iwlwifi: refactor tx byte count table usage
[deliverable/linux.git] / drivers / net / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
35
36
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
42
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
52
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
56
57 /*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
65
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
77
78 /* Operational parameters that usually are not changed. */
79
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
82
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
110
111 /* These identify the driver base version and may not be removed. */
112 static char version[] __devinitdata =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
114
115 /* This driver was written to use PCI memory space. Some early versions
116 of the Rhine may only work correctly with I/O space accesses. */
117 #ifdef CONFIG_VIA_RHINE_MMIO
118 #define USE_MMIO
119 #else
120 #endif
121
122 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
123 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
124 MODULE_LICENSE("GPL");
125
126 module_param(max_interrupt_work, int, 0);
127 module_param(debug, int, 0);
128 module_param(rx_copybreak, int, 0);
129 module_param(avoid_D3, bool, 0);
130 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
131 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
132 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
133 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
134
135 /*
136 Theory of Operation
137
138 I. Board Compatibility
139
140 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
141 controller.
142
143 II. Board-specific settings
144
145 Boards with this chip are functional only in a bus-master PCI slot.
146
147 Many operational settings are loaded from the EEPROM to the Config word at
148 offset 0x78. For most of these settings, this driver assumes that they are
149 correct.
150 If this driver is compiled to use PCI memory space operations the EEPROM
151 must be configured to enable memory ops.
152
153 III. Driver operation
154
155 IIIa. Ring buffers
156
157 This driver uses two statically allocated fixed-size descriptor lists
158 formed into rings by a branch from the final descriptor to the beginning of
159 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160
161 IIIb/c. Transmit/Receive Structure
162
163 This driver attempts to use a zero-copy receive and transmit scheme.
164
165 Alas, all data buffers are required to start on a 32 bit boundary, so
166 the driver must often copy transmit packets into bounce buffers.
167
168 The driver allocates full frame size skbuffs for the Rx ring buffers at
169 open() time and passes the skb->data field to the chip as receive data
170 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
171 a fresh skbuff is allocated and the frame is copied to the new skbuff.
172 When the incoming frame is larger, the skbuff is passed directly up the
173 protocol stack. Buffers consumed this way are replaced by newly allocated
174 skbuffs in the last phase of rhine_rx().
175
176 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
177 using a full-sized skbuff for small frames vs. the copying costs of larger
178 frames. New boards are typically used in generously configured machines
179 and the underfilled buffers have negligible impact compared to the benefit of
180 a single allocation size, so the default value of zero results in never
181 copying packets. When copying is done, the cost is usually mitigated by using
182 a combined copy/checksum routine. Copying also preloads the cache, which is
183 most useful with small frames.
184
185 Since the VIA chips are only able to transfer data to buffers on 32 bit
186 boundaries, the IP header at offset 14 in an ethernet frame isn't
187 longword aligned for further processing. Copying these unaligned buffers
188 has the beneficial effect of 16-byte aligning the IP header.
189
190 IIId. Synchronization
191
192 The driver runs as two independent, single-threaded flows of control. One
193 is the send-packet routine, which enforces single-threaded use by the
194 dev->priv->lock spinlock. The other thread is the interrupt handler, which
195 is single threaded by the hardware and interrupt handling software.
196
197 The send packet thread has partial control over the Tx ring. It locks the
198 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
199 is not available it stops the transmit queue by calling netif_stop_queue.
200
201 The interrupt handler has exclusive control over the Rx ring and records stats
202 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
203 empty by incrementing the dirty_tx mark. If at least half of the entries in
204 the Rx ring are available the transmit queue is woken up if it was stopped.
205
206 IV. Notes
207
208 IVb. References
209
210 Preliminary VT86C100A manual from http://www.via.com.tw/
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
214 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
215
216
217 IVc. Errata
218
219 The VT86C100A manual is not reliable information.
220 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
221 in significant performance degradation for bounce buffer copies on transmit
222 and unaligned IP headers on receive.
223 The chip does not pad to minimum transmit length.
224
225 */
226
227
228 /* This table drives the PCI probe routines. It's mostly boilerplate in all
229 of the drivers, and will likely be provided by some future kernel.
230 Note the matching code -- the first table entry matchs all 56** cards but
231 second only the 1234 card.
232 */
233
234 enum rhine_revs {
235 VT86C100A = 0x00,
236 VTunknown0 = 0x20,
237 VT6102 = 0x40,
238 VT8231 = 0x50, /* Integrated MAC */
239 VT8233 = 0x60, /* Integrated MAC */
240 VT8235 = 0x74, /* Integrated MAC */
241 VT8237 = 0x78, /* Integrated MAC */
242 VTunknown1 = 0x7C,
243 VT6105 = 0x80,
244 VT6105_B0 = 0x83,
245 VT6105L = 0x8A,
246 VT6107 = 0x8C,
247 VTunknown2 = 0x8E,
248 VT6105M = 0x90, /* Management adapter */
249 };
250
251 enum rhine_quirks {
252 rqWOL = 0x0001, /* Wake-On-LAN support */
253 rqForceReset = 0x0002,
254 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
255 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
256 rqRhineI = 0x0100, /* See comment below */
257 };
258 /*
259 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
260 * MMIO as well as for the collision counter and the Tx FIFO underflow
261 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
262 */
263
264 /* Beware of PCI posted writes */
265 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
266
267 static const struct pci_device_id rhine_pci_tbl[] = {
268 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
269 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
270 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
271 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
272 { } /* terminate list */
273 };
274 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
275
276
277 /* Offsets to the device registers. */
278 enum register_offsets {
279 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
280 ChipCmd1=0x09,
281 IntrStatus=0x0C, IntrEnable=0x0E,
282 MulticastFilter0=0x10, MulticastFilter1=0x14,
283 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
284 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
285 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
286 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
287 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
288 StickyHW=0x83, IntrStatus2=0x84,
289 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
290 WOLcrClr1=0xA6, WOLcgClr=0xA7,
291 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
292 };
293
294 /* Bits in ConfigD */
295 enum backoff_bits {
296 BackOptional=0x01, BackModify=0x02,
297 BackCaptureEffect=0x04, BackRandom=0x08
298 };
299
300 #ifdef USE_MMIO
