */
1437 static int __netdev_rx(struct net_device *dev, int *quota)
1438 {
1439 struct netdev_private *np = netdev_priv(dev);
1440 u32 desc_status;
1441 int retcode = 0;
1442
1443 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1444 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1445 struct sk_buff *skb;
1446 u16 pkt_len;
1447 int entry;
1448 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1449
1450 if (debug > 4)
1451 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1452 if (!(desc_status & RxOK)) {
1453 /* There was an error. */
1454 if (debug > 2)
1455 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1456 np->stats.rx_errors++;
1457 if (desc_status & RxFIFOErr)
1458 np->stats.rx_fifo_errors++;
1459 goto next_rx;
1460 }
1461
1462 if (*quota <= 0) { /* out of rx quota */
1463 retcode = 1;
1464 goto out;
1465 }
1466 (*quota)--;
1467
1468 pkt_len = desc_status; /* Implicitly Truncate */
1469 entry = (desc_status >> 16) & 0x7ff;
1470
1471 if (debug > 4)
1472 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1473 /* Check if the packet is long enough to accept without copying
1474 to a minimally-sized skbuff. */
1475 if (pkt_len < rx_copybreak
1476 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1477 skb_reserve(skb, 2); /* 16 byte align the IP header */
1478 pci_dma_sync_single_for_cpu(np->pci_dev,
1479 np->rx_info[entry].mapping,
1480 pkt_len, PCI_DMA_FROMDEVICE);
1481 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1482 pci_dma_sync_single_for_device(np->pci_dev,
1483 np->rx_info[entry].mapping,
1484 pkt_len, PCI_DMA_FROMDEVICE);
1485 skb_put(skb, pkt_len);
1486 } else {
1487 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1488 skb = np->rx_info[entry].skb;
1489 skb_put(skb, pkt_len);
1490 np->rx_info[entry].skb = NULL;
1491 np->rx_info[entry].mapping = 0;
1492 }
1493 #ifndef final_version /* Remove after testing. */
1494 /* You will want this info for the initial debug. */
1495 if (debug > 5) {
1496 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1497 skb->data, skb->data + 6,
1498 skb->data[12], skb->data[13]);
1499 }
1500 #endif
1501
1502 skb->protocol = eth_type_trans(skb, dev);
1503 #ifdef VLAN_SUPPORT
1504 if (debug > 4)
1505 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1506 #endif
1507 if (le16_to_cpu(desc->status2) & 0x0100) {
1508 skb->ip_summed = CHECKSUM_UNNECESSARY;
1509 np->stats.rx_compressed++;
1510 }
1511 /*
1512 * This feature doesn't seem to be working, at least
1513 * with the two firmware versions I have. If the GFP sees
1514 * an IP fragment, it either ignores it completely, or reports
1515 * "bad checksum" on it.
1516 *
1517 * Maybe I missed something -- corrections are welcome.
1518 * Until then, the printk stays. :-) -Ion
1519 */
1520 else if (le16_to_cpu(desc->status2) & 0x0040) {
1521 skb->ip_summed = CHECKSUM_COMPLETE;
1522 skb->csum = le16_to_cpu(desc->csum);
1523 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1524 }
1525 #ifdef VLAN_SUPPORT
1526 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1527 u16 vlid = le16_to_cpu(desc->vlanid);
1528
1529 if (debug > 4) {
1530 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1531 vlid);
1532 }
1533 /*
1534 * vlan_hwaccel_rx expects a packet with the VLAN tag
1535 * stripped out.
