cafa89e6016772b0a5442df05dd348ae4984c857
[deliverable/linux.git] / drivers / net / tulip / tulip_core.c
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
2
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
5
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
8
9 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
10 for more information on this driver.
11
12 Please submit bugs to http://bugzilla.kernel.org/ .
13 */
14
15
16 #define DRV_NAME "tulip"
17 #ifdef CONFIG_TULIP_NAPI
18 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
19 #else
20 #define DRV_VERSION "1.1.15"
21 #endif
22 #define DRV_RELDATE "Feb 27, 2007"
23
24
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include "tulip.h"
28 #include <linux/init.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/crc32.h>
34 #include <asm/unaligned.h>
35 #include <asm/uaccess.h>
36
37 #ifdef CONFIG_SPARC
38 #include <asm/prom.h>
39 #endif
40
41 static char version[] __devinitdata =
42 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
43
44
45 /* A few user-configurable values. */
46
47 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
48 static unsigned int max_interrupt_work = 25;
49
50 #define MAX_UNITS 8
51 /* Used to pass the full-duplex flag, etc. */
52 static int full_duplex[MAX_UNITS];
53 static int options[MAX_UNITS];
54 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
55
56 /* The possible media types that can be set in options[] are: */
57 const char * const medianame[32] = {
58 "10baseT", "10base2", "AUI", "100baseTx",
59 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
60 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
61 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
62 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
63 "","","","", "","","","", "","","","Transceiver reset",
64 };
65
66 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
67 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
68 || defined(CONFIG_SPARC) || defined(__ia64__) \
69 || defined(__sh__) || defined(__mips__)
70 static int rx_copybreak = 1518;
71 #else
72 static int rx_copybreak = 100;
73 #endif
74
75 /*
76 Set the bus performance register.
77 Typical: Set 16 longword cache alignment, no burst limit.
78 Cache alignment bits 15:14 Burst length 13:8
79 0000 No alignment 0x00000000 unlimited 0800 8 longwords
80 4000 8 longwords 0100 1 longword 1000 16 longwords
81 8000 16 longwords 0200 2 longwords 2000 32 longwords
82 C000 32 longwords 0400 4 longwords
83 Warning: many older 486 systems are broken and require setting 0x00A04800
84 8 longword cache alignment, 8 longword burst.
85 ToDo: Non-Intel setting could be better.
86 */
87
88 #if defined(__alpha__) || defined(__ia64__)
89 static int csr0 = 0x01A00000 | 0xE000;
90 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
91 static int csr0 = 0x01A00000 | 0x8000;
92 #elif defined(CONFIG_SPARC) || defined(__hppa__)
93 /* The UltraSparc PCI controllers will disconnect at every 64-byte
94 * crossing anyways so it makes no sense to tell Tulip to burst
95 * any more than that.
96 */
97 static int csr0 = 0x01A00000 | 0x9000;
98 #elif defined(__arm__) || defined(__sh__)
99 static int csr0 = 0x01A00000 | 0x4800;
100 #elif defined(__mips__)
101 static int csr0 = 0x00200000 | 0x4000;
102 #else
103 #warning Processor architecture undefined!
104 static int csr0 = 0x00A00000 | 0x4800;
105 #endif
106
107 /* Operational parameters that usually are not changed. */
108 /* Time in jiffies before concluding the transmitter is hung. */
109 #define TX_TIMEOUT (4*HZ)
110
111
112 MODULE_AUTHOR("The Linux Kernel Team");
113 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
114 MODULE_LICENSE("GPL");
115 MODULE_VERSION(DRV_VERSION);
116 module_param(tulip_debug, int, 0);
117 module_param(max_interrupt_work, int, 0);
118 module_param(rx_copybreak, int, 0);
119 module_param(csr0, int, 0);
120 module_param_array(options, int, NULL, 0);
121 module_param_array(full_duplex, int, NULL, 0);
122
123 #define PFX DRV_NAME ": "
124
125 #ifdef TULIP_DEBUG
126 int tulip_debug = TULIP_DEBUG;
127 #else
128 int tulip_debug = 1;
129 #endif
130
131 static void tulip_timer(unsigned long data)
132 {
133 struct net_device *dev = (struct net_device *)data;
134 struct tulip_private *tp = netdev_priv(dev);
135
136 if (netif_running(dev))
137 schedule_work(&tp->media_work);
138 }
139
140 /*
141 * This table use during operation for capabilities and media timer.
142 *
143 * It is indexed via the values in 'enum chips'
144 */
145
146 struct tulip_chip_table tulip_tbl[] = {
147 { }, /* placeholder for array, slot unused currently */
148 { }, /* placeholder for array, slot unused currently */
149
150 /* DC21140 */
151 { "Digital DS21140 Tulip", 128, 0x0001ebef,
152 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
153 tulip_media_task },
154
155 /* DC21142, DC21143 */
156 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
157 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
158 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
159
160 /* LC82C168 */
161 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
162 HAS_MII | HAS_PNICNWAY, pnic_timer, },
163
164 /* MX98713 */
165 { "Macronix 98713 PMAC", 128, 0x0001ebef,
166 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
167
168 /* MX98715 */
169 { "Macronix 98715 PMAC", 256, 0x0001ebef,
170 HAS_MEDIA_TABLE, mxic_timer, },
171
172 /* MX98725 */
173 { "Macronix 98725 PMAC", 256, 0x0001ebef,
174 HAS_MEDIA_TABLE, mxic_timer, },
175
176 /* AX88140 */
177 { "ASIX AX88140", 128, 0x0001fbff,
178 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
179 | IS_ASIX, tulip_timer, tulip_media_task },
180
181 /* PNIC2 */
182 { "Lite-On PNIC-II", 256, 0x0801fbff,
183 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
184
185 /* COMET */
186 { "ADMtek Comet", 256, 0x0001abef,
187 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
188
189 /* COMPEX9881 */
190 { "Compex 9881 PMAC", 128, 0x0001ebef,
191 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
192
193 /* I21145 */
194 { "Intel DS21145 Tulip", 128, 0x0801fbff,
195 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
196 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
197
198 /* DM910X */
199 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
200 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
201 tulip_timer, tulip_media_task },
202
203 /* RS7112 */
204 { "Conexant LANfinity", 256, 0x0001ebef,
205 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
206
207 };
208
209
210 static struct pci_device_id tulip_pci_tbl[] = {
211 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
212 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
213 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
214 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
215 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
216 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
217 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
218 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
219 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
230 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
231 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
232 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
234 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
235 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
240 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
242 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
245 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
246 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
247 { } /* terminate list */
248 };
249 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
250
251
252 /* A full-duplex map for media types. */
253 const char tulip_media_cap[32] =
254 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
255
256 static void tulip_tx_timeout(struct net_device *dev);
257 static void tulip_init_ring(struct net_device *dev);
258 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
259 static int tulip_open(struct net_device *dev);
260 static int tulip_close(struct net_device *dev);
261 static void tulip_up(struct net_device *dev);
262 static void tulip_down(struct net_device *dev);
263 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
264 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
265 static void set_rx_mode(struct net_device *dev);
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 static void poll_tulip(struct net_device *dev);
268 #endif
269
270 static void tulip_set_power_state (struct tulip_private *tp,
271 int sleep, int snooze)
272 {
273 if (tp->flags & HAS_ACPI) {
274 u32 tmp, newtmp;
275 pci_read_config_dword (tp->pdev, CFDD, &tmp);
276 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
277 if (sleep)
278 newtmp |= CFDD_Sleep;
279 else if (snooze)
280 newtmp |= CFDD_Snooze;
281 if (tmp != newtmp)
282 pci_write_config_dword (tp->pdev, CFDD, newtmp);
283 }
284
285 }
286
287
288 static void tulip_up(struct net_device *dev)
289 {
290 struct tulip_private *tp = netdev_priv(dev);
291 void __iomem *ioaddr = tp->base_addr;
292 int next_tick = 3*HZ;
293 u32 reg;
294 int i;
295
296 #ifdef CONFIG_TULIP_NAPI
297 napi_enable(&tp->napi);
298 #endif
299
300 /* Wake the chip from sleep/snooze mode. */
301 tulip_set_power_state (tp, 0, 0);
302
303 /* On some chip revs we must set the MII/SYM port before the reset!? */
304 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
305 iowrite32(0x00040000, ioaddr + CSR6);
306
307 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
308 iowrite32(0x00000001, ioaddr + CSR0);
309 pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg); /* flush write */
310 udelay(100);
311
312 /* Deassert reset.