301 /* Registers we check that mmio and reg are the same. */
302 static const int mmio_verify_registers[] = {
303 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
304 0
305 };
306 #endif
307
308 /* Bits in the interrupt status/mask registers. */
309 enum intr_status_bits {
310 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
311 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
312 IntrPCIErr=0x0040,
313 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
314 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
315 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
316 IntrRxWakeUp=0x8000,
317 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
318 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
319 IntrTxErrSummary=0x082218,
320 };
321
322 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
323 enum wol_bits {
324 WOLucast = 0x10,
325 WOLmagic = 0x20,
326 WOLbmcast = 0x30,
327 WOLlnkon = 0x40,
328 WOLlnkoff = 0x80,
329 };
330
331 /* The Rx and Tx buffer descriptors. */
332 struct rx_desc {
333 __le32 rx_status;
334 __le32 desc_length; /* Chain flag, Buffer/frame length */
335 __le32 addr;
336 __le32 next_desc;
337 };
338 struct tx_desc {
339 __le32 tx_status;
340 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
341 __le32 addr;
342 __le32 next_desc;
343 };
344
345 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
346 #define TXDESC 0x00e08000
347
348 enum rx_status_bits {
349 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
350 };
351
352 /* Bits in *_desc.*_status */
353 enum desc_status_bits {
354 DescOwn=0x80000000
355 };
356
357 /* Bits in ChipCmd. */
358 enum chip_cmd_bits {
359 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
360 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
361 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
362 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
363 };
364
365 struct rhine_private {
366 /* Descriptor rings */
367 struct rx_desc *rx_ring;
368 struct tx_desc *tx_ring;
369 dma_addr_t rx_ring_dma;
370 dma_addr_t tx_ring_dma;
371
372 /* The addresses of receive-in-place skbuffs. */
373 struct sk_buff *rx_skbuff[RX_RING_SIZE];
374 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
375
376 /* The saved address of a sent-in-place packet/buffer, for later free(). */
377 struct sk_buff *tx_skbuff[TX_RING_SIZE];
378 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
379
380 /* Tx bounce buffers (Rhine-I only) */
381 unsigned char *tx_buf[TX_RING_SIZE];
382 unsigned char *tx_bufs;
383 dma_addr_t tx_bufs_dma;
384
385 struct pci_dev *pdev;
386 long pioaddr;
387 struct net_device *dev;
388 struct napi_struct napi;
389 struct net_device_stats stats;
390 spinlock_t lock;
391
392 /* Frequently used values: keep some adjacent for cache effect. */
393 u32 quirks;
394 struct rx_desc *rx_head_desc;
395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
396 unsigned int cur_tx, dirty_tx;
397 unsigned int rx_buf_sz; /* Based on MTU+slack. */
398 u8 wolopts;
399
400 u8 tx_thresh, rx_thresh;
401
402 struct mii_if_info mii_if;
403 void __iomem *base;
404 };
405
406 static int mdio_read(struct net_device *dev, int phy_id, int location);
407 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
408 static int rhine_open(struct net_device *dev);
409 static void rhine_tx_timeout(struct net_device *dev);
410 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
411 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
412 static void rhine_tx(struct net_device *dev);
413 static int rhine_rx(struct net_device *dev, int limit);
414 static void rhine_error(struct net_device *dev, int intr_status);
415 static void rhine_set_rx_mode(struct net_device *dev);
416 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
417 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
418 static const struct ethtool_ops netdev_ethtool_ops;
419 static int rhine_close(struct net_device *dev);
420 static void rhine_shutdown (struct pci_dev *pdev);
421
422 #define RHINE_WAIT_FOR(condition) do { \
423 int i=1024; \
424 while (!(condition) && --i) \
425 ; \
426 if (debug > 1 && i < 512) \
427 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
428 DRV_NAME, 1024-i, __func__, __LINE__); \
429 } while(0)
430
431 static inline u32 get_intr_status(struct net_device *dev)
432 {
433 struct rhine_private *rp = netdev_priv(dev);
434 void __iomem *ioaddr = rp->base;
435 u32 intr_status;
436
437 intr_status = ioread16(ioaddr + IntrStatus);
438 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
439 if (rp->quirks & rqStatusWBRace)
440 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
441 return intr_status;
442 }
443
444 /*
445 * Get power related registers into sane state.
446 * Notify user about past WOL event.
447 */
448 static void rhine_power_init(struct net_device *dev)
449 {
450 struct rhine_private *rp = netdev_priv(dev);
451 void __iomem *ioaddr = rp->base;
452 u16 wolstat;
453
454 if (rp->quirks & rqWOL) {
455 /* Make sure chip is in power state D0 */
456 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
457
458 /* Disable "force PME-enable" */
459 iowrite8(0x80, ioaddr + WOLcgClr);
460
461 /* Clear power-event config bits (WOL) */
462 iowrite8(0xFF, ioaddr + WOLcrClr);
463 /* More recent cards can manage two additional patterns */
464 if (rp->quirks & rq6patterns)
465 iowrite8(0x03, ioaddr + WOLcrClr1);
466
467 /* Save power-event status bits */
468 wolstat = ioread8(ioaddr + PwrcsrSet);
469 if (rp->quirks & rq6patterns)
470 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
471
472 /* Clear power-event status bits */
473 iowrite8(0xFF, ioaddr + PwrcsrClr);
474 if (rp->quirks & rq6patterns)
475 iowrite8(0x03, ioaddr + PwrcsrClr1);
476
477 if (wolstat) {
478 char *reason;
479 switch (wolstat) {
480 case WOLmagic:
481 reason = "Magic packet";
482 break;
483 case WOLlnkon:
484 reason = "Link went up";
485 break;
486 case WOLlnkoff:
487 reason = "Link went down";
488 break;
489 case WOLucast:
490 reason = "Unicast packet";
491 break;
492 case WOLbmcast:
493 reason = "Multicast/broadcast packet";
494 break;
495 default:
496 reason = "Unknown";
497 }
498 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
499 DRV_NAME, reason);
500 }
501 }
502 }
503
504 static void rhine_chip_reset(struct net_device *dev)
505 {
506 struct rhine_private *rp = netdev_priv(dev);
507 void __iomem *ioaddr = rp->base;
508
509 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
510 IOSYNC;
511
512 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
513 printk(KERN_INFO "%s: Reset not complete yet. "
514 "Trying harder.\n", DRV_NAME);
515
516 /* Force reset */
517 if (rp->quirks & rqForceReset)
518 iowrite8(0x40, ioaddr + MiscCmd);
519
520 /* Reset can take somewhat longer (rare) */
521 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
522 }
523
524 if (debug > 1)
525 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
526 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
527 "failed" : "succeeded");
528 }
529
530 #ifdef USE_MMIO
531 static void enable_mmio(long pioaddr, u32 quirks)
532 {
533 int n;
534 if (quirks & rqRhineI) {
535 /* More recent docs say that this bit is reserved ... */
536 n = inb(pioaddr + ConfigA) | 0x20;
537 outb(n, pioaddr + ConfigA);
538 } else {
539 n = inb(pioaddr + ConfigD) | 0x80;
540 outb(n, pioaddr + ConfigD);
541 }
542 }
543 #endif
544
545 /*
546 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
547 * (plus 0x6C for Rhine-I/II)
548 */
549 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
550 {
551 struct rhine_private *rp = netdev_priv(dev);
552 void __iomem *ioaddr = rp->base;
553
554 outb(0x20, pioaddr + MACRegEEcsr);
555 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
556
557 #ifdef USE_MMIO
558 /*
559 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
560 * MMIO. If reloading EEPROM was done first this could be avoided, but
561 * it is not known if that still works with the "win98-reboot" problem.
