stmmac: update the version (V2)
[deliverable/linux.git] / drivers / net / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/interrupt.h>
35 #include <linux/etherdevice.h>
36 #include <linux/platform_device.h>
37 #include <linux/ip.h>
38 #include <linux/tcp.h>
39 #include <linux/skbuff.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_ether.h>
42 #include <linux/crc32.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/if_vlan.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/slab.h>
48 #include <linux/prefetch.h>
49 #include "stmmac.h"
50
51 #define STMMAC_RESOURCE_NAME "stmmaceth"
52 #define PHY_RESOURCE_NAME "stmmacphy"
53
54 #undef STMMAC_DEBUG
55 /*#define STMMAC_DEBUG*/
56 #ifdef STMMAC_DEBUG
57 #define DBG(nlevel, klevel, fmt, args...) \
58 ((void)(netif_msg_##nlevel(priv) && \
59 printk(KERN_##klevel fmt, ## args)))
60 #else
61 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
62 #endif
63
64 #undef STMMAC_RX_DEBUG
65 /*#define STMMAC_RX_DEBUG*/
66 #ifdef STMMAC_RX_DEBUG
67 #define RX_DBG(fmt, args...) printk(fmt, ## args)
68 #else
69 #define RX_DBG(fmt, args...) do { } while (0)
70 #endif
71
72 #undef STMMAC_XMIT_DEBUG
73 /*#define STMMAC_XMIT_DEBUG*/
74 #ifdef STMMAC_TX_DEBUG
75 #define TX_DBG(fmt, args...) printk(fmt, ## args)
76 #else
77 #define TX_DBG(fmt, args...) do { } while (0)
78 #endif
79
80 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
81 #define JUMBO_LEN 9000
82
83 /* Module parameters */
84 #define TX_TIMEO 5000 /* default 5 seconds */
85 static int watchdog = TX_TIMEO;
86 module_param(watchdog, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
88
89 static int debug = -1; /* -1: default, 0: no output, 16: all */
90 module_param(debug, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
92
93 static int phyaddr = -1;
94 module_param(phyaddr, int, S_IRUGO);
95 MODULE_PARM_DESC(phyaddr, "Physical device address");
96
97 #define DMA_TX_SIZE 256
98 static int dma_txsize = DMA_TX_SIZE;
99 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
101
102 #define DMA_RX_SIZE 256
103 static int dma_rxsize = DMA_RX_SIZE;
104 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
106
107 static int flow_ctrl = FLOW_OFF;
108 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
110
111 static int pause = PAUSE_TIME;
112 module_param(pause, int, S_IRUGO | S_IWUSR);
113 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
114
115 #define TC_DEFAULT 64
116 static int tc = TC_DEFAULT;
117 module_param(tc, int, S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(tc, "DMA threshold control value");
119
120 /* Pay attention to tune this parameter; take care of both
121 * hardware capability and network stabitily/performance impact.
122 * Many tests showed that ~4ms latency seems to be good enough. */
123 #ifdef CONFIG_STMMAC_TIMER
124 #define DEFAULT_PERIODIC_RATE 256
125 static int tmrate = DEFAULT_PERIODIC_RATE;
126 module_param(tmrate, int, S_IRUGO | S_IWUSR);
127 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
128 #endif
129
130 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
131 static int buf_sz = DMA_BUFFER_SIZE;
132 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
134
135 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
136 NETIF_MSG_LINK | NETIF_MSG_IFUP |
137 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
138
139 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
140
141 /**
142 * stmmac_verify_args - verify the driver parameters.
143 * Description: it verifies if some wrong parameter is passed to the driver.
144 * Note that wrong parameters are replaced with the default values.
145 */
146 static void stmmac_verify_args(void)
147 {
148 if (unlikely(watchdog < 0))
149 watchdog = TX_TIMEO;
150 if (unlikely(dma_rxsize < 0))
151 dma_rxsize = DMA_RX_SIZE;
152 if (unlikely(dma_txsize < 0))
153 dma_txsize = DMA_TX_SIZE;
154 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
155 buf_sz = DMA_BUFFER_SIZE;
156 if (unlikely(flow_ctrl > 1))
157 flow_ctrl = FLOW_AUTO;
158 else if (likely(flow_ctrl < 0))
159 flow_ctrl = FLOW_OFF;
160 if (unlikely((pause < 0) || (pause > 0xffff)))
161 pause = PAUSE_TIME;
162 }
163
164 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
165 static void print_pkt(unsigned char *buf, int len)
166 {
167 int j;
168 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
169 for (j = 0; j < len; j++) {
170 if ((j % 16) == 0)
171 pr_info("\n %03x:", j);
172 pr_info(" %02x", buf[j]);
173 }
174 pr_info("\n");
175 }
176 #endif
177
178 /* minimum number of free TX descriptors required to wake up TX process */
179 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
180
181 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
182 {
183 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
184 }
185
186 /* On some ST platforms, some HW system configuraton registers have to be
187 * set according to the link speed negotiated.
188 */
189 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
190 {
191 struct phy_device *phydev = priv->phydev;
192
193 if (likely(priv->plat->fix_mac_speed))
194 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
195 phydev->speed);
196 }
197
198 /**
199 * stmmac_adjust_link
200 * @dev: net device structure
201 * Description: it adjusts the link parameters.
202 */
203 static void stmmac_adjust_link(struct net_device *dev)
204 {
205 struct stmmac_priv *priv = netdev_priv(dev);
206 struct phy_device *phydev = priv->phydev;
207 unsigned long flags;
208 int new_state = 0;
209 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
210
211 if (phydev == NULL)
212 return;
213
214 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
215 phydev->addr, phydev->link);
216
217 spin_lock_irqsave(&priv->lock, flags);
218 if (phydev->link) {
219 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
220
221 /* Now we make sure that we can be in full duplex mode.
222 * If not, we operate in half-duplex mode. */
223 if (phydev->duplex != priv->oldduplex) {
224 new_state = 1;
225 if (!(phydev->duplex))
226 ctrl &= ~priv->hw->link.duplex;
227 else
228 ctrl |= priv->hw->link.duplex;
229 priv->oldduplex = phydev->duplex;
230 }
231 /* Flow Control operation */
232 if (phydev->pause)
233 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
234 fc, pause_time);
235
236 if (phydev->speed != priv->speed) {
237 new_state = 1;
238 switch (phydev->speed) {
239 case 1000:
240 if (likely(priv->plat->has_gmac))
241 ctrl &= ~priv->hw->link.port;
242 stmmac_hw_fix_mac_speed(priv);
243 break;
244 case 100:
245 case 10:
246 if (priv->plat->has_gmac) {
247 ctrl |= priv->hw->link.port;
248 if (phydev->speed == SPEED_100) {
249 ctrl |= priv->hw->link.speed;
250 } else {
251 ctrl &= ~(priv->hw->link.speed);
252 }
253 } else {
254 ctrl &= ~priv->hw->link.port;
255 }
256 stmmac_hw_fix_mac_speed(priv);
257 break;
258 default:
259 if (netif_msg_link(priv))
260 pr_warning("%s: Speed (%d) is not 10"
261 " or 100!\n", dev->name, phydev->speed);
262 break;
263 }
264
265 priv->speed = phydev->speed;
266 }
267
268 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
269
270 if (!priv->oldlink) {
271 new_state = 1;
272 priv->oldlink = 1;
273 }
274 } else if (priv->oldlink) {
275 new_state = 1;
276 priv->oldlink = 0;
277 priv->speed = 0;
278 priv->oldduplex = -1;
279 }
280
281 if (new_state && netif_msg_link(priv))
282 phy_print_status(phydev);
283
284 spin_unlock_irqrestore(&priv->lock, flags);
285
286 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
287 }
288
289 /**
290 * stmmac_init_phy - PHY initialization
291 * @dev: net device structure
292 * Description: it initializes the driver's PHY state, and attaches the PHY
293 * to the mac driver.