313 Wait the specified 50 PCI cycles after a reset by initializing
314 Tx and Rx queues and the address filter list. */
315 iowrite32(tp->csr0, ioaddr + CSR0);
316 pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg); /* flush write */
317 udelay(100);
318
319 if (tulip_debug > 1)
320 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
321
322 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
323 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
324 tp->cur_rx = tp->cur_tx = 0;
325 tp->dirty_rx = tp->dirty_tx = 0;
326
327 if (tp->flags & MC_HASH_ONLY) {
328 u32 addr_low = get_unaligned_le32(dev->dev_addr);
329 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
330 if (tp->chip_id == AX88140) {
331 iowrite32(0, ioaddr + CSR13);
332 iowrite32(addr_low, ioaddr + CSR14);
333 iowrite32(1, ioaddr + CSR13);
334 iowrite32(addr_high, ioaddr + CSR14);
335 } else if (tp->flags & COMET_MAC_ADDR) {
336 iowrite32(addr_low, ioaddr + 0xA4);
337 iowrite32(addr_high, ioaddr + 0xA8);
338 iowrite32(0, ioaddr + 0xAC);
339 iowrite32(0, ioaddr + 0xB0);
340 }
341 } else {
342 /* This is set_rx_mode(), but without starting the transmitter. */
343 u16 *eaddrs = (u16 *)dev->dev_addr;
344 u16 *setup_frm = &tp->setup_frame[15*6];
345 dma_addr_t mapping;
346
347 /* 21140 bug: you must add the broadcast address. */
348 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
349 /* Fill the final entry of the table with our physical address. */
350 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
351 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
352 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
353
354 mapping = pci_map_single(tp->pdev, tp->setup_frame,
355 sizeof(tp->setup_frame),
356 PCI_DMA_TODEVICE);
357 tp->tx_buffers[tp->cur_tx].skb = NULL;
358 tp->tx_buffers[tp->cur_tx].mapping = mapping;
359
360 /* Put the setup frame on the Tx list. */
361 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
362 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
363 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
364
365 tp->cur_tx++;
366 }
367
368 tp->saved_if_port = dev->if_port;
369 if (dev->if_port == 0)
370 dev->if_port = tp->default_port;
371
372 /* Allow selecting a default media. */
373 i = 0;
374 if (tp->mtable == NULL)
375 goto media_picked;
376 if (dev->if_port) {
377 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
378 (dev->if_port == 12 ? 0 : dev->if_port);
379 for (i = 0; i < tp->mtable->leafcount; i++)
380 if (tp->mtable->mleaf[i].media == looking_for) {
381 printk(KERN_INFO "%s: Using user-specified media %s.\n",
382 dev->name, medianame[dev->if_port]);
383 goto media_picked;
384 }
385 }
386 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
387 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
388 for (i = 0; i < tp->mtable->leafcount; i++)
389 if (tp->mtable->mleaf[i].media == looking_for) {
390 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
391 dev->name, medianame[looking_for]);
392 goto media_picked;
393 }
394 }
395 /* Start sensing first non-full-duplex media. */
396 for (i = tp->mtable->leafcount - 1;
397 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
398 ;
399 media_picked:
400
401 tp->csr6 = 0;
402 tp->cur_index = i;
403 tp->nwayset = 0;
404
405 if (dev->if_port) {
406 if (tp->chip_id == DC21143 &&
407 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
408 /* We must reset the media CSRs when we force-select MII mode. */
409 iowrite32(0x0000, ioaddr + CSR13);
410 iowrite32(0x0000, ioaddr + CSR14);
411 iowrite32(0x0008, ioaddr + CSR15);
412 }
413 tulip_select_media(dev, 1);
414 } else if (tp->chip_id == DC21142) {
415 if (tp->mii_cnt) {
416 tulip_select_media(dev, 1);
417 if (tulip_debug > 1)
418 printk(KERN_INFO "%s: Using MII transceiver %d, status "
419 "%4.4x.\n",
420 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
421 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
422 tp->csr6 = csr6_mask_hdcap;
423 dev->if_port = 11;
424 iowrite32(0x0000, ioaddr + CSR13);
425 iowrite32(0x0000, ioaddr + CSR14);
426 } else
427 t21142_start_nway(dev);
428 } else if (tp->chip_id == PNIC2) {
429 /* for initial startup advertise 10/100 Full and Half */
430 tp->sym_advertise = 0x01E0;
431 /* enable autonegotiate end interrupt */
432 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
433 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
434 pnic2_start_nway(dev);
435 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
436 if (tp->mii_cnt) {
437 dev->if_port = 11;
438 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
439 iowrite32(0x0001, ioaddr + CSR15);
440 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
441 pnic_do_nway(dev);
442 else {
443 /* Start with 10mbps to do autonegotiation. */
444 iowrite32(0x32, ioaddr + CSR12);
445 tp->csr6 = 0x00420000;
446 iowrite32(0x0001B078, ioaddr + 0xB8);
447 iowrite32(0x0201B078, ioaddr + 0xB8);
448 next_tick = 1*HZ;
449 }
450 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
451 && ! tp->medialock) {
452 dev->if_port = 0;
453 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
454 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
455 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
456 /* Provided by BOLO, Macronix - 12/10/1998. */
457 dev->if_port = 0;
458 tp->csr6 = 0x01a80200;
459 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
460 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
461 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
462 /* Enable automatic Tx underrun recovery. */
463 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
464 dev->if_port = tp->mii_cnt ? 11 : 0;
465 tp->csr6 = 0x00040000;
466 } else if (tp->chip_id == AX88140) {
467 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
468 } else
469 tulip_select_media(dev, 1);
470
471 /* Start the chip's Tx to process setup frame. */
472 tulip_stop_rxtx(tp);
473 barrier();
474 udelay(5);
475 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
476
477 /* Enable interrupts by setting the interrupt mask. */
478 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
479 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
480 tulip_start_rxtx(tp);
481 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
482
483 if (tulip_debug > 2) {
484 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
485 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
486 ioread32(ioaddr + CSR6));
487 }
488
489 /* Set the timer to switch to check for link beat and perhaps switch
490 to an alternate media type. */
491 tp->timer.expires = RUN_AT(next_tick);
492 add_timer(&tp->timer);
493 #ifdef CONFIG_TULIP_NAPI
494 init_timer(&tp->oom_timer);
