via-velocity: use standard VLAN interface (resend)
[deliverable/linux.git] / drivers / net / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
15 *
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
18 *
19 * This source has not been verified for use in safety critical systems.
20 *
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
23 *
24 * Original code:
25 *
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
28 *
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
33 *
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
38 *
39 * Author: Chuang Liang-Shing, AJ Jiang
40 *
41 * Date: Jan 24, 2003
42 *
43 * MODULE_LICENSE("GPL");
44 *
45 */
46
47
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/errno.h>
53 #include <linux/ioport.h>
54 #include <linux/pci.h>
55 #include <linux/kernel.h>
56 #include <linux/netdevice.h>
57 #include <linux/etherdevice.h>
58 #include <linux/skbuff.h>
59 #include <linux/delay.h>
60 #include <linux/timer.h>
61 #include <linux/slab.h>
62 #include <linux/interrupt.h>
63 #include <linux/string.h>
64 #include <linux/wait.h>
65 #include <asm/io.h>
66 #include <linux/if.h>
67 #include <asm/uaccess.h>
68 #include <linux/proc_fs.h>
69 #include <linux/inetdevice.h>
70 #include <linux/reboot.h>
71 #include <linux/ethtool.h>
72 #include <linux/mii.h>
73 #include <linux/in.h>
74 #include <linux/if_arp.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/udp.h>
79 #include <linux/crc-ccitt.h>
80 #include <linux/crc32.h>
81
82 #include "via-velocity.h"
83
84
85 static int velocity_nics = 0;
86 static int msglevel = MSG_LEVEL_INFO;
87
88
89 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
90 static const struct ethtool_ops velocity_ethtool_ops;
91
92 /*
93 Define module options
94 */
95
96 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
97 MODULE_LICENSE("GPL");
98 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
99
100 #define VELOCITY_PARAM(N,D) \
101 static int N[MAX_UNITS]=OPTION_DEFAULT;\
102 module_param_array(N, int, NULL, 0); \
103 MODULE_PARM_DESC(N, D);
104
105 #define RX_DESC_MIN 64
106 #define RX_DESC_MAX 255
107 #define RX_DESC_DEF 64
108 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
109
110 #define TX_DESC_MIN 16
111 #define TX_DESC_MAX 256
112 #define TX_DESC_DEF 64
113 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
114
115 #define RX_THRESH_MIN 0
116 #define RX_THRESH_MAX 3
117 #define RX_THRESH_DEF 0
118 /* rx_thresh[] is used for controlling the receive fifo threshold.
119 0: indicate the rxfifo threshold is 128 bytes.
120 1: indicate the rxfifo threshold is 512 bytes.
121 2: indicate the rxfifo threshold is 1024 bytes.
122 3: indicate the rxfifo threshold is store & forward.
123 */
124 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
125
126 #define DMA_LENGTH_MIN 0
127 #define DMA_LENGTH_MAX 7
128 #define DMA_LENGTH_DEF 0
129
130 /* DMA_length[] is used for controlling the DMA length
131 0: 8 DWORDs
132 1: 16 DWORDs
133 2: 32 DWORDs
134 3: 64 DWORDs
135 4: 128 DWORDs
136 5: 256 DWORDs
137 6: SF(flush till emply)
138 7: SF(flush till emply)
139 */
140 VELOCITY_PARAM(DMA_length, "DMA length");
141
142 #define IP_ALIG_DEF 0
143 /* IP_byte_align[] is used for IP header DWORD byte aligned
144 0: indicate the IP header won't be DWORD byte aligned.(Default) .
145 1: indicate the IP header will be DWORD byte aligned.
146 In some enviroment, the IP header should be DWORD byte aligned,
147 or the packet will be droped when we receive it. (eg: IPVS)
148 */
149 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
150
151 #define TX_CSUM_DEF 1
152 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
153 (We only support RX checksum offload now)
154 0: disable csum_offload[checksum offload
155 1: enable checksum offload. (Default)
156 */
157 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
158
159 #define FLOW_CNTL_DEF 1
160 #define FLOW_CNTL_MIN 1
161 #define FLOW_CNTL_MAX 5
162
163 /* flow_control[] is used for setting the flow control ability of NIC.
164 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
165 2: enable TX flow control.
166 3: enable RX flow control.
167 4: enable RX/TX flow control.
168 5: disable
169 */
170 VELOCITY_PARAM(flow_control, "Enable flow control ability");
171
172 #define MED_LNK_DEF 0
173 #define MED_LNK_MIN 0
174 #define MED_LNK_MAX 4
175 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
176 0: indicate autonegotiation for both speed and duplex mode
177 1: indicate 100Mbps half duplex mode
178 2: indicate 100Mbps full duplex mode
179 3: indicate 10Mbps half duplex mode
180 4: indicate 10Mbps full duplex mode
181
182 Note:
183 if EEPROM have been set to the force mode, this option is ignored
184 by driver.
185 */
186 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
187
188 #define VAL_PKT_LEN_DEF 0
189 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
190 0: Receive frame with invalid layer 2 length (Default)
191 1: Drop frame with invalid layer 2 length
192 */
193 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
194
195 #define WOL_OPT_DEF 0
196 #define WOL_OPT_MIN 0
197 #define WOL_OPT_MAX 7
198 /* wol_opts[] is used for controlling wake on lan behavior.
199 0: Wake up if recevied a magic packet. (Default)
200 1: Wake up if link status is on/off.
201 2: Wake up if recevied an arp packet.
202 4: Wake up if recevied any unicast packet.
203 Those value can be sumed up to support more than one option.
204 */
205 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
206
207 #define INT_WORKS_DEF 20
208 #define INT_WORKS_MIN 10
209 #define INT_WORKS_MAX 64
210
211 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
212
213 static int rx_copybreak = 200;
214 module_param(rx_copybreak, int, 0644);
215 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
216
217 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
218 const struct velocity_info_tbl *info);
219 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
220 static void velocity_print_info(struct velocity_info *vptr);
221 static int velocity_open(struct net_device *dev);
222 static int velocity_change_mtu(struct net_device *dev, int mtu);
223 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
224 static int velocity_intr(int irq, void *dev_instance);
225 static void velocity_set_multi(struct net_device *dev);
226 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
227 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
228 static int velocity_close(struct net_device *dev);
229 static int velocity_receive_frame(struct velocity_info *, int idx);
230 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
231 static void velocity_free_rd_ring(struct velocity_info *vptr);
232 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
233 static int velocity_soft_reset(struct velocity_info *vptr);
234 static void mii_init(struct velocity_info *vptr, u32 mii_status);
235 static u32 velocity_get_link(struct net_device *dev);
236 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
237 static void velocity_print_link_status(struct velocity_info *vptr);
238 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
239 static void velocity_shutdown(struct velocity_info *vptr);
240 static void enable_flow_control_ability(struct velocity_info *vptr);
241 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
242 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
243 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
244 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
245 static u32 check_connection_type(struct mac_regs __iomem * regs);
246 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
247
248 #ifdef CONFIG_PM
249
250 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
251 static int velocity_resume(struct pci_dev *pdev);
252
253 static DEFINE_SPINLOCK(velocity_dev_list_lock);
254 static LIST_HEAD(velocity_dev_list);
255
256 #endif
257
258 #if defined(CONFIG_PM) && defined(CONFIG_INET)
259
260 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
261
262 static struct notifier_block velocity_inetaddr_notifier = {
263 .notifier_call = velocity_netdev_event,
264 };
265
266 static void velocity_register_notifier(void)
267 {
268 register_inetaddr_notifier(&velocity_inetaddr_notifier);
269 }
270
271 static void velocity_unregister_notifier(void)
272 {
273 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
274 }
275
276 #else
277
278 #define velocity_register_notifier() do {} while (0)
279 #define velocity_unregister_notifier() do {} while (0)
280
281 #endif
282
283 /*
284 * Internal board variants. At the moment we have only one
285 */
286
287 static const struct velocity_info_tbl chip_info_table[] __devinitdata = {
288 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
289 { }
290 };
291
292 /*
293 * Describe the PCI device identifiers that we support in this
294 * device driver. Used for hotplug autoloading.
295 */
296
297 static const struct pci_device_id velocity_id_table[] __devinitdata = {
298 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
299 { }
300 };
301
302 MODULE_DEVICE_TABLE(pci, velocity_id_table);
303
304 /**
305 * get_chip_name - identifier to name
306 * @id: chip identifier
307 *
308 * Given a chip identifier return a suitable description. Returns
309 * a pointer a static string valid while the driver is loaded.
