netdev: convert bulk of drivers to netdev_tx_t
[deliverable/linux.git] / drivers / net / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * Scatter gather
13 * More testing
14 *
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16 * Additional fixes and clean up: Francois Romieu
17 *
18 * This source has not been verified for use in safety critical systems.
19 *
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
22 *
23 * Original code:
24 *
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
27 *
28 * This software may be redistributed and/or modified under
29 * the terms of the GNU General Public License as published by the Free
30 * Software Foundation; either version 2 of the License, or
31 * any later version.
32 *
33 * This program is distributed in the hope that it will be useful, but
34 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
36 * for more details.
37 *
38 * Author: Chuang Liang-Shing, AJ Jiang
39 *
40 * Date: Jan 24, 2003
41 *
42 * MODULE_LICENSE("GPL");
43 *
44 */
45
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
80
81 #include "via-velocity.h"
82
83
84 static int velocity_nics;
85 static int msglevel = MSG_LEVEL_INFO;
86
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
91 *
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
94 */
95 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
96 {
97 int i;
98
99 /* Select CAM mask */
100 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
101
102 writeb(0, &regs->CAMADDR);
103
104 /* read mask */
105 for (i = 0; i < 8; i++)
106 *mask++ = readb(&(regs->MARCAM[i]));
107
108 /* disable CAMEN */
109 writeb(0, &regs->CAMADDR);
110
111 /* Select mar */
112 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
113 }
114
115
116 /**
117 * mac_set_cam_mask - Set a CAM mask
118 * @regs: register block for this velocity
119 * @mask: CAM mask to load
120 *
121 * Store a new mask into a CAM
122 */
123 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
124 {
125 int i;
126 /* Select CAM mask */
127 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
128
129 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
130
131 for (i = 0; i < 8; i++)
132 writeb(*mask++, &(regs->MARCAM[i]));
133
134 /* disable CAMEN */
135 writeb(0, &regs->CAMADDR);
136
137 /* Select mar */
138 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
139 }
140
141 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
142 {
143 int i;
144 /* Select CAM mask */
145 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
146
147 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
148
149 for (i = 0; i < 8; i++)
150 writeb(*mask++, &(regs->MARCAM[i]));
151
152 /* disable CAMEN */
153 writeb(0, &regs->CAMADDR);
154
155 /* Select mar */
156 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
157 }
158
159 /**
160 * mac_set_cam - set CAM data
161 * @regs: register block of this velocity
162 * @idx: Cam index
163 * @addr: 2 or 6 bytes of CAM data
164 *
165 * Load an address or vlan tag into a CAM
166 */
167 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
168 {
169 int i;
170
171 /* Select CAM mask */
172 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
173
174 idx &= (64 - 1);
175
176 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
177
178 for (i = 0; i < 6; i++)
179 writeb(*addr++, &(regs->MARCAM[i]));
180
181 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
182
183 udelay(10);
184
185 writeb(0, &regs->CAMADDR);
186
187 /* Select mar */
188 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
189 }
190
191 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
192 const u8 *addr)
193 {
194
195 /* Select CAM mask */
196 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
197
198 idx &= (64 - 1);
199
200 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
201 writew(*((u16 *) addr), &regs->MARCAM[0]);
202
203 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
204
205 udelay(10);
206
207 writeb(0, &regs->CAMADDR);
208
209 /* Select mar */
210 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
211 }
212
213
214 /**
215 * mac_wol_reset - reset WOL after exiting low power
216 * @regs: register block of this velocity
217 *
218 * Called after we drop out of wake on lan mode in order to
219 * reset the Wake on lan features. This function doesn't restore
220 * the rest of the logic from the result of sleep/wakeup
221 */
222 static void mac_wol_reset(struct mac_regs __iomem *regs)
223 {
224
225 /* Turn off SWPTAG right after leaving power mode */
226 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
227 /* clear sticky bits */
228 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
229
230 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
231 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
232 /* disable force PME-enable */
233 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
234 /* disable power-event config bit */
235 writew(0xFFFF, &regs->WOLCRClr);
236 /* clear power status */
237 writew(0xFFFF, &regs->WOLSRClr);
238 }
239
240 static const struct ethtool_ops velocity_ethtool_ops;
241
242 /*
243 Define module options
244 */
245
246 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
247 MODULE_LICENSE("GPL");
248 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
249
250 #define VELOCITY_PARAM(N, D) \
251 static int N[MAX_UNITS] = OPTION_DEFAULT;\
252 module_param_array(N, int, NULL, 0); \
253 MODULE_PARM_DESC(N, D);
254
255 #define RX_DESC_MIN 64
256 #define RX_DESC_MAX 255
257 #define RX_DESC_DEF 64
258 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
259
260 #define TX_DESC_MIN 16
261 #define TX_DESC_MAX 256
262 #define TX_DESC_DEF 64
263 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
264
265 #define RX_THRESH_MIN 0
266 #define RX_THRESH_MAX 3
267 #define RX_THRESH_DEF 0
268 /* rx_thresh[] is used for controlling the receive fifo threshold.
269 0: indicate the rxfifo threshold is 128 bytes.
270 1: indicate the rxfifo threshold is 512 bytes.
271 2: indicate the rxfifo threshold is 1024 bytes.
272 3: indicate the rxfifo threshold is store & forward.
273 */
274 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
275
276 #define DMA_LENGTH_MIN 0
277 #define DMA_LENGTH_MAX 7
278 #define DMA_LENGTH_DEF 0
279
280 /* DMA_length[] is used for controlling the DMA length
281 0: 8 DWORDs
282 1: 16 DWORDs
283 2: 32 DWORDs
284 3: 64 DWORDs
285 4: 128 DWORDs
286 5: 256 DWORDs
287 6: SF(flush till emply)
288 7: SF(flush till emply)
289 */
290 VELOCITY_PARAM(DMA_length, "DMA length");
291
292 #define IP_ALIG_DEF 0
293 /* IP_byte_align[] is used for IP header DWORD byte aligned
294 0: indicate the IP header won't be DWORD byte aligned.(Default) .
295 1: indicate the IP header will be DWORD byte aligned.
296 In some enviroment, the IP header should be DWORD byte aligned,
297 or the packet will be droped when we receive it. (eg: IPVS)
298 */
299 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
300
301 #define TX_CSUM_DEF 1
302 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
303 (We only support RX checksum offload now)
304 0: disable csum_offload[checksum offload
305 1: enable checksum offload. (Default)
306 */
307 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
308
309 #define FLOW_CNTL_DEF 1
310 #define FLOW_CNTL_MIN 1
311 #define FLOW_CNTL_MAX 5
312
313 /* flow_control[] is used for setting the flow control ability of NIC.
314 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
315 2: enable TX flow control.
316 3: enable RX flow control.
317 4: enable RX/TX flow control.
318 5: disable
319 */
320 VELOCITY_PARAM(flow_control, "Enable flow control ability");
321
322 #define MED_LNK_DEF 0
323 #define MED_LNK_MIN 0
324 #define MED_LNK_MAX 4
325 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
326 0: indicate autonegotiation for both speed and duplex mode
327 1: indicate 100Mbps half duplex mode
328 2: indicate 100Mbps full duplex mode
329 3: indicate 10Mbps half duplex mode
330 4: indicate 10Mbps full duplex mode
331
332 Note:
333 if EEPROM have been set to the force mode, this option is ignored
334 by driver.
335 */
336 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
337
338 #define VAL_PKT_LEN_DEF 0
339 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
340 0: Receive frame with invalid layer 2 length (Default)
341 1: Drop frame with invalid layer 2 length
342 */
343 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
344
345 #define WOL_OPT_DEF 0
346 #define WOL_OPT_MIN 0
347 #define WOL_OPT_MAX 7
348 /* wol_opts[] is used for controlling wake on lan behavior.
349 0: Wake up if recevied a magic packet. (Default)
350 1: Wake up if link status is on/off.
351 2: Wake up if recevied an arp packet.
352 4: Wake up if recevied any unicast packet.
353 Those value can be sumed up to support more than one option.
354 */
355 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
356
357 #define INT_WORKS_DEF 20
358 #define INT_WORKS_MIN 10
359 #define INT_WORKS_MAX 64
360
361 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
362
363 static int rx_copybreak = 200;
364 module_param(rx_copybreak, int, 0644);
365 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
366
367 #ifdef CONFIG_PM
368 static DEFINE_SPINLOCK(velocity_dev_list_lock);
369 static LIST_HEAD(velocity_dev_list);
370 #endif
371
372 /*
373 * Internal board variants. At the moment we have only one
374 */
375 static struct velocity_info_tbl chip_info_table[] = {
376 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
377 { }
378 };
379
380 /*
381 * Describe the PCI device identifiers that we support in this
382 * device driver. Used for hotplug autoloading.
383 */
384 static const struct pci_device_id velocity_id_table[] __devinitdata = {
385 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
386 { }
387 };
388
389 MODULE_DEVICE_TABLE(pci, velocity_id_table);
390
391 /**
392 * get_chip_name - identifier to name
393 * @id: chip identifier
394 *
395 * Given a chip identifier return a suitable description. Returns
396 * a pointer a static string valid while the driver is loaded.
397 */
398 static const char __devinit *get_chip_name(enum chip_type chip_id)
399 {
400 int i;
401 for (i = 0; chip_info_table[i].name != NULL; i++)
402 if (chip_info_table[i].chip_id == chip_id)
403 break;
404 return chip_info_table[i].name;
405 }
406
407 /**
408 * velocity_remove1 - device unplug
409 * @pdev: PCI device being removed
410 *
411 * Device unload callback. Called on an unplug or on module
412 * unload for each active device that is present. Disconnects
413 * the device from the network layer and frees all the resources
414 */
415 static void __devexit velocity_remove1(struct pci_dev *pdev)
416 {
417 struct net_device *dev = pci_get_drvdata(pdev);
418 struct velocity_info *vptr = netdev_priv(dev);
419
420 #ifdef CONFIG_PM
421 unsigned long flags;
422
423 spin_lock_irqsave(&velocity_dev_list_lock, flags);
424 if (!list_empty(&velocity_dev_list))
425 list_del(&vptr->list);
426 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
427 #endif
428 unregister_netdev(dev);
429 iounmap(vptr->mac_regs);
430 pci_release_regions(pdev);
431 pci_disable_device(pdev);
432 pci_set_drvdata(pdev, NULL);
433 free_netdev(dev);
434
435 velocity_nics--;
436 }
437
438 /**
439 * velocity_set_int_opt - parser for integer options
440 * @opt: pointer to option value
441 * @val: value the user requested (or -1 for default)
442 * @min: lowest value allowed
443 * @max: highest value allowed
444 * @def: default value
445 * @name: property name
446 * @dev: device name
447 *
448 * Set an integer property in the module options. This function does
449 * all the verification and checking as well as reporting so that
450 * we don't duplicate code for each option.
451 */
452 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
453 {
454 if (val == -1)
455 *opt = def;
456 else if (val < min || val > max) {
457 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
458 devname, name, min, max);
459 *opt = def;
460 } else {
461 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
462 devname, name, val);
463 *opt = val;
464 }
465 }
466
467 /**
468 * velocity_set_bool_opt - parser for boolean options
469 * @opt: pointer to option value
470 * @val: value the user requested (or -1 for default)
471 * @def: default value (yes/no)
472 * @flag: numeric value to set for true.