495 tp->oom_timer.data = (unsigned long)dev;
496 tp->oom_timer.function = oom_timer;
497 #endif
498 }
499
500 static int
501 tulip_open(struct net_device *dev)
502 {
503 int retval;
504
505 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
506 return retval;
507
508 tulip_init_ring (dev);
509
510 tulip_up (dev);
511
512 netif_start_queue (dev);
513
514 return 0;
515 }
516
517
518 static void tulip_tx_timeout(struct net_device *dev)
519 {
520 struct tulip_private *tp = netdev_priv(dev);
521 void __iomem *ioaddr = tp->base_addr;
522 unsigned long flags;
523
524 spin_lock_irqsave (&tp->lock, flags);
525
526 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
527 /* Do nothing -- the media monitor should handle this. */
528 if (tulip_debug > 1)
529 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
530 dev->name);
531 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
532 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
533 || tp->chip_id == DM910X) {
534 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
535 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
536 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
537 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
538 tp->timeout_recovery = 1;
539 schedule_work(&tp->media_work);
540 goto out_unlock;
541 } else if (tp->chip_id == PNIC2) {
542 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
543 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
544 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
545 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
546 } else {
547 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
548 "%8.8x, resetting...\n",
549 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
550 dev->if_port = 0;
551 }
552
553 #if defined(way_too_many_messages)
554 if (tulip_debug > 3) {
555 int i;
556 for (i = 0; i < RX_RING_SIZE; i++) {
557 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
558 int j;
559 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
560 "%2.2x %2.2x %2.2x.\n",
561 i, (unsigned int)tp->rx_ring[i].status,
562 (unsigned int)tp->rx_ring[i].length,
563 (unsigned int)tp->rx_ring[i].buffer1,
564 (unsigned int)tp->rx_ring[i].buffer2,
565 buf[0], buf[1], buf[2]);
566 for (j = 0; buf[j] != 0xee && j < 1600; j++)
567 if (j < 100) printk(" %2.2x", buf[j]);
568 printk(" j=%d.\n", j);
569 }
570 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
571 for (i = 0; i < RX_RING_SIZE; i++)
572 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
573 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
574 for (i = 0; i < TX_RING_SIZE; i++)
575 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
576 printk("\n");
577 }
578 #endif
579
580 tulip_tx_timeout_complete(tp, ioaddr);
581
582 out_unlock:
583 spin_unlock_irqrestore (&tp->lock, flags);
584 dev->trans_start = jiffies;
585 netif_wake_queue (dev);
586 }
587
588
589 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
590 static void tulip_init_ring(struct net_device *dev)
591 {
592 struct tulip_private *tp = netdev_priv(dev);
593 int i;
594
595 tp->susp_rx = 0;
596 tp->ttimer = 0;
597 tp->nir = 0;
598
599 for (i = 0; i < RX_RING_SIZE; i++) {
600 tp->rx_ring[i].status = 0x00000000;
601 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
602 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
603 tp->rx_buffers[i].skb = NULL;
604 tp->rx_buffers[i].mapping = 0;
605 }
606 /* Mark the last entry as wrapping the ring. */
607 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
608 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
609
610 for (i = 0; i < RX_RING_SIZE; i++) {
611 dma_addr_t mapping;
612
613 /* Note the receive buffer must be longword aligned.
614 dev_alloc_skb() provides 16 byte alignment. But do *not*
615 use skb_reserve() to align the IP header! */
616 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
617 tp->rx_buffers[i].skb = skb;
618 if (skb == NULL)
619 break;
620 mapping = pci_map_single(tp->pdev, skb->data,
621 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
622 tp->rx_buffers[i].mapping = mapping;
623 skb->dev = dev; /* Mark as being used by this device. */
624 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
625 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
626 }
627 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
628
629 /* The Tx buffer descriptor is filled in as needed, but we
630 do need to clear the ownership bit. */
631 for (i = 0; i < TX_RING_SIZE; i++) {
632 tp->tx_buffers[i].skb = NULL;
633 tp->tx_buffers[i].mapping = 0;
634 tp->tx_ring[i].status = 0x00000000;
635 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
636 }
637 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
638 }
639
640 static int
641 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
642 {
643 struct tulip_private *tp = netdev_priv(dev);
644 int entry;
645 u32 flag;
646 dma_addr_t mapping;
647
648 spin_lock_irq(&tp->lock);
649
650 /* Calculate the next Tx descriptor entry. */
651 entry = tp->cur_tx % TX_RING_SIZE;
652
653 tp->tx_buffers[entry].skb = skb;
654 mapping = pci_map_single(tp->pdev, skb->data,
655 skb->len, PCI_DMA_TODEVICE);
656 tp->tx_buffers[entry].mapping = mapping;
657 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
658
659 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
660 flag = 0x60000000; /* No interrupt */
661 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
662 flag = 0xe0000000; /* Tx-done intr. */
663 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
664 flag = 0x60000000; /* No Tx-done intr. */
665 } else { /* Leave room for set_rx_mode() to fill entries. */
666 flag = 0xe0000000; /* Tx-done intr. */
667 netif_stop_queue(dev);
668 }
669 if (entry == TX_RING_SIZE-1)
670 flag = 0xe0000000 | DESC_RING_WRAP;
671
672 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
673 /* if we were using Transmit Automatic Polling, we would need a
674 * wmb() here. */
675 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
676 wmb();
677
678 tp->cur_tx++;
679
680 /* Trigger an immediate transmit demand. */
681 iowrite32(0, tp->base_addr + CSR1);
682
683 spin_unlock_irq(&tp->lock);
684
685 dev->trans_start = jiffies;
686
687 return 0;
688 }
689
690 static void tulip_clean_tx_ring(struct tulip_private *tp)
691 {
692 unsigned int dirty_tx;
693
694 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
695 dirty_tx++) {
696 int entry = dirty_tx % TX_RING_SIZE;
697 int status = le32_to_cpu(tp->tx_ring[entry].status);
698
699 if (status < 0) {
700 tp->stats.tx_errors++; /* It wasn't Txed */
701 tp->tx_ring[entry].status = 0;
702 }
703
704 /* Check for Tx filter setup frames. */