310 */
311
312 static char __devinit *get_chip_name(enum chip_type chip_id)
313 {
314 int i;
315 for (i = 0; chip_info_table[i].name != NULL; i++)
316 if (chip_info_table[i].chip_id == chip_id)
317 break;
318 return chip_info_table[i].name;
319 }
320
321 /**
322 * velocity_remove1 - device unplug
323 * @pdev: PCI device being removed
324 *
325 * Device unload callback. Called on an unplug or on module
326 * unload for each active device that is present. Disconnects
327 * the device from the network layer and frees all the resources
328 */
329
330 static void __devexit velocity_remove1(struct pci_dev *pdev)
331 {
332 struct net_device *dev = pci_get_drvdata(pdev);
333 struct velocity_info *vptr = netdev_priv(dev);
334
335 #ifdef CONFIG_PM
336 unsigned long flags;
337
338 spin_lock_irqsave(&velocity_dev_list_lock, flags);
339 if (!list_empty(&velocity_dev_list))
340 list_del(&vptr->list);
341 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
342 #endif
343 unregister_netdev(dev);
344 iounmap(vptr->mac_regs);
345 pci_release_regions(pdev);
346 pci_disable_device(pdev);
347 pci_set_drvdata(pdev, NULL);
348 free_netdev(dev);
349
350 velocity_nics--;
351 }
352
353 /**
354 * velocity_set_int_opt - parser for integer options
355 * @opt: pointer to option value
356 * @val: value the user requested (or -1 for default)
357 * @min: lowest value allowed
358 * @max: highest value allowed
359 * @def: default value
360 * @name: property name
361 * @dev: device name
362 *
363 * Set an integer property in the module options. This function does
364 * all the verification and checking as well as reporting so that
365 * we don't duplicate code for each option.
366 */
367
368 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
369 {
370 if (val == -1)
371 *opt = def;
372 else if (val < min || val > max) {
373 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
374 devname, name, min, max);
375 *opt = def;
376 } else {
377 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
378 devname, name, val);
379 *opt = val;
380 }
381 }
382
383 /**
384 * velocity_set_bool_opt - parser for boolean options
385 * @opt: pointer to option value
386 * @val: value the user requested (or -1 for default)
387 * @def: default value (yes/no)
388 * @flag: numeric value to set for true.
389 * @name: property name
390 * @dev: device name
391 *
392 * Set a boolean property in the module options. This function does
393 * all the verification and checking as well as reporting so that
394 * we don't duplicate code for each option.
395 */
396
397 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
398 {
399 (*opt) &= (~flag);
400 if (val == -1)
401 *opt |= (def ? flag : 0);
402 else if (val < 0 || val > 1) {
403 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
404 devname, name);
405 *opt |= (def ? flag : 0);
406 } else {
407 printk(KERN_INFO "%s: set parameter %s to %s\n",
408 devname, name, val ? "TRUE" : "FALSE");
409 *opt |= (val ? flag : 0);
410 }
411 }
412
413 /**
414 * velocity_get_options - set options on device
415 * @opts: option structure for the device
416 * @index: index of option to use in module options array
417 * @devname: device name
418 *
419 * Turn the module and command options into a single structure
420 * for the current device
421 */
422
423 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
424 {
425
426 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
427 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
428 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
429 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
430
431 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
432 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
433 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
434 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
435 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
436 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
437 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
438 opts->numrx = (opts->numrx & ~3);
439 }
440
441 /**
442 * velocity_init_cam_filter - initialise CAM
443 * @vptr: velocity to program
444 *
445 * Initialize the content addressable memory used for filters. Load
446 * appropriately according to the presence of VLAN
447 */
448
449 static void velocity_init_cam_filter(struct velocity_info *vptr)
450 {
451 struct mac_regs __iomem * regs = vptr->mac_regs;
452 unsigned short vid;
453
454 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
455 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
456 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
457
458 /* Disable all CAMs */
459 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
460 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
461 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
462 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
463
464 /* Enable first VCAM */
465 if (vptr->vlgrp) {
466 for (vid = 0; vid < VLAN_VID_MASK; vid++) {
467 if (vlan_group_get_device(vptr->vlgrp, vid)) {
468 /* If Tagging option is enabled and
469 VLAN ID is not zero, then
470 turn on MCFG_RTGOPT also */
471 if (vid != 0)
472 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
473
474 mac_set_cam(regs, 0, (u8 *) &vid,
475 VELOCITY_VLAN_ID_CAM);
476 }
477 }
478 vptr->vCAMmask[0] |= 1;
479 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
480 } else {
481 u16 temp = 0;
482 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
483 temp = 1;
484 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
485 }
486 }
487
488 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
489 {
490 struct velocity_info *vptr = netdev_priv(dev);
491
492 spin_lock_irq(&vptr->lock);
493 velocity_init_cam_filter(vptr);
494 spin_unlock_irq(&vptr->lock);
495 }
496
497 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
498 {
499 struct velocity_info *vptr = netdev_priv(dev);
500
501 spin_lock_irq(&vptr->lock);
502 vlan_group_set_device(vptr->vlgrp, vid, NULL);
503 velocity_init_cam_filter(vptr);
504 spin_unlock_irq(&vptr->lock);
505 }
506
507
508 /**
509 * velocity_rx_reset - handle a receive reset
510 * @vptr: velocity we are resetting
511 *
512 * Reset the ownership and status for the receive ring side.
513 * Hand all the receive queue to the NIC.
514 */
515
516 static void velocity_rx_reset(struct velocity_info *vptr)
517 {
518
519 struct mac_regs __iomem * regs = vptr->mac_regs;
520 int i;
521
522 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
523
524 /*
525 * Init state, all RD entries belong to the NIC
526 */
527 for (i = 0; i < vptr->options.numrx; ++i)
528 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
529
530 writew(vptr->options.numrx, &regs->RBRDU);
531 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
532 writew(0, &regs->RDIdx);
533 writew(vptr->options.numrx - 1, &regs->RDCSize);
534 }
535
536 /**
537 * velocity_init_registers - initialise MAC registers
538 * @vptr: velocity to init
539 * @type: type of initialisation (hot or cold)
540 *
541 * Initialise the MAC on a reset or on first set up on the
542 * hardware.
543 */
544
545 static void velocity_init_registers(struct velocity_info *vptr,
546 enum velocity_init_type type)
547 {
548 struct mac_regs __iomem * regs = vptr->mac_regs;
549 int i, mii_status;
550
551 mac_wol_reset(regs);
552
553 switch (type) {
554 case VELOCITY_INIT_RESET:
555 case VELOCITY_INIT_WOL:
556
557 netif_stop_queue(vptr->dev);
558
559 /*
560 * Reset RX to prevent RX pointer not on the 4X location
561 */
562 velocity_rx_reset(vptr);
563 mac_rx_queue_run(regs);
564 mac_rx_queue_wake(regs);
565
566 mii_status = velocity_get_opt_media_mode(vptr);
567 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
568 velocity_print_link_status(vptr);
569 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
570 netif_wake_queue(vptr->dev);
571 }
572
573 enable_flow_control_ability(vptr);
574
575 mac_clear_isr(regs);
576 writel(CR0_STOP, &regs->CR0Clr);
577 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
578 &regs->CR0Set);
579
580 break;
581
582 case VELOCITY_INIT_COLD:
583 default:
584 /*
585 * Do reset
586 */
587 velocity_soft_reset(vptr);
588 mdelay(5);
589
590 mac_eeprom_reload(regs);
591 for (i = 0; i < 6; i++) {
592 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
593 }
594 /*
595 * clear Pre_ACPI bit.
596 */
597 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
598 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
599 mac_set_dma_length(regs, vptr->options.DMA_length);
600
601 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
602 /*
603 * Back off algorithm use original IEEE standard
604 */
605 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
606
607 /*
608 * Init CAM filter
609 */
610 velocity_init_cam_filter(vptr);
611
612 /*
613 * Set packet filter: Receive directed and broadcast address
614 */
615 velocity_set_multi(vptr->dev);
616
617 /*
618 * Enable MII auto-polling
619 */
620 enable_mii_autopoll(regs);
621
622 vptr->int_mask = INT_MASK_DEF;
623
624 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
625 writew(vptr->options.numrx - 1, &regs->RDCSize);
626 mac_rx_queue_run(regs);
627 mac_rx_queue_wake(regs);
628
629 writew(vptr->options.numtx - 1, &regs->TDCSize);
630
631 for (i = 0; i < vptr->num_txq; i++) {
632 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
633 mac_tx_queue_run(regs, i);
634 }
635
636 init_flow_control_register(vptr);
637
638 writel(CR0_STOP, &regs->CR0Clr);
639 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
640
641 mii_status = velocity_get_opt_media_mode(vptr);
642 netif_stop_queue(vptr->dev);
643
644 mii_init(vptr, mii_status);
645
646 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
647 velocity_print_link_status(vptr);
648 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
649 netif_wake_queue(vptr->dev);
650 }
651
652 enable_flow_control_ability(vptr);
653 mac_hw_mibs_init(regs);
654 mac_write_int_mask(vptr->int_mask, regs);
655 mac_clear_isr(regs);
656
657 }
658 }
659
660 /**
661 * velocity_soft_reset - soft reset
662 * @vptr: velocity to reset
663 *
664 * Kick off a soft reset of the velocity adapter and then poll
665 * until the reset sequence has completed before returning.
