[NET]: Remove gratuitous use of skb->tail in network drivers.
[deliverable/linux.git] / drivers / net / tulip / winbond-840.c
1 /* winbond-840.c: A Linux PCI network adapter device driver. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/drivers.html
19
20 Do not remove the copyright information.
21 Do not change the version information unless an improvement has been made.
22 Merely removing my name, as Compex has done in the past, does not count
23 as an improvement.
24
25 Changelog:
26 * ported to 2.4
27 ???
28 * spin lock update, memory barriers, new style dma mappings
29 limit each tx buffer to < 1024 bytes
30 remove DescIntr from Rx descriptors (that's an Tx flag)
31 remove next pointer from Tx descriptors
32 synchronize tx_q_bytes
33 software reset in tx_timeout
34 Copyright (C) 2000 Manfred Spraul
35 * further cleanups
36 power management.
37 support for big endian descriptors
38 Copyright (C) 2001 Manfred Spraul
39 * ethtool support (jgarzik)
40 * Replace some MII-related magic numbers with constants (jgarzik)
41
42 TODO:
43 * enable pci_power_off
44 * Wake-On-LAN
45 */
46
47 #define DRV_NAME "winbond-840"
48 #define DRV_VERSION "1.01-d"
49 #define DRV_RELDATE "Nov-17-2001"
50
51
52 /* Automatically extracted configuration info:
53 probe-func: winbond840_probe
54 config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
55
56 c-help-name: Winbond W89c840 PCI Ethernet support
57 c-help-symbol: CONFIG_WINBOND_840
58 c-help: This driver is for the Winbond W89c840 chip. It also works with
59 c-help: the TX9882 chip on the Compex RL100-ATX board.
60 c-help: More specific information and updates are available from
61 c-help: http://www.scyld.com/network/drivers.html
62 */
63
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
66
67 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
68 static int max_interrupt_work = 20;
69 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
70 The '840 uses a 64 element hash table based on the Ethernet CRC. */
71 static int multicast_filter_limit = 32;
72
73 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
74 Setting to > 1518 effectively disables this feature. */
75 static int rx_copybreak;
76
77 /* Used to pass the media type, etc.
78 Both 'options[]' and 'full_duplex[]' should exist for driver
79 interoperability.
80 The media type is usually passed in 'options[]'.
81 */
82 #define MAX_UNITS 8 /* More are supported, limit only on options */
83 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
84 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
85
86 /* Operational parameters that are set at compile time. */
87
88 /* Keep the ring sizes a power of two for compile efficiency.
89 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
90 Making the Tx ring too large decreases the effectiveness of channel
91 bonding and packet priority.
92 There are no ill effects from too-large receive rings. */
93 #define TX_RING_SIZE 16
94 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
95 #define TX_QUEUE_LEN_RESTART 5
96 #define RX_RING_SIZE 32
97
98 #define TX_BUFLIMIT (1024-128)
99
100 /* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
101 To avoid overflowing we don't queue again until we have room for a
102 full-size packet.
103 */
104 #define TX_FIFO_SIZE (2048)
105 #define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
106
107
108 /* Operational parameters that usually are not changed. */
109 /* Time in jiffies before concluding the transmitter is hung. */
110 #define TX_TIMEOUT (2*HZ)
111
112 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
113
114 /* Include files, designed to support most kernel versions 2.0.0 and later. */
115 #include <linux/module.h>
116 #include <linux/kernel.h>
117 #include <linux/string.h>
118 #include <linux/timer.h>
119 #include <linux/errno.h>
120 #include <linux/ioport.h>
121 #include <linux/slab.h>
122 #include <linux/interrupt.h>
123 #include <linux/pci.h>
124 #include <linux/dma-mapping.h>
125 #include <linux/netdevice.h>
126 #include <linux/etherdevice.h>
127 #include <linux/skbuff.h>
128 #include <linux/init.h>
129 #include <linux/delay.h>
130 #include <linux/ethtool.h>
131 #include <linux/mii.h>
132 #include <linux/rtnetlink.h>
133 #include <linux/crc32.h>
134 #include <linux/bitops.h>
135 #include <asm/uaccess.h>
136 #include <asm/processor.h> /* Processor type for cache alignment. */
137 #include <asm/io.h>
138 #include <asm/irq.h>
139
140 /* These identify the driver base version and may not be removed. */
141 static char version[] __devinitdata =
142 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " (2.4 port) " DRV_RELDATE " Donald Becker <becker@scyld.com>\n"
143 KERN_INFO " http://www.scyld.com/network/drivers.html\n";
144
145 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
146 MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
147 MODULE_LICENSE("GPL");
148 MODULE_VERSION(DRV_VERSION);
149
150 module_param(max_interrupt_work, int, 0);
151 module_param(debug, int, 0);
152 module_param(rx_copybreak, int, 0);
153 module_param(multicast_filter_limit, int, 0);
154 module_param_array(options, int, NULL, 0);
155 module_param_array(full_duplex, int, NULL, 0);
156 MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
157 MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
158 MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
159 MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
160 MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
161 MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
162
163 /*
164 Theory of Operation
165
166 I. Board Compatibility
167
168 This driver is for the Winbond w89c840 chip.
169
170 II. Board-specific settings
171
172 None.
173
174 III. Driver operation
175
176 This chip is very similar to the Digital 21*4* "Tulip" family. The first
177 twelve registers and the descriptor format are nearly identical. Read a
178 Tulip manual for operational details.
179
180 A significant difference is that the multicast filter and station address are
181 stored in registers rather than loaded through a pseudo-transmit packet.
182
183 Unlike the Tulip, transmit buffers are limited to 1KB. To transmit a
184 full-sized packet we must use both data buffers in a descriptor. Thus the
185 driver uses ring mode where descriptors are implicitly sequential in memory,
186 rather than using the second descriptor address as a chain pointer to
187 subsequent descriptors.
188
189 IV. Notes
190
191 If you are going to almost clone a Tulip, why not go all the way and avoid
192 the need for a new driver?
193
194 IVb. References
195
196 http://www.scyld.com/expert/100mbps.html
197 http://www.scyld.com/expert/NWay.html
198 http://www.winbond.com.tw/
199
200 IVc. Errata
201
202 A horrible bug exists in the transmit FIFO. Apparently the chip doesn't
203 correctly detect a full FIFO, and queuing more than 2048 bytes may result in
204 silent data corruption.