705 if (tp->tx_buffers[entry].skb == NULL) {
706 /* test because dummy frames not mapped */
707 if (tp->tx_buffers[entry].mapping)
708 pci_unmap_single(tp->pdev,
709 tp->tx_buffers[entry].mapping,
710 sizeof(tp->setup_frame),
711 PCI_DMA_TODEVICE);
712 continue;
713 }
714
715 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
716 tp->tx_buffers[entry].skb->len,
717 PCI_DMA_TODEVICE);
718
719 /* Free the original skb. */
720 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
721 tp->tx_buffers[entry].skb = NULL;
722 tp->tx_buffers[entry].mapping = 0;
723 }
724 }
725
726 static void tulip_down (struct net_device *dev)
727 {
728 struct tulip_private *tp = netdev_priv(dev);
729 void __iomem *ioaddr = tp->base_addr;
730 unsigned long flags;
731
732 cancel_work_sync(&tp->media_work);
733
734 #ifdef CONFIG_TULIP_NAPI
735 napi_disable(&tp->napi);
736 #endif
737
738 del_timer_sync (&tp->timer);
739 #ifdef CONFIG_TULIP_NAPI
740 del_timer_sync (&tp->oom_timer);
741 #endif
742 spin_lock_irqsave (&tp->lock, flags);
743
744 /* Disable interrupts by clearing the interrupt mask. */
745 iowrite32 (0x00000000, ioaddr + CSR7);
746
747 /* Stop the Tx and Rx processes. */
748 tulip_stop_rxtx(tp);
749
750 /* prepare receive buffers */
751 tulip_refill_rx(dev);
752
753 /* release any unconsumed transmit buffers */
754 tulip_clean_tx_ring(tp);
755
756 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
757 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
758
759 spin_unlock_irqrestore (&tp->lock, flags);
760
761 init_timer(&tp->timer);
762 tp->timer.data = (unsigned long)dev;
763 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
764
765 dev->if_port = tp->saved_if_port;
766
767 /* Leave the driver in snooze, not sleep, mode. */
768 tulip_set_power_state (tp, 0, 1);
769 }
770
771
772 static int tulip_close (struct net_device *dev)
773 {
774 struct tulip_private *tp = netdev_priv(dev);
775 void __iomem *ioaddr = tp->base_addr;
776 int i;
777
778 netif_stop_queue (dev);
779
780 tulip_down (dev);
781
782 if (tulip_debug > 1)
783 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
784 dev->name, ioread32 (ioaddr + CSR5));
785
786 free_irq (dev->irq, dev);
787
788 /* Free all the skbuffs in the Rx queue. */
789 for (i = 0; i < RX_RING_SIZE; i++) {
790 struct sk_buff *skb = tp->rx_buffers[i].skb;
791 dma_addr_t mapping = tp->rx_buffers[i].mapping;
792
793 tp->rx_buffers[i].skb = NULL;
794 tp->rx_buffers[i].mapping = 0;
795
796 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
797 tp->rx_ring[i].length = 0;
798 /* An invalid address. */
799 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
800 if (skb) {
801 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
802 PCI_DMA_FROMDEVICE);
803 dev_kfree_skb (skb);
804 }
805 }
806 for (i = 0; i < TX_RING_SIZE; i++) {
807 struct sk_buff *skb = tp->tx_buffers[i].skb;
808
809 if (skb != NULL) {
810 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
811 skb->len, PCI_DMA_TODEVICE);
812 dev_kfree_skb (skb);
813 }
814 tp->tx_buffers[i].skb = NULL;
815 tp->tx_buffers[i].mapping = 0;
816 }
817
818 return 0;
819 }
820
821 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
822 {
823 struct tulip_private *tp = netdev_priv(dev);
824 void __iomem *ioaddr = tp->base_addr;
825
826 if (netif_running(dev)) {
827 unsigned long flags;
828
829 spin_lock_irqsave (&tp->lock, flags);
830
831 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
832
833 spin_unlock_irqrestore(&tp->lock, flags);
834 }
835
836 return &tp->stats;
837 }
838
839
840 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
841 {
842 struct tulip_private *np = netdev_priv(dev);
843 strcpy(info->driver, DRV_NAME);
844 strcpy(info->version, DRV_VERSION);
845 strcpy(info->bus_info, pci_name(np->pdev));
846 }
847
848 static const struct ethtool_ops ops = {
849 .get_drvinfo = tulip_get_drvinfo
850 };
851
852 /* Provide ioctl() calls to examine the MII xcvr state. */
853 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
854 {
855 struct tulip_private *tp = netdev_priv(dev);
856 void __iomem *ioaddr = tp->base_addr;
857 struct mii_ioctl_data *data = if_mii(rq);
858 const unsigned int phy_idx = 0;
859 int phy = tp->phys[phy_idx] & 0x1f;
860 unsigned int regnum = data->reg_num;
861
862 switch (cmd) {
863 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
864 if (tp->mii_cnt)
865 data->phy_id = phy;
866 else if (tp->flags & HAS_NWAY)
867 data->phy_id = 32;
868 else if (tp->chip_id == COMET)
869 data->phy_id = 1;
870 else
871 return -ENODEV;
872
873 case SIOCGMIIREG: /* Read MII PHY register. */
874 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
875 int csr12 = ioread32 (ioaddr + CSR12);
876 int csr14 = ioread32 (ioaddr + CSR14);
877 switch (regnum) {
878 case 0:
879 if (((csr14<<5) & 0x1000) ||
880 (dev->if_port == 5 && tp->nwayset))
881 data->val_out = 0x1000;
882 else
883 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
884 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
885 break;
886 case 1:
887 data->val_out =
888 0x1848 +
889 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
890 ((csr12&0x06) == 6 ? 0 : 4);
891 data->val_out |= 0x6048;
892 break;
893 case 4:
894 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
895 data->val_out =
896 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
897 ((csr14 >> 1) & 0x20) + 1;
898 data->val_out |= ((csr14 >> 9) & 0x03C0);
899 break;
900 case 5: data->val_out = tp->lpar; break;
901 default: data->val_out = 0; break;
902 }
903 } else {
904 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
905 }
906 return 0;
907
908 case SIOCSMIIREG: /* Write MII PHY register. */
909 if (!capable (CAP_NET_ADMIN))
910 return -EPERM;
911 if (regnum & ~0x1f)
912 return -EINVAL;
913 if (data->phy_id == phy) {
914 u16 value = data->val_in;
915 switch (regnum) {
916 case 0: /* Check for autonegotiation on or reset. */
917 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
918 if (tp->full_duplex_lock)
919 tp->full_duplex = (value & 0x0100) ? 1 : 0;
920 break;
921 case 4:
922 tp->advertising[phy_idx] =
923 tp->mii_advertise = data->val_in;
924 break;
925 }
926 }
927 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
928 u16 value = data->val_in;
929 if (regnum == 0) {
930 if ((value & 0x1200) == 0x1200) {
931 if (tp->chip_id == PNIC2) {
932 pnic2_start_nway (dev);
933 } else {
934 t21142_start_nway (dev);
935 }
936 }
937 } else if (regnum == 4)
938 tp->sym_advertise = value;
939 } else {
940 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
941 }
942 return 0;
943 default:
944 return -EOPNOTSUPP;
945 }
946
947 return -EOPNOTSUPP;
948 }
949
950
951 /* Set or clear the multicast filter for this adaptor.
