Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
35
36
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
42
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
52
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
56
57 /*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
65
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
77
78 /* Operational parameters that usually are not changed. */
79
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
82
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
110
111 /* These identify the driver base version and may not be removed. */
112 static char version[] __devinitdata =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
114
115 /* This driver was written to use PCI memory space. Some early versions
116 of the Rhine may only work correctly with I/O space accesses. */
117 #ifdef CONFIG_VIA_RHINE_MMIO
118 #define USE_MMIO
119 #else
120 #endif
121
122 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
123 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
124 MODULE_LICENSE("GPL");
125
126 module_param(max_interrupt_work, int, 0);
127 module_param(debug, int, 0);
128 module_param(rx_copybreak, int, 0);
129 module_param(avoid_D3, bool, 0);
130 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
131 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
132 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
133 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
134
135 /*
136 Theory of Operation
137
138 I. Board Compatibility
139
140 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
141 controller.
142
143 II. Board-specific settings
144
145 Boards with this chip are functional only in a bus-master PCI slot.
146
147 Many operational settings are loaded from the EEPROM to the Config word at
148 offset 0x78. For most of these settings, this driver assumes that they are
149 correct.
150 If this driver is compiled to use PCI memory space operations the EEPROM
151 must be configured to enable memory ops.
152
153 III. Driver operation
154
155 IIIa. Ring buffers
156
157 This driver uses two statically allocated fixed-size descriptor lists
158 formed into rings by a branch from the final descriptor to the beginning of
159 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160
161 IIIb/c. Transmit/Receive Structure
162
163 This driver attempts to use a zero-copy receive and transmit scheme.
164
165 Alas, all data buffers are required to start on a 32 bit boundary, so
166 the driver must often copy transmit packets into bounce buffers.
167
168 The driver allocates full frame size skbuffs for the Rx ring buffers at
169 open() time and passes the skb->data field to the chip as receive data
170 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
171 a fresh skbuff is allocated and the frame is copied to the new skbuff.
172 When the incoming frame is larger, the skbuff is passed directly up the
173 protocol stack. Buffers consumed this way are replaced by newly allocated
174 skbuffs in the last phase of rhine_rx().
175
176 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
177 using a full-sized skbuff for small frames vs. the copying costs of larger
178 frames. New boards are typically used in generously configured machines
179 and the underfilled buffers have negligible impact compared to the benefit of
180 a single allocation size, so the default value of zero results in never
181 copying packets. When copying is done, the cost is usually mitigated by using
182 a combined copy/checksum routine. Copying also preloads the cache, which is
183 most useful with small frames.
184
185 Since the VIA chips are only able to transfer data to buffers on 32 bit
186 boundaries, the IP header at offset 14 in an ethernet frame isn't
187 longword aligned for further processing. Copying these unaligned buffers
188 has the beneficial effect of 16-byte aligning the IP header.
189
190 IIId. Synchronization
191
192 The driver runs as two independent, single-threaded flows of control. One
193 is the send-packet routine, which enforces single-threaded use by the
194 dev->priv->lock spinlock. The other thread is the interrupt handler, which
195 is single threaded by the hardware and interrupt handling software.
196
197 The send packet thread has partial control over the Tx ring. It locks the
198 dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
199 is not available it stops the transmit queue by calling netif_stop_queue.
200
201 The interrupt handler has exclusive control over the Rx ring and records stats
202 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
203 empty by incrementing the dirty_tx mark. If at least half of the entries in
204 the Rx ring are available the transmit queue is woken up if it was stopped.
205
206 IV. Notes
207
208 IVb. References
209
210 Preliminary VT86C100A manual from http://www.via.com.tw/
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
214 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
215
216
217 IVc. Errata
218
219 The VT86C100A manual is not reliable information.
220 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
221 in significant performance degradation for bounce buffer copies on transmit
222 and unaligned IP headers on receive.
223 The chip does not pad to minimum transmit length.
224
225 */
226
227
228 /* This table drives the PCI probe routines. It's mostly boilerplate in all
229 of the drivers, and will likely be provided by some future kernel.
230 Note the matching code -- the first table entry matchs all 56** cards but
231 second only the 1234 card.
232 */
233
234 enum rhine_revs {
235 VT86C100A = 0x00,
236 VTunknown0 = 0x20,
237 VT6102 = 0x40,
238 VT8231 = 0x50, /* Integrated MAC */
239 VT8233 = 0x60, /* Integrated MAC */
240 VT8235 = 0x74, /* Integrated MAC */
241 VT8237 = 0x78, /* Integrated MAC */
242 VTunknown1 = 0x7C,
243 VT6105 = 0x80,
244 VT6105_B0 = 0x83,
245 VT6105L = 0x8A,
246 VT6107 = 0x8C,
247 VTunknown2 = 0x8E,
248 VT6105M = 0x90, /* Management adapter */
249 };
250
251 enum rhine_quirks {
252 rqWOL = 0x0001, /* Wake-On-LAN support */
253 rqForceReset = 0x0002,
254 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
255 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
256 rqRhineI = 0x0100, /* See comment below */
257 };
258 /*
259 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
260 * MMIO as well as for the collision counter and the Tx FIFO underflow
261 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
262 */
263
264 /* Beware of PCI posted writes */
265 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
266
267 static const struct pci_device_id rhine_pci_tbl[] = {
268 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
269 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
270 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
271 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
272 { } /* terminate list */
273 };
274 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
275
276
277 /* Offsets to the device registers. */
278 enum register_offsets {
279 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
280 ChipCmd1=0x09,
281 IntrStatus=0x0C, IntrEnable=0x0E,
282 MulticastFilter0=0x10, MulticastFilter1=0x14,
283 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
284 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
285 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
286 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
287 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
288 StickyHW=0x83, IntrStatus2=0x84,
289 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
290 WOLcrClr1=0xA6, WOLcgClr=0xA7,
291 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
292 };
293
294 /* Bits in ConfigD */
295 enum backoff_bits {
296 BackOptional=0x01, BackModify=0x02,
297 BackCaptureEffect=0x04, BackRandom=0x08
298 };
299
300 #ifdef USE_MMIO
301 /* Registers we check that mmio and reg are the same. */