1536 */
1537 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1538 } else
1539 #endif /* VLAN_SUPPORT */
1540 netif_receive_skb(skb);
1541 np->stats.rx_packets++;
1542
1543 next_rx:
1544 np->cur_rx++;
1545 desc->status = 0;
1546 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1547 }
1548
1549 if (*quota == 0) { /* out of rx quota */
1550 retcode = 1;
1551 goto out;
1552 }
1553 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1554
1555 out:
1556 refill_rx_ring(dev);
1557 if (debug > 5)
1558 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1559 retcode, np->rx_done, desc_status);
1560 return retcode;
1561 }
1562
1563 static int netdev_poll(struct napi_struct *napi, int budget)
1564 {
1565 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1566 struct net_device *dev = np->dev;
1567 u32 intr_status;
1568 void __iomem *ioaddr = np->base;
1569 int quota = budget;
1570
1571 do {
1572 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1573
1574 if (__netdev_rx(dev, &quota))
1575 goto out;
1576
1577 intr_status = readl(ioaddr + IntrStatus);
1578 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1579
1580 netif_rx_complete(napi);
1581 intr_status = readl(ioaddr + IntrEnable);
1582 intr_status |= IntrRxDone | IntrRxEmpty;
1583 writel(intr_status, ioaddr + IntrEnable);
1584
1585 out:
1586 if (debug > 5)
1587 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1588 budget - quota);
1589
1590 /* Restart Rx engine if stopped. */
1591 return budget - quota;
1592 }
1593
1594 static void refill_rx_ring(struct net_device *dev)
1595 {
1596 struct netdev_private *np = netdev_priv(dev);
1597 struct sk_buff *skb;
1598 int entry = -1;
1599
1600 /* Refill the Rx ring buffers. */
1601 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1602 entry = np->dirty_rx % RX_RING_SIZE;
1603 if (np->rx_info[entry].skb == NULL) {
1604 skb = dev_alloc_skb(np->rx_buf_sz);
1605 np->rx_info[entry].skb = skb;
1606 if (skb == NULL)
1607 break; /* Better luck next round. */
1608 np->rx_info[entry].mapping =
1609 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1610 skb->dev = dev; /* Mark as being used by this device. */
1611 np->rx_ring[entry].rxaddr =
1612 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1613 }
1614 if (entry == RX_RING_SIZE - 1)
1615 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1616 }
1617 if (entry >= 0)
1618 writew(entry, np->base + RxDescQIdx);
1619 }
1620
1621
1622 static void netdev_media_change(struct net_device *dev)
1623 {
1624 struct netdev_private *np = netdev_priv(dev);
1625 void __iomem *ioaddr = np->base;
1626 u16 reg0, reg1, reg4, reg5;
1627 u32 new_tx_mode;
1628 u32 new_intr_timer_ctrl;
1629
1630 /* reset status first */
1631 mdio_read(dev, np->phys[0], MII_BMCR);
1632 mdio_read(dev, np->phys[0], MII_BMSR);
1633
1634 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1635 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1636
1637 if (reg1 & BMSR_LSTATUS) {
1638 /* link is up */
1639 if (reg0 & BMCR_ANENABLE) {
1640 /* autonegotiation is enabled */
1641 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1642 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1643 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1644 np->speed100 = 1;
1645 np->mii_if.full_duplex = 1;
1646 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1647 np->speed100 = 1;
1648 np->mii_if.full_duplex = 0;
1649 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1650 np->speed100 = 0;
1651 np->mii_if.full_duplex = 1;
1652 } else {
1653 np->speed100 = 0;
1654 np->mii_if.full_duplex = 0;
1655 }
1656 } else {
1657 /* autonegotiation is disabled */
1658 if (reg0 & BMCR_SPEED100)
1659 np->speed100 = 1;
1660 else
1661 np->speed100 = 0;
1662 if (reg0 & BMCR_FULLDPLX)
1663 np->mii_if.full_duplex = 1;
1664 else
1665 np->mii_if.full_duplex = 0;
1666 }
1667 netif_carrier_on(dev);
1668 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1669 dev->name,
1670 np->speed100 ? "100" : "10",
1671 np->mii_if.full_duplex ? "full" : "half");
1672
1673 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1674 if (np->mii_if.full_duplex)
1675 new_tx_mode |= FullDuplex;
1676 if (np->tx_mode != new_tx_mode) {