473 * @name: property name
474 * @dev: device name
475 *
476 * Set a boolean property in the module options. This function does
477 * all the verification and checking as well as reporting so that
478 * we don't duplicate code for each option.
479 */
480 static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
481 {
482 (*opt) &= (~flag);
483 if (val == -1)
484 *opt |= (def ? flag : 0);
485 else if (val < 0 || val > 1) {
486 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
487 devname, name);
488 *opt |= (def ? flag : 0);
489 } else {
490 printk(KERN_INFO "%s: set parameter %s to %s\n",
491 devname, name, val ? "TRUE" : "FALSE");
492 *opt |= (val ? flag : 0);
493 }
494 }
495
496 /**
497 * velocity_get_options - set options on device
498 * @opts: option structure for the device
499 * @index: index of option to use in module options array
500 * @devname: device name
501 *
502 * Turn the module and command options into a single structure
503 * for the current device
504 */
505 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
506 {
507
508 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
509 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
510 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
511 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
512
513 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
514 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
515 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
516 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
517 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
518 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
519 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
520 opts->numrx = (opts->numrx & ~3);
521 }
522
523 /**
524 * velocity_init_cam_filter - initialise CAM
525 * @vptr: velocity to program
526 *
527 * Initialize the content addressable memory used for filters. Load
528 * appropriately according to the presence of VLAN
529 */
530 static void velocity_init_cam_filter(struct velocity_info *vptr)
531 {
532 struct mac_regs __iomem *regs = vptr->mac_regs;
533
534 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
535 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
536 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
537
538 /* Disable all CAMs */
539 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
540 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
541 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
542 mac_set_cam_mask(regs, vptr->mCAMmask);
543
544 /* Enable VCAMs */
545 if (vptr->vlgrp) {
546 unsigned int vid, i = 0;
547
548 if (!vlan_group_get_device(vptr->vlgrp, 0))
549 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
550
551 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
552 if (vlan_group_get_device(vptr->vlgrp, vid)) {
553 mac_set_vlan_cam(regs, i, (u8 *) &vid);
554 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
555 if (++i >= VCAM_SIZE)
556 break;
557 }
558 }
559 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
560 }
561 }
562
563 static void velocity_vlan_rx_register(struct net_device *dev,
564 struct vlan_group *grp)
565 {
566 struct velocity_info *vptr = netdev_priv(dev);
567
568 vptr->vlgrp = grp;
569 }
570
571 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
572 {
573 struct velocity_info *vptr = netdev_priv(dev);
574
575 spin_lock_irq(&vptr->lock);
576 velocity_init_cam_filter(vptr);
577 spin_unlock_irq(&vptr->lock);
578 }
579
580 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
581 {
582 struct velocity_info *vptr = netdev_priv(dev);
583
584 spin_lock_irq(&vptr->lock);
585 vlan_group_set_device(vptr->vlgrp, vid, NULL);
586 velocity_init_cam_filter(vptr);
587 spin_unlock_irq(&vptr->lock);
588 }
589
590 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
591 {
592 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
593 }
594
595 /**
596 * velocity_rx_reset - handle a receive reset
597 * @vptr: velocity we are resetting
598 *
599 * Reset the ownership and status for the receive ring side.
600 * Hand all the receive queue to the NIC.
601 */
602 static void velocity_rx_reset(struct velocity_info *vptr)
603 {
604
605 struct mac_regs __iomem *regs = vptr->mac_regs;
606 int i;
607
608 velocity_init_rx_ring_indexes(vptr);
609
610 /*
611 * Init state, all RD entries belong to the NIC
612 */
613 for (i = 0; i < vptr->options.numrx; ++i)
614 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
615
616 writew(vptr->options.numrx, &regs->RBRDU);
617 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
618 writew(0, &regs->RDIdx);
619 writew(vptr->options.numrx - 1, &regs->RDCSize);
620 }
621
622 /**
623 * velocity_get_opt_media_mode - get media selection
624 * @vptr: velocity adapter
625 *
626 * Get the media mode stored in EEPROM or module options and load
627 * mii_status accordingly. The requested link state information
628 * is also returned.
629 */
630 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
631 {
632 u32 status = 0;
633
634 switch (vptr->options.spd_dpx) {
635 case SPD_DPX_AUTO:
636 status = VELOCITY_AUTONEG_ENABLE;
637 break;
638 case SPD_DPX_100_FULL:
639 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
640 break;
641 case SPD_DPX_10_FULL:
642 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
643 break;
644 case SPD_DPX_100_HALF:
645 status = VELOCITY_SPEED_100;
646 break;
647 case SPD_DPX_10_HALF:
648 status = VELOCITY_SPEED_10;
649 break;
650 }
651 vptr->mii_status = status;
652 return status;
653 }
654
655 /**
656 * safe_disable_mii_autopoll - autopoll off
657 * @regs: velocity registers
658 *
659 * Turn off the autopoll and wait for it to disable on the chip
660 */
661 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
662 {
663 u16 ww;
664
665 /* turn off MAUTO */
666 writeb(0, &regs->MIICR);
667 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
668 udelay(1);
669 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
670 break;
671 }
672 }
673
674 /**
675 * enable_mii_autopoll - turn on autopolling
676 * @regs: velocity registers
677 *
678 * Enable the MII link status autopoll feature on the Velocity
679 * hardware. Wait for it to enable.
680 */
681 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
682 {
683 int ii;
684
685 writeb(0, &(regs->MIICR));
686 writeb(MIIADR_SWMPL, &regs->MIIADR);
687
688 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
689 udelay(1);
690 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
691 break;
692 }
693
694 writeb(MIICR_MAUTO, &regs->MIICR);
695
696 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
697 udelay(1);
698 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
699 break;
700 }
701
702 }
703
704 /**
705 * velocity_mii_read - read MII data
706 * @regs: velocity registers
707 * @index: MII register index
708 * @data: buffer for received data
709 *
710 * Perform a single read of an MII 16bit register. Returns zero
711 * on success or -ETIMEDOUT if the PHY did not respond.
712 */
713 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
714 {
715 u16 ww;
716
717 /*
718 * Disable MIICR_MAUTO, so that mii addr can be set normally
719 */
720 safe_disable_mii_autopoll(regs);
721
722 writeb(index, &regs->MIIADR);
723
724 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
725
726 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
727 if (!(readb(&regs->MIICR) & MIICR_RCMD))
728 break;
729 }
730
731 *data = readw(&regs->MIIDATA);
732
733 enable_mii_autopoll(regs);
734 if (ww == W_MAX_TIMEOUT)
735 return -ETIMEDOUT;
736 return 0;
737 }
738
739
740 /**
741 * mii_check_media_mode - check media state
742 * @regs: velocity registers
743 *
744 * Check the current MII status and determine the link status
745 * accordingly
746 */
747 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
748 {
749 u32 status = 0;
750 u16 ANAR;
751
752 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
753 status |= VELOCITY_LINK_FAIL;
754
755 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
756 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
757 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
758 status |= (VELOCITY_SPEED_1000);
759 else {
760 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
761 if (ANAR & ANAR_TXFD)
762 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
763 else if (ANAR & ANAR_TX)
764 status |= VELOCITY_SPEED_100;
765 else if (ANAR & ANAR_10FD)
766 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
767 else
768 status |= (VELOCITY_SPEED_10);
769 }
770
771 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
772 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
773 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
774 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
775 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
776 status |= VELOCITY_AUTONEG_ENABLE;
777 }
778 }
779
780 return status;
781 }
782
783 /**
784 * velocity_mii_write - write MII data
785 * @regs: velocity registers
786 * @index: MII register index
787 * @data: 16bit data for the MII register
788 *
789 * Perform a single write to an MII 16bit register. Returns zero
790 * on success or -ETIMEDOUT if the PHY did not respond.
791 */
792 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
793 {
794 u16 ww;
795
796 /*
797 * Disable MIICR_MAUTO, so that mii addr can be set normally
798 */
799 safe_disable_mii_autopoll(regs);
800
801 /* MII reg offset */
802 writeb(mii_addr, &regs->MIIADR);
803 /* set MII data */
804 writew(data, &regs->MIIDATA);
805
806 /* turn on MIICR_WCMD */
807 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
808
809 /* W_MAX_TIMEOUT is the timeout period */
810 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
811 udelay(5);
812 if (!(readb(&regs->MIICR) & MIICR_WCMD))
813 break;
814 }
815 enable_mii_autopoll(regs);
816
817 if (ww == W_MAX_TIMEOUT)
818 return -ETIMEDOUT;
819 return 0;
820 }
821
822 /**
823 * set_mii_flow_control - flow control setup
824 * @vptr: velocity interface
825 *
826 * Set up the flow control on this interface according to
827 * the supplied user/eeprom options.
828 */
829 static void set_mii_flow_control(struct velocity_info *vptr)
830 {
831 /*Enable or Disable PAUSE in ANAR */
832 switch (vptr->options.flow_cntl) {
833 case FLOW_CNTL_TX:
834 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
835 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
836 break;
837
838 case FLOW_CNTL_RX:
839 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
840 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
841 break;
842
843 case FLOW_CNTL_TX_RX:
844 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
845 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
846 break;
847
848 case FLOW_CNTL_DISABLE:
849 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
850 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
851 break;
852 default:
853 break;
854 }
855 }
856
857 /**
858 * mii_set_auto_on - autonegotiate on
859 * @vptr: velocity
860 *
861 * Enable autonegotation on this interface
862 */
863 static void mii_set_auto_on(struct velocity_info *vptr)
864 {
865 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
866 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
867 else
868 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
869 }
870
871 static u32 check_connection_type(struct mac_regs __iomem *regs)
872 {
873 u32 status = 0;
874 u8 PHYSR0;
875 u16 ANAR;
876 PHYSR0 = readb(&regs->PHYSR0);
877
878 /*
879 if (!(PHYSR0 & PHYSR0_LINKGD))
880 status|=VELOCITY_LINK_FAIL;
881 */
882
883 if (PHYSR0 & PHYSR0_FDPX)
884 status |= VELOCITY_DUPLEX_FULL;
885
886 if (PHYSR0 & PHYSR0_SPDG)
887 status |= VELOCITY_SPEED_1000;
888 else if (PHYSR0 & PHYSR0_SPD10)
889 status |= VELOCITY_SPEED_10;
890 else
891 status |= VELOCITY_SPEED_100;
892
893 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
894 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
895 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
896 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
897 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
898 status |= VELOCITY_AUTONEG_ENABLE;
899 }
900 }
901
902 return status;
903 }
904
905
906
907 /**
908 * velocity_set_media_mode - set media mode
909 * @mii_status: old MII link state
910 *
911 * Check the media link state and configure the flow control
912 * PHY and also velocity hardware setup accordingly. In particular
913 * we need to set up CD polling and frame bursting.