302 static const int mmio_verify_registers[] = {
303 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
304 0
305 };
306 #endif
307
308 /* Bits in the interrupt status/mask registers. */
309 enum intr_status_bits {
310 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
311 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
312 IntrPCIErr=0x0040,
313 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
314 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
315 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
316 IntrRxWakeUp=0x8000,
317 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
318 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
319 IntrTxErrSummary=0x082218,
320 };
321
322 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
323 enum wol_bits {
324 WOLucast = 0x10,
325 WOLmagic = 0x20,
326 WOLbmcast = 0x30,
327 WOLlnkon = 0x40,
328 WOLlnkoff = 0x80,
329 };
330
331 /* The Rx and Tx buffer descriptors. */
332 struct rx_desc {
333 __le32 rx_status;
334 __le32 desc_length; /* Chain flag, Buffer/frame length */
335 __le32 addr;
336 __le32 next_desc;
337 };
338 struct tx_desc {
339 __le32 tx_status;
340 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
341 __le32 addr;
342 __le32 next_desc;
343 };
344
345 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
346 #define TXDESC 0x00e08000
347
348 enum rx_status_bits {
349 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
350 };
351
352 /* Bits in *_desc.*_status */
353 enum desc_status_bits {
354 DescOwn=0x80000000
355 };
356
357 /* Bits in ChipCmd. */
358 enum chip_cmd_bits {
359 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
360 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
361 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
362 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
363 };
364
365 struct rhine_private {
366 /* Descriptor rings */
367 struct rx_desc *rx_ring;
368 struct tx_desc *tx_ring;
369 dma_addr_t rx_ring_dma;
370 dma_addr_t tx_ring_dma;
371
372 /* The addresses of receive-in-place skbuffs. */
373 struct sk_buff *rx_skbuff[RX_RING_SIZE];
374 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
375
376 /* The saved address of a sent-in-place packet/buffer, for later free(). */
377 struct sk_buff *tx_skbuff[TX_RING_SIZE];
378 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
379
380 /* Tx bounce buffers (Rhine-I only) */
381 unsigned char *tx_buf[TX_RING_SIZE];
382 unsigned char *tx_bufs;
383 dma_addr_t tx_bufs_dma;
384
385 struct pci_dev *pdev;
386 long pioaddr;
387 struct net_device *dev;
388 struct napi_struct napi;
389 struct net_device_stats stats;
390 spinlock_t lock;
391
392 /* Frequently used values: keep some adjacent for cache effect. */
393 u32 quirks;
394 struct rx_desc *rx_head_desc;
395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
396 unsigned int cur_tx, dirty_tx;
397 unsigned int rx_buf_sz; /* Based on MTU+slack. */
398 u8 wolopts;
399
400 u8 tx_thresh, rx_thresh;
401
402 struct mii_if_info mii_if;
403 void __iomem *base;
404 };
405
406 static int mdio_read(struct net_device *dev, int phy_id, int location);
407 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
408 static int rhine_open(struct net_device *dev);
409 static void rhine_tx_timeout(struct net_device *dev);
410 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
411 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
412 static void rhine_tx(struct net_device *dev);
413 static int rhine_rx(struct net_device *dev, int limit);
414 static void rhine_error(struct net_device *dev, int intr_status);
415 static void rhine_set_rx_mode(struct net_device *dev);
416 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
417 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
418 static const struct ethtool_ops netdev_ethtool_ops;
419 static int rhine_close(struct net_device *dev);
420 static void rhine_shutdown (struct pci_dev *pdev);
421
422 #define RHINE_WAIT_FOR(condition) do { \
423 int i=1024; \
424 while (!(condition) && --i) \
425 ; \
426 if (debug > 1 && i < 512) \
427 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
428 DRV_NAME, 1024-i, __func__, __LINE__); \
429 } while(0)
430
431 static inline u32 get_intr_status(struct net_device *dev)
432 {
433 struct rhine_private *rp = netdev_priv(dev);
434 void __iomem *ioaddr = rp->base;
435 u32 intr_status;
436
437 intr_status = ioread16(ioaddr + IntrStatus);
438 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
439 if (rp->quirks & rqStatusWBRace)
440 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
441 return intr_status;
442 }
443
444 /*
445 * Get power related registers into sane state.
446 * Notify user about past WOL event.
447 */
448 static void rhine_power_init(struct net_device *dev)
449 {
450 struct rhine_private *rp = netdev_priv(dev);
451 void __iomem *ioaddr = rp->base;
452 u16 wolstat;
453
454 if (rp->quirks & rqWOL) {
455 /* Make sure chip is in power state D0 */
456 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
457
458 /* Disable "force PME-enable" */
459 iowrite8(0x80, ioaddr + WOLcgClr);
460
461 /* Clear power-event config bits (WOL) */
462 iowrite8(0xFF, ioaddr + WOLcrClr);
463 /* More recent cards can manage two additional patterns */
464 if (rp->quirks & rq6patterns)
465 iowrite8(0x03, ioaddr + WOLcrClr1);
466
467 /* Save power-event status bits */
468 wolstat = ioread8(ioaddr + PwrcsrSet);
469 if (rp->quirks & rq6patterns)
470 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
471
472 /* Clear power-event status bits */
473 iowrite8(0xFF, ioaddr + PwrcsrClr);
474 if (rp->quirks & rq6patterns)
475 iowrite8(0x03, ioaddr + PwrcsrClr1);
476
477 if (wolstat) {
478 char *reason;
479 switch (wolstat) {
480 case WOLmagic:
481 reason = "Magic packet";
482 break;
483 case WOLlnkon:
484 reason = "Link went up";
485 break;
486 case WOLlnkoff:
487 reason = "Link went down";
488 break;
489 case WOLucast:
490 reason = "Unicast packet";
491 break;
492 case WOLbmcast:
493 reason = "Multicast/broadcast packet";
494 break;
495 default:
496 reason = "Unknown";
497 }
498 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
499 DRV_NAME, reason);
500 }
501 }
502 }
503
504 static void rhine_chip_reset(struct net_device *dev)
505 {
506 struct rhine_private *rp = netdev_priv(dev);
507 void __iomem *ioaddr = rp->base;
508
509 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
510 IOSYNC;
511
512 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
513 printk(KERN_INFO "%s: Reset not complete yet. "
514 "Trying harder.\n", DRV_NAME);
515
516 /* Force reset */
517 if (rp->quirks & rqForceReset)
518 iowrite8(0x40, ioaddr + MiscCmd);
519
520 /* Reset can take somewhat longer (rare) */
521 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
522 }
523
524 if (debug > 1)
525 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
526 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
527 "failed" : "succeeded");
528 }
529
530 #ifdef USE_MMIO
531 static void enable_mmio(long pioaddr, u32 quirks)
532 {
533 int n;
534 if (quirks & rqRhineI) {
535 /* More recent docs say that this bit is reserved ... */
536 n = inb(pioaddr + ConfigA) | 0x20;
537 outb(n, pioaddr + ConfigA);
538 } else {
539 n = inb(pioaddr + ConfigD) | 0x80;
540 outb(n, pioaddr + ConfigD);
541 }
542 }
543 #endif
544
545 /*
546 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
547 * (plus 0x6C for Rhine-I/II)
548 */
549 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
550 {
551 struct rhine_private *rp = netdev_priv(dev);
552 void __iomem *ioaddr = rp->base;
553
554 outb(0x20, pioaddr + MACRegEEcsr);
555 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
556
557 #ifdef USE_MMIO
558 /*
559 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
560 * MMIO. If reloading EEPROM was done first this could be avoided, but
561 * it is not known if that still works with the "win98-reboot" problem.