1677 np->tx_mode = new_tx_mode;
1678 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1679 udelay(1000);
1680 writel(np->tx_mode, ioaddr + TxMode);
1681 }
1682
1683 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1684 if (np->speed100)
1685 new_intr_timer_ctrl |= Timer10X;
1686 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1687 np->intr_timer_ctrl = new_intr_timer_ctrl;
1688 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1689 }
1690 } else {
1691 netif_carrier_off(dev);
1692 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1693 }
1694 }
1695
1696
1697 static void netdev_error(struct net_device *dev, int intr_status)
1698 {
1699 struct netdev_private *np = netdev_priv(dev);
1700
1701 /* Came close to underrunning the Tx FIFO, increase threshold. */
1702 if (intr_status & IntrTxDataLow) {
1703 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1704 writel(++np->tx_threshold, np->base + TxThreshold);
1705 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1706 dev->name, np->tx_threshold * 16);
1707 } else
1708 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1709 }
1710 if (intr_status & IntrRxGFPDead) {
1711 np->stats.rx_fifo_errors++;
1712 np->stats.rx_errors++;
1713 }
1714 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1715 np->stats.tx_fifo_errors++;
1716 np->stats.tx_errors++;
1717 }
1718 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1719 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1720 dev->name, intr_status);
1721 }
1722
1723
1724 static struct net_device_stats *get_stats(struct net_device *dev)
1725 {
1726 struct netdev_private *np = netdev_priv(dev);
1727 void __iomem *ioaddr = np->base;
1728
1729 /* This adapter architecture needs no SMP locks. */
1730 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1731 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1732 np->stats.tx_packets = readl(ioaddr + 0x57000);
1733 np->stats.tx_aborted_errors =
1734 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1735 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1736 np->stats.collisions =
1737 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1738
1739 /* The chip only need report frame silently dropped. */
1740 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1741 writew(0, ioaddr + RxDMAStatus);
1742 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1743 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1744 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1745 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1746
1747 return &np->stats;
1748 }
1749
1750
1751 static void set_rx_mode(struct net_device *dev)
1752 {
1753 struct netdev_private *np = netdev_priv(dev);
1754 void __iomem *ioaddr = np->base;
1755 u32 rx_mode = MinVLANPrio;
1756 struct dev_mc_list *mclist;
1757 int i;
1758 #ifdef VLAN_SUPPORT
1759
1760 rx_mode |= VlanMode;
1761 if (np->vlgrp) {
1762 int vlan_count = 0;
1763 void __iomem *filter_addr = ioaddr + HashTable + 8;
1764 for (i = 0; i < VLAN_VID_MASK; i++) {
1765 if (vlan_group_get_device(np->vlgrp, i)) {
1766 if (vlan_count >= 32)
1767 break;
1768 writew(i, filter_addr);
1769 filter_addr += 16;
1770 vlan_count++;
1771 }
1772 }
1773 if (i == VLAN_VID_MASK) {
1774 rx_mode |= PerfectFilterVlan;
1775 while (vlan_count < 32) {
1776 writew(0, filter_addr);
1777 filter_addr += 16;
1778 vlan_count++;
1779 }
1780 }
1781 }
1782 #endif /* VLAN_SUPPORT */
1783
1784 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1785 rx_mode |= AcceptAll;
1786 } else if ((dev->mc_count > multicast_filter_limit)
1787 || (dev->flags & IFF_ALLMULTI)) {
1788 /* Too many to match, or accept all multicasts. */
1789 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1790 } else if (dev->mc_count <= 14) {
1791 /* Use the 16 element perfect filter, skip first two entries. */
1792 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1793 __be16 *eaddrs;
1794 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1795 i++, mclist = mclist->next) {
1796 eaddrs = (__be16 *)mclist->dmi_addr;
1797 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1798 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1799 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1800 }
