Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25
26 -----------------------------------------------------------
27
28 Linux kernel-specific changes:
29
30 LK1.1.1 (jgarzik):
31 - Use PCI driver interface
32 - Fix MOD_xxx races
33 - softnet fixups
34
35 LK1.1.2 (jgarzik):
36 - Merge Becker version 0.15
37
38 LK1.1.3 (Andrew Morton)
39 - Timer cleanups
40
41 LK1.1.4 (jgarzik):
42 - Merge Becker version 1.03
43
44 LK1.2.1 (Ion Badulescu <ionut@cs.columbia.edu>)
45 - Support hardware Rx/Tx checksumming
46 - Use the GFP firmware taken from Adaptec's Netware driver
47
48 LK1.2.2 (Ion Badulescu)
49 - Backported to 2.2.x
50
51 LK1.2.3 (Ion Badulescu)
52 - Fix the flaky mdio interface
53 - More compat clean-ups
54
55 LK1.2.4 (Ion Badulescu)
56 - More 2.2.x initialization fixes
57
58 LK1.2.5 (Ion Badulescu)
59 - Several fixes from Manfred Spraul
60
61 LK1.2.6 (Ion Badulescu)
62 - Fixed ifup/ifdown/ifup problem in 2.4.x
63
64 LK1.2.7 (Ion Badulescu)
65 - Removed unused code
66 - Made more functions static and __init
67
68 LK1.2.8 (Ion Badulescu)
69 - Quell bogus error messages, inform about the Tx threshold
70 - Removed #ifdef CONFIG_PCI, this driver is PCI only
71
72 LK1.2.9 (Ion Badulescu)
73 - Merged Jeff Garzik's changes from 2.4.4-pre5
74 - Added 2.2.x compatibility stuff required by the above changes
75
76 LK1.2.9a (Ion Badulescu)
77 - More updates from Jeff Garzik
78
79 LK1.3.0 (Ion Badulescu)
80 - Merged zerocopy support
81
82 LK1.3.1 (Ion Badulescu)
83 - Added ethtool support
84 - Added GPIO (media change) interrupt support
85
86 LK1.3.2 (Ion Badulescu)
87 - Fixed 2.2.x compatibility issues introduced in 1.3.1
88 - Fixed ethtool ioctl returning uninitialized memory
89
90 LK1.3.3 (Ion Badulescu)
91 - Initialize the TxMode register properly
92 - Don't dereference dev->priv after freeing it
93
94 LK1.3.4 (Ion Badulescu)
95 - Fixed initialization timing problems
96 - Fixed interrupt mask definitions
97
98 LK1.3.5 (jgarzik)
99 - ethtool NWAY_RST, GLINK, [GS]MSGLVL support
100
101 LK1.3.6:
102 - Sparc64 support and fixes (Ion Badulescu)
103 - Better stats and error handling (Ion Badulescu)
104 - Use new pci_set_mwi() PCI API function (jgarzik)
105
106 LK1.3.7 (Ion Badulescu)
107 - minimal implementation of tx_timeout()
108 - correctly shutdown the Rx/Tx engines in netdev_close()
109 - added calls to netif_carrier_on/off
110 (patch from Stefan Rompf <srompf@isg.de>)
111 - VLAN support
112
113 LK1.3.8 (Ion Badulescu)
114 - adjust DMA burst size on sparc64
115 - 64-bit support
116 - reworked zerocopy support for 64-bit buffers
117 - working and usable interrupt mitigation/latency
118 - reduced Tx interrupt frequency for lower interrupt overhead
119
120 LK1.3.9 (Ion Badulescu)
121 - bugfix for mcast filter
122 - enable the right kind of Tx interrupts (TxDMADone, not TxDone)
123
124 LK1.4.0 (Ion Badulescu)
125 - NAPI support
126
127 LK1.4.1 (Ion Badulescu)
128 - flush PCI posting buffers after disabling Rx interrupts
129 - put the chip to a D3 slumber on driver unload
130 - added config option to enable/disable NAPI
131
132 LK1.4.2 (Ion Badulescu)
133 - finally added firmware (GPL'ed by Adaptec)
134 - removed compatibility code for 2.2.x
135
136 LK1.4.2.1 (Ion Badulescu)
137 - fixed 32/64 bit issues on i386 + CONFIG_HIGHMEM
138 - added 32-bit padding to outgoing skb's, removed previous workaround
139
140 TODO: - fix forced speed/duplexing code (broken a long time ago, when
141 somebody converted the driver to use the generic MII code)
142 - fix VLAN support
143 */
144
145 #define DRV_NAME "starfire"
146 #define DRV_VERSION "1.03+LK1.4.2.1"
147 #define DRV_RELDATE "October 3, 2005"
148
149 #include <linux/config.h>
150 #include <linux/module.h>
151 #include <linux/kernel.h>
152 #include <linux/pci.h>
153 #include <linux/netdevice.h>
154 #include <linux/etherdevice.h>
155 #include <linux/init.h>
156 #include <linux/delay.h>
157 #include <linux/crc32.h>
158 #include <linux/ethtool.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <asm/processor.h> /* Processor type for cache alignment. */
162 #include <asm/uaccess.h>
163 #include <asm/io.h>
164
165 #include "starfire_firmware.h"
166 /*
167 * The current frame processor firmware fails to checksum a fragment
168 * of length 1. If and when this is fixed, the #define below can be removed.
169 */
170 #define HAS_BROKEN_FIRMWARE
171
172 /*
173 * If using the broken firmware, data must be padded to the next 32-bit boundary.
174 */
175 #ifdef HAS_BROKEN_FIRMWARE
176 #define PADDING_MASK 3
177 #endif
178
179 /*
180 * Define this if using the driver with the zero-copy patch
181 */
182 #define ZEROCOPY
183
184 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
185 #define VLAN_SUPPORT
186 #endif
187
188 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
189 #undef HAVE_NETDEV_POLL
190 #endif
191
192 /* The user-configurable values.
193 These may be modified when a driver module is loaded.*/
194
195 /* Used for tuning interrupt latency vs. overhead. */
196 static int intr_latency;
197 static int small_frames;
198
199 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
200 static int max_interrupt_work = 20;
201 static int mtu;
202 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
203 The Starfire has a 512 element hash table based on the Ethernet CRC. */
204 static const int multicast_filter_limit = 512;
205 /* Whether to do TCP/UDP checksums in hardware */
206 static int enable_hw_cksum = 1;
207
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
209 /*
210 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
211 * Setting to > 1518 effectively disables this feature.
212 *
213 * NOTE:
214 * The ia64 doesn't allow for unaligned loads even of integers being
215 * misaligned on a 2 byte boundary. Thus always force copying of
216 * packets as the starfire doesn't allow for misaligned DMAs ;-(
217 * 23/10/2000 - Jes
218 *
219 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
220 * at least, having unaligned frames leads to a rather serious performance
221 * penalty. -Ion
222 */
223 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
224 static int rx_copybreak = PKT_BUF_SZ;
225 #else
226 static int rx_copybreak /* = 0 */;
227 #endif
228
229 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
230 #ifdef __sparc__
231 #define DMA_BURST_SIZE 64
232 #else
233 #define DMA_BURST_SIZE 128
234 #endif
235
236 /* Used to pass the media type, etc.
237 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
238 The media type is usually passed in 'options[]'.
239 These variables are deprecated, use ethtool instead. -Ion
240 */
241 #define MAX_UNITS 8 /* More are supported, limit only on options */
242 static int options[MAX_UNITS] = {0, };
243 static int full_duplex[MAX_UNITS] = {0, };
244
245 /* Operational parameters that are set at compile time. */
246
247 /* The "native" ring sizes are either 256 or 2048.
248 However in some modes a descriptor may be marked to wrap the ring earlier.
249 */
250 #define RX_RING_SIZE 256
251 #define TX_RING_SIZE 32
252 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
253 #define DONE_Q_SIZE 1024
254 /* All queues must be aligned on a 256-byte boundary */
255 #define QUEUE_ALIGN 256
256
257 #if RX_RING_SIZE > 256
258 #define RX_Q_ENTRIES Rx2048QEntries
259 #else
260 #define RX_Q_ENTRIES Rx256QEntries
261 #endif
262
263 /* Operational parameters that usually are not changed. */
264 /* Time in jiffies before concluding the transmitter is hung. */
265 #define TX_TIMEOUT (2 * HZ)
266
267 /*
268 * This SUCKS.