562 */
563 enable_mmio(pioaddr, rp->quirks);
564 #endif
565
566 /* Turn off EEPROM-controlled wake-up (magic packet) */
567 if (rp->quirks & rqWOL)
568 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
569
570 }
571
572 #ifdef CONFIG_NET_POLL_CONTROLLER
573 static void rhine_poll(struct net_device *dev)
574 {
575 disable_irq(dev->irq);
576 rhine_interrupt(dev->irq, (void *)dev);
577 enable_irq(dev->irq);
578 }
579 #endif
580
581 static int rhine_napipoll(struct napi_struct *napi, int budget)
582 {
583 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
584 struct net_device *dev = rp->dev;
585 void __iomem *ioaddr = rp->base;
586 int work_done;
587
588 work_done = rhine_rx(dev, budget);
589
590 if (work_done < budget) {
591 netif_rx_complete(dev, napi);
592
593 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
594 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
595 IntrTxDone | IntrTxError | IntrTxUnderrun |
596 IntrPCIErr | IntrStatsMax | IntrLinkChange,
597 ioaddr + IntrEnable);
598 }
599 return work_done;
600 }
601
602 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
603 {
604 struct rhine_private *rp = netdev_priv(dev);
605
606 /* Reset the chip to erase previous misconfiguration. */
607 rhine_chip_reset(dev);
608
609 /* Rhine-I needs extra time to recuperate before EEPROM reload */
610 if (rp->quirks & rqRhineI)
611 msleep(5);
612
613 /* Reload EEPROM controlled bytes cleared by soft reset */
614 rhine_reload_eeprom(pioaddr, dev);
615 }
616
617 static const struct net_device_ops rhine_netdev_ops = {
618 .ndo_open = rhine_open,
619 .ndo_stop = rhine_close,
620 .ndo_start_xmit = rhine_start_tx,
621 .ndo_get_stats = rhine_get_stats,
622 .ndo_set_multicast_list = rhine_set_rx_mode,
623 .ndo_validate_addr = eth_validate_addr,
624 .ndo_do_ioctl = netdev_ioctl,
625 .ndo_tx_timeout = rhine_tx_timeout,
626 #ifdef CONFIG_NET_POLL_CONTROLLER
627 .ndo_poll_controller = rhine_poll,
628 #endif
629 };
630
631 static int __devinit rhine_init_one(struct pci_dev *pdev,
632 const struct pci_device_id *ent)
633 {
634 struct net_device *dev;
635 struct rhine_private *rp;
636 int i, rc;
637 u32 quirks;
638 long pioaddr;
639 long memaddr;
640 void __iomem *ioaddr;
641 int io_size, phy_id;
642 const char *name;
643 #ifdef USE_MMIO
644 int bar = 1;
645 #else
646 int bar = 0;
647 #endif
648
649 /* when built into the kernel, we only print version if device is found */
650 #ifndef MODULE
651 static int printed_version;
652 if (!printed_version++)
653 printk(version);
654 #endif
655
656 io_size = 256;
657 phy_id = 0;
658 quirks = 0;
659 name = "Rhine";
660 if (pdev->revision < VTunknown0) {
661 quirks = rqRhineI;
662 io_size = 128;
663 }
664 else if (pdev->revision >= VT6102) {
665 quirks = rqWOL | rqForceReset;
666 if (pdev->revision < VT6105) {
667 name = "Rhine II";
668 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
669 }
670 else {
671 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
672 if (pdev->revision >= VT6105_B0)
673 quirks |= rq6patterns;
674 if (pdev->revision < VT6105M)
675 name = "Rhine III";
676 else
677 name = "Rhine III (Management Adapter)";
678 }
679 }
680
681 rc = pci_enable_device(pdev);
682 if (rc)
683 goto err_out;
684
685 /* this should always be supported */
686 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
687 if (rc) {
688 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
689 "the card!?\n");
690 goto err_out;
691 }
692
693 /* sanity check */
694 if ((pci_resource_len(pdev, 0) < io_size) ||
695 (pci_resource_len(pdev, 1) < io_size)) {
696 rc = -EIO;
697 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
698 goto err_out;
699 }
700
701 pioaddr = pci_resource_start(pdev, 0);
702 memaddr = pci_resource_start(pdev, 1);
703
704 pci_set_master(pdev);
705
706 dev = alloc_etherdev(sizeof(struct rhine_private));
707 if (!dev) {
708 rc = -ENOMEM;
709 printk(KERN_ERR "alloc_etherdev failed\n");
710 goto err_out;
711 }
712 SET_NETDEV_DEV(dev, &pdev->dev);
713
714 rp = netdev_priv(dev);
715 rp->dev = dev;
716 rp->quirks = quirks;
717 rp->pioaddr = pioaddr;
718 rp->pdev = pdev;
719
720 rc = pci_request_regions(pdev, DRV_NAME);
721 if (rc)
722 goto err_out_free_netdev;
723
724 ioaddr = pci_iomap(pdev, bar, io_size);
725 if (!ioaddr) {
726 rc = -EIO;
727 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
728 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
729 goto err_out_free_res;
730 }
731
732 #ifdef USE_MMIO
733 enable_mmio(pioaddr, quirks);
734
735 /* Check that selected MMIO registers match the PIO ones */
736 i = 0;
737 while (mmio_verify_registers[i]) {
738 int reg = mmio_verify_registers[i++];
739 unsigned char a = inb(pioaddr+reg);
740 unsigned char b = readb(ioaddr+reg);
741 if (a != b) {
742 rc = -EIO;
743 printk(KERN_ERR "MMIO do not match PIO [%02x] "
744 "(%02x != %02x)\n", reg, a, b);
745 goto err_out_unmap;
746 }
747 }
748 #endif /* USE_MMIO */
749
750 dev->base_addr = (unsigned long)ioaddr;
751 rp->base = ioaddr;
752
753 /* Get chip registers into a sane state */
754 rhine_power_init(dev);
755 rhine_hw_init(dev, pioaddr);
756
757 for (i = 0; i < 6; i++)
758 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
759 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
760
761 if (!is_valid_ether_addr(dev->perm_addr)) {
762 rc = -EIO;
763 printk(KERN_ERR "Invalid MAC address\n");
764 goto err_out_unmap;
765 }
766
767 /* For Rhine-I/II, phy_id is loaded from EEPROM */
768 if (!phy_id)
769 phy_id = ioread8(ioaddr + 0x6C);
770
771 dev->irq = pdev->irq;
772
773 spin_lock_init(&rp->lock);
774 rp->mii_if.dev = dev;
775 rp->mii_if.mdio_read = mdio_read;
776 rp->mii_if.mdio_write = mdio_write;
777 rp->mii_if.phy_id_mask = 0x1f;
778 rp->mii_if.reg_num_mask = 0x1f;
779
780 /* The chip-specific entries in the device structure. */
781 dev->netdev_ops = &rhine_netdev_ops;
782 dev->ethtool_ops = &netdev_ethtool_ops,
783 dev->watchdog_timeo = TX_TIMEOUT;
784
785 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
786
787 if (rp->quirks & rqRhineI)
788 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
789
790 /* dev->name not defined before register_netdev()! */
791 rc = register_netdev(dev);
792 if (rc)
793 goto err_out_unmap;
794
795 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
796 dev->name, name,
797 #ifdef USE_MMIO
798 memaddr,
799 #else
800 (long)ioaddr,
801 #endif
802 dev->dev_addr, pdev->irq);
803
804 pci_set_drvdata(pdev, dev);
805
806 {
807 u16 mii_cmd;
808 int mii_status = mdio_read(dev, phy_id, 1);
809 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
810 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
811 if (mii_status != 0xffff && mii_status != 0x0000) {
812 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
813 printk(KERN_INFO "%s: MII PHY found at address "
814 "%d, status 0x%4.4x advertising %4.4x "
815 "Link %4.4x.\n", dev->name, phy_id,
816 mii_status, rp->mii_if.advertising,
817 mdio_read(dev, phy_id, 5));
818
819 /* set IFF_RUNNING */
820 if (mii_status & BMSR_LSTATUS)
821 netif_carrier_on(dev);
822 else
823 netif_carrier_off(dev);
824
825 }
826 }
827 rp->mii_if.phy_id = phy_id;
828 if (debug > 1 && avoid_D3)
829 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