562 */
563 enable_mmio(pioaddr, rp->quirks);
564 #endif
565
566 /* Turn off EEPROM-controlled wake-up (magic packet) */
567 if (rp->quirks & rqWOL)
568 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
569
570 }
571
572 #ifdef CONFIG_NET_POLL_CONTROLLER
573 static void rhine_poll(struct net_device *dev)
574 {
575 disable_irq(dev->irq);
576 rhine_interrupt(dev->irq, (void *)dev);
577 enable_irq(dev->irq);
578 }
579 #endif
580
581 static int rhine_napipoll(struct napi_struct *napi, int budget)
582 {
583 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
584 struct net_device *dev = rp->dev;
585 void __iomem *ioaddr = rp->base;
586 int work_done;
587
588 work_done = rhine_rx(dev, budget);
589
590 if (work_done < budget) {
591 netif_rx_complete(dev, napi);
592
593 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
594 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
595 IntrTxDone | IntrTxError | IntrTxUnderrun |
596 IntrPCIErr | IntrStatsMax | IntrLinkChange,
597 ioaddr + IntrEnable);
598 }
599 return work_done;
600 }
601
602 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
603 {
604 struct rhine_private *rp = netdev_priv(dev);
605
606 /* Reset the chip to erase previous misconfiguration. */
607 rhine_chip_reset(dev);
608
609 /* Rhine-I needs extra time to recuperate before EEPROM reload */
610 if (rp->quirks & rqRhineI)
611 msleep(5);
612
613 /* Reload EEPROM controlled bytes cleared by soft reset */
614 rhine_reload_eeprom(pioaddr, dev);
615 }
616
617 static int __devinit rhine_init_one(struct pci_dev *pdev,
618 const struct pci_device_id *ent)
619 {
620 struct net_device *dev;
621 struct rhine_private *rp;
622 int i, rc;
623 u32 quirks;
624 long pioaddr;
625 long memaddr;
626 void __iomem *ioaddr;
627 int io_size, phy_id;
628 const char *name;
629 #ifdef USE_MMIO
630 int bar = 1;
631 #else
632 int bar = 0;
633 #endif
634
635 /* when built into the kernel, we only print version if device is found */
636 #ifndef MODULE
637 static int printed_version;
638 if (!printed_version++)
639 printk(version);
640 #endif
641
642 io_size = 256;
643 phy_id = 0;
644 quirks = 0;
645 name = "Rhine";
646 if (pdev->revision < VTunknown0) {
647 quirks = rqRhineI;
648 io_size = 128;
649 }
650 else if (pdev->revision >= VT6102) {
651 quirks = rqWOL | rqForceReset;
652 if (pdev->revision < VT6105) {
653 name = "Rhine II";
654 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
655 }
656 else {
657 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
658 if (pdev->revision >= VT6105_B0)
659 quirks |= rq6patterns;
660 if (pdev->revision < VT6105M)
661 name = "Rhine III";
662 else
663 name = "Rhine III (Management Adapter)";
664 }
665 }
666
667 rc = pci_enable_device(pdev);
668 if (rc)
669 goto err_out;
670
671 /* this should always be supported */
672 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
673 if (rc) {
674 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
675 "the card!?\n");
676 goto err_out;
677 }
678
679 /* sanity check */
680 if ((pci_resource_len(pdev, 0) < io_size) ||
681 (pci_resource_len(pdev, 1) < io_size)) {
682 rc = -EIO;
683 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
684 goto err_out;
685 }
686
687 pioaddr = pci_resource_start(pdev, 0);
688 memaddr = pci_resource_start(pdev, 1);
689
690 pci_set_master(pdev);
691
692 dev = alloc_etherdev(sizeof(struct rhine_private));
693 if (!dev) {
694 rc = -ENOMEM;
695 printk(KERN_ERR "alloc_etherdev failed\n");
696 goto err_out;
697 }
698 SET_NETDEV_DEV(dev, &pdev->dev);
699
700 rp = netdev_priv(dev);
701 rp->dev = dev;
702 rp->quirks = quirks;
703 rp->pioaddr = pioaddr;
704 rp->pdev = pdev;
705
706 rc = pci_request_regions(pdev, DRV_NAME);
707 if (rc)
708 goto err_out_free_netdev;
709
710 ioaddr = pci_iomap(pdev, bar, io_size);
711 if (!ioaddr) {
712 rc = -EIO;
713 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
714 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
715 goto err_out_free_res;
716 }
717
718 #ifdef USE_MMIO
719 enable_mmio(pioaddr, quirks);
720
721 /* Check that selected MMIO registers match the PIO ones */
722 i = 0;
723 while (mmio_verify_registers[i]) {
724 int reg = mmio_verify_registers[i++];
725 unsigned char a = inb(pioaddr+reg);
726 unsigned char b = readb(ioaddr+reg);
727 if (a != b) {
728 rc = -EIO;
729 printk(KERN_ERR "MMIO do not match PIO [%02x] "
730 "(%02x != %02x)\n", reg, a, b);
731 goto err_out_unmap;
732 }
733 }
734 #endif /* USE_MMIO */
735
736 dev->base_addr = (unsigned long)ioaddr;
737 rp->base = ioaddr;
738
739 /* Get chip registers into a sane state */
740 rhine_power_init(dev);
741 rhine_hw_init(dev, pioaddr);
742
743 for (i = 0; i < 6; i++)
744 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
745 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
746
747 if (!is_valid_ether_addr(dev->perm_addr)) {
748 rc = -EIO;
749 printk(KERN_ERR "Invalid MAC address\n");
750 goto err_out_unmap;
751 }
752
753 /* For Rhine-I/II, phy_id is loaded from EEPROM */
754 if (!phy_id)
755 phy_id = ioread8(ioaddr + 0x6C);
756
757 dev->irq = pdev->irq;
758
759 spin_lock_init(&rp->lock);
760 rp->mii_if.dev = dev;
761 rp->mii_if.mdio_read = mdio_read;
762 rp->mii_if.mdio_write = mdio_write;
763 rp->mii_if.phy_id_mask = 0x1f;
764 rp->mii_if.reg_num_mask = 0x1f;
765
766 /* The chip-specific entries in the device structure. */
767 dev->open = rhine_open;
768 dev->hard_start_xmit = rhine_start_tx;
769 dev->stop = rhine_close;
770 dev->get_stats = rhine_get_stats;
771 dev->set_multicast_list = rhine_set_rx_mode;
772 dev->do_ioctl = netdev_ioctl;
773 dev->ethtool_ops = &netdev_ethtool_ops;
774 dev->tx_timeout = rhine_tx_timeout;
775 dev->watchdog_timeo = TX_TIMEOUT;
776 #ifdef CONFIG_NET_POLL_CONTROLLER
777 dev->poll_controller = rhine_poll;
778 #endif
779 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
780
781 if (rp->quirks & rqRhineI)
782 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
783
784 /* dev->name not defined before register_netdev()! */
785 rc = register_netdev(dev);
786 if (rc)
787 goto err_out_unmap;
788
789 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
790 dev->name, name,
791 #ifdef USE_MMIO
792 memaddr,
793 #else
794 (long)ioaddr,
795 #endif
796 dev->dev_addr, pdev->irq);
797
798 pci_set_drvdata(pdev, dev);
799
800 {
801 u16 mii_cmd;
802 int mii_status = mdio_read(dev, phy_id, 1);
803 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
804 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
805 if (mii_status != 0xffff && mii_status != 0x0000) {
806 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
807 printk(KERN_INFO "%s: MII PHY found at address "
808 "%d, status 0x%4.4x advertising %4.4x "
809 "Link %4.4x.\n", dev->name, phy_id,
810 mii_status, rp->mii_if.advertising,
811 mdio_read(dev, phy_id, 5));
812
813 /* set IFF_RUNNING */
814 if (mii_status & BMSR_LSTATUS)
815 netif_carrier_on(dev);
816 else
817 netif_carrier_off(dev);
818
819 }
820 }
821 rp->mii_if.phy_id = phy_id;
822 if (debug > 1 && avoid_D3)
823 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
824 dev->name);
825
826 return 0;
827
828 err_out_unmap:
829 pci_iounmap(pdev, ioaddr);
830 err_out_free_res:
831 pci_release_regions(pdev);
832 err_out_free_netdev:
833 free_netdev(dev);
834 err_out:
835 return rc;
836 }
837
838 static int alloc_ring(struct net_device* dev)
839 {
840 struct rhine_private *rp = netdev_priv(dev);
841 void *ring;
842 dma_addr_t ring_dma;
843
844 ring = pci_alloc_consistent(rp->pdev,
845 RX_RING_SIZE * sizeof(struct rx_desc) +
846 TX_RING_SIZE * sizeof(struct tx_desc),
847 &ring_dma);
848 if (!ring) {
849 printk(KERN_ERR "Could not allocate DMA memory.\n");
850 return -ENOMEM;
851 }
852 if (rp->quirks & rqRhineI) {
853 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
854 PKT_BUF_SZ * TX_RING_SIZE,
855 &rp->tx_bufs_dma);
856 if (rp->tx_bufs == NULL) {
857 pci_free_consistent(rp->pdev,
858 RX_RING_SIZE * sizeof(struct rx_desc) +
859 TX_RING_SIZE * sizeof(struct tx_desc),
860 ring, ring_dma);
861 return -ENOMEM;
862 }
863 }
864
865 rp->rx_ring = ring;
866 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
867 rp->rx_ring_dma = ring_dma;
868 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
869
870 return 0;
871 }
872
873 static void free_ring(struct net_device* dev)
874 {
875 struct rhine_private *rp = netdev_priv(dev);
876
877 pci_free_consistent(rp->pdev,
878 RX_RING_SIZE * sizeof(struct rx_desc) +
879 TX_RING_SIZE * sizeof(struct tx_desc),
880 rp->rx_ring, rp->rx_ring_dma);
881 rp->tx_ring = NULL;
882
883 if (rp->tx_bufs)
884 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
885 rp->tx_bufs, rp->tx_bufs_dma);
886
887 rp->tx_bufs = NULL;
888
889 }
890
891 static void alloc_rbufs(struct net_device *dev)
892 {
893 struct rhine_private *rp = netdev_priv(dev);
894 dma_addr_t next;
895 int i;
896
897 rp->dirty_rx = rp->cur_rx = 0;
898
899 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
900 rp->rx_head_desc = &rp->rx_ring[0];
901 next = rp->rx_ring_dma;
902
903 /* Init the ring entries */
904 for (i = 0; i < RX_RING_SIZE; i++) {
905 rp->rx_ring[i].rx_status = 0;
906 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
907 next += sizeof(struct rx_desc);
908 rp->rx_ring[i].next_desc = cpu_to_le32(next);
909 rp->rx_skbuff[i] = NULL;
910 }
911 /* Mark the last entry as wrapping the ring. */
912 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
913
914 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
915 for (i = 0; i < RX_RING_SIZE; i++) {
916 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
917 rp->rx_skbuff[i] = skb;
918 if (skb == NULL)
919 break;
920 skb->dev = dev; /* Mark as being used by this device. */
921
922 rp->rx_skbuff_dma[i] =
923 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
924 PCI_DMA_FROMDEVICE);
925
926 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
927 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
928 }
929 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
930 }
931
932 static void free_rbufs(struct net_device* dev)
933 {
934 struct rhine_private *rp = netdev_priv(dev);
935 int i;
936
937 /* Free all the skbuffs in the Rx queue. */
938 for (i = 0; i < RX_RING_SIZE; i++) {
939 rp->rx_ring[i].rx_status = 0;
940 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
941 if (rp->rx_skbuff[i]) {
942 pci_unmap_single(rp->pdev,
943 rp->rx_skbuff_dma[i],
944 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
945 dev_kfree_skb(rp->rx_skbuff[i]);
946 }
947 rp->rx_skbuff[i] = NULL;
948 }
949 }
950
951 static void alloc_tbufs(struct net_device* dev)
952 {
953 struct rhine_private *rp = netdev_priv(dev);
954 dma_addr_t next;
955 int i;
956
957 rp->dirty_tx = rp->cur_tx = 0;
958 next = rp->tx_ring_dma;
959 for (i = 0; i < TX_RING_SIZE; i++) {
960 rp->tx_skbuff[i] = NULL;
961 rp->tx_ring[i].tx_status = 0;
962 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
963 next += sizeof(struct tx_desc);
964 rp->tx_ring[i].next_desc = cpu_to_le32(next);
965 if (rp->quirks & rqRhineI)
966 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
967 }
968 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
969
970 }
971
972 static void free_tbufs(struct net_device* dev)
973 {
974 struct rhine_private *rp = netdev_priv(dev);
975 int i;
976
977 for (i = 0; i < TX_RING_SIZE; i++) {
978 rp->tx_ring[i].tx_status = 0;
979 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
980 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
981 if (rp->tx_skbuff[i]) {
982 if (rp->tx_skbuff_dma[i]) {
983 pci_unmap_single(rp->pdev,
984 rp->tx_skbuff_dma[i],
985 rp->tx_skbuff[i]->len,
986 PCI_DMA_TODEVICE);
987 }
988 dev_kfree_skb(rp->tx_skbuff[i]);
989 }
990 rp->tx_skbuff[i] = NULL;
991 rp->tx_buf[i] = NULL;
992 }
993 }
994
995 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
996 {
997 struct rhine_private *rp = netdev_priv(dev);
998 void __iomem *ioaddr = rp->base;
999
1000 mii_check_media(&rp->mii_if, debug, init_media);
1001
1002 if (rp->mii_if.full_duplex)
1003 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1004 ioaddr + ChipCmd1);
1005 else
1006 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1007 ioaddr + ChipCmd1);
1008 if (debug > 1)
1009 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1010 rp->mii_if.force_media, netif_carrier_ok(dev));
1011 }
1012
1013 /* Called after status of force_media possibly changed */
1014 static void rhine_set_carrier(struct mii_if_info *mii)
1015 {
1016 if (mii->force_media) {
1017 /* autoneg is off: Link is always assumed to be up */
1018 if (!netif_carrier_ok(mii->dev))
1019 netif_carrier_on(mii->dev);
1020 }
1021 else /* Let MMI library update carrier status */
1022 rhine_check_media(mii->dev, 0);
1023 if (debug > 1)
1024 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1025 mii->dev->name, mii->force_media,
1026 netif_carrier_ok(mii->dev));
1027 }
1028
1029 static void init_registers(struct net_device *dev)
1030 {
1031 struct rhine_private *rp = netdev_priv(dev);
1032 void __iomem *ioaddr = rp->base;
1033 int i;
1034
1035 for (i = 0; i < 6; i++)
1036 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1037
1038 /* Initialize other registers. */
1039 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1040 /* Configure initial FIFO thresholds. */
1041 iowrite8(0x20, ioaddr + TxConfig);
1042 rp->tx_thresh = 0x20;
1043 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1044
1045 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1046 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1047
1048 rhine_set_rx_mode(dev);
1049
1050 napi_enable(&rp->napi);
1051
1052 /* Enable interrupts by setting the interrupt mask. */
1053 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1054 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1055 IntrTxDone | IntrTxError | IntrTxUnderrun |
1056 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1057 ioaddr + IntrEnable);
1058
1059 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1060 ioaddr + ChipCmd);
1061 rhine_check_media(dev, 1);
1062 }
1063
1064 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1065 static void rhine_enable_linkmon(void __iomem *ioaddr)
1066 {
1067 iowrite8(0, ioaddr + MIICmd);
1068 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1069 iowrite8(0x80, ioaddr + MIICmd);
1070