1801 eaddrs = (__be16 *)dev->dev_addr;
1802 while (i++ < 16) {
1803 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1806 }
1807 rx_mode |= AcceptBroadcast|PerfectFilter;
1808 } else {
1809 /* Must use a multicast hash table. */
1810 void __iomem *filter_addr;
1811 __be16 *eaddrs;
1812 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1813
1814 memset(mc_filter, 0, sizeof(mc_filter));
1815 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1816 i++, mclist = mclist->next) {
1817 /* The chip uses the upper 9 CRC bits
1818 as index into the hash table */
1819 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1820 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1821
1822 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1823 }
1824 /* Clear the perfect filter list, skip first two entries. */
1825 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1826 eaddrs = (__be16 *)dev->dev_addr;
1827 for (i = 2; i < 16; i++) {
1828 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1829 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1830 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1831 }
1832 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1833 writew(mc_filter[i], filter_addr);
1834 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1835 }
1836 writel(rx_mode, ioaddr + RxFilterMode);
1837 }
1838
1839 static int check_if_running(struct net_device *dev)
1840 {
1841 if (!netif_running(dev))
1842 return -EINVAL;
1843 return 0;
1844 }
1845
1846 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1847 {
1848 struct netdev_private *np = netdev_priv(dev);
1849 strcpy(info->driver, DRV_NAME);
1850 strcpy(info->version, DRV_VERSION);
1851 strcpy(info->bus_info, pci_name(np->pci_dev));
1852 }
1853
1854 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1855 {
1856 struct netdev_private *np = netdev_priv(dev);
1857 spin_lock_irq(&np->lock);
1858 mii_ethtool_gset(&np->mii_if, ecmd);
1859 spin_unlock_irq(&np->lock);
1860 return 0;
1861 }
1862
1863 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1864 {
1865 struct netdev_private *np = netdev_priv(dev);
1866 int res;
1867 spin_lock_irq(&np->lock);
1868 res = mii_ethtool_sset(&np->mii_if, ecmd);
1869 spin_unlock_irq(&np->lock);
1870 check_duplex(dev);
1871 return res;
1872 }
1873
1874 static int nway_reset(struct net_device *dev)
1875 {
1876 struct netdev_private *np = netdev_priv(dev);
1877 return mii_nway_restart(&np->mii_if);
1878 }
1879
1880 static u32 get_link(struct net_device *dev)
1881 {
1882 struct netdev_private *np = netdev_priv(dev);
1883 return mii_link_ok(&np->mii_if);
1884 }
1885
1886 static u32 get_msglevel(struct net_device *dev)
1887 {
1888 return debug;
1889 }
1890
1891 static void set_msglevel(struct net_device *dev, u32 val)
1892 {
1893 debug = val;
1894 }
1895
1896 static const struct ethtool_ops ethtool_ops = {
1897 .begin = check_if_running,
1898 .get_drvinfo = get_drvinfo,
1899 .get_settings = get_settings,
1900 .set_settings = set_settings,
1901 .nway_reset = nway_reset,
1902 .get_link = get_link,
1903 .get_msglevel = get_msglevel,
1904 .set_msglevel = set_msglevel,
1905 };
1906
1907 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1908 {
1909 struct netdev_private *np = netdev_priv(dev);
1910 struct mii_ioctl_data *data = if_mii(rq);
1911 int rc;
1912
1913 if (!netif_running(dev))
1914 return -EINVAL;
1915
1916 spin_lock_irq(&np->lock);
1917 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1918 spin_unlock_irq(&np->lock);
1919
1920 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1921 check_duplex(dev);
1922
1923 return rc;
1924 }
1925
1926 static int netdev_close(struct net_device *dev)
1927 {
1928 struct netdev_private *np = netdev_priv(dev);
1929 void __iomem *ioaddr = np->base;
1930 int i;
1931
1932 netif_stop_queue(dev);
1933
1934 napi_disable(&np->napi);
1935
1936 if (debug > 1) {
1937 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1938 dev->name, (int) readl(ioaddr + IntrStatus));
1939 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1940 dev->name, np->cur_tx, np->dirty_tx,
1941 np->cur_rx, np->dirty_rx);
1942 }
1943
1944 /* Disable interrupts by clearing the interrupt mask. */