830 dev->name);
831
832 return 0;
833
834 err_out_unmap:
835 pci_iounmap(pdev, ioaddr);
836 err_out_free_res:
837 pci_release_regions(pdev);
838 err_out_free_netdev:
839 free_netdev(dev);
840 err_out:
841 return rc;
842 }
843
844 static int alloc_ring(struct net_device* dev)
845 {
846 struct rhine_private *rp = netdev_priv(dev);
847 void *ring;
848 dma_addr_t ring_dma;
849
850 ring = pci_alloc_consistent(rp->pdev,
851 RX_RING_SIZE * sizeof(struct rx_desc) +
852 TX_RING_SIZE * sizeof(struct tx_desc),
853 &ring_dma);
854 if (!ring) {
855 printk(KERN_ERR "Could not allocate DMA memory.\n");
856 return -ENOMEM;
857 }
858 if (rp->quirks & rqRhineI) {
859 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
860 PKT_BUF_SZ * TX_RING_SIZE,
861 &rp->tx_bufs_dma);
862 if (rp->tx_bufs == NULL) {
863 pci_free_consistent(rp->pdev,
864 RX_RING_SIZE * sizeof(struct rx_desc) +
865 TX_RING_SIZE * sizeof(struct tx_desc),
866 ring, ring_dma);
867 return -ENOMEM;
868 }
869 }
870
871 rp->rx_ring = ring;
872 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
873 rp->rx_ring_dma = ring_dma;
874 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
875
876 return 0;
877 }
878
879 static void free_ring(struct net_device* dev)
880 {
881 struct rhine_private *rp = netdev_priv(dev);
882
883 pci_free_consistent(rp->pdev,
884 RX_RING_SIZE * sizeof(struct rx_desc) +
885 TX_RING_SIZE * sizeof(struct tx_desc),
886 rp->rx_ring, rp->rx_ring_dma);
887 rp->tx_ring = NULL;
888
889 if (rp->tx_bufs)
890 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
891 rp->tx_bufs, rp->tx_bufs_dma);
892
893 rp->tx_bufs = NULL;
894
895 }
896
897 static void alloc_rbufs(struct net_device *dev)
898 {
899 struct rhine_private *rp = netdev_priv(dev);
900 dma_addr_t next;
901 int i;
902
903 rp->dirty_rx = rp->cur_rx = 0;
904
905 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
906 rp->rx_head_desc = &rp->rx_ring[0];
907 next = rp->rx_ring_dma;
908
909 /* Init the ring entries */
910 for (i = 0; i < RX_RING_SIZE; i++) {
911 rp->rx_ring[i].rx_status = 0;
912 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
913 next += sizeof(struct rx_desc);
914 rp->rx_ring[i].next_desc = cpu_to_le32(next);
915 rp->rx_skbuff[i] = NULL;
916 }
917 /* Mark the last entry as wrapping the ring. */
918 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
919
920 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
921 for (i = 0; i < RX_RING_SIZE; i++) {
922 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
923 rp->rx_skbuff[i] = skb;
924 if (skb == NULL)
925 break;
926 skb->dev = dev; /* Mark as being used by this device. */
927
928 rp->rx_skbuff_dma[i] =
929 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
930 PCI_DMA_FROMDEVICE);
931
932 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
933 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
934 }
935 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
936 }
937
938 static void free_rbufs(struct net_device* dev)
939 {
940 struct rhine_private *rp = netdev_priv(dev);
941 int i;
942
943 /* Free all the skbuffs in the Rx queue. */
944 for (i = 0; i < RX_RING_SIZE; i++) {
945 rp->rx_ring[i].rx_status = 0;
946 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
947 if (rp->rx_skbuff[i]) {
948 pci_unmap_single(rp->pdev,
949 rp->rx_skbuff_dma[i],
950 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
951 dev_kfree_skb(rp->rx_skbuff[i]);
952 }
953 rp->rx_skbuff[i] = NULL;
954 }
955 }
956
957 static void alloc_tbufs(struct net_device* dev)
958 {
959 struct rhine_private *rp = netdev_priv(dev);
960 dma_addr_t next;
961 int i;
962
963 rp->dirty_tx = rp->cur_tx = 0;
964 next = rp->tx_ring_dma;
965 for (i = 0; i < TX_RING_SIZE; i++) {
966 rp->tx_skbuff[i] = NULL;
967 rp->tx_ring[i].tx_status = 0;
968 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
969 next += sizeof(struct tx_desc);
970 rp->tx_ring[i].next_desc = cpu_to_le32(next);
971 if (rp->quirks & rqRhineI)
972 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
973 }
974 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
975
976 }
977
978 static void free_tbufs(struct net_device* dev)
979 {
980 struct rhine_private *rp = netdev_priv(dev);
981 int i;
982
983 for (i = 0; i < TX_RING_SIZE; i++) {
984 rp->tx_ring[i].tx_status = 0;
985 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
986 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
987 if (rp->tx_skbuff[i]) {
988 if (rp->tx_skbuff_dma[i]) {
989 pci_unmap_single(rp->pdev,
990 rp->tx_skbuff_dma[i],
991 rp->tx_skbuff[i]->len,
992 PCI_DMA_TODEVICE);
993 }
994 dev_kfree_skb(rp->tx_skbuff[i]);
995 }
996 rp->tx_skbuff[i] = NULL;
997 rp->tx_buf[i] = NULL;
998 }
999 }
1000
1001 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1002 {
1003 struct rhine_private *rp = netdev_priv(dev);
1004 void __iomem *ioaddr = rp->base;
1005
1006 mii_check_media(&rp->mii_if, debug, init_media);
1007
1008 if (rp->mii_if.full_duplex)
1009 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1010 ioaddr + ChipCmd1);
1011 else
1012 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1013 ioaddr + ChipCmd1);
1014 if (debug > 1)
1015 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1016 rp->mii_if.force_media, netif_carrier_ok(dev));
1017 }
1018
1019 /* Called after status of force_media possibly changed */
1020 static void rhine_set_carrier(struct mii_if_info *mii)
1021 {
1022 if (mii->force_media) {
1023 /* autoneg is off: Link is always assumed to be up */
1024 if (!netif_carrier_ok(mii->dev))
1025 netif_carrier_on(mii->dev);
1026 }
1027 else /* Let MMI library update carrier status */
1028 rhine_check_media(mii->dev, 0);
1029 if (debug > 1)
1030 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1031 mii->dev->name, mii->force_media,
1032 netif_carrier_ok(mii->dev));
1033 }
1034
1035 static void init_registers(struct net_device *dev)
1036 {
1037 struct rhine_private *rp = netdev_priv(dev);
1038 void __iomem *ioaddr = rp->base;
1039 int i;
1040
1041 for (i = 0; i < 6; i++)
1042 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1043
1044 /* Initialize other registers. */
1045 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1046 /* Configure initial FIFO thresholds. */
1047 iowrite8(0x20, ioaddr + TxConfig);
1048 rp->tx_thresh = 0x20;
1049 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1050
1051 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1052 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1053
1054 rhine_set_rx_mode(dev);
1055
1056 napi_enable(&rp->napi);
1057
1058 /* Enable interrupts by setting the interrupt mask. */
1059 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1060 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1061 IntrTxDone | IntrTxError | IntrTxUnderrun |
1062 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1063 ioaddr + IntrEnable);
1064
1065 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1066 ioaddr + ChipCmd);
1067 rhine_check_media(dev, 1);
1068 }
1069
1070 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1071 static void rhine_enable_linkmon(void __iomem *ioaddr)
1072 {
1073 iowrite8(0, ioaddr + MIICmd);