666 */
667
668 static int velocity_soft_reset(struct velocity_info *vptr)
669 {
670 struct mac_regs __iomem * regs = vptr->mac_regs;
671 int i = 0;
672
673 writel(CR0_SFRST, &regs->CR0Set);
674
675 for (i = 0; i < W_MAX_TIMEOUT; i++) {
676 udelay(5);
677 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
678 break;
679 }
680
681 if (i == W_MAX_TIMEOUT) {
682 writel(CR0_FORSRST, &regs->CR0Set);
683 /* FIXME: PCI POSTING */
684 /* delay 2ms */
685 mdelay(2);
686 }
687 return 0;
688 }
689
690 /**
691 * velocity_found1 - set up discovered velocity card
692 * @pdev: PCI device
693 * @ent: PCI device table entry that matched
694 *
695 * Configure a discovered adapter from scratch. Return a negative
696 * errno error code on failure paths.
697 */
698
699 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
700 {
701 static int first = 1;
702 struct net_device *dev;
703 int i;
704 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
705 struct velocity_info *vptr;
706 struct mac_regs __iomem * regs;
707 int ret = -ENOMEM;
708
709 /* FIXME: this driver, like almost all other ethernet drivers,
710 * can support more than MAX_UNITS.
711 */
712 if (velocity_nics >= MAX_UNITS) {
713 dev_notice(&pdev->dev, "already found %d NICs.\n",
714 velocity_nics);
715 return -ENODEV;
716 }
717
718 dev = alloc_etherdev(sizeof(struct velocity_info));
719 if (!dev) {
720 dev_err(&pdev->dev, "allocate net device failed.\n");
721 goto out;
722 }
723
724 /* Chain it all together */
725
726 SET_NETDEV_DEV(dev, &pdev->dev);
727 vptr = netdev_priv(dev);
728
729
730 if (first) {
731 printk(KERN_INFO "%s Ver. %s\n",
732 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
733 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
734 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
735 first = 0;
736 }
737
738 velocity_init_info(pdev, vptr, info);
739
740 vptr->dev = dev;
741
742 dev->irq = pdev->irq;
743
744 ret = pci_enable_device(pdev);
745 if (ret < 0)
746 goto err_free_dev;
747
748 ret = velocity_get_pci_info(vptr, pdev);
749 if (ret < 0) {
750 /* error message already printed */
751 goto err_disable;
752 }
753
754 ret = pci_request_regions(pdev, VELOCITY_NAME);
755 if (ret < 0) {
756 dev_err(&pdev->dev, "No PCI resources.\n");
757 goto err_disable;
758 }
759
760 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
761 if (regs == NULL) {
762 ret = -EIO;
763 goto err_release_res;
764 }
765
766 vptr->mac_regs = regs;
767
768 mac_wol_reset(regs);
769
770 dev->base_addr = vptr->ioaddr;
771
772 for (i = 0; i < 6; i++)
773 dev->dev_addr[i] = readb(&regs->PAR[i]);
774
775
776 velocity_get_options(&vptr->options, velocity_nics, dev->name);
777
778 /*
779 * Mask out the options cannot be set to the chip
780 */
781
782 vptr->options.flags &= info->flags;
783
784 /*
785 * Enable the chip specified capbilities
786 */
787
788 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
789
790 vptr->wol_opts = vptr->options.wol_opts;
791 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
792
793 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
794
795 dev->irq = pdev->irq;
796 dev->open = velocity_open;
797 dev->hard_start_xmit = velocity_xmit;
798 dev->stop = velocity_close;
799 dev->get_stats = velocity_get_stats;
800 dev->set_multicast_list = velocity_set_multi;
801 dev->do_ioctl = velocity_ioctl;
802 dev->ethtool_ops = &velocity_ethtool_ops;
803 dev->change_mtu = velocity_change_mtu;
804
805 dev->vlan_rx_add_vid = velocity_vlan_rx_add_vid;
806 dev->vlan_rx_kill_vid = velocity_vlan_rx_kill_vid;
807
808 #ifdef VELOCITY_ZERO_COPY_SUPPORT
809 dev->features |= NETIF_F_SG;
810 #endif
811 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER;
812
813 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
814 dev->features |= NETIF_F_IP_CSUM;
815
816 ret = register_netdev(dev);
817 if (ret < 0)
818 goto err_iounmap;
819
820 if (velocity_get_link(dev))
821 netif_carrier_off(dev);
822
823 velocity_print_info(vptr);
824 pci_set_drvdata(pdev, dev);
825
826 /* and leave the chip powered down */
827
828 pci_set_power_state(pdev, PCI_D3hot);
829 #ifdef CONFIG_PM
830 {
831 unsigned long flags;
832
833 spin_lock_irqsave(&velocity_dev_list_lock, flags);
834 list_add(&vptr->list, &velocity_dev_list);
835 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
836 }
837 #endif
838 velocity_nics++;
839 out:
840 return ret;
841
842 err_iounmap:
843 iounmap(regs);
844 err_release_res:
845 pci_release_regions(pdev);
846 err_disable:
847 pci_disable_device(pdev);
848 err_free_dev:
849 free_netdev(dev);
850 goto out;
851 }
852
853 /**
854 * velocity_print_info - per driver data
855 * @vptr: velocity
856 *
857 * Print per driver data as the kernel driver finds Velocity
858 * hardware
859 */
860
861 static void __devinit velocity_print_info(struct velocity_info *vptr)
862 {
863 struct net_device *dev = vptr->dev;
864
865 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
866 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
867 dev->name,
868 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
869 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
870 }
871
872 /**
873 * velocity_init_info - init private data
874 * @pdev: PCI device
875 * @vptr: Velocity info
876 * @info: Board type
877 *
878 * Set up the initial velocity_info struct for the device that has been
879 * discovered.
880 */
881
882 static void __devinit velocity_init_info(struct pci_dev *pdev,
883 struct velocity_info *vptr,
884 const struct velocity_info_tbl *info)
885 {
886 memset(vptr, 0, sizeof(struct velocity_info));
887
888 vptr->pdev = pdev;
889 vptr->chip_id = info->chip_id;
890 vptr->num_txq = info->txqueue;
891 vptr->multicast_limit = MCAM_SIZE;
892 spin_lock_init(&vptr->lock);
893 INIT_LIST_HEAD(&vptr->list);
894 }
895
896 /**
897 * velocity_get_pci_info - retrieve PCI info for device
898 * @vptr: velocity device
899 * @pdev: PCI device it matches
900 *
901 * Retrieve the PCI configuration space data that interests us from
902 * the kernel PCI layer
903 */
904
905 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
906 {
907 vptr->rev_id = pdev->revision;
908
909 pci_set_master(pdev);
910
911 vptr->ioaddr = pci_resource_start(pdev, 0);
912 vptr->memaddr = pci_resource_start(pdev, 1);
913
914 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
915 dev_err(&pdev->dev,
916 "region #0 is not an I/O resource, aborting.\n");
917 return -EINVAL;
918 }
919
920 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
921 dev_err(&pdev->dev,
922 "region #1 is an I/O resource, aborting.\n");
923 return -EINVAL;
924 }
925
926 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
927 dev_err(&pdev->dev, "region #1 is too small.\n");
928 return -EINVAL;
929 }
930 vptr->pdev = pdev;
931
932 return 0;
933 }
934
935 /**
936 * velocity_init_rings - set up DMA rings
937 * @vptr: Velocity to set up
938 *
939 * Allocate PCI mapped DMA rings for the receive and transmit layer
940 * to use.
941 */
942
943 static int velocity_init_rings(struct velocity_info *vptr)
944 {
945 int i;
946 unsigned int psize;
947 unsigned int tsize;
948 dma_addr_t pool_dma;
949 u8 *pool;
950
951 /*
952 * Allocate all RD/TD rings a single pool
953 */
954
955 psize = vptr->options.numrx * sizeof(struct rx_desc) +
956 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
957
958 /*
959 * pci_alloc_consistent() fulfills the requirement for 64 bytes
960 * alignment
961 */
962 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
963
964 if (pool == NULL) {
965 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
966 vptr->dev->name);
967 return -ENOMEM;
968 }
969
970 memset(pool, 0, psize);
971
972 vptr->rd_ring = (struct rx_desc *) pool;
973
974 vptr->rd_pool_dma = pool_dma;
975
976 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
977 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
978 &vptr->tx_bufs_dma);
979
980 if (vptr->tx_bufs == NULL) {
981 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
982 vptr->dev->name);
983 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
984 return -ENOMEM;
985 }
986
987 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
988
989 i = vptr->options.numrx * sizeof(struct rx_desc);
990 pool += i;
991 pool_dma += i;
992 for (i = 0; i < vptr->num_txq; i++) {
993 int offset = vptr->options.numtx * sizeof(struct tx_desc);
994
995 vptr->td_pool_dma[i] = pool_dma;
996 vptr->td_rings[i] = (struct tx_desc *) pool;
997 pool += offset;
998 pool_dma += offset;
999 }
1000 return 0;
1001 }
1002
1003 /**
1004 * velocity_free_rings - free PCI ring pointers
1005 * @vptr: Velocity to free from
1006 *
1007 * Clean up the PCI ring buffers allocated to this velocity.