1945 writel(0, ioaddr + IntrEnable);
1946
1947 /* Stop the chip's Tx and Rx processes. */
1948 writel(0, ioaddr + GenCtrl);
1949 readl(ioaddr + GenCtrl);
1950
1951 if (debug > 5) {
1952 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1953 (long long) np->tx_ring_dma);
1954 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1955 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1956 i, le32_to_cpu(np->tx_ring[i].status),
1957 (long long) dma_to_cpu(np->tx_ring[i].addr),
1958 le32_to_cpu(np->tx_done_q[i].status));
1959 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1960 (long long) np->rx_ring_dma, np->rx_done_q);
1961 if (np->rx_done_q)
1962 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1963 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1964 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1965 }
1966 }
1967
1968 free_irq(dev->irq, dev);
1969
1970 /* Free all the skbuffs in the Rx queue. */
1971 for (i = 0; i < RX_RING_SIZE; i++) {
1972 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1973 if (np->rx_info[i].skb != NULL) {
1974 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1975 dev_kfree_skb(np->rx_info[i].skb);
1976 }
1977 np->rx_info[i].skb = NULL;
1978 np->rx_info[i].mapping = 0;
1979 }
1980 for (i = 0; i < TX_RING_SIZE; i++) {
1981 struct sk_buff *skb = np->tx_info[i].skb;
1982 if (skb == NULL)
1983 continue;
1984 pci_unmap_single(np->pci_dev,
1985 np->tx_info[i].mapping,
1986 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1987 np->tx_info[i].mapping = 0;
1988 dev_kfree_skb(skb);
1989 np->tx_info[i].skb = NULL;
1990 }
1991
1992 return 0;
1993 }
1994
1995 #ifdef CONFIG_PM
1996 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1997 {
1998 struct net_device *dev = pci_get_drvdata(pdev);
1999
2000 if (netif_running(dev)) {
2001 netif_device_detach(dev);
2002 netdev_close(dev);
2003 }
2004
2005 pci_save_state(pdev);
2006 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2007
2008 return 0;
2009 }
2010
2011 static int starfire_resume(struct pci_dev *pdev)
2012 {
2013 struct net_device *dev = pci_get_drvdata(pdev);
2014
2015 pci_set_power_state(pdev, PCI_D0);
2016 pci_restore_state(pdev);
2017
2018 if (netif_running(dev)) {
2019 netdev_open(dev);
2020 netif_device_attach(dev);
2021 }
2022
2023 return 0;
2024 }
2025 #endif /* CONFIG_PM */
2026
2027
2028 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2029 {
2030 struct net_device *dev = pci_get_drvdata(pdev);
2031 struct netdev_private *np = netdev_priv(dev);
2032
2033 BUG_ON(!dev);
2034
2035 unregister_netdev(dev);
2036
2037 if (np->queue_mem)
2038 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2039
2040
2041 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2042 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2043 pci_disable_device(pdev);
2044
2045 iounmap(np->base);
2046 pci_release_regions(pdev);
2047
2048 pci_set_drvdata(pdev, NULL);
2049 free_netdev(dev); /* Will also free np!! */
2050 }
2051
2052
2053 static struct pci_driver starfire_driver = {
2054 .name = DRV_NAME,
2055 .probe = starfire_init_one,
2056 .remove = __devexit_p(starfire_remove_one),
2057 #ifdef CONFIG_PM
2058 .suspend = starfire_suspend,
2059 .resume = starfire_resume,
2060 #endif /* CONFIG_PM */
2061 .id_table = starfire_pci_tbl,
2062 };
2063
2064
2065 static int __init starfire_init (void)
2066 {
2067 /* when a module, this is printed whether or not devices are found in probe */
2068 #ifdef MODULE
2069 printk(version);
2070
2071 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2072 #endif
2073
2074 /* we can do this test only at run-time... sigh */
2075 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2076 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2077 return -ENODEV;
2078 }
2079
2080 return pci_register_driver(&starfire_driver);
2081 }
2082
2083
2084 static void __exit starfire_cleanup (void)
2085 {
2086 pci_unregister_driver (&starfire_driver);
2087 }
2088
2089
2090 module_init(starfire_init);
2091 module_exit(starfire_cleanup);
2092
2093
2094 /*
2095 * Local variables:
2096 * c-basic-offset: 8
2097 * tab-width: 8
2098 * End:
2099 */
This page took 0.104198 seconds and 5 git commands to generate.