Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[deliverable/linux.git] / drivers / net / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
79
80 #include "via-velocity.h"
81
82
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
85
86 /**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
90 *
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
93 */
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95 {
96 int i;
97
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
100
101 writeb(0, &regs->CAMADDR);
102
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
106
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
109
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
112 }
113
114
115 /**
116 * mac_set_cam_mask - Set a CAM mask
117 * @regs: register block for this velocity
118 * @mask: CAM mask to load
119 *
120 * Store a new mask into a CAM
121 */
122 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
123 {
124 int i;
125 /* Select CAM mask */
126 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
127
128 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
129
130 for (i = 0; i < 8; i++)
131 writeb(*mask++, &(regs->MARCAM[i]));
132
133 /* disable CAMEN */
134 writeb(0, &regs->CAMADDR);
135
136 /* Select mar */
137 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
138 }
139
140 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 int i;
143 /* Select CAM mask */
144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145
146 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
147
148 for (i = 0; i < 8; i++)
149 writeb(*mask++, &(regs->MARCAM[i]));
150
151 /* disable CAMEN */
152 writeb(0, &regs->CAMADDR);
153
154 /* Select mar */
155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157
158 /**
159 * mac_set_cam - set CAM data
160 * @regs: register block of this velocity
161 * @idx: Cam index
162 * @addr: 2 or 6 bytes of CAM data
163 *
164 * Load an address or vlan tag into a CAM
165 */
166 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
167 {
168 int i;
169
170 /* Select CAM mask */
171 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
172
173 idx &= (64 - 1);
174
175 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
176
177 for (i = 0; i < 6; i++)
178 writeb(*addr++, &(regs->MARCAM[i]));
179
180 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
181
182 udelay(10);
183
184 writeb(0, &regs->CAMADDR);
185
186 /* Select mar */
187 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
188 }
189
190 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
191 const u8 *addr)
192 {
193
194 /* Select CAM mask */
195 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
196
197 idx &= (64 - 1);
198
199 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
200 writew(*((u16 *) addr), &regs->MARCAM[0]);
201
202 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
203
204 udelay(10);
205
206 writeb(0, &regs->CAMADDR);
207
208 /* Select mar */
209 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
210 }
211
212
213 /**
214 * mac_wol_reset - reset WOL after exiting low power
215 * @regs: register block of this velocity
216 *
217 * Called after we drop out of wake on lan mode in order to
218 * reset the Wake on lan features. This function doesn't restore
219 * the rest of the logic from the result of sleep/wakeup
220 */
221 static void mac_wol_reset(struct mac_regs __iomem *regs)
222 {
223
224 /* Turn off SWPTAG right after leaving power mode */
225 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
226 /* clear sticky bits */
227 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
228
229 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
230 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
231 /* disable force PME-enable */
232 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
233 /* disable power-event config bit */
234 writew(0xFFFF, &regs->WOLCRClr);
235 /* clear power status */
236 writew(0xFFFF, &regs->WOLSRClr);
237 }
238
239 static const struct ethtool_ops velocity_ethtool_ops;
240
241 /*
242 Define module options
243 */
244
245 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
246 MODULE_LICENSE("GPL");
247 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
248
249 #define VELOCITY_PARAM(N, D) \
250 static int N[MAX_UNITS] = OPTION_DEFAULT;\
251 module_param_array(N, int, NULL, 0); \
252 MODULE_PARM_DESC(N, D);
253
254 #define RX_DESC_MIN 64
255 #define RX_DESC_MAX 255
256 #define RX_DESC_DEF 64
257 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
258
259 #define TX_DESC_MIN 16
260 #define TX_DESC_MAX 256
261 #define TX_DESC_DEF 64
262 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
263
264 #define RX_THRESH_MIN 0
265 #define RX_THRESH_MAX 3
266 #define RX_THRESH_DEF 0
267 /* rx_thresh[] is used for controlling the receive fifo threshold.
268 0: indicate the rxfifo threshold is 128 bytes.
269 1: indicate the rxfifo threshold is 512 bytes.
270 2: indicate the rxfifo threshold is 1024 bytes.
271 3: indicate the rxfifo threshold is store & forward.
272 */
273 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
274
275 #define DMA_LENGTH_MIN 0
276 #define DMA_LENGTH_MAX 7
277 #define DMA_LENGTH_DEF 6
278
279 /* DMA_length[] is used for controlling the DMA length
280 0: 8 DWORDs
281 1: 16 DWORDs
282 2: 32 DWORDs
283 3: 64 DWORDs
284 4: 128 DWORDs
285 5: 256 DWORDs
286 6: SF(flush till emply)
287 7: SF(flush till emply)
288 */
289 VELOCITY_PARAM(DMA_length, "DMA length");
290
291 #define IP_ALIG_DEF 0
292 /* IP_byte_align[] is used for IP header DWORD byte aligned
293 0: indicate the IP header won't be DWORD byte aligned.(Default) .
294 1: indicate the IP header will be DWORD byte aligned.
295 In some enviroment, the IP header should be DWORD byte aligned,
296 or the packet will be droped when we receive it. (eg: IPVS)
297 */
298 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
299
300 #define FLOW_CNTL_DEF 1
301 #define FLOW_CNTL_MIN 1
302 #define FLOW_CNTL_MAX 5
303
304 /* flow_control[] is used for setting the flow control ability of NIC.
305 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
306 2: enable TX flow control.
307 3: enable RX flow control.
308 4: enable RX/TX flow control.
309 5: disable
310 */
311 VELOCITY_PARAM(flow_control, "Enable flow control ability");
312
313 #define MED_LNK_DEF 0
314 #define MED_LNK_MIN 0
315 #define MED_LNK_MAX 5
316 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
317 0: indicate autonegotiation for both speed and duplex mode
318 1: indicate 100Mbps half duplex mode
319 2: indicate 100Mbps full duplex mode
320 3: indicate 10Mbps half duplex mode
321 4: indicate 10Mbps full duplex mode
322 5: indicate 1000Mbps full duplex mode
323
324 Note:
325 if EEPROM have been set to the force mode, this option is ignored
326 by driver.
327 */
328 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
329
330 #define VAL_PKT_LEN_DEF 0
331 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
332 0: Receive frame with invalid layer 2 length (Default)
333 1: Drop frame with invalid layer 2 length
334 */
335 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
336
337 #define WOL_OPT_DEF 0
338 #define WOL_OPT_MIN 0
339 #define WOL_OPT_MAX 7
340 /* wol_opts[] is used for controlling wake on lan behavior.
341 0: Wake up if recevied a magic packet. (Default)
342 1: Wake up if link status is on/off.
343 2: Wake up if recevied an arp packet.
344 4: Wake up if recevied any unicast packet.
345 Those value can be sumed up to support more than one option.
346 */
347 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
348
349 static int rx_copybreak = 200;
350 module_param(rx_copybreak, int, 0644);
351 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
352
353 /*
354 * Internal board variants. At the moment we have only one
355 */
356 static struct velocity_info_tbl chip_info_table[] = {
357 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
358 { }
359 };
360
361 /*
362 * Describe the PCI device identifiers that we support in this
363 * device driver. Used for hotplug autoloading.
364 */
365 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
366 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
367 { }
368 };
369
370 MODULE_DEVICE_TABLE(pci, velocity_id_table);
371
372 /**
373 * get_chip_name - identifier to name
374 * @id: chip identifier
375 *
376 * Given a chip identifier return a suitable description. Returns
377 * a pointer a static string valid while the driver is loaded.
378 */
379 static const char __devinit *get_chip_name(enum chip_type chip_id)
380 {
381 int i;
382 for (i = 0; chip_info_table[i].name != NULL; i++)
383 if (chip_info_table[i].chip_id == chip_id)
384 break;
385 return chip_info_table[i].name;
386 }
387
388 /**
389 * velocity_remove1 - device unplug
390 * @pdev: PCI device being removed
391 *
392 * Device unload callback. Called on an unplug or on module
393 * unload for each active device that is present. Disconnects
394 * the device from the network layer and frees all the resources
395 */
396 static void __devexit velocity_remove1(struct pci_dev *pdev)
397 {
398 struct net_device *dev = pci_get_drvdata(pdev);
399 struct velocity_info *vptr = netdev_priv(dev);
400
401 unregister_netdev(dev);
402 iounmap(vptr->mac_regs);
403 pci_release_regions(pdev);
404 pci_disable_device(pdev);
405 pci_set_drvdata(pdev, NULL);
406 free_netdev(dev);
407
408 velocity_nics--;
409 }
410
411 /**
412 * velocity_set_int_opt - parser for integer options
413 * @opt: pointer to option value
414 * @val: value the user requested (or -1 for default)
415 * @min: lowest value allowed
416 * @max: highest value allowed
417 * @def: default value
418 * @name: property name
419 * @dev: device name
420 *
421 * Set an integer property in the module options. This function does
422 * all the verification and checking as well as reporting so that
423 * we don't duplicate code for each option.
424 */
425 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
426 {
427 if (val == -1)
428 *opt = def;
429 else if (val < min || val > max) {
430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 devname, name, min, max);
432 *opt = def;
433 } else {
434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 devname, name, val);
436 *opt = val;
437 }
438 }
439
440 /**
441 * velocity_set_bool_opt - parser for boolean options
442 * @opt: pointer to option value
443 * @val: value the user requested (or -1 for default)
444 * @def: default value (yes/no)
445 * @flag: numeric value to set for true.
446 * @name: property name
447 * @dev: device name
448 *
449 * Set a boolean property in the module options. This function does
450 * all the verification and checking as well as reporting so that
451 * we don't duplicate code for each option.
452 */
453 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
454 {
455 (*opt) &= (~flag);
456 if (val == -1)
457 *opt |= (def ? flag : 0);
458 else if (val < 0 || val > 1) {
459 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
460 devname, name);
461 *opt |= (def ? flag : 0);
462 } else {
463 printk(KERN_INFO "%s: set parameter %s to %s\n",
464 devname, name, val ? "TRUE" : "FALSE");
465 *opt |= (val ? flag : 0);
466 }
467 }
468
469 /**
470 * velocity_get_options - set options on device
471 * @opts: option structure for the device
472 * @index: index of option to use in module options array
473 * @devname: device name
474 *
475 * Turn the module and command options into a single structure
476 * for the current device
477 */
478 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
479 {
480
481 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
482 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
483 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
484 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
485
486 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
487 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
488 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
489 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
490 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
491 opts->numrx = (opts->numrx & ~3);
492 }
493
494 /**
495 * velocity_init_cam_filter - initialise CAM
496 * @vptr: velocity to program
497 *
498 * Initialize the content addressable memory used for filters. Load
499 * appropriately according to the presence of VLAN
500 */
501 static void velocity_init_cam_filter(struct velocity_info *vptr)
502 {
503 struct mac_regs __iomem *regs = vptr->mac_regs;
504
505 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
506 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
507 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
508
509 /* Disable all CAMs */
510 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
511 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
512 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
513 mac_set_cam_mask(regs, vptr->mCAMmask);
514
515 /* Enable VCAMs */
516 if (vptr->vlgrp) {
517 unsigned int vid, i = 0;
518
519 if (!vlan_group_get_device(vptr->vlgrp, 0))
520 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
521
522 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
523 if (vlan_group_get_device(vptr->vlgrp, vid)) {
524 mac_set_vlan_cam(regs, i, (u8 *) &vid);
525 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
526 if (++i >= VCAM_SIZE)
527 break;
528 }
529 }
530 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
531 }
532 }
533
534 static void velocity_vlan_rx_register(struct net_device *dev,
535 struct vlan_group *grp)
536 {
537 struct velocity_info *vptr = netdev_priv(dev);
538
539 vptr->vlgrp = grp;
540 }
541
542 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
543 {
544 struct velocity_info *vptr = netdev_priv(dev);
545
546 spin_lock_irq(&vptr->lock);
547 velocity_init_cam_filter(vptr);
548 spin_unlock_irq(&vptr->lock);
549 }
550
551 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
552 {
553 struct velocity_info *vptr = netdev_priv(dev);
554
555 spin_lock_irq(&vptr->lock);
556 vlan_group_set_device(vptr->vlgrp, vid, NULL);
557 velocity_init_cam_filter(vptr);
558 spin_unlock_irq(&vptr->lock);
559 }
560
561 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
562 {
563 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
564 }
565
566 /**
567 * velocity_rx_reset - handle a receive reset
568 * @vptr: velocity we are resetting
569 *
570 * Reset the ownership and status for the receive ring side.