294 * Return value:
295 * 0 on success
296 */
297 static int stmmac_init_phy(struct net_device *dev)
298 {
299 struct stmmac_priv *priv = netdev_priv(dev);
300 struct phy_device *phydev;
301 char phy_id[MII_BUS_ID_SIZE + 3];
302 char bus_id[MII_BUS_ID_SIZE];
303
304 priv->oldlink = 0;
305 priv->speed = 0;
306 priv->oldduplex = -1;
307
308 if (priv->phy_addr == -1) {
309 /* We don't have a PHY, so do nothing */
310 return 0;
311 }
312
313 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
314 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
315 priv->phy_addr);
316 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
317
318 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
319 priv->phy_interface);
320
321 if (IS_ERR(phydev)) {
322 pr_err("%s: Could not attach to PHY\n", dev->name);
323 return PTR_ERR(phydev);
324 }
325
326 /*
327 * Broken HW is sometimes missing the pull-up resistor on the
328 * MDIO line, which results in reads to non-existent devices returning
329 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
330 * device as well.
331 * Note: phydev->phy_id is the result of reading the UID PHY registers.
332 */
333 if (phydev->phy_id == 0) {
334 phy_disconnect(phydev);
335 return -ENODEV;
336 }
337 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
338 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
339
340 priv->phydev = phydev;
341
342 return 0;
343 }
344
345 static inline void stmmac_enable_mac(void __iomem *ioaddr)
346 {
347 u32 value = readl(ioaddr + MAC_CTRL_REG);
348
349 value |= MAC_RNABLE_RX | MAC_ENABLE_TX;
350 writel(value, ioaddr + MAC_CTRL_REG);
351 }
352
353 static inline void stmmac_disable_mac(void __iomem *ioaddr)
354 {
355 u32 value = readl(ioaddr + MAC_CTRL_REG);
356
357 value &= ~(MAC_ENABLE_TX | MAC_RNABLE_RX);
358 writel(value, ioaddr + MAC_CTRL_REG);
359 }
360
361 /**
362 * display_ring
363 * @p: pointer to the ring.
364 * @size: size of the ring.
365 * Description: display all the descriptors within the ring.
366 */
367 static void display_ring(struct dma_desc *p, int size)
368 {
369 struct tmp_s {
370 u64 a;
371 unsigned int b;
372 unsigned int c;
373 };
374 int i;
375 for (i = 0; i < size; i++) {
376 struct tmp_s *x = (struct tmp_s *)(p + i);
377 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
378 i, (unsigned int)virt_to_phys(&p[i]),
379 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
380 x->b, x->c);
381 pr_info("\n");
382 }
383 }
384
385 /**
386 * init_dma_desc_rings - init the RX/TX descriptor rings
387 * @dev: net device structure
388 * Description: this function initializes the DMA RX/TX descriptors
389 * and allocates the socket buffers.
390 */
391 static void init_dma_desc_rings(struct net_device *dev)
392 {
393 int i;
394 struct stmmac_priv *priv = netdev_priv(dev);
395 struct sk_buff *skb;
396 unsigned int txsize = priv->dma_tx_size;
397 unsigned int rxsize = priv->dma_rx_size;
398 unsigned int bfsize = priv->dma_buf_sz;
399 int buff2_needed = 0, dis_ic = 0;
400
401 /* Set the Buffer size according to the MTU;
402 * indeed, in case of jumbo we need to bump-up the buffer sizes.
403 */
404 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
405 bfsize = BUF_SIZE_16KiB;
406 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
407 bfsize = BUF_SIZE_8KiB;
408 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
409 bfsize = BUF_SIZE_4KiB;
410 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
411 bfsize = BUF_SIZE_2KiB;
412 else
413 bfsize = DMA_BUFFER_SIZE;
414
415 #ifdef CONFIG_STMMAC_TIMER
416 /* Disable interrupts on completion for the reception if timer is on */
417 if (likely(priv->tm->enable))
418 dis_ic = 1;
419 #endif
420 /* If the MTU exceeds 8k so use the second buffer in the chain */
421 if (bfsize >= BUF_SIZE_8KiB)
422 buff2_needed = 1;
423
424 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
425 txsize, rxsize, bfsize);
426
427 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
428 priv->rx_skbuff =
429 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
430 priv->dma_rx =
431 (struct dma_desc *)dma_alloc_coherent(priv->device,
432 rxsize *
433 sizeof(struct dma_desc),
434 &priv->dma_rx_phy,
435 GFP_KERNEL);
436 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
437 GFP_KERNEL);
438 priv->dma_tx =
439 (struct dma_desc *)dma_alloc_coherent(priv->device,
440 txsize *
441 sizeof(struct dma_desc),
442 &priv->dma_tx_phy,
443 GFP_KERNEL);
444
445 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
446 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
447 return;
448 }
449
450 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
451 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
452 dev->name, priv->dma_rx, priv->dma_tx,
453 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
454
455 /* RX INITIALIZATION */
456 DBG(probe, INFO, "stmmac: SKB addresses:\n"
457 "skb\t\tskb data\tdma data\n");
458
459 for (i = 0; i < rxsize; i++) {
460 struct dma_desc *p = priv->dma_rx + i;
461
462 skb = netdev_alloc_skb_ip_align(dev, bfsize);
463 if (unlikely(skb == NULL)) {
464 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
465 break;
466 }
467 priv->rx_skbuff[i] = skb;
468 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
469 bfsize, DMA_FROM_DEVICE);
470
471 p->des2 = priv->rx_skbuff_dma[i];
472 if (unlikely(buff2_needed))
473 p->des3 = p->des2 + BUF_SIZE_8KiB;
474 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
475 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
476 }
477 priv->cur_rx = 0;
478 priv->dirty_rx = (unsigned int)(i - rxsize);
479 priv->dma_buf_sz = bfsize;
480 buf_sz = bfsize;
481
482 /* TX INITIALIZATION */
483 for (i = 0; i < txsize; i++) {
484 priv->tx_skbuff[i] = NULL;
485 priv->dma_tx[i].des2 = 0;
486 }
487 priv->dirty_tx = 0;
488 priv->cur_tx = 0;
489
490 /* Clear the Rx/Tx descriptors */
491 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
492 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
493
494 if (netif_msg_hw(priv)) {
495 pr_info("RX descriptor ring:\n");
496 display_ring(priv->dma_rx, rxsize);
497 pr_info("TX descriptor ring:\n");
498 display_ring(priv->dma_tx, txsize);
499 }
500 }
501
502 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
503 {
504 int i;
505
506 for (i = 0; i < priv->dma_rx_size; i++) {
507 if (priv->rx_skbuff[i]) {
508 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
509 priv->dma_buf_sz, DMA_FROM_DEVICE);
510 dev_kfree_skb_any(priv->rx_skbuff[i]);
511 }
512 priv->rx_skbuff[i] = NULL;
513 }
514 }
515
516 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
517 {
518 int i;
519
520 for (i = 0; i < priv->dma_tx_size; i++) {
521 if (priv->tx_skbuff[i] != NULL) {
522 struct dma_desc *p = priv->dma_tx + i;
523 if (p->des2)
524 dma_unmap_single(priv->device, p->des2,
525 priv->hw->desc->get_tx_len(p),
526 DMA_TO_DEVICE);
527 dev_kfree_skb_any(priv->tx_skbuff[i]);
528 priv->tx_skbuff[i] = NULL;
529 }
530 }
531 }
532
533 static void free_dma_desc_resources(struct stmmac_priv *priv)
534 {
535 /* Release the DMA TX/RX socket buffers */
536 dma_free_rx_skbufs(priv);
537 dma_free_tx_skbufs(priv);
538
539 /* Free the region of consistent memory previously allocated for
540 * the DMA */
541 dma_free_coherent(priv->device,
542 priv->dma_tx_size * sizeof(struct dma_desc),
543 priv->dma_tx, priv->dma_tx_phy);
544 dma_free_coherent(priv->device,
545 priv->dma_rx_size * sizeof(struct dma_desc),
546 priv->dma_rx, priv->dma_rx_phy);
547 kfree(priv->rx_skbuff_dma);
548 kfree(priv->rx_skbuff);
549 kfree(priv->tx_skbuff);
550 }
551
552 /**
553 * stmmac_dma_operation_mode - HW DMA operation mode
554 * @priv : pointer to the private device structure.