205
206 Test with 'ping -s 10000' on a fast computer.
207
208 */
209
210 \f
211
212 /*
213 PCI probe table.
214 */
215 enum pci_id_flags_bits {
216 /* Set PCI command register bits before calling probe1(). */
217 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
218 /* Read and map the single following PCI BAR. */
219 PCI_ADDR0=0<<4, PCI_ADDR1=1<<4, PCI_ADDR2=2<<4, PCI_ADDR3=3<<4,
220 PCI_ADDR_64BITS=0x100, PCI_NO_ACPI_WAKE=0x200, PCI_NO_MIN_LATENCY=0x400,
221 };
222 enum chip_capability_flags {
223 CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,};
224 #ifdef USE_IO_OPS
225 #define W840_FLAGS (PCI_USES_IO | PCI_ADDR0 | PCI_USES_MASTER)
226 #else
227 #define W840_FLAGS (PCI_USES_MEM | PCI_ADDR1 | PCI_USES_MASTER)
228 #endif
229
230 static struct pci_device_id w840_pci_tbl[] = {
231 { 0x1050, 0x0840, PCI_ANY_ID, 0x8153, 0, 0, 0 },
232 { 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
233 { 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
234 { 0, }
235 };
236 MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
237
238 struct pci_id_info {
239 const char *name;
240 struct match_info {
241 int pci, pci_mask, subsystem, subsystem_mask;
242 int revision, revision_mask; /* Only 8 bits. */
243 } id;
244 enum pci_id_flags_bits pci_flags;
245 int io_size; /* Needed for I/O region check or ioremap(). */
246 int drv_flags; /* Driver use, intended as capability flags. */
247 };
248 static struct pci_id_info pci_id_tbl[] = {
249 {"Winbond W89c840", /* Sometime a Level-One switch card. */
250 { 0x08401050, 0xffffffff, 0x81530000, 0xffff0000 },
251 W840_FLAGS, 128, CanHaveMII | HasBrokenTx | FDXOnNoMII},
252 {"Winbond W89c840", { 0x08401050, 0xffffffff, },
253 W840_FLAGS, 128, CanHaveMII | HasBrokenTx},
254 {"Compex RL100-ATX", { 0x201111F6, 0xffffffff,},
255 W840_FLAGS, 128, CanHaveMII | HasBrokenTx},
256 {NULL,}, /* 0 terminated list. */
257 };
258
259 /* This driver was written to use PCI memory space, however some x86 systems
260 work only with I/O space accesses. Pass -DUSE_IO_OPS to use PCI I/O space
261 accesses instead of memory space. */
262
263 /* Offsets to the Command and Status Registers, "CSRs".
264 While similar to the Tulip, these registers are longword aligned.
265 Note: It's not useful to define symbolic names for every register bit in
266 the device. The name can only partially document the semantics and make
267 the driver longer and more difficult to read.
268 */
269 enum w840_offsets {
270 PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
271 RxRingPtr=0x0C, TxRingPtr=0x10,
272 IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
273 RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
274 CurRxDescAddr=0x30, CurRxBufAddr=0x34, /* Debug use */
275 MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
276 CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
277 };
278
279 /* Bits in the interrupt status/enable registers. */
280 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
281 enum intr_status_bits {
282 NormalIntr=0x10000, AbnormalIntr=0x8000,
283 IntrPCIErr=0x2000, TimerInt=0x800,
284 IntrRxDied=0x100, RxNoBuf=0x80, IntrRxDone=0x40,
285 TxFIFOUnderflow=0x20, RxErrIntr=0x10,
286 TxIdle=0x04, IntrTxStopped=0x02, IntrTxDone=0x01,
287 };
288
289 /* Bits in the NetworkConfig register. */
290 enum rx_mode_bits {
291 AcceptErr=0x80, AcceptRunt=0x40,
292 AcceptBroadcast=0x20, AcceptMulticast=0x10,
293 AcceptAllPhys=0x08, AcceptMyPhys=0x02,
294 };
295
296 enum mii_reg_bits {
297 MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
298 MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
299 };
300
301 /* The Tulip Rx and Tx buffer descriptors. */
302 struct w840_rx_desc {
303 s32 status;
304 s32 length;
305 u32 buffer1;
306 u32 buffer2;
307 };
308
309 struct w840_tx_desc {
310 s32 status;
311 s32 length;
312 u32 buffer1, buffer2;
313 };
314
315 /* Bits in network_desc.status */
316 enum desc_status_bits {
317 DescOwn=0x80000000, DescEndRing=0x02000000, DescUseLink=0x01000000,
318 DescWholePkt=0x60000000, DescStartPkt=0x20000000, DescEndPkt=0x40000000,
319 DescIntr=0x80000000,
320 };
321
322 #define MII_CNT 1 /* winbond only supports one MII */
323 struct netdev_private {
324 struct w840_rx_desc *rx_ring;
325 dma_addr_t rx_addr[RX_RING_SIZE];
326 struct w840_tx_desc *tx_ring;
327 dma_addr_t tx_addr[TX_RING_SIZE];
328 dma_addr_t ring_dma_addr;
329 /* The addresses of receive-in-place skbuffs. */
330 struct sk_buff* rx_skbuff[RX_RING_SIZE];
331 /* The saved address of a sent-in-place packet/buffer, for later free(). */
332 struct sk_buff* tx_skbuff[TX_RING_SIZE];
333 struct net_device_stats stats;
334 struct timer_list timer; /* Media monitoring timer. */
335 /* Frequently used values: keep some adjacent for cache effect. */
336 spinlock_t lock;
337 int chip_id, drv_flags;
338 struct pci_dev *pci_dev;
339 int csr6;
340 struct w840_rx_desc *rx_head_desc;
341 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
342 unsigned int rx_buf_sz; /* Based on MTU+slack. */
343 unsigned int cur_tx, dirty_tx;
344 unsigned int tx_q_bytes;
345 unsigned int tx_full; /* The Tx queue is full. */
346 /* MII transceiver section. */
347 int mii_cnt; /* MII device addresses. */
348 unsigned char phys[MII_CNT]; /* MII device addresses, but only the first is used */
349 u32 mii;
350 struct mii_if_info mii_if;
351 void __iomem *base_addr;
352 };
353
354 static int eeprom_read(void __iomem *ioaddr, int location);
355 static int mdio_read(struct net_device *dev, int phy_id, int location);
356 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
357 static int netdev_open(struct net_device *dev);
358 static int update_link(struct net_device *dev);
359 static void netdev_timer(unsigned long data);
360 static void init_rxtx_rings(struct net_device *dev);
361 static void free_rxtx_rings(struct netdev_private *np);
362 static void init_registers(struct net_device *dev);
363 static void tx_timeout(struct net_device *dev);
364 static int alloc_ringdesc(struct net_device *dev);
365 static void free_ringdesc(struct netdev_private *np);
366 static int start_tx(struct sk_buff *skb, struct net_device *dev);
367 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
368 static void netdev_error(struct net_device *dev, int intr_status);
369 static int netdev_rx(struct net_device *dev);
370 static u32 __set_rx_mode(struct net_device *dev);
371 static void set_rx_mode(struct net_device *dev);
372 static struct net_device_stats *get_stats(struct net_device *dev);
373 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
374 static struct ethtool_ops netdev_ethtool_ops;
375 static int netdev_close(struct net_device *dev);
376
377 \f
378
379 static int __devinit w840_probe1 (struct pci_dev *pdev,
380 const struct pci_device_id *ent)
381 {
382 struct net_device *dev;
383 struct netdev_private *np;
384 static int find_cnt;
385 int chip_idx = ent->driver_data;
386 int irq;
387 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
388 void __iomem *ioaddr;
389 int bar = 1;
390
391 i = pci_enable_device(pdev);
392 if (i) return i;
393
394 pci_set_master(pdev);
395
396 irq = pdev->irq;
397
398 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
399 printk(KERN_WARNING "Winbond-840: Device %s disabled due to DMA limitations.\n",
400 pci_name(pdev));
401 return -EIO;
402 }
403 dev = alloc_etherdev(sizeof(*np));
404 if (!dev)
405 return -ENOMEM;
406 SET_MODULE_OWNER(dev);
407 SET_NETDEV_DEV(dev, &pdev->dev);
408
409 if (pci_request_regions(pdev, DRV_NAME))
410 goto err_out_netdev;
411 #ifdef USE_IO_OPS
412 bar = 0;
413 #endif
414 ioaddr = pci_iomap(pdev, bar, pci_id_tbl[chip_idx].io_size);
415 if (!ioaddr)
416 goto err_out_free_res;
417
418 for (i = 0; i < 3; i++)
419 ((u16 *)dev->dev_addr)[i] = le16_to_cpu(eeprom_read(ioaddr, i));
420
421 /* Reset the chip to erase previous misconfiguration.