571 * Hand all the receive queue to the NIC.
572 */
573 static void velocity_rx_reset(struct velocity_info *vptr)
574 {
575
576 struct mac_regs __iomem *regs = vptr->mac_regs;
577 int i;
578
579 velocity_init_rx_ring_indexes(vptr);
580
581 /*
582 * Init state, all RD entries belong to the NIC
583 */
584 for (i = 0; i < vptr->options.numrx; ++i)
585 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
586
587 writew(vptr->options.numrx, &regs->RBRDU);
588 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
589 writew(0, &regs->RDIdx);
590 writew(vptr->options.numrx - 1, &regs->RDCSize);
591 }
592
593 /**
594 * velocity_get_opt_media_mode - get media selection
595 * @vptr: velocity adapter
596 *
597 * Get the media mode stored in EEPROM or module options and load
598 * mii_status accordingly. The requested link state information
599 * is also returned.
600 */
601 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
602 {
603 u32 status = 0;
604
605 switch (vptr->options.spd_dpx) {
606 case SPD_DPX_AUTO:
607 status = VELOCITY_AUTONEG_ENABLE;
608 break;
609 case SPD_DPX_100_FULL:
610 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
611 break;
612 case SPD_DPX_10_FULL:
613 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
614 break;
615 case SPD_DPX_100_HALF:
616 status = VELOCITY_SPEED_100;
617 break;
618 case SPD_DPX_10_HALF:
619 status = VELOCITY_SPEED_10;
620 break;
621 case SPD_DPX_1000_FULL:
622 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
623 break;
624 }
625 vptr->mii_status = status;
626 return status;
627 }
628
629 /**
630 * safe_disable_mii_autopoll - autopoll off
631 * @regs: velocity registers
632 *
633 * Turn off the autopoll and wait for it to disable on the chip
634 */
635 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
636 {
637 u16 ww;
638
639 /* turn off MAUTO */
640 writeb(0, &regs->MIICR);
641 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
642 udelay(1);
643 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
644 break;
645 }
646 }
647
648 /**
649 * enable_mii_autopoll - turn on autopolling
650 * @regs: velocity registers
651 *
652 * Enable the MII link status autopoll feature on the Velocity
653 * hardware. Wait for it to enable.
654 */
655 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
656 {
657 int ii;
658
659 writeb(0, &(regs->MIICR));
660 writeb(MIIADR_SWMPL, &regs->MIIADR);
661
662 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
663 udelay(1);
664 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
665 break;
666 }
667
668 writeb(MIICR_MAUTO, &regs->MIICR);
669
670 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
671 udelay(1);
672 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
673 break;
674 }
675
676 }
677
678 /**
679 * velocity_mii_read - read MII data
680 * @regs: velocity registers
681 * @index: MII register index
682 * @data: buffer for received data
683 *
684 * Perform a single read of an MII 16bit register. Returns zero
685 * on success or -ETIMEDOUT if the PHY did not respond.
686 */
687 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
688 {
689 u16 ww;
690
691 /*
692 * Disable MIICR_MAUTO, so that mii addr can be set normally
693 */
694 safe_disable_mii_autopoll(regs);
695
696 writeb(index, &regs->MIIADR);
697
698 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
699
700 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
701 if (!(readb(&regs->MIICR) & MIICR_RCMD))
702 break;
703 }
704
705 *data = readw(&regs->MIIDATA);
706
707 enable_mii_autopoll(regs);
708 if (ww == W_MAX_TIMEOUT)
709 return -ETIMEDOUT;
710 return 0;
711 }
712
713
714 /**
715 * mii_check_media_mode - check media state
716 * @regs: velocity registers
717 *
718 * Check the current MII status and determine the link status
719 * accordingly
720 */
721 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
722 {
723 u32 status = 0;
724 u16 ANAR;
725
726 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
727 status |= VELOCITY_LINK_FAIL;
728
729 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
730 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
731 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
732 status |= (VELOCITY_SPEED_1000);
733 else {
734 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
735 if (ANAR & ADVERTISE_100FULL)
736 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
737 else if (ANAR & ADVERTISE_100HALF)
738 status |= VELOCITY_SPEED_100;
739 else if (ANAR & ADVERTISE_10FULL)
740 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
741 else
742 status |= (VELOCITY_SPEED_10);
743 }
744
745 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
746 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
747 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
748 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
749 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
750 status |= VELOCITY_AUTONEG_ENABLE;
751 }
752 }
753
754 return status;
755 }
756
757 /**
758 * velocity_mii_write - write MII data
759 * @regs: velocity registers
760 * @index: MII register index
761 * @data: 16bit data for the MII register
762 *
763 * Perform a single write to an MII 16bit register. Returns zero
764 * on success or -ETIMEDOUT if the PHY did not respond.
765 */
766 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
767 {
768 u16 ww;
769
770 /*
771 * Disable MIICR_MAUTO, so that mii addr can be set normally
772 */
773 safe_disable_mii_autopoll(regs);
774
775 /* MII reg offset */
776 writeb(mii_addr, &regs->MIIADR);
777 /* set MII data */
778 writew(data, &regs->MIIDATA);
779
780 /* turn on MIICR_WCMD */
781 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
782
783 /* W_MAX_TIMEOUT is the timeout period */
784 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
785 udelay(5);
786 if (!(readb(&regs->MIICR) & MIICR_WCMD))
787 break;
788 }
789 enable_mii_autopoll(regs);
790
791 if (ww == W_MAX_TIMEOUT)
792 return -ETIMEDOUT;
793 return 0;
794 }
795
796 /**
797 * set_mii_flow_control - flow control setup
798 * @vptr: velocity interface
799 *
800 * Set up the flow control on this interface according to
801 * the supplied user/eeprom options.
802 */
803 static void set_mii_flow_control(struct velocity_info *vptr)
804 {
805 /*Enable or Disable PAUSE in ANAR */
806 switch (vptr->options.flow_cntl) {
807 case FLOW_CNTL_TX:
808 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
809 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
810 break;
811
812 case FLOW_CNTL_RX:
813 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
814 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
815 break;
816
817 case FLOW_CNTL_TX_RX:
818 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
819 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
820 break;
821
822 case FLOW_CNTL_DISABLE:
823 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
824 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
825 break;
826 default:
827 break;
828 }
829 }
830
831 /**
832 * mii_set_auto_on - autonegotiate on
833 * @vptr: velocity
834 *
835 * Enable autonegotation on this interface
836 */
837 static void mii_set_auto_on(struct velocity_info *vptr)
838 {
839 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
840 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
841 else
842 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
843 }
844
845 static u32 check_connection_type(struct mac_regs __iomem *regs)
846 {
847 u32 status = 0;
848 u8 PHYSR0;
849 u16 ANAR;
850 PHYSR0 = readb(&regs->PHYSR0);
851
852 /*
853 if (!(PHYSR0 & PHYSR0_LINKGD))
854 status|=VELOCITY_LINK_FAIL;
855 */
856
857 if (PHYSR0 & PHYSR0_FDPX)
858 status |= VELOCITY_DUPLEX_FULL;
859
860 if (PHYSR0 & PHYSR0_SPDG)
861 status |= VELOCITY_SPEED_1000;
862 else if (PHYSR0 & PHYSR0_SPD10)
863 status |= VELOCITY_SPEED_10;
864 else
865 status |= VELOCITY_SPEED_100;
866
867 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
868 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
869 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
870 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
871 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
872 status |= VELOCITY_AUTONEG_ENABLE;
873 }
874 }
875
876 return status;
877 }
878
879
880
881 /**
882 * velocity_set_media_mode - set media mode
883 * @mii_status: old MII link state
884 *
885 * Check the media link state and configure the flow control
886 * PHY and also velocity hardware setup accordingly. In particular
887 * we need to set up CD polling and frame bursting.
888 */
889 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
890 {
891 u32 curr_status;
892 struct mac_regs __iomem *regs = vptr->mac_regs;
893
894 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
895 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
896
897 /* Set mii link status */
898 set_mii_flow_control(vptr);
899
900 /*
901 Check if new status is consisent with current status
902 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
903 (mii_status==curr_status)) {
904 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
905 vptr->mii_status=check_connection_type(vptr->mac_regs);
906 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
907 return 0;
908 }
909 */
910
911 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
912 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
913
914 /*
915 * If connection type is AUTO
916 */
917 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
918 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
919 /* clear force MAC mode bit */
920 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
921 /* set duplex mode of MAC according to duplex mode of MII */
922 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
923 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
924 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
925
926 /* enable AUTO-NEGO mode */
927 mii_set_auto_on(vptr);
928 } else {
929 u16 CTRL1000;
930 u16 ANAR;
931 u8 CHIPGCR;
932
933 /*
934 * 1. if it's 3119, disable frame bursting in halfduplex mode
935 * and enable it in fullduplex mode
936 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
937 * 3. only enable CD heart beat counter in 10HD mode
938 */
939
940 /* set force MAC mode bit */
941 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
942
943 CHIPGCR = readb(&regs->CHIPGCR);
944
945 if (mii_status & VELOCITY_SPEED_1000)
946 CHIPGCR |= CHIPGCR_FCGMII;
947 else
948 CHIPGCR &= ~CHIPGCR_FCGMII;
949
950 if (mii_status & VELOCITY_DUPLEX_FULL) {
951 CHIPGCR |= CHIPGCR_FCFDX;
952 writeb(CHIPGCR, &regs->CHIPGCR);
953 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
954 if (vptr->rev_id < REV_ID_VT3216_A0)
955 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
956 } else {
957 CHIPGCR &= ~CHIPGCR_FCFDX;
958 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
959 writeb(CHIPGCR, &regs->CHIPGCR);
960 if (vptr->rev_id < REV_ID_VT3216_A0)
961 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
962 }
963
964 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
965 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
966 if ((mii_status & VELOCITY_SPEED_1000) &&
967 (mii_status & VELOCITY_DUPLEX_FULL)) {
968 CTRL1000 |= ADVERTISE_1000FULL;
969 }
970 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
971
972 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
973 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
974 else
975 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
976
977 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
978 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
979 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
980 if (mii_status & VELOCITY_SPEED_100) {
981 if (mii_status & VELOCITY_DUPLEX_FULL)
982 ANAR |= ADVERTISE_100FULL;
983 else
984 ANAR |= ADVERTISE_100HALF;
985 } else if (mii_status & VELOCITY_SPEED_10) {
986 if (mii_status & VELOCITY_DUPLEX_FULL)
987 ANAR |= ADVERTISE_10FULL;
988 else
989 ANAR |= ADVERTISE_10HALF;
990 }
991 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
992 /* enable AUTO-NEGO mode */
993 mii_set_auto_on(vptr);
994 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
995 }
996 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
997 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
998 return VELOCITY_LINK_CHANGE;
999 }
1000
1001 /**
1002 * velocity_print_link_status - link status reporting
1003 * @vptr: velocity to report on
1004 *
1005 * Turn the link status of the velocity card into a kernel log
1006 * description of the new link state, detailing speed and duplex
1007 * status
1008 */
1009 static void velocity_print_link_status(struct velocity_info *vptr)
1010 {
1011
1012 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1013 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1014 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1015 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1016
1017 if (vptr->mii_status & VELOCITY_SPEED_1000)
1018 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1019 else if (vptr->mii_status & VELOCITY_SPEED_100)
1020 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1021 else
1022 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1023
1024 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1025 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1026 else
1027 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1028 } else {
1029 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1030 switch (vptr->options.spd_dpx) {
1031 case SPD_DPX_1000_FULL:
1032 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1033 break;
1034 case SPD_DPX_100_HALF:
1035 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1036 break;
1037 case SPD_DPX_100_FULL:
1038 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1039 break;
1040 case SPD_DPX_10_HALF:
1041 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1042 break;
1043 case SPD_DPX_10_FULL:
1044 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1045 break;
1046 default:
1047 break;
1048 }
1049 }
1050 }
1051
1052 /**
1053 * enable_flow_control_ability - flow control
1054 * @vptr: veloity to configure
1055 *
1056 * Set up flow control according to the flow control options
1057 * determined by the eeprom/configuration.