555 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
556 * or Store-And-Forward capability.
557 */
558 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
559 {
560 if (likely(priv->plat->force_sf_dma_mode ||
561 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
562 /*
563 * In case of GMAC, SF mode can be enabled
564 * to perform the TX COE in HW. This depends on:
565 * 1) TX COE if actually supported
566 * 2) There is no bugged Jumbo frame support
567 * that needs to not insert csum in the TDES.
568 */
569 priv->hw->dma->dma_mode(priv->ioaddr,
570 SF_DMA_MODE, SF_DMA_MODE);
571 tc = SF_DMA_MODE;
572 } else
573 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
574 }
575
576 /**
577 * stmmac_tx:
578 * @priv: private driver structure
579 * Description: it reclaims resources after transmission completes.
580 */
581 static void stmmac_tx(struct stmmac_priv *priv)
582 {
583 unsigned int txsize = priv->dma_tx_size;
584
585 while (priv->dirty_tx != priv->cur_tx) {
586 int last;
587 unsigned int entry = priv->dirty_tx % txsize;
588 struct sk_buff *skb = priv->tx_skbuff[entry];
589 struct dma_desc *p = priv->dma_tx + entry;
590
591 /* Check if the descriptor is owned by the DMA. */
592 if (priv->hw->desc->get_tx_owner(p))
593 break;
594
595 /* Verify tx error by looking at the last segment */
596 last = priv->hw->desc->get_tx_ls(p);
597 if (likely(last)) {
598 int tx_error =
599 priv->hw->desc->tx_status(&priv->dev->stats,
600 &priv->xstats, p,
601 priv->ioaddr);
602 if (likely(tx_error == 0)) {
603 priv->dev->stats.tx_packets++;
604 priv->xstats.tx_pkt_n++;
605 } else
606 priv->dev->stats.tx_errors++;
607 }
608 TX_DBG("%s: curr %d, dirty %d\n", __func__,
609 priv->cur_tx, priv->dirty_tx);
610
611 if (likely(p->des2))
612 dma_unmap_single(priv->device, p->des2,
613 priv->hw->desc->get_tx_len(p),
614 DMA_TO_DEVICE);
615 if (unlikely(p->des3))
616 p->des3 = 0;
617
618 if (likely(skb != NULL)) {
619 /*
620 * If there's room in the queue (limit it to size)
621 * we add this skb back into the pool,
622 * if it's the right size.
623 */
624 if ((skb_queue_len(&priv->rx_recycle) <
625 priv->dma_rx_size) &&
626 skb_recycle_check(skb, priv->dma_buf_sz))
627 __skb_queue_head(&priv->rx_recycle, skb);
628 else
629 dev_kfree_skb(skb);
630
631 priv->tx_skbuff[entry] = NULL;
632 }
633
634 priv->hw->desc->release_tx_desc(p);
635
636 entry = (++priv->dirty_tx) % txsize;
637 }
638 if (unlikely(netif_queue_stopped(priv->dev) &&
639 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
640 netif_tx_lock(priv->dev);
641 if (netif_queue_stopped(priv->dev) &&
642 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
643 TX_DBG("%s: restart transmit\n", __func__);
644 netif_wake_queue(priv->dev);
645 }
646 netif_tx_unlock(priv->dev);
647 }
648 }
649
650 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
651 {
652 #ifdef CONFIG_STMMAC_TIMER
653 if (likely(priv->tm->enable))
654 priv->tm->timer_start(tmrate);
655 else
656 #endif
657 priv->hw->dma->enable_dma_irq(priv->ioaddr);
658 }
659
660 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
661 {
662 #ifdef CONFIG_STMMAC_TIMER
663 if (likely(priv->tm->enable))
664 priv->tm->timer_stop();
665 else
666 #endif
667 priv->hw->dma->disable_dma_irq(priv->ioaddr);
668 }
669
670 static int stmmac_has_work(struct stmmac_priv *priv)
671 {
672 unsigned int has_work = 0;
673 int rxret, tx_work = 0;
674
675 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
676 (priv->cur_rx % priv->dma_rx_size));
677
678 if (priv->dirty_tx != priv->cur_tx)
679 tx_work = 1;
680
681 if (likely(!rxret || tx_work))
682 has_work = 1;
683
684 return has_work;
685 }
686
687 static inline void _stmmac_schedule(struct stmmac_priv *priv)
688 {
689 if (likely(stmmac_has_work(priv))) {
690 stmmac_disable_irq(priv);
691 napi_schedule(&priv->napi);
692 }
693 }
694
695 #ifdef CONFIG_STMMAC_TIMER
696 void stmmac_schedule(struct net_device *dev)
697 {
698 struct stmmac_priv *priv = netdev_priv(dev);
699
700 priv->xstats.sched_timer_n++;
701
702 _stmmac_schedule(priv);
703 }
704
705 static void stmmac_no_timer_started(unsigned int x)
706 {;
707 };
708
709 static void stmmac_no_timer_stopped(void)
710 {;
711 };
712 #endif
713
714 /**
715 * stmmac_tx_err:
716 * @priv: pointer to the private device structure
717 * Description: it cleans the descriptors and restarts the transmission
718 * in case of errors.
719 */
720 static void stmmac_tx_err(struct stmmac_priv *priv)
721 {
722
723 netif_stop_queue(priv->dev);
724
725 priv->hw->dma->stop_tx(priv->ioaddr);
726 dma_free_tx_skbufs(priv);
727 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
728 priv->dirty_tx = 0;
729 priv->cur_tx = 0;
730 priv->hw->dma->start_tx(priv->ioaddr);
731
732 priv->dev->stats.tx_errors++;
733 netif_wake_queue(priv->dev);
734 }
735
736
737 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
738 {
739 int status;
740
741 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
742 if (likely(status == handle_tx_rx))
743 _stmmac_schedule(priv);
744
745 else if (unlikely(status == tx_hard_error_bump_tc)) {
746 /* Try to bump up the dma threshold on this failure */
747 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
748 tc += 64;
749 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
750 priv->xstats.threshold = tc;
751 }
752 } else if (unlikely(status == tx_hard_error))
753 stmmac_tx_err(priv);
754 }
755
756 /**
757 * stmmac_open - open entry point of the driver
758 * @dev : pointer to the device structure.
759 * Description:
760 * This function is the open entry point of the driver.
761 * Return value:
762 * 0 on success and an appropriate (-)ve integer as defined in errno.h
763 * file on failure.
764 */
765 static int stmmac_open(struct net_device *dev)
766 {
767 struct stmmac_priv *priv = netdev_priv(dev);
768 int ret;
769
770 /* Check that the MAC address is valid. If its not, refuse
771 * to bring the device up. The user must specify an
772 * address using the following linux command:
773 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
774 if (!is_valid_ether_addr(dev->dev_addr)) {
775 random_ether_addr(dev->dev_addr);
776 pr_warning("%s: generated random MAC address %pM\n", dev->name,
777 dev->dev_addr);
778 }
779
780 stmmac_verify_args();
781
782 #ifdef CONFIG_STMMAC_TIMER
783 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
784 if (unlikely(priv->tm == NULL)) {
785 pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
786 return -ENOMEM;
787 }
788 priv->tm->freq = tmrate;
789
790 /* Test if the external timer can be actually used.
