Tsi108_eth: remove not needed code
[deliverable/linux.git] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
8 any later version.
9
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
24 *
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30 *
31 */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50
51 #include <asm/system.h>
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000 /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN 256
60
61 /* NOTE: The driver currently does not support receiving packets
62 * larger than the buffer size, so don't decrease this (unless you
63 * want to add such support).
64 */
65 #define TSI108_RXBUF_SIZE 1536
66
67 #define TSI108_TXRING_LEN 256
68
69 #define TSI108_TX_INT_FREQ 64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78 void __iomem *regs; /* Base of normal regs */
79 void __iomem *phyregs; /* Base of register bank used for PHY access */
80
81 struct net_device *dev;
82 struct napi_struct napi;
83
84 unsigned int phy; /* Index of PHY for this interface */
85 unsigned int irq_num;
86 unsigned int id;
87 unsigned int phy_type;
88
89 struct timer_list timer;/* Timer that triggers the check phy function */
90 unsigned int rxtail; /* Next entry in rxring to read */
91 unsigned int rxhead; /* Next entry in rxring to give a new buffer */
92 unsigned int rxfree; /* Number of free, allocated RX buffers */
93
94 unsigned int rxpending; /* Non-zero if there are still descriptors
95 * to be processed from a previous descriptor
96 * interrupt condition that has been cleared */
97
98 unsigned int txtail; /* Next TX descriptor to check status on */
99 unsigned int txhead; /* Next TX descriptor to use */
100
101 /* Number of free TX descriptors. This could be calculated from
102 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 * full and empty conditions, but it's simpler to just keep track
104 * explicitly. */
105
106 unsigned int txfree;
107
108 unsigned int phy_ok; /* The PHY is currently powered on. */
109
110 /* PHY status (duplex is 1 for half, 2 for full,
111 * so that the default 0 indicates that neither has
112 * yet been configured). */
113
114 unsigned int link_up;
115 unsigned int speed;
116 unsigned int duplex;
117
118 tx_desc *txring;
119 rx_desc *rxring;
120 struct sk_buff *txskbs[TSI108_TXRING_LEN];
121 struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123 dma_addr_t txdma, rxdma;
124
125 /* txlock nests in misclock and phy_lock */
126
127 spinlock_t txlock, misclock;
128
129 /* stats is used to hold the upper bits of each hardware counter,
130 * and tmpstats is used to hold the full values for returning
131 * to the caller of get_stats(). They must be separate in case
132 * an overflow interrupt occurs before the stats are consumed.
133 */
134
135 struct net_device_stats stats;
136 struct net_device_stats tmpstats;
137
138 /* These stats are kept separate in hardware, thus require individual
139 * fields for handling carry. They are combined in get_stats.
140 */
141
142 unsigned long rx_fcs; /* Add to rx_frame_errors */
143 unsigned long rx_short_fcs; /* Add to rx_frame_errors */
144 unsigned long rx_long_fcs; /* Add to rx_frame_errors */
145 unsigned long rx_underruns; /* Add to rx_length_errors */
146 unsigned long rx_overruns; /* Add to rx_length_errors */
147
148 unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */
149 unsigned long tx_pause_drop; /* Add to tx_aborted_errors */
150
151 unsigned long mc_hash[16];
152 u32 msg_enable; /* debug message level */
153 struct mii_if_info mii_if;
154 unsigned int init_media;
155 };
156
157 /* Structure for a device driver */
158
159 static struct platform_driver tsi_eth_driver = {
160 .probe = tsi108_init_one,
161 .remove = tsi108_ether_remove,
162 .driver = {
163 .name = "tsi-ethernet",
164 },
165 };
166
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168
169 static void dump_eth_one(struct net_device *dev)
170 {
171 struct tsi108_prv_data *data = netdev_priv(dev);
172
173 printk("Dumping %s...\n", dev->name);
174 printk("intstat %x intmask %x phy_ok %d"
175 " link %d speed %d duplex %d\n",
176 TSI_READ(TSI108_EC_INTSTAT),
177 TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
178 data->link_up, data->speed, data->duplex);
179
180 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
181 data->txhead, data->txtail, data->txfree,
182 TSI_READ(TSI108_EC_TXSTAT),
183 TSI_READ(TSI108_EC_TXESTAT),
184 TSI_READ(TSI108_EC_TXERR));
185
186 printk("RX: head %d, tail %d, free %d, stat %x,"
187 " estat %x, err %x, pending %d\n\n",
188 data->rxhead, data->rxtail, data->rxfree,
189 TSI_READ(TSI108_EC_RXSTAT),
190 TSI_READ(TSI108_EC_RXESTAT),
191 TSI_READ(TSI108_EC_RXERR), data->rxpending);
192 }
193
194 /* Synchronization is needed between the thread and up/down events.
195 * Note that the PHY is accessed through the same registers for both
196 * interfaces, so this can't be made interface-specific.