952 Note that we only use exclusion around actually queueing the
953 new frame, not around filling tp->setup_frame. This is non-deterministic
954 when re-entered but still correct. */
955
956 #undef set_bit_le
957 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
958
959 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
960 {
961 struct tulip_private *tp = netdev_priv(dev);
962 u16 hash_table[32];
963 struct dev_mc_list *mclist;
964 int i;
965 u16 *eaddrs;
966
967 memset(hash_table, 0, sizeof(hash_table));
968 set_bit_le(255, hash_table); /* Broadcast entry */
969 /* This should work on big-endian machines as well. */
970 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
971 i++, mclist = mclist->next) {
972 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
973
974 set_bit_le(index, hash_table);
975
976 }
977 for (i = 0; i < 32; i++) {
978 *setup_frm++ = hash_table[i];
979 *setup_frm++ = hash_table[i];
980 }
981 setup_frm = &tp->setup_frame[13*6];
982
983 /* Fill the final entry with our physical address. */
984 eaddrs = (u16 *)dev->dev_addr;
985 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
986 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
987 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
988 }
989
990 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
991 {
992 struct tulip_private *tp = netdev_priv(dev);
993 struct dev_mc_list *mclist;
994 int i;
995 u16 *eaddrs;
996
997 /* We have <= 14 addresses so we can use the wonderful
998 16 address perfect filtering of the Tulip. */
999 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
1000 i++, mclist = mclist->next) {
1001 eaddrs = (u16 *)mclist->dmi_addr;
1002 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1003 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1004 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1005 }
1006 /* Fill the unused entries with the broadcast address. */
1007 memset(setup_frm, 0xff, (15-i)*12);
1008 setup_frm = &tp->setup_frame[15*6];
1009
1010 /* Fill the final entry with our physical address. */
1011 eaddrs = (u16 *)dev->dev_addr;
1012 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1013 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1014 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1015 }
1016
1017
1018 static void set_rx_mode(struct net_device *dev)
1019 {
1020 struct tulip_private *tp = netdev_priv(dev);
1021 void __iomem *ioaddr = tp->base_addr;
1022 int csr6;
1023
1024 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1025
1026 tp->csr6 &= ~0x00D5;
1027 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1028 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1029 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1030 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1031 /* Too many to filter well -- accept all multicasts. */
1032 tp->csr6 |= AcceptAllMulticast;
1033 csr6 |= AcceptAllMulticast;
1034 } else if (tp->flags & MC_HASH_ONLY) {
1035 /* Some work-alikes have only a 64-entry hash filter table. */
1036 /* Should verify correctness on big-endian/__powerpc__ */
1037 struct dev_mc_list *mclist;
1038 int i;
1039 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1040 tp->csr6 |= AcceptAllMulticast;
1041 csr6 |= AcceptAllMulticast;
1042 } else {
1043 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1044 int filterbit;
1045 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1046 i++, mclist = mclist->next) {
1047 if (tp->flags & COMET_MAC_ADDR)
1048 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1049 else
1050 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1051 filterbit &= 0x3f;
1052 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1053 if (tulip_debug > 2) {
1054 DECLARE_MAC_BUF(mac);
1055 printk(KERN_INFO "%s: Added filter for %s"
1056 " %8.8x bit %d.\n",
1057 dev->name, print_mac(mac, mclist->dmi_addr),
1058 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1059 }
1060 }
1061 if (mc_filter[0] == tp->mc_filter[0] &&
1062 mc_filter[1] == tp->mc_filter[1])
1063 ; /* No change. */
1064 else if (tp->flags & IS_ASIX) {
1065 iowrite32(2, ioaddr + CSR13);
1066 iowrite32(mc_filter[0], ioaddr + CSR14);
1067 iowrite32(3, ioaddr + CSR13);
1068 iowrite32(mc_filter[1], ioaddr + CSR14);
1069 } else if (tp->flags & COMET_MAC_ADDR) {
1070 iowrite32(mc_filter[0], ioaddr + 0xAC);
1071 iowrite32(mc_filter[1], ioaddr + 0xB0);
1072 }
1073 tp->mc_filter[0] = mc_filter[0];
1074 tp->mc_filter[1] = mc_filter[1];
1075 }
1076 } else {
1077 unsigned long flags;
1078 u32 tx_flags = 0x08000000 | 192;
1079
1080 /* Note that only the low-address shortword of setup_frame is valid!
1081 The values are doubled for big-endian architectures. */
1082 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1083 build_setup_frame_hash(tp->setup_frame, dev);
1084 tx_flags = 0x08400000 | 192;
1085 } else {
1086 build_setup_frame_perfect(tp->setup_frame, dev);
1087 }
1088
1089 spin_lock_irqsave(&tp->lock, flags);
1090
1091 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1092 /* Same setup recently queued, we need not add it. */
1093 } else {
1094 unsigned int entry;
1095 int dummy = -1;
1096
1097 /* Now add this frame to the Tx list. */
1098
1099 entry = tp->cur_tx++ % TX_RING_SIZE;
1100
1101 if (entry != 0) {
1102 /* Avoid a chip errata by prefixing a dummy entry. */
1103 tp->tx_buffers[entry].skb = NULL;
1104 tp->tx_buffers[entry].mapping = 0;
1105 tp->tx_ring[entry].length =
1106 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1107 tp->tx_ring[entry].buffer1 = 0;
1108 /* Must set DescOwned later to avoid race with chip */
1109 dummy = entry;
1110 entry = tp->cur_tx++ % TX_RING_SIZE;
1111
1112 }
1113
1114 tp->tx_buffers[entry].skb = NULL;
1115 tp->tx_buffers[entry].mapping =
1116 pci_map_single(tp->pdev, tp->setup_frame,
1117 sizeof(tp->setup_frame),
1118 PCI_DMA_TODEVICE);
1119 /* Put the setup frame on the Tx list. */
1120 if (entry == TX_RING_SIZE-1)
1121 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1122 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1123 tp->tx_ring[entry].buffer1 =
1124 cpu_to_le32(tp->tx_buffers[entry].mapping);
1125 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1126 if (dummy >= 0)
1127 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1128 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1129 netif_stop_queue(dev);
1130
1131 /* Trigger an immediate transmit demand. */
1132 iowrite32(0, ioaddr + CSR1);
1133 }
1134
1135 spin_unlock_irqrestore(&tp->lock, flags);
1136 }
1137
1138 iowrite32(csr6, ioaddr + CSR6);
1139 }
1140
1141 #ifdef CONFIG_TULIP_MWI
1142 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1143 struct net_device *dev)
1144 {
1145 struct tulip_private *tp = netdev_priv(dev);
1146 u8 cache;
1147 u16 pci_command;
1148 u32 csr0;
1149
1150 if (tulip_debug > 3)
1151 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1152
1153 tp->csr0 = csr0 = 0;
1154
1155 /* if we have any cache line size at all, we can do MRM and MWI */
1156 csr0 |= MRM | MWI;
1157
1158 /* Enable MWI in the standard PCI command bit.