422 No hold time required! */
423 iowrite32(0x00000001, ioaddr + PCIBusCfg);
424
425 dev->base_addr = (unsigned long)ioaddr;
426 dev->irq = irq;
427
428 np = netdev_priv(dev);
429 np->pci_dev = pdev;
430 np->chip_id = chip_idx;
431 np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
432 spin_lock_init(&np->lock);
433 np->mii_if.dev = dev;
434 np->mii_if.mdio_read = mdio_read;
435 np->mii_if.mdio_write = mdio_write;
436 np->base_addr = ioaddr;
437
438 pci_set_drvdata(pdev, dev);
439
440 if (dev->mem_start)
441 option = dev->mem_start;
442
443 /* The lower four bits are the media type. */
444 if (option > 0) {
445 if (option & 0x200)
446 np->mii_if.full_duplex = 1;
447 if (option & 15)
448 printk(KERN_INFO "%s: ignoring user supplied media type %d",
449 dev->name, option & 15);
450 }
451 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
452 np->mii_if.full_duplex = 1;
453
454 if (np->mii_if.full_duplex)
455 np->mii_if.force_media = 1;
456
457 /* The chip-specific entries in the device structure. */
458 dev->open = &netdev_open;
459 dev->hard_start_xmit = &start_tx;
460 dev->stop = &netdev_close;
461 dev->get_stats = &get_stats;
462 dev->set_multicast_list = &set_rx_mode;
463 dev->do_ioctl = &netdev_ioctl;
464 dev->ethtool_ops = &netdev_ethtool_ops;
465 dev->tx_timeout = &tx_timeout;
466 dev->watchdog_timeo = TX_TIMEOUT;
467
468 i = register_netdev(dev);
469 if (i)
470 goto err_out_cleardev;
471
472 printk(KERN_INFO "%s: %s at %p, ",
473 dev->name, pci_id_tbl[chip_idx].name, ioaddr);
474 for (i = 0; i < 5; i++)
475 printk("%2.2x:", dev->dev_addr[i]);
476 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
477
478 if (np->drv_flags & CanHaveMII) {
479 int phy, phy_idx = 0;
480 for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
481 int mii_status = mdio_read(dev, phy, MII_BMSR);
482 if (mii_status != 0xffff && mii_status != 0x0000) {
483 np->phys[phy_idx++] = phy;
484 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
485 np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
486 mdio_read(dev, phy, MII_PHYSID2);
487 printk(KERN_INFO "%s: MII PHY %8.8xh found at address %d, status "
488 "0x%4.4x advertising %4.4x.\n",
489 dev->name, np->mii, phy, mii_status, np->mii_if.advertising);
490 }
491 }
492 np->mii_cnt = phy_idx;
493 np->mii_if.phy_id = np->phys[0];
494 if (phy_idx == 0) {
495 printk(KERN_WARNING "%s: MII PHY not found -- this device may "
496 "not operate correctly.\n", dev->name);
497 }
498 }
499
500 find_cnt++;
501 return 0;
502
503 err_out_cleardev:
504 pci_set_drvdata(pdev, NULL);
505 pci_iounmap(pdev, ioaddr);
506 err_out_free_res:
507 pci_release_regions(pdev);
508 err_out_netdev:
509 free_netdev (dev);
510 return -ENODEV;
511 }
512
513 \f
514 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. These are
515 often serial bit streams generated by the host processor.
516 The example below is for the common 93c46 EEPROM, 64 16 bit words. */
517
518 /* Delay between EEPROM clock transitions.
519 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
520 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
521 made udelay() unreliable.
522 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
523 depricated.
524 */
525 #define eeprom_delay(ee_addr) ioread32(ee_addr)
526
527 enum EEPROM_Ctrl_Bits {
528 EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
529 EE_ChipSelect=0x801, EE_DataIn=0x08,
530 };
531
532 /* The EEPROM commands include the alway-set leading bit. */
533 enum EEPROM_Cmds {
534 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
535 };
536
537 static int eeprom_read(void __iomem *addr, int location)
538 {
539 int i;
540 int retval = 0;
541 void __iomem *ee_addr = addr + EECtrl;
542 int read_cmd = location | EE_ReadCmd;
543 iowrite32(EE_ChipSelect, ee_addr);
544
545 /* Shift the read command bits out. */
546 for (i = 10; i >= 0; i--) {
547 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
548 iowrite32(dataval, ee_addr);
549 eeprom_delay(ee_addr);
550 iowrite32(dataval | EE_ShiftClk, ee_addr);
551 eeprom_delay(ee_addr);
552 }
553 iowrite32(EE_ChipSelect, ee_addr);
554 eeprom_delay(ee_addr);
555
556 for (i = 16; i > 0; i--) {
557 iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
558 eeprom_delay(ee_addr);
559 retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
560 iowrite32(EE_ChipSelect, ee_addr);
561 eeprom_delay(ee_addr);
562 }
563
564 /* Terminate the EEPROM access. */
565 iowrite32(0, ee_addr);
566 return retval;
567 }
568
569 /* MII transceiver control section.
570 Read and write the MII registers using software-generated serial
571 MDIO protocol. See the MII specifications or DP83840A data sheet
572 for details.
573
574 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
575 met by back-to-back 33Mhz PCI cycles. */
576 #define mdio_delay(mdio_addr) ioread32(mdio_addr)
577
578 /* Set iff a MII transceiver on any interface requires mdio preamble.