269 * We need a much better method to determine if dma_addr_t is 64-bit.
270 */
271 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
272 /* 64-bit dma_addr_t */
273 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
274 #define netdrv_addr_t u64
275 #define cpu_to_dma(x) cpu_to_le64(x)
276 #define dma_to_cpu(x) le64_to_cpu(x)
277 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
278 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
279 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
280 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
281 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
282 #else /* 32-bit dma_addr_t */
283 #define netdrv_addr_t u32
284 #define cpu_to_dma(x) cpu_to_le32(x)
285 #define dma_to_cpu(x) le32_to_cpu(x)
286 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
287 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
288 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
289 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
290 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
291 #endif
292
293 #define skb_first_frag_len(skb) skb_headlen(skb)
294 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
295
296 #ifdef HAVE_NETDEV_POLL
297 #define init_poll(dev) \
298 do { \
299 dev->poll = &netdev_poll; \
300 dev->weight = max_interrupt_work; \
301 } while (0)
302 #define netdev_rx(dev, ioaddr) \
303 do { \
304 u32 intr_enable; \
305 if (netif_rx_schedule_prep(dev)) { \
306 __netif_rx_schedule(dev); \
307 intr_enable = readl(ioaddr + IntrEnable); \
308 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
309 writel(intr_enable, ioaddr + IntrEnable); \
310 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
311 } else { \
312 /* Paranoia check */ \
313 intr_enable = readl(ioaddr + IntrEnable); \
314 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
315 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
316 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
317 writel(intr_enable, ioaddr + IntrEnable); \
318 } \
319 } \
320 } while (0)
321 #define netdev_receive_skb(skb) netif_receive_skb(skb)
322 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
323 static int netdev_poll(struct net_device *dev, int *budget);
324 #else /* not HAVE_NETDEV_POLL */
325 #define init_poll(dev)
326 #define netdev_receive_skb(skb) netif_rx(skb)
327 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
328 #define netdev_rx(dev, ioaddr) \
329 do { \
330 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
331 __netdev_rx(dev, &quota);\
332 } while (0)
333 #endif /* not HAVE_NETDEV_POLL */
334 /* end of compatibility code */
335
336
337 /* These identify the driver base version and may not be removed. */
338 static const char version[] __devinitdata =
339 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
340 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
341
342 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
343 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
344 MODULE_LICENSE("GPL");
345 MODULE_VERSION(DRV_VERSION);
346
347 module_param(max_interrupt_work, int, 0);
348 module_param(mtu, int, 0);
349 module_param(debug, int, 0);
350 module_param(rx_copybreak, int, 0);
351 module_param(intr_latency, int, 0);
352 module_param(small_frames, int, 0);
353 module_param_array(options, int, NULL, 0);
354 module_param_array(full_duplex, int, NULL, 0);
355 module_param(enable_hw_cksum, int, 0);
356 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
357 MODULE_PARM_DESC(mtu, "MTU (all boards)");
358 MODULE_PARM_DESC(debug, "Debug level (0-6)");
359 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
360 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
361 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
362 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
363 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
364 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
365
366 /*
367 Theory of Operation
368
369 I. Board Compatibility
370
371 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
372
373 II. Board-specific settings
374
375 III. Driver operation
376
377 IIIa. Ring buffers
378
379 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
380 ring sizes are set fixed by the hardware, but may optionally be wrapped
381 earlier by the END bit in the descriptor.
382 This driver uses that hardware queue size for the Rx ring, where a large
383 number of entries has no ill effect beyond increases the potential backlog.
384 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
385 disables the queue layer priority ordering and we have no mechanism to
386 utilize the hardware two-level priority queue. When modifying the
387 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
388 levels.
389
390 IIIb/c. Transmit/Receive Structure
391
392 See the Adaptec manual for the many possible structures, and options for
393 each structure. There are far too many to document all of them here.
394
395 For transmit this driver uses type 0/1 transmit descriptors (depending
396 on the 32/64 bitness of the architecture), and relies on automatic
397 minimum-length padding. It does not use the completion queue
398 consumer index, but instead checks for non-zero status entries.
399
400 For receive this driver uses type 2/3 receive descriptors. The driver
401 allocates full frame size skbuffs for the Rx ring buffers, so all frames
402 should fit in a single descriptor. The driver does not use the completion
403 queue consumer index, but instead checks for non-zero status entries.
404
405 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
406 is allocated and the frame is copied to the new skbuff. When the incoming
407 frame is larger, the skbuff is passed directly up the protocol stack.
408 Buffers consumed this way are replaced by newly allocated skbuffs in a later
409 phase of receive.
410
411 A notable aspect of operation is that unaligned buffers are not permitted by
412 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
413 isn't longword aligned, which may cause problems on some machine
414 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
415 the frame into a new skbuff unconditionally. Copied frames are put into the
416 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
417
418 IIId. Synchronization
419
420 The driver runs as two independent, single-threaded flows of control. One
421 is the send-packet routine, which enforces single-threaded use by the
422 dev->tbusy flag. The other thread is the interrupt handler, which is single
423 threaded by the hardware and interrupt handling software.
424
425 The send packet thread has partial control over the Tx ring and the netif_queue
426 status. If the number of free Tx slots in the ring falls below a certain number
427 (currently hardcoded to 4), it signals the upper layer to stop the queue.
428
429 The interrupt handler has exclusive control over the Rx ring and records stats
430 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
431 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
432 number of free Tx slow is above the threshold, it signals the upper layer to
433 restart the queue.
434
435 IV. Notes
436
437 IVb. References
438
439 The Adaptec Starfire manuals, available only from Adaptec.
440 http://www.scyld.com/expert/100mbps.html
441 http://www.scyld.com/expert/NWay.html
442
443 IVc. Errata
444
445 - StopOnPerr is broken, don't enable
446 - Hardware ethernet padding exposes random data, perform software padding
447 instead (unverified -- works correctly for all the hardware I have)
448
449 */
450
451
452
453 enum chip_capability_flags {CanHaveMII=1, };
454
455 enum chipset {
456 CH_6915 = 0,
457 };
458
459 static struct pci_device_id starfire_pci_tbl[] = {
460 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
461 { 0, }
462 };
463 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
464
465 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
466 static const struct chip_info {
467 const char *name;
468 int drv_flags;
469 } netdrv_tbl[] __devinitdata = {
470 { "Adaptec Starfire 6915", CanHaveMII },
471 };
472
473
474 /* Offsets to the device registers.
475 Unlike software-only systems, device drivers interact with complex hardware.
476 It's not useful to define symbolic names for every register bit in the
477 device. The name can only partially document the semantics and make
478 the driver longer and more difficult to read.
479 In general, only the important configuration values or bits changed
480 multiple times should be defined symbolically.
481 */
482 enum register_offsets {
483 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
484 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
485 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
486 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
487 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
488 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
489 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
490 TxThreshold=0x500B0,
491 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
492 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
493 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
494 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
495 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
496 TxMode=0x55000, VlanType=0x55064,
497 PerfFilterTable=0x56000, HashTable=0x56100,
498 TxGfpMem=0x58000, RxGfpMem=0x5a000,
499 };
500
501 /*
502 * Bits in the interrupt status/mask registers.
503 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
504 * enables all the interrupt sources that are or'ed into those status bits.