1159 * Check for the case where MWI is desired but not available
1160 */
1161 pci_try_set_mwi(pdev);
1162
1163 /* read result from hardware (in case bit refused to enable) */
1164 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1165 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1166 csr0 &= ~MWI;
1167
1168 /* if cache line size hardwired to zero, no MWI */
1169 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1170 if ((csr0 & MWI) && (cache == 0)) {
1171 csr0 &= ~MWI;
1172 pci_clear_mwi(pdev);
1173 }
1174
1175 /* assign per-cacheline-size cache alignment and
1176 * burst length values
1177 */
1178 switch (cache) {
1179 case 8:
1180 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1181 break;
1182 case 16:
1183 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1184 break;
1185 case 32:
1186 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1187 break;
1188 default:
1189 cache = 0;
1190 break;
1191 }
1192
1193 /* if we have a good cache line size, we by now have a good
1194 * csr0, so save it and exit
1195 */
1196 if (cache)
1197 goto out;
1198
1199 /* we don't have a good csr0 or cache line size, disable MWI */
1200 if (csr0 & MWI) {
1201 pci_clear_mwi(pdev);
1202 csr0 &= ~MWI;
1203 }
1204
1205 /* sane defaults for burst length and cache alignment
1206 * originally from de4x5 driver
1207 */
1208 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1209
1210 out:
1211 tp->csr0 = csr0;
1212 if (tulip_debug > 2)
1213 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1214 pci_name(pdev), cache, csr0);
1215 }
1216 #endif
1217
1218 /*
1219 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1220 * is the DM910X and the on chip ULi devices
1221 */
1222
1223 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1224 {
1225 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1226 return 1;
1227 return 0;
1228 }
1229
1230 static int __devinit tulip_init_one (struct pci_dev *pdev,
1231 const struct pci_device_id *ent)
1232 {
1233 struct tulip_private *tp;
1234 /* See note below on the multiport cards. */
1235 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1236 static struct pci_device_id early_486_chipsets[] = {
1237 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1238 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1239 { },
1240 };
1241 static int last_irq;
1242 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1243 int i, irq;
1244 unsigned short sum;
1245 unsigned char *ee_data;
1246 struct net_device *dev;
1247 void __iomem *ioaddr;
1248 static int board_idx = -1;
1249 int chip_idx = ent->driver_data;
1250 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1251 unsigned int eeprom_missing = 0;
1252 unsigned int force_csr0 = 0;
1253 DECLARE_MAC_BUF(mac);
1254
1255 #ifndef MODULE
1256 static int did_version; /* Already printed version info. */
1257 if (tulip_debug > 0 && did_version++ == 0)
1258 printk (KERN_INFO "%s", version);
1259 #endif
1260
1261 board_idx++;
1262
1263 /*
1264 * Lan media wire a tulip chip to a wan interface. Needs a very
1265 * different driver (lmc driver)
1266 */
1267
1268 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1269 printk (KERN_ERR PFX "skipping LMC card.\n");
1270 return -ENODEV;
1271 }
1272
1273 /*
1274 * Early DM9100's need software CRC and the DMFE driver
1275 */
1276
1277 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1278 {
1279 /* Read Chip revision */
1280 if (pdev->revision < 0x30)
1281 {
1282 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1283 return -ENODEV;
1284 }
1285 }
1286
1287 /*
1288 * Looks for early PCI chipsets where people report hangs
1289 * without the workarounds being on.
1290 */
1291
1292 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1293 aligned. Aries might need this too. The Saturn errata are not
1294 pretty reading but thankfully it's an old 486 chipset.
1295
1296 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1297 Saturn.
1298 */
1299
1300 if (pci_dev_present(early_486_chipsets)) {
1301 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1302 force_csr0 = 1;
1303 }
1304
1305 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1306 if (chip_idx == AX88140) {
1307 if ((csr0 & 0x3f00) == 0)
1308 csr0 |= 0x2000;
1309 }
1310
1311 /* PNIC doesn't have MWI/MRL/MRM... */
1312 if (chip_idx == LC82C168)
1313 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1314
1315 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1316 if (tulip_uli_dm_quirk(pdev)) {
1317 csr0 &= ~0x01f100ff;
1318 #if defined(CONFIG_SPARC)
1319 csr0 = (csr0 & ~0xff00) | 0xe000;
1320 #endif
1321 }
1322 /*
1323 * And back to business
1324 */
1325
1326 i = pci_enable_device(pdev);
1327 if (i) {
1328 printk (KERN_ERR PFX
1329 "Cannot enable tulip board #%d, aborting\n",
1330 board_idx);
1331 return i;
1332 }
1333
1334 irq = pdev->irq;
1335
1336 /* alloc_etherdev ensures aligned and zeroed private structures */
1337 dev = alloc_etherdev (sizeof (*tp));
1338 if (!dev) {
1339 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1340 return -ENOMEM;
1341 }
1342
1343 SET_NETDEV_DEV(dev, &pdev->dev);
1344 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1345 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1346 "aborting\n", pci_name(pdev),
1347 (unsigned long long)pci_resource_len (pdev, 0),
1348 (unsigned long long)pci_resource_start (pdev, 0));
1349 goto err_out_free_netdev;
1350 }
1351
1352 /* grab all resources from both PIO and MMIO regions, as we
1353 * don't want anyone else messing around with our hardware */
1354 if (pci_request_regions (pdev, "tulip"))
1355 goto err_out_free_netdev;
1356
1357 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1358
1359 if (!ioaddr)
1360 goto err_out_free_res;
1361
1362 /*
1363 * initialize private data structure 'tp'
1364 * it is zeroed and aligned in alloc_etherdev
1365 */
1366 tp = netdev_priv(dev);
1367 tp->dev = dev;
1368
1369 tp->rx_ring = pci_alloc_consistent(pdev,
1370 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1371 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1372 &tp->rx_ring_dma);
1373 if (!tp->rx_ring)
1374 goto err_out_mtable;
1375 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1376 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1377
1378 tp->chip_id = chip_idx;
1379 tp->flags = tulip_tbl[chip_idx].flags;
1380 tp->pdev = pdev;
1381 tp->base_addr = ioaddr;
1382 tp->revision = pdev->revision;
1383 tp->csr0 = csr0;
1384 spin_lock_init(&tp->lock);
1385 spin_lock_init(&tp->mii_lock);
1386 init_timer(&tp->timer);
1387 tp->timer.data = (unsigned long)dev;
1388 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1389
1390 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1391
1392 dev->base_addr = (unsigned long)ioaddr;
1393
1394 #ifdef CONFIG_TULIP_MWI
1395 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1396 tulip_mwi_config (pdev, dev);
1397 #endif
1398
1399 /* Stop the chip's Tx and Rx processes. */
1400 tulip_stop_rxtx(tp);
1401
1402 pci_set_master(pdev);
1403
1404 #ifdef CONFIG_GSC
1405 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1406 switch (pdev->subsystem_device) {
1407 default:
1408 break;
1409 case 0x1061:
1410 case 0x1062:
1411 case 0x1063:
1412 case 0x1098:
1413 case 0x1099:
1414 case 0x10EE:
1415 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1416 chip_name = "GSC DS21140 Tulip";
1417 }
1418 }
1419 #endif
1420
1421 /* Clear the missed-packet counter. */
1422 ioread32(ioaddr + CSR8);