914 */
915 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
916 {
917 u32 curr_status;
918 struct mac_regs __iomem *regs = vptr->mac_regs;
919
920 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
921 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
922
923 /* Set mii link status */
924 set_mii_flow_control(vptr);
925
926 /*
927 Check if new status is consisent with current status
928 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
929 || (mii_status==curr_status)) {
930 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
931 vptr->mii_status=check_connection_type(vptr->mac_regs);
932 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
933 return 0;
934 }
935 */
936
937 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
938 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
939
940 /*
941 * If connection type is AUTO
942 */
943 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
944 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
945 /* clear force MAC mode bit */
946 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
947 /* set duplex mode of MAC according to duplex mode of MII */
948 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
949 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
950 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
951
952 /* enable AUTO-NEGO mode */
953 mii_set_auto_on(vptr);
954 } else {
955 u16 ANAR;
956 u8 CHIPGCR;
957
958 /*
959 * 1. if it's 3119, disable frame bursting in halfduplex mode
960 * and enable it in fullduplex mode
961 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
962 * 3. only enable CD heart beat counter in 10HD mode
963 */
964
965 /* set force MAC mode bit */
966 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
967
968 CHIPGCR = readb(&regs->CHIPGCR);
969 CHIPGCR &= ~CHIPGCR_FCGMII;
970
971 if (mii_status & VELOCITY_DUPLEX_FULL) {
972 CHIPGCR |= CHIPGCR_FCFDX;
973 writeb(CHIPGCR, &regs->CHIPGCR);
974 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
975 if (vptr->rev_id < REV_ID_VT3216_A0)
976 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
977 } else {
978 CHIPGCR &= ~CHIPGCR_FCFDX;
979 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
980 writeb(CHIPGCR, &regs->CHIPGCR);
981 if (vptr->rev_id < REV_ID_VT3216_A0)
982 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
983 }
984
985 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
986
987 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
988 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
989 else
990 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
991
992 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
993 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
994 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
995 if (mii_status & VELOCITY_SPEED_100) {
996 if (mii_status & VELOCITY_DUPLEX_FULL)
997 ANAR |= ANAR_TXFD;
998 else
999 ANAR |= ANAR_TX;
1000 } else {
1001 if (mii_status & VELOCITY_DUPLEX_FULL)
1002 ANAR |= ANAR_10FD;
1003 else
1004 ANAR |= ANAR_10;
1005 }
1006 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
1007 /* enable AUTO-NEGO mode */
1008 mii_set_auto_on(vptr);
1009 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
1010 }
1011 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
1012 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
1013 return VELOCITY_LINK_CHANGE;
1014 }
1015
1016 /**
1017 * velocity_print_link_status - link status reporting
1018 * @vptr: velocity to report on
1019 *
1020 * Turn the link status of the velocity card into a kernel log
1021 * description of the new link state, detailing speed and duplex
1022 * status
1023 */
1024 static void velocity_print_link_status(struct velocity_info *vptr)
1025 {
1026
1027 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1028 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1029 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1030 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1031
1032 if (vptr->mii_status & VELOCITY_SPEED_1000)
1033 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1034 else if (vptr->mii_status & VELOCITY_SPEED_100)
1035 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1036 else
1037 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1038
1039 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1040 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1041 else
1042 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1043 } else {
1044 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1045 switch (vptr->options.spd_dpx) {
1046 case SPD_DPX_100_HALF:
1047 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1048 break;
1049 case SPD_DPX_100_FULL:
1050 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1051 break;
1052 case SPD_DPX_10_HALF:
1053 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1054 break;
1055 case SPD_DPX_10_FULL:
1056 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1057 break;
1058 default:
1059 break;
1060 }
1061 }
1062 }
1063
1064 /**
1065 * enable_flow_control_ability - flow control
1066 * @vptr: veloity to configure
1067 *
1068 * Set up flow control according to the flow control options
1069 * determined by the eeprom/configuration.
1070 */
1071 static void enable_flow_control_ability(struct velocity_info *vptr)
1072 {
1073
1074 struct mac_regs __iomem *regs = vptr->mac_regs;
1075
1076 switch (vptr->options.flow_cntl) {
1077
1078 case FLOW_CNTL_DEFAULT:
1079 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1080 writel(CR0_FDXRFCEN, &regs->CR0Set);
1081 else
1082 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1083
1084 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1085 writel(CR0_FDXTFCEN, &regs->CR0Set);
1086 else
1087 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1088 break;
1089
1090 case FLOW_CNTL_TX:
1091 writel(CR0_FDXTFCEN, &regs->CR0Set);
1092 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1093 break;
1094
1095 case FLOW_CNTL_RX:
1096 writel(CR0_FDXRFCEN, &regs->CR0Set);
1097 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1098 break;
1099
1100 case FLOW_CNTL_TX_RX:
1101 writel(CR0_FDXTFCEN, &regs->CR0Set);
1102 writel(CR0_FDXRFCEN, &regs->CR0Set);
1103 break;
1104
1105 case FLOW_CNTL_DISABLE:
1106 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1107 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1108 break;
1109
1110 default:
1111 break;
1112 }
1113
1114 }
1115
1116 /**
1117 * velocity_soft_reset - soft reset
1118 * @vptr: velocity to reset
1119 *
1120 * Kick off a soft reset of the velocity adapter and then poll
1121 * until the reset sequence has completed before returning.
1122 */
1123 static int velocity_soft_reset(struct velocity_info *vptr)
1124 {
1125 struct mac_regs __iomem *regs = vptr->mac_regs;
1126 int i = 0;
1127
1128 writel(CR0_SFRST, &regs->CR0Set);
1129
1130 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1131 udelay(5);
1132 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1133 break;
1134 }
1135
1136 if (i == W_MAX_TIMEOUT) {
1137 writel(CR0_FORSRST, &regs->CR0Set);
1138 /* FIXME: PCI POSTING */
1139 /* delay 2ms */
1140 mdelay(2);
1141 }
1142 return 0;
1143 }
1144
1145 /**
1146 * velocity_set_multi - filter list change callback
1147 * @dev: network device
1148 *
1149 * Called by the network layer when the filter lists need to change
1150 * for a velocity adapter. Reload the CAMs with the new address
1151 * filter ruleset.
1152 */
1153 static void velocity_set_multi(struct net_device *dev)
1154 {
1155 struct velocity_info *vptr = netdev_priv(dev);
1156 struct mac_regs __iomem *regs = vptr->mac_regs;
1157 u8 rx_mode;
1158 int i;
1159 struct dev_mc_list *mclist;
1160
1161 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1162 writel(0xffffffff, &regs->MARCAM[0]);
1163 writel(0xffffffff, &regs->MARCAM[4]);
1164 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1165 } else if ((dev->mc_count > vptr->multicast_limit)
1166 || (dev->flags & IFF_ALLMULTI)) {
1167 writel(0xffffffff, &regs->MARCAM[0]);
1168 writel(0xffffffff, &regs->MARCAM[4]);
1169 rx_mode = (RCR_AM | RCR_AB);
1170 } else {
1171 int offset = MCAM_SIZE - vptr->multicast_limit;
1172 mac_get_cam_mask(regs, vptr->mCAMmask);
1173
1174 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
1175 mac_set_cam(regs, i + offset, mclist->dmi_addr);
1176 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1177 }
1178
1179 mac_set_cam_mask(regs, vptr->mCAMmask);
1180 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1181 }
1182 if (dev->mtu > 1500)
1183 rx_mode |= RCR_AL;
1184
1185 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1186
1187 }
1188
1189 /*
1190 * MII access , media link mode setting functions
1191 */
1192
1193 /**
1194 * mii_init - set up MII
1195 * @vptr: velocity adapter
1196 * @mii_status: links tatus
1197 *
1198 * Set up the PHY for the current link state.
1199 */
1200 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1201 {
1202 u16 BMCR;
1203
1204 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1205 case PHYID_CICADA_CS8201:
1206 /*
1207 * Reset to hardware default
1208 */
1209 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1210 /*
1211 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1212 * off it in NWay-forced half mode for NWay-forced v.s.
1213 * legacy-forced issue.
1214 */
1215 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1216 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1217 else
1218 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1219 /*
1220 * Turn on Link/Activity LED enable bit for CIS8201
1221 */
1222 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
1223 break;
1224 case PHYID_VT3216_32BIT:
1225 case PHYID_VT3216_64BIT:
1226 /*
1227 * Reset to hardware default
1228 */
1229 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1230 /*
1231 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1232 * off it in NWay-forced half mode for NWay-forced v.s.
1233 * legacy-forced issue
1234 */
1235 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1236 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1237 else
1238 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
1239 break;
1240
1241 case PHYID_MARVELL_1000:
1242 case PHYID_MARVELL_1000S:
1243 /*
1244 * Assert CRS on Transmit
1245 */
1246 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1247 /*
1248 * Reset to hardware default
1249 */
1250 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
1251 break;
1252 default:
1253 ;
1254 }
1255 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
1256 if (BMCR & BMCR_ISO) {
1257 BMCR &= ~BMCR_ISO;
1258 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
1259 }
1260 }
1261
1262
1263 /**
1264 * velocity_init_registers - initialise MAC registers
1265 * @vptr: velocity to init
1266 * @type: type of initialisation (hot or cold)
1267 *
1268 * Initialise the MAC on a reset or on first set up on the
1269 * hardware.
1270 */
1271 static void velocity_init_registers(struct velocity_info *vptr,
1272 enum velocity_init_type type)
1273 {
1274 struct mac_regs __iomem *regs = vptr->mac_regs;
1275 int i, mii_status;
1276
1277 mac_wol_reset(regs);
1278
1279 switch (type) {
1280 case VELOCITY_INIT_RESET:
1281 case VELOCITY_INIT_WOL:
1282
1283 netif_stop_queue(vptr->dev);
1284
1285 /*
1286 * Reset RX to prevent RX pointer not on the 4X location
1287 */
1288 velocity_rx_reset(vptr);
1289 mac_rx_queue_run(regs);
1290 mac_rx_queue_wake(regs);
1291
1292 mii_status = velocity_get_opt_media_mode(vptr);
1293 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1294 velocity_print_link_status(vptr);
1295 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1296 netif_wake_queue(vptr->dev);
1297 }
1298
1299 enable_flow_control_ability(vptr);
1300
1301 mac_clear_isr(regs);
1302 writel(CR0_STOP, &regs->CR0Clr);
1303 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1304 &regs->CR0Set);
1305
1306 break;
1307
1308 case VELOCITY_INIT_COLD:
1309 default:
1310 /*
1311 * Do reset
1312 */
1313 velocity_soft_reset(vptr);
1314 mdelay(5);
1315
1316 mac_eeprom_reload(regs);
1317 for (i = 0; i < 6; i++)
1318 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1319
1320 /*
1321 * clear Pre_ACPI bit.