197 */
198
199 static DEFINE_SPINLOCK(phy_lock);
200
201 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
202 {
203 unsigned i;
204
205 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
206 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
207 (reg << TSI108_MAC_MII_ADDR_REG));
208 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
209 TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
210 for (i = 0; i < 100; i++) {
211 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212 (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
213 break;
214 udelay(10);
215 }
216
217 if (i == 100)
218 return 0xffff;
219 else
220 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
221 }
222
223 static void tsi108_write_mii(struct tsi108_prv_data *data,
224 int reg, u16 val)
225 {
226 unsigned i = 100;
227 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
228 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
229 (reg << TSI108_MAC_MII_ADDR_REG));
230 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
231 while (i--) {
232 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
233 TSI108_MAC_MII_IND_BUSY))
234 break;
235 udelay(10);
236 }
237 }
238
239 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
240 {
241 struct tsi108_prv_data *data = netdev_priv(dev);
242 return tsi108_read_mii(data, reg);
243 }
244
245 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
246 {
247 struct tsi108_prv_data *data = netdev_priv(dev);
248 tsi108_write_mii(data, reg, val);
249 }
250
251 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
252 int reg, u16 val)
253 {
254 unsigned i = 1000;
255 TSI_WRITE(TSI108_MAC_MII_ADDR,
256 (0x1e << TSI108_MAC_MII_ADDR_PHY)
257 | (reg << TSI108_MAC_MII_ADDR_REG));
258 TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
259 while(i--) {
260 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
261 return;
262 udelay(10);
263 }
264 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
265 }
266
267 static int mii_speed(struct mii_if_info *mii)
268 {
269 int advert, lpa, val, media;
270 int lpa2 = 0;
271 int speed;
272
273 if (!mii_link_ok(mii))
274 return 0;
275
276 val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
277 if ((val & BMSR_ANEGCOMPLETE) == 0)
278 return 0;
279
280 advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
281 lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
282 media = mii_nway_result(advert & lpa);
283
284 if (mii->supports_gmii)
285 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
286
287 speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
288 (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
289 return speed;
290 }
291
292 static void tsi108_check_phy(struct net_device *dev)
293 {
294 struct tsi108_prv_data *data = netdev_priv(dev);
295 u32 mac_cfg2_reg, portctrl_reg;
296 u32 duplex;
297 u32 speed;
298 unsigned long flags;
299
300 spin_lock_irqsave(&phy_lock, flags);
301
302 if (!data->phy_ok)
303 goto out;
304
305 duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
306 data->init_media = 0;
307
308 if (netif_carrier_ok(dev)) {
309
310 speed = mii_speed(&data->mii_if);
311
312 if ((speed != data->speed) || duplex) {
313
314 mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
315 portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
316
317 mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
318
319 if (speed == 1000) {
320 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
321 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
322 } else {
323 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
324 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
325 }
326
327 data->speed = speed;
328
329 if (data->mii_if.full_duplex) {
330 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
331 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
332 data->duplex = 2;
333 } else {
334 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
335 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
336 data->duplex = 1;
337 }
338
339 TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
340 TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
341
342 if (data->link_up == 0) {
343 /* The manual says it can take 3-4 usecs for the speed change
344 * to take effect.
345 */
346 udelay(5);
347
348 spin_lock(&data->txlock);
349 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
350 netif_wake_queue(dev);
351
352 data->link_up = 1;
353 spin_unlock(&data->txlock);
354 }
355 }
356
357 } else {
358 if (data->link_up == 1) {
359 netif_stop_queue(dev);
360 data->link_up = 0;
361 printk(KERN_NOTICE "%s : link is down\n", dev->name);
362 }
363
364 goto out;
365 }
366
367
368 out:
369 spin_unlock_irqrestore(&phy_lock, flags);
370 }
371
372 static inline void
373 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
374 unsigned long *upper)
375 {
376 if (carry & carry_bit)
377 *upper += carry_shift;
378 }
379
380 static void tsi108_stat_carry(struct net_device *dev)
381 {
382 struct tsi108_prv_data *data = netdev_priv(dev);
383 u32 carry1, carry2;
384
385 spin_lock_irq(&data->misclock);
386
387 carry1 = TSI_READ(TSI108_STAT_CARRY1);
388 carry2 = TSI_READ(TSI108_STAT_CARRY2);
389
390 TSI_WRITE(TSI108_STAT_CARRY1, carry1);
391 TSI_WRITE(TSI108_STAT_CARRY2, carry2);
392
393 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
394 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
395
396 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
397 TSI108_STAT_RXPKTS_CARRY,
398 &data->stats.rx_packets);
399
400 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
401 TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
402
403 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
404 TSI108_STAT_RXMCAST_CARRY,
405 &data->stats.multicast);
406
407 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
408 TSI108_STAT_RXALIGN_CARRY,
409 &data->stats.rx_frame_errors);
410
411 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
412 TSI108_STAT_RXLENGTH_CARRY,
413 &data->stats.rx_length_errors);
414
415 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
416 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
417
418 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
419 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
420
421 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
422 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
423
424 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
425 TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
426
427 tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
428 TSI108_STAT_RXDROP_CARRY,
429 &data->stats.rx_missed_errors);
430
431 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
432 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
433
434 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
435 TSI108_STAT_TXPKTS_CARRY,
436 &data->stats.tx_packets);
437
438 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
439 TSI108_STAT_TXEXDEF_CARRY,
440 &data->stats.tx_aborted_errors);
441
442 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
443 TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
444
445 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
446 TSI108_STAT_TXTCOL_CARRY,
447 &data->stats.collisions);
448
449 tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
450 TSI108_STAT_TXPAUSEDROP_CARRY,
451 &data->tx_pause_drop);
452
453 spin_unlock_irq(&data->misclock);
454 }
455
456 /* Read a stat counter atomically with respect to carries.
457 * data->misclock must be held.
458 */
459 static inline unsigned long
460 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
461 int carry_shift, unsigned long *upper)
462 {
463 int carryreg;
464 unsigned long val;
465
466 if (reg < 0xb0)
467 carryreg = TSI108_STAT_CARRY1;
468 else
469 carryreg = TSI108_STAT_CARRY2;
470
471 again:
472 val = TSI_READ(reg) | *upper;
473
474 /* Check to see if it overflowed, but the interrupt hasn't
475 * been serviced yet. If so, handle the carry here, and
476 * try again.