505 */
506 enum intr_status_bits {
507 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
508 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
509 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
510 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
511 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
512 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
513 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
514 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
515 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
516 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
517 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
518 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
519 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
520 IntrTxGfp=0x02, IntrPCIPad=0x01,
521 /* not quite bits */
522 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
523 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
524 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
525 };
526
527 /* Bits in the RxFilterMode register. */
528 enum rx_mode_bits {
529 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
530 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
531 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
532 WakeupOnGFP=0x0800,
533 };
534
535 /* Bits in the TxMode register */
536 enum tx_mode_bits {
537 MiiSoftReset=0x8000, MIILoopback=0x4000,
538 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
539 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
540 };
541
542 /* Bits in the TxDescCtrl register. */
543 enum tx_ctrl_bits {
544 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
545 TxDescSpace128=0x30, TxDescSpace256=0x40,
546 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
547 TxDescType3=0x03, TxDescType4=0x04,
548 TxNoDMACompletion=0x08,
549 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
550 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
551 TxDMABurstSizeShift=8,
552 };
553
554 /* Bits in the RxDescQCtrl register. */
555 enum rx_ctrl_bits {
556 RxBufferLenShift=16, RxMinDescrThreshShift=0,
557 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
558 Rx2048QEntries=0x4000, Rx256QEntries=0,
559 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
560 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
561 RxDescSpace4=0x000, RxDescSpace8=0x100,
562 RxDescSpace16=0x200, RxDescSpace32=0x300,
563 RxDescSpace64=0x400, RxDescSpace128=0x500,
564 RxConsumerWrEn=0x80,
565 };
566
567 /* Bits in the RxDMACtrl register. */
568 enum rx_dmactrl_bits {
569 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
570 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
571 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
572 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
573 RxChecksumRejectTCPOnly=0x01000000,
574 RxCompletionQ2Enable=0x800000,
575 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
576 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
577 RxDMAQ2NonIP=0x400000,
578 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
579 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
580 RxBurstSizeShift=0,
581 };
582
583 /* Bits in the RxCompletionAddr register */
584 enum rx_compl_bits {
585 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
586 RxComplProducerWrEn=0x40,
587 RxComplType0=0x00, RxComplType1=0x10,
588 RxComplType2=0x20, RxComplType3=0x30,
589 RxComplThreshShift=0,
590 };
591
592 /* Bits in the TxCompletionAddr register */
593 enum tx_compl_bits {
594 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
595 TxComplProducerWrEn=0x40,
596 TxComplIntrStatus=0x20,
597 CommonQueueMode=0x10,
598 TxComplThreshShift=0,
599 };
600
601 /* Bits in the GenCtrl register */
602 enum gen_ctrl_bits {
603 RxEnable=0x05, TxEnable=0x0a,
604 RxGFPEnable=0x10, TxGFPEnable=0x20,
605 };
606
607 /* Bits in the IntrTimerCtrl register */
608 enum intr_ctrl_bits {
609 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
610 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
611 IntrLatencyMask=0x1f,
612 };
613
614 /* The Rx and Tx buffer descriptors. */
615 struct starfire_rx_desc {
616 dma_addr_t rxaddr;
617 };
618 enum rx_desc_bits {
619 RxDescValid=1, RxDescEndRing=2,
620 };
621
622 /* Completion queue entry. */
623 struct short_rx_done_desc {
624 u32 status; /* Low 16 bits is length. */
625 };
626 struct basic_rx_done_desc {
627 u32 status; /* Low 16 bits is length. */
628 u16 vlanid;
629 u16 status2;
630 };
631 struct csum_rx_done_desc {
632 u32 status; /* Low 16 bits is length. */
633 u16 csum; /* Partial checksum */
634 u16 status2;
635 };
636 struct full_rx_done_desc {
637 u32 status; /* Low 16 bits is length. */
638 u16 status3;
639 u16 status2;
640 u16 vlanid;
641 u16 csum; /* partial checksum */
642 u32 timestamp;
643 };
644 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
645 #ifdef VLAN_SUPPORT
646 typedef struct full_rx_done_desc rx_done_desc;
647 #define RxComplType RxComplType3
648 #else /* not VLAN_SUPPORT */
649 typedef struct csum_rx_done_desc rx_done_desc;
650 #define RxComplType RxComplType2
651 #endif /* not VLAN_SUPPORT */
652
653 enum rx_done_bits {
654 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
655 };
656
657 /* Type 1 Tx descriptor. */
658 struct starfire_tx_desc_1 {
659 u32 status; /* Upper bits are status, lower 16 length. */
660 u32 addr;
661 };
662
663 /* Type 2 Tx descriptor. */
664 struct starfire_tx_desc_2 {
665 u32 status; /* Upper bits are status, lower 16 length. */
666 u32 reserved;
667 u64 addr;
668 };
669
670 #ifdef ADDR_64BITS
671 typedef struct starfire_tx_desc_2 starfire_tx_desc;
672 #define TX_DESC_TYPE TxDescType2
673 #else /* not ADDR_64BITS */
674 typedef struct starfire_tx_desc_1 starfire_tx_desc;
675 #define TX_DESC_TYPE TxDescType1
676 #endif /* not ADDR_64BITS */
677 #define TX_DESC_SPACING TxDescSpaceUnlim
678
679 enum tx_desc_bits {
680 TxDescID=0xB0000000,
681 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
682 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
683 };
684 struct tx_done_desc {
685 u32 status; /* timestamp, index. */
686 #if 0
687 u32 intrstatus; /* interrupt status */
688 #endif
689 };
690
691 struct rx_ring_info {
692 struct sk_buff *skb;
693 dma_addr_t mapping;
694 };
695 struct tx_ring_info {
696 struct sk_buff *skb;
697 dma_addr_t mapping;
698 unsigned int used_slots;
699 };
700
701 #define PHY_CNT 2
702 struct netdev_private {
703 /* Descriptor rings first for alignment. */
704 struct starfire_rx_desc *rx_ring;
705 starfire_tx_desc *tx_ring;
706 dma_addr_t rx_ring_dma;
707 dma_addr_t tx_ring_dma;
708 /* The addresses of rx/tx-in-place skbuffs. */
709 struct rx_ring_info rx_info[RX_RING_SIZE];
710 struct tx_ring_info tx_info[TX_RING_SIZE];
711 /* Pointers to completion queues (full pages). */
712 rx_done_desc *rx_done_q;
713 dma_addr_t rx_done_q_dma;
714 unsigned int rx_done;
715 struct tx_done_desc *tx_done_q;
716 dma_addr_t tx_done_q_dma;
717 unsigned int tx_done;
718 struct net_device_stats stats;
719 struct pci_dev *pci_dev;
720 #ifdef VLAN_SUPPORT
721 struct vlan_group *vlgrp;
722 #endif
723 void *queue_mem;
724 dma_addr_t queue_mem_dma;
725 size_t queue_mem_size;
726
727 /* Frequently used values: keep some adjacent for cache effect. */
728 spinlock_t lock;
729 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
730 unsigned int cur_tx, dirty_tx, reap_tx;
731 unsigned int rx_buf_sz; /* Based on MTU+slack. */
732 /* These values keep track of the transceiver/media in use. */
733 int speed100; /* Set if speed == 100MBit. */
734 u32 tx_mode;
735 u32 intr_timer_ctrl;
736 u8 tx_threshold;
737 /* MII transceiver section. */
738 struct mii_if_info mii_if; /* MII lib hooks/info */
739 int phy_cnt; /* MII device addresses. */
740 unsigned char phys[PHY_CNT]; /* MII device addresses. */
741 void __iomem *base;
742 };
743
744
745 static int mdio_read(struct net_device *dev, int phy_id, int location);
746 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
747 static int netdev_open(struct net_device *dev);
748 static void check_duplex(struct net_device *dev);
749 static void tx_timeout(struct net_device *dev);
750 static void init_ring(struct net_device *dev);
751 static int start_tx(struct sk_buff *skb, struct net_device *dev);
752 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
753 static void netdev_error(struct net_device *dev, int intr_status);
754 static int __netdev_rx(struct net_device *dev, int *quota);
755 static void refill_rx_ring(struct net_device *dev);
756 static void netdev_error(struct net_device *dev, int intr_status);
757 static void set_rx_mode(struct net_device *dev);
758 static struct net_device_stats *get_stats(struct net_device *dev);
759 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
760 static int netdev_close(struct net_device *dev);
761 static void netdev_media_change(struct net_device *dev);