1322 */
1323 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1324 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1325 mac_set_dma_length(regs, vptr->options.DMA_length);
1326
1327 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1328 /*
1329 * Back off algorithm use original IEEE standard
1330 */
1331 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1332
1333 /*
1334 * Init CAM filter
1335 */
1336 velocity_init_cam_filter(vptr);
1337
1338 /*
1339 * Set packet filter: Receive directed and broadcast address
1340 */
1341 velocity_set_multi(vptr->dev);
1342
1343 /*
1344 * Enable MII auto-polling
1345 */
1346 enable_mii_autopoll(regs);
1347
1348 vptr->int_mask = INT_MASK_DEF;
1349
1350 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1351 writew(vptr->options.numrx - 1, &regs->RDCSize);
1352 mac_rx_queue_run(regs);
1353 mac_rx_queue_wake(regs);
1354
1355 writew(vptr->options.numtx - 1, &regs->TDCSize);
1356
1357 for (i = 0; i < vptr->tx.numq; i++) {
1358 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1359 mac_tx_queue_run(regs, i);
1360 }
1361
1362 init_flow_control_register(vptr);
1363
1364 writel(CR0_STOP, &regs->CR0Clr);
1365 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1366
1367 mii_status = velocity_get_opt_media_mode(vptr);
1368 netif_stop_queue(vptr->dev);
1369
1370 mii_init(vptr, mii_status);
1371
1372 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1373 velocity_print_link_status(vptr);
1374 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1375 netif_wake_queue(vptr->dev);
1376 }
1377
1378 enable_flow_control_ability(vptr);
1379 mac_hw_mibs_init(regs);
1380 mac_write_int_mask(vptr->int_mask, regs);
1381 mac_clear_isr(regs);
1382
1383 }
1384 }
1385
1386 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1387 {
1388 struct mac_regs __iomem *regs = vptr->mac_regs;
1389 int avail, dirty, unusable;
1390
1391 /*
1392 * RD number must be equal to 4X per hardware spec
1393 * (programming guide rev 1.20, p.13)
1394 */
1395 if (vptr->rx.filled < 4)
1396 return;
1397
1398 wmb();
1399
1400 unusable = vptr->rx.filled & 0x0003;
1401 dirty = vptr->rx.dirty - unusable;
1402 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1403 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1404 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1405 }
1406
1407 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1408 vptr->rx.filled = unusable;
1409 }
1410
1411 /**
1412 * velocity_init_dma_rings - set up DMA rings
1413 * @vptr: Velocity to set up
1414 *
1415 * Allocate PCI mapped DMA rings for the receive and transmit layer
1416 * to use.
1417 */
1418 static int velocity_init_dma_rings(struct velocity_info *vptr)
1419 {
1420 struct velocity_opt *opt = &vptr->options;
1421 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1422 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1423 struct pci_dev *pdev = vptr->pdev;
1424 dma_addr_t pool_dma;
1425 void *pool;
1426 unsigned int i;
1427
1428 /*
1429 * Allocate all RD/TD rings a single pool.
1430 *
1431 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1432 * alignment
1433 */
1434 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1435 rx_ring_size, &pool_dma);
1436 if (!pool) {
1437 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1438 vptr->dev->name);
1439 return -ENOMEM;
1440 }
1441
1442 vptr->rx.ring = pool;
1443 vptr->rx.pool_dma = pool_dma;
1444
1445 pool += rx_ring_size;
1446 pool_dma += rx_ring_size;
1447
1448 for (i = 0; i < vptr->tx.numq; i++) {
1449 vptr->tx.rings[i] = pool;
1450 vptr->tx.pool_dma[i] = pool_dma;
1451 pool += tx_ring_size;
1452 pool_dma += tx_ring_size;
1453 }
1454
1455 return 0;
1456 }
1457
1458 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1459 {
1460 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1461 }
1462
1463 /**
1464 * velocity_alloc_rx_buf - allocate aligned receive buffer
1465 * @vptr: velocity
1466 * @idx: ring index
1467 *
1468 * Allocate a new full sized buffer for the reception of a frame and
1469 * map it into PCI space for the hardware to use. The hardware
1470 * requires *64* byte alignment of the buffer which makes life
1471 * less fun than would be ideal.
1472 */
1473 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1474 {
1475 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1476 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1477
1478 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1479 if (rd_info->skb == NULL)
1480 return -ENOMEM;
1481
1482 /*
1483 * Do the gymnastics to get the buffer head for data at
1484 * 64byte alignment.
1485 */
1486 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1487 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1488 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1489
1490 /*
1491 * Fill in the descriptor to match
1492 */
1493
1494 *((u32 *) & (rd->rdesc0)) = 0;
1495 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1496 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1497 rd->pa_high = 0;
1498 return 0;
1499 }
1500
1501
1502 static int velocity_rx_refill(struct velocity_info *vptr)
1503 {
1504 int dirty = vptr->rx.dirty, done = 0;
1505
1506 do {
1507 struct rx_desc *rd = vptr->rx.ring + dirty;
1508
1509 /* Fine for an all zero Rx desc at init time as well */
1510 if (rd->rdesc0.len & OWNED_BY_NIC)
1511 break;
1512
1513 if (!vptr->rx.info[dirty].skb) {
1514 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1515 break;
1516 }
1517 done++;
1518 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1519 } while (dirty != vptr->rx.curr);
1520
1521 if (done) {
1522 vptr->rx.dirty = dirty;
1523 vptr->rx.filled += done;
1524 }
1525
1526 return done;
1527 }
1528
1529 /**
1530 * velocity_free_rd_ring - free receive ring
1531 * @vptr: velocity to clean up
1532 *
1533 * Free the receive buffers for each ring slot and any
1534 * attached socket buffers that need to go away.
1535 */
1536 static void velocity_free_rd_ring(struct velocity_info *vptr)
1537 {
1538 int i;
1539
1540 if (vptr->rx.info == NULL)
1541 return;
1542
1543 for (i = 0; i < vptr->options.numrx; i++) {
1544 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1545 struct rx_desc *rd = vptr->rx.ring + i;
1546
1547 memset(rd, 0, sizeof(*rd));
1548
1549 if (!rd_info->skb)
1550 continue;
1551 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1552 PCI_DMA_FROMDEVICE);
1553 rd_info->skb_dma = 0;
1554
1555 dev_kfree_skb(rd_info->skb);
1556 rd_info->skb = NULL;
1557 }
1558
1559 kfree(vptr->rx.info);
1560 vptr->rx.info = NULL;
1561 }
1562
1563
1564
1565 /**
1566 * velocity_init_rd_ring - set up receive ring
1567 * @vptr: velocity to configure
1568 *
1569 * Allocate and set up the receive buffers for each ring slot and
1570 * assign them to the network adapter.
1571 */
1572 static int velocity_init_rd_ring(struct velocity_info *vptr)
1573 {
1574 int ret = -ENOMEM;
1575
1576 vptr->rx.info = kcalloc(vptr->options.numrx,
1577 sizeof(struct velocity_rd_info), GFP_KERNEL);
1578 if (!vptr->rx.info)
1579 goto out;
1580
1581 velocity_init_rx_ring_indexes(vptr);
1582
1583 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1584 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1585 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1586 velocity_free_rd_ring(vptr);
1587 goto out;
1588 }
1589
1590 ret = 0;
1591 out:
1592 return ret;
1593 }
1594
1595 /**
1596 * velocity_init_td_ring - set up transmit ring
1597 * @vptr: velocity
1598 *
1599 * Set up the transmit ring and chain the ring pointers together.
1600 * Returns zero on success or a negative posix errno code for
1601 * failure.
1602 */
1603 static int velocity_init_td_ring(struct velocity_info *vptr)
1604 {
1605 dma_addr_t curr;
1606 int j;
1607
1608 /* Init the TD ring entries */
1609 for (j = 0; j < vptr->tx.numq; j++) {
1610 curr = vptr->tx.pool_dma[j];
1611
1612 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1613 sizeof(struct velocity_td_info),
1614 GFP_KERNEL);
1615 if (!vptr->tx.infos[j]) {
1616 while (--j >= 0)
1617 kfree(vptr->tx.infos[j]);
1618 return -ENOMEM;
1619 }
1620
1621 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1622 }
1623 return 0;
1624 }
1625
1626 /**
1627 * velocity_free_dma_rings - free PCI ring pointers
1628 * @vptr: Velocity to free from
1629 *
1630 * Clean up the PCI ring buffers allocated to this velocity.
1631 */
1632 static void velocity_free_dma_rings(struct velocity_info *vptr)
1633 {
1634 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1635 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1636
1637 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1638 }
1639
1640
1641 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1642 {
1643 int ret;
1644
1645 velocity_set_rxbufsize(vptr, mtu);
1646
1647 ret = velocity_init_dma_rings(vptr);
1648 if (ret < 0)
1649 goto out;
1650
1651 ret = velocity_init_rd_ring(vptr);
1652 if (ret < 0)
1653 goto err_free_dma_rings_0;
1654
1655 ret = velocity_init_td_ring(vptr);
1656 if (ret < 0)
1657 goto err_free_rd_ring_1;
1658 out:
1659 return ret;
1660
1661 err_free_rd_ring_1:
1662 velocity_free_rd_ring(vptr);
1663 err_free_dma_rings_0:
1664 velocity_free_dma_rings(vptr);
1665 goto out;
1666 }
1667
1668 /**
1669 * velocity_free_tx_buf - free transmit buffer
1670 * @vptr: velocity
1671 * @tdinfo: buffer
1672 *
1673 * Release an transmit buffer. If the buffer was preallocated then
1674 * recycle it, if not then unmap the buffer.
1675 */
1676 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1677 {
1678 struct sk_buff *skb = tdinfo->skb;
1679 int i;
1680 int pktlen;
1681
1682 /*
1683 * Don't unmap the pre-allocated tx_bufs
1684 */
1685 if (tdinfo->skb_dma) {
1686
1687 pktlen = max_t(unsigned int, skb->len, ETH_ZLEN);
1688 for (i = 0; i < tdinfo->nskb_dma; i++) {
1689 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], pktlen, PCI_DMA_TODEVICE);
1690 tdinfo->skb_dma[i] = 0;
1691 }
1692 }
1693 dev_kfree_skb_irq(skb);
1694 tdinfo->skb = NULL;
1695 }
1696
1697
1698 /*
1699 * FIXME: could we merge this with velocity_free_tx_buf ?
1700 */
1701 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1702 int q, int n)
1703 {
1704 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1705 int i;
1706
1707 if (td_info == NULL)
1708 return;
1709
1710 if (td_info->skb) {
1711 for (i = 0; i < td_info->nskb_dma; i++) {
1712 if (td_info->skb_dma[i]) {
1713 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1714 td_info->skb->len, PCI_DMA_TODEVICE);
1715 td_info->skb_dma[i] = 0;
1716 }
1717 }
1718 dev_kfree_skb(td_info->skb);
1719 td_info->skb = NULL;
1720 }
1721 }
1722
1723 /**
1724 * velocity_free_td_ring - free td ring
1725 * @vptr: velocity
1726 *
1727 * Free up the transmit ring for this particular velocity adapter.
1728 * We free the ring contents but not the ring itself.