477 */
478
479 if (unlikely(TSI_READ(carryreg) & carry_bit)) {
480 *upper += carry_shift;
481 TSI_WRITE(carryreg, carry_bit);
482 goto again;
483 }
484
485 return val;
486 }
487
488 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
489 {
490 unsigned long excol;
491
492 struct tsi108_prv_data *data = netdev_priv(dev);
493 spin_lock_irq(&data->misclock);
494
495 data->tmpstats.rx_packets =
496 tsi108_read_stat(data, TSI108_STAT_RXPKTS,
497 TSI108_STAT_CARRY1_RXPKTS,
498 TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
499
500 data->tmpstats.tx_packets =
501 tsi108_read_stat(data, TSI108_STAT_TXPKTS,
502 TSI108_STAT_CARRY2_TXPKTS,
503 TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
504
505 data->tmpstats.rx_bytes =
506 tsi108_read_stat(data, TSI108_STAT_RXBYTES,
507 TSI108_STAT_CARRY1_RXBYTES,
508 TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
509
510 data->tmpstats.tx_bytes =
511 tsi108_read_stat(data, TSI108_STAT_TXBYTES,
512 TSI108_STAT_CARRY2_TXBYTES,
513 TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
514
515 data->tmpstats.multicast =
516 tsi108_read_stat(data, TSI108_STAT_RXMCAST,
517 TSI108_STAT_CARRY1_RXMCAST,
518 TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
519
520 excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
521 TSI108_STAT_CARRY2_TXEXCOL,
522 TSI108_STAT_TXEXCOL_CARRY,
523 &data->tx_coll_abort);
524
525 data->tmpstats.collisions =
526 tsi108_read_stat(data, TSI108_STAT_TXTCOL,
527 TSI108_STAT_CARRY2_TXTCOL,
528 TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
529
530 data->tmpstats.collisions += excol;
531
532 data->tmpstats.rx_length_errors =
533 tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
534 TSI108_STAT_CARRY1_RXLENGTH,
535 TSI108_STAT_RXLENGTH_CARRY,
536 &data->stats.rx_length_errors);
537
538 data->tmpstats.rx_length_errors +=
539 tsi108_read_stat(data, TSI108_STAT_RXRUNT,
540 TSI108_STAT_CARRY1_RXRUNT,
541 TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
542
543 data->tmpstats.rx_length_errors +=
544 tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
545 TSI108_STAT_CARRY1_RXJUMBO,
546 TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
547
548 data->tmpstats.rx_frame_errors =
549 tsi108_read_stat(data, TSI108_STAT_RXALIGN,
550 TSI108_STAT_CARRY1_RXALIGN,
551 TSI108_STAT_RXALIGN_CARRY,
552 &data->stats.rx_frame_errors);
553
554 data->tmpstats.rx_frame_errors +=
555 tsi108_read_stat(data, TSI108_STAT_RXFCS,
556 TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
557 &data->rx_fcs);
558
559 data->tmpstats.rx_frame_errors +=
560 tsi108_read_stat(data, TSI108_STAT_RXFRAG,
561 TSI108_STAT_CARRY1_RXFRAG,
562 TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
563
564 data->tmpstats.rx_missed_errors =
565 tsi108_read_stat(data, TSI108_STAT_RXDROP,
566 TSI108_STAT_CARRY1_RXDROP,
567 TSI108_STAT_RXDROP_CARRY,
568 &data->stats.rx_missed_errors);
569
570 /* These three are maintained by software. */
571 data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
572 data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
573
574 data->tmpstats.tx_aborted_errors =
575 tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
576 TSI108_STAT_CARRY2_TXEXDEF,
577 TSI108_STAT_TXEXDEF_CARRY,
578 &data->stats.tx_aborted_errors);
579
580 data->tmpstats.tx_aborted_errors +=
581 tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
582 TSI108_STAT_CARRY2_TXPAUSE,
583 TSI108_STAT_TXPAUSEDROP_CARRY,
584 &data->tx_pause_drop);
585
586 data->tmpstats.tx_aborted_errors += excol;
587
588 data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
589 data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
590 data->tmpstats.rx_crc_errors +
591 data->tmpstats.rx_frame_errors +
592 data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
593
594 spin_unlock_irq(&data->misclock);
595 return &data->tmpstats;
596 }
597
598 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
599 {
600 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
601 TSI108_EC_RXQ_PTRHIGH_VALID);
602
603 TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
604 | TSI108_EC_RXCTRL_QUEUE0);
605 }
606
607 static void tsi108_restart_tx(struct tsi108_prv_data * data)
608 {
609 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
610 TSI108_EC_TXQ_PTRHIGH_VALID);
611
612 TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
613 TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
614 }
615
616 /* txlock must be held by caller, with IRQs disabled, and
617 * with permission to re-enable them when the lock is dropped.
618 */
619 static void tsi108_complete_tx(struct net_device *dev)
620 {
621 struct tsi108_prv_data *data = netdev_priv(dev);
622 int tx;
623 struct sk_buff *skb;
624 int release = 0;
625
626 while (!data->txfree || data->txhead != data->txtail) {
627 tx = data->txtail;
628
629 if (data->txring[tx].misc & TSI108_TX_OWN)
630 break;
631
632 skb = data->txskbs[tx];
633
634 if (!(data->txring[tx].misc & TSI108_TX_OK))
635 printk("%s: bad tx packet, misc %x\n",
636 dev->name, data->txring[tx].misc);
637
638 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
639 data->txfree++;
640
641 if (data->txring[tx].misc & TSI108_TX_EOF) {
642 dev_kfree_skb_any(skb);
643 release++;
644 }
645 }
646
647 if (release) {
648 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
649 netif_wake_queue(dev);
650 }
651 }
652
653 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
654 {
655 struct tsi108_prv_data *data = netdev_priv(dev);
656 int frags = skb_shinfo(skb)->nr_frags + 1;
657 int i;
658
659 if (!data->phy_ok && net_ratelimit())
660 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
661
662 if (!data->link_up) {
663 printk(KERN_ERR "%s: Transmit while link is down!\n",
664 dev->name);
665 netif_stop_queue(dev);
666 return NETDEV_TX_BUSY;
667 }
668
669 if (data->txfree < MAX_SKB_FRAGS + 1) {
670 netif_stop_queue(dev);
671
672 if (net_ratelimit())
673 printk(KERN_ERR "%s: Transmit with full tx ring!\n",
674 dev->name);
675 return NETDEV_TX_BUSY;
676 }
677
678 if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
679 netif_stop_queue(dev);
680 }
681
682 spin_lock_irq(&data->txlock);
683
684 for (i = 0; i < frags; i++) {
685 int misc = 0;
686 int tx = data->txhead;
687
688 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
689 * the interrupt bit. TX descriptor-complete interrupts are
690 * enabled when the queue fills up, and masked when there is
691 * still free space. This way, when saturating the outbound
692 * link, the tx interrupts are kept to a reasonable level.
693 * When the queue is not full, reclamation of skbs still occurs
694 * as new packets are transmitted, or on a queue-empty
695 * interrupt.