791 * In case of failure continue without timer. */
792 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
793 pr_warning("stmmaceth: cannot attach the external timer.\n");
794 priv->tm->freq = 0;
795 priv->tm->timer_start = stmmac_no_timer_started;
796 priv->tm->timer_stop = stmmac_no_timer_stopped;
797 } else
798 priv->tm->enable = 1;
799 #endif
800 ret = stmmac_init_phy(dev);
801 if (unlikely(ret)) {
802 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
803 goto open_error;
804 }
805
806 /* Create and initialize the TX/RX descriptors chains. */
807 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
808 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
809 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
810 init_dma_desc_rings(dev);
811
812 /* DMA initialization and SW reset */
813 ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
814 priv->dma_tx_phy, priv->dma_rx_phy);
815 if (ret < 0) {
816 pr_err("%s: DMA initialization failed\n", __func__);
817 goto open_error;
818 }
819
820 /* Copy the MAC addr into the HW */
821 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
822 /* If required, perform hw setup of the bus. */
823 if (priv->plat->bus_setup)
824 priv->plat->bus_setup(priv->ioaddr);
825 /* Initialize the MAC Core */
826 priv->hw->mac->core_init(priv->ioaddr);
827
828 priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
829 if (priv->rx_coe)
830 pr_info("stmmac: Rx Checksum Offload Engine supported\n");
831 if (priv->plat->tx_coe)
832 pr_info("\tTX Checksum insertion supported\n");
833 netdev_update_features(dev);
834
835 /* Initialise the MMC (if present) to disable all interrupts. */
836 writel(0xffffffff, priv->ioaddr + MMC_HIGH_INTR_MASK);
837 writel(0xffffffff, priv->ioaddr + MMC_LOW_INTR_MASK);
838
839 /* Request the IRQ lines */
840 ret = request_irq(dev->irq, stmmac_interrupt,
841 IRQF_SHARED, dev->name, dev);
842 if (unlikely(ret < 0)) {
843 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
844 __func__, dev->irq, ret);
845 goto open_error;
846 }
847
848 /* Enable the MAC Rx/Tx */
849 stmmac_enable_mac(priv->ioaddr);
850
851 /* Set the HW DMA mode and the COE */
852 stmmac_dma_operation_mode(priv);
853
854 /* Extra statistics */
855 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
856 priv->xstats.threshold = tc;
857
858 /* Start the ball rolling... */
859 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
860 priv->hw->dma->start_tx(priv->ioaddr);
861 priv->hw->dma->start_rx(priv->ioaddr);
862
863 #ifdef CONFIG_STMMAC_TIMER
864 priv->tm->timer_start(tmrate);
865 #endif
866 /* Dump DMA/MAC registers */
867 if (netif_msg_hw(priv)) {
868 priv->hw->mac->dump_regs(priv->ioaddr);
869 priv->hw->dma->dump_regs(priv->ioaddr);
870 }
871
872 if (priv->phydev)
873 phy_start(priv->phydev);
874
875 napi_enable(&priv->napi);
876 skb_queue_head_init(&priv->rx_recycle);
877 netif_start_queue(dev);
878
879 return 0;
880
881 open_error:
882 #ifdef CONFIG_STMMAC_TIMER
883 kfree(priv->tm);
884 #endif
885 if (priv->phydev)
886 phy_disconnect(priv->phydev);
887
888 return ret;
889 }
890
891 /**
892 * stmmac_release - close entry point of the driver
893 * @dev : device pointer.
894 * Description:
895 * This is the stop entry point of the driver.
896 */
897 static int stmmac_release(struct net_device *dev)
898 {
899 struct stmmac_priv *priv = netdev_priv(dev);
900
901 /* Stop and disconnect the PHY */
902 if (priv->phydev) {
903 phy_stop(priv->phydev);
904 phy_disconnect(priv->phydev);
905 priv->phydev = NULL;
906 }
907
908 netif_stop_queue(dev);
909
910 #ifdef CONFIG_STMMAC_TIMER
911 /* Stop and release the timer */
912 stmmac_close_ext_timer();
913 if (priv->tm != NULL)
914 kfree(priv->tm);
915 #endif
916 napi_disable(&priv->napi);
917 skb_queue_purge(&priv->rx_recycle);
918
919 /* Free the IRQ lines */
920 free_irq(dev->irq, dev);
921
922 /* Stop TX/RX DMA and clear the descriptors */
923 priv->hw->dma->stop_tx(priv->ioaddr);
924 priv->hw->dma->stop_rx(priv->ioaddr);
925
926 /* Release and free the Rx/Tx resources */
927 free_dma_desc_resources(priv);
928
929 /* Disable the MAC Rx/Tx */
930 stmmac_disable_mac(priv->ioaddr);
931
932 netif_carrier_off(dev);
933
934 return 0;
935 }
936
937 static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
938 struct net_device *dev,
939 int csum_insertion)
940 {
941 struct stmmac_priv *priv = netdev_priv(dev);
942 unsigned int nopaged_len = skb_headlen(skb);
943 unsigned int txsize = priv->dma_tx_size;
944 unsigned int entry = priv->cur_tx % txsize;
945 struct dma_desc *desc = priv->dma_tx + entry;
946
947 if (nopaged_len > BUF_SIZE_8KiB) {
948
949 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
950
951 desc->des2 = dma_map_single(priv->device, skb->data,
952 BUF_SIZE_8KiB, DMA_TO_DEVICE);
953 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
954 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
955 csum_insertion);
956
957 entry = (++priv->cur_tx) % txsize;
958 desc = priv->dma_tx + entry;
959
960 desc->des2 = dma_map_single(priv->device,
961 skb->data + BUF_SIZE_8KiB,
962 buf2_size, DMA_TO_DEVICE);
963 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
964 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
965 csum_insertion);
966 priv->hw->desc->set_tx_owner(desc);
967 priv->tx_skbuff[entry] = NULL;
968 } else {
969 desc->des2 = dma_map_single(priv->device, skb->data,
970 nopaged_len, DMA_TO_DEVICE);
971 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
972 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
973 csum_insertion);
974 }
975 return entry;
976 }
977
978 /**
979 * stmmac_xmit:
980 * @skb : the socket buffer
981 * @dev : device pointer
982 * Description : Tx entry point of the driver.