1074 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1075 iowrite8(0x80, ioaddr + MIICmd);
1076
1077 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1078
1079 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1080 }
1081
1082 /* Disable MII link status auto-polling (required for MDIO access) */
1083 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1084 {
1085 iowrite8(0, ioaddr + MIICmd);
1086
1087 if (quirks & rqRhineI) {
1088 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1089
1090 /* Can be called from ISR. Evil. */
1091 mdelay(1);
1092
1093 /* 0x80 must be set immediately before turning it off */
1094 iowrite8(0x80, ioaddr + MIICmd);
1095
1096 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1097
1098 /* Heh. Now clear 0x80 again. */
1099 iowrite8(0, ioaddr + MIICmd);
1100 }
1101 else
1102 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1103 }
1104
1105 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1106
1107 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1108 {
1109 struct rhine_private *rp = netdev_priv(dev);
1110 void __iomem *ioaddr = rp->base;
1111 int result;
1112
1113 rhine_disable_linkmon(ioaddr, rp->quirks);
1114
1115 /* rhine_disable_linkmon already cleared MIICmd */
1116 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1117 iowrite8(regnum, ioaddr + MIIRegAddr);
1118 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1119 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1120 result = ioread16(ioaddr + MIIData);
1121
1122 rhine_enable_linkmon(ioaddr);
1123 return result;
1124 }
1125
1126 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1127 {
1128 struct rhine_private *rp = netdev_priv(dev);
1129 void __iomem *ioaddr = rp->base;
1130
1131 rhine_disable_linkmon(ioaddr, rp->quirks);
1132
1133 /* rhine_disable_linkmon already cleared MIICmd */
1134 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1135 iowrite8(regnum, ioaddr + MIIRegAddr);
1136 iowrite16(value, ioaddr + MIIData);
1137 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1138 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1139
1140 rhine_enable_linkmon(ioaddr);
1141 }
1142
1143 static int rhine_open(struct net_device *dev)
1144 {
1145 struct rhine_private *rp = netdev_priv(dev);
1146 void __iomem *ioaddr = rp->base;
1147 int rc;
1148
1149 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1150 dev);
1151 if (rc)
1152 return rc;
1153
1154 if (debug > 1)
1155 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1156 dev->name, rp->pdev->irq);
1157
1158 rc = alloc_ring(dev);
1159 if (rc) {
1160 free_irq(rp->pdev->irq, dev);
1161 return rc;
1162 }
1163 alloc_rbufs(dev);
1164 alloc_tbufs(dev);
1165 rhine_chip_reset(dev);
1166 init_registers(dev);
1167 if (debug > 2)
1168 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1169 "MII status: %4.4x.\n",
1170 dev->name, ioread16(ioaddr + ChipCmd),
1171 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1172
1173 netif_start_queue(dev);
1174
1175 return 0;
1176 }
1177
1178 static void rhine_tx_timeout(struct net_device *dev)
1179 {
1180 struct rhine_private *rp = netdev_priv(dev);
1181 void __iomem *ioaddr = rp->base;
1182
1183 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1184 "%4.4x, resetting...\n",
1185 dev->name, ioread16(ioaddr + IntrStatus),
1186 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1187
1188 /* protect against concurrent rx interrupts */
1189 disable_irq(rp->pdev->irq);
1190
1191 napi_disable(&rp->napi);
1192
1193 spin_lock(&rp->lock);
1194
1195 /* clear all descriptors */
1196 free_tbufs(dev);
1197 free_rbufs(dev);
1198 alloc_tbufs(dev);
1199 alloc_rbufs(dev);
1200
1201 /* Reinitialize the hardware. */
1202 rhine_chip_reset(dev);
1203 init_registers(dev);
1204
1205 spin_unlock(&rp->lock);
1206 enable_irq(rp->pdev->irq);
1207
1208 dev->trans_start = jiffies;
1209 rp->stats.tx_errors++;
1210 netif_wake_queue(dev);
1211 }
1212
1213 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1214 {
1215 struct rhine_private *rp = netdev_priv(dev);
1216 void __iomem *ioaddr = rp->base;
1217 unsigned entry;
1218
1219 /* Caution: the write order is important here, set the field
1220 with the "ownership" bits last. */
1221
1222 /* Calculate the next Tx descriptor entry. */
1223 entry = rp->cur_tx % TX_RING_SIZE;
1224
1225 if (skb_padto(skb, ETH_ZLEN))
1226 return 0;
1227
1228 rp->tx_skbuff[entry] = skb;
1229
1230 if ((rp->quirks & rqRhineI) &&
1231 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1232 /* Must use alignment buffer. */
1233 if (skb->len > PKT_BUF_SZ) {
1234 /* packet too long, drop it */
1235 dev_kfree_skb(skb);
1236 rp->tx_skbuff[entry] = NULL;
1237 rp->stats.tx_dropped++;
1238 return 0;
1239 }
1240
1241 /* Padding is not copied and so must be redone. */
1242 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1243 if (skb->len < ETH_ZLEN)
1244 memset(rp->tx_buf[entry] + skb->len, 0,
1245 ETH_ZLEN - skb->len);
1246 rp->tx_skbuff_dma[entry] = 0;
1247 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1248 (rp->tx_buf[entry] -
1249 rp->tx_bufs));
1250 } else {
1251 rp->tx_skbuff_dma[entry] =
1252 pci_map_single(rp->pdev, skb->data, skb->len,
1253 PCI_DMA_TODEVICE);
1254 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1255 }
1256
1257 rp->tx_ring[entry].desc_length =
1258 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1259
1260 /* lock eth irq */
1261 spin_lock_irq(&rp->lock);
1262 wmb();
1263 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1264 wmb();
1265
1266 rp->cur_tx++;
1267
1268 /* Non-x86 Todo: explicitly flush cache lines here. */
1269
1270 /* Wake the potentially-idle transmit channel */
1271 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1272 ioaddr + ChipCmd1);
1273 IOSYNC;
1274
1275 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1276 netif_stop_queue(dev);
1277
1278 dev->trans_start = jiffies;
1279
1280 spin_unlock_irq(&rp->lock);
1281
1282 if (debug > 4) {
1283 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1284 dev->name, rp->cur_tx-1, entry);
1285 }
1286 return 0;
1287 }
1288
1289 /* The interrupt handler does all of the Rx thread work and cleans up
1290 after the Tx thread. */
1291 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1292 {
1293 struct net_device *dev = dev_instance;
1294 struct rhine_private *rp = netdev_priv(dev);
1295 void __iomem *ioaddr = rp->base;
1296 u32 intr_status;
1297 int boguscnt = max_interrupt_work;
1298 int handled = 0;
1299
1300 while ((intr_status = get_intr_status(dev))) {
1301 handled = 1;
1302
1303 /* Acknowledge all of the current interrupt sources ASAP. */
1304 if (intr_status & IntrTxDescRace)
1305 iowrite8(0x08, ioaddr + IntrStatus2);
1306 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1307 IOSYNC;
1308
1309 if (debug > 4)
1310 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1311 dev->name, intr_status);
1312
1313 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1314 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1315 iowrite16(IntrTxAborted |
1316 IntrTxDone | IntrTxError | IntrTxUnderrun |
1317 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1318 ioaddr + IntrEnable);
1319
1320 netif_rx_schedule(dev, &rp->napi);
1321 }
1322