579 This only set with older transceivers, so the extra
580 code size of a per-interface flag is not worthwhile. */
581 static char mii_preamble_required = 1;
582
583 #define MDIO_WRITE0 (MDIO_EnbOutput)
584 #define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
585
586 /* Generate the preamble required for initial synchronization and
587 a few older transceivers. */
588 static void mdio_sync(void __iomem *mdio_addr)
589 {
590 int bits = 32;
591
592 /* Establish sync by sending at least 32 logic ones. */
593 while (--bits >= 0) {
594 iowrite32(MDIO_WRITE1, mdio_addr);
595 mdio_delay(mdio_addr);
596 iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
597 mdio_delay(mdio_addr);
598 }
599 }
600
601 static int mdio_read(struct net_device *dev, int phy_id, int location)
602 {
603 struct netdev_private *np = netdev_priv(dev);
604 void __iomem *mdio_addr = np->base_addr + MIICtrl;
605 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
606 int i, retval = 0;
607
608 if (mii_preamble_required)
609 mdio_sync(mdio_addr);
610
611 /* Shift the read command bits out. */
612 for (i = 15; i >= 0; i--) {
613 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
614
615 iowrite32(dataval, mdio_addr);
616 mdio_delay(mdio_addr);
617 iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
618 mdio_delay(mdio_addr);
619 }
620 /* Read the two transition, 16 data, and wire-idle bits. */
621 for (i = 20; i > 0; i--) {
622 iowrite32(MDIO_EnbIn, mdio_addr);
623 mdio_delay(mdio_addr);
624 retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
625 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
626 mdio_delay(mdio_addr);
627 }
628 return (retval>>1) & 0xffff;
629 }
630
631 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
632 {
633 struct netdev_private *np = netdev_priv(dev);
634 void __iomem *mdio_addr = np->base_addr + MIICtrl;
635 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
636 int i;
637
638 if (location == 4 && phy_id == np->phys[0])
639 np->mii_if.advertising = value;
640
641 if (mii_preamble_required)
642 mdio_sync(mdio_addr);
643
644 /* Shift the command bits out. */
645 for (i = 31; i >= 0; i--) {
646 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
647
648 iowrite32(dataval, mdio_addr);
649 mdio_delay(mdio_addr);
650 iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
651 mdio_delay(mdio_addr);
652 }
653 /* Clear out extra bits. */
654 for (i = 2; i > 0; i--) {
655 iowrite32(MDIO_EnbIn, mdio_addr);
656 mdio_delay(mdio_addr);
657 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
658 mdio_delay(mdio_addr);
659 }
660 return;
661 }
662
663 \f
664 static int netdev_open(struct net_device *dev)
665 {
666 struct netdev_private *np = netdev_priv(dev);
667 void __iomem *ioaddr = np->base_addr;
668 int i;
669
670 iowrite32(0x00000001, ioaddr + PCIBusCfg); /* Reset */
671
672 netif_device_detach(dev);
673 i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
674 if (i)
675 goto out_err;
676
677 if (debug > 1)
678 printk(KERN_DEBUG "%s: w89c840_open() irq %d.\n",
679 dev->name, dev->irq);
680
681 if((i=alloc_ringdesc(dev)))
682 goto out_err;
683
684 spin_lock_irq(&np->lock);
685 netif_device_attach(dev);
686 init_registers(dev);
687 spin_unlock_irq(&np->lock);
688
689 netif_start_queue(dev);
690 if (debug > 2)
691 printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
692
693 /* Set the timer to check for link beat. */
694 init_timer(&np->timer);
695 np->timer.expires = jiffies + 1*HZ;
696 np->timer.data = (unsigned long)dev;
697 np->timer.function = &netdev_timer; /* timer handler */
698 add_timer(&np->timer);
699 return 0;
700 out_err:
701 netif_device_attach(dev);
702 return i;
703 }
704
705 #define MII_DAVICOM_DM9101 0x0181b800
706
707 static int update_link(struct net_device *dev)
708 {
709 struct netdev_private *np = netdev_priv(dev);
710 int duplex, fasteth, result, mii_reg;
711
712 /* BSMR */
713 mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
714
715 if (mii_reg == 0xffff)
716 return np->csr6;
717 /* reread: the link status bit is sticky */
718 mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
719 if (!(mii_reg & 0x4)) {
720 if (netif_carrier_ok(dev)) {
721 if (debug)
722 printk(KERN_INFO "%s: MII #%d reports no link. Disabling watchdog.\n",
723 dev->name, np->phys[0]);
724 netif_carrier_off(dev);
725 }
726 return np->csr6;
727 }
728 if (!netif_carrier_ok(dev)) {
729 if (debug)
730 printk(KERN_INFO "%s: MII #%d link is back. Enabling watchdog.\n",
731 dev->name, np->phys[0]);
732 netif_carrier_on(dev);
733 }
734
735 if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
736 /* If the link partner doesn't support autonegotiation
737 * the MII detects it's abilities with the "parallel detection".
738 * Some MIIs update the LPA register to the result of the parallel
739 * detection, some don't.
740 * The Davicom PHY [at least 0181b800] doesn't.
741 * Instead bit 9 and 13 of the BMCR are updated to the result
742 * of the negotiation..
743 */
744 mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
745 duplex = mii_reg & BMCR_FULLDPLX;
746 fasteth = mii_reg & BMCR_SPEED100;
747 } else {
748 int negotiated;
749 mii_reg = mdio_read(dev, np->phys[0], MII_LPA);
750 negotiated = mii_reg & np->mii_if.advertising;
751
752 duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
753 fasteth = negotiated & 0x380;
754 }
755 duplex |= np->mii_if.force_media;
756 /* remove fastether and fullduplex */
757 result = np->csr6 & ~0x20000200;
758 if (duplex)
759 result |= 0x200;
760 if (fasteth)
761 result |= 0x20000000;
762 if (result != np->csr6 && debug)
763 printk(KERN_INFO "%s: Setting %dMBit-%s-duplex based on MII#%d\n",
764 dev->name, fasteth ? 100 : 10,
765 duplex ? "full" : "half", np->phys[0]);
766 return result;
767 }
768
769 #define RXTX_TIMEOUT 2000
770 static inline void update_csr6(struct net_device *dev, int new)
771 {
772 struct netdev_private *np = netdev_priv(dev);
773 void __iomem *ioaddr = np->base_addr;
774 int limit = RXTX_TIMEOUT;
775
776 if (!netif_device_present(dev))
777 new = 0;
778 if (new==np->csr6)
779 return;
780 /* stop both Tx and Rx processes */
781 iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
782 /* wait until they have really stopped */
783 for (;;) {
784 int csr5 = ioread32(ioaddr + IntrStatus);
785 int t;
786
787 t = (csr5 >> 17) & 0x07;
788 if (t==0||t==1) {
789 /* rx stopped */
790 t = (csr5 >> 20) & 0x07;
791 if (t==0||t==1)
792 break;
793 }
794
795 limit--;
796 if(!limit) {
797 printk(KERN_INFO "%s: couldn't stop rxtx, IntrStatus %xh.\n",
798 dev->name, csr5);
799 break;
800 }
801 udelay(1);
802 }
803 np->csr6 = new;
804 /* and restart them with the new configuration */
805 iowrite32(np->csr6, ioaddr + NetworkConfig);
806 if (new & 0x200)
807 np->mii_if.full_duplex = 1;
808 }
809
810 static void netdev_timer(unsigned long data)
811 {
812 struct net_device *dev = (struct net_device *)data;
813 struct netdev_private *np = netdev_priv(dev);
814 void __iomem *ioaddr = np->base_addr;
815
816 if (debug > 2)
817 printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
818 "config %8.8x.\n",
819 dev->name, ioread32(ioaddr + IntrStatus),
820 ioread32(ioaddr + NetworkConfig));
821 spin_lock_irq(&np->lock);
822 update_csr6(dev, update_link(dev));
823 spin_unlock_irq(&np->lock);
824 np->timer.expires = jiffies + 10*HZ;
825 add_timer(&np->timer);
826 }
827
828 static void init_rxtx_rings(struct net_device *dev)
829 {
830 struct netdev_private *np = netdev_priv(dev);
831 int i;
832
833 np->rx_head_desc = &np->rx_ring[0];
834 np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
835
836 /* Initial all Rx descriptors. */
837 for (i = 0; i < RX_RING_SIZE; i++) {
838 np->rx_ring[i].length = np->rx_buf_sz;
839 np->rx_ring[i].status = 0;
840 np->rx_skbuff[i] = NULL;
841 }
842 /* Mark the last entry as wrapping the ring. */
843 np->rx_ring[i-1].length |= DescEndRing;
844
845 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
846 for (i = 0; i < RX_RING_SIZE; i++) {
847 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
848 np->rx_skbuff[i] = skb;
849 if (skb == NULL)
850 break;
851 skb->dev = dev; /* Mark as being used by this device. */
852 np->rx_addr[i] = pci_map_single(np->pci_dev,skb->data,
853 skb->len,PCI_DMA_FROMDEVICE);
854
855 np->rx_ring[i].buffer1 = np->rx_addr[i];
856 np->rx_ring[i].status = DescOwn;
857 }
858
859 np->cur_rx = 0;
860 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
861
862 /* Initialize the Tx descriptors */
863 for (i = 0; i < TX_RING_SIZE; i++) {
864 np->tx_skbuff[i] = NULL;
865 np->tx_ring[i].status = 0;
866 }
867 np->tx_full = 0;
868 np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
869
870 iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
871 iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
872 np->base_addr + TxRingPtr);
873
874 }
875
876 static void free_rxtx_rings(struct netdev_private* np)
877 {
878 int i;
879 /* Free all the skbuffs in the Rx queue. */
880 for (i = 0; i < RX_RING_SIZE; i++) {
881 np->rx_ring[i].status = 0;
882 if (np->rx_skbuff[i]) {
883 pci_unmap_single(np->pci_dev,
884 np->rx_addr[i],
885 np->rx_skbuff[i]->len,
886 PCI_DMA_FROMDEVICE);
887 dev_kfree_skb(np->rx_skbuff[i]);
888 }
889 np->rx_skbuff[i] = NULL;
890 }
891 for (i = 0; i < TX_RING_SIZE; i++) {
892 if (np->tx_skbuff[i]) {
893 pci_unmap_single(np->pci_dev,
894 np->tx_addr[i],
895 np->tx_skbuff[i]->len,
896 PCI_DMA_TODEVICE);
897 dev_kfree_skb(np->tx_skbuff[i]);
898 }
899 np->tx_skbuff[i] = NULL;
900 }
901 }
902
903 static void init_registers(struct net_device *dev)
904 {
905 struct netdev_private *np = netdev_priv(dev);
906 void __iomem *ioaddr = np->base_addr;
907 int i;
908
909 for (i = 0; i < 6; i++)
910 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
911
912 /* Initialize other registers. */
913 #ifdef __BIG_ENDIAN
914 i = (1<<20); /* Big-endian descriptors */
915 #else
916 i = 0;
917 #endif
918 i |= (0x04<<2); /* skip length 4 u32 */
919 i |= 0x02; /* give Rx priority */
920
921 /* Configure the PCI bus bursts and FIFO thresholds.