983 */
984 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
985 {
986 struct stmmac_priv *priv = netdev_priv(dev);
987 unsigned int txsize = priv->dma_tx_size;
988 unsigned int entry;
989 int i, csum_insertion = 0;
990 int nfrags = skb_shinfo(skb)->nr_frags;
991 struct dma_desc *desc, *first;
992
993 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
994 if (!netif_queue_stopped(dev)) {
995 netif_stop_queue(dev);
996 /* This is a hard error, log it. */
997 pr_err("%s: BUG! Tx Ring full when queue awake\n",
998 __func__);
999 }
1000 return NETDEV_TX_BUSY;
1001 }
1002
1003 entry = priv->cur_tx % txsize;
1004
1005 #ifdef STMMAC_XMIT_DEBUG
1006 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1007 pr_info("stmmac xmit:\n"
1008 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1009 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1010 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1011 !skb_is_gso(skb) ? "isn't" : "is");
1012 #endif
1013
1014 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1015
1016 desc = priv->dma_tx + entry;
1017 first = desc;
1018
1019 #ifdef STMMAC_XMIT_DEBUG
1020 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1021 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1022 "\t\tn_frags: %d, ip_summed: %d\n",
1023 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1024 #endif
1025 priv->tx_skbuff[entry] = skb;
1026 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1027 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1028 desc = priv->dma_tx + entry;
1029 } else {
1030 unsigned int nopaged_len = skb_headlen(skb);
1031 desc->des2 = dma_map_single(priv->device, skb->data,
1032 nopaged_len, DMA_TO_DEVICE);
1033 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1034 csum_insertion);
1035 }
1036
1037 for (i = 0; i < nfrags; i++) {
1038 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1039 int len = frag->size;
1040
1041 entry = (++priv->cur_tx) % txsize;
1042 desc = priv->dma_tx + entry;
1043
1044 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1045 desc->des2 = dma_map_page(priv->device, frag->page,
1046 frag->page_offset,
1047 len, DMA_TO_DEVICE);
1048 priv->tx_skbuff[entry] = NULL;
1049 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1050 wmb();
1051 priv->hw->desc->set_tx_owner(desc);
1052 }
1053
1054 /* Interrupt on completition only for the latest segment */
1055 priv->hw->desc->close_tx_desc(desc);
1056
1057 #ifdef CONFIG_STMMAC_TIMER
1058 /* Clean IC while using timer */
1059 if (likely(priv->tm->enable))
1060 priv->hw->desc->clear_tx_ic(desc);
1061 #endif
1062
1063 wmb();
1064
1065 /* To avoid raise condition */
1066 priv->hw->desc->set_tx_owner(first);
1067
1068 priv->cur_tx++;
1069
1070 #ifdef STMMAC_XMIT_DEBUG
1071 if (netif_msg_pktdata(priv)) {
1072 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1073 "first=%p, nfrags=%d\n",
1074 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1075 entry, first, nfrags);
1076 display_ring(priv->dma_tx, txsize);
1077 pr_info(">>> frame to be transmitted: ");
1078 print_pkt(skb->data, skb->len);
1079 }
1080 #endif
1081 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1082 TX_DBG("%s: stop transmitted packets\n", __func__);
1083 netif_stop_queue(dev);
1084 }
1085
1086 dev->stats.tx_bytes += skb->len;
1087
1088 skb_tx_timestamp(skb);
1089
1090 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1091
1092 return NETDEV_TX_OK;
1093 }
1094
1095 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1096 {
1097 unsigned int rxsize = priv->dma_rx_size;
1098 int bfsize = priv->dma_buf_sz;
1099 struct dma_desc *p = priv->dma_rx;
1100
1101 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1102 unsigned int entry = priv->dirty_rx % rxsize;
1103 if (likely(priv->rx_skbuff[entry] == NULL)) {
1104 struct sk_buff *skb;
1105
1106 skb = __skb_dequeue(&priv->rx_recycle);
1107 if (skb == NULL)
1108 skb = netdev_alloc_skb_ip_align(priv->dev,
1109 bfsize);
1110
1111 if (unlikely(skb == NULL))
1112 break;
1113
1114 priv->rx_skbuff[entry] = skb;
1115 priv->rx_skbuff_dma[entry] =
1116 dma_map_single(priv->device, skb->data, bfsize,
1117 DMA_FROM_DEVICE);
1118
1119 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1120 if (unlikely(priv->plat->has_gmac)) {
1121 if (bfsize >= BUF_SIZE_8KiB)
1122 (p + entry)->des3 =
1123 (p + entry)->des2 + BUF_SIZE_8KiB;
1124 }
1125 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1126 }
1127 wmb();
1128 priv->hw->desc->set_rx_owner(p + entry);
1129 }
1130 }
1131
1132 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1133 {
1134 unsigned int rxsize = priv->dma_rx_size;
1135 unsigned int entry = priv->cur_rx % rxsize;
1136 unsigned int next_entry;
1137 unsigned int count = 0;
1138 struct dma_desc *p = priv->dma_rx + entry;
1139 struct dma_desc *p_next;
1140
1141 #ifdef STMMAC_RX_DEBUG
1142 if (netif_msg_hw(priv)) {
1143 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1144 display_ring(priv->dma_rx, rxsize);
1145 }
1146 #endif
1147 count = 0;
1148 while (!priv->hw->desc->get_rx_owner(p)) {
1149 int status;
1150
1151 if (count >= limit)
1152 break;
1153
1154 count++;
1155
1156 next_entry = (++priv->cur_rx) % rxsize;
1157 p_next = priv->dma_rx + next_entry;
1158 prefetch(p_next);
1159
1160 /* read the status of the incoming frame */
1161 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1162 &priv->xstats, p));
1163 if (unlikely(status == discard_frame))
1164 priv->dev->stats.rx_errors++;
1165 else {
1166 struct sk_buff *skb;
1167 int frame_len;
1168
1169 frame_len = priv->hw->desc->get_rx_frame_len(p);
1170 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1171 * Type frames (LLC/LLC-SNAP) */
1172 if (unlikely(status != llc_snap))
1173 frame_len -= ETH_FCS_LEN;
1174 #ifdef STMMAC_RX_DEBUG
1175 if (frame_len > ETH_FRAME_LEN)
1176 pr_debug("\tRX frame size %d, COE status: %d\n",
1177 frame_len, status);
1178
1179 if (netif_msg_hw(priv))
1180 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1181 p, entry, p->des2);
1182 #endif
1183 skb = priv->rx_skbuff[entry];
1184 if (unlikely(!skb)) {
1185 pr_err("%s: Inconsistent Rx descriptor chain\n",
1186 priv->dev->name);
1187 priv->dev->stats.rx_dropped++;
1188 break;
1189 }
1190 prefetch(skb->data - NET_IP_ALIGN);
1191 priv->rx_skbuff[entry] = NULL;
1192
1193 skb_put(skb, frame_len);
1194 dma_unmap_single(priv->device,
1195 priv->rx_skbuff_dma[entry],
1196 priv->dma_buf_sz, DMA_FROM_DEVICE);
1197 #ifdef STMMAC_RX_DEBUG
1198 if (netif_msg_pktdata(priv)) {
1199 pr_info(" frame received (%dbytes)", frame_len);
1200 print_pkt(skb->data, frame_len);
1201 }
1202 #endif
1203 skb->protocol = eth_type_trans(skb, priv->dev);
1204
1205 if (unlikely(status == csum_none)) {
1206 /* always for the old mac 10/100 */
1207 skb_checksum_none_assert(skb);
1208 netif_receive_skb(skb);
1209 } else {
1210 skb->ip_summed = CHECKSUM_UNNECESSARY;
1211 napi_gro_receive(&priv->napi, skb);
1212 }
1213
1214 priv->dev->stats.rx_packets++;
1215 priv->dev->stats.rx_bytes += frame_len;
1216 }
1217 entry = next_entry;
1218 p = p_next; /* use prefetched values */
1219 }
1220
1221 stmmac_rx_refill(priv);
1222
1223 priv->xstats.rx_pkt_n += count;
1224
1225 return count;
1226 }
1227
1228 /**
1229 * stmmac_poll - stmmac poll method (NAPI)
1230 * @napi : pointer to the napi structure.
1231 * @budget : maximum number of packets that the current CPU can receive from
1232 * all interfaces.
1233 * Description :
1234 * This function implements the the reception process.
1235 * Also it runs the TX completion thread
1236 */
1237 static int stmmac_poll(struct napi_struct *napi, int budget)
1238 {
1239 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1240 int work_done = 0;
1241
1242 priv->xstats.poll_n++;
1243 stmmac_tx(priv);
1244 work_done = stmmac_rx(priv, budget);
1245
1246 if (work_done < budget) {
1247 napi_complete(napi);
1248 stmmac_enable_irq(priv);
1249 }
1250 return work_done;
1251 }
1252
1253 /**
1254 * stmmac_tx_timeout
1255 * @dev : Pointer to net device structure
1256 * Description: this function is called when a packet transmission fails to
1257 * complete within a reasonable tmrate. The driver will mark the error in the
1258 * netdev structure and arrange for the device to be reset to a sane state
1259 * in order to transmit a new packet.