1071 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1072
1073 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1074 }
1075
1076 /* Disable MII link status auto-polling (required for MDIO access) */
1077 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1078 {
1079 iowrite8(0, ioaddr + MIICmd);
1080
1081 if (quirks & rqRhineI) {
1082 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1083
1084 /* Can be called from ISR. Evil. */
1085 mdelay(1);
1086
1087 /* 0x80 must be set immediately before turning it off */
1088 iowrite8(0x80, ioaddr + MIICmd);
1089
1090 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1091
1092 /* Heh. Now clear 0x80 again. */
1093 iowrite8(0, ioaddr + MIICmd);
1094 }
1095 else
1096 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1097 }
1098
1099 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1100
1101 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1102 {
1103 struct rhine_private *rp = netdev_priv(dev);
1104 void __iomem *ioaddr = rp->base;
1105 int result;
1106
1107 rhine_disable_linkmon(ioaddr, rp->quirks);
1108
1109 /* rhine_disable_linkmon already cleared MIICmd */
1110 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1111 iowrite8(regnum, ioaddr + MIIRegAddr);
1112 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1113 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1114 result = ioread16(ioaddr + MIIData);
1115
1116 rhine_enable_linkmon(ioaddr);
1117 return result;
1118 }
1119
1120 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1121 {
1122 struct rhine_private *rp = netdev_priv(dev);
1123 void __iomem *ioaddr = rp->base;
1124
1125 rhine_disable_linkmon(ioaddr, rp->quirks);
1126
1127 /* rhine_disable_linkmon already cleared MIICmd */
1128 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1129 iowrite8(regnum, ioaddr + MIIRegAddr);
1130 iowrite16(value, ioaddr + MIIData);
1131 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1132 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1133
1134 rhine_enable_linkmon(ioaddr);
1135 }
1136
1137 static int rhine_open(struct net_device *dev)
1138 {
1139 struct rhine_private *rp = netdev_priv(dev);
1140 void __iomem *ioaddr = rp->base;
1141 int rc;
1142
1143 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1144 dev);
1145 if (rc)
1146 return rc;
1147
1148 if (debug > 1)
1149 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1150 dev->name, rp->pdev->irq);
1151
1152 rc = alloc_ring(dev);
1153 if (rc) {
1154 free_irq(rp->pdev->irq, dev);
1155 return rc;
1156 }
1157 alloc_rbufs(dev);
1158 alloc_tbufs(dev);
1159 rhine_chip_reset(dev);
1160 init_registers(dev);
1161 if (debug > 2)
1162 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1163 "MII status: %4.4x.\n",
1164 dev->name, ioread16(ioaddr + ChipCmd),
1165 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1166
1167 netif_start_queue(dev);
1168
1169 return 0;
1170 }
1171
1172 static void rhine_tx_timeout(struct net_device *dev)
1173 {
1174 struct rhine_private *rp = netdev_priv(dev);
1175 void __iomem *ioaddr = rp->base;
1176
1177 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1178 "%4.4x, resetting...\n",
1179 dev->name, ioread16(ioaddr + IntrStatus),
1180 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1181
1182 /* protect against concurrent rx interrupts */
1183 disable_irq(rp->pdev->irq);
1184
1185 napi_disable(&rp->napi);
1186
1187 spin_lock(&rp->lock);
1188
1189 /* clear all descriptors */
1190 free_tbufs(dev);
1191 free_rbufs(dev);
1192 alloc_tbufs(dev);
1193 alloc_rbufs(dev);
1194
1195 /* Reinitialize the hardware. */
1196 rhine_chip_reset(dev);
1197 init_registers(dev);
1198
1199 spin_unlock(&rp->lock);
1200 enable_irq(rp->pdev->irq);
1201
1202 dev->trans_start = jiffies;
1203 rp->stats.tx_errors++;
1204 netif_wake_queue(dev);
1205 }
1206
1207 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1208 {
1209 struct rhine_private *rp = netdev_priv(dev);
1210 void __iomem *ioaddr = rp->base;
1211 unsigned entry;
1212
1213 /* Caution: the write order is important here, set the field
1214 with the "ownership" bits last. */
1215
1216 /* Calculate the next Tx descriptor entry. */
1217 entry = rp->cur_tx % TX_RING_SIZE;
1218
1219 if (skb_padto(skb, ETH_ZLEN))
1220 return 0;
1221
1222 rp->tx_skbuff[entry] = skb;
1223
1224 if ((rp->quirks & rqRhineI) &&
1225 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1226 /* Must use alignment buffer. */
1227 if (skb->len > PKT_BUF_SZ) {
1228 /* packet too long, drop it */
1229 dev_kfree_skb(skb);
1230 rp->tx_skbuff[entry] = NULL;
1231 rp->stats.tx_dropped++;
1232 return 0;
1233 }
1234
1235 /* Padding is not copied and so must be redone. */
1236 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1237 if (skb->len < ETH_ZLEN)
1238 memset(rp->tx_buf[entry] + skb->len, 0,
1239 ETH_ZLEN - skb->len);
1240 rp->tx_skbuff_dma[entry] = 0;
1241 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1242 (rp->tx_buf[entry] -
1243 rp->tx_bufs));
1244 } else {
1245 rp->tx_skbuff_dma[entry] =
1246 pci_map_single(rp->pdev, skb->data, skb->len,
1247 PCI_DMA_TODEVICE);
1248 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1249 }
1250
1251 rp->tx_ring[entry].desc_length =
1252 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1253
1254 /* lock eth irq */
1255 spin_lock_irq(&rp->lock);
1256 wmb();
1257 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1258 wmb();
1259
1260 rp->cur_tx++;
1261
1262 /* Non-x86 Todo: explicitly flush cache lines here. */
1263
1264 /* Wake the potentially-idle transmit channel */
1265 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1266 ioaddr + ChipCmd1);
1267 IOSYNC;
1268
1269 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1270 netif_stop_queue(dev);
1271
1272 dev->trans_start = jiffies;
1273
1274 spin_unlock_irq(&rp->lock);
1275
1276 if (debug > 4) {
1277 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1278 dev->name, rp->cur_tx-1, entry);
1279 }
1280 return 0;
1281 }
1282
1283 /* The interrupt handler does all of the Rx thread work and cleans up
1284 after the Tx thread. */
1285 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1286 {
1287 struct net_device *dev = dev_instance;
1288 struct rhine_private *rp = netdev_priv(dev);
1289 void __iomem *ioaddr = rp->base;
1290 u32 intr_status;
1291 int boguscnt = max_interrupt_work;
1292 int handled = 0;
1293
1294 while ((intr_status = get_intr_status(dev))) {
1295 handled = 1;
1296
1297 /* Acknowledge all of the current interrupt sources ASAP. */
1298 if (intr_status & IntrTxDescRace)
1299 iowrite8(0x08, ioaddr + IntrStatus2);
1300 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1301 IOSYNC;
1302
1303 if (debug > 4)
1304 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1305 dev->name, intr_status);
1306
1307 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1308 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1309 iowrite16(IntrTxAborted |
1310 IntrTxDone | IntrTxError | IntrTxUnderrun |
1311 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1312 ioaddr + IntrEnable);
1313
1314 netif_rx_schedule(dev, &rp->napi);
1315 }
1316
1317 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1318 if (intr_status & IntrTxErrSummary) {