1008 */
1009
1010 static void velocity_free_rings(struct velocity_info *vptr)
1011 {
1012 int size;
1013
1014 size = vptr->options.numrx * sizeof(struct rx_desc) +
1015 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1016
1017 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1018
1019 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1020
1021 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1022 }
1023
1024 static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1025 {
1026 struct mac_regs __iomem *regs = vptr->mac_regs;
1027 int avail, dirty, unusable;
1028
1029 /*
1030 * RD number must be equal to 4X per hardware spec
1031 * (programming guide rev 1.20, p.13)
1032 */
1033 if (vptr->rd_filled < 4)
1034 return;
1035
1036 wmb();
1037
1038 unusable = vptr->rd_filled & 0x0003;
1039 dirty = vptr->rd_dirty - unusable;
1040 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1041 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1042 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1043 }
1044
1045 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1046 vptr->rd_filled = unusable;
1047 }
1048
1049 static int velocity_rx_refill(struct velocity_info *vptr)
1050 {
1051 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1052
1053 do {
1054 struct rx_desc *rd = vptr->rd_ring + dirty;
1055
1056 /* Fine for an all zero Rx desc at init time as well */
1057 if (rd->rdesc0.owner == OWNED_BY_NIC)
1058 break;
1059
1060 if (!vptr->rd_info[dirty].skb) {
1061 ret = velocity_alloc_rx_buf(vptr, dirty);
1062 if (ret < 0)
1063 break;
1064 }
1065 done++;
1066 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1067 } while (dirty != vptr->rd_curr);
1068
1069 if (done) {
1070 vptr->rd_dirty = dirty;
1071 vptr->rd_filled += done;
1072 velocity_give_many_rx_descs(vptr);
1073 }
1074
1075 return ret;
1076 }
1077
1078 /**
1079 * velocity_init_rd_ring - set up receive ring
1080 * @vptr: velocity to configure
1081 *
1082 * Allocate and set up the receive buffers for each ring slot and
1083 * assign them to the network adapter.
1084 */
1085
1086 static int velocity_init_rd_ring(struct velocity_info *vptr)
1087 {
1088 int ret;
1089
1090 vptr->rd_info = kcalloc(vptr->options.numrx,
1091 sizeof(struct velocity_rd_info), GFP_KERNEL);
1092 if (!vptr->rd_info)
1093 return -ENOMEM;
1094
1095 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1096
1097 ret = velocity_rx_refill(vptr);
1098 if (ret < 0) {
1099 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1100 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1101 velocity_free_rd_ring(vptr);
1102 }
1103
1104 return ret;
1105 }
1106
1107 /**
1108 * velocity_free_rd_ring - free receive ring
1109 * @vptr: velocity to clean up
1110 *
1111 * Free the receive buffers for each ring slot and any
1112 * attached socket buffers that need to go away.
1113 */
1114
1115 static void velocity_free_rd_ring(struct velocity_info *vptr)
1116 {
1117 int i;
1118
1119 if (vptr->rd_info == NULL)
1120 return;
1121
1122 for (i = 0; i < vptr->options.numrx; i++) {
1123 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
1124 struct rx_desc *rd = vptr->rd_ring + i;
1125
1126 memset(rd, 0, sizeof(*rd));
1127
1128 if (!rd_info->skb)
1129 continue;
1130 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1131 PCI_DMA_FROMDEVICE);
1132 rd_info->skb_dma = (dma_addr_t) NULL;
1133
1134 dev_kfree_skb(rd_info->skb);
1135 rd_info->skb = NULL;
1136 }
1137
1138 kfree(vptr->rd_info);
1139 vptr->rd_info = NULL;
1140 }
1141
1142 /**
1143 * velocity_init_td_ring - set up transmit ring
1144 * @vptr: velocity
1145 *
1146 * Set up the transmit ring and chain the ring pointers together.
1147 * Returns zero on success or a negative posix errno code for
1148 * failure.
1149 */
1150
1151 static int velocity_init_td_ring(struct velocity_info *vptr)
1152 {
1153 int i, j;
1154 dma_addr_t curr;
1155 struct tx_desc *td;
1156 struct velocity_td_info *td_info;
1157
1158 /* Init the TD ring entries */
1159 for (j = 0; j < vptr->num_txq; j++) {
1160 curr = vptr->td_pool_dma[j];
1161
1162 vptr->td_infos[j] = kcalloc(vptr->options.numtx,
1163 sizeof(struct velocity_td_info),
1164 GFP_KERNEL);
1165 if (!vptr->td_infos[j]) {
1166 while(--j >= 0)
1167 kfree(vptr->td_infos[j]);
1168 return -ENOMEM;
1169 }
1170
1171 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1172 td = &(vptr->td_rings[j][i]);
1173 td_info = &(vptr->td_infos[j][i]);
1174 td_info->buf = vptr->tx_bufs +
1175 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1176 td_info->buf_dma = vptr->tx_bufs_dma +
1177 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1178 }
1179 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1180 }
1181 return 0;
1182 }
1183
1184 /*
1185 * FIXME: could we merge this with velocity_free_tx_buf ?
1186 */
1187
1188 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1189 int q, int n)
1190 {
1191 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1192 int i;
1193
1194 if (td_info == NULL)
1195 return;
1196
1197 if (td_info->skb) {
1198 for (i = 0; i < td_info->nskb_dma; i++)
1199 {
1200 if (td_info->skb_dma[i]) {
1201 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1202 td_info->skb->len, PCI_DMA_TODEVICE);
1203 td_info->skb_dma[i] = (dma_addr_t) NULL;
1204 }
1205 }
1206 dev_kfree_skb(td_info->skb);
1207 td_info->skb = NULL;
1208 }
1209 }
1210
1211 /**
1212 * velocity_free_td_ring - free td ring
1213 * @vptr: velocity
1214 *
1215 * Free up the transmit ring for this particular velocity adapter.
1216 * We free the ring contents but not the ring itself.
1217 */
1218
1219 static void velocity_free_td_ring(struct velocity_info *vptr)
1220 {
1221 int i, j;
1222
1223 for (j = 0; j < vptr->num_txq; j++) {
1224 if (vptr->td_infos[j] == NULL)
1225 continue;
1226 for (i = 0; i < vptr->options.numtx; i++) {
1227 velocity_free_td_ring_entry(vptr, j, i);
1228
1229 }
1230 kfree(vptr->td_infos[j]);
1231 vptr->td_infos[j] = NULL;
1232 }
1233 }
1234
1235 /**
1236 * velocity_rx_srv - service RX interrupt
1237 * @vptr: velocity
1238 * @status: adapter status (unused)
1239 *
1240 * Walk the receive ring of the velocity adapter and remove
1241 * any received packets from the receive queue. Hand the ring
1242 * slots back to the adapter for reuse.
1243 */
1244
1245 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1246 {
1247 struct net_device_stats *stats = &vptr->stats;
1248 int rd_curr = vptr->rd_curr;
1249 int works = 0;
1250
1251 do {
1252 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1253
1254 if (!vptr->rd_info[rd_curr].skb)
1255 break;
1256
1257 if (rd->rdesc0.owner == OWNED_BY_NIC)
1258 break;
1259
1260 rmb();
1261
1262 /*
1263 * Don't drop CE or RL error frame although RXOK is off
1264 */
1265 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1266 if (velocity_receive_frame(vptr, rd_curr) < 0)
1267 stats->rx_dropped++;
1268 } else {
1269 if (rd->rdesc0.RSR & RSR_CRC)
1270 stats->rx_crc_errors++;
1271 if (rd->rdesc0.RSR & RSR_FAE)
1272 stats->rx_frame_errors++;
1273
1274 stats->rx_dropped++;
1275 }
1276
1277 rd->inten = 1;
1278
1279 vptr->dev->last_rx = jiffies;
1280
1281 rd_curr++;
1282 if (rd_curr >= vptr->options.numrx)
1283 rd_curr = 0;
1284 } while (++works <= 15);
1285
1286 vptr->rd_curr = rd_curr;
1287
1288 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1289 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1290 "%s: rx buf allocation failure\n", vptr->dev->name);
1291 }
1292
1293 VAR_USED(stats);
1294 return works;
1295 }
1296
1297 /**
1298 * velocity_rx_csum - checksum process
1299 * @rd: receive packet descriptor
1300 * @skb: network layer packet buffer
1301 *
1302 * Process the status bits for the received packet and determine
1303 * if the checksum was computed and verified by the hardware
1304 */
1305
1306 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1307 {
1308 skb->ip_summed = CHECKSUM_NONE;
1309
1310 if (rd->rdesc1.CSM & CSM_IPKT) {
1311 if (rd->rdesc1.CSM & CSM_IPOK) {
1312 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1313 (rd->rdesc1.CSM & CSM_UDPKT)) {
1314 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1315 return;
1316 }
1317 }
1318 skb->ip_summed = CHECKSUM_UNNECESSARY;
1319 }
1320 }
1321 }
1322
1323 /**
1324 * velocity_rx_copy - in place Rx copy for small packets
1325 * @rx_skb: network layer packet buffer candidate
1326 * @pkt_size: received data size
1327 * @rd: receive packet descriptor
1328 * @dev: network device
1329 *
1330 * Replace the current skb that is scheduled for Rx processing by a
1331 * shorter, immediatly allocated skb, if the received packet is small
1332 * enough. This function returns a negative value if the received
1333 * packet is too big or if memory is exhausted.