1423
1424 /* The station address ROM is read byte serially. The register must
1425 be polled, waiting for the value to be read bit serially from the
1426 EEPROM.
1427 */
1428 ee_data = tp->eeprom;
1429 memset(ee_data, 0, sizeof(tp->eeprom));
1430 sum = 0;
1431 if (chip_idx == LC82C168) {
1432 for (i = 0; i < 3; i++) {
1433 int value, boguscnt = 100000;
1434 iowrite32(0x600 | i, ioaddr + 0x98);
1435 do
1436 value = ioread32(ioaddr + CSR9);
1437 while (value < 0 && --boguscnt > 0);
1438 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1439 sum += value & 0xffff;
1440 }
1441 } else if (chip_idx == COMET) {
1442 /* No need to read the EEPROM. */
1443 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1444 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1445 for (i = 0; i < 6; i ++)
1446 sum += dev->dev_addr[i];
1447 } else {
1448 /* A serial EEPROM interface, we read now and sort it out later. */
1449 int sa_offset = 0;
1450 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1451 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1452
1453 if (ee_max_addr > sizeof(tp->eeprom))
1454 ee_max_addr = sizeof(tp->eeprom);
1455
1456 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1457 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1458 ee_data[i] = data & 0xff;
1459 ee_data[i + 1] = data >> 8;
1460 }
1461
1462 /* DEC now has a specification (see Notes) but early board makers
1463 just put the address in the first EEPROM locations. */
1464 /* This does memcmp(ee_data, ee_data+16, 8) */
1465 for (i = 0; i < 8; i ++)
1466 if (ee_data[i] != ee_data[16+i])
1467 sa_offset = 20;
1468 if (chip_idx == CONEXANT) {
1469 /* Check that the tuple type and length is correct. */
1470 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1471 sa_offset = 0x19A;
1472 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1473 ee_data[2] == 0) {
1474 sa_offset = 2; /* Grrr, damn Matrox boards. */
1475 multiport_cnt = 4;
1476 }
1477 #ifdef CONFIG_MIPS_COBALT
1478 if ((pdev->bus->number == 0) &&
1479 ((PCI_SLOT(pdev->devfn) == 7) ||
1480 (PCI_SLOT(pdev->devfn) == 12))) {
1481 /* Cobalt MAC address in first EEPROM locations. */
1482 sa_offset = 0;
1483 /* Ensure our media table fixup get's applied */
1484 memcpy(ee_data + 16, ee_data, 8);
1485 }
1486 #endif
1487 #ifdef CONFIG_GSC
1488 /* Check to see if we have a broken srom */
1489 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1490 /* pci_vendor_id and subsystem_id are swapped */
1491 ee_data[0] = ee_data[2];
1492 ee_data[1] = ee_data[3];
1493 ee_data[2] = 0x61;
1494 ee_data[3] = 0x10;
1495
1496 /* HSC-PCI boards need to be byte-swaped and shifted
1497 * up 1 word. This shift needs to happen at the end
1498 * of the MAC first because of the 2 byte overlap.
1499 */
1500 for (i = 4; i >= 0; i -= 2) {
1501 ee_data[17 + i + 3] = ee_data[17 + i];
1502 ee_data[16 + i + 5] = ee_data[16 + i];
1503 }
1504 }
1505 #endif
1506
1507 for (i = 0; i < 6; i ++) {
1508 dev->dev_addr[i] = ee_data[i + sa_offset];
1509 sum += ee_data[i + sa_offset];
1510 }
1511 }
1512 /* Lite-On boards have the address byte-swapped. */
1513 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1514 && dev->dev_addr[1] == 0x00)
1515 for (i = 0; i < 6; i+=2) {
1516 char tmp = dev->dev_addr[i];
1517 dev->dev_addr[i] = dev->dev_addr[i+1];
1518 dev->dev_addr[i+1] = tmp;
1519 }
1520 /* On the Zynx 315 Etherarray and other multiport boards only the
1521 first Tulip has an EEPROM.
1522 On Sparc systems the mac address is held in the OBP property
1523 "local-mac-address".
1524 The addresses of the subsequent ports are derived from the first.
1525 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1526 that here as well. */
1527 if (sum == 0 || sum == 6*0xff) {
1528 #if defined(CONFIG_SPARC)
1529 struct device_node *dp = pci_device_to_OF_node(pdev);
1530 const unsigned char *addr;
1531 int len;
1532 #endif
1533 eeprom_missing = 1;
1534 for (i = 0; i < 5; i++)
1535 dev->dev_addr[i] = last_phys_addr[i];
1536 dev->dev_addr[i] = last_phys_addr[i] + 1;
1537 #if defined(CONFIG_SPARC)
1538 addr = of_get_property(dp, "local-mac-address", &len);
1539 if (addr && len == 6)
1540 memcpy(dev->dev_addr, addr, 6);
1541 #endif
1542 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1543 if (last_irq)
1544 irq = last_irq;
1545 #endif
1546 }
1547
1548 for (i = 0; i < 6; i++)
1549 last_phys_addr[i] = dev->dev_addr[i];
1550 last_irq = irq;
1551 dev->irq = irq;
1552
1553 /* The lower four bits are the media type. */
1554 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1555 if (options[board_idx] & MEDIA_MASK)
1556 tp->default_port = options[board_idx] & MEDIA_MASK;
1557 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1558 tp->full_duplex = 1;
1559 if (mtu[board_idx] > 0)
1560 dev->mtu = mtu[board_idx];
1561 }
1562 if (dev->mem_start & MEDIA_MASK)
1563 tp->default_port = dev->mem_start & MEDIA_MASK;
1564 if (tp->default_port) {
1565 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1566 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1567 tp->medialock = 1;
1568 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1569 tp->full_duplex = 1;
1570 }
1571 if (tp->full_duplex)
1572 tp->full_duplex_lock = 1;
1573
1574 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1575 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1576 tp->mii_advertise = media2advert[tp->default_port - 9];
1577 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1578 }
1579
1580 if (tp->flags & HAS_MEDIA_TABLE) {
1581 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1582 tulip_parse_eeprom(dev);
1583 strcpy(dev->name, "eth%d"); /* un-hack */
1584 }
1585
1586 if ((tp->flags & ALWAYS_CHECK_MII) ||
1587 (tp->mtable && tp->mtable->has_mii) ||
1588 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1589 if (tp->mtable && tp->mtable->has_mii) {
1590 for (i = 0; i < tp->mtable->leafcount; i++)
1591 if (tp->mtable->mleaf[i].media == 11) {
1592 tp->cur_index = i;
1593 tp->saved_if_port = dev->if_port;
1594 tulip_select_media(dev, 2);
1595 dev->if_port = tp->saved_if_port;
1596 break;
1597 }
1598 }
1599
1600 /* Find the connected MII xcvrs.