922 486: Set 8 longword cache alignment, 8 longword burst.
923 586: Set 16 longword cache alignment, no burst limit.
924 Cache alignment bits 15:14 Burst length 13:8
925 0000 <not allowed> 0000 align to cache 0800 8 longwords
926 4000 8 longwords 0100 1 longword 1000 16 longwords
927 8000 16 longwords 0200 2 longwords 2000 32 longwords
928 C000 32 longwords 0400 4 longwords */
929
930 #if defined (__i386__) && !defined(MODULE)
931 /* When not a module we can work around broken '486 PCI boards. */
932 if (boot_cpu_data.x86 <= 4) {
933 i |= 0x4800;
934 printk(KERN_INFO "%s: This is a 386/486 PCI system, setting cache "
935 "alignment to 8 longwords.\n", dev->name);
936 } else {
937 i |= 0xE000;
938 }
939 #elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
940 i |= 0xE000;
941 #elif defined(__sparc__)
942 i |= 0x4800;
943 #else
944 #warning Processor architecture undefined
945 i |= 0x4800;
946 #endif
947 iowrite32(i, ioaddr + PCIBusCfg);
948
949 np->csr6 = 0;
950 /* 128 byte Tx threshold;
951 Transmit on; Receive on; */
952 update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
953
954 /* Clear and Enable interrupts by setting the interrupt mask. */
955 iowrite32(0x1A0F5, ioaddr + IntrStatus);
956 iowrite32(0x1A0F5, ioaddr + IntrEnable);
957
958 iowrite32(0, ioaddr + RxStartDemand);
959 }
960
961 static void tx_timeout(struct net_device *dev)
962 {
963 struct netdev_private *np = netdev_priv(dev);
964 void __iomem *ioaddr = np->base_addr;
965
966 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x,"
967 " resetting...\n", dev->name, ioread32(ioaddr + IntrStatus));
968
969 {
970 int i;
971 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring);
972 for (i = 0; i < RX_RING_SIZE; i++)
973 printk(" %8.8x", (unsigned int)np->rx_ring[i].status);
974 printk("\n"KERN_DEBUG" Tx ring %p: ", np->tx_ring);
975 for (i = 0; i < TX_RING_SIZE; i++)
976 printk(" %8.8x", np->tx_ring[i].status);
977 printk("\n");
978 }
979 printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d.\n",
980 np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
981 printk(KERN_DEBUG "Tx Descriptor addr %xh.\n",ioread32(ioaddr+0x4C));
982
983 disable_irq(dev->irq);
984 spin_lock_irq(&np->lock);
985 /*
986 * Under high load dirty_tx and the internal tx descriptor pointer
987 * come out of sync, thus perform a software reset and reinitialize
988 * everything.
989 */
990
991 iowrite32(1, np->base_addr+PCIBusCfg);
992 udelay(1);
993
994 free_rxtx_rings(np);
995 init_rxtx_rings(dev);
996 init_registers(dev);
997 spin_unlock_irq(&np->lock);
998 enable_irq(dev->irq);
999
1000 netif_wake_queue(dev);
1001 dev->trans_start = jiffies;
1002 np->stats.tx_errors++;
1003 return;
1004 }
1005
1006 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1007 static int alloc_ringdesc(struct net_device *dev)
1008 {
1009 struct netdev_private *np = netdev_priv(dev);
1010
1011 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1012
1013 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1014 sizeof(struct w840_rx_desc)*RX_RING_SIZE +
1015 sizeof(struct w840_tx_desc)*TX_RING_SIZE,
1016 &np->ring_dma_addr);
1017 if(!np->rx_ring)
1018 return -ENOMEM;
1019 init_rxtx_rings(dev);
1020 return 0;
1021 }
1022
1023 static void free_ringdesc(struct netdev_private *np)
1024 {
1025 pci_free_consistent(np->pci_dev,
1026 sizeof(struct w840_rx_desc)*RX_RING_SIZE +
1027 sizeof(struct w840_tx_desc)*TX_RING_SIZE,
1028 np->rx_ring, np->ring_dma_addr);
1029
1030 }
1031
1032 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1033 {
1034 struct netdev_private *np = netdev_priv(dev);
1035 unsigned entry;
1036
1037 /* Caution: the write order is important here, set the field
1038 with the "ownership" bits last. */
1039
1040 /* Calculate the next Tx descriptor entry. */
1041 entry = np->cur_tx % TX_RING_SIZE;
1042
1043 np->tx_addr[entry] = pci_map_single(np->pci_dev,
1044 skb->data,skb->len, PCI_DMA_TODEVICE);
1045 np->tx_skbuff[entry] = skb;
1046
1047 np->tx_ring[entry].buffer1 = np->tx_addr[entry];
1048 if (skb->len < TX_BUFLIMIT) {
1049 np->tx_ring[entry].length = DescWholePkt | skb->len;
1050 } else {
1051 int len = skb->len - TX_BUFLIMIT;
1052
1053 np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1054 np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1055 }
1056 if(entry == TX_RING_SIZE-1)
1057 np->tx_ring[entry].length |= DescEndRing;
1058
1059 /* Now acquire the irq spinlock.
1060 * The difficult race is the the ordering between
1061 * increasing np->cur_tx and setting DescOwn:
1062 * - if np->cur_tx is increased first the interrupt
1063 * handler could consider the packet as transmitted
1064 * since DescOwn is cleared.
1065 * - If DescOwn is set first the NIC could report the
1066 * packet as sent, but the interrupt handler would ignore it
1067 * since the np->cur_tx was not yet increased.
