Merge branches 'kbuild', 'packaging' and 'misc' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / net / sungem.c
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
3 *
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5 *
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9 *
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12 *
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/byteorder.h>
47 #include <asm/uaccess.h>
48 #include <asm/irq.h>
49 #include <asm/prom.h>
50
51 #ifdef CONFIG_SPARC
52 #include <asm/idprom.h>
53 #endif
54
55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/pci-bridge.h>
57 #include <asm/machdep.h>
58 #include <asm/pmac_feature.h>
59 #endif
60
61 #include "sungem_phy.h"
62 #include "sungem.h"
63
64 /* Stripping FCS is causing problems, disabled for now */
65 #undef STRIP_FCS
66
67 #define DEFAULT_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_PROBE | \
69 NETIF_MSG_LINK)
70
71 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
72 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
73 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
74 SUPPORTED_Pause | SUPPORTED_Autoneg)
75
76 #define DRV_NAME "sungem"
77 #define DRV_VERSION "1.0"
78 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
79
80 static char version[] __devinitdata =
81 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
82
83 MODULE_AUTHOR(DRV_AUTHOR);
84 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
85 MODULE_LICENSE("GPL");
86
87 #define GEM_MODULE_NAME "gem"
88
89 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
90 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
91 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
92
93 /* These models only differ from the original GEM in
94 * that their tx/rx fifos are of a different size and
95 * they only support 10/100 speeds. -DaveM
96 *
97 * Apple's GMAC does support gigabit on machines with
98 * the BCM54xx PHYs. -BenH
99 */
100 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
114 {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
118
119 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
120 {
121 u32 cmd;
122 int limit = 10000;
123
124 cmd = (1 << 30);
125 cmd |= (2 << 28);
126 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
127 cmd |= (reg << 18) & MIF_FRAME_REGAD;
128 cmd |= (MIF_FRAME_TAMSB);
129 writel(cmd, gp->regs + MIF_FRAME);
130
131 while (--limit) {
132 cmd = readl(gp->regs + MIF_FRAME);
133 if (cmd & MIF_FRAME_TALSB)
134 break;
135
136 udelay(10);
137 }
138
139 if (!limit)
140 cmd = 0xffff;
141
142 return cmd & MIF_FRAME_DATA;
143 }
144
145 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
146 {
147 struct gem *gp = netdev_priv(dev);
148 return __phy_read(gp, mii_id, reg);
149 }
150
151 static inline u16 phy_read(struct gem *gp, int reg)
152 {
153 return __phy_read(gp, gp->mii_phy_addr, reg);
154 }
155
156 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
157 {
158 u32 cmd;
159 int limit = 10000;
160
161 cmd = (1 << 30);
162 cmd |= (1 << 28);
163 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
164 cmd |= (reg << 18) & MIF_FRAME_REGAD;
165 cmd |= (MIF_FRAME_TAMSB);
166 cmd |= (val & MIF_FRAME_DATA);
167 writel(cmd, gp->regs + MIF_FRAME);
168
169 while (limit--) {
170 cmd = readl(gp->regs + MIF_FRAME);
171 if (cmd & MIF_FRAME_TALSB)
172 break;
173
174 udelay(10);
175 }
176 }
177
178 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
179 {
180 struct gem *gp = netdev_priv(dev);
181 __phy_write(gp, mii_id, reg, val & 0xffff);
182 }
183
184 static inline void phy_write(struct gem *gp, int reg, u16 val)
185 {
186 __phy_write(gp, gp->mii_phy_addr, reg, val);
187 }
188
189 static inline void gem_enable_ints(struct gem *gp)
190 {
191 /* Enable all interrupts but TXDONE */
192 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
193 }
194
195 static inline void gem_disable_ints(struct gem *gp)
196 {
197 /* Disable all interrupts, including TXDONE */
198 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
199 (void)readl(gp->regs + GREG_IMASK); /* write posting */
200 }
201
202 static void gem_get_cell(struct gem *gp)
203 {
204 BUG_ON(gp->cell_enabled < 0);
205 gp->cell_enabled++;
206 #ifdef CONFIG_PPC_PMAC
207 if (gp->cell_enabled == 1) {
208 mb();
209 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
210 udelay(10);
211 }
212 #endif /* CONFIG_PPC_PMAC */
213 }
214
215 /* Turn off the chip's clock */
216 static void gem_put_cell(struct gem *gp)
217 {
218 BUG_ON(gp->cell_enabled <= 0);
219 gp->cell_enabled--;
220 #ifdef CONFIG_PPC_PMAC
221 if (gp->cell_enabled == 0) {
222 mb();
223 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
224 udelay(10);
225 }
226 #endif /* CONFIG_PPC_PMAC */
227 }
228
229 static inline void gem_netif_stop(struct gem *gp)
230 {
231 gp->dev->trans_start = jiffies; /* prevent tx timeout */
232 napi_disable(&gp->napi);
233 netif_tx_disable(gp->dev);
234 }
235
236 static inline void gem_netif_start(struct gem *gp)
237 {
238 /* NOTE: unconditional netif_wake_queue is only
239 * appropriate so long as all callers are assured to
240 * have free tx slots.
241 */
242 netif_wake_queue(gp->dev);
243 napi_enable(&gp->napi);
244 }
245
246 static void gem_schedule_reset(struct gem *gp)
247 {
248 gp->reset_task_pending = 1;
249 schedule_work(&gp->reset_task);
250 }
251
252 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
253 {
254 if (netif_msg_intr(gp))
255 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
256 }
257
258 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
259 {
260 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
261 u32 pcs_miistat;
262
263 if (netif_msg_intr(gp))
264 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
265 gp->dev->name, pcs_istat);
266
267 if (!(pcs_istat & PCS_ISTAT_LSC)) {
268 netdev_err(dev, "PCS irq but no link status change???\n");
269 return 0;
270 }
271
272 /* The link status bit latches on zero, so you must
273 * read it twice in such a case to see a transition
274 * to the link being up.
275 */
276 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
277 if (!(pcs_miistat & PCS_MIISTAT_LS))
278 pcs_miistat |=
279 (readl(gp->regs + PCS_MIISTAT) &
280 PCS_MIISTAT_LS);
281
282 if (pcs_miistat & PCS_MIISTAT_ANC) {
283 /* The remote-fault indication is only valid
284 * when autoneg has completed.
285 */
286 if (pcs_miistat & PCS_MIISTAT_RF)
287 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
288 else
289 netdev_info(dev, "PCS AutoNEG complete\n");
290 }
291
292 if (pcs_miistat & PCS_MIISTAT_LS) {
293 netdev_info(dev, "PCS link is now up\n");
294 netif_carrier_on(gp->dev);
295 } else {
296 netdev_info(dev, "PCS link is now down\n");
297 netif_carrier_off(gp->dev);
298 /* If this happens and the link timer is not running,
299 * reset so we re-negotiate.
300 */
301 if (!timer_pending(&gp->link_timer))
302 return 1;
303 }
304
305 return 0;
306 }
307
308 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
309 {
310 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
311
312 if (netif_msg_intr(gp))
313 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
314 gp->dev->name, txmac_stat);
315
316 /* Defer timer expiration is quite normal,
317 * don't even log the event.
318 */
319 if ((txmac_stat & MAC_TXSTAT_DTE) &&
320 !(txmac_stat & ~MAC_TXSTAT_DTE))
321 return 0;
322
323 if (txmac_stat & MAC_TXSTAT_URUN) {
324 netdev_err(dev, "TX MAC xmit underrun\n");
325 dev->stats.tx_fifo_errors++;
326 }
327
328 if (txmac_stat & MAC_TXSTAT_MPE) {
329 netdev_err(dev, "TX MAC max packet size error\n");
330 dev->stats.tx_errors++;
331 }
332
333 /* The rest are all cases of one of the 16-bit TX
334 * counters expiring.
335 */
336 if (txmac_stat & MAC_TXSTAT_NCE)
337 dev->stats.collisions += 0x10000;
338
339 if (txmac_stat & MAC_TXSTAT_ECE) {
340 dev->stats.tx_aborted_errors += 0x10000;
341 dev->stats.collisions += 0x10000;
342 }
343
344 if (txmac_stat & MAC_TXSTAT_LCE) {
345 dev->stats.tx_aborted_errors += 0x10000;
346 dev->stats.collisions += 0x10000;
347 }
348
349 /* We do not keep track of MAC_TXSTAT_FCE and
350 * MAC_TXSTAT_PCE events.
351 */
352 return 0;
353 }
354
355 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
356 * so we do the following.
357 *
358 * If any part of the reset goes wrong, we return 1 and that causes the
359 * whole chip to be reset.
360 */
361 static int gem_rxmac_reset(struct gem *gp)
362 {
363 struct net_device *dev = gp->dev;
364 int limit, i;
365 u64 desc_dma;
366 u32 val;
367
368 /* First, reset & disable MAC RX. */
369 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
370 for (limit = 0; limit < 5000; limit++) {
371 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
372 break;
373 udelay(10);
374 }
375 if (limit == 5000) {
376 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
377 return 1;
378 }
379
380 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
381 gp->regs + MAC_RXCFG);
382 for (limit = 0; limit < 5000; limit++) {
383 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
384 break;
385 udelay(10);
386 }
387 if (limit == 5000) {
388 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
389 return 1;
390 }
391
392 /* Second, disable RX DMA. */
393 writel(0, gp->regs + RXDMA_CFG);
394 for (limit = 0; limit < 5000; limit++) {
395 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
396 break;
397 udelay(10);
398 }
399 if (limit == 5000) {
400 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
401 return 1;
402 }
403
404 udelay(5000);
405
406 /* Execute RX reset command. */
407 writel(gp->swrst_base | GREG_SWRST_RXRST,
408 gp->regs + GREG_SWRST);
409 for (limit = 0; limit < 5000; limit++) {
410 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
411 break;
412 udelay(10);
413 }
414 if (limit == 5000) {
415 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
416 return 1;
417 }
418
419 /* Refresh the RX ring. */
420 for (i = 0; i < RX_RING_SIZE; i++) {
421 struct gem_rxd *rxd = &gp->init_block->rxd[i];
422
423 if (gp->rx_skbs[i] == NULL) {
424 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
425 return 1;
426 }
427
428 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
429 }
430 gp->rx_new = gp->rx_old = 0;
431
432 /* Now we must reprogram the rest of RX unit. */
433 desc_dma = (u64) gp->gblock_dvma;
434 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
435 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
436 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
437 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
438 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
439 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
440 writel(val, gp->regs + RXDMA_CFG);
441 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
442 writel(((5 & RXDMA_BLANK_IPKTS) |
443 ((8 << 12) & RXDMA_BLANK_ITIME)),
444 gp->regs + RXDMA_BLANK);
445 else
446 writel(((5 & RXDMA_BLANK_IPKTS) |
447 ((4 << 12) & RXDMA_BLANK_ITIME)),
448 gp->regs + RXDMA_BLANK);
449 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
450 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
451 writel(val, gp->regs + RXDMA_PTHRESH);
452 val = readl(gp->regs + RXDMA_CFG);
453 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
454 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
455 val = readl(gp->regs + MAC_RXCFG);
456 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
457
458 return 0;
459 }
460
461 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
462 {
463 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
464 int ret = 0;
465
466 if (netif_msg_intr(gp))
467 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
468 gp->dev->name, rxmac_stat);
469
470 if (rxmac_stat & MAC_RXSTAT_OFLW) {
471 u32 smac = readl(gp->regs + MAC_SMACHINE);
472
473 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
474 dev->stats.rx_over_errors++;
475 dev->stats.rx_fifo_errors++;
476
477 ret = gem_rxmac_reset(gp);
478 }
479
480 if (rxmac_stat & MAC_RXSTAT_ACE)
481 dev->stats.rx_frame_errors += 0x10000;
482
483 if (rxmac_stat & MAC_RXSTAT_CCE)
484 dev->stats.rx_crc_errors += 0x10000;
485
486 if (rxmac_stat & MAC_RXSTAT_LCE)
487 dev->stats.rx_length_errors += 0x10000;
488
489 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
490 * events.