1319 /* Avoid scavenging before Tx engine turned off */
1320 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1321 if (debug > 2 &&
1322 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1323 printk(KERN_WARNING "%s: "
1324 "rhine_interrupt() Tx engine "
1325 "still on.\n", dev->name);
1326 }
1327 rhine_tx(dev);
1328 }
1329
1330 /* Abnormal error summary/uncommon events handlers. */
1331 if (intr_status & (IntrPCIErr | IntrLinkChange |
1332 IntrStatsMax | IntrTxError | IntrTxAborted |
1333 IntrTxUnderrun | IntrTxDescRace))
1334 rhine_error(dev, intr_status);
1335
1336 if (--boguscnt < 0) {
1337 printk(KERN_WARNING "%s: Too much work at interrupt, "
1338 "status=%#8.8x.\n",
1339 dev->name, intr_status);
1340 break;
1341 }
1342 }
1343
1344 if (debug > 3)
1345 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1346 dev->name, ioread16(ioaddr + IntrStatus));
1347 return IRQ_RETVAL(handled);
1348 }
1349
1350 /* This routine is logically part of the interrupt handler, but isolated
1351 for clarity. */
1352 static void rhine_tx(struct net_device *dev)
1353 {
1354 struct rhine_private *rp = netdev_priv(dev);
1355 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1356
1357 spin_lock(&rp->lock);
1358
1359 /* find and cleanup dirty tx descriptors */
1360 while (rp->dirty_tx != rp->cur_tx) {
1361 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1362 if (debug > 6)
1363 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1364 entry, txstatus);
1365 if (txstatus & DescOwn)
1366 break;
1367 if (txstatus & 0x8000) {
1368 if (debug > 1)
1369 printk(KERN_DEBUG "%s: Transmit error, "
1370 "Tx status %8.8x.\n",
1371 dev->name, txstatus);
1372 rp->stats.tx_errors++;
1373 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1374 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1375 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1376 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1377 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1378 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1379 rp->stats.tx_fifo_errors++;
1380 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1381 break; /* Keep the skb - we try again */
1382 }
1383 /* Transmitter restarted in 'abnormal' handler. */
1384 } else {
1385 if (rp->quirks & rqRhineI)
1386 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1387 else
1388 rp->stats.collisions += txstatus & 0x0F;
1389 if (debug > 6)
1390 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1391 (txstatus >> 3) & 0xF,
1392 txstatus & 0xF);
1393 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1394 rp->stats.tx_packets++;
1395 }
1396 /* Free the original skb. */
1397 if (rp->tx_skbuff_dma[entry]) {
1398 pci_unmap_single(rp->pdev,
1399 rp->tx_skbuff_dma[entry],
1400 rp->tx_skbuff[entry]->len,
1401 PCI_DMA_TODEVICE);
1402 }
1403 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1404 rp->tx_skbuff[entry] = NULL;
1405 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1406 }
1407 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1408 netif_wake_queue(dev);
1409
1410 spin_unlock(&rp->lock);
1411 }
1412
1413 /* Process up to limit frames from receive ring */
1414 static int rhine_rx(struct net_device *dev, int limit)
1415 {
1416 struct rhine_private *rp = netdev_priv(dev);
1417 int count;
1418 int entry = rp->cur_rx % RX_RING_SIZE;
1419
1420 if (debug > 4) {
1421 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1422 dev->name, entry,
1423 le32_to_cpu(rp->rx_head_desc->rx_status));
1424 }
1425
1426 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1427 for (count = 0; count < limit; ++count) {
1428 struct rx_desc *desc = rp->rx_head_desc;
1429 u32 desc_status = le32_to_cpu(desc->rx_status);
1430 int data_size = desc_status >> 16;
1431
1432 if (desc_status & DescOwn)
1433 break;
1434
1435 if (debug > 4)
1436 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1437 desc_status);
1438
1439 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1440 if ((desc_status & RxWholePkt) != RxWholePkt) {
1441 printk(KERN_WARNING "%s: Oversized Ethernet "
1442 "frame spanned multiple buffers, entry "
1443 "%#x length %d status %8.8x!\n",
1444 dev->name, entry, data_size,
1445 desc_status);
1446 printk(KERN_WARNING "%s: Oversized Ethernet "
1447 "frame %p vs %p.\n", dev->name,
1448 rp->rx_head_desc, &rp->rx_ring[entry]);
1449 rp->stats.rx_length_errors++;
1450 } else if (desc_status & RxErr) {
1451 /* There was a error. */
1452 if (debug > 2)
1453 printk(KERN_DEBUG "rhine_rx() Rx "
1454 "error was %8.8x.\n",
1455 desc_status);
1456 rp->stats.rx_errors++;
1457 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1458 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1459 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1460 if (desc_status & 0x0002) {
1461 /* this can also be updated outside the interrupt handler */
1462 spin_lock(&rp->lock);
1463 rp->stats.rx_crc_errors++;
1464 spin_unlock(&rp->lock);
1465 }
1466 }
1467 } else {
1468 struct sk_buff *skb;
1469 /* Length should omit the CRC */
1470 int pkt_len = data_size - 4;
1471
1472 /* Check if the packet is long enough to accept without
1473 copying to a minimally-sized skbuff. */
1474 if (pkt_len < rx_copybreak &&
1475 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1476 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1477 pci_dma_sync_single_for_cpu(rp->pdev,
1478 rp->rx_skbuff_dma[entry],
1479 rp->rx_buf_sz,
1480 PCI_DMA_FROMDEVICE);
1481
1482 skb_copy_to_linear_data(skb,
1483 rp->rx_skbuff[entry]->data,
1484 pkt_len);
1485 skb_put(skb, pkt_len);
1486 pci_dma_sync_single_for_device(rp->pdev,
1487 rp->rx_skbuff_dma[entry],
1488 rp->rx_buf_sz,
1489 PCI_DMA_FROMDEVICE);
1490 } else {
1491 skb = rp->rx_skbuff[entry];
1492 if (skb == NULL) {
1493 printk(KERN_ERR "%s: Inconsistent Rx "
1494 "descriptor chain.\n",
1495 dev->name);
1496 break;
1497 }
1498 rp->rx_skbuff[entry] = NULL;
1499 skb_put(skb, pkt_len);
1500 pci_unmap_single(rp->pdev,
1501 rp->rx_skbuff_dma[entry],
1502 rp->rx_buf_sz,
1503 PCI_DMA_FROMDEVICE);
1504 }
1505 skb->protocol = eth_type_trans(skb, dev);
1506 netif_receive_skb(skb);
1507 dev->last_rx = jiffies;
1508 rp->stats.rx_bytes += pkt_len;
1509 rp->stats.rx_packets++;
1510 }
1511 entry = (++rp->cur_rx) % RX_RING_SIZE;
1512 rp->rx_head_desc = &rp->rx_ring[entry];
1513 }
1514
1515 /* Refill the Rx ring buffers. */
1516 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1517 struct sk_buff *skb;
1518 entry = rp->dirty_rx % RX_RING_SIZE;
1519 if (rp->rx_skbuff[entry] == NULL) {
1520 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1521 rp->rx_skbuff[entry] = skb;
1522 if (skb == NULL)
1523 break; /* Better luck next round. */
1524 skb->dev = dev; /* Mark as being used by this device. */
1525 rp->rx_skbuff_dma[entry] =
1526 pci_map_single(rp->pdev, skb->data,
1527 rp->rx_buf_sz,
1528 PCI_DMA_FROMDEVICE);
1529 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1530 }
1531 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1532 }
1533
1534 return count;
1535 }
1536
1537 /*
1538 * Clears the "tally counters" for CRC errors and missed frames(?).