1729 */
1730 static void velocity_free_td_ring(struct velocity_info *vptr)
1731 {
1732 int i, j;
1733
1734 for (j = 0; j < vptr->tx.numq; j++) {
1735 if (vptr->tx.infos[j] == NULL)
1736 continue;
1737 for (i = 0; i < vptr->options.numtx; i++)
1738 velocity_free_td_ring_entry(vptr, j, i);
1739
1740 kfree(vptr->tx.infos[j]);
1741 vptr->tx.infos[j] = NULL;
1742 }
1743 }
1744
1745
1746 static void velocity_free_rings(struct velocity_info *vptr)
1747 {
1748 velocity_free_td_ring(vptr);
1749 velocity_free_rd_ring(vptr);
1750 velocity_free_dma_rings(vptr);
1751 }
1752
1753 /**
1754 * velocity_error - handle error from controller
1755 * @vptr: velocity
1756 * @status: card status
1757 *
1758 * Process an error report from the hardware and attempt to recover
1759 * the card itself. At the moment we cannot recover from some
1760 * theoretically impossible errors but this could be fixed using
1761 * the pci_device_failed logic to bounce the hardware
1762 *
1763 */
1764 static void velocity_error(struct velocity_info *vptr, int status)
1765 {
1766
1767 if (status & ISR_TXSTLI) {
1768 struct mac_regs __iomem *regs = vptr->mac_regs;
1769
1770 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1771 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1772 writew(TRDCSR_RUN, &regs->TDCSRClr);
1773 netif_stop_queue(vptr->dev);
1774
1775 /* FIXME: port over the pci_device_failed code and use it
1776 here */
1777 }
1778
1779 if (status & ISR_SRCI) {
1780 struct mac_regs __iomem *regs = vptr->mac_regs;
1781 int linked;
1782
1783 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1784 vptr->mii_status = check_connection_type(regs);
1785
1786 /*
1787 * If it is a 3119, disable frame bursting in
1788 * halfduplex mode and enable it in fullduplex
1789 * mode
1790 */
1791 if (vptr->rev_id < REV_ID_VT3216_A0) {
1792 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1793 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1794 else
1795 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1796 }
1797 /*
1798 * Only enable CD heart beat counter in 10HD mode
1799 */
1800 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1801 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1802 else
1803 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1804 }
1805 /*
1806 * Get link status from PHYSR0
1807 */
1808 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1809
1810 if (linked) {
1811 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1812 netif_carrier_on(vptr->dev);
1813 } else {
1814 vptr->mii_status |= VELOCITY_LINK_FAIL;
1815 netif_carrier_off(vptr->dev);
1816 }
1817
1818 velocity_print_link_status(vptr);
1819 enable_flow_control_ability(vptr);
1820
1821 /*
1822 * Re-enable auto-polling because SRCI will disable
1823 * auto-polling
1824 */
1825
1826 enable_mii_autopoll(regs);
1827
1828 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1829 netif_stop_queue(vptr->dev);
1830 else
1831 netif_wake_queue(vptr->dev);
1832
1833 };
1834 if (status & ISR_MIBFI)
1835 velocity_update_hw_mibs(vptr);
1836 if (status & ISR_LSTEI)
1837 mac_rx_queue_wake(vptr->mac_regs);
1838 }
1839
1840 /**
1841 * tx_srv - transmit interrupt service
1842 * @vptr; Velocity
1843 * @status:
1844 *
1845 * Scan the queues looking for transmitted packets that
1846 * we can complete and clean up. Update any statistics as
1847 * necessary/
1848 */
1849 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1850 {
1851 struct tx_desc *td;
1852 int qnum;
1853 int full = 0;
1854 int idx;
1855 int works = 0;
1856 struct velocity_td_info *tdinfo;
1857 struct net_device_stats *stats = &vptr->dev->stats;
1858
1859 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1860 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1861 idx = (idx + 1) % vptr->options.numtx) {
1862
1863 /*
1864 * Get Tx Descriptor
1865 */
1866 td = &(vptr->tx.rings[qnum][idx]);
1867 tdinfo = &(vptr->tx.infos[qnum][idx]);
1868
1869 if (td->tdesc0.len & OWNED_BY_NIC)
1870 break;
1871
1872 if ((works++ > 15))
1873 break;
1874
1875 if (td->tdesc0.TSR & TSR0_TERR) {
1876 stats->tx_errors++;
1877 stats->tx_dropped++;
1878 if (td->tdesc0.TSR & TSR0_CDH)
1879 stats->tx_heartbeat_errors++;
1880 if (td->tdesc0.TSR & TSR0_CRS)
1881 stats->tx_carrier_errors++;
1882 if (td->tdesc0.TSR & TSR0_ABT)
1883 stats->tx_aborted_errors++;
1884 if (td->tdesc0.TSR & TSR0_OWC)
1885 stats->tx_window_errors++;
1886 } else {
1887 stats->tx_packets++;
1888 stats->tx_bytes += tdinfo->skb->len;
1889 }
1890 velocity_free_tx_buf(vptr, tdinfo);
1891 vptr->tx.used[qnum]--;
1892 }
1893 vptr->tx.tail[qnum] = idx;
1894
1895 if (AVAIL_TD(vptr, qnum) < 1)
1896 full = 1;
1897 }
1898 /*
1899 * Look to see if we should kick the transmit network
1900 * layer for more work.
1901 */
1902 if (netif_queue_stopped(vptr->dev) && (full == 0)
1903 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1904 netif_wake_queue(vptr->dev);
1905 }
1906 return works;
1907 }
1908
1909 /**
1910 * velocity_rx_csum - checksum process
1911 * @rd: receive packet descriptor
1912 * @skb: network layer packet buffer
1913 *
1914 * Process the status bits for the received packet and determine
1915 * if the checksum was computed and verified by the hardware
1916 */
1917 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1918 {
1919 skb->ip_summed = CHECKSUM_NONE;
1920
1921 if (rd->rdesc1.CSM & CSM_IPKT) {
1922 if (rd->rdesc1.CSM & CSM_IPOK) {
1923 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1924 (rd->rdesc1.CSM & CSM_UDPKT)) {
1925 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1926 return;
1927 }
1928 skb->ip_summed = CHECKSUM_UNNECESSARY;
1929 }
1930 }
1931 }
1932
1933 /**
1934 * velocity_rx_copy - in place Rx copy for small packets
1935 * @rx_skb: network layer packet buffer candidate
1936 * @pkt_size: received data size
1937 * @rd: receive packet descriptor
1938 * @dev: network device
1939 *
1940 * Replace the current skb that is scheduled for Rx processing by a
1941 * shorter, immediatly allocated skb, if the received packet is small
1942 * enough. This function returns a negative value if the received
1943 * packet is too big or if memory is exhausted.
1944 */
1945 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1946 struct velocity_info *vptr)
1947 {
1948 int ret = -1;
1949 if (pkt_size < rx_copybreak) {
1950 struct sk_buff *new_skb;
1951
1952 new_skb = netdev_alloc_skb(vptr->dev, pkt_size + 2);
1953 if (new_skb) {
1954 new_skb->ip_summed = rx_skb[0]->ip_summed;
1955 skb_reserve(new_skb, 2);
1956 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1957 *rx_skb = new_skb;
1958 ret = 0;
1959 }
1960
1961 }
1962 return ret;
1963 }
1964
1965 /**
1966 * velocity_iph_realign - IP header alignment
1967 * @vptr: velocity we are handling
1968 * @skb: network layer packet buffer
1969 * @pkt_size: received data size
1970 *
1971 * Align IP header on a 2 bytes boundary. This behavior can be
1972 * configured by the user.
1973 */
1974 static inline void velocity_iph_realign(struct velocity_info *vptr,
1975 struct sk_buff *skb, int pkt_size)
1976 {
1977 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1978 memmove(skb->data + 2, skb->data, pkt_size);
1979 skb_reserve(skb, 2);
1980 }
1981 }
1982
1983
1984 /**
1985 * velocity_receive_frame - received packet processor
1986 * @vptr: velocity we are handling
1987 * @idx: ring index
1988 *
1989 * A packet has arrived. We process the packet and if appropriate
1990 * pass the frame up the network stack
1991 */
1992 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1993 {
1994 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1995 struct net_device_stats *stats = &vptr->dev->stats;
1996 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1997 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1998 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
1999 struct sk_buff *skb;
2000
2001 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2002 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2003 stats->rx_length_errors++;
2004 return -EINVAL;
2005 }
2006
2007 if (rd->rdesc0.RSR & RSR_MAR)
2008 stats->multicast++;
2009
2010 skb = rd_info->skb;
2011
2012 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2013 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2014
2015 /*
2016 * Drop frame not meeting IEEE 802.3
2017 */
2018
2019 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2020 if (rd->rdesc0.RSR & RSR_RL) {
2021 stats->rx_length_errors++;
2022 return -EINVAL;
2023 }
2024 }
2025
2026 pci_action = pci_dma_sync_single_for_device;
2027
2028 velocity_rx_csum(rd, skb);
2029
2030 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2031 velocity_iph_realign(vptr, skb, pkt_len);
2032 pci_action = pci_unmap_single;
2033 rd_info->skb = NULL;
2034 }
2035
2036 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2037 PCI_DMA_FROMDEVICE);
2038
2039 skb_put(skb, pkt_len - 4);
2040 skb->protocol = eth_type_trans(skb, vptr->dev);
2041
2042 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
2043 vlan_hwaccel_rx(skb, vptr->vlgrp,
2044 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
2045 } else
2046 netif_rx(skb);
2047
2048 stats->rx_bytes += pkt_len;
2049
2050 return 0;
2051 }
2052
2053
2054 /**
2055 * velocity_rx_srv - service RX interrupt
2056 * @vptr: velocity
2057 * @status: adapter status (unused)
2058 *
2059 * Walk the receive ring of the velocity adapter and remove
2060 * any received packets from the receive queue. Hand the ring
2061 * slots back to the adapter for reuse.
2062 */
2063 static int velocity_rx_srv(struct velocity_info *vptr, int status)
2064 {
2065 struct net_device_stats *stats = &vptr->dev->stats;
2066 int rd_curr = vptr->rx.curr;
2067 int works = 0;
2068
2069 do {
2070 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2071
2072 if (!vptr->rx.info[rd_curr].skb)
2073 break;
2074
2075 if (rd->rdesc0.len & OWNED_BY_NIC)
2076 break;
2077
2078 rmb();
2079
2080 /*
2081 * Don't drop CE or RL error frame although RXOK is off
2082 */
2083 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2084 if (velocity_receive_frame(vptr, rd_curr) < 0)
2085 stats->rx_dropped++;
2086 } else {
2087 if (rd->rdesc0.RSR & RSR_CRC)
2088 stats->rx_crc_errors++;
2089 if (rd->rdesc0.RSR & RSR_FAE)
2090 stats->rx_frame_errors++;
2091
2092 stats->rx_dropped++;
2093 }
2094
2095 rd->size |= RX_INTEN;
2096
2097 rd_curr++;
2098 if (rd_curr >= vptr->options.numrx)
2099 rd_curr = 0;
2100 } while (++works <= 15);
2101
2102 vptr->rx.curr = rd_curr;
2103
2104 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2105 velocity_give_many_rx_descs(vptr);
2106
2107 VAR_USED(stats);
2108 return works;
2109 }
2110
2111
2112 /**
2113 * velocity_intr - interrupt callback
2114 * @irq: interrupt number
2115 * @dev_instance: interrupting device
2116 *
2117 * Called whenever an interrupt is generated by the velocity
2118 * adapter IRQ line. We may not be the source of the interrupt
2119 * and need to identify initially if we are, and if not exit as
2120 * efficiently as possible.
2121 */
2122 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2123 {
2124 struct net_device *dev = dev_instance;
2125 struct velocity_info *vptr = netdev_priv(dev);
2126 u32 isr_status;
2127 int max_count = 0;
2128
2129
2130 spin_lock(&vptr->lock);
2131 isr_status = mac_read_isr(vptr->mac_regs);
2132
2133 /* Not us ? */
2134 if (isr_status == 0) {
2135 spin_unlock(&vptr->lock);
2136 return IRQ_NONE;
2137 }
2138
2139 mac_disable_int(vptr->mac_regs);
2140
2141 /*
2142 * Keep processing the ISR until we have completed
2143 * processing and the isr_status becomes zero
2144 */
2145
2146 while (isr_status != 0) {
2147 mac_write_isr(vptr->mac_regs, isr_status);
2148 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2149 velocity_error(vptr, isr_status);
2150 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2151 max_count += velocity_rx_srv(vptr, isr_status);
2152 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2153 max_count += velocity_tx_srv(vptr, isr_status);
2154 isr_status = mac_read_isr(vptr->mac_regs);
2155 if (max_count > vptr->options.int_works) {
2156 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2157 dev->name);
2158 max_count = 0;
2159 }
2160 }
2161 spin_unlock(&vptr->lock);
2162 mac_enable_int(vptr->mac_regs);
2163 return IRQ_HANDLED;
2164
2165 }
2166
2167 /**
2168 * velocity_open - interface activation callback
2169 * @dev: network layer device to open
2170 *
2171 * Called when the network layer brings the interface up. Returns
2172 * a negative posix error code on failure, or zero on success.