1601 Doing this in open() would allow detecting external xcvrs
1602 later, but takes much time. */
1603 tulip_find_mii (dev, board_idx);
1604 }
1605
1606 /* The Tulip-specific entries in the device structure. */
1607 dev->open = tulip_open;
1608 dev->hard_start_xmit = tulip_start_xmit;
1609 dev->tx_timeout = tulip_tx_timeout;
1610 dev->watchdog_timeo = TX_TIMEOUT;
1611 #ifdef CONFIG_TULIP_NAPI
1612 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1613 #endif
1614 dev->stop = tulip_close;
1615 dev->get_stats = tulip_get_stats;
1616 dev->do_ioctl = private_ioctl;
1617 dev->set_multicast_list = set_rx_mode;
1618 #ifdef CONFIG_NET_POLL_CONTROLLER
1619 dev->poll_controller = &poll_tulip;
1620 #endif
1621 SET_ETHTOOL_OPS(dev, &ops);
1622
1623 if (register_netdev(dev))
1624 goto err_out_free_ring;
1625
1626 printk(KERN_INFO "%s: %s rev %d at "
1627 #ifdef CONFIG_TULIP_MMIO
1628 "MMIO"
1629 #else
1630 "Port"
1631 #endif
1632 " %#llx,", dev->name, chip_name, pdev->revision,
1633 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1634 pci_set_drvdata(pdev, dev);
1635
1636 if (eeprom_missing)
1637 printk(" EEPROM not present,");
1638 printk(" %s", print_mac(mac, dev->dev_addr));
1639 printk(", IRQ %d.\n", irq);
1640
1641 if (tp->chip_id == PNIC2)
1642 tp->link_change = pnic2_lnk_change;
1643 else if (tp->flags & HAS_NWAY)
1644 tp->link_change = t21142_lnk_change;
1645 else if (tp->flags & HAS_PNICNWAY)
1646 tp->link_change = pnic_lnk_change;
1647
1648 /* Reset the xcvr interface and turn on heartbeat. */
1649 switch (chip_idx) {
1650 case DC21140:
1651 case DM910X:
1652 default:
1653 if (tp->mtable)
1654 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1655 break;
1656 case DC21142:
1657 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1658 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1659 iowrite32(0x0000, ioaddr + CSR13);
1660 iowrite32(0x0000, ioaddr + CSR14);
1661 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1662 } else
1663 t21142_start_nway(dev);
1664 break;
1665 case PNIC2:
1666 /* just do a reset for sanity sake */
1667 iowrite32(0x0000, ioaddr + CSR13);
1668 iowrite32(0x0000, ioaddr + CSR14);
1669 break;
1670 case LC82C168:
1671 if ( ! tp->mii_cnt) {
1672 tp->nway = 1;
1673 tp->nwayset = 0;
1674 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1675 iowrite32(0x30, ioaddr + CSR12);
1676 iowrite32(0x0001F078, ioaddr + CSR6);
1677 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1678 }
1679 break;
1680 case MX98713:
1681 case COMPEX9881:
1682 iowrite32(0x00000000, ioaddr + CSR6);
1683 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1684 iowrite32(0x00000001, ioaddr + CSR13);
1685 break;
1686 case MX98715:
1687 case MX98725:
1688 iowrite32(0x01a80000, ioaddr + CSR6);
1689 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1690 iowrite32(0x00001000, ioaddr + CSR12);
1691 break;
1692 case COMET:
1693 /* No initialization necessary. */
1694 break;
1695 }
1696
1697 /* put the chip in snooze mode until opened */
1698 tulip_set_power_state (tp, 0, 1);
1699
1700 return 0;
1701
1702 err_out_free_ring:
1703 pci_free_consistent (pdev,
1704 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1705 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1706 tp->rx_ring, tp->rx_ring_dma);
1707
1708 err_out_mtable:
1709 kfree (tp->mtable);
1710 pci_iounmap(pdev, ioaddr);
1711
1712 err_out_free_res:
1713 pci_release_regions (pdev);
1714
1715 err_out_free_netdev:
1716 free_netdev (dev);
1717 return -ENODEV;
1718 }
1719
1720
1721 #ifdef CONFIG_PM
1722
1723 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1724 {
1725 struct net_device *dev = pci_get_drvdata(pdev);
1726
1727 if (!dev)
1728 return -EINVAL;
1729
1730 if (!netif_running(dev))
1731 goto save_state;
1732
1733 tulip_down(dev);
1734
1735 netif_device_detach(dev);
1736 free_irq(dev->irq, dev);
1737
1738 save_state:
1739 pci_save_state(pdev);
1740 pci_disable_device(pdev);
1741 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1742
1743 return 0;
1744 }
1745
1746
1747 static int tulip_resume(struct pci_dev *pdev)
1748 {
1749 struct net_device *dev = pci_get_drvdata(pdev);
1750 int retval;
1751
1752 if (!dev)
1753 return -EINVAL;
1754
1755 pci_set_power_state(pdev, PCI_D0);
1756 pci_restore_state(pdev);
1757
1758 if (!netif_running(dev))
1759 return 0;
1760
1761 if ((retval = pci_enable_device(pdev))) {
1762 printk (KERN_ERR "tulip: pci_enable_device failed in resume\n");
1763 return retval;
1764 }
1765
1766 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1767 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1768 return retval;
1769 }
1770
1771 netif_device_attach(dev);
1772
1773 if (netif_running(dev))
1774 tulip_up(dev);
1775
1776 return 0;
1777 }
1778
1779 #endif /* CONFIG_PM */
1780
1781
1782 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1783 {
1784 struct net_device *dev = pci_get_drvdata (pdev);
1785 struct tulip_private *tp;
1786
1787 if (!dev)
1788 return;
1789
1790 tp = netdev_priv(dev);
1791 unregister_netdev(dev);
1792 pci_free_consistent (pdev,
1793 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1794 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1795 tp->rx_ring, tp->rx_ring_dma);
1796 kfree (tp->mtable);
1797 pci_iounmap(pdev, tp->base_addr);
1798 free_netdev (dev);
1799 pci_release_regions (pdev);
1800 pci_set_drvdata (pdev, NULL);
1801
1802 /* pci_power_off (pdev, -1); */
1803 }
1804
1805 #ifdef CONFIG_NET_POLL_CONTROLLER
1806 /*
1807 * Polling 'interrupt' - used by things like netconsole to send skbs
1808 * without having to re-enable interrupts. It's not called while
1809 * the interrupt routine is executing.
1810 */
1811
1812 static void poll_tulip (struct net_device *dev)
1813 {
1814 /* disable_irq here is not very nice, but with the lockless
1815 interrupt handler we have no other choice. */
1816 disable_irq(dev->irq);
1817 tulip_interrupt (dev->irq, dev);
1818 enable_irq(dev->irq);
1819 }
1820 #endif
1821
1822 static struct pci_driver tulip_driver = {
1823 .name = DRV_NAME,
1824 .id_table = tulip_pci_tbl,
1825 .probe = tulip_init_one,
1826 .remove = __devexit_p(tulip_remove_one),
1827 #ifdef CONFIG_PM
1828 .suspend = tulip_suspend,
1829 .resume = tulip_resume,
1830 #endif /* CONFIG_PM */
1831 };
1832
1833
1834 static int __init tulip_init (void)
1835 {
1836 #ifdef MODULE
1837 printk (KERN_INFO "%s", version);
1838 #endif
1839
1840 /* copy module parms into globals */
1841 tulip_rx_copybreak = rx_copybreak;
1842 tulip_max_interrupt_work = max_interrupt_work;
1843
1844 /* probe for and init boards */
1845 return pci_register_driver(&tulip_driver);
1846 }
1847
1848
1849 static void __exit tulip_cleanup (void)
1850 {
1851 pci_unregister_driver (&tulip_driver);
1852 }
1853
1854
1855 module_init(tulip_init);
1856 module_exit(tulip_cleanup);
This page took 0.116174 seconds and 5 git commands to generate.