1334 */
1335 static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1336 struct velocity_info *vptr)
1337 {
1338 int ret = -1;
1339
1340 if (pkt_size < rx_copybreak) {
1341 struct sk_buff *new_skb;
1342
1343 new_skb = dev_alloc_skb(pkt_size + 2);
1344 if (new_skb) {
1345 new_skb->dev = vptr->dev;
1346 new_skb->ip_summed = rx_skb[0]->ip_summed;
1347
1348 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1349 skb_reserve(new_skb, 2);
1350
1351 skb_copy_from_linear_data(rx_skb[0], new_skb->data,
1352 pkt_size);
1353 *rx_skb = new_skb;
1354 ret = 0;
1355 }
1356
1357 }
1358 return ret;
1359 }
1360
1361 /**
1362 * velocity_iph_realign - IP header alignment
1363 * @vptr: velocity we are handling
1364 * @skb: network layer packet buffer
1365 * @pkt_size: received data size
1366 *
1367 * Align IP header on a 2 bytes boundary. This behavior can be
1368 * configured by the user.
1369 */
1370 static inline void velocity_iph_realign(struct velocity_info *vptr,
1371 struct sk_buff *skb, int pkt_size)
1372 {
1373 /* FIXME - memmove ? */
1374 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1375 int i;
1376
1377 for (i = pkt_size; i >= 0; i--)
1378 *(skb->data + i + 2) = *(skb->data + i);
1379 skb_reserve(skb, 2);
1380 }
1381 }
1382
1383 /**
1384 * velocity_receive_frame - received packet processor
1385 * @vptr: velocity we are handling
1386 * @idx: ring index
1387 *
1388 * A packet has arrived. We process the packet and if appropriate
1389 * pass the frame up the network stack
1390 */
1391
1392 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1393 {
1394 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1395 struct net_device_stats *stats = &vptr->stats;
1396 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1397 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1398 int pkt_len = rd->rdesc0.len;
1399 struct sk_buff *skb;
1400
1401 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1402 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1403 stats->rx_length_errors++;
1404 return -EINVAL;
1405 }
1406
1407 if (rd->rdesc0.RSR & RSR_MAR)
1408 vptr->stats.multicast++;
1409
1410 skb = rd_info->skb;
1411
1412 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1413 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1414
1415 /*
1416 * Drop frame not meeting IEEE 802.3
1417 */
1418
1419 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1420 if (rd->rdesc0.RSR & RSR_RL) {
1421 stats->rx_length_errors++;
1422 return -EINVAL;
1423 }
1424 }
1425
1426 pci_action = pci_dma_sync_single_for_device;
1427
1428 velocity_rx_csum(rd, skb);
1429
1430 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1431 velocity_iph_realign(vptr, skb, pkt_len);
1432 pci_action = pci_unmap_single;
1433 rd_info->skb = NULL;
1434 }
1435
1436 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1437 PCI_DMA_FROMDEVICE);
1438
1439 skb_put(skb, pkt_len - 4);
1440 skb->protocol = eth_type_trans(skb, vptr->dev);
1441
1442 stats->rx_bytes += pkt_len;
1443 netif_rx(skb);
1444
1445 return 0;
1446 }
1447
1448 /**
1449 * velocity_alloc_rx_buf - allocate aligned receive buffer
1450 * @vptr: velocity
1451 * @idx: ring index
1452 *
1453 * Allocate a new full sized buffer for the reception of a frame and
1454 * map it into PCI space for the hardware to use. The hardware
1455 * requires *64* byte alignment of the buffer which makes life
1456 * less fun than would be ideal.
1457 */
1458
1459 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1460 {
1461 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1462 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1463
1464 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1465 if (rd_info->skb == NULL)
1466 return -ENOMEM;
1467
1468 /*
1469 * Do the gymnastics to get the buffer head for data at
1470 * 64byte alignment.
1471 */
1472 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1473 rd_info->skb->dev = vptr->dev;
1474 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1475
1476 /*
1477 * Fill in the descriptor to match
1478 */
1479
1480 *((u32 *) & (rd->rdesc0)) = 0;
1481 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1482 rd->inten = 1;
1483 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1484 rd->pa_high = 0;
1485 return 0;
1486 }
1487
1488 /**
1489 * tx_srv - transmit interrupt service
1490 * @vptr; Velocity
1491 * @status:
1492 *
1493 * Scan the queues looking for transmitted packets that
1494 * we can complete and clean up. Update any statistics as
1495 * neccessary/
1496 */
1497
1498 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1499 {
1500 struct tx_desc *td;
1501 int qnum;
1502 int full = 0;
1503 int idx;
1504 int works = 0;
1505 struct velocity_td_info *tdinfo;
1506 struct net_device_stats *stats = &vptr->stats;
1507
1508 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1509 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1510 idx = (idx + 1) % vptr->options.numtx) {
1511
1512 /*
1513 * Get Tx Descriptor
1514 */
1515 td = &(vptr->td_rings[qnum][idx]);
1516 tdinfo = &(vptr->td_infos[qnum][idx]);
1517
1518 if (td->tdesc0.owner == OWNED_BY_NIC)
1519 break;
1520
1521 if ((works++ > 15))
1522 break;
1523
1524 if (td->tdesc0.TSR & TSR0_TERR) {
1525 stats->tx_errors++;
1526 stats->tx_dropped++;
1527 if (td->tdesc0.TSR & TSR0_CDH)
1528 stats->tx_heartbeat_errors++;
1529 if (td->tdesc0.TSR & TSR0_CRS)
1530 stats->tx_carrier_errors++;
1531 if (td->tdesc0.TSR & TSR0_ABT)
1532 stats->tx_aborted_errors++;
1533 if (td->tdesc0.TSR & TSR0_OWC)
1534 stats->tx_window_errors++;
1535 } else {
1536 stats->tx_packets++;
1537 stats->tx_bytes += tdinfo->skb->len;
1538 }
1539 velocity_free_tx_buf(vptr, tdinfo);
1540 vptr->td_used[qnum]--;
1541 }
1542 vptr->td_tail[qnum] = idx;
1543
1544 if (AVAIL_TD(vptr, qnum) < 1) {
1545 full = 1;
1546 }
1547 }
1548 /*
1549 * Look to see if we should kick the transmit network
1550 * layer for more work.
1551 */
1552 if (netif_queue_stopped(vptr->dev) && (full == 0)
1553 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1554 netif_wake_queue(vptr->dev);
1555 }
1556 return works;
1557 }
1558
1559 /**
1560 * velocity_print_link_status - link status reporting
1561 * @vptr: velocity to report on
1562 *
1563 * Turn the link status of the velocity card into a kernel log
1564 * description of the new link state, detailing speed and duplex
1565 * status
1566 */
1567
1568 static void velocity_print_link_status(struct velocity_info *vptr)
1569 {
1570
1571 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1572 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1573 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1574 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1575
1576 if (vptr->mii_status & VELOCITY_SPEED_1000)
1577 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1578 else if (vptr->mii_status & VELOCITY_SPEED_100)
1579 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1580 else
1581 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1582
1583 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1584 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1585 else
1586 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1587 } else {
1588 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1589 switch (vptr->options.spd_dpx) {
1590 case SPD_DPX_100_HALF:
1591 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1592 break;
1593 case SPD_DPX_100_FULL:
1594 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1595 break;
1596 case SPD_DPX_10_HALF:
1597 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1598 break;
1599 case SPD_DPX_10_FULL:
1600 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1601 break;
1602 default:
1603 break;
1604 }
1605 }
1606 }
1607
1608 /**
1609 * velocity_error - handle error from controller
1610 * @vptr: velocity
1611 * @status: card status
1612 *
1613 * Process an error report from the hardware and attempt to recover
1614 * the card itself. At the moment we cannot recover from some
1615 * theoretically impossible errors but this could be fixed using
1616 * the pci_device_failed logic to bounce the hardware
1617 *
1618 */
1619
1620 static void velocity_error(struct velocity_info *vptr, int status)
1621 {
1622
1623 if (status & ISR_TXSTLI) {
1624 struct mac_regs __iomem * regs = vptr->mac_regs;
1625
1626 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1627 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1628 writew(TRDCSR_RUN, &regs->TDCSRClr);
1629 netif_stop_queue(vptr->dev);
1630
1631 /* FIXME: port over the pci_device_failed code and use it
1632 here */
1633 }
1634
1635 if (status & ISR_SRCI) {
1636 struct mac_regs __iomem * regs = vptr->mac_regs;
1637 int linked;
1638
1639 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1640 vptr->mii_status = check_connection_type(regs);
1641
1642 /*
1643 * If it is a 3119, disable frame bursting in
1644 * halfduplex mode and enable it in fullduplex
1645 * mode
1646 */
1647 if (vptr->rev_id < REV_ID_VT3216_A0) {
1648 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1649 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1650 else
1651 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1652 }
1653 /*
1654 * Only enable CD heart beat counter in 10HD mode
1655 */
1656 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1657 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1658 } else {
1659 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1660 }
1661 }
1662 /*
1663 * Get link status from PHYSR0
1664 */
1665 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1666
1667 if (linked) {
1668 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1669 netif_carrier_on(vptr->dev);
1670 } else {
1671 vptr->mii_status |= VELOCITY_LINK_FAIL;
1672 netif_carrier_off(vptr->dev);
1673 }
1674
1675 velocity_print_link_status(vptr);
1676 enable_flow_control_ability(vptr);
1677
1678 /*
1679 * Re-enable auto-polling because SRCI will disable
1680 * auto-polling
1681 */
1682
1683 enable_mii_autopoll(regs);
1684
1685 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1686 netif_stop_queue(vptr->dev);
1687 else
1688 netif_wake_queue(vptr->dev);
1689
1690 };
1691 if (status & ISR_MIBFI)
1692 velocity_update_hw_mibs(vptr);
1693 if (status & ISR_LSTEI)
1694 mac_rx_queue_wake(vptr->mac_regs);
1695 }
1696
1697 /**
1698 * velocity_free_tx_buf - free transmit buffer
1699 * @vptr: velocity
1700 * @tdinfo: buffer
1701 *
1702 * Release an transmit buffer. If the buffer was preallocated then
1703 * recycle it, if not then unmap the buffer.