1058 */
1059 static void enable_flow_control_ability(struct velocity_info *vptr)
1060 {
1061
1062 struct mac_regs __iomem *regs = vptr->mac_regs;
1063
1064 switch (vptr->options.flow_cntl) {
1065
1066 case FLOW_CNTL_DEFAULT:
1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1068 writel(CR0_FDXRFCEN, &regs->CR0Set);
1069 else
1070 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1071
1072 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1073 writel(CR0_FDXTFCEN, &regs->CR0Set);
1074 else
1075 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1076 break;
1077
1078 case FLOW_CNTL_TX:
1079 writel(CR0_FDXTFCEN, &regs->CR0Set);
1080 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1081 break;
1082
1083 case FLOW_CNTL_RX:
1084 writel(CR0_FDXRFCEN, &regs->CR0Set);
1085 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1086 break;
1087
1088 case FLOW_CNTL_TX_RX:
1089 writel(CR0_FDXTFCEN, &regs->CR0Set);
1090 writel(CR0_FDXRFCEN, &regs->CR0Set);
1091 break;
1092
1093 case FLOW_CNTL_DISABLE:
1094 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1095 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 }
1103
1104 /**
1105 * velocity_soft_reset - soft reset
1106 * @vptr: velocity to reset
1107 *
1108 * Kick off a soft reset of the velocity adapter and then poll
1109 * until the reset sequence has completed before returning.
1110 */
1111 static int velocity_soft_reset(struct velocity_info *vptr)
1112 {
1113 struct mac_regs __iomem *regs = vptr->mac_regs;
1114 int i = 0;
1115
1116 writel(CR0_SFRST, &regs->CR0Set);
1117
1118 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1119 udelay(5);
1120 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1121 break;
1122 }
1123
1124 if (i == W_MAX_TIMEOUT) {
1125 writel(CR0_FORSRST, &regs->CR0Set);
1126 /* FIXME: PCI POSTING */
1127 /* delay 2ms */
1128 mdelay(2);
1129 }
1130 return 0;
1131 }
1132
1133 /**
1134 * velocity_set_multi - filter list change callback
1135 * @dev: network device
1136 *
1137 * Called by the network layer when the filter lists need to change
1138 * for a velocity adapter. Reload the CAMs with the new address
1139 * filter ruleset.
1140 */
1141 static void velocity_set_multi(struct net_device *dev)
1142 {
1143 struct velocity_info *vptr = netdev_priv(dev);
1144 struct mac_regs __iomem *regs = vptr->mac_regs;
1145 u8 rx_mode;
1146 int i;
1147 struct netdev_hw_addr *ha;
1148
1149 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1150 writel(0xffffffff, &regs->MARCAM[0]);
1151 writel(0xffffffff, &regs->MARCAM[4]);
1152 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1153 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1154 (dev->flags & IFF_ALLMULTI)) {
1155 writel(0xffffffff, &regs->MARCAM[0]);
1156 writel(0xffffffff, &regs->MARCAM[4]);
1157 rx_mode = (RCR_AM | RCR_AB);
1158 } else {
1159 int offset = MCAM_SIZE - vptr->multicast_limit;
1160 mac_get_cam_mask(regs, vptr->mCAMmask);
1161
1162 i = 0;
1163 netdev_for_each_mc_addr(ha, dev) {
1164 mac_set_cam(regs, i + offset, ha->addr);
1165 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1166 i++;
1167 }
1168
1169 mac_set_cam_mask(regs, vptr->mCAMmask);
1170 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1171 }
1172 if (dev->mtu > 1500)
1173 rx_mode |= RCR_AL;
1174
1175 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1176
1177 }
1178
1179 /*
1180 * MII access , media link mode setting functions
1181 */
1182
1183 /**
1184 * mii_init - set up MII
1185 * @vptr: velocity adapter
1186 * @mii_status: links tatus
1187 *
1188 * Set up the PHY for the current link state.
1189 */
1190 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1191 {
1192 u16 BMCR;
1193
1194 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1195 case PHYID_CICADA_CS8201:
1196 /*
1197 * Reset to hardware default
1198 */
1199 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1200 /*
1201 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1202 * off it in NWay-forced half mode for NWay-forced v.s.
1203 * legacy-forced issue.
1204 */
1205 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1206 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1207 else
1208 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1209 /*
1210 * Turn on Link/Activity LED enable bit for CIS8201
1211 */
1212 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1213 break;
1214 case PHYID_VT3216_32BIT:
1215 case PHYID_VT3216_64BIT:
1216 /*
1217 * Reset to hardware default
1218 */
1219 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1220 /*
1221 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1222 * off it in NWay-forced half mode for NWay-forced v.s.
1223 * legacy-forced issue
1224 */
1225 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1226 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1227 else
1228 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1229 break;
1230
1231 case PHYID_MARVELL_1000:
1232 case PHYID_MARVELL_1000S:
1233 /*
1234 * Assert CRS on Transmit
1235 */
1236 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1237 /*
1238 * Reset to hardware default
1239 */
1240 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1241 break;
1242 default:
1243 ;
1244 }
1245 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1246 if (BMCR & BMCR_ISOLATE) {
1247 BMCR &= ~BMCR_ISOLATE;
1248 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1249 }
1250 }
1251
1252 /**
1253 * setup_queue_timers - Setup interrupt timers
1254 *
1255 * Setup interrupt frequency during suppression (timeout if the frame
1256 * count isn't filled).
1257 */
1258 static void setup_queue_timers(struct velocity_info *vptr)
1259 {
1260 /* Only for newer revisions */
1261 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1262 u8 txqueue_timer = 0;
1263 u8 rxqueue_timer = 0;
1264
1265 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1266 VELOCITY_SPEED_100)) {
1267 txqueue_timer = vptr->options.txqueue_timer;
1268 rxqueue_timer = vptr->options.rxqueue_timer;
1269 }
1270
1271 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1272 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1273 }
1274 }
1275 /**
1276 * setup_adaptive_interrupts - Setup interrupt suppression
1277 *
1278 * @vptr velocity adapter
1279 *
1280 * The velocity is able to suppress interrupt during high interrupt load.
1281 * This function turns on that feature.
1282 */
1283 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1284 {
1285 struct mac_regs __iomem *regs = vptr->mac_regs;
1286 u16 tx_intsup = vptr->options.tx_intsup;
1287 u16 rx_intsup = vptr->options.rx_intsup;
1288
1289 /* Setup default interrupt mask (will be changed below) */
1290 vptr->int_mask = INT_MASK_DEF;
1291
1292 /* Set Tx Interrupt Suppression Threshold */
1293 writeb(CAMCR_PS0, &regs->CAMCR);
1294 if (tx_intsup != 0) {
1295 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1296 ISR_PTX2I | ISR_PTX3I);
1297 writew(tx_intsup, &regs->ISRCTL);
1298 } else
1299 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1300
1301 /* Set Rx Interrupt Suppression Threshold */
1302 writeb(CAMCR_PS1, &regs->CAMCR);
1303 if (rx_intsup != 0) {
1304 vptr->int_mask &= ~ISR_PRXI;
1305 writew(rx_intsup, &regs->ISRCTL);
1306 } else
1307 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1308
1309 /* Select page to interrupt hold timer */
1310 writeb(0, &regs->CAMCR);
1311 }
1312
1313 /**
1314 * velocity_init_registers - initialise MAC registers
1315 * @vptr: velocity to init
1316 * @type: type of initialisation (hot or cold)
1317 *
1318 * Initialise the MAC on a reset or on first set up on the
1319 * hardware.
1320 */
1321 static void velocity_init_registers(struct velocity_info *vptr,
1322 enum velocity_init_type type)
1323 {
1324 struct mac_regs __iomem *regs = vptr->mac_regs;
1325 int i, mii_status;
1326
1327 mac_wol_reset(regs);
1328
1329 switch (type) {
1330 case VELOCITY_INIT_RESET:
1331 case VELOCITY_INIT_WOL:
1332
1333 netif_stop_queue(vptr->dev);
1334
1335 /*
1336 * Reset RX to prevent RX pointer not on the 4X location
1337 */
1338 velocity_rx_reset(vptr);
1339 mac_rx_queue_run(regs);
1340 mac_rx_queue_wake(regs);
1341
1342 mii_status = velocity_get_opt_media_mode(vptr);
1343 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1344 velocity_print_link_status(vptr);
1345 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1346 netif_wake_queue(vptr->dev);
1347 }
1348
1349 enable_flow_control_ability(vptr);
1350
1351 mac_clear_isr(regs);
1352 writel(CR0_STOP, &regs->CR0Clr);
1353 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1354 &regs->CR0Set);
1355
1356 break;
1357
1358 case VELOCITY_INIT_COLD:
1359 default:
1360 /*
1361 * Do reset
1362 */
1363 velocity_soft_reset(vptr);
1364 mdelay(5);
1365
1366 mac_eeprom_reload(regs);
1367 for (i = 0; i < 6; i++)
1368 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1369
1370 /*
1371 * clear Pre_ACPI bit.
1372 */
1373 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1374 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1375 mac_set_dma_length(regs, vptr->options.DMA_length);
1376
1377 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1378 /*
1379 * Back off algorithm use original IEEE standard
1380 */
1381 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1382
1383 /*
1384 * Init CAM filter
1385 */
1386 velocity_init_cam_filter(vptr);
1387
1388 /*
1389 * Set packet filter: Receive directed and broadcast address
1390 */
1391 velocity_set_multi(vptr->dev);
1392
1393 /*
1394 * Enable MII auto-polling
1395 */
1396 enable_mii_autopoll(regs);
1397
1398 setup_adaptive_interrupts(vptr);
1399
1400 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1401 writew(vptr->options.numrx - 1, &regs->RDCSize);
1402 mac_rx_queue_run(regs);
1403 mac_rx_queue_wake(regs);
1404
1405 writew(vptr->options.numtx - 1, &regs->TDCSize);
1406
1407 for (i = 0; i < vptr->tx.numq; i++) {
1408 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1409 mac_tx_queue_run(regs, i);
1410 }
1411
1412 init_flow_control_register(vptr);
1413
1414 writel(CR0_STOP, &regs->CR0Clr);
1415 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1416
1417 mii_status = velocity_get_opt_media_mode(vptr);
1418 netif_stop_queue(vptr->dev);
1419
1420 mii_init(vptr, mii_status);
1421
1422 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1423 velocity_print_link_status(vptr);
1424 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1425 netif_wake_queue(vptr->dev);
1426 }
1427
1428 enable_flow_control_ability(vptr);
1429 mac_hw_mibs_init(regs);
1430 mac_write_int_mask(vptr->int_mask, regs);
1431 mac_clear_isr(regs);
1432
1433 }
1434 }
1435
1436 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1437 {
1438 struct mac_regs __iomem *regs = vptr->mac_regs;
1439 int avail, dirty, unusable;
1440
1441 /*
1442 * RD number must be equal to 4X per hardware spec
1443 * (programming guide rev 1.20, p.13)
1444 */
1445 if (vptr->rx.filled < 4)
1446 return;
1447
1448 wmb();
1449
1450 unusable = vptr->rx.filled & 0x0003;
1451 dirty = vptr->rx.dirty - unusable;
1452 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1453 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1454 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1455 }
1456
1457 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1458 vptr->rx.filled = unusable;
1459 }
1460
1461 /**
1462 * velocity_init_dma_rings - set up DMA rings
1463 * @vptr: Velocity to set up
1464 *
1465 * Allocate PCI mapped DMA rings for the receive and transmit layer
1466 * to use.
1467 */
1468 static int velocity_init_dma_rings(struct velocity_info *vptr)
1469 {
1470 struct velocity_opt *opt = &vptr->options;
1471 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1472 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1473 struct pci_dev *pdev = vptr->pdev;
1474 dma_addr_t pool_dma;
1475 void *pool;
1476 unsigned int i;
1477
1478 /*
1479 * Allocate all RD/TD rings a single pool.