762 static struct ethtool_ops ethtool_ops;
763
764
765 #ifdef VLAN_SUPPORT
766 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
767 {
768 struct netdev_private *np = netdev_priv(dev);
769
770 spin_lock(&np->lock);
771 if (debug > 2)
772 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
773 np->vlgrp = grp;
774 set_rx_mode(dev);
775 spin_unlock(&np->lock);
776 }
777
778 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
779 {
780 struct netdev_private *np = netdev_priv(dev);
781
782 spin_lock(&np->lock);
783 if (debug > 1)
784 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
785 set_rx_mode(dev);
786 spin_unlock(&np->lock);
787 }
788
789 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
790 {
791 struct netdev_private *np = netdev_priv(dev);
792
793 spin_lock(&np->lock);
794 if (debug > 1)
795 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
796 if (np->vlgrp)
797 np->vlgrp->vlan_devices[vid] = NULL;
798 set_rx_mode(dev);
799 spin_unlock(&np->lock);
800 }
801 #endif /* VLAN_SUPPORT */
802
803
804 static int __devinit starfire_init_one(struct pci_dev *pdev,
805 const struct pci_device_id *ent)
806 {
807 struct netdev_private *np;
808 int i, irq, option, chip_idx = ent->driver_data;
809 struct net_device *dev;
810 static int card_idx = -1;
811 long ioaddr;
812 void __iomem *base;
813 int drv_flags, io_size;
814 int boguscnt;
815
816 /* when built into the kernel, we only print version if device is found */
817 #ifndef MODULE
818 static int printed_version;
819 if (!printed_version++)
820 printk(version);
821 #endif
822
823 card_idx++;
824
825 if (pci_enable_device (pdev))
826 return -EIO;
827
828 ioaddr = pci_resource_start(pdev, 0);
829 io_size = pci_resource_len(pdev, 0);
830 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
831 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
832 return -ENODEV;
833 }
834
835 dev = alloc_etherdev(sizeof(*np));
836 if (!dev) {
837 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
838 return -ENOMEM;
839 }
840 SET_MODULE_OWNER(dev);
841 SET_NETDEV_DEV(dev, &pdev->dev);
842
843 irq = pdev->irq;
844
845 if (pci_request_regions (pdev, DRV_NAME)) {
846 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
847 goto err_out_free_netdev;
848 }
849
850 /* ioremap is borken in Linux-2.2.x/sparc64 */
851 base = ioremap(ioaddr, io_size);
852 if (!base) {
853 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
854 card_idx, io_size, ioaddr);
855 goto err_out_free_res;
856 }
857
858 pci_set_master(pdev);
859
860 /* enable MWI -- it vastly improves Rx performance on sparc64 */
861 pci_set_mwi(pdev);
862
863 #ifdef ZEROCOPY
864 /* Starfire can do TCP/UDP checksumming */
865 if (enable_hw_cksum)
866 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
867 #endif /* ZEROCOPY */
868 #ifdef VLAN_SUPPORT
869 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
870 dev->vlan_rx_register = netdev_vlan_rx_register;
871 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
872 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
873 #endif /* VLAN_RX_KILL_VID */
874 #ifdef ADDR_64BITS
875 dev->features |= NETIF_F_HIGHDMA;
876 #endif /* ADDR_64BITS */
877
878 /* Serial EEPROM reads are hidden by the hardware. */
879 for (i = 0; i < 6; i++)
880 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
881
882 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
883 if (debug > 4)
884 for (i = 0; i < 0x20; i++)
885 printk("%2.2x%s",
886 (unsigned int)readb(base + EEPROMCtrl + i),
887 i % 16 != 15 ? " " : "\n");
888 #endif
889
890 /* Issue soft reset */
891 writel(MiiSoftReset, base + TxMode);
892 udelay(1000);
893 writel(0, base + TxMode);
894
895 /* Reset the chip to erase previous misconfiguration. */
896 writel(1, base + PCIDeviceConfig);
897 boguscnt = 1000;
898 while (--boguscnt > 0) {
899 udelay(10);
900 if ((readl(base + PCIDeviceConfig) & 1) == 0)
901 break;
902 }
903 if (boguscnt == 0)
904 printk("%s: chipset reset never completed!\n", dev->name);
905 /* wait a little longer */
906 udelay(1000);
907
908 dev->base_addr = (unsigned long)base;
909 dev->irq = irq;
910
911 np = netdev_priv(dev);
912 np->base = base;
913 spin_lock_init(&np->lock);
914 pci_set_drvdata(pdev, dev);
915
916 np->pci_dev = pdev;
917
918 np->mii_if.dev = dev;
919 np->mii_if.mdio_read = mdio_read;
920 np->mii_if.mdio_write = mdio_write;
921 np->mii_if.phy_id_mask = 0x1f;
922 np->mii_if.reg_num_mask = 0x1f;
923
924 drv_flags = netdrv_tbl[chip_idx].drv_flags;
925
926 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
927 if (dev->mem_start)
928 option = dev->mem_start;
929
930 /* The lower four bits are the media type. */
931 if (option & 0x200)
932 np->mii_if.full_duplex = 1;
933
934 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
935 np->mii_if.full_duplex = 1;
936
937 if (np->mii_if.full_duplex)
938 np->mii_if.force_media = 1;
939 else
940 np->mii_if.force_media = 0;
941 np->speed100 = 1;
942
943 /* timer resolution is 128 * 0.8us */
944 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
945 Timer10X | EnableIntrMasking;
946
947 if (small_frames > 0) {
948 np->intr_timer_ctrl |= SmallFrameBypass;
949 switch (small_frames) {
950 case 1 ... 64:
951 np->intr_timer_ctrl |= SmallFrame64;
952 break;
953 case 65 ... 128:
954 np->intr_timer_ctrl |= SmallFrame128;
955 break;
956 case 129 ... 256:
957 np->intr_timer_ctrl |= SmallFrame256;
958 break;
959 default:
960 np->intr_timer_ctrl |= SmallFrame512;
961 if (small_frames > 512)
962 printk("Adjusting small_frames down to 512\n");
963 break;
964 }
965 }
966
967 /* The chip-specific entries in the device structure. */
968 dev->open = &netdev_open;
969 dev->hard_start_xmit = &start_tx;
970 dev->tx_timeout = tx_timeout;
971 dev->watchdog_timeo = TX_TIMEOUT;
972 init_poll(dev);
973 dev->stop = &netdev_close;
974 dev->get_stats = &get_stats;
975 dev->set_multicast_list = &set_rx_mode;
976 dev->do_ioctl = &netdev_ioctl;
977 SET_ETHTOOL_OPS(dev, &ethtool_ops);
978
979 if (mtu)
980 dev->mtu = mtu;
981
982 if (register_netdev(dev))
983 goto err_out_cleardev;
984
985 printk(KERN_INFO "%s: %s at %p, ",
986 dev->name, netdrv_tbl[chip_idx].name, base);
987 for (i = 0; i < 5; i++)
988 printk("%2.2x:", dev->dev_addr[i]);
989 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
990
991 if (drv_flags & CanHaveMII) {
992 int phy, phy_idx = 0;
993 int mii_status;
994 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
995 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
996 mdelay(100);
997 boguscnt = 1000;
998 while (--boguscnt > 0)
999 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
1000 break;
1001 if (boguscnt == 0) {
1002 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1003 continue;
1004 }
1005 mii_status = mdio_read(dev, phy, MII_BMSR);
1006 if (mii_status != 0) {
1007 np->phys[phy_idx++] = phy;
1008 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
1009 printk(KERN_INFO "%s: MII PHY found at address %d, status "
1010 "%#4.4x advertising %#4.4x.\n",
1011 dev->name, phy, mii_status, np->mii_if.advertising);
1012 /* there can be only one PHY on-board */
1013 break;
1014 }
1015 }
1016 np->phy_cnt = phy_idx;
1017 if (np->phy_cnt > 0)
1018 np->mii_if.phy_id = np->phys[0];
1019 else
1020 memset(&np->mii_if, 0, sizeof(np->mii_if));
1021 }
1022
1023 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
1024 dev->name, enable_hw_cksum ? "enabled" : "disabled");
1025 return 0;
1026
1027 err_out_cleardev:
1028 pci_set_drvdata(pdev, NULL);
1029 iounmap(base);
1030 err_out_free_res:
1031 pci_release_regions (pdev);
1032 err_out_free_netdev:
1033 free_netdev(dev);
1034 return -ENODEV;
1035 }
1036
1037
1038 /* Read the MII Management Data I/O (MDIO) interfaces. */
1039 static int mdio_read(struct net_device *dev, int phy_id, int location)
1040 {
1041 struct netdev_private *np = netdev_priv(dev);
1042 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1043 int result, boguscnt=1000;
1044 /* ??? Should we add a busy-wait here? */
1045 do
1046 result = readl(mdio_addr);
1047 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1048 if (boguscnt == 0)
1049 return 0;
1050 if ((result & 0xffff) == 0xffff)
1051 return 0;
1052 return result & 0xffff;
1053 }
1054
1055
1056 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
1057 {
1058 struct netdev_private *np = netdev_priv(dev);
1059 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1060 writel(value, mdio_addr);
1061 /* The busy-wait will occur before a read. */
1062 }
1063
1064
1065 static int netdev_open(struct net_device *dev)
1066 {
1067 struct netdev_private *np = netdev_priv(dev);
1068 void __iomem *ioaddr = np->base;
1069 int i, retval;
1070 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
1071
1072 /* Do we ever need to reset the chip??? */
1073
1074 retval = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1075 if (retval)
1076 return retval;
1077
1078 /* Disable the Rx and Tx, and reset the chip. */