491 */
492 return ret;
493 }
494
495 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
496 {
497 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
498
499 if (netif_msg_intr(gp))
500 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
501 gp->dev->name, mac_cstat);
502
503 /* This interrupt is just for pause frame and pause
504 * tracking. It is useful for diagnostics and debug
505 * but probably by default we will mask these events.
506 */
507 if (mac_cstat & MAC_CSTAT_PS)
508 gp->pause_entered++;
509
510 if (mac_cstat & MAC_CSTAT_PRCV)
511 gp->pause_last_time_recvd = (mac_cstat >> 16);
512
513 return 0;
514 }
515
516 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
517 {
518 u32 mif_status = readl(gp->regs + MIF_STATUS);
519 u32 reg_val, changed_bits;
520
521 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
522 changed_bits = (mif_status & MIF_STATUS_STAT);
523
524 gem_handle_mif_event(gp, reg_val, changed_bits);
525
526 return 0;
527 }
528
529 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
530 {
531 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
532
533 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
534 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
535 netdev_err(dev, "PCI error [%04x]", pci_estat);
536
537 if (pci_estat & GREG_PCIESTAT_BADACK)
538 pr_cont(" <No ACK64# during ABS64 cycle>");
539 if (pci_estat & GREG_PCIESTAT_DTRTO)
540 pr_cont(" <Delayed transaction timeout>");
541 if (pci_estat & GREG_PCIESTAT_OTHER)
542 pr_cont(" <other>");
543 pr_cont("\n");
544 } else {
545 pci_estat |= GREG_PCIESTAT_OTHER;
546 netdev_err(dev, "PCI error\n");
547 }
548
549 if (pci_estat & GREG_PCIESTAT_OTHER) {
550 u16 pci_cfg_stat;
551
552 /* Interrogate PCI config space for the
553 * true cause.
554 */
555 pci_read_config_word(gp->pdev, PCI_STATUS,
556 &pci_cfg_stat);
557 netdev_err(dev, "Read PCI cfg space status [%04x]\n",
558 pci_cfg_stat);
559 if (pci_cfg_stat & PCI_STATUS_PARITY)
560 netdev_err(dev, "PCI parity error detected\n");
561 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
562 netdev_err(dev, "PCI target abort\n");
563 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
564 netdev_err(dev, "PCI master acks target abort\n");
565 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
566 netdev_err(dev, "PCI master abort\n");
567 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
568 netdev_err(dev, "PCI system error SERR#\n");
569 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
570 netdev_err(dev, "PCI parity error\n");
571
572 /* Write the error bits back to clear them. */
573 pci_cfg_stat &= (PCI_STATUS_PARITY |
574 PCI_STATUS_SIG_TARGET_ABORT |
575 PCI_STATUS_REC_TARGET_ABORT |
576 PCI_STATUS_REC_MASTER_ABORT |
577 PCI_STATUS_SIG_SYSTEM_ERROR |
578 PCI_STATUS_DETECTED_PARITY);
579 pci_write_config_word(gp->pdev,
580 PCI_STATUS, pci_cfg_stat);
581 }
582
583 /* For all PCI errors, we should reset the chip. */
584 return 1;
585 }
586
587 /* All non-normal interrupt conditions get serviced here.
588 * Returns non-zero if we should just exit the interrupt
589 * handler right now (ie. if we reset the card which invalidates
590 * all of the other original irq status bits).
591 */
592 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
593 {
594 if (gem_status & GREG_STAT_RXNOBUF) {
595 /* Frame arrived, no free RX buffers available. */
596 if (netif_msg_rx_err(gp))
597 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
598 gp->dev->name);
599 dev->stats.rx_dropped++;
600 }
601
602 if (gem_status & GREG_STAT_RXTAGERR) {
603 /* corrupt RX tag framing */
604 if (netif_msg_rx_err(gp))
605 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
606 gp->dev->name);
607 dev->stats.rx_errors++;
608
609 return 1;
610 }
611
612 if (gem_status & GREG_STAT_PCS) {
613 if (gem_pcs_interrupt(dev, gp, gem_status))
614 return 1;
615 }
616
617 if (gem_status & GREG_STAT_TXMAC) {
618 if (gem_txmac_interrupt(dev, gp, gem_status))
619 return 1;
620 }
621
622 if (gem_status & GREG_STAT_RXMAC) {
623 if (gem_rxmac_interrupt(dev, gp, gem_status))
624 return 1;
625 }
626
627 if (gem_status & GREG_STAT_MAC) {
628 if (gem_mac_interrupt(dev, gp, gem_status))
629 return 1;
630 }
631
632 if (gem_status & GREG_STAT_MIF) {
633 if (gem_mif_interrupt(dev, gp, gem_status))
634 return 1;
635 }
636
637 if (gem_status & GREG_STAT_PCIERR) {
638 if (gem_pci_interrupt(dev, gp, gem_status))
639 return 1;
640 }
641
642 return 0;
643 }
644
645 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
646 {
647 int entry, limit;
648
649 entry = gp->tx_old;
650 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
651 while (entry != limit) {
652 struct sk_buff *skb;
653 struct gem_txd *txd;
654 dma_addr_t dma_addr;
655 u32 dma_len;
656 int frag;
657
658 if (netif_msg_tx_done(gp))
659 printk(KERN_DEBUG "%s: tx done, slot %d\n",
660 gp->dev->name, entry);
661 skb = gp->tx_skbs[entry];
662 if (skb_shinfo(skb)->nr_frags) {
663 int last = entry + skb_shinfo(skb)->nr_frags;
664 int walk = entry;
665 int incomplete = 0;
666
667 last &= (TX_RING_SIZE - 1);
668 for (;;) {
669 walk = NEXT_TX(walk);
670 if (walk == limit)
671 incomplete = 1;
672 if (walk == last)
673 break;
674 }
675 if (incomplete)
676 break;
677 }
678 gp->tx_skbs[entry] = NULL;
679 dev->stats.tx_bytes += skb->len;
680
681 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
682 txd = &gp->init_block->txd[entry];
683
684 dma_addr = le64_to_cpu(txd->buffer);
685 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
686
687 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
688 entry = NEXT_TX(entry);
689 }
690
691 dev->stats.tx_packets++;
692 dev_kfree_skb(skb);
693 }
694 gp->tx_old = entry;
695
696 /* Need to make the tx_old update visible to gem_start_xmit()
697 * before checking for netif_queue_stopped(). Without the
698 * memory barrier, there is a small possibility that gem_start_xmit()
699 * will miss it and cause the queue to be stopped forever.
700 */
701 smp_mb();
702
703 if (unlikely(netif_queue_stopped(dev) &&
704 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
705 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
706
707 __netif_tx_lock(txq, smp_processor_id());
708 if (netif_queue_stopped(dev) &&
709 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
710 netif_wake_queue(dev);
711 __netif_tx_unlock(txq);
712 }
713 }
714
715 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
716 {
717 int cluster_start, curr, count, kick;
718
719 cluster_start = curr = (gp->rx_new & ~(4 - 1));
720 count = 0;
721 kick = -1;
722 wmb();
723 while (curr != limit) {
724 curr = NEXT_RX(curr);
725 if (++count == 4) {
726 struct gem_rxd *rxd =
727 &gp->init_block->rxd[cluster_start];
728 for (;;) {
729 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
730 rxd++;
731 cluster_start = NEXT_RX(cluster_start);
732 if (cluster_start == curr)
733 break;
734 }
735 kick = curr;
736 count = 0;
737 }
738 }
739 if (kick >= 0) {
740 mb();
741 writel(kick, gp->regs + RXDMA_KICK);
742 }
743 }
744
745 #define ALIGNED_RX_SKB_ADDR(addr) \
746 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
747 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
748 gfp_t gfp_flags)
749 {
750 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
751
752 if (likely(skb)) {
753 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
754 skb_reserve(skb, offset);
755 skb->dev = dev;
756 }
757 return skb;
758 }
759
760 static int gem_rx(struct gem *gp, int work_to_do)
761 {
762 struct net_device *dev = gp->dev;
763 int entry, drops, work_done = 0;
764 u32 done;
765 __sum16 csum;
766
767 if (netif_msg_rx_status(gp))
768 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
769 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
770
771 entry = gp->rx_new;
772 drops = 0;
773 done = readl(gp->regs + RXDMA_DONE);
774 for (;;) {
775 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
776 struct sk_buff *skb;
777 u64 status = le64_to_cpu(rxd->status_word);
778 dma_addr_t dma_addr;
779 int len;
780
781 if ((status & RXDCTRL_OWN) != 0)
782 break;
783
784 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
785 break;
786
787 /* When writing back RX descriptor, GEM writes status
788 * then buffer address, possibly in separate transactions.
789 * If we don't wait for the chip to write both, we could
790 * post a new buffer to this descriptor then have GEM spam
791 * on the buffer address. We sync on the RX completion
792 * register to prevent this from happening.
793 */
794 if (entry == done) {
795 done = readl(gp->regs + RXDMA_DONE);
796 if (entry == done)
797 break;
798 }
799
800 /* We can now account for the work we're about to do */
801 work_done++;
802
803 skb = gp->rx_skbs[entry];
804
805 len = (status & RXDCTRL_BUFSZ) >> 16;
806 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
807 dev->stats.rx_errors++;
808 if (len < ETH_ZLEN)
809 dev->stats.rx_length_errors++;
810 if (len & RXDCTRL_BAD)
811 dev->stats.rx_crc_errors++;
812
813 /* We'll just return it to GEM. */
814 drop_it:
815 dev->stats.rx_dropped++;
816 goto next;
817 }
818
819 dma_addr = le64_to_cpu(rxd->buffer);
820 if (len > RX_COPY_THRESHOLD) {
821 struct sk_buff *new_skb;
822
823 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
824 if (new_skb == NULL) {
825 drops++;
826 goto drop_it;
827 }
828 pci_unmap_page(gp->pdev, dma_addr,
829 RX_BUF_ALLOC_SIZE(gp),
830 PCI_DMA_FROMDEVICE);
831 gp->rx_skbs[entry] = new_skb;
832 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
833 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
834 virt_to_page(new_skb->data),
835 offset_in_page(new_skb->data),
836 RX_BUF_ALLOC_SIZE(gp),
837 PCI_DMA_FROMDEVICE));
838 skb_reserve(new_skb, RX_OFFSET);
839
840 /* Trim the original skb for the netif. */
841 skb_trim(skb, len);
842 } else {
843 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
844
845 if (copy_skb == NULL) {
846 drops++;
847 goto drop_it;
848 }
849
850 skb_reserve(copy_skb, 2);
851 skb_put(copy_skb, len);
852 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853 skb_copy_from_linear_data(skb, copy_skb->data, len);
854 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
855
856 /* We'll reuse the original ring buffer. */
857 skb = copy_skb;
858 }
859
860 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
861 skb->csum = csum_unfold(csum);
862 skb->ip_summed = CHECKSUM_COMPLETE;
863 skb->protocol = eth_type_trans(skb, gp->dev);
864
865 napi_gro_receive(&gp->napi, skb);
866
867 dev->stats.rx_packets++;
868 dev->stats.rx_bytes += len;
869
870 next:
871 entry = NEXT_RX(entry);
872 }
873
874 gem_post_rxds(gp, entry);
875
876 gp->rx_new = entry;
877
878 if (drops)
879 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
880
881 return work_done;
882 }
883
884 static int gem_poll(struct napi_struct *napi, int budget)
885 {
886 struct gem *gp = container_of(napi, struct gem, napi);
887 struct net_device *dev = gp->dev;
888 int work_done;
889
890 work_done = 0;
891 do {
892 /* Handle anomalies */
893 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
894 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
895 int reset;
896
897 /* We run the abnormal interrupt handling code with
898 * the Tx lock. It only resets the Rx portion of the
899 * chip, but we need to guard it against DMA being
900 * restarted by the link poll timer
901 */
902 __netif_tx_lock(txq, smp_processor_id());
903 reset = gem_abnormal_irq(dev, gp, gp->status);
904 __netif_tx_unlock(txq);
905 if (reset) {
906 gem_schedule_reset(gp);
907 napi_complete(napi);
908 return work_done;
909 }
910 }
911
912 /* Run TX completion thread */
913 gem_tx(dev, gp, gp->status);
914
915 /* Run RX thread. We don't use any locking here,
916 * code willing to do bad things - like cleaning the
917 * rx ring - must call napi_disable(), which
918 * schedule_timeout()'s if polling is already disabled.