1480 *
1481 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1482 * alignment
1483 */
1484 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1485 rx_ring_size, &pool_dma);
1486 if (!pool) {
1487 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1488 vptr->dev->name);
1489 return -ENOMEM;
1490 }
1491
1492 vptr->rx.ring = pool;
1493 vptr->rx.pool_dma = pool_dma;
1494
1495 pool += rx_ring_size;
1496 pool_dma += rx_ring_size;
1497
1498 for (i = 0; i < vptr->tx.numq; i++) {
1499 vptr->tx.rings[i] = pool;
1500 vptr->tx.pool_dma[i] = pool_dma;
1501 pool += tx_ring_size;
1502 pool_dma += tx_ring_size;
1503 }
1504
1505 return 0;
1506 }
1507
1508 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1509 {
1510 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1511 }
1512
1513 /**
1514 * velocity_alloc_rx_buf - allocate aligned receive buffer
1515 * @vptr: velocity
1516 * @idx: ring index
1517 *
1518 * Allocate a new full sized buffer for the reception of a frame and
1519 * map it into PCI space for the hardware to use. The hardware
1520 * requires *64* byte alignment of the buffer which makes life
1521 * less fun than would be ideal.
1522 */
1523 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1524 {
1525 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1526 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1527
1528 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1529 if (rd_info->skb == NULL)
1530 return -ENOMEM;
1531
1532 /*
1533 * Do the gymnastics to get the buffer head for data at
1534 * 64byte alignment.
1535 */
1536 skb_reserve(rd_info->skb,
1537 64 - ((unsigned long) rd_info->skb->data & 63));
1538 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1539 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1540
1541 /*
1542 * Fill in the descriptor to match
1543 */
1544
1545 *((u32 *) & (rd->rdesc0)) = 0;
1546 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1547 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1548 rd->pa_high = 0;
1549 return 0;
1550 }
1551
1552
1553 static int velocity_rx_refill(struct velocity_info *vptr)
1554 {
1555 int dirty = vptr->rx.dirty, done = 0;
1556
1557 do {
1558 struct rx_desc *rd = vptr->rx.ring + dirty;
1559
1560 /* Fine for an all zero Rx desc at init time as well */
1561 if (rd->rdesc0.len & OWNED_BY_NIC)
1562 break;
1563
1564 if (!vptr->rx.info[dirty].skb) {
1565 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1566 break;
1567 }
1568 done++;
1569 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1570 } while (dirty != vptr->rx.curr);
1571
1572 if (done) {
1573 vptr->rx.dirty = dirty;
1574 vptr->rx.filled += done;
1575 }
1576
1577 return done;
1578 }
1579
1580 /**
1581 * velocity_free_rd_ring - free receive ring
1582 * @vptr: velocity to clean up
1583 *
1584 * Free the receive buffers for each ring slot and any
1585 * attached socket buffers that need to go away.
1586 */
1587 static void velocity_free_rd_ring(struct velocity_info *vptr)
1588 {
1589 int i;
1590
1591 if (vptr->rx.info == NULL)
1592 return;
1593
1594 for (i = 0; i < vptr->options.numrx; i++) {
1595 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1596 struct rx_desc *rd = vptr->rx.ring + i;
1597
1598 memset(rd, 0, sizeof(*rd));
1599
1600 if (!rd_info->skb)
1601 continue;
1602 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1603 PCI_DMA_FROMDEVICE);
1604 rd_info->skb_dma = 0;
1605
1606 dev_kfree_skb(rd_info->skb);
1607 rd_info->skb = NULL;
1608 }
1609
1610 kfree(vptr->rx.info);
1611 vptr->rx.info = NULL;
1612 }
1613
1614
1615
1616 /**
1617 * velocity_init_rd_ring - set up receive ring
1618 * @vptr: velocity to configure
1619 *
1620 * Allocate and set up the receive buffers for each ring slot and
1621 * assign them to the network adapter.
1622 */
1623 static int velocity_init_rd_ring(struct velocity_info *vptr)
1624 {
1625 int ret = -ENOMEM;
1626
1627 vptr->rx.info = kcalloc(vptr->options.numrx,
1628 sizeof(struct velocity_rd_info), GFP_KERNEL);
1629 if (!vptr->rx.info)
1630 goto out;
1631
1632 velocity_init_rx_ring_indexes(vptr);
1633
1634 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1635 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1636 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1637 velocity_free_rd_ring(vptr);
1638 goto out;
1639 }
1640
1641 ret = 0;
1642 out:
1643 return ret;
1644 }
1645
1646 /**
1647 * velocity_init_td_ring - set up transmit ring
1648 * @vptr: velocity
1649 *
1650 * Set up the transmit ring and chain the ring pointers together.
1651 * Returns zero on success or a negative posix errno code for
1652 * failure.
1653 */
1654 static int velocity_init_td_ring(struct velocity_info *vptr)
1655 {
1656 int j;
1657
1658 /* Init the TD ring entries */
1659 for (j = 0; j < vptr->tx.numq; j++) {
1660
1661 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1662 sizeof(struct velocity_td_info),
1663 GFP_KERNEL);
1664 if (!vptr->tx.infos[j]) {
1665 while (--j >= 0)
1666 kfree(vptr->tx.infos[j]);
1667 return -ENOMEM;
1668 }
1669
1670 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1671 }
1672 return 0;
1673 }
1674
1675 /**
1676 * velocity_free_dma_rings - free PCI ring pointers
1677 * @vptr: Velocity to free from
1678 *
1679 * Clean up the PCI ring buffers allocated to this velocity.
1680 */
1681 static void velocity_free_dma_rings(struct velocity_info *vptr)
1682 {
1683 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1684 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1685
1686 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1687 }
1688
1689
1690 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1691 {
1692 int ret;
1693
1694 velocity_set_rxbufsize(vptr, mtu);
1695
1696 ret = velocity_init_dma_rings(vptr);
1697 if (ret < 0)
1698 goto out;
1699
1700 ret = velocity_init_rd_ring(vptr);
1701 if (ret < 0)
1702 goto err_free_dma_rings_0;
1703
1704 ret = velocity_init_td_ring(vptr);
1705 if (ret < 0)
1706 goto err_free_rd_ring_1;
1707 out:
1708 return ret;
1709
1710 err_free_rd_ring_1:
1711 velocity_free_rd_ring(vptr);
1712 err_free_dma_rings_0:
1713 velocity_free_dma_rings(vptr);
1714 goto out;
1715 }
1716
1717 /**
1718 * velocity_free_tx_buf - free transmit buffer
1719 * @vptr: velocity
1720 * @tdinfo: buffer
1721 *
1722 * Release an transmit buffer. If the buffer was preallocated then
1723 * recycle it, if not then unmap the buffer.
1724 */
1725 static void velocity_free_tx_buf(struct velocity_info *vptr,
1726 struct velocity_td_info *tdinfo, struct tx_desc *td)
1727 {
1728 struct sk_buff *skb = tdinfo->skb;
1729
1730 /*
1731 * Don't unmap the pre-allocated tx_bufs
1732 */
1733 if (tdinfo->skb_dma) {
1734 int i;
1735
1736 for (i = 0; i < tdinfo->nskb_dma; i++) {
1737 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1738
1739 /* For scatter-gather */
1740 if (skb_shinfo(skb)->nr_frags > 0)
1741 pktlen = max_t(size_t, pktlen,
1742 td->td_buf[i].size & ~TD_QUEUE);
1743
1744 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1745 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1746 }
1747 }
1748 dev_kfree_skb_irq(skb);
1749 tdinfo->skb = NULL;
1750 }
1751
1752
1753 /*
1754 * FIXME: could we merge this with velocity_free_tx_buf ?
1755 */
1756 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1757 int q, int n)
1758 {
1759 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1760 int i;
1761
1762 if (td_info == NULL)
1763 return;
1764
1765 if (td_info->skb) {
1766 for (i = 0; i < td_info->nskb_dma; i++) {
1767 if (td_info->skb_dma[i]) {
1768 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1769 td_info->skb->len, PCI_DMA_TODEVICE);
1770 td_info->skb_dma[i] = 0;
1771 }
1772 }
1773 dev_kfree_skb(td_info->skb);
1774 td_info->skb = NULL;
1775 }
1776 }
1777
1778 /**
1779 * velocity_free_td_ring - free td ring
1780 * @vptr: velocity
1781 *
1782 * Free up the transmit ring for this particular velocity adapter.
1783 * We free the ring contents but not the ring itself.
1784 */
1785 static void velocity_free_td_ring(struct velocity_info *vptr)
1786 {
1787 int i, j;
1788
1789 for (j = 0; j < vptr->tx.numq; j++) {
1790 if (vptr->tx.infos[j] == NULL)
1791 continue;
1792 for (i = 0; i < vptr->options.numtx; i++)
1793 velocity_free_td_ring_entry(vptr, j, i);
1794
1795 kfree(vptr->tx.infos[j]);
1796 vptr->tx.infos[j] = NULL;
1797 }
1798 }
1799
1800
1801 static void velocity_free_rings(struct velocity_info *vptr)
1802 {
1803 velocity_free_td_ring(vptr);
1804 velocity_free_rd_ring(vptr);
1805 velocity_free_dma_rings(vptr);
1806 }
1807
1808 /**
1809 * velocity_error - handle error from controller
1810 * @vptr: velocity
1811 * @status: card status
1812 *
1813 * Process an error report from the hardware and attempt to recover
1814 * the card itself. At the moment we cannot recover from some
1815 * theoretically impossible errors but this could be fixed using
1816 * the pci_device_failed logic to bounce the hardware
1817 *
1818 */
1819 static void velocity_error(struct velocity_info *vptr, int status)
1820 {
1821
1822 if (status & ISR_TXSTLI) {
1823 struct mac_regs __iomem *regs = vptr->mac_regs;
1824
1825 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1826 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1827 writew(TRDCSR_RUN, &regs->TDCSRClr);
1828 netif_stop_queue(vptr->dev);
1829
1830 /* FIXME: port over the pci_device_failed code and use it
1831 here */
1832 }
1833
1834 if (status & ISR_SRCI) {
1835 struct mac_regs __iomem *regs = vptr->mac_regs;
1836 int linked;
1837
1838 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1839 vptr->mii_status = check_connection_type(regs);
1840
1841 /*
1842 * If it is a 3119, disable frame bursting in
1843 * halfduplex mode and enable it in fullduplex
1844 * mode
1845 */
1846 if (vptr->rev_id < REV_ID_VT3216_A0) {
1847 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1848 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1849 else
1850 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1851 }
1852 /*
1853 * Only enable CD heart beat counter in 10HD mode
1854 */
1855 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1856 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1857 else
1858 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1859
1860 setup_queue_timers(vptr);
1861 }
1862 /*
1863 * Get link status from PHYSR0
1864 */
1865 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1866
1867 if (linked) {
1868 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1869 netif_carrier_on(vptr->dev);
1870 } else {
1871 vptr->mii_status |= VELOCITY_LINK_FAIL;
1872 netif_carrier_off(vptr->dev);
1873 }
1874
1875 velocity_print_link_status(vptr);
1876 enable_flow_control_ability(vptr);
1877
1878 /*
1879 * Re-enable auto-polling because SRCI will disable
1880 * auto-polling
1881 */
1882
1883 enable_mii_autopoll(regs);
1884
1885 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1886 netif_stop_queue(vptr->dev);
1887 else
1888 netif_wake_queue(vptr->dev);
1889
1890 };
1891 if (status & ISR_MIBFI)
1892 velocity_update_hw_mibs(vptr);
1893 if (status & ISR_LSTEI)
1894 mac_rx_queue_wake(vptr->mac_regs);
1895 }
1896
1897 /**
1898 * tx_srv - transmit interrupt service
1899 * @vptr; Velocity
1900 *
1901 * Scan the queues looking for transmitted packets that
1902 * we can complete and clean up. Update any statistics as
1903 * necessary/
1904 */
1905 static int velocity_tx_srv(struct velocity_info *vptr)
1906 {
1907 struct tx_desc *td;
1908 int qnum;
1909 int full = 0;
1910 int idx;
1911 int works = 0;
1912 struct velocity_td_info *tdinfo;
1913 struct net_device_stats *stats = &vptr->dev->stats;
1914
1915 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1916 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1917 idx = (idx + 1) % vptr->options.numtx) {
1918
1919 /*
1920 * Get Tx Descriptor
1921 */
1922 td = &(vptr->tx.rings[qnum][idx]);
1923 tdinfo = &(vptr->tx.infos[qnum][idx]);
1924
1925 if (td->tdesc0.len & OWNED_BY_NIC)
1926 break;
1927
1928 if ((works++ > 15))
1929 break;
1930
1931 if (td->tdesc0.TSR & TSR0_TERR) {
1932 stats->tx_errors++;
1933 stats->tx_dropped++;
1934 if (td->tdesc0.TSR & TSR0_CDH)
1935 stats->tx_heartbeat_errors++;
1936 if (td->tdesc0.TSR & TSR0_CRS)
1937 stats->tx_carrier_errors++;
1938 if (td->tdesc0.TSR & TSR0_ABT)
1939 stats->tx_aborted_errors++;
1940 if (td->tdesc0.TSR & TSR0_OWC)
1941 stats->tx_window_errors++;
1942 } else {
1943 stats->tx_packets++;
1944 stats->tx_bytes += tdinfo->skb->len;
1945 }
1946 velocity_free_tx_buf(vptr, tdinfo, td);
1947 vptr->tx.used[qnum]--;
1948 }
1949 vptr->tx.tail[qnum] = idx;
1950
1951 if (AVAIL_TD(vptr, qnum) < 1)
1952 full = 1;
1953 }
1954 /*
1955 * Look to see if we should kick the transmit network
1956 * layer for more work.