1704 */
1705
1706 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1707 {
1708 struct sk_buff *skb = tdinfo->skb;
1709 int i;
1710
1711 /*
1712 * Don't unmap the pre-allocated tx_bufs
1713 */
1714 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1715
1716 for (i = 0; i < tdinfo->nskb_dma; i++) {
1717 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1718 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1719 #else
1720 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1721 #endif
1722 tdinfo->skb_dma[i] = 0;
1723 }
1724 }
1725 dev_kfree_skb_irq(skb);
1726 tdinfo->skb = NULL;
1727 }
1728
1729 /**
1730 * velocity_open - interface activation callback
1731 * @dev: network layer device to open
1732 *
1733 * Called when the network layer brings the interface up. Returns
1734 * a negative posix error code on failure, or zero on success.
1735 *
1736 * All the ring allocation and set up is done on open for this
1737 * adapter to minimise memory usage when inactive
1738 */
1739
1740 static int velocity_open(struct net_device *dev)
1741 {
1742 struct velocity_info *vptr = netdev_priv(dev);
1743 int ret;
1744
1745 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1746
1747 ret = velocity_init_rings(vptr);
1748 if (ret < 0)
1749 goto out;
1750
1751 ret = velocity_init_rd_ring(vptr);
1752 if (ret < 0)
1753 goto err_free_desc_rings;
1754
1755 ret = velocity_init_td_ring(vptr);
1756 if (ret < 0)
1757 goto err_free_rd_ring;
1758
1759 /* Ensure chip is running */
1760 pci_set_power_state(vptr->pdev, PCI_D0);
1761
1762 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1763
1764 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1765 dev->name, dev);
1766 if (ret < 0) {
1767 /* Power down the chip */
1768 pci_set_power_state(vptr->pdev, PCI_D3hot);
1769 goto err_free_td_ring;
1770 }
1771
1772 mac_enable_int(vptr->mac_regs);
1773 netif_start_queue(dev);
1774 vptr->flags |= VELOCITY_FLAGS_OPENED;
1775 out:
1776 return ret;
1777
1778 err_free_td_ring:
1779 velocity_free_td_ring(vptr);
1780 err_free_rd_ring:
1781 velocity_free_rd_ring(vptr);
1782 err_free_desc_rings:
1783 velocity_free_rings(vptr);
1784 goto out;
1785 }
1786
1787 /**
1788 * velocity_change_mtu - MTU change callback
1789 * @dev: network device
1790 * @new_mtu: desired MTU
1791 *
1792 * Handle requests from the networking layer for MTU change on
1793 * this interface. It gets called on a change by the network layer.
1794 * Return zero for success or negative posix error code.
1795 */
1796
1797 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1798 {
1799 struct velocity_info *vptr = netdev_priv(dev);
1800 unsigned long flags;
1801 int oldmtu = dev->mtu;
1802 int ret = 0;
1803
1804 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1805 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1806 vptr->dev->name);
1807 return -EINVAL;
1808 }
1809
1810 if (new_mtu != oldmtu) {
1811 spin_lock_irqsave(&vptr->lock, flags);
1812
1813 netif_stop_queue(dev);
1814 velocity_shutdown(vptr);
1815
1816 velocity_free_td_ring(vptr);
1817 velocity_free_rd_ring(vptr);
1818
1819 dev->mtu = new_mtu;
1820 if (new_mtu > 8192)
1821 vptr->rx_buf_sz = 9 * 1024;
1822 else if (new_mtu > 4096)
1823 vptr->rx_buf_sz = 8192;
1824 else
1825 vptr->rx_buf_sz = 4 * 1024;
1826
1827 ret = velocity_init_rd_ring(vptr);
1828 if (ret < 0)
1829 goto out_unlock;
1830
1831 ret = velocity_init_td_ring(vptr);
1832 if (ret < 0)
1833 goto out_unlock;
1834
1835 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1836
1837 mac_enable_int(vptr->mac_regs);
1838 netif_start_queue(dev);
1839 out_unlock:
1840 spin_unlock_irqrestore(&vptr->lock, flags);
1841 }
1842
1843 return ret;
1844 }
1845
1846 /**
1847 * velocity_shutdown - shut down the chip
1848 * @vptr: velocity to deactivate
1849 *
1850 * Shuts down the internal operations of the velocity and
1851 * disables interrupts, autopolling, transmit and receive
1852 */
1853
1854 static void velocity_shutdown(struct velocity_info *vptr)
1855 {
1856 struct mac_regs __iomem * regs = vptr->mac_regs;
1857 mac_disable_int(regs);
1858 writel(CR0_STOP, &regs->CR0Set);
1859 writew(0xFFFF, &regs->TDCSRClr);
1860 writeb(0xFF, &regs->RDCSRClr);
1861 safe_disable_mii_autopoll(regs);
1862 mac_clear_isr(regs);
1863 }
1864
1865 /**
1866 * velocity_close - close adapter callback
1867 * @dev: network device
1868 *
1869 * Callback from the network layer when the velocity is being
1870 * deactivated by the network layer
1871 */
1872
1873 static int velocity_close(struct net_device *dev)
1874 {
1875 struct velocity_info *vptr = netdev_priv(dev);
1876
1877 netif_stop_queue(dev);
1878 velocity_shutdown(vptr);
1879
1880 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1881 velocity_get_ip(vptr);
1882 if (dev->irq != 0)
1883 free_irq(dev->irq, dev);
1884
1885 /* Power down the chip */
1886 pci_set_power_state(vptr->pdev, PCI_D3hot);
1887
1888 /* Free the resources */
1889 velocity_free_td_ring(vptr);
1890 velocity_free_rd_ring(vptr);
1891 velocity_free_rings(vptr);
1892
1893 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1894 return 0;
1895 }
1896
1897 /**
1898 * velocity_xmit - transmit packet callback
1899 * @skb: buffer to transmit
1900 * @dev: network device
1901 *
1902 * Called by the networ layer to request a packet is queued to
1903 * the velocity. Returns zero on success.
1904 */
1905
1906 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1907 {
1908 struct velocity_info *vptr = netdev_priv(dev);
1909 int qnum = 0;
1910 struct tx_desc *td_ptr;
1911 struct velocity_td_info *tdinfo;
1912 unsigned long flags;
1913 int index;
1914
1915 int pktlen = skb->len;
1916
1917 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1918 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
1919 kfree_skb(skb);
1920 return 0;
1921 }
1922 #endif
1923
1924 spin_lock_irqsave(&vptr->lock, flags);
1925
1926 index = vptr->td_curr[qnum];
1927 td_ptr = &(vptr->td_rings[qnum][index]);
1928 tdinfo = &(vptr->td_infos[qnum][index]);
1929
1930 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1931 td_ptr->tdesc1.TCR = TCR0_TIC;
1932 td_ptr->td_buf[0].queue = 0;
1933
1934 /*
1935 * Pad short frames.