919 */
920 work_done += gem_rx(gp, budget - work_done);
921
922 if (work_done >= budget)
923 return work_done;
924
925 gp->status = readl(gp->regs + GREG_STAT);
926 } while (gp->status & GREG_STAT_NAPI);
927
928 napi_complete(napi);
929 gem_enable_ints(gp);
930
931 return work_done;
932 }
933
934 static irqreturn_t gem_interrupt(int irq, void *dev_id)
935 {
936 struct net_device *dev = dev_id;
937 struct gem *gp = netdev_priv(dev);
938
939 if (napi_schedule_prep(&gp->napi)) {
940 u32 gem_status = readl(gp->regs + GREG_STAT);
941
942 if (unlikely(gem_status == 0)) {
943 napi_enable(&gp->napi);
944 return IRQ_NONE;
945 }
946 if (netif_msg_intr(gp))
947 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
948 gp->dev->name, gem_status);
949
950 gp->status = gem_status;
951 gem_disable_ints(gp);
952 __napi_schedule(&gp->napi);
953 }
954
955 /* If polling was disabled at the time we received that
956 * interrupt, we may return IRQ_HANDLED here while we
957 * should return IRQ_NONE. No big deal...
958 */
959 return IRQ_HANDLED;
960 }
961
962 #ifdef CONFIG_NET_POLL_CONTROLLER
963 static void gem_poll_controller(struct net_device *dev)
964 {
965 struct gem *gp = netdev_priv(dev);
966
967 disable_irq(gp->pdev->irq);
968 gem_interrupt(gp->pdev->irq, dev);
969 enable_irq(gp->pdev->irq);
970 }
971 #endif
972
973 static void gem_tx_timeout(struct net_device *dev)
974 {
975 struct gem *gp = netdev_priv(dev);
976
977 netdev_err(dev, "transmit timed out, resetting\n");
978
979 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
980 readl(gp->regs + TXDMA_CFG),
981 readl(gp->regs + MAC_TXSTAT),
982 readl(gp->regs + MAC_TXCFG));
983 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
984 readl(gp->regs + RXDMA_CFG),
985 readl(gp->regs + MAC_RXSTAT),
986 readl(gp->regs + MAC_RXCFG));
987
988 gem_schedule_reset(gp);
989 }
990
991 static __inline__ int gem_intme(int entry)
992 {
993 /* Algorithm: IRQ every 1/2 of descriptors. */
994 if (!(entry & ((TX_RING_SIZE>>1)-1)))
995 return 1;
996
997 return 0;
998 }
999
1000 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1001 struct net_device *dev)
1002 {
1003 struct gem *gp = netdev_priv(dev);
1004 int entry;
1005 u64 ctrl;
1006
1007 ctrl = 0;
1008 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1009 const u64 csum_start_off = skb_checksum_start_offset(skb);
1010 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1011
1012 ctrl = (TXDCTRL_CENAB |
1013 (csum_start_off << 15) |
1014 (csum_stuff_off << 21));
1015 }
1016
1017 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1018 /* This is a hard error, log it. */
1019 if (!netif_queue_stopped(dev)) {
1020 netif_stop_queue(dev);
1021 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1022 }
1023 return NETDEV_TX_BUSY;
1024 }
1025
1026 entry = gp->tx_new;
1027 gp->tx_skbs[entry] = skb;
1028
1029 if (skb_shinfo(skb)->nr_frags == 0) {
1030 struct gem_txd *txd = &gp->init_block->txd[entry];
1031 dma_addr_t mapping;
1032 u32 len;
1033
1034 len = skb->len;
1035 mapping = pci_map_page(gp->pdev,
1036 virt_to_page(skb->data),
1037 offset_in_page(skb->data),
1038 len, PCI_DMA_TODEVICE);
1039 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1040 if (gem_intme(entry))
1041 ctrl |= TXDCTRL_INTME;
1042 txd->buffer = cpu_to_le64(mapping);
1043 wmb();
1044 txd->control_word = cpu_to_le64(ctrl);
1045 entry = NEXT_TX(entry);
1046 } else {
1047 struct gem_txd *txd;
1048 u32 first_len;
1049 u64 intme;
1050 dma_addr_t first_mapping;
1051 int frag, first_entry = entry;
1052
1053 intme = 0;
1054 if (gem_intme(entry))
1055 intme |= TXDCTRL_INTME;
1056
1057 /* We must give this initial chunk to the device last.
1058 * Otherwise we could race with the device.
1059 */
1060 first_len = skb_headlen(skb);
1061 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1062 offset_in_page(skb->data),
1063 first_len, PCI_DMA_TODEVICE);
1064 entry = NEXT_TX(entry);
1065
1066 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1067 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1068 u32 len;
1069 dma_addr_t mapping;
1070 u64 this_ctrl;
1071
1072 len = this_frag->size;
1073 mapping = pci_map_page(gp->pdev,
1074 this_frag->page,
1075 this_frag->page_offset,
1076 len, PCI_DMA_TODEVICE);
1077 this_ctrl = ctrl;
1078 if (frag == skb_shinfo(skb)->nr_frags - 1)
1079 this_ctrl |= TXDCTRL_EOF;
1080
1081 txd = &gp->init_block->txd[entry];
1082 txd->buffer = cpu_to_le64(mapping);
1083 wmb();
1084 txd->control_word = cpu_to_le64(this_ctrl | len);
1085
1086 if (gem_intme(entry))
1087 intme |= TXDCTRL_INTME;
1088
1089 entry = NEXT_TX(entry);
1090 }
1091 txd = &gp->init_block->txd[first_entry];
1092 txd->buffer = cpu_to_le64(first_mapping);
1093 wmb();
1094 txd->control_word =
1095 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1096 }
1097
1098 gp->tx_new = entry;
1099 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1100 netif_stop_queue(dev);
1101
1102 /* netif_stop_queue() must be done before checking
1103 * checking tx index in TX_BUFFS_AVAIL() below, because
1104 * in gem_tx(), we update tx_old before checking for
1105 * netif_queue_stopped().
1106 */
1107 smp_mb();
1108 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1109 netif_wake_queue(dev);
1110 }
1111 if (netif_msg_tx_queued(gp))
1112 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1113 dev->name, entry, skb->len);
1114 mb();
1115 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1116
1117 return NETDEV_TX_OK;
1118 }
1119
1120 static void gem_pcs_reset(struct gem *gp)
1121 {
1122 int limit;
1123 u32 val;
1124
1125 /* Reset PCS unit. */
1126 val = readl(gp->regs + PCS_MIICTRL);
1127 val |= PCS_MIICTRL_RST;
1128 writel(val, gp->regs + PCS_MIICTRL);
1129
1130 limit = 32;
1131 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1132 udelay(100);
1133 if (limit-- <= 0)
1134 break;
1135 }
1136 if (limit < 0)
1137 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1138 }
1139
1140 static void gem_pcs_reinit_adv(struct gem *gp)
1141 {
1142 u32 val;
1143
1144 /* Make sure PCS is disabled while changing advertisement
1145 * configuration.
1146 */
1147 val = readl(gp->regs + PCS_CFG);
1148 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1149 writel(val, gp->regs + PCS_CFG);
1150
1151 /* Advertise all capabilities except asymmetric
1152 * pause.
1153 */
1154 val = readl(gp->regs + PCS_MIIADV);
1155 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1156 PCS_MIIADV_SP | PCS_MIIADV_AP);
1157 writel(val, gp->regs + PCS_MIIADV);
1158
1159 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1160 * and re-enable PCS.
1161 */
1162 val = readl(gp->regs + PCS_MIICTRL);
1163 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1164 val &= ~PCS_MIICTRL_WB;
1165 writel(val, gp->regs + PCS_MIICTRL);
1166
1167 val = readl(gp->regs + PCS_CFG);
1168 val |= PCS_CFG_ENABLE;
1169 writel(val, gp->regs + PCS_CFG);
1170
1171 /* Make sure serialink loopback is off. The meaning
1172 * of this bit is logically inverted based upon whether
1173 * you are in Serialink or SERDES mode.
1174 */
1175 val = readl(gp->regs + PCS_SCTRL);
1176 if (gp->phy_type == phy_serialink)
1177 val &= ~PCS_SCTRL_LOOP;
1178 else
1179 val |= PCS_SCTRL_LOOP;
1180 writel(val, gp->regs + PCS_SCTRL);
1181 }
1182
1183 #define STOP_TRIES 32
1184
1185 static void gem_reset(struct gem *gp)
1186 {
1187 int limit;
1188 u32 val;
1189
1190 /* Make sure we won't get any more interrupts */
1191 writel(0xffffffff, gp->regs + GREG_IMASK);
1192
1193 /* Reset the chip */
1194 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1195 gp->regs + GREG_SWRST);
1196
1197 limit = STOP_TRIES;
1198
1199 do {
1200 udelay(20);
1201 val = readl(gp->regs + GREG_SWRST);
1202 if (limit-- <= 0)
1203 break;
1204 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1205
1206 if (limit < 0)
1207 netdev_err(gp->dev, "SW reset is ghetto\n");
1208
1209 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1210 gem_pcs_reinit_adv(gp);
1211 }
1212
1213 static void gem_start_dma(struct gem *gp)
1214 {
1215 u32 val;
1216
1217 /* We are ready to rock, turn everything on. */
1218 val = readl(gp->regs + TXDMA_CFG);
1219 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1220 val = readl(gp->regs + RXDMA_CFG);
1221 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1222 val = readl(gp->regs + MAC_TXCFG);
1223 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1224 val = readl(gp->regs + MAC_RXCFG);
1225 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1226
1227 (void) readl(gp->regs + MAC_RXCFG);
1228 udelay(100);
1229
1230 gem_enable_ints(gp);
1231
1232 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1233 }
1234
1235 /* DMA won't be actually stopped before about 4ms tho ...