2173 *
2174 * All the ring allocation and set up is done on open for this
2175 * adapter to minimise memory usage when inactive
2176 */
2177 static int velocity_open(struct net_device *dev)
2178 {
2179 struct velocity_info *vptr = netdev_priv(dev);
2180 int ret;
2181
2182 ret = velocity_init_rings(vptr, dev->mtu);
2183 if (ret < 0)
2184 goto out;
2185
2186 /* Ensure chip is running */
2187 pci_set_power_state(vptr->pdev, PCI_D0);
2188
2189 velocity_give_many_rx_descs(vptr);
2190
2191 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2192
2193 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
2194 dev->name, dev);
2195 if (ret < 0) {
2196 /* Power down the chip */
2197 pci_set_power_state(vptr->pdev, PCI_D3hot);
2198 velocity_free_rings(vptr);
2199 goto out;
2200 }
2201
2202 mac_enable_int(vptr->mac_regs);
2203 netif_start_queue(dev);
2204 vptr->flags |= VELOCITY_FLAGS_OPENED;
2205 out:
2206 return ret;
2207 }
2208
2209 /**
2210 * velocity_shutdown - shut down the chip
2211 * @vptr: velocity to deactivate
2212 *
2213 * Shuts down the internal operations of the velocity and
2214 * disables interrupts, autopolling, transmit and receive
2215 */
2216 static void velocity_shutdown(struct velocity_info *vptr)
2217 {
2218 struct mac_regs __iomem *regs = vptr->mac_regs;
2219 mac_disable_int(regs);
2220 writel(CR0_STOP, &regs->CR0Set);
2221 writew(0xFFFF, &regs->TDCSRClr);
2222 writeb(0xFF, &regs->RDCSRClr);
2223 safe_disable_mii_autopoll(regs);
2224 mac_clear_isr(regs);
2225 }
2226
2227 /**
2228 * velocity_change_mtu - MTU change callback
2229 * @dev: network device
2230 * @new_mtu: desired MTU
2231 *
2232 * Handle requests from the networking layer for MTU change on
2233 * this interface. It gets called on a change by the network layer.
2234 * Return zero for success or negative posix error code.
2235 */
2236 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2237 {
2238 struct velocity_info *vptr = netdev_priv(dev);
2239 int ret = 0;
2240
2241 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2242 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2243 vptr->dev->name);
2244 ret = -EINVAL;
2245 goto out_0;
2246 }
2247
2248 if (!netif_running(dev)) {
2249 dev->mtu = new_mtu;
2250 goto out_0;
2251 }
2252
2253 if (dev->mtu != new_mtu) {
2254 struct velocity_info *tmp_vptr;
2255 unsigned long flags;
2256 struct rx_info rx;
2257 struct tx_info tx;
2258
2259 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2260 if (!tmp_vptr) {
2261 ret = -ENOMEM;
2262 goto out_0;
2263 }
2264
2265 tmp_vptr->dev = dev;
2266 tmp_vptr->pdev = vptr->pdev;
2267 tmp_vptr->options = vptr->options;
2268 tmp_vptr->tx.numq = vptr->tx.numq;
2269
2270 ret = velocity_init_rings(tmp_vptr, new_mtu);
2271 if (ret < 0)
2272 goto out_free_tmp_vptr_1;
2273
2274 spin_lock_irqsave(&vptr->lock, flags);
2275
2276 netif_stop_queue(dev);
2277 velocity_shutdown(vptr);
2278
2279 rx = vptr->rx;
2280 tx = vptr->tx;
2281
2282 vptr->rx = tmp_vptr->rx;
2283 vptr->tx = tmp_vptr->tx;
2284
2285 tmp_vptr->rx = rx;
2286 tmp_vptr->tx = tx;
2287
2288 dev->mtu = new_mtu;
2289
2290 velocity_give_many_rx_descs(vptr);
2291
2292 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2293
2294 mac_enable_int(vptr->mac_regs);
2295 netif_start_queue(dev);
2296
2297 spin_unlock_irqrestore(&vptr->lock, flags);
2298
2299 velocity_free_rings(tmp_vptr);
2300
2301 out_free_tmp_vptr_1:
2302 kfree(tmp_vptr);
2303 }
2304 out_0:
2305 return ret;
2306 }
2307
2308 /**
2309 * velocity_mii_ioctl - MII ioctl handler
2310 * @dev: network device
2311 * @ifr: the ifreq block for the ioctl
2312 * @cmd: the command
2313 *
2314 * Process MII requests made via ioctl from the network layer. These
2315 * are used by tools like kudzu to interrogate the link state of the
2316 * hardware
2317 */
2318 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2319 {
2320 struct velocity_info *vptr = netdev_priv(dev);
2321 struct mac_regs __iomem *regs = vptr->mac_regs;
2322 unsigned long flags;
2323 struct mii_ioctl_data *miidata = if_mii(ifr);
2324 int err;
2325
2326 switch (cmd) {
2327 case SIOCGMIIPHY:
2328 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2329 break;
2330 case SIOCGMIIREG:
2331 if (!capable(CAP_NET_ADMIN))
2332 return -EPERM;
2333 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2334 return -ETIMEDOUT;
2335 break;
2336 case SIOCSMIIREG:
2337 if (!capable(CAP_NET_ADMIN))
2338 return -EPERM;
2339 spin_lock_irqsave(&vptr->lock, flags);
2340 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2341 spin_unlock_irqrestore(&vptr->lock, flags);
2342 check_connection_type(vptr->mac_regs);
2343 if (err)
2344 return err;
2345 break;
2346 default:
2347 return -EOPNOTSUPP;
2348 }
2349 return 0;
2350 }
2351
2352
2353 /**
2354 * velocity_ioctl - ioctl entry point
2355 * @dev: network device
2356 * @rq: interface request ioctl
2357 * @cmd: command code
2358 *
2359 * Called when the user issues an ioctl request to the network
2360 * device in question. The velocity interface supports MII.
2361 */
2362 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2363 {
2364 struct velocity_info *vptr = netdev_priv(dev);
2365 int ret;
2366
2367 /* If we are asked for information and the device is power
2368 saving then we need to bring the device back up to talk to it */
2369
2370 if (!netif_running(dev))
2371 pci_set_power_state(vptr->pdev, PCI_D0);
2372
2373 switch (cmd) {
2374 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2375 case SIOCGMIIREG: /* Read MII PHY register. */
2376 case SIOCSMIIREG: /* Write to MII PHY register. */
2377 ret = velocity_mii_ioctl(dev, rq, cmd);
2378 break;
2379
2380 default:
2381 ret = -EOPNOTSUPP;
2382 }
2383 if (!netif_running(dev))
2384 pci_set_power_state(vptr->pdev, PCI_D3hot);
2385
2386
2387 return ret;
2388 }
2389
2390 /**
2391 * velocity_get_status - statistics callback
2392 * @dev: network device
2393 *
2394 * Callback from the network layer to allow driver statistics
2395 * to be resynchronized with hardware collected state. In the
2396 * case of the velocity we need to pull the MIB counters from
2397 * the hardware into the counters before letting the network
2398 * layer display them.
2399 */
2400 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2401 {
2402 struct velocity_info *vptr = netdev_priv(dev);
2403
2404 /* If the hardware is down, don't touch MII */
2405 if (!netif_running(dev))
2406 return &dev->stats;
2407
2408 spin_lock_irq(&vptr->lock);
2409 velocity_update_hw_mibs(vptr);
2410 spin_unlock_irq(&vptr->lock);
2411
2412 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2413 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2414 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2415
2416 // unsigned long rx_dropped; /* no space in linux buffers */
2417 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2418 /* detailed rx_errors: */
2419 // unsigned long rx_length_errors;
2420 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2421 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2422 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2423 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2424 // unsigned long rx_missed_errors; /* receiver missed packet */
2425
2426 /* detailed tx_errors */
2427 // unsigned long tx_fifo_errors;
2428
2429 return &dev->stats;
2430 }
2431
2432 /**
2433 * velocity_close - close adapter callback
2434 * @dev: network device
2435 *
2436 * Callback from the network layer when the velocity is being
2437 * deactivated by the network layer
2438 */
2439 static int velocity_close(struct net_device *dev)
2440 {
2441 struct velocity_info *vptr = netdev_priv(dev);
2442
2443 netif_stop_queue(dev);
2444 velocity_shutdown(vptr);
2445
2446 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2447 velocity_get_ip(vptr);
2448 if (dev->irq != 0)
2449 free_irq(dev->irq, dev);
2450
2451 /* Power down the chip */
2452 pci_set_power_state(vptr->pdev, PCI_D3hot);
2453
2454 velocity_free_rings(vptr);
2455
2456 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2457 return 0;
2458 }
2459
2460 /**
2461 * velocity_xmit - transmit packet callback
2462 * @skb: buffer to transmit
2463 * @dev: network device
2464 *
2465 * Called by the networ layer to request a packet is queued to
2466 * the velocity. Returns zero on success.
2467 */
2468 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2469 struct net_device *dev)
2470 {
2471 struct velocity_info *vptr = netdev_priv(dev);
2472 int qnum = 0;
2473 struct tx_desc *td_ptr;
2474 struct velocity_td_info *tdinfo;
2475 unsigned long flags;
2476 int pktlen;
2477 __le16 len;
2478 int index;
2479
2480 if (skb_padto(skb, ETH_ZLEN))
2481 goto out;
2482 pktlen = max_t(unsigned int, skb->len, ETH_ZLEN);
2483
2484 len = cpu_to_le16(pktlen);
2485
2486 spin_lock_irqsave(&vptr->lock, flags);
2487
2488 index = vptr->tx.curr[qnum];
2489 td_ptr = &(vptr->tx.rings[qnum][index]);
2490 tdinfo = &(vptr->tx.infos[qnum][index]);
2491
2492 td_ptr->tdesc1.TCR = TCR0_TIC;
2493 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2494
2495 /*
2496 * Map the linear network buffer into PCI space and
2497 * add it to the transmit ring.