1068 */
1069 spin_lock_irq(&np->lock);
1070 np->cur_tx++;
1071
1072 wmb(); /* flush length, buffer1, buffer2 */
1073 np->tx_ring[entry].status = DescOwn;
1074 wmb(); /* flush status and kick the hardware */
1075 iowrite32(0, np->base_addr + TxStartDemand);
1076 np->tx_q_bytes += skb->len;
1077 /* Work around horrible bug in the chip by marking the queue as full
1078 when we do not have FIFO room for a maximum sized packet. */
1079 if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1080 ((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1081 netif_stop_queue(dev);
1082 wmb();
1083 np->tx_full = 1;
1084 }
1085 spin_unlock_irq(&np->lock);
1086
1087 dev->trans_start = jiffies;
1088
1089 if (debug > 4) {
1090 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1091 dev->name, np->cur_tx, entry);
1092 }
1093 return 0;
1094 }
1095
1096 static void netdev_tx_done(struct net_device *dev)
1097 {
1098 struct netdev_private *np = netdev_priv(dev);
1099 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1100 int entry = np->dirty_tx % TX_RING_SIZE;
1101 int tx_status = np->tx_ring[entry].status;
1102
1103 if (tx_status < 0)
1104 break;
1105 if (tx_status & 0x8000) { /* There was an error, log it. */
1106 #ifndef final_version
1107 if (debug > 1)
1108 printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1109 dev->name, tx_status);
1110 #endif
1111 np->stats.tx_errors++;
1112 if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1113 if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1114 if (tx_status & 0x0200) np->stats.tx_window_errors++;
1115 if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1116 if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1117 np->stats.tx_heartbeat_errors++;
1118 } else {
1119 #ifndef final_version
1120 if (debug > 3)
1121 printk(KERN_DEBUG "%s: Transmit slot %d ok, Tx status %8.8x.\n",
1122 dev->name, entry, tx_status);
1123 #endif
1124 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1125 np->stats.collisions += (tx_status >> 3) & 15;
1126 np->stats.tx_packets++;
1127 }
1128 /* Free the original skb. */
1129 pci_unmap_single(np->pci_dev,np->tx_addr[entry],
1130 np->tx_skbuff[entry]->len,
1131 PCI_DMA_TODEVICE);
1132 np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1133 dev_kfree_skb_irq(np->tx_skbuff[entry]);
1134 np->tx_skbuff[entry] = NULL;
1135 }
1136 if (np->tx_full &&
1137 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1138 np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1139 /* The ring is no longer full, clear tbusy. */
1140 np->tx_full = 0;
1141 wmb();
1142 netif_wake_queue(dev);
1143 }
1144 }
1145
1146 /* The interrupt handler does all of the Rx thread work and cleans up
1147 after the Tx thread. */
1148 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1149 {
1150 struct net_device *dev = (struct net_device *)dev_instance;
1151 struct netdev_private *np = netdev_priv(dev);
1152 void __iomem *ioaddr = np->base_addr;
1153 int work_limit = max_interrupt_work;
1154 int handled = 0;
1155
1156 if (!netif_device_present(dev))
1157 return IRQ_NONE;
1158 do {
1159 u32 intr_status = ioread32(ioaddr + IntrStatus);
1160
1161 /* Acknowledge all of the current interrupt sources ASAP. */
1162 iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1163
1164 if (debug > 4)
1165 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1166 dev->name, intr_status);
1167
1168 if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1169 break;
1170
1171 handled = 1;
1172
1173 if (intr_status & (IntrRxDone | RxNoBuf))
1174 netdev_rx(dev);
1175 if (intr_status & RxNoBuf)
1176 iowrite32(0, ioaddr + RxStartDemand);
1177
1178 if (intr_status & (TxIdle | IntrTxDone) &&
1179 np->cur_tx != np->dirty_tx) {
1180 spin_lock(&np->lock);
1181 netdev_tx_done(dev);
1182 spin_unlock(&np->lock);
1183 }
1184
1185 /* Abnormal error summary/uncommon events handlers. */
1186 if (intr_status & (AbnormalIntr | TxFIFOUnderflow | IntrPCIErr |
1187 TimerInt | IntrTxStopped))
1188 netdev_error(dev, intr_status);
1189
1190 if (--work_limit < 0) {
1191 printk(KERN_WARNING "%s: Too much work at interrupt, "
1192 "status=0x%4.4x.\n", dev->name, intr_status);
1193 /* Set the timer to re-enable the other interrupts after
1194 10*82usec ticks. */
1195 spin_lock(&np->lock);
1196 if (netif_device_present(dev)) {
1197 iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1198 iowrite32(10, ioaddr + GPTimer);
1199 }
1200 spin_unlock(&np->lock);
1201 break;
1202 }
1203 } while (1);
1204
1205 if (debug > 3)
1206 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1207 dev->name, ioread32(ioaddr + IntrStatus));
1208 return IRQ_RETVAL(handled);
1209 }
1210
1211 /* This routine is logically part of the interrupt handler, but separated
1212 for clarity and better register allocation. */
1213 static int netdev_rx(struct net_device *dev)
1214 {
1215 struct netdev_private *np = netdev_priv(dev);
1216 int entry = np->cur_rx % RX_RING_SIZE;
1217 int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1218
1219 if (debug > 4) {
1220 printk(KERN_DEBUG " In netdev_rx(), entry %d status %4.4x.\n",
1221 entry, np->rx_ring[entry].status);
1222 }
1223
1224 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1225 while (--work_limit >= 0) {
1226 struct w840_rx_desc *desc = np->rx_head_desc;
1227 s32 status = desc->status;
1228
1229 if (debug > 4)
1230 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1231 status);
1232 if (status < 0)
1233 break;
1234 if ((status & 0x38008300) != 0x0300) {
1235 if ((status & 0x38000300) != 0x0300) {
1236 /* Ingore earlier buffers. */
1237 if ((status & 0xffff) != 0x7fff) {
1238 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1239 "multiple buffers, entry %#x status %4.4x!\n",
1240 dev->name, np->cur_rx, status);
1241 np->stats.rx_length_errors++;
1242 }
1243 } else if (status & 0x8000) {
1244 /* There was a fatal error. */
1245 if (debug > 2)
1246 printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n",
1247 dev->name, status);
1248 np->stats.rx_errors++; /* end of a packet.*/
1249 if (status & 0x0890) np->stats.rx_length_errors++;
1250 if (status & 0x004C) np->stats.rx_frame_errors++;
1251 if (status & 0x0002) np->stats.rx_crc_errors++;
1252 }
1253 } else {
1254 struct sk_buff *skb;
1255 /* Omit the four octet CRC from the length. */
1256 int pkt_len = ((status >> 16) & 0x7ff) - 4;
1257
1258 #ifndef final_version
1259 if (debug > 4)
1260 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1261 " status %x.\n", pkt_len, status);
1262 #endif
1263 /* Check if the packet is long enough to accept without copying
1264 to a minimally-sized skbuff. */
1265 if (pkt_len < rx_copybreak
1266 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1267 skb->dev = dev;
1268 skb_reserve(skb, 2); /* 16 byte align the IP header */