696 */
697
698 if ((tx % TSI108_TX_INT_FREQ == 0) &&
699 ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
700 misc = TSI108_TX_INT;
701
702 data->txskbs[tx] = skb;
703
704 if (i == 0) {
705 data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
706 skb->len - skb->data_len, DMA_TO_DEVICE);
707 data->txring[tx].len = skb->len - skb->data_len;
708 misc |= TSI108_TX_SOF;
709 } else {
710 skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
711
712 data->txring[tx].buf0 =
713 dma_map_page(NULL, frag->page, frag->page_offset,
714 frag->size, DMA_TO_DEVICE);
715 data->txring[tx].len = frag->size;
716 }
717
718 if (i == frags - 1)
719 misc |= TSI108_TX_EOF;
720
721 if (netif_msg_pktdata(data)) {
722 int i;
723 printk("%s: Tx Frame contents (%d)\n", dev->name,
724 skb->len);
725 for (i = 0; i < skb->len; i++)
726 printk(" %2.2x", skb->data[i]);
727 printk(".\n");
728 }
729 data->txring[tx].misc = misc | TSI108_TX_OWN;
730
731 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
732 data->txfree--;
733 }
734
735 tsi108_complete_tx(dev);
736
737 /* This must be done after the check for completed tx descriptors,
738 * so that the tail pointer is correct.
739 */
740
741 if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
742 tsi108_restart_tx(data);
743
744 spin_unlock_irq(&data->txlock);
745 return NETDEV_TX_OK;
746 }
747
748 static int tsi108_complete_rx(struct net_device *dev, int budget)
749 {
750 struct tsi108_prv_data *data = netdev_priv(dev);
751 int done = 0;
752
753 while (data->rxfree && done != budget) {
754 int rx = data->rxtail;
755 struct sk_buff *skb;
756
757 if (data->rxring[rx].misc & TSI108_RX_OWN)
758 break;
759
760 skb = data->rxskbs[rx];
761 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
762 data->rxfree--;
763 done++;
764
765 if (data->rxring[rx].misc & TSI108_RX_BAD) {
766 spin_lock_irq(&data->misclock);
767
768 if (data->rxring[rx].misc & TSI108_RX_CRC)
769 data->stats.rx_crc_errors++;
770 if (data->rxring[rx].misc & TSI108_RX_OVER)
771 data->stats.rx_fifo_errors++;
772
773 spin_unlock_irq(&data->misclock);
774
775 dev_kfree_skb_any(skb);
776 continue;
777 }
778 if (netif_msg_pktdata(data)) {
779 int i;
780 printk("%s: Rx Frame contents (%d)\n",
781 dev->name, data->rxring[rx].len);
782 for (i = 0; i < data->rxring[rx].len; i++)
783 printk(" %2.2x", skb->data[i]);
784 printk(".\n");
785 }
786
787 skb_put(skb, data->rxring[rx].len);
788 skb->protocol = eth_type_trans(skb, dev);
789 netif_receive_skb(skb);
790 dev->last_rx = jiffies;
791 }
792
793 return done;
794 }
795
796 static int tsi108_refill_rx(struct net_device *dev, int budget)
797 {
798 struct tsi108_prv_data *data = netdev_priv(dev);
799 int done = 0;
800
801 while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
802 int rx = data->rxhead;
803 struct sk_buff *skb;
804
805 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
806 if (!skb)
807 break;
808
809 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
810
811 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
812 TSI108_RX_SKB_SIZE,
813 DMA_FROM_DEVICE);
814
815 /* Sometimes the hardware sets blen to zero after packet
816 * reception, even though the manual says that it's only ever
817 * modified by the driver.
818 */
819
820 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
821 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
822
823 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
824 data->rxfree++;
825 done++;
826 }
827
828 if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
829 TSI108_EC_RXSTAT_QUEUE0))
830 tsi108_restart_rx(data, dev);
831
832 return done;
833 }
834
835 static int tsi108_poll(struct napi_struct *napi, int budget)
836 {
837 struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
838 struct net_device *dev = data->dev;
839 u32 estat = TSI_READ(TSI108_EC_RXESTAT);
840 u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
841 int num_received = 0, num_filled = 0;
842
843 intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
844 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
845
846 TSI_WRITE(TSI108_EC_RXESTAT, estat);
847 TSI_WRITE(TSI108_EC_INTSTAT, intstat);
848
849 if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
850 num_received = tsi108_complete_rx(dev, budget);
851
852 /* This should normally fill no more slots than the number of
853 * packets received in tsi108_complete_rx(). The exception
854 * is when we previously ran out of memory for RX SKBs. In that
855 * case, it's helpful to obey the budget, not only so that the
856 * CPU isn't hogged, but so that memory (which may still be low)
857 * is not hogged by one device.
858 *
859 * A work unit is considered to be two SKBs to allow us to catch
860 * up when the ring has shrunk due to out-of-memory but we're
861 * still removing the full budget's worth of packets each time.
862 */
863
864 if (data->rxfree < TSI108_RXRING_LEN)
865 num_filled = tsi108_refill_rx(dev, budget * 2);
866
867 if (intstat & TSI108_INT_RXERROR) {
868 u32 err = TSI_READ(TSI108_EC_RXERR);
869 TSI_WRITE(TSI108_EC_RXERR, err);
870
871 if (err) {
872 if (net_ratelimit())
873 printk(KERN_DEBUG "%s: RX error %x\n",
874 dev->name, err);
875
876 if (!(TSI_READ(TSI108_EC_RXSTAT) &
877 TSI108_EC_RXSTAT_QUEUE0))
878 tsi108_restart_rx(data, dev);
879 }
880 }
881
882 if (intstat & TSI108_INT_RXOVERRUN) {
883 spin_lock_irq(&data->misclock);
884 data->stats.rx_fifo_errors++;
885 spin_unlock_irq(&data->misclock);
886 }
887
888 if (num_received < budget) {
889 data->rxpending = 0;
890 netif_rx_complete(dev, napi);
891
892 TSI_WRITE(TSI108_EC_INTMASK,
893 TSI_READ(TSI108_EC_INTMASK)
894 & ~(TSI108_INT_RXQUEUE0
895 | TSI108_INT_RXTHRESH |
896 TSI108_INT_RXOVERRUN |
897 TSI108_INT_RXERROR |
898 TSI108_INT_RXWAIT));
899 } else {
900 data->rxpending = 1;
901 }
902
903 return num_received;
904 }
905
906 static void tsi108_rx_int(struct net_device *dev)
907 {
908 struct tsi108_prv_data *data = netdev_priv(dev);
909
910 /* A race could cause dev to already be scheduled, so it's not an
911 * error if that happens (and interrupts shouldn't be re-masked,
912 * because that can cause harmful races, if poll has already
913 * unmasked them but not cleared LINK_STATE_SCHED).