1957 */
1958 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1959 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1960 netif_wake_queue(vptr->dev);
1961 }
1962 return works;
1963 }
1964
1965 /**
1966 * velocity_rx_csum - checksum process
1967 * @rd: receive packet descriptor
1968 * @skb: network layer packet buffer
1969 *
1970 * Process the status bits for the received packet and determine
1971 * if the checksum was computed and verified by the hardware
1972 */
1973 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1974 {
1975 skb_checksum_none_assert(skb);
1976
1977 if (rd->rdesc1.CSM & CSM_IPKT) {
1978 if (rd->rdesc1.CSM & CSM_IPOK) {
1979 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1980 (rd->rdesc1.CSM & CSM_UDPKT)) {
1981 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1982 return;
1983 }
1984 skb->ip_summed = CHECKSUM_UNNECESSARY;
1985 }
1986 }
1987 }
1988
1989 /**
1990 * velocity_rx_copy - in place Rx copy for small packets
1991 * @rx_skb: network layer packet buffer candidate
1992 * @pkt_size: received data size
1993 * @rd: receive packet descriptor
1994 * @dev: network device
1995 *
1996 * Replace the current skb that is scheduled for Rx processing by a
1997 * shorter, immediatly allocated skb, if the received packet is small
1998 * enough. This function returns a negative value if the received
1999 * packet is too big or if memory is exhausted.
2000 */
2001 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2002 struct velocity_info *vptr)
2003 {
2004 int ret = -1;
2005 if (pkt_size < rx_copybreak) {
2006 struct sk_buff *new_skb;
2007
2008 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
2009 if (new_skb) {
2010 new_skb->ip_summed = rx_skb[0]->ip_summed;
2011 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2012 *rx_skb = new_skb;
2013 ret = 0;
2014 }
2015
2016 }
2017 return ret;
2018 }
2019
2020 /**
2021 * velocity_iph_realign - IP header alignment
2022 * @vptr: velocity we are handling
2023 * @skb: network layer packet buffer
2024 * @pkt_size: received data size
2025 *
2026 * Align IP header on a 2 bytes boundary. This behavior can be
2027 * configured by the user.
2028 */
2029 static inline void velocity_iph_realign(struct velocity_info *vptr,
2030 struct sk_buff *skb, int pkt_size)
2031 {
2032 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2033 memmove(skb->data + 2, skb->data, pkt_size);
2034 skb_reserve(skb, 2);
2035 }
2036 }
2037
2038
2039 /**
2040 * velocity_receive_frame - received packet processor
2041 * @vptr: velocity we are handling
2042 * @idx: ring index
2043 *
2044 * A packet has arrived. We process the packet and if appropriate
2045 * pass the frame up the network stack
2046 */
2047 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2048 {
2049 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2050 struct net_device_stats *stats = &vptr->dev->stats;
2051 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2052 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2053 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2054 struct sk_buff *skb;
2055
2056 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2057 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2058 stats->rx_length_errors++;
2059 return -EINVAL;
2060 }
2061
2062 if (rd->rdesc0.RSR & RSR_MAR)
2063 stats->multicast++;
2064
2065 skb = rd_info->skb;
2066
2067 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2068 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2069
2070 /*
2071 * Drop frame not meeting IEEE 802.3
2072 */
2073
2074 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2075 if (rd->rdesc0.RSR & RSR_RL) {
2076 stats->rx_length_errors++;
2077 return -EINVAL;
2078 }
2079 }
2080
2081 pci_action = pci_dma_sync_single_for_device;
2082
2083 velocity_rx_csum(rd, skb);
2084
2085 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2086 velocity_iph_realign(vptr, skb, pkt_len);
2087 pci_action = pci_unmap_single;
2088 rd_info->skb = NULL;
2089 }
2090
2091 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2092 PCI_DMA_FROMDEVICE);
2093
2094 skb_put(skb, pkt_len - 4);
2095 skb->protocol = eth_type_trans(skb, vptr->dev);
2096
2097 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
2098 vlan_hwaccel_rx(skb, vptr->vlgrp,
2099 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
2100 } else
2101 netif_rx(skb);
2102
2103 stats->rx_bytes += pkt_len;
2104
2105 return 0;
2106 }
2107
2108
2109 /**
2110 * velocity_rx_srv - service RX interrupt
2111 * @vptr: velocity
2112 *
2113 * Walk the receive ring of the velocity adapter and remove
2114 * any received packets from the receive queue. Hand the ring
2115 * slots back to the adapter for reuse.
2116 */
2117 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2118 {
2119 struct net_device_stats *stats = &vptr->dev->stats;
2120 int rd_curr = vptr->rx.curr;
2121 int works = 0;
2122
2123 while (works < budget_left) {
2124 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2125
2126 if (!vptr->rx.info[rd_curr].skb)
2127 break;
2128
2129 if (rd->rdesc0.len & OWNED_BY_NIC)
2130 break;
2131
2132 rmb();
2133
2134 /*
2135 * Don't drop CE or RL error frame although RXOK is off
2136 */
2137 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2138 if (velocity_receive_frame(vptr, rd_curr) < 0)
2139 stats->rx_dropped++;
2140 } else {
2141 if (rd->rdesc0.RSR & RSR_CRC)
2142 stats->rx_crc_errors++;
2143 if (rd->rdesc0.RSR & RSR_FAE)
2144 stats->rx_frame_errors++;
2145
2146 stats->rx_dropped++;
2147 }
2148
2149 rd->size |= RX_INTEN;
2150
2151 rd_curr++;
2152 if (rd_curr >= vptr->options.numrx)
2153 rd_curr = 0;
2154 works++;
2155 }
2156
2157 vptr->rx.curr = rd_curr;
2158
2159 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2160 velocity_give_many_rx_descs(vptr);
2161
2162 VAR_USED(stats);
2163 return works;
2164 }
2165
2166 static int velocity_poll(struct napi_struct *napi, int budget)
2167 {
2168 struct velocity_info *vptr = container_of(napi,
2169 struct velocity_info, napi);
2170 unsigned int rx_done;
2171 unsigned long flags;
2172
2173 spin_lock_irqsave(&vptr->lock, flags);
2174 /*
2175 * Do rx and tx twice for performance (taken from the VIA
2176 * out-of-tree driver).
2177 */
2178 rx_done = velocity_rx_srv(vptr, budget / 2);
2179 velocity_tx_srv(vptr);
2180 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2181 velocity_tx_srv(vptr);
2182
2183 /* If budget not fully consumed, exit the polling mode */
2184 if (rx_done < budget) {
2185 napi_complete(napi);
2186 mac_enable_int(vptr->mac_regs);
2187 }
2188 spin_unlock_irqrestore(&vptr->lock, flags);
2189
2190 return rx_done;
2191 }
2192
2193 /**
2194 * velocity_intr - interrupt callback
2195 * @irq: interrupt number
2196 * @dev_instance: interrupting device
2197 *
2198 * Called whenever an interrupt is generated by the velocity
2199 * adapter IRQ line. We may not be the source of the interrupt
2200 * and need to identify initially if we are, and if not exit as
2201 * efficiently as possible.
2202 */
2203 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2204 {
2205 struct net_device *dev = dev_instance;
2206 struct velocity_info *vptr = netdev_priv(dev);
2207 u32 isr_status;
2208
2209 spin_lock(&vptr->lock);
2210 isr_status = mac_read_isr(vptr->mac_regs);
2211
2212 /* Not us ? */
2213 if (isr_status == 0) {
2214 spin_unlock(&vptr->lock);
2215 return IRQ_NONE;
2216 }
2217
2218 /* Ack the interrupt */
2219 mac_write_isr(vptr->mac_regs, isr_status);
2220
2221 if (likely(napi_schedule_prep(&vptr->napi))) {
2222 mac_disable_int(vptr->mac_regs);
2223 __napi_schedule(&vptr->napi);
2224 }
2225
2226 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2227 velocity_error(vptr, isr_status);
2228
2229 spin_unlock(&vptr->lock);
2230
2231 return IRQ_HANDLED;
2232 }
2233
2234 /**
2235 * velocity_open - interface activation callback
2236 * @dev: network layer device to open
2237 *
2238 * Called when the network layer brings the interface up. Returns
2239 * a negative posix error code on failure, or zero on success.
2240 *
2241 * All the ring allocation and set up is done on open for this
2242 * adapter to minimise memory usage when inactive
2243 */
2244 static int velocity_open(struct net_device *dev)
2245 {
2246 struct velocity_info *vptr = netdev_priv(dev);
2247 int ret;
2248
2249 ret = velocity_init_rings(vptr, dev->mtu);
2250 if (ret < 0)
2251 goto out;
2252
2253 /* Ensure chip is running */
2254 pci_set_power_state(vptr->pdev, PCI_D0);
2255
2256 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2257
2258 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2259 dev->name, dev);
2260 if (ret < 0) {
2261 /* Power down the chip */
2262 pci_set_power_state(vptr->pdev, PCI_D3hot);
2263 velocity_free_rings(vptr);
2264 goto out;
2265 }
2266
2267 velocity_give_many_rx_descs(vptr);
2268
2269 mac_enable_int(vptr->mac_regs);
2270 netif_start_queue(dev);
2271 napi_enable(&vptr->napi);
2272 vptr->flags |= VELOCITY_FLAGS_OPENED;
2273 out:
2274 return ret;
2275 }
2276
2277 /**
2278 * velocity_shutdown - shut down the chip
2279 * @vptr: velocity to deactivate
2280 *
2281 * Shuts down the internal operations of the velocity and
2282 * disables interrupts, autopolling, transmit and receive
2283 */
2284 static void velocity_shutdown(struct velocity_info *vptr)
2285 {
2286 struct mac_regs __iomem *regs = vptr->mac_regs;
2287 mac_disable_int(regs);
2288 writel(CR0_STOP, &regs->CR0Set);
2289 writew(0xFFFF, &regs->TDCSRClr);
2290 writeb(0xFF, &regs->RDCSRClr);
2291 safe_disable_mii_autopoll(regs);
2292 mac_clear_isr(regs);
2293 }
2294
2295 /**
2296 * velocity_change_mtu - MTU change callback
2297 * @dev: network device
2298 * @new_mtu: desired MTU
2299 *
2300 * Handle requests from the networking layer for MTU change on
2301 * this interface. It gets called on a change by the network layer.
2302 * Return zero for success or negative posix error code.