1936 */
1937 if (pktlen < ETH_ZLEN) {
1938 /* Cannot occur until ZC support */
1939 pktlen = ETH_ZLEN;
1940 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
1941 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1942 tdinfo->skb = skb;
1943 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1944 td_ptr->tdesc0.pktsize = pktlen;
1945 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1946 td_ptr->td_buf[0].pa_high = 0;
1947 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1948 tdinfo->nskb_dma = 1;
1949 td_ptr->tdesc1.CMDZ = 2;
1950 } else
1951 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1952 if (skb_shinfo(skb)->nr_frags > 0) {
1953 int nfrags = skb_shinfo(skb)->nr_frags;
1954 tdinfo->skb = skb;
1955 if (nfrags > 6) {
1956 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
1957 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1958 td_ptr->tdesc0.pktsize =
1959 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1960 td_ptr->td_buf[0].pa_high = 0;
1961 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1962 tdinfo->nskb_dma = 1;
1963 td_ptr->tdesc1.CMDZ = 2;
1964 } else {
1965 int i = 0;
1966 tdinfo->nskb_dma = 0;
1967 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1968
1969 td_ptr->tdesc0.pktsize = pktlen;
1970
1971 /* FIXME: support 48bit DMA later */
1972 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1973 td_ptr->td_buf[i].pa_high = 0;
1974 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1975
1976 for (i = 0; i < nfrags; i++) {
1977 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1978 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1979
1980 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1981
1982 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1983 td_ptr->td_buf[i + 1].pa_high = 0;
1984 td_ptr->td_buf[i + 1].bufsize = frag->size;
1985 }
1986 tdinfo->nskb_dma = i - 1;
1987 td_ptr->tdesc1.CMDZ = i;
1988 }
1989
1990 } else
1991 #endif
1992 {
1993 /*
1994 * Map the linear network buffer into PCI space and
1995 * add it to the transmit ring.
1996 */
1997 tdinfo->skb = skb;
1998 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1999 td_ptr->tdesc0.pktsize = pktlen;
2000 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2001 td_ptr->td_buf[0].pa_high = 0;
2002 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
2003 tdinfo->nskb_dma = 1;
2004 td_ptr->tdesc1.CMDZ = 2;
2005 }
2006
2007 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2008 td_ptr->tdesc1.pqinf.VID = vlan_tx_tag_get(skb);
2009 td_ptr->tdesc1.pqinf.priority = 0;
2010 td_ptr->tdesc1.pqinf.CFI = 0;
2011 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2012 }
2013
2014 /*
2015 * Handle hardware checksum
2016 */
2017 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2018 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2019 const struct iphdr *ip = ip_hdr(skb);
2020 if (ip->protocol == IPPROTO_TCP)
2021 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2022 else if (ip->protocol == IPPROTO_UDP)
2023 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2024 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2025 }
2026 {
2027
2028 int prev = index - 1;
2029
2030 if (prev < 0)
2031 prev = vptr->options.numtx - 1;
2032 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2033 vptr->td_used[qnum]++;
2034 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2035
2036 if (AVAIL_TD(vptr, qnum) < 1)
2037 netif_stop_queue(dev);
2038
2039 td_ptr = &(vptr->td_rings[qnum][prev]);
2040 td_ptr->td_buf[0].queue = 1;
2041 mac_tx_queue_wake(vptr->mac_regs, qnum);
2042 }
2043 dev->trans_start = jiffies;
2044 spin_unlock_irqrestore(&vptr->lock, flags);
2045 return 0;
2046 }
2047
2048 /**
2049 * velocity_intr - interrupt callback
2050 * @irq: interrupt number
2051 * @dev_instance: interrupting device
2052 *
2053 * Called whenever an interrupt is generated by the velocity
2054 * adapter IRQ line. We may not be the source of the interrupt
2055 * and need to identify initially if we are, and if not exit as
2056 * efficiently as possible.
2057 */
2058
2059 static int velocity_intr(int irq, void *dev_instance)
2060 {
2061 struct net_device *dev = dev_instance;
2062 struct velocity_info *vptr = netdev_priv(dev);
2063 u32 isr_status;
2064 int max_count = 0;
2065
2066
2067 spin_lock(&vptr->lock);
2068 isr_status = mac_read_isr(vptr->mac_regs);
2069
2070 /* Not us ? */
2071 if (isr_status == 0) {
2072 spin_unlock(&vptr->lock);
2073 return IRQ_NONE;
2074 }
2075
2076 mac_disable_int(vptr->mac_regs);
2077
2078 /*
2079 * Keep processing the ISR until we have completed
2080 * processing and the isr_status becomes zero
2081 */
2082
2083 while (isr_status != 0) {
2084 mac_write_isr(vptr->mac_regs, isr_status);
2085 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2086 velocity_error(vptr, isr_status);
2087 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2088 max_count += velocity_rx_srv(vptr, isr_status);
2089 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2090 max_count += velocity_tx_srv(vptr, isr_status);
2091 isr_status = mac_read_isr(vptr->mac_regs);
2092 if (max_count > vptr->options.int_works)
2093 {
2094 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2095 dev->name);
2096 max_count = 0;
2097 }
2098 }
2099 spin_unlock(&vptr->lock);
2100 mac_enable_int(vptr->mac_regs);
2101 return IRQ_HANDLED;
2102
2103 }
2104
2105
2106 /**
2107 * velocity_set_multi - filter list change callback
2108 * @dev: network device
2109 *
2110 * Called by the network layer when the filter lists need to change
2111 * for a velocity adapter. Reload the CAMs with the new address
2112 * filter ruleset.
2113 */
2114
2115 static void velocity_set_multi(struct net_device *dev)
2116 {
2117 struct velocity_info *vptr = netdev_priv(dev);
2118 struct mac_regs __iomem * regs = vptr->mac_regs;
2119 u8 rx_mode;
2120 int i;
2121 struct dev_mc_list *mclist;
2122
2123 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2124 writel(0xffffffff, &regs->MARCAM[0]);
2125 writel(0xffffffff, &regs->MARCAM[4]);
2126 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2127 } else if ((dev->mc_count > vptr->multicast_limit)
2128 || (dev->flags & IFF_ALLMULTI)) {
2129 writel(0xffffffff, &regs->MARCAM[0]);
2130 writel(0xffffffff, &regs->MARCAM[4]);
2131 rx_mode = (RCR_AM | RCR_AB);
2132 } else {
2133 int offset = MCAM_SIZE - vptr->multicast_limit;
2134 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2135
2136 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2137 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2138 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2139 }
2140
2141 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2142 rx_mode = (RCR_AM | RCR_AB);
2143 }
2144 if (dev->mtu > 1500)
2145 rx_mode |= RCR_AL;
2146
2147 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2148
2149 }
2150
2151 /**
2152 * velocity_get_status - statistics callback
2153 * @dev: network device
2154 *
2155 * Callback from the network layer to allow driver statistics
2156 * to be resynchronized with hardware collected state. In the
2157 * case of the velocity we need to pull the MIB counters from
2158 * the hardware into the counters before letting the network
2159 * layer display them.
2160 */
2161
2162 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2163 {
2164 struct velocity_info *vptr = netdev_priv(dev);
2165
2166 /* If the hardware is down, don't touch MII */
2167 if(!netif_running(dev))
2168 return &vptr->stats;
2169
2170 spin_lock_irq(&vptr->lock);
2171 velocity_update_hw_mibs(vptr);
2172 spin_unlock_irq(&vptr->lock);
2173
2174 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2175 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2176 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2177
2178 // unsigned long rx_dropped; /* no space in linux buffers */
2179 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2180 /* detailed rx_errors: */
2181 // unsigned long rx_length_errors;
2182 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2183 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2184 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2185 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2186 // unsigned long rx_missed_errors; /* receiver missed packet */
2187
2188 /* detailed tx_errors */
2189 // unsigned long tx_fifo_errors;
2190
2191 return &vptr->stats;
2192 }
2193
2194
2195 /**
2196 * velocity_ioctl - ioctl entry point
2197 * @dev: network device
2198 * @rq: interface request ioctl
2199 * @cmd: command code
2200 *
2201 * Called when the user issues an ioctl request to the network
2202 * device in question. The velocity interface supports MII.
2203 */
2204
2205 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2206 {
2207 struct velocity_info *vptr = netdev_priv(dev);
2208 int ret;
2209
2210 /* If we are asked for information and the device is power
2211 saving then we need to bring the device back up to talk to it */
2212
2213 if (!netif_running(dev))
2214 pci_set_power_state(vptr->pdev, PCI_D0);
2215
2216 switch (cmd) {
2217 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2218 case SIOCGMIIREG: /* Read MII PHY register. */
2219 case SIOCSMIIREG: /* Write to MII PHY register. */
2220 ret = velocity_mii_ioctl(dev, rq, cmd);
2221 break;
2222
2223 default:
2224 ret = -EOPNOTSUPP;
2225 }
2226 if (!netif_running(dev))
2227 pci_set_power_state(vptr->pdev, PCI_D3hot);
2228
2229
2230 return ret;
2231 }
2232
2233 /*
2234 * Definition for our device driver. The PCI layer interface
2235 * uses this to handle all our card discover and plugging
2236 */
2237
2238 static struct pci_driver velocity_driver = {
2239 .name = VELOCITY_NAME,
2240 .id_table = velocity_id_table,
2241 .probe = velocity_found1,
2242 .remove = __devexit_p(velocity_remove1),
2243 #ifdef CONFIG_PM
2244 .suspend = velocity_suspend,
2245 .resume = velocity_resume,
2246 #endif
2247 };
2248
2249 /**
2250 * velocity_init_module - load time function
2251 *
2252 * Called when the velocity module is loaded. The PCI driver
2253 * is registered with the PCI layer, and in turn will call
2254 * the probe functions for each velocity adapter installed
2255 * in the system.