914 *
915 * This can happen if this code races with tsi108_poll(), which masks
916 * the interrupts after tsi108_irq_one() read the mask, but before
917 * netif_rx_schedule is called. It could also happen due to calls
918 * from tsi108_check_rxring().
919 */
920
921 if (netif_rx_schedule_prep(dev, &data->napi)) {
922 /* Mask, rather than ack, the receive interrupts. The ack
923 * will happen in tsi108_poll().
924 */
925
926 TSI_WRITE(TSI108_EC_INTMASK,
927 TSI_READ(TSI108_EC_INTMASK) |
928 TSI108_INT_RXQUEUE0
929 | TSI108_INT_RXTHRESH |
930 TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
931 TSI108_INT_RXWAIT);
932 __netif_rx_schedule(dev, &data->napi);
933 } else {
934 if (!netif_running(dev)) {
935 /* This can happen if an interrupt occurs while the
936 * interface is being brought down, as the START
937 * bit is cleared before the stop function is called.
938 *
939 * In this case, the interrupts must be masked, or
940 * they will continue indefinitely.
941 *
942 * There's a race here if the interface is brought down
943 * and then up in rapid succession, as the device could
944 * be made running after the above check and before
945 * the masking below. This will only happen if the IRQ
946 * thread has a lower priority than the task brining
947 * up the interface. Fixing this race would likely
948 * require changes in generic code.
949 */
950
951 TSI_WRITE(TSI108_EC_INTMASK,
952 TSI_READ
953 (TSI108_EC_INTMASK) |
954 TSI108_INT_RXQUEUE0 |
955 TSI108_INT_RXTHRESH |
956 TSI108_INT_RXOVERRUN |
957 TSI108_INT_RXERROR |
958 TSI108_INT_RXWAIT);
959 }
960 }
961 }
962
963 /* If the RX ring has run out of memory, try periodically
964 * to allocate some more, as otherwise poll would never
965 * get called (apart from the initial end-of-queue condition).
966 *
967 * This is called once per second (by default) from the thread.
968 */
969
970 static void tsi108_check_rxring(struct net_device *dev)
971 {
972 struct tsi108_prv_data *data = netdev_priv(dev);
973
974 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
975 * directly, so as to keep the receive path single-threaded
976 * (and thus not needing a lock).
977 */
978
979 if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
980 tsi108_rx_int(dev);
981 }
982
983 static void tsi108_tx_int(struct net_device *dev)
984 {
985 struct tsi108_prv_data *data = netdev_priv(dev);
986 u32 estat = TSI_READ(TSI108_EC_TXESTAT);
987
988 TSI_WRITE(TSI108_EC_TXESTAT, estat);
989 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
990 TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
991 if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
992 u32 err = TSI_READ(TSI108_EC_TXERR);
993 TSI_WRITE(TSI108_EC_TXERR, err);
994
995 if (err && net_ratelimit())
996 printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
997 }
998
999 if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1000 spin_lock(&data->txlock);
1001 tsi108_complete_tx(dev);
1002 spin_unlock(&data->txlock);
1003 }
1004 }
1005
1006
1007 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1008 {
1009 struct net_device *dev = dev_id;
1010 struct tsi108_prv_data *data = netdev_priv(dev);
1011 u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1012
1013 if (!(stat & TSI108_INT_ANY))
1014 return IRQ_NONE; /* Not our interrupt */
1015
1016 stat &= ~TSI_READ(TSI108_EC_INTMASK);
1017
1018 if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1019 TSI108_INT_TXERROR))
1020 tsi108_tx_int(dev);
1021 if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1022 TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1023 TSI108_INT_RXERROR))
1024 tsi108_rx_int(dev);
1025
1026 if (stat & TSI108_INT_SFN) {
1027 if (net_ratelimit())
1028 printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1029 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1030 }
1031
1032 if (stat & TSI108_INT_STATCARRY) {
1033 tsi108_stat_carry(dev);
1034 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1035 }
1036
1037 return IRQ_HANDLED;
1038 }
1039
1040 static void tsi108_stop_ethernet(struct net_device *dev)
1041 {
1042 struct tsi108_prv_data *data = netdev_priv(dev);
1043 int i = 1000;
1044 /* Disable all TX and RX queues ... */
1045 TSI_WRITE(TSI108_EC_TXCTRL, 0);
1046 TSI_WRITE(TSI108_EC_RXCTRL, 0);
1047
1048 /* ...and wait for them to become idle */
1049 while(i--) {
1050 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1051 break;
1052 udelay(10);
1053 }
1054 i = 1000;
1055 while(i--){
1056 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1057 return;
1058 udelay(10);
1059 }
1060 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1061 }
1062
1063 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1064 {
1065 TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1066 udelay(100);
1067 TSI_WRITE(TSI108_MAC_CFG1, 0);
1068
1069 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1070 udelay(100);
1071 TSI_WRITE(TSI108_EC_PORTCTRL,
1072 TSI_READ(TSI108_EC_PORTCTRL) &
1073 ~TSI108_EC_PORTCTRL_STATRST);
1074
1075 TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1076 udelay(100);
1077 TSI_WRITE(TSI108_EC_TXCFG,
1078 TSI_READ(TSI108_EC_TXCFG) &
1079 ~TSI108_EC_TXCFG_RST);
1080
1081 TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1082 udelay(100);
1083 TSI_WRITE(TSI108_EC_RXCFG,
1084 TSI_READ(TSI108_EC_RXCFG) &
1085 ~TSI108_EC_RXCFG_RST);
1086
1087 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1088 TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1089 TSI108_MAC_MII_MGMT_RST);
1090 udelay(100);
1091 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1092 (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1093 ~(TSI108_MAC_MII_MGMT_RST |
1094 TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1095 }
1096
1097 static int tsi108_get_mac(struct net_device *dev)
1098 {
1099 struct tsi108_prv_data *data = netdev_priv(dev);
1100 u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1101 u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1102
1103 /* Note that the octets are reversed from what the manual says,
1104 * producing an even weirder ordering...