2303 */
2304 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2305 {
2306 struct velocity_info *vptr = netdev_priv(dev);
2307 int ret = 0;
2308
2309 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2310 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2311 vptr->dev->name);
2312 ret = -EINVAL;
2313 goto out_0;
2314 }
2315
2316 if (!netif_running(dev)) {
2317 dev->mtu = new_mtu;
2318 goto out_0;
2319 }
2320
2321 if (dev->mtu != new_mtu) {
2322 struct velocity_info *tmp_vptr;
2323 unsigned long flags;
2324 struct rx_info rx;
2325 struct tx_info tx;
2326
2327 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2328 if (!tmp_vptr) {
2329 ret = -ENOMEM;
2330 goto out_0;
2331 }
2332
2333 tmp_vptr->dev = dev;
2334 tmp_vptr->pdev = vptr->pdev;
2335 tmp_vptr->options = vptr->options;
2336 tmp_vptr->tx.numq = vptr->tx.numq;
2337
2338 ret = velocity_init_rings(tmp_vptr, new_mtu);
2339 if (ret < 0)
2340 goto out_free_tmp_vptr_1;
2341
2342 spin_lock_irqsave(&vptr->lock, flags);
2343
2344 netif_stop_queue(dev);
2345 velocity_shutdown(vptr);
2346
2347 rx = vptr->rx;
2348 tx = vptr->tx;
2349
2350 vptr->rx = tmp_vptr->rx;
2351 vptr->tx = tmp_vptr->tx;
2352
2353 tmp_vptr->rx = rx;
2354 tmp_vptr->tx = tx;
2355
2356 dev->mtu = new_mtu;
2357
2358 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2359
2360 velocity_give_many_rx_descs(vptr);
2361
2362 mac_enable_int(vptr->mac_regs);
2363 netif_start_queue(dev);
2364
2365 spin_unlock_irqrestore(&vptr->lock, flags);
2366
2367 velocity_free_rings(tmp_vptr);
2368
2369 out_free_tmp_vptr_1:
2370 kfree(tmp_vptr);
2371 }
2372 out_0:
2373 return ret;
2374 }
2375
2376 /**
2377 * velocity_mii_ioctl - MII ioctl handler
2378 * @dev: network device
2379 * @ifr: the ifreq block for the ioctl
2380 * @cmd: the command
2381 *
2382 * Process MII requests made via ioctl from the network layer. These
2383 * are used by tools like kudzu to interrogate the link state of the
2384 * hardware
2385 */
2386 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2387 {
2388 struct velocity_info *vptr = netdev_priv(dev);
2389 struct mac_regs __iomem *regs = vptr->mac_regs;
2390 unsigned long flags;
2391 struct mii_ioctl_data *miidata = if_mii(ifr);
2392 int err;
2393
2394 switch (cmd) {
2395 case SIOCGMIIPHY:
2396 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2397 break;
2398 case SIOCGMIIREG:
2399 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2400 return -ETIMEDOUT;
2401 break;
2402 case SIOCSMIIREG:
2403 spin_lock_irqsave(&vptr->lock, flags);
2404 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2405 spin_unlock_irqrestore(&vptr->lock, flags);
2406 check_connection_type(vptr->mac_regs);
2407 if (err)
2408 return err;
2409 break;
2410 default:
2411 return -EOPNOTSUPP;
2412 }
2413 return 0;
2414 }
2415
2416
2417 /**
2418 * velocity_ioctl - ioctl entry point
2419 * @dev: network device
2420 * @rq: interface request ioctl
2421 * @cmd: command code
2422 *
2423 * Called when the user issues an ioctl request to the network
2424 * device in question. The velocity interface supports MII.
2425 */
2426 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2427 {
2428 struct velocity_info *vptr = netdev_priv(dev);
2429 int ret;
2430
2431 /* If we are asked for information and the device is power
2432 saving then we need to bring the device back up to talk to it */
2433
2434 if (!netif_running(dev))
2435 pci_set_power_state(vptr->pdev, PCI_D0);
2436
2437 switch (cmd) {
2438 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2439 case SIOCGMIIREG: /* Read MII PHY register. */
2440 case SIOCSMIIREG: /* Write to MII PHY register. */
2441 ret = velocity_mii_ioctl(dev, rq, cmd);
2442 break;
2443
2444 default:
2445 ret = -EOPNOTSUPP;
2446 }
2447 if (!netif_running(dev))
2448 pci_set_power_state(vptr->pdev, PCI_D3hot);
2449
2450
2451 return ret;
2452 }
2453
2454 /**
2455 * velocity_get_status - statistics callback
2456 * @dev: network device
2457 *
2458 * Callback from the network layer to allow driver statistics
2459 * to be resynchronized with hardware collected state. In the
2460 * case of the velocity we need to pull the MIB counters from
2461 * the hardware into the counters before letting the network
2462 * layer display them.
2463 */
2464 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2465 {
2466 struct velocity_info *vptr = netdev_priv(dev);
2467
2468 /* If the hardware is down, don't touch MII */
2469 if (!netif_running(dev))
2470 return &dev->stats;
2471
2472 spin_lock_irq(&vptr->lock);
2473 velocity_update_hw_mibs(vptr);
2474 spin_unlock_irq(&vptr->lock);
2475
2476 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2477 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2478 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2479
2480 // unsigned long rx_dropped; /* no space in linux buffers */
2481 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2482 /* detailed rx_errors: */
2483 // unsigned long rx_length_errors;
2484 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2485 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2486 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2487 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2488 // unsigned long rx_missed_errors; /* receiver missed packet */
2489
2490 /* detailed tx_errors */
2491 // unsigned long tx_fifo_errors;
2492
2493 return &dev->stats;
2494 }
2495
2496 /**
2497 * velocity_close - close adapter callback
2498 * @dev: network device
2499 *
2500 * Callback from the network layer when the velocity is being
2501 * deactivated by the network layer
2502 */
2503 static int velocity_close(struct net_device *dev)
2504 {
2505 struct velocity_info *vptr = netdev_priv(dev);
2506
2507 napi_disable(&vptr->napi);
2508 netif_stop_queue(dev);
2509 velocity_shutdown(vptr);
2510
2511 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2512 velocity_get_ip(vptr);
2513 if (dev->irq != 0)
2514 free_irq(dev->irq, dev);
2515
2516 /* Power down the chip */
2517 pci_set_power_state(vptr->pdev, PCI_D3hot);
2518
2519 velocity_free_rings(vptr);
2520
2521 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2522 return 0;
2523 }
2524
2525 /**
2526 * velocity_xmit - transmit packet callback
2527 * @skb: buffer to transmit
2528 * @dev: network device
2529 *
2530 * Called by the networ layer to request a packet is queued to
2531 * the velocity. Returns zero on success.
2532 */
2533 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2534 struct net_device *dev)
2535 {
2536 struct velocity_info *vptr = netdev_priv(dev);
2537 int qnum = 0;
2538 struct tx_desc *td_ptr;
2539 struct velocity_td_info *tdinfo;
2540 unsigned long flags;
2541 int pktlen;
2542 int index, prev;
2543 int i = 0;
2544
2545 if (skb_padto(skb, ETH_ZLEN))
2546 goto out;
2547
2548 /* The hardware can handle at most 7 memory segments, so merge
2549 * the skb if there are more */
2550 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2551 kfree_skb(skb);
2552 return NETDEV_TX_OK;
2553 }
2554
2555 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2556 max_t(unsigned int, skb->len, ETH_ZLEN) :
2557 skb_headlen(skb);
2558
2559 spin_lock_irqsave(&vptr->lock, flags);
2560
2561 index = vptr->tx.curr[qnum];
2562 td_ptr = &(vptr->tx.rings[qnum][index]);
2563 tdinfo = &(vptr->tx.infos[qnum][index]);
2564
2565 td_ptr->tdesc1.TCR = TCR0_TIC;
2566 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2567
2568 /*
2569 * Map the linear network buffer into PCI space and
2570 * add it to the transmit ring.
2571 */
2572 tdinfo->skb = skb;
2573 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2574 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2575 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2576 td_ptr->td_buf[0].pa_high = 0;
2577 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2578
2579 /* Handle fragments */
2580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582
2583 tdinfo->skb_dma[i + 1] = pci_map_page(vptr->pdev, frag->page,
2584 frag->page_offset, frag->size,
2585 PCI_DMA_TODEVICE);
2586
2587 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2588 td_ptr->td_buf[i + 1].pa_high = 0;
2589 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2590 }
2591 tdinfo->nskb_dma = i + 1;
2592
2593 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2594
2595 if (vlan_tx_tag_present(skb)) {
2596 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2597 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2598 }
2599
2600 /*
2601 * Handle hardware checksum
2602 */
2603 if ((dev->features & NETIF_F_IP_CSUM) &&
2604 (skb->ip_summed == CHECKSUM_PARTIAL)) {
2605 const struct iphdr *ip = ip_hdr(skb);
2606 if (ip->protocol == IPPROTO_TCP)
2607 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2608 else if (ip->protocol == IPPROTO_UDP)
2609 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2610 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2611 }
2612
2613 prev = index - 1;
2614 if (prev < 0)
2615 prev = vptr->options.numtx - 1;
2616 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2617 vptr->tx.used[qnum]++;
2618 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2619
2620 if (AVAIL_TD(vptr, qnum) < 1)
2621 netif_stop_queue(dev);
2622
2623 td_ptr = &(vptr->tx.rings[qnum][prev]);
2624 td_ptr->td_buf[0].size |= TD_QUEUE;
2625 mac_tx_queue_wake(vptr->mac_regs, qnum);
2626
2627 spin_unlock_irqrestore(&vptr->lock, flags);
2628 out:
2629 return NETDEV_TX_OK;
2630 }
2631
2632
2633 static const struct net_device_ops velocity_netdev_ops = {
2634 .ndo_open = velocity_open,
2635 .ndo_stop = velocity_close,
2636 .ndo_start_xmit = velocity_xmit,
2637 .ndo_get_stats = velocity_get_stats,
2638 .ndo_validate_addr = eth_validate_addr,
2639 .ndo_set_mac_address = eth_mac_addr,
2640 .ndo_set_multicast_list = velocity_set_multi,
2641 .ndo_change_mtu = velocity_change_mtu,
2642 .ndo_do_ioctl = velocity_ioctl,
2643 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2644 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2645 .ndo_vlan_rx_register = velocity_vlan_rx_register,
2646 };
2647
2648 /**
2649 * velocity_init_info - init private data
2650 * @pdev: PCI device
2651 * @vptr: Velocity info
2652 * @info: Board type
2653 *
2654 * Set up the initial velocity_info struct for the device that has been
2655 * discovered.
2656 */
2657 static void __devinit velocity_init_info(struct pci_dev *pdev,
2658 struct velocity_info *vptr,
2659 const struct velocity_info_tbl *info)
2660 {
2661 memset(vptr, 0, sizeof(struct velocity_info));
2662
2663 vptr->pdev = pdev;
2664 vptr->chip_id = info->chip_id;
2665 vptr->tx.numq = info->txqueue;
2666 vptr->multicast_limit = MCAM_SIZE;
2667 spin_lock_init(&vptr->lock);
2668 }
2669
2670 /**
2671 * velocity_get_pci_info - retrieve PCI info for device
2672 * @vptr: velocity device
2673 * @pdev: PCI device it matches
2674 *
2675 * Retrieve the PCI configuration space data that interests us from
2676 * the kernel PCI layer
2677 */
2678 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2679 {
2680 vptr->rev_id = pdev->revision;
2681
2682 pci_set_master(pdev);
2683
2684 vptr->ioaddr = pci_resource_start(pdev, 0);
2685 vptr->memaddr = pci_resource_start(pdev, 1);
2686
2687 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2688 dev_err(&pdev->dev,
2689 "region #0 is not an I/O resource, aborting.\n");
2690 return -EINVAL;
2691 }
2692
2693 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2694 dev_err(&pdev->dev,
2695 "region #1 is an I/O resource, aborting.\n");
2696 return -EINVAL;
2697 }
2698
2699 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2700 dev_err(&pdev->dev, "region #1 is too small.\n");
2701 return -EINVAL;
2702 }
2703 vptr->pdev = pdev;
2704
2705 return 0;
2706 }
2707
2708 /**
2709 * velocity_print_info - per driver data
2710 * @vptr: velocity
2711 *
2712 * Print per driver data as the kernel driver finds Velocity
2713 * hardware
2714 */
2715 static void __devinit velocity_print_info(struct velocity_info *vptr)
2716 {
2717 struct net_device *dev = vptr->dev;
2718
2719 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2720 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2721 dev->name, dev->dev_addr);
2722 }
2723
2724 static u32 velocity_get_link(struct net_device *dev)
2725 {
2726 struct velocity_info *vptr = netdev_priv(dev);
2727 struct mac_regs __iomem *regs = vptr->mac_regs;
2728 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2729 }
2730
2731
2732 /**
2733 * velocity_found1 - set up discovered velocity card
2734 * @pdev: PCI device
2735 * @ent: PCI device table entry that matched
2736 *
2737 * Configure a discovered adapter from scratch. Return a negative
2738 * errno error code on failure paths.