1260 */
1261 static void stmmac_tx_timeout(struct net_device *dev)
1262 {
1263 struct stmmac_priv *priv = netdev_priv(dev);
1264
1265 /* Clear Tx resources and restart transmitting again */
1266 stmmac_tx_err(priv);
1267 }
1268
1269 /* Configuration changes (passed on by ifconfig) */
1270 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1271 {
1272 if (dev->flags & IFF_UP) /* can't act on a running interface */
1273 return -EBUSY;
1274
1275 /* Don't allow changing the I/O address */
1276 if (map->base_addr != dev->base_addr) {
1277 pr_warning("%s: can't change I/O address\n", dev->name);
1278 return -EOPNOTSUPP;
1279 }
1280
1281 /* Don't allow changing the IRQ */
1282 if (map->irq != dev->irq) {
1283 pr_warning("%s: can't change IRQ number %d\n",
1284 dev->name, dev->irq);
1285 return -EOPNOTSUPP;
1286 }
1287
1288 /* ignore other fields */
1289 return 0;
1290 }
1291
1292 /**
1293 * stmmac_multicast_list - entry point for multicast addressing
1294 * @dev : pointer to the device structure
1295 * Description:
1296 * This function is a driver entry point which gets called by the kernel
1297 * whenever multicast addresses must be enabled/disabled.
1298 * Return value:
1299 * void.
1300 */
1301 static void stmmac_multicast_list(struct net_device *dev)
1302 {
1303 struct stmmac_priv *priv = netdev_priv(dev);
1304
1305 spin_lock(&priv->lock);
1306 priv->hw->mac->set_filter(dev);
1307 spin_unlock(&priv->lock);
1308 }
1309
1310 /**
1311 * stmmac_change_mtu - entry point to change MTU size for the device.
1312 * @dev : device pointer.
1313 * @new_mtu : the new MTU size for the device.
1314 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1315 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1316 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1317 * Return value:
1318 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1319 * file on failure.
1320 */
1321 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1322 {
1323 struct stmmac_priv *priv = netdev_priv(dev);
1324 int max_mtu;
1325
1326 if (netif_running(dev)) {
1327 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1328 return -EBUSY;
1329 }
1330
1331 if (priv->plat->has_gmac)
1332 max_mtu = JUMBO_LEN;
1333 else
1334 max_mtu = ETH_DATA_LEN;
1335
1336 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1337 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1338 return -EINVAL;
1339 }
1340
1341 dev->mtu = new_mtu;
1342 netdev_update_features(dev);
1343
1344 return 0;
1345 }
1346
1347 static u32 stmmac_fix_features(struct net_device *dev, u32 features)
1348 {
1349 struct stmmac_priv *priv = netdev_priv(dev);
1350
1351 if (!priv->rx_coe)
1352 features &= ~NETIF_F_RXCSUM;
1353 if (!priv->plat->tx_coe)
1354 features &= ~NETIF_F_ALL_CSUM;
1355
1356 /* Some GMAC devices have a bugged Jumbo frame support that
1357 * needs to have the Tx COE disabled for oversized frames
1358 * (due to limited buffer sizes). In this case we disable
1359 * the TX csum insertionin the TDES and not use SF. */
1360 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1361 features &= ~NETIF_F_ALL_CSUM;
1362
1363 return features;
1364 }
1365
1366 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1367 {
1368 struct net_device *dev = (struct net_device *)dev_id;
1369 struct stmmac_priv *priv = netdev_priv(dev);
1370
1371 if (unlikely(!dev)) {
1372 pr_err("%s: invalid dev pointer\n", __func__);
1373 return IRQ_NONE;
1374 }
1375
1376 if (priv->plat->has_gmac)
1377 /* To handle GMAC own interrupts */
1378 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1379
1380 stmmac_dma_interrupt(priv);
1381
1382 return IRQ_HANDLED;
1383 }
1384
1385 #ifdef CONFIG_NET_POLL_CONTROLLER
1386 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1387 * to allow network I/O with interrupts disabled. */
1388 static void stmmac_poll_controller(struct net_device *dev)
1389 {
1390 disable_irq(dev->irq);
1391 stmmac_interrupt(dev->irq, dev);
1392 enable_irq(dev->irq);
1393 }
1394 #endif
1395
1396 /**
1397 * stmmac_ioctl - Entry point for the Ioctl
1398 * @dev: Device pointer.
1399 * @rq: An IOCTL specefic structure, that can contain a pointer to
1400 * a proprietary structure used to pass information to the driver.
1401 * @cmd: IOCTL command
1402 * Description:
1403 * Currently there are no special functionality supported in IOCTL, just the
1404 * phy_mii_ioctl(...) can be invoked.
1405 */
1406 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1407 {
1408 struct stmmac_priv *priv = netdev_priv(dev);
1409 int ret;
1410
1411 if (!netif_running(dev))
1412 return -EINVAL;
1413
1414 if (!priv->phydev)
1415 return -EINVAL;
1416
1417 spin_lock(&priv->lock);
1418 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1419 spin_unlock(&priv->lock);
1420
1421 return ret;
1422 }
1423
1424 static const struct net_device_ops stmmac_netdev_ops = {
1425 .ndo_open = stmmac_open,
1426 .ndo_start_xmit = stmmac_xmit,
1427 .ndo_stop = stmmac_release,
1428 .ndo_change_mtu = stmmac_change_mtu,
1429 .ndo_fix_features = stmmac_fix_features,
1430 .ndo_set_multicast_list = stmmac_multicast_list,
1431 .ndo_tx_timeout = stmmac_tx_timeout,
1432 .ndo_do_ioctl = stmmac_ioctl,
1433 .ndo_set_config = stmmac_config,
1434 #ifdef CONFIG_NET_POLL_CONTROLLER
1435 .ndo_poll_controller = stmmac_poll_controller,
1436 #endif
1437 .ndo_set_mac_address = eth_mac_addr,
1438 };
1439
1440 /**
1441 * stmmac_probe - Initialization of the adapter .
1442 * @dev : device pointer
1443 * Description: The function initializes the network device structure for
1444 * the STMMAC driver. It also calls the low level routines
1445 * in order to init the HW (i.e. the DMA engine)
1446 */
1447 static int stmmac_probe(struct net_device *dev)
1448 {
1449 int ret = 0;
1450 struct stmmac_priv *priv = netdev_priv(dev);
1451
1452 ether_setup(dev);
1453
1454 dev->netdev_ops = &stmmac_netdev_ops;
1455 stmmac_set_ethtool_ops(dev);
1456
1457 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1458 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
1459 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1460 #ifdef STMMAC_VLAN_TAG_USED
1461 /* Both mac100 and gmac support receive VLAN tag detection */
1462 dev->features |= NETIF_F_HW_VLAN_RX;
1463 #endif
1464 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1465
1466 if (flow_ctrl)
1467 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1468
1469 priv->pause = pause;
1470 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1471
1472 /* Get the MAC address */
1473 priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
1474 dev->dev_addr, 0);
1475
1476 if (!is_valid_ether_addr(dev->dev_addr))
1477 pr_warning("\tno valid MAC address;"
1478 "please, use ifconfig or nwhwconfig!\n");
1479
1480 spin_lock_init(&priv->lock);
1481
1482 ret = register_netdev(dev);
1483 if (ret) {
1484 pr_err("%s: ERROR %i registering the device\n",
1485 __func__, ret);
1486 return -ENODEV;
1487 }
1488
1489 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1490 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1491 (dev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1492
1493 return ret;
1494 }
1495
1496 /**
1497 * stmmac_mac_device_setup
1498 * @dev : device pointer
1499 * Description: select and initialise the mac device (mac100 or Gmac).