2498 */
2499 tdinfo->skb = skb;
2500 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2501 td_ptr->tdesc0.len = len;
2502 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2503 td_ptr->td_buf[0].pa_high = 0;
2504 td_ptr->td_buf[0].size = len;
2505 tdinfo->nskb_dma = 1;
2506
2507 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2508
2509 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2510 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2511 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2512 }
2513
2514 /*
2515 * Handle hardware checksum
2516 */
2517 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2518 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2519 const struct iphdr *ip = ip_hdr(skb);
2520 if (ip->protocol == IPPROTO_TCP)
2521 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2522 else if (ip->protocol == IPPROTO_UDP)
2523 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2524 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2525 }
2526 {
2527
2528 int prev = index - 1;
2529
2530 if (prev < 0)
2531 prev = vptr->options.numtx - 1;
2532 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2533 vptr->tx.used[qnum]++;
2534 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2535
2536 if (AVAIL_TD(vptr, qnum) < 1)
2537 netif_stop_queue(dev);
2538
2539 td_ptr = &(vptr->tx.rings[qnum][prev]);
2540 td_ptr->td_buf[0].size |= TD_QUEUE;
2541 mac_tx_queue_wake(vptr->mac_regs, qnum);
2542 }
2543 dev->trans_start = jiffies;
2544 spin_unlock_irqrestore(&vptr->lock, flags);
2545 out:
2546 return NETDEV_TX_OK;
2547 }
2548
2549
2550 static const struct net_device_ops velocity_netdev_ops = {
2551 .ndo_open = velocity_open,
2552 .ndo_stop = velocity_close,
2553 .ndo_start_xmit = velocity_xmit,
2554 .ndo_get_stats = velocity_get_stats,
2555 .ndo_validate_addr = eth_validate_addr,
2556 .ndo_set_mac_address = eth_mac_addr,
2557 .ndo_set_multicast_list = velocity_set_multi,
2558 .ndo_change_mtu = velocity_change_mtu,
2559 .ndo_do_ioctl = velocity_ioctl,
2560 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2561 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2562 .ndo_vlan_rx_register = velocity_vlan_rx_register,
2563 };
2564
2565 /**
2566 * velocity_init_info - init private data
2567 * @pdev: PCI device
2568 * @vptr: Velocity info
2569 * @info: Board type
2570 *
2571 * Set up the initial velocity_info struct for the device that has been
2572 * discovered.
2573 */
2574 static void __devinit velocity_init_info(struct pci_dev *pdev,
2575 struct velocity_info *vptr,
2576 const struct velocity_info_tbl *info)
2577 {
2578 memset(vptr, 0, sizeof(struct velocity_info));
2579
2580 vptr->pdev = pdev;
2581 vptr->chip_id = info->chip_id;
2582 vptr->tx.numq = info->txqueue;
2583 vptr->multicast_limit = MCAM_SIZE;
2584 spin_lock_init(&vptr->lock);
2585 INIT_LIST_HEAD(&vptr->list);
2586 }
2587
2588 /**
2589 * velocity_get_pci_info - retrieve PCI info for device
2590 * @vptr: velocity device
2591 * @pdev: PCI device it matches
2592 *
2593 * Retrieve the PCI configuration space data that interests us from
2594 * the kernel PCI layer
2595 */
2596 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2597 {
2598 vptr->rev_id = pdev->revision;
2599
2600 pci_set_master(pdev);
2601
2602 vptr->ioaddr = pci_resource_start(pdev, 0);
2603 vptr->memaddr = pci_resource_start(pdev, 1);
2604
2605 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2606 dev_err(&pdev->dev,
2607 "region #0 is not an I/O resource, aborting.\n");
2608 return -EINVAL;
2609 }
2610
2611 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2612 dev_err(&pdev->dev,
2613 "region #1 is an I/O resource, aborting.\n");
2614 return -EINVAL;
2615 }
2616
2617 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2618 dev_err(&pdev->dev, "region #1 is too small.\n");
2619 return -EINVAL;
2620 }
2621 vptr->pdev = pdev;
2622
2623 return 0;
2624 }
2625
2626 /**
2627 * velocity_print_info - per driver data
2628 * @vptr: velocity
2629 *
2630 * Print per driver data as the kernel driver finds Velocity
2631 * hardware
2632 */
2633 static void __devinit velocity_print_info(struct velocity_info *vptr)
2634 {
2635 struct net_device *dev = vptr->dev;
2636
2637 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2638 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
2639 dev->name,
2640 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2641 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2642 }
2643
2644 static u32 velocity_get_link(struct net_device *dev)
2645 {
2646 struct velocity_info *vptr = netdev_priv(dev);
2647 struct mac_regs __iomem *regs = vptr->mac_regs;
2648 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2649 }
2650
2651
2652 /**
2653 * velocity_found1 - set up discovered velocity card
2654 * @pdev: PCI device
2655 * @ent: PCI device table entry that matched
2656 *
2657 * Configure a discovered adapter from scratch. Return a negative
2658 * errno error code on failure paths.
2659 */
2660 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2661 {
2662 static int first = 1;
2663 struct net_device *dev;
2664 int i;
2665 const char *drv_string;
2666 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2667 struct velocity_info *vptr;
2668 struct mac_regs __iomem *regs;
2669 int ret = -ENOMEM;
2670
2671 /* FIXME: this driver, like almost all other ethernet drivers,
2672 * can support more than MAX_UNITS.
2673 */
2674 if (velocity_nics >= MAX_UNITS) {
2675 dev_notice(&pdev->dev, "already found %d NICs.\n",
2676 velocity_nics);
2677 return -ENODEV;
2678 }
2679
2680 dev = alloc_etherdev(sizeof(struct velocity_info));
2681 if (!dev) {
2682 dev_err(&pdev->dev, "allocate net device failed.\n");
2683 goto out;
2684 }
2685
2686 /* Chain it all together */
2687
2688 SET_NETDEV_DEV(dev, &pdev->dev);
2689 vptr = netdev_priv(dev);
2690
2691
2692 if (first) {
2693 printk(KERN_INFO "%s Ver. %s\n",
2694 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2695 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2696 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2697 first = 0;
2698 }
2699
2700 velocity_init_info(pdev, vptr, info);
2701
2702 vptr->dev = dev;
2703
2704 dev->irq = pdev->irq;
2705
2706 ret = pci_enable_device(pdev);
2707 if (ret < 0)
2708 goto err_free_dev;
2709
2710 ret = velocity_get_pci_info(vptr, pdev);
2711 if (ret < 0) {
2712 /* error message already printed */
2713 goto err_disable;
2714 }
2715
2716 ret = pci_request_regions(pdev, VELOCITY_NAME);
2717 if (ret < 0) {
2718 dev_err(&pdev->dev, "No PCI resources.\n");
2719 goto err_disable;
2720 }
2721
2722 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2723 if (regs == NULL) {
2724 ret = -EIO;
2725 goto err_release_res;
2726 }
2727
2728 vptr->mac_regs = regs;
2729
2730 mac_wol_reset(regs);
2731
2732 dev->base_addr = vptr->ioaddr;
2733
2734 for (i = 0; i < 6; i++)
2735 dev->dev_addr[i] = readb(&regs->PAR[i]);
2736
2737
2738 drv_string = dev_driver_string(&pdev->dev);
2739
2740 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2741
2742 /*
2743 * Mask out the options cannot be set to the chip
2744 */
2745
2746 vptr->options.flags &= info->flags;
2747
2748 /*
2749 * Enable the chip specified capbilities
2750 */
2751
2752 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2753
2754 vptr->wol_opts = vptr->options.wol_opts;
2755 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2756
2757 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2758
2759 dev->irq = pdev->irq;
2760 dev->netdev_ops = &velocity_netdev_ops;
2761 dev->ethtool_ops = &velocity_ethtool_ops;
2762
2763 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2764 NETIF_F_HW_VLAN_RX;
2765
2766 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2767 dev->features |= NETIF_F_IP_CSUM;
2768
2769 ret = register_netdev(dev);
2770 if (ret < 0)
2771 goto err_iounmap;
2772
2773 if (!velocity_get_link(dev)) {
2774 netif_carrier_off(dev);
2775 vptr->mii_status |= VELOCITY_LINK_FAIL;
2776 }
2777
2778 velocity_print_info(vptr);
2779 pci_set_drvdata(pdev, dev);
2780
2781 /* and leave the chip powered down */
2782
2783 pci_set_power_state(pdev, PCI_D3hot);
2784 #ifdef CONFIG_PM
2785 {
2786 unsigned long flags;
2787
2788 spin_lock_irqsave(&velocity_dev_list_lock, flags);
2789 list_add(&vptr->list, &velocity_dev_list);
2790 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
2791 }
2792 #endif
2793 velocity_nics++;
2794 out:
2795 return ret;
2796
2797 err_iounmap:
2798 iounmap(regs);
2799 err_release_res:
2800 pci_release_regions(pdev);
2801 err_disable:
2802 pci_disable_device(pdev);
2803 err_free_dev:
2804 free_netdev(dev);
2805 goto out;
2806 }
2807
2808
2809 #ifdef CONFIG_PM
2810 /**
2811 * wol_calc_crc - WOL CRC
2812 * @pattern: data pattern
2813 * @mask_pattern: mask
2814 *
2815 * Compute the wake on lan crc hashes for the packet header
2816 * we are interested in.
2817 */
2818 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2819 {
2820 u16 crc = 0xFFFF;
2821 u8 mask;
2822 int i, j;
2823
2824 for (i = 0; i < size; i++) {
2825 mask = mask_pattern[i];
2826
2827 /* Skip this loop if the mask equals to zero */
2828 if (mask == 0x00)
2829 continue;
2830
2831 for (j = 0; j < 8; j++) {
2832 if ((mask & 0x01) == 0) {
2833 mask >>= 1;
2834 continue;
2835 }
2836 mask >>= 1;
2837 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2838 }
2839 }
2840 /* Finally, invert the result once to get the correct data */
2841 crc = ~crc;
2842 return bitrev32(crc) >> 16;
2843 }
2844
2845 /**
2846 * velocity_set_wol - set up for wake on lan
2847 * @vptr: velocity to set WOL status on
2848 *
2849 * Set a card up for wake on lan either by unicast or by
2850 * ARP packet.
2851 *
2852 * FIXME: check static buffer is safe here
2853 */
2854 static int velocity_set_wol(struct velocity_info *vptr)
2855 {
2856 struct mac_regs __iomem *regs = vptr->mac_regs;
2857 static u8 buf[256];
2858 int i;
2859
2860 static u32 mask_pattern[2][4] = {
2861 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2862 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2863 };
2864
2865 writew(0xFFFF, &regs->WOLCRClr);
2866 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2867 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2868
2869 /*
2870 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2871 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2872 */
2873
2874 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2875 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2876
2877 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2878 struct arp_packet *arp = (struct arp_packet *) buf;
2879 u16 crc;
2880 memset(buf, 0, sizeof(struct arp_packet) + 7);
2881
2882 for (i = 0; i < 4; i++)
2883 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2884
2885 arp->type = htons(ETH_P_ARP);
2886 arp->ar_op = htons(1);
2887
2888 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2889
2890 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2891 (u8 *) & mask_pattern[0][0]);
2892
2893 writew(crc, &regs->PatternCRC[0]);
2894 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2895 }
2896
2897 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2898 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2899
2900 writew(0x0FFF, &regs->WOLSRClr);
2901
2902 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2903 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2904 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2905
2906 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2907 }
2908
2909 if (vptr->mii_status & VELOCITY_SPEED_1000)
2910 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2911
2912 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2913
2914 {
2915 u8 GCR;
2916 GCR = readb(&regs->CHIPGCR);
2917 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2918 writeb(GCR, &regs->CHIPGCR);
2919 }
2920
2921 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2922 /* Turn on SWPTAG just before entering power mode */
2923 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2924 /* Go to bed ..... */
2925 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2926
2927 return 0;
2928 }
2929
2930 /**
2931 * velocity_save_context - save registers
2932 * @vptr: velocity
2933 * @context: buffer for stored context
2934 *
2935 * Retrieve the current configuration from the velocity hardware
2936 * and stash it in the context structure, for use by the context
2937 * restore functions. This allows us to save things we need across
2938 * power down states
2939 */
2940 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2941 {
2942 struct mac_regs __iomem *regs = vptr->mac_regs;
2943 u16 i;
2944 u8 __iomem *ptr = (u8 __iomem *)regs;
2945
2946 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2947 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2948
2949 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
2950 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2951
2952 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
2953 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2954
2955 }
2956
2957 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
2958 {
2959 struct net_device *dev = pci_get_drvdata(pdev);
2960 struct velocity_info *vptr = netdev_priv(dev);
2961 unsigned long flags;
2962
2963 if (!netif_running(vptr->dev))
2964 return 0;
2965
2966 netif_device_detach(vptr->dev);
2967
2968 spin_lock_irqsave(&vptr->lock, flags);
2969 pci_save_state(pdev);
2970 #ifdef ETHTOOL_GWOL
2971 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
2972 velocity_get_ip(vptr);
2973 velocity_save_context(vptr, &vptr->context);
2974 velocity_shutdown(vptr);
2975 velocity_set_wol(vptr);
2976 pci_enable_wake(pdev, PCI_D3hot, 1);
2977 pci_set_power_state(pdev, PCI_D3hot);
2978 } else {
2979 velocity_save_context(vptr, &vptr->context);
2980 velocity_shutdown(vptr);
2981 pci_disable_device(pdev);
2982 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2983 }
2984 #else
2985 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2986 #endif
2987 spin_unlock_irqrestore(&vptr->lock, flags);
2988 return 0;
2989 }
2990
2991 /**
2992 * velocity_restore_context - restore registers
2993 * @vptr: velocity
2994 * @context: buffer for stored context
2995 *
2996 * Reload the register configuration from the velocity context
2997 * created by velocity_save_context.