1323 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1324 if (intr_status & IntrTxErrSummary) {
1325 /* Avoid scavenging before Tx engine turned off */
1326 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1327 if (debug > 2 &&
1328 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1329 printk(KERN_WARNING "%s: "
1330 "rhine_interrupt() Tx engine "
1331 "still on.\n", dev->name);
1332 }
1333 rhine_tx(dev);
1334 }
1335
1336 /* Abnormal error summary/uncommon events handlers. */
1337 if (intr_status & (IntrPCIErr | IntrLinkChange |
1338 IntrStatsMax | IntrTxError | IntrTxAborted |
1339 IntrTxUnderrun | IntrTxDescRace))
1340 rhine_error(dev, intr_status);
1341
1342 if (--boguscnt < 0) {
1343 printk(KERN_WARNING "%s: Too much work at interrupt, "
1344 "status=%#8.8x.\n",
1345 dev->name, intr_status);
1346 break;
1347 }
1348 }
1349
1350 if (debug > 3)
1351 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1352 dev->name, ioread16(ioaddr + IntrStatus));
1353 return IRQ_RETVAL(handled);
1354 }
1355
1356 /* This routine is logically part of the interrupt handler, but isolated
1357 for clarity. */
1358 static void rhine_tx(struct net_device *dev)
1359 {
1360 struct rhine_private *rp = netdev_priv(dev);
1361 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1362
1363 spin_lock(&rp->lock);
1364
1365 /* find and cleanup dirty tx descriptors */
1366 while (rp->dirty_tx != rp->cur_tx) {
1367 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1368 if (debug > 6)
1369 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1370 entry, txstatus);
1371 if (txstatus & DescOwn)
1372 break;
1373 if (txstatus & 0x8000) {
1374 if (debug > 1)
1375 printk(KERN_DEBUG "%s: Transmit error, "
1376 "Tx status %8.8x.\n",
1377 dev->name, txstatus);
1378 rp->stats.tx_errors++;
1379 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1380 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1381 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1382 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1383 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1384 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1385 rp->stats.tx_fifo_errors++;
1386 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1387 break; /* Keep the skb - we try again */
1388 }
1389 /* Transmitter restarted in 'abnormal' handler. */
1390 } else {
1391 if (rp->quirks & rqRhineI)
1392 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1393 else
1394 rp->stats.collisions += txstatus & 0x0F;
1395 if (debug > 6)
1396 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1397 (txstatus >> 3) & 0xF,
1398 txstatus & 0xF);
1399 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1400 rp->stats.tx_packets++;
1401 }
1402 /* Free the original skb. */
1403 if (rp->tx_skbuff_dma[entry]) {
1404 pci_unmap_single(rp->pdev,
1405 rp->tx_skbuff_dma[entry],
1406 rp->tx_skbuff[entry]->len,
1407 PCI_DMA_TODEVICE);
1408 }
1409 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1410 rp->tx_skbuff[entry] = NULL;
1411 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1412 }
1413 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1414 netif_wake_queue(dev);
1415
1416 spin_unlock(&rp->lock);
1417 }
1418
1419 /* Process up to limit frames from receive ring */
1420 static int rhine_rx(struct net_device *dev, int limit)
1421 {
1422 struct rhine_private *rp = netdev_priv(dev);
1423 int count;
1424 int entry = rp->cur_rx % RX_RING_SIZE;
1425
1426 if (debug > 4) {
1427 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1428 dev->name, entry,
1429 le32_to_cpu(rp->rx_head_desc->rx_status));
1430 }
1431
1432 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1433 for (count = 0; count < limit; ++count) {
1434 struct rx_desc *desc = rp->rx_head_desc;
1435 u32 desc_status = le32_to_cpu(desc->rx_status);
1436 int data_size = desc_status >> 16;
1437
1438 if (desc_status & DescOwn)
1439 break;
1440
1441 if (debug > 4)
1442 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1443 desc_status);
1444
1445 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1446 if ((desc_status & RxWholePkt) != RxWholePkt) {
1447 printk(KERN_WARNING "%s: Oversized Ethernet "
1448 "frame spanned multiple buffers, entry "
1449 "%#x length %d status %8.8x!\n",
1450 dev->name, entry, data_size,
1451 desc_status);
1452 printk(KERN_WARNING "%s: Oversized Ethernet "
1453 "frame %p vs %p.\n", dev->name,
1454 rp->rx_head_desc, &rp->rx_ring[entry]);
1455 rp->stats.rx_length_errors++;
1456 } else if (desc_status & RxErr) {
1457 /* There was a error. */
1458 if (debug > 2)
1459 printk(KERN_DEBUG "rhine_rx() Rx "
1460 "error was %8.8x.\n",
1461 desc_status);
1462 rp->stats.rx_errors++;
1463 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1464 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1465 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1466 if (desc_status & 0x0002) {
1467 /* this can also be updated outside the interrupt handler */
1468 spin_lock(&rp->lock);
1469 rp->stats.rx_crc_errors++;
1470 spin_unlock(&rp->lock);
1471 }
1472 }
1473 } else {
1474 struct sk_buff *skb;
1475 /* Length should omit the CRC */
1476 int pkt_len = data_size - 4;
1477
1478 /* Check if the packet is long enough to accept without
1479 copying to a minimally-sized skbuff. */
1480 if (pkt_len < rx_copybreak &&
1481 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1482 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1483 pci_dma_sync_single_for_cpu(rp->pdev,
1484 rp->rx_skbuff_dma[entry],
1485 rp->rx_buf_sz,
1486 PCI_DMA_FROMDEVICE);
1487
1488 skb_copy_to_linear_data(skb,
1489 rp->rx_skbuff[entry]->data,
1490 pkt_len);
1491 skb_put(skb, pkt_len);
1492 pci_dma_sync_single_for_device(rp->pdev,
1493 rp->rx_skbuff_dma[entry],
1494 rp->rx_buf_sz,
1495 PCI_DMA_FROMDEVICE);
1496 } else {
1497 skb = rp->rx_skbuff[entry];
1498 if (skb == NULL) {
1499 printk(KERN_ERR "%s: Inconsistent Rx "
1500 "descriptor chain.\n",
1501 dev->name);
1502 break;
1503 }
1504 rp->rx_skbuff[entry] = NULL;
1505 skb_put(skb, pkt_len);
1506 pci_unmap_single(rp->pdev,
1507 rp->rx_skbuff_dma[entry],
1508 rp->rx_buf_sz,
1509 PCI_DMA_FROMDEVICE);
1510 }
1511 skb->protocol = eth_type_trans(skb, dev);
1512 netif_receive_skb(skb);
1513 rp->stats.rx_bytes += pkt_len;
1514 rp->stats.rx_packets++;
1515 }
1516 entry = (++rp->cur_rx) % RX_RING_SIZE;
1517 rp->rx_head_desc = &rp->rx_ring[entry];
1518 }
1519
1520 /* Refill the Rx ring buffers. */
1521 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1522 struct sk_buff *skb;
1523 entry = rp->dirty_rx % RX_RING_SIZE;
1524 if (rp->rx_skbuff[entry] == NULL) {
1525 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1526 rp->rx_skbuff[entry] = skb;
1527 if (skb == NULL)
1528 break; /* Better luck next round. */
1529 skb->dev = dev; /* Mark as being used by this device. */
1530 rp->rx_skbuff_dma[entry] =
1531 pci_map_single(rp->pdev, skb->data,
1532 rp->rx_buf_sz,
1533 PCI_DMA_FROMDEVICE);
1534 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1535 }
1536 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1537 }
1538
1539 return count;
1540 }
1541
1542 /*
1543 * Clears the "tally counters" for CRC errors and missed frames(?).