2739 */
2740 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2741 {
2742 static int first = 1;
2743 struct net_device *dev;
2744 int i;
2745 const char *drv_string;
2746 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2747 struct velocity_info *vptr;
2748 struct mac_regs __iomem *regs;
2749 int ret = -ENOMEM;
2750
2751 /* FIXME: this driver, like almost all other ethernet drivers,
2752 * can support more than MAX_UNITS.
2753 */
2754 if (velocity_nics >= MAX_UNITS) {
2755 dev_notice(&pdev->dev, "already found %d NICs.\n",
2756 velocity_nics);
2757 return -ENODEV;
2758 }
2759
2760 dev = alloc_etherdev(sizeof(struct velocity_info));
2761 if (!dev) {
2762 dev_err(&pdev->dev, "allocate net device failed.\n");
2763 goto out;
2764 }
2765
2766 /* Chain it all together */
2767
2768 SET_NETDEV_DEV(dev, &pdev->dev);
2769 vptr = netdev_priv(dev);
2770
2771
2772 if (first) {
2773 printk(KERN_INFO "%s Ver. %s\n",
2774 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2775 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2776 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2777 first = 0;
2778 }
2779
2780 velocity_init_info(pdev, vptr, info);
2781
2782 vptr->dev = dev;
2783
2784 ret = pci_enable_device(pdev);
2785 if (ret < 0)
2786 goto err_free_dev;
2787
2788 dev->irq = pdev->irq;
2789
2790 ret = velocity_get_pci_info(vptr, pdev);
2791 if (ret < 0) {
2792 /* error message already printed */
2793 goto err_disable;
2794 }
2795
2796 ret = pci_request_regions(pdev, VELOCITY_NAME);
2797 if (ret < 0) {
2798 dev_err(&pdev->dev, "No PCI resources.\n");
2799 goto err_disable;
2800 }
2801
2802 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2803 if (regs == NULL) {
2804 ret = -EIO;
2805 goto err_release_res;
2806 }
2807
2808 vptr->mac_regs = regs;
2809
2810 mac_wol_reset(regs);
2811
2812 dev->base_addr = vptr->ioaddr;
2813
2814 for (i = 0; i < 6; i++)
2815 dev->dev_addr[i] = readb(&regs->PAR[i]);
2816
2817
2818 drv_string = dev_driver_string(&pdev->dev);
2819
2820 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2821
2822 /*
2823 * Mask out the options cannot be set to the chip
2824 */
2825
2826 vptr->options.flags &= info->flags;
2827
2828 /*
2829 * Enable the chip specified capbilities
2830 */
2831
2832 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2833
2834 vptr->wol_opts = vptr->options.wol_opts;
2835 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2836
2837 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2838
2839 dev->irq = pdev->irq;
2840 dev->netdev_ops = &velocity_netdev_ops;
2841 dev->ethtool_ops = &velocity_ethtool_ops;
2842 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2843
2844 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2845 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2846
2847 ret = register_netdev(dev);
2848 if (ret < 0)
2849 goto err_iounmap;
2850
2851 if (!velocity_get_link(dev)) {
2852 netif_carrier_off(dev);
2853 vptr->mii_status |= VELOCITY_LINK_FAIL;
2854 }
2855
2856 velocity_print_info(vptr);
2857 pci_set_drvdata(pdev, dev);
2858
2859 /* and leave the chip powered down */
2860
2861 pci_set_power_state(pdev, PCI_D3hot);
2862 velocity_nics++;
2863 out:
2864 return ret;
2865
2866 err_iounmap:
2867 iounmap(regs);
2868 err_release_res:
2869 pci_release_regions(pdev);
2870 err_disable:
2871 pci_disable_device(pdev);
2872 err_free_dev:
2873 free_netdev(dev);
2874 goto out;
2875 }
2876
2877
2878 #ifdef CONFIG_PM
2879 /**
2880 * wol_calc_crc - WOL CRC
2881 * @pattern: data pattern
2882 * @mask_pattern: mask
2883 *
2884 * Compute the wake on lan crc hashes for the packet header
2885 * we are interested in.
2886 */
2887 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2888 {
2889 u16 crc = 0xFFFF;
2890 u8 mask;
2891 int i, j;
2892
2893 for (i = 0; i < size; i++) {
2894 mask = mask_pattern[i];
2895
2896 /* Skip this loop if the mask equals to zero */
2897 if (mask == 0x00)
2898 continue;
2899
2900 for (j = 0; j < 8; j++) {
2901 if ((mask & 0x01) == 0) {
2902 mask >>= 1;
2903 continue;
2904 }
2905 mask >>= 1;
2906 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2907 }
2908 }
2909 /* Finally, invert the result once to get the correct data */
2910 crc = ~crc;
2911 return bitrev32(crc) >> 16;
2912 }
2913
2914 /**
2915 * velocity_set_wol - set up for wake on lan
2916 * @vptr: velocity to set WOL status on
2917 *
2918 * Set a card up for wake on lan either by unicast or by
2919 * ARP packet.
2920 *
2921 * FIXME: check static buffer is safe here
2922 */
2923 static int velocity_set_wol(struct velocity_info *vptr)
2924 {
2925 struct mac_regs __iomem *regs = vptr->mac_regs;
2926 static u8 buf[256];
2927 int i;
2928
2929 static u32 mask_pattern[2][4] = {
2930 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2931 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2932 };
2933
2934 writew(0xFFFF, &regs->WOLCRClr);
2935 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2936 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2937
2938 /*
2939 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2940 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2941 */
2942
2943 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2944 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2945
2946 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2947 struct arp_packet *arp = (struct arp_packet *) buf;
2948 u16 crc;
2949 memset(buf, 0, sizeof(struct arp_packet) + 7);
2950
2951 for (i = 0; i < 4; i++)
2952 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2953
2954 arp->type = htons(ETH_P_ARP);
2955 arp->ar_op = htons(1);
2956
2957 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2958
2959 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2960 (u8 *) & mask_pattern[0][0]);
2961
2962 writew(crc, &regs->PatternCRC[0]);
2963 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2964 }
2965
2966 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2967 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2968
2969 writew(0x0FFF, &regs->WOLSRClr);
2970
2971 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2972 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2973 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2974
2975 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2976 }
2977
2978 if (vptr->mii_status & VELOCITY_SPEED_1000)
2979 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2980
2981 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2982
2983 {
2984 u8 GCR;
2985 GCR = readb(&regs->CHIPGCR);
2986 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2987 writeb(GCR, &regs->CHIPGCR);
2988 }
2989
2990 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2991 /* Turn on SWPTAG just before entering power mode */
2992 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2993 /* Go to bed ..... */
2994 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2995
2996 return 0;
2997 }
2998
2999 /**
3000 * velocity_save_context - save registers
3001 * @vptr: velocity
3002 * @context: buffer for stored context
3003 *
3004 * Retrieve the current configuration from the velocity hardware
3005 * and stash it in the context structure, for use by the context
3006 * restore functions. This allows us to save things we need across
3007 * power down states
3008 */
3009 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3010 {
3011 struct mac_regs __iomem *regs = vptr->mac_regs;
3012 u16 i;
3013 u8 __iomem *ptr = (u8 __iomem *)regs;
3014
3015 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3016 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3017
3018 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3019 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3020
3021 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3022 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3023
3024 }
3025
3026 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3027 {
3028 struct net_device *dev = pci_get_drvdata(pdev);
3029 struct velocity_info *vptr = netdev_priv(dev);
3030 unsigned long flags;
3031
3032 if (!netif_running(vptr->dev))
3033 return 0;
3034
3035 netif_device_detach(vptr->dev);
3036
3037 spin_lock_irqsave(&vptr->lock, flags);
3038 pci_save_state(pdev);
3039 #ifdef ETHTOOL_GWOL
3040 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3041 velocity_get_ip(vptr);
3042 velocity_save_context(vptr, &vptr->context);
3043 velocity_shutdown(vptr);
3044 velocity_set_wol(vptr);
3045 pci_enable_wake(pdev, PCI_D3hot, 1);
3046 pci_set_power_state(pdev, PCI_D3hot);
3047 } else {
3048 velocity_save_context(vptr, &vptr->context);
3049 velocity_shutdown(vptr);
3050 pci_disable_device(pdev);
3051 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3052 }
3053 #else
3054 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3055 #endif
3056 spin_unlock_irqrestore(&vptr->lock, flags);
3057 return 0;
3058 }
3059
3060 /**
3061 * velocity_restore_context - restore registers
3062 * @vptr: velocity
3063 * @context: buffer for stored context
3064 *
3065 * Reload the register configuration from the velocity context
3066 * created by velocity_save_context.
3067 */
3068 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3069 {
3070 struct mac_regs __iomem *regs = vptr->mac_regs;
3071 int i;
3072 u8 __iomem *ptr = (u8 __iomem *)regs;
3073
3074 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3075 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3076
3077 /* Just skip cr0 */
3078 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3079 /* Clear */
3080 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3081 /* Set */
3082 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3083 }
3084
3085 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3086 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3087
3088 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3089 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3090
3091 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3092 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3093 }
3094
3095 static int velocity_resume(struct pci_dev *pdev)
3096 {
3097 struct net_device *dev = pci_get_drvdata(pdev);
3098 struct velocity_info *vptr = netdev_priv(dev);
3099 unsigned long flags;
3100 int i;
3101
3102 if (!netif_running(vptr->dev))
3103 return 0;
3104
3105 pci_set_power_state(pdev, PCI_D0);
3106 pci_enable_wake(pdev, 0, 0);
3107 pci_restore_state(pdev);
3108
3109 mac_wol_reset(vptr->mac_regs);
3110
3111 spin_lock_irqsave(&vptr->lock, flags);
3112 velocity_restore_context(vptr, &vptr->context);
3113 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3114 mac_disable_int(vptr->mac_regs);
3115
3116 velocity_tx_srv(vptr);
3117
3118 for (i = 0; i < vptr->tx.numq; i++) {
3119 if (vptr->tx.used[i])
3120 mac_tx_queue_wake(vptr->mac_regs, i);
3121 }
3122
3123 mac_enable_int(vptr->mac_regs);
3124 spin_unlock_irqrestore(&vptr->lock, flags);
3125 netif_device_attach(vptr->dev);
3126
3127 return 0;
3128 }
3129 #endif
3130
3131 /*
3132 * Definition for our device driver. The PCI layer interface
3133 * uses this to handle all our card discover and plugging
3134 */
3135 static struct pci_driver velocity_driver = {
3136 .name = VELOCITY_NAME,
3137 .id_table = velocity_id_table,
3138 .probe = velocity_found1,
3139 .remove = __devexit_p(velocity_remove1),
3140 #ifdef CONFIG_PM
3141 .suspend = velocity_suspend,
3142 .resume = velocity_resume,
3143 #endif
3144 };
3145
3146
3147 /**
3148 * velocity_ethtool_up - pre hook for ethtool
3149 * @dev: network device
3150 *
3151 * Called before an ethtool operation. We need to make sure the
3152 * chip is out of D3 state before we poke at it.