1105 */
1106 if (word2 == 0 && word1 == 0) {
1107 dev->dev_addr[0] = 0x00;
1108 dev->dev_addr[1] = 0x06;
1109 dev->dev_addr[2] = 0xd2;
1110 dev->dev_addr[3] = 0x00;
1111 dev->dev_addr[4] = 0x00;
1112 if (0x8 == data->phy)
1113 dev->dev_addr[5] = 0x01;
1114 else
1115 dev->dev_addr[5] = 0x02;
1116
1117 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1118
1119 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1120 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1121
1122 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1123 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1124 } else {
1125 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1126 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1127 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1128 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1129 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1130 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1131 }
1132
1133 if (!is_valid_ether_addr(dev->dev_addr)) {
1134 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1135 return -EINVAL;
1136 }
1137
1138 return 0;
1139 }
1140
1141 static int tsi108_set_mac(struct net_device *dev, void *addr)
1142 {
1143 struct tsi108_prv_data *data = netdev_priv(dev);
1144 u32 word1, word2;
1145 int i;
1146
1147 if (!is_valid_ether_addr(addr))
1148 return -EINVAL;
1149
1150 for (i = 0; i < 6; i++)
1151 /* +2 is for the offset of the HW addr type */
1152 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1153
1154 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1155
1156 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1157 (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1158
1159 spin_lock_irq(&data->misclock);
1160 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1161 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1162 spin_lock(&data->txlock);
1163
1164 if (data->txfree && data->link_up)
1165 netif_wake_queue(dev);
1166
1167 spin_unlock(&data->txlock);
1168 spin_unlock_irq(&data->misclock);
1169 return 0;
1170 }
1171
1172 /* Protected by dev->xmit_lock. */
1173 static void tsi108_set_rx_mode(struct net_device *dev)
1174 {
1175 struct tsi108_prv_data *data = netdev_priv(dev);
1176 u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1177
1178 if (dev->flags & IFF_PROMISC) {
1179 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1180 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1181 goto out;
1182 }
1183
1184 rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1185
1186 if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1187 int i;
1188 struct dev_mc_list *mc = dev->mc_list;
1189 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1190
1191 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1192
1193 while (mc) {
1194 u32 hash, crc;
1195
1196 if (mc->dmi_addrlen == 6) {
1197 crc = ether_crc(6, mc->dmi_addr);
1198 hash = crc >> 23;
1199
1200 __set_bit(hash, &data->mc_hash[0]);
1201 } else {
1202 printk(KERN_ERR
1203 "%s: got multicast address of length %d "
1204 "instead of 6.\n", dev->name,
1205 mc->dmi_addrlen);
1206 }
1207
1208 mc = mc->next;
1209 }
1210
1211 TSI_WRITE(TSI108_EC_HASHADDR,
1212 TSI108_EC_HASHADDR_AUTOINC |
1213 TSI108_EC_HASHADDR_MCAST);
1214
1215 for (i = 0; i < 16; i++) {
1216 /* The manual says that the hardware may drop
1217 * back-to-back writes to the data register.
1218 */
1219 udelay(1);
1220 TSI_WRITE(TSI108_EC_HASHDATA,
1221 data->mc_hash[i]);
1222 }
1223 }
1224
1225 out:
1226 TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1227 }
1228
1229 static void tsi108_init_phy(struct net_device *dev)
1230 {
1231 struct tsi108_prv_data *data = netdev_priv(dev);
1232 u32 i = 0;
1233 u16 phyval = 0;
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&phy_lock, flags);
1237
1238 tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1239 while (i--){
1240 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1241 break;
1242 udelay(10);
1243 }
1244 if (i == 0)
1245 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1246
1247 if (data->phy_type == TSI108_PHY_BCM54XX) {
1248 tsi108_write_mii(data, 0x09, 0x0300);
1249 tsi108_write_mii(data, 0x10, 0x1020);
1250 tsi108_write_mii(data, 0x1c, 0x8c00);
1251 }
1252
1253 tsi108_write_mii(data,
1254 MII_BMCR,
1255 BMCR_ANENABLE | BMCR_ANRESTART);
1256 while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1257 cpu_relax();
1258
1259 /* Set G/MII mode and receive clock select in TBI control #2. The
1260 * second port won't work if this isn't done, even though we don't
1261 * use TBI mode.
1262 */
1263
1264 tsi108_write_tbi(data, 0x11, 0x30);
1265
1266 /* FIXME: It seems to take more than 2 back-to-back reads to the
1267 * PHY_STAT register before the link up status bit is set.
1268 */
1269
1270 data->link_up = 1;
1271
1272 while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1273 BMSR_LSTATUS)) {
1274 if (i++ > (MII_READ_DELAY / 10)) {
1275 data->link_up = 0;
1276 break;
1277 }
1278 spin_unlock_irqrestore(&phy_lock, flags);
1279 msleep(10);
1280 spin_lock_irqsave(&phy_lock, flags);
1281 }
1282
1283 data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1284 printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1285 data->phy_ok = 1;
1286 data->init_media = 1;
1287 spin_unlock_irqrestore(&phy_lock, flags);
1288 }
1289
1290 static void tsi108_kill_phy(struct net_device *dev)
1291 {
1292 struct tsi108_prv_data *data = netdev_priv(dev);
1293 unsigned long flags;
1294
1295 spin_lock_irqsave(&phy_lock, flags);
1296 tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1297 data->phy_ok = 0;
1298 spin_unlock_irqrestore(&phy_lock, flags);
1299 }
1300
1301 static int tsi108_open(struct net_device *dev)
1302 {
1303 int i;
1304 struct tsi108_prv_data *data = netdev_priv(dev);
1305 unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1306 unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1307
1308 i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1309 if (i != 0) {
1310 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1311 data->id, data->irq_num);
1312 return i;
1313 } else {
1314 dev->irq = data->irq_num;
1315 printk(KERN_NOTICE
1316 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1317 data->id, dev->irq, dev->name);
1318 }
1319
1320 data->rxring = dma_alloc_coherent(NULL, rxring_size,
1321 &data->rxdma, GFP_KERNEL);
1322
1323 if (!data->rxring) {
1324 printk(KERN_DEBUG
1325 "TSI108_ETH: failed to allocate memory for rxring!\n");
1326 return -ENOMEM;
1327 } else {
1328 memset(data->rxring, 0, rxring_size);
1329 }
1330
1331 data->txring = dma_alloc_coherent(NULL, txring_size,
1332 &data->txdma, GFP_KERNEL);
1333
1334 if (!data->txring) {
1335 printk(KERN_DEBUG
1336 "TSI108_ETH: failed to allocate memory for txring!\n");
1337 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1338 return -ENOMEM;
1339 } else {
1340 memset(data->txring, 0, txring_size);
1341 }
1342
1343 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1344 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1345 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1346 data->rxring[i].vlan = 0;
1347 }
1348
1349 data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1350
1351 data->rxtail = 0;
1352 data->rxhead = 0;
1353
1354 for (i = 0; i < TSI108_RXRING_LEN; i++) {
1355 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1356
1357 if (!skb) {
1358 /* Bah. No memory for now, but maybe we'll get
1359 * some more later.