1544 * It has been reported that some chips need a write of 0 to clear
1545 * these, for others the counters are set to 1 when written to and
1546 * instead cleared when read. So we clear them both ways ...
1547 */
1548 static inline void clear_tally_counters(void __iomem *ioaddr)
1549 {
1550 iowrite32(0, ioaddr + RxMissed);
1551 ioread16(ioaddr + RxCRCErrs);
1552 ioread16(ioaddr + RxMissed);
1553 }
1554
1555 static void rhine_restart_tx(struct net_device *dev) {
1556 struct rhine_private *rp = netdev_priv(dev);
1557 void __iomem *ioaddr = rp->base;
1558 int entry = rp->dirty_tx % TX_RING_SIZE;
1559 u32 intr_status;
1560
1561 /*
1562 * If new errors occured, we need to sort them out before doing Tx.
1563 * In that case the ISR will be back here RSN anyway.
1564 */
1565 intr_status = get_intr_status(dev);
1566
1567 if ((intr_status & IntrTxErrSummary) == 0) {
1568
1569 /* We know better than the chip where it should continue. */
1570 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1571 ioaddr + TxRingPtr);
1572
1573 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1574 ioaddr + ChipCmd);
1575 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1576 ioaddr + ChipCmd1);
1577 IOSYNC;
1578 }
1579 else {
1580 /* This should never happen */
1581 if (debug > 1)
1582 printk(KERN_WARNING "%s: rhine_restart_tx() "
1583 "Another error occured %8.8x.\n",
1584 dev->name, intr_status);
1585 }
1586
1587 }
1588
1589 static void rhine_error(struct net_device *dev, int intr_status)
1590 {
1591 struct rhine_private *rp = netdev_priv(dev);
1592 void __iomem *ioaddr = rp->base;
1593
1594 spin_lock(&rp->lock);
1595
1596 if (intr_status & IntrLinkChange)
1597 rhine_check_media(dev, 0);
1598 if (intr_status & IntrStatsMax) {
1599 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1600 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1601 clear_tally_counters(ioaddr);
1602 }
1603 if (intr_status & IntrTxAborted) {
1604 if (debug > 1)
1605 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1606 dev->name, intr_status);
1607 }
1608 if (intr_status & IntrTxUnderrun) {
1609 if (rp->tx_thresh < 0xE0)
1610 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1611 if (debug > 1)
1612 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1613 "threshold now %2.2x.\n",
1614 dev->name, rp->tx_thresh);
1615 }
1616 if (intr_status & IntrTxDescRace) {
1617 if (debug > 2)
1618 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1619 dev->name);
1620 }
1621 if ((intr_status & IntrTxError) &&
1622 (intr_status & (IntrTxAborted |
1623 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1624 if (rp->tx_thresh < 0xE0) {
1625 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1626 }
1627 if (debug > 1)
1628 printk(KERN_INFO "%s: Unspecified error. Tx "
1629 "threshold now %2.2x.\n",
1630 dev->name, rp->tx_thresh);
1631 }
1632 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1633 IntrTxError))
1634 rhine_restart_tx(dev);
1635
1636 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1637 IntrTxError | IntrTxAborted | IntrNormalSummary |
1638 IntrTxDescRace)) {
1639 if (debug > 1)
1640 printk(KERN_ERR "%s: Something Wicked happened! "
1641 "%8.8x.\n", dev->name, intr_status);
1642 }
1643
1644 spin_unlock(&rp->lock);
1645 }
1646
1647 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1648 {
1649 struct rhine_private *rp = netdev_priv(dev);
1650 void __iomem *ioaddr = rp->base;
1651 unsigned long flags;
1652
1653 spin_lock_irqsave(&rp->lock, flags);
1654 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1655 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1656 clear_tally_counters(ioaddr);
1657 spin_unlock_irqrestore(&rp->lock, flags);
1658
1659 return &rp->stats;
1660 }
1661
1662 static void rhine_set_rx_mode(struct net_device *dev)
1663 {
1664 struct rhine_private *rp = netdev_priv(dev);
1665 void __iomem *ioaddr = rp->base;
1666 u32 mc_filter[2]; /* Multicast hash filter */
1667 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1668
1669 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1670 rx_mode = 0x1C;
1671 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1672 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1673 } else if ((dev->mc_count > multicast_filter_limit)
1674 || (dev->flags & IFF_ALLMULTI)) {
1675 /* Too many to match, or accept all multicasts. */
1676 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1677 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1678 rx_mode = 0x0C;
1679 } else {
1680 struct dev_mc_list *mclist;
1681 int i;
1682 memset(mc_filter, 0, sizeof(mc_filter));
1683 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1684 i++, mclist = mclist->next) {
1685 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1686
1687 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1688 }
1689 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1690 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1691 rx_mode = 0x0C;
1692 }
1693 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1694 }
1695
1696 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1697 {
1698 struct rhine_private *rp = netdev_priv(dev);
1699
1700 strcpy(info->driver, DRV_NAME);
1701 strcpy(info->version, DRV_VERSION);
1702 strcpy(info->bus_info, pci_name(rp->pdev));
1703 }
1704
1705 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1706 {
1707 struct rhine_private *rp = netdev_priv(dev);
1708 int rc;
1709
1710 spin_lock_irq(&rp->lock);
1711 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1712 spin_unlock_irq(&rp->lock);
1713
1714 return rc;
1715 }
1716
1717 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1718 {
1719 struct rhine_private *rp = netdev_priv(dev);
1720 int rc;
1721
1722 spin_lock_irq(&rp->lock);
1723 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1724 spin_unlock_irq(&rp->lock);
1725 rhine_set_carrier(&rp->mii_if);
1726
1727 return rc;
1728 }
1729
1730 static int netdev_nway_reset(struct net_device *dev)
1731 {
1732 struct rhine_private *rp = netdev_priv(dev);
1733
1734 return mii_nway_restart(&rp->mii_if);
1735 }
1736
1737 static u32 netdev_get_link(struct net_device *dev)
1738 {
1739 struct rhine_private *rp = netdev_priv(dev);
1740
1741 return mii_link_ok(&rp->mii_if);
1742 }
1743
1744 static u32 netdev_get_msglevel(struct net_device *dev)
1745 {
1746 return debug;
1747 }
1748
1749 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1750 {
1751 debug = value;
1752 }
1753
1754 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1755 {
1756 struct rhine_private *rp = netdev_priv(dev);
1757
1758 if (!(rp->quirks & rqWOL))
1759 return;
1760
1761 spin_lock_irq(&rp->lock);
1762 wol->supported = WAKE_PHY | WAKE_MAGIC |
1763 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1764 wol->wolopts = rp->wolopts;
1765 spin_unlock_irq(&rp->lock);
1766 }
1767
1768 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1769 {
1770 struct rhine_private *rp = netdev_priv(dev);
1771 u32 support = WAKE_PHY | WAKE_MAGIC |