1236 */
1237 static void gem_stop_dma(struct gem *gp)
1238 {
1239 u32 val;
1240
1241 /* We are done rocking, turn everything off. */
1242 val = readl(gp->regs + TXDMA_CFG);
1243 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1244 val = readl(gp->regs + RXDMA_CFG);
1245 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1246 val = readl(gp->regs + MAC_TXCFG);
1247 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1248 val = readl(gp->regs + MAC_RXCFG);
1249 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1250
1251 (void) readl(gp->regs + MAC_RXCFG);
1252
1253 /* Need to wait a bit ... done by the caller */
1254 }
1255
1256
1257 // XXX dbl check what that function should do when called on PCS PHY
1258 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1259 {
1260 u32 advertise, features;
1261 int autoneg;
1262 int speed;
1263 int duplex;
1264
1265 if (gp->phy_type != phy_mii_mdio0 &&
1266 gp->phy_type != phy_mii_mdio1)
1267 goto non_mii;
1268
1269 /* Setup advertise */
1270 if (found_mii_phy(gp))
1271 features = gp->phy_mii.def->features;
1272 else
1273 features = 0;
1274
1275 advertise = features & ADVERTISE_MASK;
1276 if (gp->phy_mii.advertising != 0)
1277 advertise &= gp->phy_mii.advertising;
1278
1279 autoneg = gp->want_autoneg;
1280 speed = gp->phy_mii.speed;
1281 duplex = gp->phy_mii.duplex;
1282
1283 /* Setup link parameters */
1284 if (!ep)
1285 goto start_aneg;
1286 if (ep->autoneg == AUTONEG_ENABLE) {
1287 advertise = ep->advertising;
1288 autoneg = 1;
1289 } else {
1290 autoneg = 0;
1291 speed = ethtool_cmd_speed(ep);
1292 duplex = ep->duplex;
1293 }
1294
1295 start_aneg:
1296 /* Sanitize settings based on PHY capabilities */
1297 if ((features & SUPPORTED_Autoneg) == 0)
1298 autoneg = 0;
1299 if (speed == SPEED_1000 &&
1300 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1301 speed = SPEED_100;
1302 if (speed == SPEED_100 &&
1303 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1304 speed = SPEED_10;
1305 if (duplex == DUPLEX_FULL &&
1306 !(features & (SUPPORTED_1000baseT_Full |
1307 SUPPORTED_100baseT_Full |
1308 SUPPORTED_10baseT_Full)))
1309 duplex = DUPLEX_HALF;
1310 if (speed == 0)
1311 speed = SPEED_10;
1312
1313 /* If we are asleep, we don't try to actually setup the PHY, we
1314 * just store the settings
1315 */
1316 if (!netif_device_present(gp->dev)) {
1317 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1318 gp->phy_mii.speed = speed;
1319 gp->phy_mii.duplex = duplex;
1320 return;
1321 }
1322
1323 /* Configure PHY & start aneg */
1324 gp->want_autoneg = autoneg;
1325 if (autoneg) {
1326 if (found_mii_phy(gp))
1327 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1328 gp->lstate = link_aneg;
1329 } else {
1330 if (found_mii_phy(gp))
1331 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1332 gp->lstate = link_force_ok;
1333 }
1334
1335 non_mii:
1336 gp->timer_ticks = 0;
1337 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1338 }
1339
1340 /* A link-up condition has occurred, initialize and enable the
1341 * rest of the chip.
1342 */
1343 static int gem_set_link_modes(struct gem *gp)
1344 {
1345 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1346 int full_duplex, speed, pause;
1347 u32 val;
1348
1349 full_duplex = 0;
1350 speed = SPEED_10;
1351 pause = 0;
1352
1353 if (found_mii_phy(gp)) {
1354 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1355 return 1;
1356 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1357 speed = gp->phy_mii.speed;
1358 pause = gp->phy_mii.pause;
1359 } else if (gp->phy_type == phy_serialink ||
1360 gp->phy_type == phy_serdes) {
1361 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1362
1363 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1364 full_duplex = 1;
1365 speed = SPEED_1000;
1366 }
1367
1368 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1369 speed, (full_duplex ? "full" : "half"));
1370
1371
1372 /* We take the tx queue lock to avoid collisions between
1373 * this code, the tx path and the NAPI-driven error path
1374 */
1375 __netif_tx_lock(txq, smp_processor_id());
1376
1377 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1378 if (full_duplex) {
1379 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1380 } else {
1381 /* MAC_TXCFG_NBO must be zero. */
1382 }
1383 writel(val, gp->regs + MAC_TXCFG);
1384
1385 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1386 if (!full_duplex &&
1387 (gp->phy_type == phy_mii_mdio0 ||
1388 gp->phy_type == phy_mii_mdio1)) {
1389 val |= MAC_XIFCFG_DISE;
1390 } else if (full_duplex) {
1391 val |= MAC_XIFCFG_FLED;
1392 }
1393
1394 if (speed == SPEED_1000)
1395 val |= (MAC_XIFCFG_GMII);
1396
1397 writel(val, gp->regs + MAC_XIFCFG);
1398
1399 /* If gigabit and half-duplex, enable carrier extension
1400 * mode. Else, disable it.
1401 */
1402 if (speed == SPEED_1000 && !full_duplex) {
1403 val = readl(gp->regs + MAC_TXCFG);
1404 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1405
1406 val = readl(gp->regs + MAC_RXCFG);
1407 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1408 } else {
1409 val = readl(gp->regs + MAC_TXCFG);
1410 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1411
1412 val = readl(gp->regs + MAC_RXCFG);
1413 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1414 }
1415
1416 if (gp->phy_type == phy_serialink ||
1417 gp->phy_type == phy_serdes) {
1418 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1419
1420 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1421 pause = 1;
1422 }
1423
1424 if (!full_duplex)
1425 writel(512, gp->regs + MAC_STIME);
1426 else
1427 writel(64, gp->regs + MAC_STIME);
1428 val = readl(gp->regs + MAC_MCCFG);
1429 if (pause)
1430 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1431 else
1432 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1433 writel(val, gp->regs + MAC_MCCFG);
1434
1435 gem_start_dma(gp);
1436
1437 __netif_tx_unlock(txq);
1438
1439 if (netif_msg_link(gp)) {
1440 if (pause) {
1441 netdev_info(gp->dev,
1442 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1443 gp->rx_fifo_sz,
1444 gp->rx_pause_off,
1445 gp->rx_pause_on);
1446 } else {
1447 netdev_info(gp->dev, "Pause is disabled\n");
1448 }
1449 }
1450
1451 return 0;
1452 }
1453
1454 static int gem_mdio_link_not_up(struct gem *gp)
1455 {
1456 switch (gp->lstate) {
1457 case link_force_ret:
1458 netif_info(gp, link, gp->dev,
1459 "Autoneg failed again, keeping forced mode\n");
1460 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1461 gp->last_forced_speed, DUPLEX_HALF);
1462 gp->timer_ticks = 5;
1463 gp->lstate = link_force_ok;
1464 return 0;
1465 case link_aneg:
1466 /* We try forced modes after a failed aneg only on PHYs that don't
1467 * have "magic_aneg" bit set, which means they internally do the
1468 * while forced-mode thingy. On these, we just restart aneg
1469 */
1470 if (gp->phy_mii.def->magic_aneg)
1471 return 1;
1472 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1473 /* Try forced modes. */
1474 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1475 DUPLEX_HALF);
1476 gp->timer_ticks = 5;
1477 gp->lstate = link_force_try;
1478 return 0;
1479 case link_force_try:
1480 /* Downgrade from 100 to 10 Mbps if necessary.
1481 * If already at 10Mbps, warn user about the
1482 * situation every 10 ticks.
1483 */
1484 if (gp->phy_mii.speed == SPEED_100) {
1485 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1486 DUPLEX_HALF);
1487 gp->timer_ticks = 5;
1488 netif_info(gp, link, gp->dev,
1489 "switching to forced 10bt\n");
1490 return 0;
1491 } else
1492 return 1;
1493 default:
1494 return 0;
1495 }
1496 }
1497
1498 static void gem_link_timer(unsigned long data)
1499 {
1500 struct gem *gp = (struct gem *) data;
1501 struct net_device *dev = gp->dev;
1502 int restart_aneg = 0;
1503
1504 /* There's no point doing anything if we're going to be reset */
1505 if (gp->reset_task_pending)
1506 return;
1507
1508 if (gp->phy_type == phy_serialink ||
1509 gp->phy_type == phy_serdes) {
1510 u32 val = readl(gp->regs + PCS_MIISTAT);
1511
1512 if (!(val & PCS_MIISTAT_LS))
1513 val = readl(gp->regs + PCS_MIISTAT);
1514
1515 if ((val & PCS_MIISTAT_LS) != 0) {
1516 if (gp->lstate == link_up)
1517 goto restart;
1518
1519 gp->lstate = link_up;
1520 netif_carrier_on(dev);
1521 (void)gem_set_link_modes(gp);
1522 }
1523 goto restart;
1524 }
1525 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1526 /* Ok, here we got a link. If we had it due to a forced
1527 * fallback, and we were configured for autoneg, we do
1528 * retry a short autoneg pass. If you know your hub is
1529 * broken, use ethtool ;)
1530 */
1531 if (gp->lstate == link_force_try && gp->want_autoneg) {
1532 gp->lstate = link_force_ret;
1533 gp->last_forced_speed = gp->phy_mii.speed;
1534 gp->timer_ticks = 5;
1535 if (netif_msg_link(gp))
1536 netdev_info(dev,
1537 "Got link after fallback, retrying autoneg once...\n");
1538 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1539 } else if (gp->lstate != link_up) {
1540 gp->lstate = link_up;
1541 netif_carrier_on(dev);
1542 if (gem_set_link_modes(gp))
1543 restart_aneg = 1;
1544 }
1545 } else {
1546 /* If the link was previously up, we restart the
1547 * whole process
1548 */
1549 if (gp->lstate == link_up) {
1550 gp->lstate = link_down;
1551 netif_info(gp, link, dev, "Link down\n");
1552 netif_carrier_off(dev);
1553 gem_schedule_reset(gp);
1554 /* The reset task will restart the timer */
1555 return;
1556 } else if (++gp->timer_ticks > 10) {
1557 if (found_mii_phy(gp))
1558 restart_aneg = gem_mdio_link_not_up(gp);
1559 else
1560 restart_aneg = 1;
1561 }
1562 }
1563 if (restart_aneg) {
1564 gem_begin_auto_negotiation(gp, NULL);
1565 return;
1566 }
1567 restart:
1568 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1569 }
1570
1571 static void gem_clean_rings(struct gem *gp)
1572 {
1573 struct gem_init_block *gb = gp->init_block;
1574 struct sk_buff *skb;
1575 int i;
1576 dma_addr_t dma_addr;
1577
1578 for (i = 0; i < RX_RING_SIZE; i++) {
1579 struct gem_rxd *rxd;
1580
1581 rxd = &gb->rxd[i];
1582 if (gp->rx_skbs[i] != NULL) {
1583 skb = gp->rx_skbs[i];
1584 dma_addr = le64_to_cpu(rxd->buffer);
1585 pci_unmap_page(gp->pdev, dma_addr,
1586 RX_BUF_ALLOC_SIZE(gp),
1587 PCI_DMA_FROMDEVICE);
1588 dev_kfree_skb_any(skb);
1589 gp->rx_skbs[i] = NULL;
1590 }
1591 rxd->status_word = 0;
1592 wmb();
1593 rxd->buffer = 0;
1594 }
1595
1596 for (i = 0; i < TX_RING_SIZE; i++) {
1597 if (gp->tx_skbs[i] != NULL) {
1598 struct gem_txd *txd;
1599 int frag;
1600
1601 skb = gp->tx_skbs[i];
1602 gp->tx_skbs[i] = NULL;
1603
1604 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1605 int ent = i & (TX_RING_SIZE - 1);