1269 pci_dma_sync_single_for_cpu(np->pci_dev,np->rx_addr[entry],
1270 np->rx_skbuff[entry]->len,
1271 PCI_DMA_FROMDEVICE);
1272 eth_copy_and_sum(skb, np->rx_skbuff[entry]->data, pkt_len, 0);
1273 skb_put(skb, pkt_len);
1274 pci_dma_sync_single_for_device(np->pci_dev,np->rx_addr[entry],
1275 np->rx_skbuff[entry]->len,
1276 PCI_DMA_FROMDEVICE);
1277 } else {
1278 pci_unmap_single(np->pci_dev,np->rx_addr[entry],
1279 np->rx_skbuff[entry]->len,
1280 PCI_DMA_FROMDEVICE);
1281 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1282 np->rx_skbuff[entry] = NULL;
1283 }
1284 #ifndef final_version /* Remove after testing. */
1285 /* You will want this info for the initial debug. */
1286 if (debug > 5)
1287 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1288 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x "
1289 "%d.%d.%d.%d.\n",
1290 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1291 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1292 skb->data[8], skb->data[9], skb->data[10],
1293 skb->data[11], skb->data[12], skb->data[13],
1294 skb->data[14], skb->data[15], skb->data[16],
1295 skb->data[17]);
1296 #endif
1297 skb->protocol = eth_type_trans(skb, dev);
1298 netif_rx(skb);
1299 dev->last_rx = jiffies;
1300 np->stats.rx_packets++;
1301 np->stats.rx_bytes += pkt_len;
1302 }
1303 entry = (++np->cur_rx) % RX_RING_SIZE;
1304 np->rx_head_desc = &np->rx_ring[entry];
1305 }
1306
1307 /* Refill the Rx ring buffers. */
1308 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1309 struct sk_buff *skb;
1310 entry = np->dirty_rx % RX_RING_SIZE;
1311 if (np->rx_skbuff[entry] == NULL) {
1312 skb = dev_alloc_skb(np->rx_buf_sz);
1313 np->rx_skbuff[entry] = skb;
1314 if (skb == NULL)
1315 break; /* Better luck next round. */
1316 skb->dev = dev; /* Mark as being used by this device. */
1317 np->rx_addr[entry] = pci_map_single(np->pci_dev,
1318 skb->data,
1319 skb->len, PCI_DMA_FROMDEVICE);
1320 np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1321 }
1322 wmb();
1323 np->rx_ring[entry].status = DescOwn;
1324 }
1325
1326 return 0;
1327 }
1328
1329 static void netdev_error(struct net_device *dev, int intr_status)
1330 {
1331 struct netdev_private *np = netdev_priv(dev);
1332 void __iomem *ioaddr = np->base_addr;
1333
1334 if (debug > 2)
1335 printk(KERN_DEBUG "%s: Abnormal event, %8.8x.\n",
1336 dev->name, intr_status);
1337 if (intr_status == 0xffffffff)
1338 return;
1339 spin_lock(&np->lock);
1340 if (intr_status & TxFIFOUnderflow) {
1341 int new;
1342 /* Bump up the Tx threshold */
1343 #if 0
1344 /* This causes lots of dropped packets,
1345 * and under high load even tx_timeouts
1346 */
1347 new = np->csr6 + 0x4000;
1348 #else
1349 new = (np->csr6 >> 14)&0x7f;
1350 if (new < 64)
1351 new *= 2;
1352 else
1353 new = 127; /* load full packet before starting */
1354 new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1355 #endif
1356 printk(KERN_DEBUG "%s: Tx underflow, new csr6 %8.8x.\n",
1357 dev->name, new);
1358 update_csr6(dev, new);
1359 }
1360 if (intr_status & IntrRxDied) { /* Missed a Rx frame. */
1361 np->stats.rx_errors++;
1362 }
1363 if (intr_status & TimerInt) {
1364 /* Re-enable other interrupts. */
1365 if (netif_device_present(dev))
1366 iowrite32(0x1A0F5, ioaddr + IntrEnable);
1367 }
1368 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1369 iowrite32(0, ioaddr + RxStartDemand);
1370 spin_unlock(&np->lock);
1371 }
1372
1373 static struct net_device_stats *get_stats(struct net_device *dev)
1374 {
1375 struct netdev_private *np = netdev_priv(dev);
1376 void __iomem *ioaddr = np->base_addr;
1377
1378 /* The chip only need report frame silently dropped. */
1379 spin_lock_irq(&np->lock);
1380 if (netif_running(dev) && netif_device_present(dev))
1381 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1382 spin_unlock_irq(&np->lock);
1383
1384 return &np->stats;
1385 }
1386
1387
1388 static u32 __set_rx_mode(struct net_device *dev)
1389 {
1390 struct netdev_private *np = netdev_priv(dev);
1391 void __iomem *ioaddr = np->base_addr;
1392 u32 mc_filter[2]; /* Multicast hash filter */
1393 u32 rx_mode;
1394
1395 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1396 /* Unconditionally log net taps. */
1397 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1398 memset(mc_filter, 0xff, sizeof(mc_filter));
1399 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAllPhys
1400 | AcceptMyPhys;
1401 } else if ((dev->mc_count > multicast_filter_limit)
1402 || (dev->flags & IFF_ALLMULTI)) {
1403 /* Too many to match, or accept all multicasts. */
1404 memset(mc_filter, 0xff, sizeof(mc_filter));
1405 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1406 } else {
1407 struct dev_mc_list *mclist;
1408 int i;
1409 memset(mc_filter, 0, sizeof(mc_filter));
1410 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1411 i++, mclist = mclist->next) {
1412 int filterbit = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26) ^ 0x3F;
1413 filterbit &= 0x3f;
1414 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1415 }
1416 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1417 }
1418 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1419 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1420 return rx_mode;
1421 }
1422
1423 static void set_rx_mode(struct net_device *dev)
1424 {
1425 struct netdev_private *np = netdev_priv(dev);
1426 u32 rx_mode = __set_rx_mode(dev);
1427 spin_lock_irq(&np->lock);
1428 update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1429 spin_unlock_irq(&np->lock);
1430 }
1431
1432 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1433 {
1434 struct netdev_private *np = netdev_priv(dev);
1435
1436 strcpy (info->driver, DRV_NAME);
1437 strcpy (info->version, DRV_VERSION);
1438 strcpy (info->bus_info, pci_name(np->pci_dev));
1439 }
1440
1441 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1442 {
1443 struct netdev_private *np = netdev_priv(dev);
1444 int rc;
1445
1446 spin_lock_irq(&np->lock);
1447 rc = mii_ethtool_gset(&np->mii_if, cmd);
1448 spin_unlock_irq(&np->lock);
1449
1450 return rc;
1451 }
1452
1453 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1454 {
1455 struct netdev_private *np = netdev_priv(dev);
1456 int rc;
1457
1458 spin_lock_irq(&np->lock);
1459 rc = mii_ethtool_sset(&np->mii_if, cmd);
1460 spin_unlock_irq(&np->lock);
1461
1462 return rc;
1463 }
1464
1465 static int netdev_nway_reset(struct net_device *dev)
1466 {
1467 struct netdev_private *np = netdev_priv(dev);
1468 return mii_nway_restart(&np->mii_if);
1469 }
1470
1471 static u32 netdev_get_link(struct net_device *dev)
1472 {
1473 struct netdev_private *np = netdev_priv(dev);
1474 return mii_link_ok(&np->mii_if);
1475 }
1476
1477 static u32 netdev_get_msglevel(struct net_device *dev)
1478 {
1479 return debug;
1480 }
1481