1360 * For now, we'll live with the smaller ring.
1361 */
1362 printk(KERN_WARNING
1363 "%s: Could only allocate %d receive skb(s).\n",
1364 dev->name, i);
1365 data->rxhead = i;
1366 break;
1367 }
1368
1369 data->rxskbs[i] = skb;
1370 /* Align the payload on a 4-byte boundary */
1371 skb_reserve(skb, 2);
1372 data->rxskbs[i] = skb;
1373 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1374 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1375 }
1376
1377 data->rxfree = i;
1378 TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1379
1380 for (i = 0; i < TSI108_TXRING_LEN; i++) {
1381 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1382 data->txring[i].misc = 0;
1383 }
1384
1385 data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1386 data->txtail = 0;
1387 data->txhead = 0;
1388 data->txfree = TSI108_TXRING_LEN;
1389 TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1390 tsi108_init_phy(dev);
1391
1392 napi_enable(&data->napi);
1393
1394 setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1395 mod_timer(&data->timer, jiffies + 1);
1396
1397 tsi108_restart_rx(data, dev);
1398
1399 TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1400
1401 TSI_WRITE(TSI108_EC_INTMASK,
1402 ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1403 TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1404 TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1405 TSI108_INT_SFN | TSI108_INT_STATCARRY));
1406
1407 TSI_WRITE(TSI108_MAC_CFG1,
1408 TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1409 netif_start_queue(dev);
1410 return 0;
1411 }
1412
1413 static int tsi108_close(struct net_device *dev)
1414 {
1415 struct tsi108_prv_data *data = netdev_priv(dev);
1416
1417 netif_stop_queue(dev);
1418 napi_disable(&data->napi);
1419
1420 del_timer_sync(&data->timer);
1421
1422 tsi108_stop_ethernet(dev);
1423 tsi108_kill_phy(dev);
1424 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1425 TSI_WRITE(TSI108_MAC_CFG1, 0);
1426
1427 /* Check for any pending TX packets, and drop them. */
1428
1429 while (!data->txfree || data->txhead != data->txtail) {
1430 int tx = data->txtail;
1431 struct sk_buff *skb;
1432 skb = data->txskbs[tx];
1433 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1434 data->txfree++;
1435 dev_kfree_skb(skb);
1436 }
1437
1438 synchronize_irq(data->irq_num);
1439 free_irq(data->irq_num, dev);
1440
1441 /* Discard the RX ring. */
1442
1443 while (data->rxfree) {
1444 int rx = data->rxtail;
1445 struct sk_buff *skb;
1446
1447 skb = data->rxskbs[rx];
1448 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1449 data->rxfree--;
1450 dev_kfree_skb(skb);
1451 }
1452
1453 dma_free_coherent(0,
1454 TSI108_RXRING_LEN * sizeof(rx_desc),
1455 data->rxring, data->rxdma);
1456 dma_free_coherent(0,
1457 TSI108_TXRING_LEN * sizeof(tx_desc),
1458 data->txring, data->txdma);
1459
1460 return 0;
1461 }
1462
1463 static void tsi108_init_mac(struct net_device *dev)
1464 {
1465 struct tsi108_prv_data *data = netdev_priv(dev);
1466
1467 TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1468 TSI108_MAC_CFG2_PADCRC);
1469
1470 TSI_WRITE(TSI108_EC_TXTHRESH,
1471 (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1472 (192 << TSI108_EC_TXTHRESH_STOPFILL));
1473
1474 TSI_WRITE(TSI108_STAT_CARRYMASK1,
1475 ~(TSI108_STAT_CARRY1_RXBYTES |
1476 TSI108_STAT_CARRY1_RXPKTS |
1477 TSI108_STAT_CARRY1_RXFCS |
1478 TSI108_STAT_CARRY1_RXMCAST |
1479 TSI108_STAT_CARRY1_RXALIGN |
1480 TSI108_STAT_CARRY1_RXLENGTH |
1481 TSI108_STAT_CARRY1_RXRUNT |
1482 TSI108_STAT_CARRY1_RXJUMBO |
1483 TSI108_STAT_CARRY1_RXFRAG |
1484 TSI108_STAT_CARRY1_RXJABBER |
1485 TSI108_STAT_CARRY1_RXDROP));
1486
1487 TSI_WRITE(TSI108_STAT_CARRYMASK2,
1488 ~(TSI108_STAT_CARRY2_TXBYTES |
1489 TSI108_STAT_CARRY2_TXPKTS |
1490 TSI108_STAT_CARRY2_TXEXDEF |
1491 TSI108_STAT_CARRY2_TXEXCOL |
1492 TSI108_STAT_CARRY2_TXTCOL |
1493 TSI108_STAT_CARRY2_TXPAUSE));
1494
1495 TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1496 TSI_WRITE(TSI108_MAC_CFG1, 0);
1497
1498 TSI_WRITE(TSI108_EC_RXCFG,
1499 TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1500
1501 TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1502 TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1503 TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1504 TSI108_EC_TXQ_CFG_SFNPORT));
1505
1506 TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1507 TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1508 TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1509 TSI108_EC_RXQ_CFG_SFNPORT));
1510
1511 TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1512 TSI108_EC_TXQ_BUFCFG_BURST256 |
1513 TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1514 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1515
1516 TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1517 TSI108_EC_RXQ_BUFCFG_BURST256 |
1518 TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1519 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1520
1521 TSI_WRITE(TSI108_EC_INTMASK, ~0);
1522 }
1523