1500 */
1501 static int stmmac_mac_device_setup(struct net_device *dev)
1502 {
1503 struct stmmac_priv *priv = netdev_priv(dev);
1504
1505 struct mac_device_info *device;
1506
1507 if (priv->plat->has_gmac)
1508 device = dwmac1000_setup(priv->ioaddr);
1509 else
1510 device = dwmac100_setup(priv->ioaddr);
1511
1512 if (!device)
1513 return -ENOMEM;
1514
1515 if (priv->plat->enh_desc) {
1516 device->desc = &enh_desc_ops;
1517 pr_info("\tEnhanced descriptor structure\n");
1518 } else
1519 device->desc = &ndesc_ops;
1520
1521 priv->hw = device;
1522
1523 if (device_can_wakeup(priv->device)) {
1524 priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
1525 enable_irq_wake(dev->irq);
1526 }
1527
1528 return 0;
1529 }
1530
1531 static int stmmacphy_dvr_probe(struct platform_device *pdev)
1532 {
1533 struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
1534
1535 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1536 plat_dat->bus_id);
1537
1538 return 0;
1539 }
1540
1541 static int stmmacphy_dvr_remove(struct platform_device *pdev)
1542 {
1543 return 0;
1544 }
1545
1546 static struct platform_driver stmmacphy_driver = {
1547 .driver = {
1548 .name = PHY_RESOURCE_NAME,
1549 },
1550 .probe = stmmacphy_dvr_probe,
1551 .remove = stmmacphy_dvr_remove,
1552 };
1553
1554 /**
1555 * stmmac_associate_phy
1556 * @dev: pointer to device structure
1557 * @data: points to the private structure.
1558 * Description: Scans through all the PHYs we have registered and checks if
1559 * any are associated with our MAC. If so, then just fill in
1560 * the blanks in our local context structure
1561 */
1562 static int stmmac_associate_phy(struct device *dev, void *data)
1563 {
1564 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1565 struct plat_stmmacphy_data *plat_dat = dev->platform_data;
1566
1567 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1568 plat_dat->bus_id);
1569
1570 /* Check that this phy is for the MAC being initialised */
1571 if (priv->plat->bus_id != plat_dat->bus_id)
1572 return 0;
1573
1574 /* OK, this PHY is connected to the MAC.
1575 Go ahead and get the parameters */
1576 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1577 priv->phy_irq =
1578 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1579 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1580 plat_dat->bus_id, priv->phy_irq);
1581
1582 /* Override with kernel parameters if supplied XXX CRS XXX
1583 * this needs to have multiple instances */
1584 if ((phyaddr >= 0) && (phyaddr <= 31))
1585 plat_dat->phy_addr = phyaddr;
1586
1587 priv->phy_addr = plat_dat->phy_addr;
1588 priv->phy_mask = plat_dat->phy_mask;
1589 priv->phy_interface = plat_dat->interface;
1590 priv->phy_reset = plat_dat->phy_reset;
1591
1592 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1593 return 1; /* forces exit of driver_for_each_device() */
1594 }
1595
1596 /**
1597 * stmmac_dvr_probe
1598 * @pdev: platform device pointer
1599 * Description: the driver is initialized through platform_device.
1600 */
1601 static int stmmac_dvr_probe(struct platform_device *pdev)
1602 {
1603 int ret = 0;
1604 struct resource *res;
1605 void __iomem *addr = NULL;
1606 struct net_device *ndev = NULL;
1607 struct stmmac_priv *priv = NULL;
1608 struct plat_stmmacenet_data *plat_dat;
1609
1610 pr_info("STMMAC driver:\n\tplatform registration... ");
1611 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1612 if (!res)
1613 return -ENODEV;
1614 pr_info("\tdone!\n");
1615
1616 if (!request_mem_region(res->start, resource_size(res),
1617 pdev->name)) {
1618 pr_err("%s: ERROR: memory allocation failed"
1619 "cannot get the I/O addr 0x%x\n",
1620 __func__, (unsigned int)res->start);
1621 return -EBUSY;
1622 }
1623
1624 addr = ioremap(res->start, resource_size(res));
1625 if (!addr) {
1626 pr_err("%s: ERROR: memory mapping failed\n", __func__);
1627 ret = -ENOMEM;
1628 goto out_release_region;
1629 }
1630
1631 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1632 if (!ndev) {
1633 pr_err("%s: ERROR: allocating the device\n", __func__);
1634 ret = -ENOMEM;
1635 goto out_unmap;
1636 }
1637
1638 SET_NETDEV_DEV(ndev, &pdev->dev);
1639
1640 /* Get the MAC information */
1641 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1642 if (ndev->irq == -ENXIO) {
1643 pr_err("%s: ERROR: MAC IRQ configuration "
1644 "information not found\n", __func__);
1645 ret = -ENXIO;
1646 goto out_free_ndev;
1647 }
1648
1649 priv = netdev_priv(ndev);
1650 priv->device = &(pdev->dev);
1651 priv->dev = ndev;
1652 plat_dat = pdev->dev.platform_data;
1653
1654 priv->plat = plat_dat;
1655
1656 priv->ioaddr = addr;
1657
1658 /* PMT module is not integrated in all the MAC devices. */
1659 if (plat_dat->pmt) {
1660 pr_info("\tPMT module supported\n");
1661 device_set_wakeup_capable(&pdev->dev, 1);
1662 }
1663
1664 platform_set_drvdata(pdev, ndev);
1665
1666 /* Set the I/O base addr */
1667 ndev->base_addr = (unsigned long)addr;
1668
1669 /* Custom initialisation */
1670 if (priv->plat->init) {
1671 ret = priv->plat->init(pdev);
1672 if (unlikely(ret))
1673 goto out_free_ndev;
1674 }
1675
1676 /* MAC HW revice detection */
1677 ret = stmmac_mac_device_setup(ndev);
1678 if (ret < 0)
1679 goto out_plat_exit;
1680
1681 /* Network Device Registration */
1682 ret = stmmac_probe(ndev);
1683 if (ret < 0)
1684 goto out_plat_exit;
1685
1686 /* associate a PHY - it is provided by another platform bus */
1687 if (!driver_for_each_device
1688 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1689 stmmac_associate_phy)) {
1690 pr_err("No PHY device is associated with this MAC!\n");
1691 ret = -ENODEV;
1692 goto out_unregister;
1693 }
1694
1695 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1696 "\tIO base addr: 0x%p)\n", ndev->name, pdev->name,
1697 pdev->id, ndev->irq, addr);
1698
1699 /* MDIO bus Registration */
1700 pr_debug("\tMDIO bus (id: %d)...", priv->plat->bus_id);
1701 ret = stmmac_mdio_register(ndev);
1702 if (ret < 0)
1703 goto out_unregister;
1704 pr_debug("registered!\n");
1705 return 0;
1706
1707 out_unregister:
1708 unregister_netdev(ndev);
1709 out_plat_exit:
1710 if (priv->plat->exit)
1711 priv->plat->exit(pdev);
1712 out_free_ndev:
1713 free_netdev(ndev);
1714 platform_set_drvdata(pdev, NULL);
1715 out_unmap:
1716 iounmap(addr);
1717 out_release_region:
1718 release_mem_region(res->start, resource_size(res));
1719
1720 return ret;
1721 }
1722
1723 /**
1724 * stmmac_dvr_remove
1725 * @pdev: platform device pointer
1726 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1727 * changes the link status, releases the DMA descriptor rings,
1728 * unregisters the MDIO bus and unmaps the allocated memory.