1606
1607 txd = &gb->txd[ent];
1608 dma_addr = le64_to_cpu(txd->buffer);
1609 pci_unmap_page(gp->pdev, dma_addr,
1610 le64_to_cpu(txd->control_word) &
1611 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1612
1613 if (frag != skb_shinfo(skb)->nr_frags)
1614 i++;
1615 }
1616 dev_kfree_skb_any(skb);
1617 }
1618 }
1619 }
1620
1621 static void gem_init_rings(struct gem *gp)
1622 {
1623 struct gem_init_block *gb = gp->init_block;
1624 struct net_device *dev = gp->dev;
1625 int i;
1626 dma_addr_t dma_addr;
1627
1628 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1629
1630 gem_clean_rings(gp);
1631
1632 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1633 (unsigned)VLAN_ETH_FRAME_LEN);
1634
1635 for (i = 0; i < RX_RING_SIZE; i++) {
1636 struct sk_buff *skb;
1637 struct gem_rxd *rxd = &gb->rxd[i];
1638
1639 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1640 if (!skb) {
1641 rxd->buffer = 0;
1642 rxd->status_word = 0;
1643 continue;
1644 }
1645
1646 gp->rx_skbs[i] = skb;
1647 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1648 dma_addr = pci_map_page(gp->pdev,
1649 virt_to_page(skb->data),
1650 offset_in_page(skb->data),
1651 RX_BUF_ALLOC_SIZE(gp),
1652 PCI_DMA_FROMDEVICE);
1653 rxd->buffer = cpu_to_le64(dma_addr);
1654 wmb();
1655 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1656 skb_reserve(skb, RX_OFFSET);
1657 }
1658
1659 for (i = 0; i < TX_RING_SIZE; i++) {
1660 struct gem_txd *txd = &gb->txd[i];
1661
1662 txd->control_word = 0;
1663 wmb();
1664 txd->buffer = 0;
1665 }
1666 wmb();
1667 }
1668
1669 /* Init PHY interface and start link poll state machine */
1670 static void gem_init_phy(struct gem *gp)
1671 {
1672 u32 mifcfg;
1673
1674 /* Revert MIF CFG setting done on stop_phy */
1675 mifcfg = readl(gp->regs + MIF_CFG);
1676 mifcfg &= ~MIF_CFG_BBMODE;
1677 writel(mifcfg, gp->regs + MIF_CFG);
1678
1679 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1680 int i;
1681
1682 /* Those delay sucks, the HW seem to love them though, I'll
1683 * serisouly consider breaking some locks here to be able
1684 * to schedule instead
1685 */
1686 for (i = 0; i < 3; i++) {
1687 #ifdef CONFIG_PPC_PMAC
1688 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1689 msleep(20);
1690 #endif
1691 /* Some PHYs used by apple have problem getting back to us,
1692 * we do an additional reset here
1693 */
1694 phy_write(gp, MII_BMCR, BMCR_RESET);
1695 msleep(20);
1696 if (phy_read(gp, MII_BMCR) != 0xffff)
1697 break;
1698 if (i == 2)
1699 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1700 }
1701 }
1702
1703 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1704 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1705 u32 val;
1706
1707 /* Init datapath mode register. */
1708 if (gp->phy_type == phy_mii_mdio0 ||
1709 gp->phy_type == phy_mii_mdio1) {
1710 val = PCS_DMODE_MGM;
1711 } else if (gp->phy_type == phy_serialink) {
1712 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1713 } else {
1714 val = PCS_DMODE_ESM;
1715 }
1716
1717 writel(val, gp->regs + PCS_DMODE);
1718 }
1719
1720 if (gp->phy_type == phy_mii_mdio0 ||
1721 gp->phy_type == phy_mii_mdio1) {
1722 /* Reset and detect MII PHY */
1723 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1724
1725 /* Init PHY */
1726 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1727 gp->phy_mii.def->ops->init(&gp->phy_mii);
1728 } else {
1729 gem_pcs_reset(gp);
1730 gem_pcs_reinit_adv(gp);
1731 }
1732
1733 /* Default aneg parameters */
1734 gp->timer_ticks = 0;
1735 gp->lstate = link_down;
1736 netif_carrier_off(gp->dev);
1737
1738 /* Print things out */
1739 if (gp->phy_type == phy_mii_mdio0 ||
1740 gp->phy_type == phy_mii_mdio1)
1741 netdev_info(gp->dev, "Found %s PHY\n",
1742 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1743
1744 gem_begin_auto_negotiation(gp, NULL);
1745 }
1746
1747 static void gem_init_dma(struct gem *gp)
1748 {
1749 u64 desc_dma = (u64) gp->gblock_dvma;
1750 u32 val;
1751
1752 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1753 writel(val, gp->regs + TXDMA_CFG);
1754
1755 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1756 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1757 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1758
1759 writel(0, gp->regs + TXDMA_KICK);
1760
1761 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1762 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1763 writel(val, gp->regs + RXDMA_CFG);
1764
1765 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1766 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1767
1768 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1769
1770 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1771 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1772 writel(val, gp->regs + RXDMA_PTHRESH);
1773
1774 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1775 writel(((5 & RXDMA_BLANK_IPKTS) |
1776 ((8 << 12) & RXDMA_BLANK_ITIME)),
1777 gp->regs + RXDMA_BLANK);
1778 else
1779 writel(((5 & RXDMA_BLANK_IPKTS) |
1780 ((4 << 12) & RXDMA_BLANK_ITIME)),
1781 gp->regs + RXDMA_BLANK);
1782 }
1783
1784 static u32 gem_setup_multicast(struct gem *gp)
1785 {
1786 u32 rxcfg = 0;
1787 int i;
1788
1789 if ((gp->dev->flags & IFF_ALLMULTI) ||
1790 (netdev_mc_count(gp->dev) > 256)) {
1791 for (i=0; i<16; i++)
1792 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1793 rxcfg |= MAC_RXCFG_HFE;
1794 } else if (gp->dev->flags & IFF_PROMISC) {
1795 rxcfg |= MAC_RXCFG_PROM;
1796 } else {
1797 u16 hash_table[16];
1798 u32 crc;
1799 struct netdev_hw_addr *ha;
1800 int i;
1801
1802 memset(hash_table, 0, sizeof(hash_table));
1803 netdev_for_each_mc_addr(ha, gp->dev) {
1804 crc = ether_crc_le(6, ha->addr);
1805 crc >>= 24;
1806 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1807 }
1808 for (i=0; i<16; i++)
1809 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1810 rxcfg |= MAC_RXCFG_HFE;
1811 }
1812
1813 return rxcfg;
1814 }
1815
1816 static void gem_init_mac(struct gem *gp)
1817 {
1818 unsigned char *e = &gp->dev->dev_addr[0];
1819
1820 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1821
1822 writel(0x00, gp->regs + MAC_IPG0);
1823 writel(0x08, gp->regs + MAC_IPG1);
1824 writel(0x04, gp->regs + MAC_IPG2);
1825 writel(0x40, gp->regs + MAC_STIME);
1826 writel(0x40, gp->regs + MAC_MINFSZ);
1827
1828 /* Ethernet payload + header + FCS + optional VLAN tag. */
1829 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1830
1831 writel(0x07, gp->regs + MAC_PASIZE);
1832 writel(0x04, gp->regs + MAC_JAMSIZE);
1833 writel(0x10, gp->regs + MAC_ATTLIM);
1834 writel(0x8808, gp->regs + MAC_MCTYPE);
1835
1836 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1837
1838 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1839 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1840 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1841
1842 writel(0, gp->regs + MAC_ADDR3);
1843 writel(0, gp->regs + MAC_ADDR4);
1844 writel(0, gp->regs + MAC_ADDR5);
1845
1846 writel(0x0001, gp->regs + MAC_ADDR6);
1847 writel(0xc200, gp->regs + MAC_ADDR7);
1848 writel(0x0180, gp->regs + MAC_ADDR8);
1849
1850 writel(0, gp->regs + MAC_AFILT0);
1851 writel(0, gp->regs + MAC_AFILT1);
1852 writel(0, gp->regs + MAC_AFILT2);
1853 writel(0, gp->regs + MAC_AF21MSK);
1854 writel(0, gp->regs + MAC_AF0MSK);
1855
1856 gp->mac_rx_cfg = gem_setup_multicast(gp);
1857 #ifdef STRIP_FCS
1858 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1859 #endif
1860 writel(0, gp->regs + MAC_NCOLL);
1861 writel(0, gp->regs + MAC_FASUCC);
1862 writel(0, gp->regs + MAC_ECOLL);
1863 writel(0, gp->regs + MAC_LCOLL);
1864 writel(0, gp->regs + MAC_DTIMER);
1865 writel(0, gp->regs + MAC_PATMPS);
1866 writel(0, gp->regs + MAC_RFCTR);
1867 writel(0, gp->regs + MAC_LERR);
1868 writel(0, gp->regs + MAC_AERR);
1869 writel(0, gp->regs + MAC_FCSERR);
1870 writel(0, gp->regs + MAC_RXCVERR);
1871
1872 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1873 * them once a link is established.
1874 */
1875 writel(0, gp->regs + MAC_TXCFG);
1876 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1877 writel(0, gp->regs + MAC_MCCFG);
1878 writel(0, gp->regs + MAC_XIFCFG);
1879
1880 /* Setup MAC interrupts. We want to get all of the interesting
1881 * counter expiration events, but we do not want to hear about
1882 * normal rx/tx as the DMA engine tells us that.
1883 */
1884 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1885 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1886
1887 /* Don't enable even the PAUSE interrupts for now, we
1888 * make no use of those events other than to record them.
1889 */
1890 writel(0xffffffff, gp->regs + MAC_MCMASK);
1891
1892 /* Don't enable GEM's WOL in normal operations
1893 */
1894 if (gp->has_wol)
1895 writel(0, gp->regs + WOL_WAKECSR);
1896 }
1897
1898 static void gem_init_pause_thresholds(struct gem *gp)
1899 {
1900 u32 cfg;
1901
1902 /* Calculate pause thresholds. Setting the OFF threshold to the
1903 * full RX fifo size effectively disables PAUSE generation which
1904 * is what we do for 10/100 only GEMs which have FIFOs too small
1905 * to make real gains from PAUSE.
1906 */
1907 if (gp->rx_fifo_sz <= (2 * 1024)) {
1908 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1909 } else {
1910 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1911 int off = (gp->rx_fifo_sz - (max_frame * 2));
1912 int on = off - max_frame;
1913
1914 gp->rx_pause_off = off;
1915 gp->rx_pause_on = on;
1916 }
1917
1918
1919 /* Configure the chip "burst" DMA mode & enable some
1920 * HW bug fixes on Apple version
1921 */
1922 cfg = 0;
1923 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1924 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1925 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1926 cfg |= GREG_CFG_IBURST;
1927 #endif
1928 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1929 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1930 writel(cfg, gp->regs + GREG_CFG);
1931
1932 /* If Infinite Burst didn't stick, then use different
1933 * thresholds (and Apple bug fixes don't exist)
1934 */
1935 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1936 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1937 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1938 writel(cfg, gp->regs + GREG_CFG);
1939 }
1940 }
1941
1942 static int gem_check_invariants(struct gem *gp)
1943 {
1944 struct pci_dev *pdev = gp->pdev;
1945 u32 mif_cfg;
1946
1947 /* On Apple's sungem, we can't rely on registers as the chip
1948 * was been powered down by the firmware. The PHY is looked
1949 * up later on.