1772 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1773
1774 if (!(rp->quirks & rqWOL))
1775 return -EINVAL;
1776
1777 if (wol->wolopts & ~support)
1778 return -EINVAL;
1779
1780 spin_lock_irq(&rp->lock);
1781 rp->wolopts = wol->wolopts;
1782 spin_unlock_irq(&rp->lock);
1783
1784 return 0;
1785 }
1786
1787 static const struct ethtool_ops netdev_ethtool_ops = {
1788 .get_drvinfo = netdev_get_drvinfo,
1789 .get_settings = netdev_get_settings,
1790 .set_settings = netdev_set_settings,
1791 .nway_reset = netdev_nway_reset,
1792 .get_link = netdev_get_link,
1793 .get_msglevel = netdev_get_msglevel,
1794 .set_msglevel = netdev_set_msglevel,
1795 .get_wol = rhine_get_wol,
1796 .set_wol = rhine_set_wol,
1797 };
1798
1799 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1800 {
1801 struct rhine_private *rp = netdev_priv(dev);
1802 int rc;
1803
1804 if (!netif_running(dev))
1805 return -EINVAL;
1806
1807 spin_lock_irq(&rp->lock);
1808 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1809 spin_unlock_irq(&rp->lock);
1810 rhine_set_carrier(&rp->mii_if);
1811
1812 return rc;
1813 }
1814
1815 static int rhine_close(struct net_device *dev)
1816 {
1817 struct rhine_private *rp = netdev_priv(dev);
1818 void __iomem *ioaddr = rp->base;
1819
1820 spin_lock_irq(&rp->lock);
1821
1822 netif_stop_queue(dev);
1823 napi_disable(&rp->napi);
1824
1825 if (debug > 1)
1826 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1827 "status was %4.4x.\n",
1828 dev->name, ioread16(ioaddr + ChipCmd));
1829
1830 /* Switch to loopback mode to avoid hardware races. */
1831 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1832
1833 /* Disable interrupts by clearing the interrupt mask. */
1834 iowrite16(0x0000, ioaddr + IntrEnable);
1835
1836 /* Stop the chip's Tx and Rx processes. */
1837 iowrite16(CmdStop, ioaddr + ChipCmd);
1838
1839 spin_unlock_irq(&rp->lock);
1840
1841 free_irq(rp->pdev->irq, dev);
1842 free_rbufs(dev);
1843 free_tbufs(dev);
1844 free_ring(dev);
1845
1846 return 0;
1847 }
1848
1849
1850 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1851 {
1852 struct net_device *dev = pci_get_drvdata(pdev);
1853 struct rhine_private *rp = netdev_priv(dev);
1854
1855 unregister_netdev(dev);
1856
1857 pci_iounmap(pdev, rp->base);
1858 pci_release_regions(pdev);
1859
1860 free_netdev(dev);
1861 pci_disable_device(pdev);
1862 pci_set_drvdata(pdev, NULL);
1863 }
1864
1865 static void rhine_shutdown (struct pci_dev *pdev)
1866 {
1867 struct net_device *dev = pci_get_drvdata(pdev);
1868 struct rhine_private *rp = netdev_priv(dev);
1869 void __iomem *ioaddr = rp->base;
1870
1871 if (!(rp->quirks & rqWOL))
1872 return; /* Nothing to do for non-WOL adapters */
1873
1874 rhine_power_init(dev);
1875
1876 /* Make sure we use pattern 0, 1 and not 4, 5 */
1877 if (rp->quirks & rq6patterns)
1878 iowrite8(0x04, ioaddr + WOLcgClr);
1879
1880 if (rp->wolopts & WAKE_MAGIC) {
1881 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1882 /*
1883 * Turn EEPROM-controlled wake-up back on -- some hardware may
1884 * not cooperate otherwise.
1885 */
1886 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1887 }
1888
1889 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1890 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1891
1892 if (rp->wolopts & WAKE_PHY)
1893 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1894
1895 if (rp->wolopts & WAKE_UCAST)
1896 iowrite8(WOLucast, ioaddr + WOLcrSet);
1897
1898 if (rp->wolopts) {
1899 /* Enable legacy WOL (for old motherboards) */
1900 iowrite8(0x01, ioaddr + PwcfgSet);
1901 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1902 }
1903
1904 /* Hit power state D3 (sleep) */
1905 if (!avoid_D3)
1906 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1907
1908 /* TODO: Check use of pci_enable_wake() */
1909
1910 }
1911
1912 #ifdef CONFIG_PM
1913 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1914 {
1915 struct net_device *dev = pci_get_drvdata(pdev);
1916 struct rhine_private *rp = netdev_priv(dev);
1917 unsigned long flags;
1918
1919 if (!netif_running(dev))
1920 return 0;
1921
1922 napi_disable(&rp->napi);
1923
1924 netif_device_detach(dev);
1925 pci_save_state(pdev);
1926
1927 spin_lock_irqsave(&rp->lock, flags);
1928 rhine_shutdown(pdev);
1929 spin_unlock_irqrestore(&rp->lock, flags);
1930
1931 free_irq(dev->irq, dev);
1932 return 0;
1933 }
1934
1935 static int rhine_resume(struct pci_dev *pdev)
1936 {
1937 struct net_device *dev = pci_get_drvdata(pdev);
1938 struct rhine_private *rp = netdev_priv(dev);
1939 unsigned long flags;
1940 int ret;
1941
1942 if (!netif_running(dev))
1943 return 0;
1944
1945 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1946 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1947
1948 ret = pci_set_power_state(pdev, PCI_D0);
1949 if (debug > 1)
1950 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1951 dev->name, ret ? "failed" : "succeeded", ret);
1952
1953 pci_restore_state(pdev);
1954
1955 spin_lock_irqsave(&rp->lock, flags);
1956 #ifdef USE_MMIO
1957 enable_mmio(rp->pioaddr, rp->quirks);
1958 #endif
1959 rhine_power_init(dev);
1960 free_tbufs(dev);
1961 free_rbufs(dev);
1962 alloc_tbufs(dev);
1963 alloc_rbufs(dev);
1964 init_registers(dev);
1965 spin_unlock_irqrestore(&rp->lock, flags);
1966
1967 netif_device_attach(dev);
1968
1969 return 0;
1970 }
1971 #endif /* CONFIG_PM */
1972
1973 static struct pci_driver rhine_driver = {
1974 .name = DRV_NAME,
1975 .id_table = rhine_pci_tbl,
1976 .probe = rhine_init_one,
1977 .remove = __devexit_p(rhine_remove_one),
1978 #ifdef CONFIG_PM
1979 .suspend = rhine_suspend,
1980 .resume = rhine_resume,
1981 #endif /* CONFIG_PM */
1982 .shutdown = rhine_shutdown,
1983 };
1984
1985 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1986 {
1987 .ident = "EPIA-M",
1988 .matches = {
1989 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1990 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1991 },
1992 },
1993 {
1994 .ident = "KV7",
1995 .matches = {
1996 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
1997 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1998 },
1999 },
2000 { NULL }
2001 };
2002
2003 static int __init rhine_init(void)
2004 {
2005 /* when a module, this is printed whether or not devices are found in probe */
2006 #ifdef MODULE
2007 printk(version);
2008 #endif
2009 if (dmi_check_system(rhine_dmi_table)) {
2010 /* these BIOSes fail at PXE boot if chip is in D3 */
2011 avoid_D3 = 1;
2012 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2013 "enabled.\n",
2014 DRV_NAME);
2015 }
2016 else if (avoid_D3)
2017 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2018
2019 return pci_register_driver(&rhine_driver);
2020 }
2021
2022
2023 static void __exit rhine_cleanup(void)
2024 {
2025 pci_unregister_driver(&rhine_driver);
2026 }
2027
2028
2029 module_init(rhine_init);
2030 module_exit(rhine_cleanup);
This page took 0.073997 seconds and 6 git commands to generate.