3153 */
3154 static int velocity_ethtool_up(struct net_device *dev)
3155 {
3156 struct velocity_info *vptr = netdev_priv(dev);
3157 if (!netif_running(dev))
3158 pci_set_power_state(vptr->pdev, PCI_D0);
3159 return 0;
3160 }
3161
3162 /**
3163 * velocity_ethtool_down - post hook for ethtool
3164 * @dev: network device
3165 *
3166 * Called after an ethtool operation. Restore the chip back to D3
3167 * state if it isn't running.
3168 */
3169 static void velocity_ethtool_down(struct net_device *dev)
3170 {
3171 struct velocity_info *vptr = netdev_priv(dev);
3172 if (!netif_running(dev))
3173 pci_set_power_state(vptr->pdev, PCI_D3hot);
3174 }
3175
3176 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3177 {
3178 struct velocity_info *vptr = netdev_priv(dev);
3179 struct mac_regs __iomem *regs = vptr->mac_regs;
3180 u32 status;
3181 status = check_connection_type(vptr->mac_regs);
3182
3183 cmd->supported = SUPPORTED_TP |
3184 SUPPORTED_Autoneg |
3185 SUPPORTED_10baseT_Half |
3186 SUPPORTED_10baseT_Full |
3187 SUPPORTED_100baseT_Half |
3188 SUPPORTED_100baseT_Full |
3189 SUPPORTED_1000baseT_Half |
3190 SUPPORTED_1000baseT_Full;
3191
3192 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3193 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3194 cmd->advertising |=
3195 ADVERTISED_10baseT_Half |
3196 ADVERTISED_10baseT_Full |
3197 ADVERTISED_100baseT_Half |
3198 ADVERTISED_100baseT_Full |
3199 ADVERTISED_1000baseT_Half |
3200 ADVERTISED_1000baseT_Full;
3201 } else {
3202 switch (vptr->options.spd_dpx) {
3203 case SPD_DPX_1000_FULL:
3204 cmd->advertising |= ADVERTISED_1000baseT_Full;
3205 break;
3206 case SPD_DPX_100_HALF:
3207 cmd->advertising |= ADVERTISED_100baseT_Half;
3208 break;
3209 case SPD_DPX_100_FULL:
3210 cmd->advertising |= ADVERTISED_100baseT_Full;
3211 break;
3212 case SPD_DPX_10_HALF:
3213 cmd->advertising |= ADVERTISED_10baseT_Half;
3214 break;
3215 case SPD_DPX_10_FULL:
3216 cmd->advertising |= ADVERTISED_10baseT_Full;
3217 break;
3218 default:
3219 break;
3220 }
3221 }
3222 if (status & VELOCITY_SPEED_1000)
3223 cmd->speed = SPEED_1000;
3224 else if (status & VELOCITY_SPEED_100)
3225 cmd->speed = SPEED_100;
3226 else
3227 cmd->speed = SPEED_10;
3228 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3229 cmd->port = PORT_TP;
3230 cmd->transceiver = XCVR_INTERNAL;
3231 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3232
3233 if (status & VELOCITY_DUPLEX_FULL)
3234 cmd->duplex = DUPLEX_FULL;
3235 else
3236 cmd->duplex = DUPLEX_HALF;
3237
3238 return 0;
3239 }
3240
3241 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3242 {
3243 struct velocity_info *vptr = netdev_priv(dev);
3244 u32 curr_status;
3245 u32 new_status = 0;
3246 int ret = 0;
3247
3248 curr_status = check_connection_type(vptr->mac_regs);
3249 curr_status &= (~VELOCITY_LINK_FAIL);
3250
3251 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3252 new_status |= ((cmd->speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3253 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3254 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3255 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3256
3257 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3258 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3259 ret = -EINVAL;
3260 } else {
3261 enum speed_opt spd_dpx;
3262
3263 if (new_status & VELOCITY_AUTONEG_ENABLE)
3264 spd_dpx = SPD_DPX_AUTO;
3265 else if ((new_status & VELOCITY_SPEED_1000) &&
3266 (new_status & VELOCITY_DUPLEX_FULL)) {
3267 spd_dpx = SPD_DPX_1000_FULL;
3268 } else if (new_status & VELOCITY_SPEED_100)
3269 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3270 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3271 else if (new_status & VELOCITY_SPEED_10)
3272 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3273 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3274 else
3275 return -EOPNOTSUPP;
3276
3277 vptr->options.spd_dpx = spd_dpx;
3278
3279 velocity_set_media_mode(vptr, new_status);
3280 }
3281
3282 return ret;
3283 }
3284
3285 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3286 {
3287 struct velocity_info *vptr = netdev_priv(dev);
3288 strcpy(info->driver, VELOCITY_NAME);
3289 strcpy(info->version, VELOCITY_VERSION);
3290 strcpy(info->bus_info, pci_name(vptr->pdev));
3291 }
3292
3293 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3294 {
3295 struct velocity_info *vptr = netdev_priv(dev);
3296 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3297 wol->wolopts |= WAKE_MAGIC;
3298 /*
3299 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3300 wol.wolopts|=WAKE_PHY;
3301 */
3302 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3303 wol->wolopts |= WAKE_UCAST;
3304 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3305 wol->wolopts |= WAKE_ARP;
3306 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3307 }
3308
3309 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3310 {
3311 struct velocity_info *vptr = netdev_priv(dev);
3312
3313 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3314 return -EFAULT;
3315 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3316
3317 /*
3318 if (wol.wolopts & WAKE_PHY) {
3319 vptr->wol_opts|=VELOCITY_WOL_PHY;
3320 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3321 }
3322 */
3323
3324 if (wol->wolopts & WAKE_MAGIC) {
3325 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3326 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3327 }
3328 if (wol->wolopts & WAKE_UCAST) {
3329 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3330 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3331 }
3332 if (wol->wolopts & WAKE_ARP) {
3333 vptr->wol_opts |= VELOCITY_WOL_ARP;
3334 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3335 }
3336 memcpy(vptr->wol_passwd, wol->sopass, 6);
3337 return 0;
3338 }
3339
3340 static u32 velocity_get_msglevel(struct net_device *dev)
3341 {
3342 return msglevel;
3343 }
3344
3345 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3346 {
3347 msglevel = value;
3348 }
3349
3350 static int get_pending_timer_val(int val)
3351 {
3352 int mult_bits = val >> 6;
3353 int mult = 1;
3354
3355 switch (mult_bits)
3356 {
3357 case 1:
3358 mult = 4; break;
3359 case 2:
3360 mult = 16; break;
3361 case 3:
3362 mult = 64; break;
3363 case 0:
3364 default:
3365 break;
3366 }
3367
3368 return (val & 0x3f) * mult;
3369 }
3370
3371 static void set_pending_timer_val(int *val, u32 us)
3372 {
3373 u8 mult = 0;
3374 u8 shift = 0;
3375
3376 if (us >= 0x3f) {
3377 mult = 1; /* mult with 4 */
3378 shift = 2;
3379 }
3380 if (us >= 0x3f * 4) {
3381 mult = 2; /* mult with 16 */
3382 shift = 4;
3383 }
3384 if (us >= 0x3f * 16) {
3385 mult = 3; /* mult with 64 */
3386 shift = 6;
3387 }
3388
3389 *val = (mult << 6) | ((us >> shift) & 0x3f);
3390 }
3391
3392
3393 static int velocity_get_coalesce(struct net_device *dev,
3394 struct ethtool_coalesce *ecmd)
3395 {
3396 struct velocity_info *vptr = netdev_priv(dev);
3397
3398 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3399 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3400
3401 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3402 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3403
3404 return 0;
3405 }
3406
3407 static int velocity_set_coalesce(struct net_device *dev,
3408 struct ethtool_coalesce *ecmd)
3409 {
3410 struct velocity_info *vptr = netdev_priv(dev);
3411 int max_us = 0x3f * 64;
3412 unsigned long flags;
3413
3414 /* 6 bits of */
3415 if (ecmd->tx_coalesce_usecs > max_us)
3416 return -EINVAL;
3417 if (ecmd->rx_coalesce_usecs > max_us)
3418 return -EINVAL;
3419
3420 if (ecmd->tx_max_coalesced_frames > 0xff)
3421 return -EINVAL;
3422 if (ecmd->rx_max_coalesced_frames > 0xff)
3423 return -EINVAL;
3424
3425 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3426 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3427
3428 set_pending_timer_val(&vptr->options.rxqueue_timer,
3429 ecmd->rx_coalesce_usecs);
3430 set_pending_timer_val(&vptr->options.txqueue_timer,
3431 ecmd->tx_coalesce_usecs);
3432
3433 /* Setup the interrupt suppression and queue timers */
3434 spin_lock_irqsave(&vptr->lock, flags);
3435 mac_disable_int(vptr->mac_regs);
3436 setup_adaptive_interrupts(vptr);
3437 setup_queue_timers(vptr);
3438
3439 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3440 mac_clear_isr(vptr->mac_regs);
3441 mac_enable_int(vptr->mac_regs);
3442 spin_unlock_irqrestore(&vptr->lock, flags);
3443
3444 return 0;
3445 }
3446
3447 static const struct ethtool_ops velocity_ethtool_ops = {
3448 .get_settings = velocity_get_settings,
3449 .set_settings = velocity_set_settings,
3450 .get_drvinfo = velocity_get_drvinfo,
3451 .set_tx_csum = ethtool_op_set_tx_csum,
3452 .get_tx_csum = ethtool_op_get_tx_csum,
3453 .get_wol = velocity_ethtool_get_wol,
3454 .set_wol = velocity_ethtool_set_wol,
3455 .get_msglevel = velocity_get_msglevel,
3456 .set_msglevel = velocity_set_msglevel,
3457 .set_sg = ethtool_op_set_sg,
3458 .get_link = velocity_get_link,
3459 .get_coalesce = velocity_get_coalesce,
3460 .set_coalesce = velocity_set_coalesce,
3461 .begin = velocity_ethtool_up,
3462 .complete = velocity_ethtool_down
3463 };
3464
3465 #ifdef CONFIG_PM
3466 #ifdef CONFIG_INET
3467 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3468 {
3469 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3470 struct net_device *dev = ifa->ifa_dev->dev;
3471
3472 if (dev_net(dev) == &init_net &&
3473 dev->netdev_ops == &velocity_netdev_ops)
3474 velocity_get_ip(netdev_priv(dev));
3475
3476 return NOTIFY_DONE;
3477 }
3478 #endif /* CONFIG_INET */
3479 #endif /* CONFIG_PM */
3480
3481 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3482 static struct notifier_block velocity_inetaddr_notifier = {
3483 .notifier_call = velocity_netdev_event,
3484 };
3485
3486 static void velocity_register_notifier(void)
3487 {
3488 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3489 }
3490
3491 static void velocity_unregister_notifier(void)
3492 {
3493 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3494 }
3495
3496 #else
3497
3498 #define velocity_register_notifier() do {} while (0)
3499 #define velocity_unregister_notifier() do {} while (0)
3500
3501 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3502
3503 /**
3504 * velocity_init_module - load time function
3505 *
3506 * Called when the velocity module is loaded. The PCI driver
3507 * is registered with the PCI layer, and in turn will call
3508 * the probe functions for each velocity adapter installed
3509 * in the system.
3510 */
3511 static int __init velocity_init_module(void)
3512 {
3513 int ret;
3514
3515 velocity_register_notifier();
3516 ret = pci_register_driver(&velocity_driver);
3517 if (ret < 0)
3518 velocity_unregister_notifier();
3519 return ret;
3520 }
3521
3522 /**
3523 * velocity_cleanup - module unload
3524 *
3525 * When the velocity hardware is unloaded this function is called.
3526 * It will clean up the notifiers and the unregister the PCI
3527 * driver interface for this hardware. This in turn cleans up
3528 * all discovered interfaces before returning from the function
3529 */
3530 static void __exit velocity_cleanup_module(void)
3531 {
3532 velocity_unregister_notifier();
3533 pci_unregister_driver(&velocity_driver);
3534 }
3535
3536 module_init(velocity_init_module);
3537 module_exit(velocity_cleanup_module);
This page took 0.120517 seconds and 5 git commands to generate.