1950 */
1951 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1952 gp->phy_type = phy_mii_mdio0;
1953 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1954 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1955 gp->swrst_base = 0;
1956
1957 mif_cfg = readl(gp->regs + MIF_CFG);
1958 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1959 mif_cfg |= MIF_CFG_MDI0;
1960 writel(mif_cfg, gp->regs + MIF_CFG);
1961 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1962 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1963
1964 /* We hard-code the PHY address so we can properly bring it out of
1965 * reset later on, we can't really probe it at this point, though
1966 * that isn't an issue.
1967 */
1968 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1969 gp->mii_phy_addr = 1;
1970 else
1971 gp->mii_phy_addr = 0;
1972
1973 return 0;
1974 }
1975
1976 mif_cfg = readl(gp->regs + MIF_CFG);
1977
1978 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1979 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1980 /* One of the MII PHYs _must_ be present
1981 * as this chip has no gigabit PHY.
1982 */
1983 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1984 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1985 mif_cfg);
1986 return -1;
1987 }
1988 }
1989
1990 /* Determine initial PHY interface type guess. MDIO1 is the
1991 * external PHY and thus takes precedence over MDIO0.
1992 */
1993
1994 if (mif_cfg & MIF_CFG_MDI1) {
1995 gp->phy_type = phy_mii_mdio1;
1996 mif_cfg |= MIF_CFG_PSELECT;
1997 writel(mif_cfg, gp->regs + MIF_CFG);
1998 } else if (mif_cfg & MIF_CFG_MDI0) {
1999 gp->phy_type = phy_mii_mdio0;
2000 mif_cfg &= ~MIF_CFG_PSELECT;
2001 writel(mif_cfg, gp->regs + MIF_CFG);
2002 } else {
2003 #ifdef CONFIG_SPARC
2004 const char *p;
2005
2006 p = of_get_property(gp->of_node, "shared-pins", NULL);
2007 if (p && !strcmp(p, "serdes"))
2008 gp->phy_type = phy_serdes;
2009 else
2010 #endif
2011 gp->phy_type = phy_serialink;
2012 }
2013 if (gp->phy_type == phy_mii_mdio1 ||
2014 gp->phy_type == phy_mii_mdio0) {
2015 int i;
2016
2017 for (i = 0; i < 32; i++) {
2018 gp->mii_phy_addr = i;
2019 if (phy_read(gp, MII_BMCR) != 0xffff)
2020 break;
2021 }
2022 if (i == 32) {
2023 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2024 pr_err("RIO MII phy will not respond\n");
2025 return -1;
2026 }
2027 gp->phy_type = phy_serdes;
2028 }
2029 }
2030
2031 /* Fetch the FIFO configurations now too. */
2032 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2033 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2034
2035 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2036 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2037 if (gp->tx_fifo_sz != (9 * 1024) ||
2038 gp->rx_fifo_sz != (20 * 1024)) {
2039 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2040 gp->tx_fifo_sz, gp->rx_fifo_sz);
2041 return -1;
2042 }
2043 gp->swrst_base = 0;
2044 } else {
2045 if (gp->tx_fifo_sz != (2 * 1024) ||
2046 gp->rx_fifo_sz != (2 * 1024)) {
2047 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2048 gp->tx_fifo_sz, gp->rx_fifo_sz);
2049 return -1;
2050 }
2051 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2052 }
2053 }
2054
2055 return 0;
2056 }
2057
2058 static void gem_reinit_chip(struct gem *gp)
2059 {
2060 /* Reset the chip */
2061 gem_reset(gp);
2062
2063 /* Make sure ints are disabled */
2064 gem_disable_ints(gp);
2065
2066 /* Allocate & setup ring buffers */
2067 gem_init_rings(gp);
2068
2069 /* Configure pause thresholds */
2070 gem_init_pause_thresholds(gp);
2071
2072 /* Init DMA & MAC engines */
2073 gem_init_dma(gp);
2074 gem_init_mac(gp);
2075 }
2076
2077
2078 static void gem_stop_phy(struct gem *gp, int wol)
2079 {
2080 u32 mifcfg;
2081
2082 /* Let the chip settle down a bit, it seems that helps
2083 * for sleep mode on some models
2084 */
2085 msleep(10);
2086
2087 /* Make sure we aren't polling PHY status change. We
2088 * don't currently use that feature though
2089 */
2090 mifcfg = readl(gp->regs + MIF_CFG);
2091 mifcfg &= ~MIF_CFG_POLL;
2092 writel(mifcfg, gp->regs + MIF_CFG);
2093
2094 if (wol && gp->has_wol) {
2095 unsigned char *e = &gp->dev->dev_addr[0];
2096 u32 csr;
2097
2098 /* Setup wake-on-lan for MAGIC packet */
2099 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2100 gp->regs + MAC_RXCFG);
2101 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2102 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2103 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2104
2105 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2106 csr = WOL_WAKECSR_ENABLE;
2107 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2108 csr |= WOL_WAKECSR_MII;
2109 writel(csr, gp->regs + WOL_WAKECSR);
2110 } else {
2111 writel(0, gp->regs + MAC_RXCFG);
2112 (void)readl(gp->regs + MAC_RXCFG);
2113 /* Machine sleep will die in strange ways if we
2114 * dont wait a bit here, looks like the chip takes
2115 * some time to really shut down
2116 */
2117 msleep(10);
2118 }
2119
2120 writel(0, gp->regs + MAC_TXCFG);
2121 writel(0, gp->regs + MAC_XIFCFG);
2122 writel(0, gp->regs + TXDMA_CFG);
2123 writel(0, gp->regs + RXDMA_CFG);
2124
2125 if (!wol) {
2126 gem_reset(gp);
2127 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2128 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2129
2130 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2131 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2132
2133 /* According to Apple, we must set the MDIO pins to this begnign
2134 * state or we may 1) eat more current, 2) damage some PHYs
2135 */
2136 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2137 writel(0, gp->regs + MIF_BBCLK);
2138 writel(0, gp->regs + MIF_BBDATA);
2139 writel(0, gp->regs + MIF_BBOENAB);
2140 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2141 (void) readl(gp->regs + MAC_XIFCFG);
2142 }
2143 }
2144
2145 static int gem_do_start(struct net_device *dev)
2146 {
2147 struct gem *gp = netdev_priv(dev);
2148 int rc;
2149
2150 /* Enable the cell */
2151 gem_get_cell(gp);
2152
2153 /* Make sure PCI access and bus master are enabled */
2154 rc = pci_enable_device(gp->pdev);
2155 if (rc) {
2156 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2157
2158 /* Put cell and forget it for now, it will be considered as
2159 * still asleep, a new sleep cycle may bring it back
2160 */
2161 gem_put_cell(gp);
2162 return -ENXIO;
2163 }
2164 pci_set_master(gp->pdev);
2165
2166 /* Init & setup chip hardware */
2167 gem_reinit_chip(gp);
2168
2169 /* An interrupt might come in handy */
2170 rc = request_irq(gp->pdev->irq, gem_interrupt,
2171 IRQF_SHARED, dev->name, (void *)dev);
2172 if (rc) {
2173 netdev_err(dev, "failed to request irq !\n");
2174
2175 gem_reset(gp);
2176 gem_clean_rings(gp);
2177 gem_put_cell(gp);
2178 return rc;
2179 }
2180
2181 /* Mark us as attached again if we come from resume(), this has
2182 * no effect if we weren't detatched and needs to be done now.
2183 */
2184 netif_device_attach(dev);
2185
2186 /* Restart NAPI & queues */
2187 gem_netif_start(gp);
2188
2189 /* Detect & init PHY, start autoneg etc... this will
2190 * eventually result in starting DMA operations when
2191 * the link is up
2192 */
2193 gem_init_phy(gp);
2194
2195 return 0;
2196 }
2197
2198 static void gem_do_stop(struct net_device *dev, int wol)
2199 {
2200 struct gem *gp = netdev_priv(dev);
2201
2202 /* Stop NAPI and stop tx queue */
2203 gem_netif_stop(gp);
2204
2205 /* Make sure ints are disabled. We don't care about
2206 * synchronizing as NAPI is disabled, thus a stray
2207 * interrupt will do nothing bad (our irq handler
2208 * just schedules NAPI)
2209 */
2210 gem_disable_ints(gp);
2211
2212 /* Stop the link timer */
2213 del_timer_sync(&gp->link_timer);
2214
2215 /* We cannot cancel the reset task while holding the
2216 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2217 * if we did. This is not an issue however as the reset
2218 * task is synchronized vs. us (rtnl_lock) and will do
2219 * nothing if the device is down or suspended. We do
2220 * still clear reset_task_pending to avoid a spurrious
2221 * reset later on in case we do resume before it gets
2222 * scheduled.
2223 */
2224 gp->reset_task_pending = 0;
2225
2226 /* If we are going to sleep with WOL */
2227 gem_stop_dma(gp);
2228 msleep(10);
2229 if (!wol)
2230 gem_reset(gp);
2231 msleep(10);
2232
2233 /* Get rid of rings */
2234 gem_clean_rings(gp);
2235
2236 /* No irq needed anymore */
2237 free_irq(gp->pdev->irq, (void *) dev);
2238
2239 /* Shut the PHY down eventually and setup WOL */
2240 gem_stop_phy(gp, wol);
2241
2242 /* Make sure bus master is disabled */
2243 pci_disable_device(gp->pdev);
2244
2245 /* Cell not needed neither if no WOL */
2246 if (!wol)
2247 gem_put_cell(gp);
2248 }
2249
2250 static void gem_reset_task(struct work_struct *work)
2251 {
2252 struct gem *gp = container_of(work, struct gem, reset_task);
2253
2254 /* Lock out the network stack (essentially shield ourselves
2255 * against a racing open, close, control call, or suspend
2256 */
2257 rtnl_lock();
2258
2259 /* Skip the reset task if suspended or closed, or if it's
2260 * been cancelled by gem_do_stop (see comment there)
2261 */
2262 if (!netif_device_present(gp->dev) ||
2263 !netif_running(gp->dev) ||
2264 !gp->reset_task_pending) {
2265 rtnl_unlock();
2266 return;
2267 }
2268
2269 /* Stop the link timer */
2270 del_timer_sync(&gp->link_timer);
2271
2272 /* Stop NAPI and tx */
2273 gem_netif_stop(gp);
2274
2275 /* Reset the chip & rings */
2276 gem_reinit_chip(gp);
2277 if (gp->lstate == link_up)
2278 gem_set_link_modes(gp);
2279
2280 /* Restart NAPI and Tx */
2281 gem_netif_start(gp);
2282
2283 /* We are back ! */
2284 gp->reset_task_pending = 0;
2285
2286 /* If the link is not up, restart autoneg, else restart the
2287 * polling timer
2288 */
2289 if (gp->lstate != link_up)
2290 gem_begin_auto_negotiation(gp, NULL);
2291 else
2292 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2293
2294 rtnl_unlock();
2295 }
2296
2297 static int gem_open(struct net_device *dev)
2298 {
2299 /* We allow open while suspended, we just do nothing,
2300 * the chip will be initialized in resume()
2301 */
2302 if (netif_device_present(dev))
2303 return gem_do_start(dev);
2304 return 0;
2305 }
2306
2307 static int gem_close(struct net_device *dev)
2308 {
2309 if (netif_device_present(dev))
2310 gem_do_stop(dev, 0);
2311
2312 return 0;
2313 }
2314
2315 #ifdef CONFIG_PM
2316 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2317 {
2318 struct net_device *dev = pci_get_drvdata(pdev);
2319 struct gem *gp = netdev_priv(dev);
2320
2321 /* Lock the network stack first to avoid racing with open/close,
2322 * reset task and setting calls
2323 */
2324 rtnl_lock();
2325
2326 /* Not running, mark ourselves non-present, no need for
2327 * a lock here
2328 */
2329 if (!netif_running(dev)) {
2330 netif_device_detach(dev);
2331 rtnl_unlock();
2332 return 0;
2333 }
2334 netdev_info(dev, "suspending, WakeOnLan %s\n",
2335 (gp->wake_on_lan && netif_running(dev)) ?