1079 writel(0, ioaddr + GenCtrl);
1080 writel(1, ioaddr + PCIDeviceConfig);
1081 if (debug > 1)
1082 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1083 dev->name, dev->irq);
1084
1085 /* Allocate the various queues. */
1086 if (np->queue_mem == 0) {
1087 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1088 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1089 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1090 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
1091 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
1092 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
1093 if (np->queue_mem == NULL) {
1094 free_irq(dev->irq, dev);
1095 return -ENOMEM;
1096 }
1097
1098 np->tx_done_q = np->queue_mem;
1099 np->tx_done_q_dma = np->queue_mem_dma;
1100 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
1101 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
1102 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
1103 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
1104 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
1105 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
1106 }
1107
1108 /* Start with no carrier, it gets adjusted later */
1109 netif_carrier_off(dev);
1110 init_ring(dev);
1111 /* Set the size of the Rx buffers. */
1112 writel((np->rx_buf_sz << RxBufferLenShift) |
1113 (0 << RxMinDescrThreshShift) |
1114 RxPrefetchMode | RxVariableQ |
1115 RX_Q_ENTRIES |
1116 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
1117 RxDescSpace4,
1118 ioaddr + RxDescQCtrl);
1119
1120 /* Set up the Rx DMA controller. */
1121 writel(RxChecksumIgnore |
1122 (0 << RxEarlyIntThreshShift) |
1123 (6 << RxHighPrioThreshShift) |
1124 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1125 ioaddr + RxDMACtrl);
1126
1127 /* Set Tx descriptor */
1128 writel((2 << TxHiPriFIFOThreshShift) |
1129 (0 << TxPadLenShift) |
1130 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1131 TX_DESC_Q_ADDR_SIZE |
1132 TX_DESC_SPACING | TX_DESC_TYPE,
1133 ioaddr + TxDescCtrl);
1134
1135 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1136 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1137 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1138 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1139 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1140
1141 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1142 writel(np->rx_done_q_dma |
1143 RxComplType |
1144 (0 << RxComplThreshShift),
1145 ioaddr + RxCompletionAddr);
1146
1147 if (debug > 1)
1148 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1149
1150 /* Fill both the Tx SA register and the Rx perfect filter. */
1151 for (i = 0; i < 6; i++)
1152 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1153 /* The first entry is special because it bypasses the VLAN filter.
1154 Don't use it. */
1155 writew(0, ioaddr + PerfFilterTable);
1156 writew(0, ioaddr + PerfFilterTable + 4);
1157 writew(0, ioaddr + PerfFilterTable + 8);
1158 for (i = 1; i < 16; i++) {
1159 u16 *eaddrs = (u16 *)dev->dev_addr;
1160 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1161 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1162 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1163 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1164 }
1165
1166 /* Initialize other registers. */
1167 /* Configure the PCI bus bursts and FIFO thresholds. */
1168 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1169 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1170 udelay(1000);
1171 writel(np->tx_mode, ioaddr + TxMode);
1172 np->tx_threshold = 4;
1173 writel(np->tx_threshold, ioaddr + TxThreshold);
1174
1175 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1176
1177 netif_start_queue(dev);
1178
1179 if (debug > 1)
1180 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1181 set_rx_mode(dev);
1182
1183 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1184 check_duplex(dev);
1185
1186 /* Enable GPIO interrupts on link change */
1187 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1188
1189 /* Set the interrupt mask */
1190 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1191 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1192 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1193 ioaddr + IntrEnable);
1194 /* Enable PCI interrupts. */
1195 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1196 ioaddr + PCIDeviceConfig);
1197
1198 #ifdef VLAN_SUPPORT
1199 /* Set VLAN type to 802.1q */
1200 writel(ETH_P_8021Q, ioaddr + VlanType);
1201 #endif /* VLAN_SUPPORT */
1202
1203 /* Load Rx/Tx firmware into the frame processors */
1204 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1205 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1206 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1207 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1208 if (enable_hw_cksum)
1209 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1210 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1211 else
1212 /* Enable the Rx and Tx units only. */
1213 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1214
1215 if (debug > 1)
1216 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1217 dev->name);
1218
1219 return 0;
1220 }
1221
1222
1223 static void check_duplex(struct net_device *dev)
1224 {
1225 struct netdev_private *np = netdev_priv(dev);
1226 u16 reg0;
1227 int silly_count = 1000;
1228
1229 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1230 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1231 udelay(500);
1232 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1233 /* do nothing */;
1234 if (!silly_count) {
1235 printk("%s: MII reset failed!\n", dev->name);
1236 return;
1237 }
1238
1239 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1240
1241 if (!np->mii_if.force_media) {
1242 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1243 } else {
1244 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1245 if (np->speed100)
1246 reg0 |= BMCR_SPEED100;
1247 if (np->mii_if.full_duplex)
1248 reg0 |= BMCR_FULLDPLX;
1249 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1250 dev->name,
1251 np->speed100 ? "100" : "10",
1252 np->mii_if.full_duplex ? "full" : "half");
1253 }
1254 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1255 }
1256
1257
1258 static void tx_timeout(struct net_device *dev)
1259 {
1260 struct netdev_private *np = netdev_priv(dev);
1261 void __iomem *ioaddr = np->base;
1262 int old_debug;
1263
1264 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1265 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1266
1267 /* Perhaps we should reinitialize the hardware here. */
1268
1269 /*
1270 * Stop and restart the interface.
1271 * Cheat and increase the debug level temporarily.
1272 */
1273 old_debug = debug;
1274 debug = 2;
1275 netdev_close(dev);
1276 netdev_open(dev);
1277 debug = old_debug;
1278
1279 /* Trigger an immediate transmit demand. */
1280
1281 dev->trans_start = jiffies;
1282 np->stats.tx_errors++;
1283 netif_wake_queue(dev);
1284 }
1285
1286
1287 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1288 static void init_ring(struct net_device *dev)
1289 {
1290 struct netdev_private *np = netdev_priv(dev);
1291 int i;
1292
1293 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1294 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1295
1296 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1297
1298 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1299 for (i = 0; i < RX_RING_SIZE; i++) {
1300 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1301 np->rx_info[i].skb = skb;
1302 if (skb == NULL)
1303 break;
1304 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1305 skb->dev = dev; /* Mark as being used by this device. */
1306 /* Grrr, we cannot offset to correctly align the IP header. */
1307 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1308 }
1309 writew(i - 1, np->base + RxDescQIdx);
1310 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1311
1312 /* Clear the remainder of the Rx buffer ring. */
1313 for ( ; i < RX_RING_SIZE; i++) {
1314 np->rx_ring[i].rxaddr = 0;
1315 np->rx_info[i].skb = NULL;
1316 np->rx_info[i].mapping = 0;
1317 }
1318 /* Mark the last entry as wrapping the ring. */
1319 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1320
1321 /* Clear the completion rings. */
1322 for (i = 0; i < DONE_Q_SIZE; i++) {
1323 np->rx_done_q[i].status = 0;
1324 np->tx_done_q[i].status = 0;
1325 }
1326
1327 for (i = 0; i < TX_RING_SIZE; i++)
1328 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1329
1330 return;
1331 }
1332
1333
1334 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1335 {
1336 struct netdev_private *np = netdev_priv(dev);
1337 unsigned int entry;
1338 u32 status;
1339 int i;
1340
1341 /*
1342 * be cautious here, wrapping the queue has weird semantics
1343 * and we may not have enough slots even when it seems we do.