2998 */
2999 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3000 {
3001 struct mac_regs __iomem *regs = vptr->mac_regs;
3002 int i;
3003 u8 __iomem *ptr = (u8 __iomem *)regs;
3004
3005 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3006 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3007
3008 /* Just skip cr0 */
3009 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3010 /* Clear */
3011 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3012 /* Set */
3013 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3014 }
3015
3016 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3017 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3018
3019 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3020 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3021
3022 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3023 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3024 }
3025
3026 static int velocity_resume(struct pci_dev *pdev)
3027 {
3028 struct net_device *dev = pci_get_drvdata(pdev);
3029 struct velocity_info *vptr = netdev_priv(dev);
3030 unsigned long flags;
3031 int i;
3032
3033 if (!netif_running(vptr->dev))
3034 return 0;
3035
3036 pci_set_power_state(pdev, PCI_D0);
3037 pci_enable_wake(pdev, 0, 0);
3038 pci_restore_state(pdev);
3039
3040 mac_wol_reset(vptr->mac_regs);
3041
3042 spin_lock_irqsave(&vptr->lock, flags);
3043 velocity_restore_context(vptr, &vptr->context);
3044 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3045 mac_disable_int(vptr->mac_regs);
3046
3047 velocity_tx_srv(vptr, 0);
3048
3049 for (i = 0; i < vptr->tx.numq; i++) {
3050 if (vptr->tx.used[i])
3051 mac_tx_queue_wake(vptr->mac_regs, i);
3052 }
3053
3054 mac_enable_int(vptr->mac_regs);
3055 spin_unlock_irqrestore(&vptr->lock, flags);
3056 netif_device_attach(vptr->dev);
3057
3058 return 0;
3059 }
3060 #endif
3061
3062 /*
3063 * Definition for our device driver. The PCI layer interface
3064 * uses this to handle all our card discover and plugging
3065 */
3066 static struct pci_driver velocity_driver = {
3067 .name = VELOCITY_NAME,
3068 .id_table = velocity_id_table,
3069 .probe = velocity_found1,
3070 .remove = __devexit_p(velocity_remove1),
3071 #ifdef CONFIG_PM
3072 .suspend = velocity_suspend,
3073 .resume = velocity_resume,
3074 #endif
3075 };
3076
3077
3078 /**
3079 * velocity_ethtool_up - pre hook for ethtool
3080 * @dev: network device
3081 *
3082 * Called before an ethtool operation. We need to make sure the
3083 * chip is out of D3 state before we poke at it.
3084 */
3085 static int velocity_ethtool_up(struct net_device *dev)
3086 {
3087 struct velocity_info *vptr = netdev_priv(dev);
3088 if (!netif_running(dev))
3089 pci_set_power_state(vptr->pdev, PCI_D0);
3090 return 0;
3091 }
3092
3093 /**
3094 * velocity_ethtool_down - post hook for ethtool
3095 * @dev: network device
3096 *
3097 * Called after an ethtool operation. Restore the chip back to D3
3098 * state if it isn't running.
3099 */
3100 static void velocity_ethtool_down(struct net_device *dev)
3101 {
3102 struct velocity_info *vptr = netdev_priv(dev);
3103 if (!netif_running(dev))
3104 pci_set_power_state(vptr->pdev, PCI_D3hot);
3105 }
3106
3107 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3108 {
3109 struct velocity_info *vptr = netdev_priv(dev);
3110 struct mac_regs __iomem *regs = vptr->mac_regs;
3111 u32 status;
3112 status = check_connection_type(vptr->mac_regs);
3113
3114 cmd->supported = SUPPORTED_TP |
3115 SUPPORTED_Autoneg |
3116 SUPPORTED_10baseT_Half |
3117 SUPPORTED_10baseT_Full |
3118 SUPPORTED_100baseT_Half |
3119 SUPPORTED_100baseT_Full |
3120 SUPPORTED_1000baseT_Half |
3121 SUPPORTED_1000baseT_Full;
3122 if (status & VELOCITY_SPEED_1000)
3123 cmd->speed = SPEED_1000;
3124 else if (status & VELOCITY_SPEED_100)
3125 cmd->speed = SPEED_100;
3126 else
3127 cmd->speed = SPEED_10;
3128 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3129 cmd->port = PORT_TP;
3130 cmd->transceiver = XCVR_INTERNAL;
3131 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3132
3133 if (status & VELOCITY_DUPLEX_FULL)
3134 cmd->duplex = DUPLEX_FULL;
3135 else
3136 cmd->duplex = DUPLEX_HALF;
3137
3138 return 0;
3139 }
3140
3141 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3142 {
3143 struct velocity_info *vptr = netdev_priv(dev);
3144 u32 curr_status;
3145 u32 new_status = 0;
3146 int ret = 0;
3147
3148 curr_status = check_connection_type(vptr->mac_regs);
3149 curr_status &= (~VELOCITY_LINK_FAIL);
3150
3151 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3152 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3153 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3154 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3155
3156 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3157 ret = -EINVAL;
3158 else
3159 velocity_set_media_mode(vptr, new_status);
3160
3161 return ret;
3162 }
3163
3164 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3165 {
3166 struct velocity_info *vptr = netdev_priv(dev);
3167 strcpy(info->driver, VELOCITY_NAME);
3168 strcpy(info->version, VELOCITY_VERSION);
3169 strcpy(info->bus_info, pci_name(vptr->pdev));
3170 }
3171
3172 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3173 {
3174 struct velocity_info *vptr = netdev_priv(dev);
3175 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3176 wol->wolopts |= WAKE_MAGIC;
3177 /*
3178 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3179 wol.wolopts|=WAKE_PHY;
3180 */
3181 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3182 wol->wolopts |= WAKE_UCAST;
3183 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3184 wol->wolopts |= WAKE_ARP;
3185 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3186 }
3187
3188 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3189 {
3190 struct velocity_info *vptr = netdev_priv(dev);
3191
3192 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3193 return -EFAULT;
3194 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3195
3196 /*
3197 if (wol.wolopts & WAKE_PHY) {
3198 vptr->wol_opts|=VELOCITY_WOL_PHY;
3199 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3200 }
3201 */
3202
3203 if (wol->wolopts & WAKE_MAGIC) {
3204 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3205 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3206 }
3207 if (wol->wolopts & WAKE_UCAST) {
3208 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3209 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3210 }
3211 if (wol->wolopts & WAKE_ARP) {
3212 vptr->wol_opts |= VELOCITY_WOL_ARP;
3213 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3214 }
3215 memcpy(vptr->wol_passwd, wol->sopass, 6);
3216 return 0;
3217 }
3218
3219 static u32 velocity_get_msglevel(struct net_device *dev)
3220 {
3221 return msglevel;
3222 }
3223
3224 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3225 {
3226 msglevel = value;
3227 }
3228
3229 static const struct ethtool_ops velocity_ethtool_ops = {
3230 .get_settings = velocity_get_settings,
3231 .set_settings = velocity_set_settings,
3232 .get_drvinfo = velocity_get_drvinfo,
3233 .get_wol = velocity_ethtool_get_wol,
3234 .set_wol = velocity_ethtool_set_wol,
3235 .get_msglevel = velocity_get_msglevel,
3236 .set_msglevel = velocity_set_msglevel,
3237 .get_link = velocity_get_link,
3238 .begin = velocity_ethtool_up,
3239 .complete = velocity_ethtool_down
3240 };
3241
3242 #ifdef CONFIG_PM
3243 #ifdef CONFIG_INET
3244 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3245 {
3246 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3247 struct net_device *dev = ifa->ifa_dev->dev;
3248 struct velocity_info *vptr;
3249 unsigned long flags;
3250
3251 if (dev_net(dev) != &init_net)
3252 return NOTIFY_DONE;
3253
3254 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3255 list_for_each_entry(vptr, &velocity_dev_list, list) {
3256 if (vptr->dev == dev) {
3257 velocity_get_ip(vptr);
3258 break;
3259 }
3260 }
3261 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3262
3263 return NOTIFY_DONE;
3264 }
3265 #endif /* CONFIG_INET */
3266 #endif /* CONFIG_PM */
3267
3268 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3269 static struct notifier_block velocity_inetaddr_notifier = {
3270 .notifier_call = velocity_netdev_event,
3271 };
3272
3273 static void velocity_register_notifier(void)
3274 {
3275 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3276 }
3277
3278 static void velocity_unregister_notifier(void)
3279 {
3280 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3281 }
3282
3283 #else
3284
3285 #define velocity_register_notifier() do {} while (0)
3286 #define velocity_unregister_notifier() do {} while (0)
3287
3288 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3289
3290 /**
3291 * velocity_init_module - load time function
3292 *
3293 * Called when the velocity module is loaded. The PCI driver
3294 * is registered with the PCI layer, and in turn will call
3295 * the probe functions for each velocity adapter installed
3296 * in the system.
3297 */
3298 static int __init velocity_init_module(void)
3299 {
3300 int ret;
3301
3302 velocity_register_notifier();
3303 ret = pci_register_driver(&velocity_driver);
3304 if (ret < 0)
3305 velocity_unregister_notifier();
3306 return ret;
3307 }
3308
3309 /**
3310 * velocity_cleanup - module unload
3311 *
3312 * When the velocity hardware is unloaded this function is called.
3313 * It will clean up the notifiers and the unregister the PCI
3314 * driver interface for this hardware. This in turn cleans up
3315 * all discovered interfaces before returning from the function
3316 */
3317 static void __exit velocity_cleanup_module(void)
3318 {
3319 velocity_unregister_notifier();
3320 pci_unregister_driver(&velocity_driver);
3321 }
3322
3323 module_init(velocity_init_module);
3324 module_exit(velocity_cleanup_module);
This page took 0.117259 seconds and 5 git commands to generate.