2336 "enabled" : "disabled");
2337
2338 /* Tell the network stack we're gone. gem_do_stop() below will
2339 * synchronize with TX, stop NAPI etc...
2340 */
2341 netif_device_detach(dev);
2342
2343 /* Switch off chip, remember WOL setting */
2344 gp->asleep_wol = gp->wake_on_lan;
2345 gem_do_stop(dev, gp->asleep_wol);
2346
2347 /* Unlock the network stack */
2348 rtnl_unlock();
2349
2350 return 0;
2351 }
2352
2353 static int gem_resume(struct pci_dev *pdev)
2354 {
2355 struct net_device *dev = pci_get_drvdata(pdev);
2356 struct gem *gp = netdev_priv(dev);
2357
2358 /* See locking comment in gem_suspend */
2359 rtnl_lock();
2360
2361 /* Not running, mark ourselves present, no need for
2362 * a lock here
2363 */
2364 if (!netif_running(dev)) {
2365 netif_device_attach(dev);
2366 rtnl_unlock();
2367 return 0;
2368 }
2369
2370 /* Restart chip. If that fails there isn't much we can do, we
2371 * leave things stopped.
2372 */
2373 gem_do_start(dev);
2374
2375 /* If we had WOL enabled, the cell clock was never turned off during
2376 * sleep, so we end up beeing unbalanced. Fix that here
2377 */
2378 if (gp->asleep_wol)
2379 gem_put_cell(gp);
2380
2381 /* Unlock the network stack */
2382 rtnl_unlock();
2383
2384 return 0;
2385 }
2386 #endif /* CONFIG_PM */
2387
2388 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2389 {
2390 struct gem *gp = netdev_priv(dev);
2391
2392 /* I have seen this being called while the PM was in progress,
2393 * so we shield against this. Let's also not poke at registers
2394 * while the reset task is going on.
2395 *
2396 * TODO: Move stats collection elsewhere (link timer ?) and
2397 * make this a nop to avoid all those synchro issues
2398 */
2399 if (!netif_device_present(dev) || !netif_running(dev))
2400 goto bail;
2401
2402 /* Better safe than sorry... */
2403 if (WARN_ON(!gp->cell_enabled))
2404 goto bail;
2405
2406 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2407 writel(0, gp->regs + MAC_FCSERR);
2408
2409 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2410 writel(0, gp->regs + MAC_AERR);
2411
2412 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2413 writel(0, gp->regs + MAC_LERR);
2414
2415 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2416 dev->stats.collisions +=
2417 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2418 writel(0, gp->regs + MAC_ECOLL);
2419 writel(0, gp->regs + MAC_LCOLL);
2420 bail:
2421 return &dev->stats;
2422 }
2423
2424 static int gem_set_mac_address(struct net_device *dev, void *addr)
2425 {
2426 struct sockaddr *macaddr = (struct sockaddr *) addr;
2427 struct gem *gp = netdev_priv(dev);
2428 unsigned char *e = &dev->dev_addr[0];
2429
2430 if (!is_valid_ether_addr(macaddr->sa_data))
2431 return -EADDRNOTAVAIL;
2432
2433 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2434
2435 /* We'll just catch it later when the device is up'd or resumed */
2436 if (!netif_running(dev) || !netif_device_present(dev))
2437 return 0;
2438
2439 /* Better safe than sorry... */
2440 if (WARN_ON(!gp->cell_enabled))
2441 return 0;
2442
2443 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2444 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2445 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2446
2447 return 0;
2448 }
2449
2450 static void gem_set_multicast(struct net_device *dev)
2451 {
2452 struct gem *gp = netdev_priv(dev);
2453 u32 rxcfg, rxcfg_new;
2454 int limit = 10000;
2455
2456 if (!netif_running(dev) || !netif_device_present(dev))
2457 return;
2458
2459 /* Better safe than sorry... */
2460 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2461 return;
2462
2463 rxcfg = readl(gp->regs + MAC_RXCFG);
2464 rxcfg_new = gem_setup_multicast(gp);
2465 #ifdef STRIP_FCS
2466 rxcfg_new |= MAC_RXCFG_SFCS;
2467 #endif
2468 gp->mac_rx_cfg = rxcfg_new;
2469
2470 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2471 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2472 if (!limit--)
2473 break;
2474 udelay(10);
2475 }
2476
2477 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2478 rxcfg |= rxcfg_new;
2479
2480 writel(rxcfg, gp->regs + MAC_RXCFG);
2481 }
2482
2483 /* Jumbo-grams don't seem to work :-( */
2484 #define GEM_MIN_MTU 68
2485 #if 1
2486 #define GEM_MAX_MTU 1500
2487 #else
2488 #define GEM_MAX_MTU 9000
2489 #endif
2490
2491 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2492 {
2493 struct gem *gp = netdev_priv(dev);
2494
2495 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2496 return -EINVAL;
2497
2498 dev->mtu = new_mtu;
2499
2500 /* We'll just catch it later when the device is up'd or resumed */
2501 if (!netif_running(dev) || !netif_device_present(dev))
2502 return 0;
2503
2504 /* Better safe than sorry... */
2505 if (WARN_ON(!gp->cell_enabled))
2506 return 0;
2507
2508 gem_netif_stop(gp);
2509 gem_reinit_chip(gp);
2510 if (gp->lstate == link_up)
2511 gem_set_link_modes(gp);
2512 gem_netif_start(gp);
2513
2514 return 0;
2515 }
2516
2517 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2518 {
2519 struct gem *gp = netdev_priv(dev);
2520
2521 strcpy(info->driver, DRV_NAME);
2522 strcpy(info->version, DRV_VERSION);
2523 strcpy(info->bus_info, pci_name(gp->pdev));
2524 }
2525
2526 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2527 {
2528 struct gem *gp = netdev_priv(dev);
2529
2530 if (gp->phy_type == phy_mii_mdio0 ||
2531 gp->phy_type == phy_mii_mdio1) {
2532 if (gp->phy_mii.def)
2533 cmd->supported = gp->phy_mii.def->features;
2534 else
2535 cmd->supported = (SUPPORTED_10baseT_Half |
2536 SUPPORTED_10baseT_Full);
2537
2538 /* XXX hardcoded stuff for now */
2539 cmd->port = PORT_MII;
2540 cmd->transceiver = XCVR_EXTERNAL;
2541 cmd->phy_address = 0; /* XXX fixed PHYAD */
2542
2543 /* Return current PHY settings */
2544 cmd->autoneg = gp->want_autoneg;
2545 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2546 cmd->duplex = gp->phy_mii.duplex;
2547 cmd->advertising = gp->phy_mii.advertising;
2548
2549 /* If we started with a forced mode, we don't have a default
2550 * advertise set, we need to return something sensible so
2551 * userland can re-enable autoneg properly.
2552 */
2553 if (cmd->advertising == 0)
2554 cmd->advertising = cmd->supported;
2555 } else { // XXX PCS ?
2556 cmd->supported =
2557 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2558 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2559 SUPPORTED_Autoneg);
2560 cmd->advertising = cmd->supported;
2561 ethtool_cmd_speed_set(cmd, 0);
2562 cmd->duplex = cmd->port = cmd->phy_address =
2563 cmd->transceiver = cmd->autoneg = 0;
2564
2565 /* serdes means usually a Fibre connector, with most fixed */
2566 if (gp->phy_type == phy_serdes) {
2567 cmd->port = PORT_FIBRE;
2568 cmd->supported = (SUPPORTED_1000baseT_Half |
2569 SUPPORTED_1000baseT_Full |
2570 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2571 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2572 cmd->advertising = cmd->supported;
2573 cmd->transceiver = XCVR_INTERNAL;
2574 if (gp->lstate == link_up)
2575 ethtool_cmd_speed_set(cmd, SPEED_1000);
2576 cmd->duplex = DUPLEX_FULL;
2577 cmd->autoneg = 1;
2578 }
2579 }
2580 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2581
2582 return 0;
2583 }
2584
2585 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2586 {
2587 struct gem *gp = netdev_priv(dev);
2588 u32 speed = ethtool_cmd_speed(cmd);
2589
2590 /* Verify the settings we care about. */
2591 if (cmd->autoneg != AUTONEG_ENABLE &&
2592 cmd->autoneg != AUTONEG_DISABLE)
2593 return -EINVAL;
2594
2595 if (cmd->autoneg == AUTONEG_ENABLE &&
2596 cmd->advertising == 0)
2597 return -EINVAL;
2598
2599 if (cmd->autoneg == AUTONEG_DISABLE &&
2600 ((speed != SPEED_1000 &&
2601 speed != SPEED_100 &&
2602 speed != SPEED_10) ||
2603 (cmd->duplex != DUPLEX_HALF &&
2604 cmd->duplex != DUPLEX_FULL)))
2605 return -EINVAL;
2606
2607 /* Apply settings and restart link process. */
2608 if (netif_device_present(gp->dev)) {
2609 del_timer_sync(&gp->link_timer);
2610 gem_begin_auto_negotiation(gp, cmd);
2611 }
2612
2613 return 0;
2614 }
2615
2616 static int gem_nway_reset(struct net_device *dev)
2617 {
2618 struct gem *gp = netdev_priv(dev);
2619
2620 if (!gp->want_autoneg)
2621 return -EINVAL;
2622
2623 /* Restart link process */
2624 if (netif_device_present(gp->dev)) {
2625 del_timer_sync(&gp->link_timer);
2626 gem_begin_auto_negotiation(gp, NULL);
2627 }
2628
2629 return 0;
2630 }
2631
2632 static u32 gem_get_msglevel(struct net_device *dev)
2633 {
2634 struct gem *gp = netdev_priv(dev);
2635 return gp->msg_enable;
2636 }
2637
2638 static void gem_set_msglevel(struct net_device *dev, u32 value)
2639 {
2640 struct gem *gp = netdev_priv(dev);
2641 gp->msg_enable = value;
2642 }
2643
2644
2645 /* Add more when I understand how to program the chip */
2646 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2647
2648 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2649
2650 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2651 {
2652 struct gem *gp = netdev_priv(dev);
2653
2654 /* Add more when I understand how to program the chip */
2655 if (gp->has_wol) {
2656 wol->supported = WOL_SUPPORTED_MASK;
2657 wol->wolopts = gp->wake_on_lan;
2658 } else {
2659 wol->supported = 0;
2660 wol->wolopts = 0;
2661 }
2662 }
2663
2664 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 {
2666 struct gem *gp = netdev_priv(dev);
2667
2668 if (!gp->has_wol)
2669 return -EOPNOTSUPP;
2670 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2671 return 0;
2672 }
2673
2674 static const struct ethtool_ops gem_ethtool_ops = {
2675 .get_drvinfo = gem_get_drvinfo,
2676 .get_link = ethtool_op_get_link,
2677 .get_settings = gem_get_settings,
2678 .set_settings = gem_set_settings,
2679 .nway_reset = gem_nway_reset,
2680 .get_msglevel = gem_get_msglevel,
2681 .set_msglevel = gem_set_msglevel,
2682 .get_wol = gem_get_wol,
2683 .set_wol = gem_set_wol,
2684 };
2685
2686 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2687 {
2688 struct gem *gp = netdev_priv(dev);
2689 struct mii_ioctl_data *data = if_mii(ifr);