1539 * It has been reported that some chips need a write of 0 to clear
1540 * these, for others the counters are set to 1 when written to and
1541 * instead cleared when read. So we clear them both ways ...
1542 */
1543 static inline void clear_tally_counters(void __iomem *ioaddr)
1544 {
1545 iowrite32(0, ioaddr + RxMissed);
1546 ioread16(ioaddr + RxCRCErrs);
1547 ioread16(ioaddr + RxMissed);
1548 }
1549
1550 static void rhine_restart_tx(struct net_device *dev) {
1551 struct rhine_private *rp = netdev_priv(dev);
1552 void __iomem *ioaddr = rp->base;
1553 int entry = rp->dirty_tx % TX_RING_SIZE;
1554 u32 intr_status;
1555
1556 /*
1557 * If new errors occured, we need to sort them out before doing Tx.
1558 * In that case the ISR will be back here RSN anyway.
1559 */
1560 intr_status = get_intr_status(dev);
1561
1562 if ((intr_status & IntrTxErrSummary) == 0) {
1563
1564 /* We know better than the chip where it should continue. */
1565 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1566 ioaddr + TxRingPtr);
1567
1568 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1569 ioaddr + ChipCmd);
1570 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1571 ioaddr + ChipCmd1);
1572 IOSYNC;
1573 }
1574 else {
1575 /* This should never happen */
1576 if (debug > 1)
1577 printk(KERN_WARNING "%s: rhine_restart_tx() "
1578 "Another error occured %8.8x.\n",
1579 dev->name, intr_status);
1580 }
1581
1582 }
1583
1584 static void rhine_error(struct net_device *dev, int intr_status)
1585 {
1586 struct rhine_private *rp = netdev_priv(dev);
1587 void __iomem *ioaddr = rp->base;
1588
1589 spin_lock(&rp->lock);
1590
1591 if (intr_status & IntrLinkChange)
1592 rhine_check_media(dev, 0);
1593 if (intr_status & IntrStatsMax) {
1594 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1595 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1596 clear_tally_counters(ioaddr);
1597 }
1598 if (intr_status & IntrTxAborted) {
1599 if (debug > 1)
1600 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1601 dev->name, intr_status);
1602 }
1603 if (intr_status & IntrTxUnderrun) {
1604 if (rp->tx_thresh < 0xE0)
1605 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1606 if (debug > 1)
1607 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1608 "threshold now %2.2x.\n",
1609 dev->name, rp->tx_thresh);
1610 }
1611 if (intr_status & IntrTxDescRace) {
1612 if (debug > 2)
1613 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1614 dev->name);
1615 }
1616 if ((intr_status & IntrTxError) &&
1617 (intr_status & (IntrTxAborted |
1618 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1619 if (rp->tx_thresh < 0xE0) {
1620 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1621 }
1622 if (debug > 1)
1623 printk(KERN_INFO "%s: Unspecified error. Tx "
1624 "threshold now %2.2x.\n",
1625 dev->name, rp->tx_thresh);
1626 }
1627 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1628 IntrTxError))
1629 rhine_restart_tx(dev);
1630
1631 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1632 IntrTxError | IntrTxAborted | IntrNormalSummary |
1633 IntrTxDescRace)) {
1634 if (debug > 1)
1635 printk(KERN_ERR "%s: Something Wicked happened! "
1636 "%8.8x.\n", dev->name, intr_status);
1637 }
1638
1639 spin_unlock(&rp->lock);
1640 }
1641
1642 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1643 {
1644 struct rhine_private *rp = netdev_priv(dev);
1645 void __iomem *ioaddr = rp->base;
1646 unsigned long flags;
1647
1648 spin_lock_irqsave(&rp->lock, flags);
1649 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1650 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1651 clear_tally_counters(ioaddr);
1652 spin_unlock_irqrestore(&rp->lock, flags);
1653
1654 return &rp->stats;
1655 }
1656
1657 static void rhine_set_rx_mode(struct net_device *dev)
1658 {
1659 struct rhine_private *rp = netdev_priv(dev);
1660 void __iomem *ioaddr = rp->base;
1661 u32 mc_filter[2]; /* Multicast hash filter */
1662 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1663
1664 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1665 rx_mode = 0x1C;
1666 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1667 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1668 } else if ((dev->mc_count > multicast_filter_limit)
1669 || (dev->flags & IFF_ALLMULTI)) {
1670 /* Too many to match, or accept all multicasts. */
1671 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1672 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1673 rx_mode = 0x0C;
1674 } else {
1675 struct dev_mc_list *mclist;
1676 int i;
1677 memset(mc_filter, 0, sizeof(mc_filter));
1678 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1679 i++, mclist = mclist->next) {
1680 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1681
1682 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1683 }
1684 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1685 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1686 rx_mode = 0x0C;
1687 }
1688 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1689 }
1690
1691 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1692 {
1693 struct rhine_private *rp = netdev_priv(dev);
1694
1695 strcpy(info->driver, DRV_NAME);
1696 strcpy(info->version, DRV_VERSION);
1697 strcpy(info->bus_info, pci_name(rp->pdev));
1698 }
1699
1700 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1701 {
1702 struct rhine_private *rp = netdev_priv(dev);
1703 int rc;
1704
1705 spin_lock_irq(&rp->lock);
1706 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1707 spin_unlock_irq(&rp->lock);
1708
1709 return rc;
1710 }
1711
1712 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1713 {
1714 struct rhine_private *rp = netdev_priv(dev);
1715 int rc;
1716
1717 spin_lock_irq(&rp->lock);
1718 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1719 spin_unlock_irq(&rp->lock);
1720 rhine_set_carrier(&rp->mii_if);
1721
1722 return rc;
1723 }
1724
1725 static int netdev_nway_reset(struct net_device *dev)
1726 {
1727 struct rhine_private *rp = netdev_priv(dev);
1728
1729 return mii_nway_restart(&rp->mii_if);
1730 }
1731
1732 static u32 netdev_get_link(struct net_device *dev)
1733 {
1734 struct rhine_private *rp = netdev_priv(dev);
1735
1736 return mii_link_ok(&rp->mii_if);
1737 }
1738
1739 static u32 netdev_get_msglevel(struct net_device *dev)
1740 {
1741 return debug;
1742 }
1743
1744 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1745 {
1746 debug = value;
1747 }
1748
1749 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1750 {
1751 struct rhine_private *rp = netdev_priv(dev);
1752
1753 if (!(rp->quirks & rqWOL))
1754 return;
1755
1756 spin_lock_irq(&rp->lock);
1757 wol->supported = WAKE_PHY | WAKE_MAGIC |
1758 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1759 wol->wolopts = rp->wolopts;
1760 spin_unlock_irq(&rp->lock);
1761 }
1762
1763 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1764 {
1765 struct rhine_private *rp = netdev_priv(dev);
1766 u32 support = WAKE_PHY | WAKE_MAGIC |