1729 */
1730 static int stmmac_dvr_remove(struct platform_device *pdev)
1731 {
1732 struct net_device *ndev = platform_get_drvdata(pdev);
1733 struct stmmac_priv *priv = netdev_priv(ndev);
1734 struct resource *res;
1735
1736 pr_info("%s:\n\tremoving driver", __func__);
1737
1738 priv->hw->dma->stop_rx(priv->ioaddr);
1739 priv->hw->dma->stop_tx(priv->ioaddr);
1740
1741 stmmac_disable_mac(priv->ioaddr);
1742
1743 netif_carrier_off(ndev);
1744
1745 stmmac_mdio_unregister(ndev);
1746
1747 if (priv->plat->exit)
1748 priv->plat->exit(pdev);
1749
1750 platform_set_drvdata(pdev, NULL);
1751 unregister_netdev(ndev);
1752
1753 iounmap((void *)priv->ioaddr);
1754 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1755 release_mem_region(res->start, resource_size(res));
1756
1757 free_netdev(ndev);
1758
1759 return 0;
1760 }
1761
1762 #ifdef CONFIG_PM
1763 static int stmmac_suspend(struct device *dev)
1764 {
1765 struct net_device *ndev = dev_get_drvdata(dev);
1766 struct stmmac_priv *priv = netdev_priv(ndev);
1767 int dis_ic = 0;
1768
1769 if (!ndev || !netif_running(ndev))
1770 return 0;
1771
1772 spin_lock(&priv->lock);
1773
1774 netif_device_detach(ndev);
1775 netif_stop_queue(ndev);
1776 if (priv->phydev)
1777 phy_stop(priv->phydev);
1778
1779 #ifdef CONFIG_STMMAC_TIMER
1780 priv->tm->timer_stop();
1781 if (likely(priv->tm->enable))
1782 dis_ic = 1;
1783 #endif
1784 napi_disable(&priv->napi);
1785
1786 /* Stop TX/RX DMA */
1787 priv->hw->dma->stop_tx(priv->ioaddr);
1788 priv->hw->dma->stop_rx(priv->ioaddr);
1789 /* Clear the Rx/Tx descriptors */
1790 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1791 dis_ic);
1792 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1793
1794 /* Enable Power down mode by programming the PMT regs */
1795 if (device_may_wakeup(priv->device))
1796 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1797 else
1798 stmmac_disable_mac(priv->ioaddr);
1799
1800 spin_unlock(&priv->lock);
1801 return 0;
1802 }
1803
1804 static int stmmac_resume(struct device *dev)
1805 {
1806 struct net_device *ndev = dev_get_drvdata(dev);
1807 struct stmmac_priv *priv = netdev_priv(ndev);
1808
1809 if (!netif_running(ndev))
1810 return 0;
1811
1812 spin_lock(&priv->lock);
1813
1814 /* Power Down bit, into the PM register, is cleared
1815 * automatically as soon as a magic packet or a Wake-up frame
1816 * is received. Anyway, it's better to manually clear
1817 * this bit because it can generate problems while resuming
1818 * from another devices (e.g. serial console). */
1819 if (device_may_wakeup(priv->device))
1820 priv->hw->mac->pmt(priv->ioaddr, 0);
1821
1822 netif_device_attach(ndev);
1823
1824 /* Enable the MAC and DMA */
1825 stmmac_enable_mac(priv->ioaddr);
1826 priv->hw->dma->start_tx(priv->ioaddr);
1827 priv->hw->dma->start_rx(priv->ioaddr);
1828
1829 #ifdef CONFIG_STMMAC_TIMER
1830 if (likely(priv->tm->enable))
1831 priv->tm->timer_start(tmrate);
1832 #endif
1833 napi_enable(&priv->napi);
1834
1835 if (priv->phydev)
1836 phy_start(priv->phydev);
1837
1838 netif_start_queue(ndev);
1839
1840 spin_unlock(&priv->lock);
1841 return 0;
1842 }
1843
1844 static int stmmac_freeze(struct device *dev)
1845 {
1846 struct net_device *ndev = dev_get_drvdata(dev);
1847
1848 if (!ndev || !netif_running(ndev))
1849 return 0;
1850
1851 return stmmac_release(ndev);
1852 }
1853
1854 static int stmmac_restore(struct device *dev)
1855 {
1856 struct net_device *ndev = dev_get_drvdata(dev);
1857
1858 if (!ndev || !netif_running(ndev))
1859 return 0;
1860
1861 return stmmac_open(ndev);
1862 }
1863
1864 static const struct dev_pm_ops stmmac_pm_ops = {
1865 .suspend = stmmac_suspend,
1866 .resume = stmmac_resume,
1867 .freeze = stmmac_freeze,
1868 .thaw = stmmac_restore,
1869 .restore = stmmac_restore,
1870 };
1871 #else
1872 static const struct dev_pm_ops stmmac_pm_ops;
1873 #endif /* CONFIG_PM */
1874
1875 static struct platform_driver stmmac_driver = {
1876 .probe = stmmac_dvr_probe,
1877 .remove = stmmac_dvr_remove,
1878 .driver = {
1879 .name = STMMAC_RESOURCE_NAME,
1880 .owner = THIS_MODULE,
1881 .pm = &stmmac_pm_ops,
1882 },
1883 };
1884
1885 /**
1886 * stmmac_init_module - Entry point for the driver
1887 * Description: This function is the entry point for the driver.
1888 */
1889 static int __init stmmac_init_module(void)
1890 {
1891 int ret;
1892
1893 if (platform_driver_register(&stmmacphy_driver)) {
1894 pr_err("No PHY devices registered!\n");
1895 return -ENODEV;
1896 }
1897
1898 ret = platform_driver_register(&stmmac_driver);
1899 return ret;
1900 }
1901
1902 /**
1903 * stmmac_cleanup_module - Cleanup routine for the driver
1904 * Description: This function is the cleanup routine for the driver.
1905 */
1906 static void __exit stmmac_cleanup_module(void)
1907 {
1908 platform_driver_unregister(&stmmacphy_driver);
1909 platform_driver_unregister(&stmmac_driver);
1910 }
1911
1912 #ifndef MODULE
1913 static int __init stmmac_cmdline_opt(char *str)
1914 {
1915 char *opt;
1916
1917 if (!str || !*str)
1918 return -EINVAL;
1919 while ((opt = strsep(&str, ",")) != NULL) {
1920 if (!strncmp(opt, "debug:", 6))
1921 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
1922 else if (!strncmp(opt, "phyaddr:", 8))
1923 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
1924 else if (!strncmp(opt, "dma_txsize:", 11))
1925 strict_strtoul(opt + 11, 0,
1926 (unsigned long *)&dma_txsize);
1927 else if (!strncmp(opt, "dma_rxsize:", 11))
1928 strict_strtoul(opt + 11, 0,
1929 (unsigned long *)&dma_rxsize);
1930 else if (!strncmp(opt, "buf_sz:", 7))
1931 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
1932 else if (!strncmp(opt, "tc:", 3))
1933 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
1934 else if (!strncmp(opt, "watchdog:", 9))
1935 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
1936 else if (!strncmp(opt, "flow_ctrl:", 10))
1937 strict_strtoul(opt + 10, 0,
1938 (unsigned long *)&flow_ctrl);
1939 else if (!strncmp(opt, "pause:", 6))
1940 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
1941 #ifdef CONFIG_STMMAC_TIMER
1942 else if (!strncmp(opt, "tmrate:", 7))
1943 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
1944 #endif
1945 }
1946 return 0;
1947 }
1948
1949 __setup("stmmaceth=", stmmac_cmdline_opt);
1950 #endif
1951
1952 module_init(stmmac_init_module);
1953 module_exit(stmmac_cleanup_module);
1954
1955 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
1956 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
1957 MODULE_LICENSE("GPL");
This page took 0.074284 seconds and 6 git commands to generate.