1344 */
1345 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1346 netif_stop_queue(dev);
1347 return 1;
1348 }
1349
1350 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1351 if (skb->ip_summed == CHECKSUM_HW) {
1352 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1353 return NETDEV_TX_OK;
1354 }
1355 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1356
1357 entry = np->cur_tx % TX_RING_SIZE;
1358 for (i = 0; i < skb_num_frags(skb); i++) {
1359 int wrap_ring = 0;
1360 status = TxDescID;
1361
1362 if (i == 0) {
1363 np->tx_info[entry].skb = skb;
1364 status |= TxCRCEn;
1365 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1366 status |= TxRingWrap;
1367 wrap_ring = 1;
1368 }
1369 if (np->reap_tx) {
1370 status |= TxDescIntr;
1371 np->reap_tx = 0;
1372 }
1373 if (skb->ip_summed == CHECKSUM_HW) {
1374 status |= TxCalTCP;
1375 np->stats.tx_compressed++;
1376 }
1377 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1378
1379 np->tx_info[entry].mapping =
1380 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1381 } else {
1382 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1383 status |= this_frag->size;
1384 np->tx_info[entry].mapping =
1385 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1386 }
1387
1388 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1389 np->tx_ring[entry].status = cpu_to_le32(status);
1390 if (debug > 3)
1391 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1392 dev->name, np->cur_tx, np->dirty_tx,
1393 entry, status);
1394 if (wrap_ring) {
1395 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1396 np->cur_tx += np->tx_info[entry].used_slots;
1397 entry = 0;
1398 } else {
1399 np->tx_info[entry].used_slots = 1;
1400 np->cur_tx += np->tx_info[entry].used_slots;
1401 entry++;
1402 }
1403 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1404 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1405 np->reap_tx = 1;
1406 }
1407
1408 /* Non-x86: explicitly flush descriptor cache lines here. */
1409 /* Ensure all descriptors are written back before the transmit is
1410 initiated. - Jes */
1411 wmb();
1412
1413 /* Update the producer index. */
1414 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1415
1416 /* 4 is arbitrary, but should be ok */
1417 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1418 netif_stop_queue(dev);
1419
1420 dev->trans_start = jiffies;
1421
1422 return 0;
1423 }
1424
1425
1426 /* The interrupt handler does all of the Rx thread work and cleans up
1427 after the Tx thread. */
1428 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1429 {
1430 struct net_device *dev = dev_instance;
1431 struct netdev_private *np = netdev_priv(dev);
1432 void __iomem *ioaddr = np->base;
1433 int boguscnt = max_interrupt_work;
1434 int consumer;
1435 int tx_status;
1436 int handled = 0;
1437
1438 do {
1439 u32 intr_status = readl(ioaddr + IntrClear);
1440
1441 if (debug > 4)
1442 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1443 dev->name, intr_status);
1444
1445 if (intr_status == 0 || intr_status == (u32) -1)
1446 break;
1447
1448 handled = 1;
1449
1450 if (intr_status & (IntrRxDone | IntrRxEmpty))
1451 netdev_rx(dev, ioaddr);
1452
1453 /* Scavenge the skbuff list based on the Tx-done queue.
1454 There are redundant checks here that may be cleaned up
1455 after the driver has proven to be reliable. */
1456 consumer = readl(ioaddr + TxConsumerIdx);
1457 if (debug > 3)
1458 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1459 dev->name, consumer);
1460
1461 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1462 if (debug > 3)
1463 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1464 dev->name, np->dirty_tx, np->tx_done, tx_status);
1465 if ((tx_status & 0xe0000000) == 0xa0000000) {
1466 np->stats.tx_packets++;
1467 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1468 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1469 struct sk_buff *skb = np->tx_info[entry].skb;
1470 np->tx_info[entry].skb = NULL;
1471 pci_unmap_single(np->pci_dev,
1472 np->tx_info[entry].mapping,
1473 skb_first_frag_len(skb),
1474 PCI_DMA_TODEVICE);
1475 np->tx_info[entry].mapping = 0;
1476 np->dirty_tx += np->tx_info[entry].used_slots;
1477 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1478 {
1479 int i;
1480 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1481 pci_unmap_single(np->pci_dev,
1482 np->tx_info[entry].mapping,
1483 skb_shinfo(skb)->frags[i].size,
1484 PCI_DMA_TODEVICE);
1485 np->dirty_tx++;
1486 entry++;
1487 }
1488 }
1489
1490 dev_kfree_skb_irq(skb);
1491 }
1492 np->tx_done_q[np->tx_done].status = 0;
1493 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1494 }
1495 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1496
1497 if (netif_queue_stopped(dev) &&
1498 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1499 /* The ring is no longer full, wake the queue. */
1500 netif_wake_queue(dev);
1501 }
1502
1503 /* Stats overflow */
1504 if (intr_status & IntrStatsMax)
1505 get_stats(dev);
1506
1507 /* Media change interrupt. */
1508 if (intr_status & IntrLinkChange)
1509 netdev_media_change(dev);
1510
1511 /* Abnormal error summary/uncommon events handlers. */
1512 if (intr_status & IntrAbnormalSummary)
1513 netdev_error(dev, intr_status);
1514
1515 if (--boguscnt < 0) {
1516 if (debug > 1)
1517 printk(KERN_WARNING "%s: Too much work at interrupt, "
1518 "status=%#8.8x.\n",
1519 dev->name, intr_status);
1520 break;
1521 }
1522 } while (1);
1523
1524 if (debug > 4)
1525 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1526 dev->name, (int) readl(ioaddr + IntrStatus));
1527 return IRQ_RETVAL(handled);
1528 }
1529
1530
1531 /* This routine is logically part of the interrupt/poll handler, but separated
1532 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1533 static int __netdev_rx(struct net_device *dev, int *quota)
1534 {
1535 struct netdev_private *np = netdev_priv(dev);
1536 u32 desc_status;
1537 int retcode = 0;
1538
1539 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1540 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1541 struct sk_buff *skb;
1542 u16 pkt_len;
1543 int entry;
1544 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1545
1546 if (debug > 4)
1547 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1548 if (!(desc_status & RxOK)) {
1549 /* There was an error. */
1550 if (debug > 2)
1551 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1552 np->stats.rx_errors++;
1553 if (desc_status & RxFIFOErr)
1554 np->stats.rx_fifo_errors++;
1555 goto next_rx;
1556 }
1557
1558 if (*quota <= 0) { /* out of rx quota */
1559 retcode = 1;
1560 goto out;
1561 }
1562 (*quota)--;
1563
1564 pkt_len = desc_status; /* Implicitly Truncate */
1565 entry = (desc_status >> 16) & 0x7ff;
1566
1567 if (debug > 4)
1568 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1569 /* Check if the packet is long enough to accept without copying
1570 to a minimally-sized skbuff. */
1571 if (pkt_len < rx_copybreak
1572 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1573 skb->dev = dev;
1574 skb_reserve(skb, 2); /* 16 byte align the IP header */
1575 pci_dma_sync_single_for_cpu(np->pci_dev,
1576 np->rx_info[entry].mapping,
1577 pkt_len, PCI_DMA_FROMDEVICE);
1578 eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
1579 pci_dma_sync_single_for_device(np->pci_dev,
1580 np->rx_info[entry].mapping,
1581 pkt_len, PCI_DMA_FROMDEVICE);
1582 skb_put(skb, pkt_len);
1583 } else {
1584 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1585 skb = np->rx_info[entry].skb;
1586 skb_put(skb, pkt_len);
1587 np->rx_info[entry].skb = NULL;
1588 np->rx_info[entry].mapping = 0;
1589 }
1590 #ifndef final_version /* Remove after testing. */
1591 /* You will want this info for the initial debug. */
1592 if (debug > 5)
1593 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1594 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1595 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1596 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1597 skb->data[8], skb->data[9], skb->data[10],
1598 skb->data[11], skb->data[12], skb->data[13]);
1599 #endif
1600
1601 skb->protocol = eth_type_trans(skb, dev);
1602 #ifdef VLAN_SUPPORT
1603 if (debug > 4)
1604 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1605 #endif
1606 if (le16_to_cpu(desc->status2) & 0x0100) {
1607 skb->ip_summed = CHECKSUM_UNNECESSARY;
1608 np->stats.rx_compressed++;
1609 }
1610 /*
1611 * This feature doesn't seem to be working, at least
1612 * with the two firmware versions I have. If the GFP sees
1613 * an IP fragment, it either ignores it completely, or reports
1614 * "bad checksum" on it.
1615 *
1616 * Maybe I missed something -- corrections are welcome.