1524 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1525 {
1526 struct tsi108_prv_data *data = netdev_priv(dev);
1527 return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1528 }
1529
1530 static int
1531 tsi108_init_one(struct platform_device *pdev)
1532 {
1533 struct net_device *dev = NULL;
1534 struct tsi108_prv_data *data = NULL;
1535 hw_info *einfo;
1536 int err = 0;
1537 DECLARE_MAC_BUF(mac);
1538
1539 einfo = pdev->dev.platform_data;
1540
1541 if (NULL == einfo) {
1542 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1543 pdev->id);
1544 return -ENODEV;
1545 }
1546
1547 /* Create an ethernet device instance */
1548
1549 dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1550 if (!dev) {
1551 printk("tsi108_eth: Could not allocate a device structure\n");
1552 return -ENOMEM;
1553 }
1554
1555 printk("tsi108_eth%d: probe...\n", pdev->id);
1556 data = netdev_priv(dev);
1557 data->dev = dev;
1558
1559 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1560 pdev->id, einfo->regs, einfo->phyregs,
1561 einfo->phy, einfo->irq_num);
1562
1563 data->regs = ioremap(einfo->regs, 0x400);
1564 if (NULL == data->regs) {
1565 err = -ENOMEM;
1566 goto regs_fail;
1567 }
1568
1569 data->phyregs = ioremap(einfo->phyregs, 0x400);
1570 if (NULL == data->phyregs) {
1571 err = -ENOMEM;
1572 goto regs_fail;
1573 }
1574 /* MII setup */
1575 data->mii_if.dev = dev;
1576 data->mii_if.mdio_read = tsi108_mdio_read;
1577 data->mii_if.mdio_write = tsi108_mdio_write;
1578 data->mii_if.phy_id = einfo->phy;
1579 data->mii_if.phy_id_mask = 0x1f;
1580 data->mii_if.reg_num_mask = 0x1f;
1581
1582 data->phy = einfo->phy;
1583 data->phy_type = einfo->phy_type;
1584 data->irq_num = einfo->irq_num;
1585 data->id = pdev->id;
1586 dev->open = tsi108_open;
1587 dev->stop = tsi108_close;
1588 dev->hard_start_xmit = tsi108_send_packet;
1589 dev->set_mac_address = tsi108_set_mac;
1590 dev->set_multicast_list = tsi108_set_rx_mode;
1591 dev->get_stats = tsi108_get_stats;
1592 netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1593 dev->do_ioctl = tsi108_do_ioctl;
1594
1595 /* Apparently, the Linux networking code won't use scatter-gather
1596 * if the hardware doesn't do checksums. However, it's faster
1597 * to checksum in place and use SG, as (among other reasons)
1598 * the cache won't be dirtied (which then has to be flushed
1599 * before DMA). The checksumming is done by the driver (via
1600 * a new function skb_csum_dev() in net/core/skbuff.c).
1601 */
1602
1603 dev->features = NETIF_F_HIGHDMA;
1604
1605 spin_lock_init(&data->txlock);
1606 spin_lock_init(&data->misclock);
1607
1608 tsi108_reset_ether(data);
1609 tsi108_kill_phy(dev);
1610
1611 if ((err = tsi108_get_mac(dev)) != 0) {
1612 printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n",
1613 dev->name);
1614 goto register_fail;
1615 }
1616
1617 tsi108_init_mac(dev);
1618 err = register_netdev(dev);
1619 if (err) {
1620 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1621 dev->name);
1622 goto register_fail;
1623 }
1624
1625 platform_set_drvdata(pdev, dev);
1626 printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n",
1627 dev->name, print_mac(mac, dev->dev_addr));
1628 #ifdef DEBUG
1629 data->msg_enable = DEBUG;
1630 dump_eth_one(dev);
1631 #endif
1632
1633 return 0;
1634
1635 register_fail:
1636 iounmap(data->regs);
1637 iounmap(data->phyregs);
1638
1639 regs_fail:
1640 free_netdev(dev);
1641 return err;
1642 }
1643
1644 /* There's no way to either get interrupts from the PHY when
1645 * something changes, or to have the Tsi108 automatically communicate
1646 * with the PHY to reconfigure itself.
1647 *
1648 * Thus, we have to do it using a timer.
1649 */
1650
1651 static void tsi108_timed_checker(unsigned long dev_ptr)
1652 {
1653 struct net_device *dev = (struct net_device *)dev_ptr;
1654 struct tsi108_prv_data *data = netdev_priv(dev);
1655
1656 tsi108_check_phy(dev);
1657 tsi108_check_rxring(dev);
1658 mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1659 }
1660
1661 static int tsi108_ether_init(void)
1662 {
1663 int ret;
1664 ret = platform_driver_register (&tsi_eth_driver);
1665 if (ret < 0){
1666 printk("tsi108_ether_init: error initializing ethernet "
1667 "device\n");
1668 return ret;
1669 }
1670 return 0;
1671 }
1672
1673 static int tsi108_ether_remove(struct platform_device *pdev)
1674 {
1675 struct net_device *dev = platform_get_drvdata(pdev);
1676 struct tsi108_prv_data *priv = netdev_priv(dev);
1677
1678 unregister_netdev(dev);
1679 tsi108_stop_ethernet(dev);
1680 platform_set_drvdata(pdev, NULL);
1681 iounmap(priv->regs);
1682 iounmap(priv->phyregs);
1683 free_netdev(dev);
1684
1685 return 0;
1686 }
1687 static void tsi108_ether_exit(void)
1688 {
1689 platform_driver_unregister(&tsi_eth_driver);
1690 }
1691
1692 module_init(tsi108_ether_init);
1693 module_exit(tsi108_ether_exit);
1694
1695 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1696 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1697 MODULE_LICENSE("GPL");
This page took 0.440229 seconds and 6 git commands to generate.