1767 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1768
1769 if (!(rp->quirks & rqWOL))
1770 return -EINVAL;
1771
1772 if (wol->wolopts & ~support)
1773 return -EINVAL;
1774
1775 spin_lock_irq(&rp->lock);
1776 rp->wolopts = wol->wolopts;
1777 spin_unlock_irq(&rp->lock);
1778
1779 return 0;
1780 }
1781
1782 static const struct ethtool_ops netdev_ethtool_ops = {
1783 .get_drvinfo = netdev_get_drvinfo,
1784 .get_settings = netdev_get_settings,
1785 .set_settings = netdev_set_settings,
1786 .nway_reset = netdev_nway_reset,
1787 .get_link = netdev_get_link,
1788 .get_msglevel = netdev_get_msglevel,
1789 .set_msglevel = netdev_set_msglevel,
1790 .get_wol = rhine_get_wol,
1791 .set_wol = rhine_set_wol,
1792 };
1793
1794 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1795 {
1796 struct rhine_private *rp = netdev_priv(dev);
1797 int rc;
1798
1799 if (!netif_running(dev))
1800 return -EINVAL;
1801
1802 spin_lock_irq(&rp->lock);
1803 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1804 spin_unlock_irq(&rp->lock);
1805 rhine_set_carrier(&rp->mii_if);
1806
1807 return rc;
1808 }
1809
1810 static int rhine_close(struct net_device *dev)
1811 {
1812 struct rhine_private *rp = netdev_priv(dev);
1813 void __iomem *ioaddr = rp->base;
1814
1815 spin_lock_irq(&rp->lock);
1816
1817 netif_stop_queue(dev);
1818 napi_disable(&rp->napi);
1819
1820 if (debug > 1)
1821 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1822 "status was %4.4x.\n",
1823 dev->name, ioread16(ioaddr + ChipCmd));
1824
1825 /* Switch to loopback mode to avoid hardware races. */
1826 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1827
1828 /* Disable interrupts by clearing the interrupt mask. */
1829 iowrite16(0x0000, ioaddr + IntrEnable);
1830
1831 /* Stop the chip's Tx and Rx processes. */
1832 iowrite16(CmdStop, ioaddr + ChipCmd);
1833
1834 spin_unlock_irq(&rp->lock);
1835
1836 free_irq(rp->pdev->irq, dev);
1837 free_rbufs(dev);
1838 free_tbufs(dev);
1839 free_ring(dev);
1840
1841 return 0;
1842 }
1843
1844
1845 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1846 {
1847 struct net_device *dev = pci_get_drvdata(pdev);
1848 struct rhine_private *rp = netdev_priv(dev);
1849
1850 unregister_netdev(dev);
1851
1852 pci_iounmap(pdev, rp->base);
1853 pci_release_regions(pdev);
1854
1855 free_netdev(dev);
1856 pci_disable_device(pdev);
1857 pci_set_drvdata(pdev, NULL);
1858 }
1859
1860 static void rhine_shutdown (struct pci_dev *pdev)
1861 {
1862 struct net_device *dev = pci_get_drvdata(pdev);
1863 struct rhine_private *rp = netdev_priv(dev);
1864 void __iomem *ioaddr = rp->base;
1865
1866 if (!(rp->quirks & rqWOL))
1867 return; /* Nothing to do for non-WOL adapters */
1868
1869 rhine_power_init(dev);
1870
1871 /* Make sure we use pattern 0, 1 and not 4, 5 */
1872 if (rp->quirks & rq6patterns)
1873 iowrite8(0x04, ioaddr + WOLcgClr);
1874
1875 if (rp->wolopts & WAKE_MAGIC) {
1876 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1877 /*
1878 * Turn EEPROM-controlled wake-up back on -- some hardware may
1879 * not cooperate otherwise.
1880 */
1881 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1882 }
1883
1884 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1885 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1886
1887 if (rp->wolopts & WAKE_PHY)
1888 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1889
1890 if (rp->wolopts & WAKE_UCAST)
1891 iowrite8(WOLucast, ioaddr + WOLcrSet);
1892
1893 if (rp->wolopts) {
1894 /* Enable legacy WOL (for old motherboards) */
1895 iowrite8(0x01, ioaddr + PwcfgSet);
1896 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1897 }
1898
1899 /* Hit power state D3 (sleep) */
1900 if (!avoid_D3)
1901 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1902
1903 /* TODO: Check use of pci_enable_wake() */
1904
1905 }
1906
1907 #ifdef CONFIG_PM
1908 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1909 {
1910 struct net_device *dev = pci_get_drvdata(pdev);
1911 struct rhine_private *rp = netdev_priv(dev);
1912 unsigned long flags;
1913
1914 if (!netif_running(dev))
1915 return 0;
1916
1917 napi_disable(&rp->napi);
1918
1919 netif_device_detach(dev);
1920 pci_save_state(pdev);
1921
1922 spin_lock_irqsave(&rp->lock, flags);
1923 rhine_shutdown(pdev);
1924 spin_unlock_irqrestore(&rp->lock, flags);
1925
1926 free_irq(dev->irq, dev);
1927 return 0;
1928 }
1929
1930 static int rhine_resume(struct pci_dev *pdev)
1931 {
1932 struct net_device *dev = pci_get_drvdata(pdev);
1933 struct rhine_private *rp = netdev_priv(dev);
1934 unsigned long flags;
1935 int ret;
1936
1937 if (!netif_running(dev))
1938 return 0;
1939
1940 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1941 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1942
1943 ret = pci_set_power_state(pdev, PCI_D0);
1944 if (debug > 1)
1945 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1946 dev->name, ret ? "failed" : "succeeded", ret);
1947
1948 pci_restore_state(pdev);
1949
1950 spin_lock_irqsave(&rp->lock, flags);
1951 #ifdef USE_MMIO
1952 enable_mmio(rp->pioaddr, rp->quirks);
1953 #endif
1954 rhine_power_init(dev);
1955 free_tbufs(dev);
1956 free_rbufs(dev);
1957 alloc_tbufs(dev);
1958 alloc_rbufs(dev);
1959 init_registers(dev);
1960 spin_unlock_irqrestore(&rp->lock, flags);
1961
1962 netif_device_attach(dev);
1963
1964 return 0;
1965 }
1966 #endif /* CONFIG_PM */
1967
1968 static struct pci_driver rhine_driver = {
1969 .name = DRV_NAME,
1970 .id_table = rhine_pci_tbl,
1971 .probe = rhine_init_one,
1972 .remove = __devexit_p(rhine_remove_one),
1973 #ifdef CONFIG_PM
1974 .suspend = rhine_suspend,
1975 .resume = rhine_resume,
1976 #endif /* CONFIG_PM */
1977 .shutdown = rhine_shutdown,
1978 };
1979
1980 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1981 {
1982 .ident = "EPIA-M",
1983 .matches = {
1984 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1985 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1986 },
1987 },
1988 {
1989 .ident = "KV7",
1990 .matches = {
1991 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
1992 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1993 },
1994 },
1995 { NULL }
1996 };
1997
1998 static int __init rhine_init(void)
1999 {
2000 /* when a module, this is printed whether or not devices are found in probe */
2001 #ifdef MODULE
2002 printk(version);
2003 #endif
2004 if (dmi_check_system(rhine_dmi_table)) {
2005 /* these BIOSes fail at PXE boot if chip is in D3 */
2006 avoid_D3 = 1;
2007 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2008 "enabled.\n",
2009 DRV_NAME);
2010 }
2011 else if (avoid_D3)
2012 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2013
2014 return pci_register_driver(&rhine_driver);
2015 }
2016
2017
2018 static void __exit rhine_cleanup(void)
2019 {
2020 pci_unregister_driver(&rhine_driver);
2021 }
2022
2023
2024 module_init(rhine_init);
2025 module_exit(rhine_cleanup);
This page took 0.087 seconds and 5 git commands to generate.