1617 * Until then, the printk stays. :-) -Ion
1618 */
1619 else if (le16_to_cpu(desc->status2) & 0x0040) {
1620 skb->ip_summed = CHECKSUM_HW;
1621 skb->csum = le16_to_cpu(desc->csum);
1622 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1623 }
1624 #ifdef VLAN_SUPPORT
1625 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1626 if (debug > 4)
1627 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1628 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1629 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1630 } else
1631 #endif /* VLAN_SUPPORT */
1632 netdev_receive_skb(skb);
1633 dev->last_rx = jiffies;
1634 np->stats.rx_packets++;
1635
1636 next_rx:
1637 np->cur_rx++;
1638 desc->status = 0;
1639 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1640 }
1641 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1642
1643 out:
1644 refill_rx_ring(dev);
1645 if (debug > 5)
1646 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1647 retcode, np->rx_done, desc_status);
1648 return retcode;
1649 }
1650
1651
1652 #ifdef HAVE_NETDEV_POLL
1653 static int netdev_poll(struct net_device *dev, int *budget)
1654 {
1655 u32 intr_status;
1656 struct netdev_private *np = netdev_priv(dev);
1657 void __iomem *ioaddr = np->base;
1658 int retcode = 0, quota = dev->quota;
1659
1660 do {
1661 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1662
1663 retcode = __netdev_rx(dev, &quota);
1664 *budget -= (dev->quota - quota);
1665 dev->quota = quota;
1666 if (retcode)
1667 goto out;
1668
1669 intr_status = readl(ioaddr + IntrStatus);
1670 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1671
1672 netif_rx_complete(dev);
1673 intr_status = readl(ioaddr + IntrEnable);
1674 intr_status |= IntrRxDone | IntrRxEmpty;
1675 writel(intr_status, ioaddr + IntrEnable);
1676
1677 out:
1678 if (debug > 5)
1679 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", retcode);
1680
1681 /* Restart Rx engine if stopped. */
1682 return retcode;
1683 }
1684 #endif /* HAVE_NETDEV_POLL */
1685
1686
1687 static void refill_rx_ring(struct net_device *dev)
1688 {
1689 struct netdev_private *np = netdev_priv(dev);
1690 struct sk_buff *skb;
1691 int entry = -1;
1692
1693 /* Refill the Rx ring buffers. */
1694 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1695 entry = np->dirty_rx % RX_RING_SIZE;
1696 if (np->rx_info[entry].skb == NULL) {
1697 skb = dev_alloc_skb(np->rx_buf_sz);
1698 np->rx_info[entry].skb = skb;
1699 if (skb == NULL)
1700 break; /* Better luck next round. */
1701 np->rx_info[entry].mapping =
1702 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1703 skb->dev = dev; /* Mark as being used by this device. */
1704 np->rx_ring[entry].rxaddr =
1705 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1706 }
1707 if (entry == RX_RING_SIZE - 1)
1708 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1709 }
1710 if (entry >= 0)
1711 writew(entry, np->base + RxDescQIdx);
1712 }
1713
1714
1715 static void netdev_media_change(struct net_device *dev)
1716 {
1717 struct netdev_private *np = netdev_priv(dev);
1718 void __iomem *ioaddr = np->base;
1719 u16 reg0, reg1, reg4, reg5;
1720 u32 new_tx_mode;
1721 u32 new_intr_timer_ctrl;
1722
1723 /* reset status first */
1724 mdio_read(dev, np->phys[0], MII_BMCR);
1725 mdio_read(dev, np->phys[0], MII_BMSR);
1726
1727 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1728 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1729
1730 if (reg1 & BMSR_LSTATUS) {
1731 /* link is up */
1732 if (reg0 & BMCR_ANENABLE) {
1733 /* autonegotiation is enabled */
1734 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1735 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1736 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1737 np->speed100 = 1;
1738 np->mii_if.full_duplex = 1;
1739 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1740 np->speed100 = 1;
1741 np->mii_if.full_duplex = 0;
1742 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1743 np->speed100 = 0;
1744 np->mii_if.full_duplex = 1;
1745 } else {
1746 np->speed100 = 0;
1747 np->mii_if.full_duplex = 0;
1748 }
1749 } else {
1750 /* autonegotiation is disabled */
1751 if (reg0 & BMCR_SPEED100)
1752 np->speed100 = 1;
1753 else
1754 np->speed100 = 0;
1755 if (reg0 & BMCR_FULLDPLX)
1756 np->mii_if.full_duplex = 1;
1757 else
1758 np->mii_if.full_duplex = 0;
1759 }
1760 netif_carrier_on(dev);
1761 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1762 dev->name,
1763 np->speed100 ? "100" : "10",
1764 np->mii_if.full_duplex ? "full" : "half");
1765
1766 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1767 if (np->mii_if.full_duplex)
1768 new_tx_mode |= FullDuplex;
1769 if (np->tx_mode != new_tx_mode) {
1770 np->tx_mode = new_tx_mode;
1771 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1772 udelay(1000);
1773 writel(np->tx_mode, ioaddr + TxMode);
1774 }
1775
1776 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1777 if (np->speed100)
1778 new_intr_timer_ctrl |= Timer10X;
1779 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1780 np->intr_timer_ctrl = new_intr_timer_ctrl;
1781 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1782 }
1783 } else {
1784 netif_carrier_off(dev);
1785 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1786 }
1787 }
1788
1789
1790 static void netdev_error(struct net_device *dev, int intr_status)
1791 {
1792 struct netdev_private *np = netdev_priv(dev);
1793
1794 /* Came close to underrunning the Tx FIFO, increase threshold. */
1795 if (intr_status & IntrTxDataLow) {
1796 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1797 writel(++np->tx_threshold, np->base + TxThreshold);
1798 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1799 dev->name, np->tx_threshold * 16);
1800 } else
1801 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1802 }
1803 if (intr_status & IntrRxGFPDead) {
1804 np->stats.rx_fifo_errors++;
1805 np->stats.rx_errors++;
1806 }
1807 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1808 np->stats.tx_fifo_errors++;
1809 np->stats.tx_errors++;
1810 }
1811 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1812 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1813 dev->name, intr_status);
1814 }
1815
1816
1817 static struct net_device_stats *get_stats(struct net_device *dev)
1818 {
1819 struct netdev_private *np = netdev_priv(dev);
1820 void __iomem *ioaddr = np->base;
1821
1822 /* This adapter architecture needs no SMP locks. */
1823 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1824 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1825 np->stats.tx_packets = readl(ioaddr + 0x57000);
1826 np->stats.tx_aborted_errors =
1827 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1828 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1829 np->stats.collisions =
1830 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1831
1832 /* The chip only need report frame silently dropped. */
1833 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1834 writew(0, ioaddr + RxDMAStatus);
1835 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1836 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1837 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1838 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1839
1840 return &np->stats;
1841 }
1842
1843
1844 static void set_rx_mode(struct net_device *dev)
1845 {
1846 struct netdev_private *np = netdev_priv(dev);
1847 void __iomem *ioaddr = np->base;
1848 u32 rx_mode = MinVLANPrio;
1849 struct dev_mc_list *mclist;
1850 int i;
1851 #ifdef VLAN_SUPPORT
1852
1853 rx_mode |= VlanMode;
1854 if (np->vlgrp) {
1855 int vlan_count = 0;
1856 void __iomem *filter_addr = ioaddr + HashTable + 8;
1857 for (i = 0; i < VLAN_VID_MASK; i++) {
1858 if (np->vlgrp->vlan_devices[i]) {
1859 if (vlan_count >= 32)
1860 break;
1861 writew(cpu_to_be16(i), filter_addr);
1862 filter_addr += 16;
1863 vlan_count++;
1864 }
1865 }
1866 if (i == VLAN_VID_MASK) {
1867 rx_mode |= PerfectFilterVlan;
1868 while (vlan_count < 32) {
1869 writew(0, filter_addr);
1870 filter_addr += 16;
1871 vlan_count++;
1872 }
1873 }
1874 }
1875 #endif /* VLAN_SUPPORT */
1876
1877 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1878 rx_mode |= AcceptAll;
1879 } else if ((dev->mc_count > multicast_filter_limit)
1880 || (dev->flags & IFF_ALLMULTI)) {
1881 /* Too many to match, or accept all multicasts. */
1882 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1883 } else if (dev->mc_count <= 14) {
1884 /* Use the 16 element perfect filter, skip first two entries. */
1885 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1886 u16 *eaddrs;
1887 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1888 i++, mclist = mclist->next) {
1889 eaddrs = (u16 *)mclist->dmi_addr;