2690 int rc = -EOPNOTSUPP;
2691
2692 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2693 * netif_device_present() is true and holds rtnl_lock for us
2694 * so we have nothing to worry about
2695 */
2696
2697 switch (cmd) {
2698 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2699 data->phy_id = gp->mii_phy_addr;
2700 /* Fallthrough... */
2701
2702 case SIOCGMIIREG: /* Read MII PHY register. */
2703 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2704 data->reg_num & 0x1f);
2705 rc = 0;
2706 break;
2707
2708 case SIOCSMIIREG: /* Write MII PHY register. */
2709 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2710 data->val_in);
2711 rc = 0;
2712 break;
2713 }
2714 return rc;
2715 }
2716
2717 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2718 /* Fetch MAC address from vital product data of PCI ROM. */
2719 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2720 {
2721 int this_offset;
2722
2723 for (this_offset = 0x20; this_offset < len; this_offset++) {
2724 void __iomem *p = rom_base + this_offset;
2725 int i;
2726
2727 if (readb(p + 0) != 0x90 ||
2728 readb(p + 1) != 0x00 ||
2729 readb(p + 2) != 0x09 ||
2730 readb(p + 3) != 0x4e ||
2731 readb(p + 4) != 0x41 ||
2732 readb(p + 5) != 0x06)
2733 continue;
2734
2735 this_offset += 6;
2736 p += 6;
2737
2738 for (i = 0; i < 6; i++)
2739 dev_addr[i] = readb(p + i);
2740 return 1;
2741 }
2742 return 0;
2743 }
2744
2745 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2746 {
2747 size_t size;
2748 void __iomem *p = pci_map_rom(pdev, &size);
2749
2750 if (p) {
2751 int found;
2752
2753 found = readb(p) == 0x55 &&
2754 readb(p + 1) == 0xaa &&
2755 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2756 pci_unmap_rom(pdev, p);
2757 if (found)
2758 return;
2759 }
2760
2761 /* Sun MAC prefix then 3 random bytes. */
2762 dev_addr[0] = 0x08;
2763 dev_addr[1] = 0x00;
2764 dev_addr[2] = 0x20;
2765 get_random_bytes(dev_addr + 3, 3);
2766 }
2767 #endif /* not Sparc and not PPC */
2768
2769 static int __devinit gem_get_device_address(struct gem *gp)
2770 {
2771 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2772 struct net_device *dev = gp->dev;
2773 const unsigned char *addr;
2774
2775 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2776 if (addr == NULL) {
2777 #ifdef CONFIG_SPARC
2778 addr = idprom->id_ethaddr;
2779 #else
2780 printk("\n");
2781 pr_err("%s: can't get mac-address\n", dev->name);
2782 return -1;
2783 #endif
2784 }
2785 memcpy(dev->dev_addr, addr, 6);
2786 #else
2787 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2788 #endif
2789 return 0;
2790 }
2791
2792 static void gem_remove_one(struct pci_dev *pdev)
2793 {
2794 struct net_device *dev = pci_get_drvdata(pdev);
2795
2796 if (dev) {
2797 struct gem *gp = netdev_priv(dev);
2798
2799 unregister_netdev(dev);
2800
2801 /* Ensure reset task is truely gone */
2802 cancel_work_sync(&gp->reset_task);
2803
2804 /* Free resources */
2805 pci_free_consistent(pdev,
2806 sizeof(struct gem_init_block),
2807 gp->init_block,
2808 gp->gblock_dvma);
2809 iounmap(gp->regs);
2810 pci_release_regions(pdev);
2811 free_netdev(dev);
2812
2813 pci_set_drvdata(pdev, NULL);
2814 }
2815 }
2816
2817 static const struct net_device_ops gem_netdev_ops = {
2818 .ndo_open = gem_open,
2819 .ndo_stop = gem_close,
2820 .ndo_start_xmit = gem_start_xmit,
2821 .ndo_get_stats = gem_get_stats,
2822 .ndo_set_multicast_list = gem_set_multicast,
2823 .ndo_do_ioctl = gem_ioctl,
2824 .ndo_tx_timeout = gem_tx_timeout,
2825 .ndo_change_mtu = gem_change_mtu,
2826 .ndo_validate_addr = eth_validate_addr,
2827 .ndo_set_mac_address = gem_set_mac_address,
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2829 .ndo_poll_controller = gem_poll_controller,
2830 #endif
2831 };
2832
2833 static int __devinit gem_init_one(struct pci_dev *pdev,
2834 const struct pci_device_id *ent)
2835 {
2836 unsigned long gemreg_base, gemreg_len;
2837 struct net_device *dev;
2838 struct gem *gp;
2839 int err, pci_using_dac;
2840
2841 printk_once(KERN_INFO "%s", version);
2842
2843 /* Apple gmac note: during probe, the chip is powered up by
2844 * the arch code to allow the code below to work (and to let
2845 * the chip be probed on the config space. It won't stay powered
2846 * up until the interface is brought up however, so we can't rely
2847 * on register configuration done at this point.
2848 */
2849 err = pci_enable_device(pdev);
2850 if (err) {
2851 pr_err("Cannot enable MMIO operation, aborting\n");
2852 return err;
2853 }
2854 pci_set_master(pdev);
2855
2856 /* Configure DMA attributes. */
2857
2858 /* All of the GEM documentation states that 64-bit DMA addressing
2859 * is fully supported and should work just fine. However the
2860 * front end for RIO based GEMs is different and only supports
2861 * 32-bit addressing.
2862 *
2863 * For now we assume the various PPC GEMs are 32-bit only as well.
2864 */
2865 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2866 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2867 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2868 pci_using_dac = 1;
2869 } else {
2870 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2871 if (err) {
2872 pr_err("No usable DMA configuration, aborting\n");
2873 goto err_disable_device;
2874 }
2875 pci_using_dac = 0;
2876 }
2877
2878 gemreg_base = pci_resource_start(pdev, 0);
2879 gemreg_len = pci_resource_len(pdev, 0);
2880
2881 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2882 pr_err("Cannot find proper PCI device base address, aborting\n");
2883 err = -ENODEV;
2884 goto err_disable_device;
2885 }
2886
2887 dev = alloc_etherdev(sizeof(*gp));
2888 if (!dev) {
2889 pr_err("Etherdev alloc failed, aborting\n");
2890 err = -ENOMEM;
2891 goto err_disable_device;
2892 }
2893 SET_NETDEV_DEV(dev, &pdev->dev);
2894
2895 gp = netdev_priv(dev);
2896
2897 err = pci_request_regions(pdev, DRV_NAME);
2898 if (err) {
2899 pr_err("Cannot obtain PCI resources, aborting\n");
2900 goto err_out_free_netdev;
2901 }
2902
2903 gp->pdev = pdev;
2904 dev->base_addr = (long) pdev;
2905 gp->dev = dev;
2906
2907 gp->msg_enable = DEFAULT_MSG;
2908
2909 init_timer(&gp->link_timer);
2910 gp->link_timer.function = gem_link_timer;
2911 gp->link_timer.data = (unsigned long) gp;
2912
2913 INIT_WORK(&gp->reset_task, gem_reset_task);
2914
2915 gp->lstate = link_down;
2916 gp->timer_ticks = 0;
2917 netif_carrier_off(dev);
2918
2919 gp->regs = ioremap(gemreg_base, gemreg_len);
2920 if (!gp->regs) {
2921 pr_err("Cannot map device registers, aborting\n");
2922 err = -EIO;
2923 goto err_out_free_res;
2924 }
2925
2926 /* On Apple, we want a reference to the Open Firmware device-tree
2927 * node. We use it for clock control.
2928 */
2929 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2930 gp->of_node = pci_device_to_OF_node(pdev);
2931 #endif
2932
2933 /* Only Apple version supports WOL afaik */
2934 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2935 gp->has_wol = 1;
2936
2937 /* Make sure cell is enabled */
2938 gem_get_cell(gp);
2939
2940 /* Make sure everything is stopped and in init state */
2941 gem_reset(gp);
2942
2943 /* Fill up the mii_phy structure (even if we won't use it) */
2944 gp->phy_mii.dev = dev;
2945 gp->phy_mii.mdio_read = _phy_read;
2946 gp->phy_mii.mdio_write = _phy_write;
2947 #ifdef CONFIG_PPC_PMAC
2948 gp->phy_mii.platform_data = gp->of_node;
2949 #endif
2950 /* By default, we start with autoneg */
2951 gp->want_autoneg = 1;
2952
2953 /* Check fifo sizes, PHY type, etc... */
2954 if (gem_check_invariants(gp)) {
2955 err = -ENODEV;
2956 goto err_out_iounmap;
2957 }
2958
2959 /* It is guaranteed that the returned buffer will be at least
2960 * PAGE_SIZE aligned.
2961 */
2962 gp->init_block = (struct gem_init_block *)
2963 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2964 &gp->gblock_dvma);
2965 if (!gp->init_block) {
2966 pr_err("Cannot allocate init block, aborting\n");
2967 err = -ENOMEM;
2968 goto err_out_iounmap;
2969 }
2970
2971 if (gem_get_device_address(gp))
2972 goto err_out_free_consistent;
2973
2974 dev->netdev_ops = &gem_netdev_ops;
2975 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2976 dev->ethtool_ops = &gem_ethtool_ops;
2977 dev->watchdog_timeo = 5 * HZ;
2978 dev->irq = pdev->irq;
2979 dev->dma = 0;
2980
2981 /* Set that now, in case PM kicks in now */
2982 pci_set_drvdata(pdev, dev);
2983
2984 /* We can do scatter/gather and HW checksum */
2985 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2986 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2987 if (pci_using_dac)
2988 dev->features |= NETIF_F_HIGHDMA;
2989
2990 /* Register with kernel */
2991 if (register_netdev(dev)) {
2992 pr_err("Cannot register net device, aborting\n");
2993 err = -ENOMEM;
2994 goto err_out_free_consistent;
2995 }
2996
2997 /* Undo the get_cell with appropriate locking (we could use
2998 * ndo_init/uninit but that would be even more clumsy imho)
2999 */
3000 rtnl_lock();
3001 gem_put_cell(gp);
3002 rtnl_unlock();
3003
3004 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3005 dev->dev_addr);
3006 return 0;
3007
3008 err_out_free_consistent:
3009 gem_remove_one(pdev);
3010 err_out_iounmap:
3011 gem_put_cell(gp);
3012 iounmap(gp->regs);
3013
3014 err_out_free_res:
3015 pci_release_regions(pdev);
3016
3017 err_out_free_netdev:
3018 free_netdev(dev);
3019 err_disable_device:
3020 pci_disable_device(pdev);
3021 return err;
3022
3023 }
3024
3025
3026 static struct pci_driver gem_driver = {
3027 .name = GEM_MODULE_NAME,
3028 .id_table = gem_pci_tbl,
3029 .probe = gem_init_one,
3030 .remove = gem_remove_one,
3031 #ifdef CONFIG_PM
3032 .suspend = gem_suspend,
3033 .resume = gem_resume,
3034 #endif /* CONFIG_PM */
3035 };
3036
3037 static int __init gem_init(void)
3038 {
3039 return pci_register_driver(&gem_driver);
3040 }
3041
3042 static void __exit gem_cleanup(void)
3043 {
3044 pci_unregister_driver(&gem_driver);
3045 }
3046
3047 module_init(gem_init);
3048 module_exit(gem_cleanup);
This page took 0.137338 seconds and 5 git commands to generate.