1482 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1483 {
1484 debug = value;
1485 }
1486
1487 static struct ethtool_ops netdev_ethtool_ops = {
1488 .get_drvinfo = netdev_get_drvinfo,
1489 .get_settings = netdev_get_settings,
1490 .set_settings = netdev_set_settings,
1491 .nway_reset = netdev_nway_reset,
1492 .get_link = netdev_get_link,
1493 .get_msglevel = netdev_get_msglevel,
1494 .set_msglevel = netdev_set_msglevel,
1495 .get_sg = ethtool_op_get_sg,
1496 .get_tx_csum = ethtool_op_get_tx_csum,
1497 };
1498
1499 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1500 {
1501 struct mii_ioctl_data *data = if_mii(rq);
1502 struct netdev_private *np = netdev_priv(dev);
1503
1504 switch(cmd) {
1505 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1506 data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1507 /* Fall Through */
1508
1509 case SIOCGMIIREG: /* Read MII PHY register. */
1510 spin_lock_irq(&np->lock);
1511 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1512 spin_unlock_irq(&np->lock);
1513 return 0;
1514
1515 case SIOCSMIIREG: /* Write MII PHY register. */
1516 if (!capable(CAP_NET_ADMIN))
1517 return -EPERM;
1518 spin_lock_irq(&np->lock);
1519 mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1520 spin_unlock_irq(&np->lock);
1521 return 0;
1522 default:
1523 return -EOPNOTSUPP;
1524 }
1525 }
1526
1527 static int netdev_close(struct net_device *dev)
1528 {
1529 struct netdev_private *np = netdev_priv(dev);
1530 void __iomem *ioaddr = np->base_addr;
1531
1532 netif_stop_queue(dev);
1533
1534 if (debug > 1) {
1535 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %8.8x "
1536 "Config %8.8x.\n", dev->name, ioread32(ioaddr + IntrStatus),
1537 ioread32(ioaddr + NetworkConfig));
1538 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1539 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1540 }
1541
1542 /* Stop the chip's Tx and Rx processes. */
1543 spin_lock_irq(&np->lock);
1544 netif_device_detach(dev);
1545 update_csr6(dev, 0);
1546 iowrite32(0x0000, ioaddr + IntrEnable);
1547 spin_unlock_irq(&np->lock);
1548
1549 free_irq(dev->irq, dev);
1550 wmb();
1551 netif_device_attach(dev);
1552
1553 if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1554 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1555
1556 #ifdef __i386__
1557 if (debug > 2) {
1558 int i;
1559
1560 printk(KERN_DEBUG" Tx ring at %8.8x:\n",
1561 (int)np->tx_ring);
1562 for (i = 0; i < TX_RING_SIZE; i++)
1563 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x.\n",
1564 i, np->tx_ring[i].length,
1565 np->tx_ring[i].status, np->tx_ring[i].buffer1);
1566 printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
1567 (int)np->rx_ring);
1568 for (i = 0; i < RX_RING_SIZE; i++) {
1569 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1570 i, np->rx_ring[i].length,
1571 np->rx_ring[i].status, np->rx_ring[i].buffer1);
1572 }
1573 }
1574 #endif /* __i386__ debugging only */
1575
1576 del_timer_sync(&np->timer);
1577
1578 free_rxtx_rings(np);
1579 free_ringdesc(np);
1580
1581 return 0;
1582 }
1583
1584 static void __devexit w840_remove1 (struct pci_dev *pdev)
1585 {
1586 struct net_device *dev = pci_get_drvdata(pdev);
1587
1588 if (dev) {
1589 struct netdev_private *np = netdev_priv(dev);
1590 unregister_netdev(dev);
1591 pci_release_regions(pdev);
1592 pci_iounmap(pdev, np->base_addr);
1593 free_netdev(dev);
1594 }
1595
1596 pci_set_drvdata(pdev, NULL);
1597 }
1598
1599 #ifdef CONFIG_PM
1600
1601 /*
1602 * suspend/resume synchronization:
1603 * - open, close, do_ioctl:
1604 * rtnl_lock, & netif_device_detach after the rtnl_unlock.
1605 * - get_stats:
1606 * spin_lock_irq(np->lock), doesn't touch hw if not present
1607 * - hard_start_xmit:
1608 * netif_stop_queue + spin_unlock_wait(&dev->xmit_lock);
1609 * - tx_timeout:
1610 * netif_device_detach + spin_unlock_wait(&dev->xmit_lock);
1611 * - set_multicast_list
1612 * netif_device_detach + spin_unlock_wait(&dev->xmit_lock);
1613 * - interrupt handler
1614 * doesn't touch hw if not present, synchronize_irq waits for
1615 * running instances of the interrupt handler.
1616 *
1617 * Disabling hw requires clearing csr6 & IntrEnable.
1618 * update_csr6 & all function that write IntrEnable check netif_device_present
1619 * before settings any bits.
1620 *
1621 * Detach must occur under spin_unlock_irq(), interrupts from a detached
1622 * device would cause an irq storm.
1623 */
1624 static int w840_suspend (struct pci_dev *pdev, pm_message_t state)
1625 {
1626 struct net_device *dev = pci_get_drvdata (pdev);
1627 struct netdev_private *np = netdev_priv(dev);
1628 void __iomem *ioaddr = np->base_addr;
1629
1630 rtnl_lock();
1631 if (netif_running (dev)) {
1632 del_timer_sync(&np->timer);
1633
1634 spin_lock_irq(&np->lock);
1635 netif_device_detach(dev);
1636 update_csr6(dev, 0);
1637 iowrite32(0, ioaddr + IntrEnable);
1638 netif_stop_queue(dev);
1639 spin_unlock_irq(&np->lock);
1640
1641 spin_unlock_wait(&dev->xmit_lock);
1642 synchronize_irq(dev->irq);
1643
1644 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1645
1646 /* no more hardware accesses behind this line. */
1647
1648 if (np->csr6) BUG();
1649 if (ioread32(ioaddr + IntrEnable)) BUG();
1650
1651 /* pci_power_off(pdev, -1); */
1652
1653 free_rxtx_rings(np);
1654 } else {
1655 netif_device_detach(dev);
1656 }
1657 rtnl_unlock();
1658 return 0;
1659 }
1660
1661 static int w840_resume (struct pci_dev *pdev)
1662 {
1663 struct net_device *dev = pci_get_drvdata (pdev);
1664 struct netdev_private *np = netdev_priv(dev);
1665
1666 rtnl_lock();
1667 if (netif_device_present(dev))
1668 goto out; /* device not suspended */
1669 if (netif_running(dev)) {
1670 pci_enable_device(pdev);
1671 /* pci_power_on(pdev); */
1672
1673 spin_lock_irq(&np->lock);
1674 iowrite32(1, np->base_addr+PCIBusCfg);
1675 ioread32(np->base_addr+PCIBusCfg);
1676 udelay(1);
1677 netif_device_attach(dev);
1678 init_rxtx_rings(dev);
1679 init_registers(dev);
1680 spin_unlock_irq(&np->lock);
1681
1682 netif_wake_queue(dev);
1683
1684 mod_timer(&np->timer, jiffies + 1*HZ);
1685 } else {
1686 netif_device_attach(dev);
1687 }
1688 out:
1689 rtnl_unlock();
1690 return 0;
1691 }
1692 #endif
1693
1694 static struct pci_driver w840_driver = {
1695 .name = DRV_NAME,
1696 .id_table = w840_pci_tbl,
1697 .probe = w840_probe1,
1698 .remove = __devexit_p(w840_remove1),
1699 #ifdef CONFIG_PM
1700 .suspend = w840_suspend,
1701 .resume = w840_resume,
1702 #endif
1703 };
1704
1705 static int __init w840_init(void)
1706 {
1707 printk(version);
1708 return pci_module_init(&w840_driver);
1709 }
1710
1711 static void __exit w840_exit(void)
1712 {
1713 pci_unregister_driver(&w840_driver);
1714 }
1715
1716 module_init(w840_init);
1717 module_exit(w840_exit);
This page took 0.068441 seconds and 5 git commands to generate.