1890 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1891 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1892 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1893 }
1894 eaddrs = (u16 *)dev->dev_addr;
1895 while (i++ < 16) {
1896 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1897 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1898 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1899 }
1900 rx_mode |= AcceptBroadcast|PerfectFilter;
1901 } else {
1902 /* Must use a multicast hash table. */
1903 void __iomem *filter_addr;
1904 u16 *eaddrs;
1905 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1906
1907 memset(mc_filter, 0, sizeof(mc_filter));
1908 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1909 i++, mclist = mclist->next) {
1910 /* The chip uses the upper 9 CRC bits
1911 as index into the hash table */
1912 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1913 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1914
1915 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1916 }
1917 /* Clear the perfect filter list, skip first two entries. */
1918 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1919 eaddrs = (u16 *)dev->dev_addr;
1920 for (i = 2; i < 16; i++) {
1921 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1922 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1923 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1924 }
1925 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1926 writew(mc_filter[i], filter_addr);
1927 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1928 }
1929 writel(rx_mode, ioaddr + RxFilterMode);
1930 }
1931
1932 static int check_if_running(struct net_device *dev)
1933 {
1934 if (!netif_running(dev))
1935 return -EINVAL;
1936 return 0;
1937 }
1938
1939 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1940 {
1941 struct netdev_private *np = netdev_priv(dev);
1942 strcpy(info->driver, DRV_NAME);
1943 strcpy(info->version, DRV_VERSION);
1944 strcpy(info->bus_info, pci_name(np->pci_dev));
1945 }
1946
1947 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1948 {
1949 struct netdev_private *np = netdev_priv(dev);
1950 spin_lock_irq(&np->lock);
1951 mii_ethtool_gset(&np->mii_if, ecmd);
1952 spin_unlock_irq(&np->lock);
1953 return 0;
1954 }
1955
1956 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1957 {
1958 struct netdev_private *np = netdev_priv(dev);
1959 int res;
1960 spin_lock_irq(&np->lock);
1961 res = mii_ethtool_sset(&np->mii_if, ecmd);
1962 spin_unlock_irq(&np->lock);
1963 check_duplex(dev);
1964 return res;
1965 }
1966
1967 static int nway_reset(struct net_device *dev)
1968 {
1969 struct netdev_private *np = netdev_priv(dev);
1970 return mii_nway_restart(&np->mii_if);
1971 }
1972
1973 static u32 get_link(struct net_device *dev)
1974 {
1975 struct netdev_private *np = netdev_priv(dev);
1976 return mii_link_ok(&np->mii_if);
1977 }
1978
1979 static u32 get_msglevel(struct net_device *dev)
1980 {
1981 return debug;
1982 }
1983
1984 static void set_msglevel(struct net_device *dev, u32 val)
1985 {
1986 debug = val;
1987 }
1988
1989 static struct ethtool_ops ethtool_ops = {
1990 .begin = check_if_running,
1991 .get_drvinfo = get_drvinfo,
1992 .get_settings = get_settings,
1993 .set_settings = set_settings,
1994 .nway_reset = nway_reset,
1995 .get_link = get_link,
1996 .get_msglevel = get_msglevel,
1997 .set_msglevel = set_msglevel,
1998 };
1999
2000 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2001 {
2002 struct netdev_private *np = netdev_priv(dev);
2003 struct mii_ioctl_data *data = if_mii(rq);
2004 int rc;
2005
2006 if (!netif_running(dev))
2007 return -EINVAL;
2008
2009 spin_lock_irq(&np->lock);
2010 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
2011 spin_unlock_irq(&np->lock);
2012
2013 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
2014 check_duplex(dev);
2015
2016 return rc;
2017 }
2018
2019 static int netdev_close(struct net_device *dev)
2020 {
2021 struct netdev_private *np = netdev_priv(dev);
2022 void __iomem *ioaddr = np->base;
2023 int i;
2024
2025 netif_stop_queue(dev);
2026
2027 if (debug > 1) {
2028 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
2029 dev->name, (int) readl(ioaddr + IntrStatus));
2030 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
2031 dev->name, np->cur_tx, np->dirty_tx,
2032 np->cur_rx, np->dirty_rx);
2033 }
2034
2035 /* Disable interrupts by clearing the interrupt mask. */
2036 writel(0, ioaddr + IntrEnable);
2037
2038 /* Stop the chip's Tx and Rx processes. */
2039 writel(0, ioaddr + GenCtrl);
2040 readl(ioaddr + GenCtrl);
2041
2042 if (debug > 5) {
2043 printk(KERN_DEBUG" Tx ring at %#llx:\n",
2044 (long long) np->tx_ring_dma);
2045 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
2046 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
2047 i, le32_to_cpu(np->tx_ring[i].status),
2048 (long long) dma_to_cpu(np->tx_ring[i].addr),
2049 le32_to_cpu(np->tx_done_q[i].status));
2050 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
2051 (long long) np->rx_ring_dma, np->rx_done_q);
2052 if (np->rx_done_q)
2053 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
2054 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
2055 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
2056 }
2057 }
2058
2059 free_irq(dev->irq, dev);
2060
2061 /* Free all the skbuffs in the Rx queue. */
2062 for (i = 0; i < RX_RING_SIZE; i++) {
2063 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
2064 if (np->rx_info[i].skb != NULL) {
2065 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
2066 dev_kfree_skb(np->rx_info[i].skb);
2067 }
2068 np->rx_info[i].skb = NULL;
2069 np->rx_info[i].mapping = 0;
2070 }
2071 for (i = 0; i < TX_RING_SIZE; i++) {
2072 struct sk_buff *skb = np->tx_info[i].skb;
2073 if (skb == NULL)
2074 continue;
2075 pci_unmap_single(np->pci_dev,
2076 np->tx_info[i].mapping,
2077 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
2078 np->tx_info[i].mapping = 0;
2079 dev_kfree_skb(skb);
2080 np->tx_info[i].skb = NULL;
2081 }
2082
2083 return 0;
2084 }
2085
2086 #ifdef CONFIG_PM
2087 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2088 {
2089 struct net_device *dev = pci_get_drvdata(pdev);
2090
2091 if (netif_running(dev)) {
2092 netif_device_detach(dev);
2093 netdev_close(dev);
2094 }
2095
2096 pci_save_state(pdev);
2097 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2098
2099 return 0;
2100 }
2101
2102 static int starfire_resume(struct pci_dev *pdev)
2103 {
2104 struct net_device *dev = pci_get_drvdata(pdev);
2105
2106 pci_set_power_state(pdev, PCI_D0);
2107 pci_restore_state(pdev);
2108
2109 if (netif_running(dev)) {
2110 netdev_open(dev);
2111 netif_device_attach(dev);
2112 }
2113
2114 return 0;
2115 }
2116 #endif /* CONFIG_PM */
2117
2118
2119 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2120 {
2121 struct net_device *dev = pci_get_drvdata(pdev);
2122 struct netdev_private *np = netdev_priv(dev);
2123
2124 BUG_ON(!dev);
2125
2126 unregister_netdev(dev);
2127
2128 if (np->queue_mem)
2129 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2130
2131
2132 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2133 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2134 pci_disable_device(pdev);
2135
2136 iounmap(np->base);
2137 pci_release_regions(pdev);
2138
2139 pci_set_drvdata(pdev, NULL);
2140 free_netdev(dev); /* Will also free np!! */
2141 }
2142
2143
2144 static struct pci_driver starfire_driver = {
2145 .name = DRV_NAME,
2146 .probe = starfire_init_one,
2147 .remove = __devexit_p(starfire_remove_one),
2148 #ifdef CONFIG_PM
2149 .suspend = starfire_suspend,
2150 .resume = starfire_resume,
2151 #endif /* CONFIG_PM */
2152 .id_table = starfire_pci_tbl,
2153 };
2154
2155
2156 static int __init starfire_init (void)
2157 {
2158 /* when a module, this is printed whether or not devices are found in probe */
2159 #ifdef MODULE
2160 printk(version);
2161 #ifdef HAVE_NETDEV_POLL
2162 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2163 #else
2164 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2165 #endif
2166 #endif
2167
2168 /* we can do this test only at run-time... sigh */
2169 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2170 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2171 return -ENODEV;
2172 }
2173
2174 return pci_module_init (&starfire_driver);
2175 }
2176
2177
2178 static void __exit starfire_cleanup (void)
2179 {
2180 pci_unregister_driver (&starfire_driver);
2181 }
2182
2183
2184 module_init(starfire_init);
2185 module_exit(starfire_cleanup);
2186
2187
2188 /*
2189 * Local variables:
2190 * c-basic-offset: 8
2191 * tab-width: 8
2192 * End:
2193 */
This page took 0.109973 seconds and 6 git commands to generate.