2256 */
2257
2258 static int __init velocity_init_module(void)
2259 {
2260 int ret;
2261
2262 velocity_register_notifier();
2263 ret = pci_register_driver(&velocity_driver);
2264 if (ret < 0)
2265 velocity_unregister_notifier();
2266 return ret;
2267 }
2268
2269 /**
2270 * velocity_cleanup - module unload
2271 *
2272 * When the velocity hardware is unloaded this function is called.
2273 * It will clean up the notifiers and the unregister the PCI
2274 * driver interface for this hardware. This in turn cleans up
2275 * all discovered interfaces before returning from the function
2276 */
2277
2278 static void __exit velocity_cleanup_module(void)
2279 {
2280 velocity_unregister_notifier();
2281 pci_unregister_driver(&velocity_driver);
2282 }
2283
2284 module_init(velocity_init_module);
2285 module_exit(velocity_cleanup_module);
2286
2287
2288 /*
2289 * MII access , media link mode setting functions
2290 */
2291
2292
2293 /**
2294 * mii_init - set up MII
2295 * @vptr: velocity adapter
2296 * @mii_status: links tatus
2297 *
2298 * Set up the PHY for the current link state.
2299 */
2300
2301 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2302 {
2303 u16 BMCR;
2304
2305 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2306 case PHYID_CICADA_CS8201:
2307 /*
2308 * Reset to hardware default
2309 */
2310 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2311 /*
2312 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2313 * off it in NWay-forced half mode for NWay-forced v.s.
2314 * legacy-forced issue.
2315 */
2316 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2317 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2318 else
2319 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2320 /*
2321 * Turn on Link/Activity LED enable bit for CIS8201
2322 */
2323 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2324 break;
2325 case PHYID_VT3216_32BIT:
2326 case PHYID_VT3216_64BIT:
2327 /*
2328 * Reset to hardware default
2329 */
2330 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2331 /*
2332 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2333 * off it in NWay-forced half mode for NWay-forced v.s.
2334 * legacy-forced issue
2335 */
2336 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2337 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2338 else
2339 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2340 break;
2341
2342 case PHYID_MARVELL_1000:
2343 case PHYID_MARVELL_1000S:
2344 /*
2345 * Assert CRS on Transmit
2346 */
2347 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2348 /*
2349 * Reset to hardware default
2350 */
2351 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2352 break;
2353 default:
2354 ;
2355 }
2356 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2357 if (BMCR & BMCR_ISO) {
2358 BMCR &= ~BMCR_ISO;
2359 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2360 }
2361 }
2362
2363 /**
2364 * safe_disable_mii_autopoll - autopoll off
2365 * @regs: velocity registers
2366 *
2367 * Turn off the autopoll and wait for it to disable on the chip
2368 */
2369
2370 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2371 {
2372 u16 ww;
2373
2374 /* turn off MAUTO */
2375 writeb(0, &regs->MIICR);
2376 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2377 udelay(1);
2378 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2379 break;
2380 }
2381 }
2382
2383 /**
2384 * enable_mii_autopoll - turn on autopolling
2385 * @regs: velocity registers
2386 *
2387 * Enable the MII link status autopoll feature on the Velocity
2388 * hardware. Wait for it to enable.
2389 */
2390
2391 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2392 {
2393 int ii;
2394
2395 writeb(0, &(regs->MIICR));
2396 writeb(MIIADR_SWMPL, &regs->MIIADR);
2397
2398 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2399 udelay(1);
2400 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2401 break;
2402 }
2403
2404 writeb(MIICR_MAUTO, &regs->MIICR);
2405
2406 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2407 udelay(1);
2408 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2409 break;
2410 }
2411
2412 }
2413
2414 /**
2415 * velocity_mii_read - read MII data
2416 * @regs: velocity registers
2417 * @index: MII register index
2418 * @data: buffer for received data
2419 *
2420 * Perform a single read of an MII 16bit register. Returns zero
2421 * on success or -ETIMEDOUT if the PHY did not respond.
2422 */
2423
2424 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2425 {
2426 u16 ww;
2427
2428 /*
2429 * Disable MIICR_MAUTO, so that mii addr can be set normally
2430 */
2431 safe_disable_mii_autopoll(regs);
2432
2433 writeb(index, &regs->MIIADR);
2434
2435 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2436
2437 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2438 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2439 break;
2440 }
2441
2442 *data = readw(&regs->MIIDATA);
2443
2444 enable_mii_autopoll(regs);
2445 if (ww == W_MAX_TIMEOUT)
2446 return -ETIMEDOUT;
2447 return 0;
2448 }
2449
2450 /**
2451 * velocity_mii_write - write MII data
2452 * @regs: velocity registers
2453 * @index: MII register index
2454 * @data: 16bit data for the MII register
2455 *
2456 * Perform a single write to an MII 16bit register. Returns zero
2457 * on success or -ETIMEDOUT if the PHY did not respond.
2458 */
2459
2460 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2461 {
2462 u16 ww;
2463
2464 /*
2465 * Disable MIICR_MAUTO, so that mii addr can be set normally
2466 */
2467 safe_disable_mii_autopoll(regs);
2468
2469 /* MII reg offset */
2470 writeb(mii_addr, &regs->MIIADR);
2471 /* set MII data */
2472 writew(data, &regs->MIIDATA);
2473
2474 /* turn on MIICR_WCMD */
2475 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2476
2477 /* W_MAX_TIMEOUT is the timeout period */
2478 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2479 udelay(5);
2480 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2481 break;
2482 }
2483 enable_mii_autopoll(regs);
2484
2485 if (ww == W_MAX_TIMEOUT)
2486 return -ETIMEDOUT;
2487 return 0;
2488 }
2489
2490 /**
2491 * velocity_get_opt_media_mode - get media selection
2492 * @vptr: velocity adapter
2493 *
2494 * Get the media mode stored in EEPROM or module options and load
2495 * mii_status accordingly. The requested link state information
2496 * is also returned.
2497 */
2498
2499 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2500 {
2501 u32 status = 0;
2502
2503 switch (vptr->options.spd_dpx) {
2504 case SPD_DPX_AUTO:
2505 status = VELOCITY_AUTONEG_ENABLE;
2506 break;
2507 case SPD_DPX_100_FULL:
2508 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2509 break;
2510 case SPD_DPX_10_FULL:
2511 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2512 break;
2513 case SPD_DPX_100_HALF:
2514 status = VELOCITY_SPEED_100;
2515 break;
2516 case SPD_DPX_10_HALF:
2517 status = VELOCITY_SPEED_10;
2518 break;
2519 }
2520 vptr->mii_status = status;
2521 return status;
2522 }
2523
2524 /**
2525 * mii_set_auto_on - autonegotiate on
2526 * @vptr: velocity
2527 *
2528 * Enable autonegotation on this interface
2529 */
2530
2531 static void mii_set_auto_on(struct velocity_info *vptr)
2532 {
2533 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2534 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2535 else
2536 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2537 }
2538
2539
2540 /*
2541 static void mii_set_auto_off(struct velocity_info * vptr)
2542 {
2543 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2544 }
2545 */
2546
2547 /**
2548 * set_mii_flow_control - flow control setup
2549 * @vptr: velocity interface
2550 *
2551 * Set up the flow control on this interface according to
2552 * the supplied user/eeprom options.
2553 */
2554
2555 static void set_mii_flow_control(struct velocity_info *vptr)
2556 {
2557 /*Enable or Disable PAUSE in ANAR */
2558 switch (vptr->options.flow_cntl) {
2559 case FLOW_CNTL_TX:
2560 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2561 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2562 break;
2563
2564 case FLOW_CNTL_RX:
2565 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2566 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2567 break;
2568
2569 case FLOW_CNTL_TX_RX:
2570 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2571 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2572 break;
2573
2574 case FLOW_CNTL_DISABLE:
2575 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2576 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2577 break;
2578 default:
2579 break;
2580 }
2581 }
2582
2583 /**
2584 * velocity_set_media_mode - set media mode
2585 * @mii_status: old MII link state
2586 *
2587 * Check the media link state and configure the flow control
2588 * PHY and also velocity hardware setup accordingly. In particular
2589 * we need to set up CD polling and frame bursting.
2590 */
2591
2592 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2593 {
2594 u32 curr_status;
2595 struct mac_regs __iomem * regs = vptr->mac_regs;
2596
2597 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2598 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2599
2600 /* Set mii link status */
2601 set_mii_flow_control(vptr);
2602
2603 /*
2604 Check if new status is consisent with current status
2605 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2606 || (mii_status==curr_status)) {
2607 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2608 vptr->mii_status=check_connection_type(vptr->mac_regs);
2609 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2610 return 0;
2611 }
2612 */
2613
2614 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2615 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2616 }
2617
2618 /*
2619 * If connection type is AUTO
2620 */
2621 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2622 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2623 /* clear force MAC mode bit */
2624 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2625 /* set duplex mode of MAC according to duplex mode of MII */
2626 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2627 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2628 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2629
2630 /* enable AUTO-NEGO mode */
2631 mii_set_auto_on(vptr);
2632 } else {
2633 u16 ANAR;
2634 u8 CHIPGCR;
2635
2636 /*
2637 * 1. if it's 3119, disable frame bursting in halfduplex mode
2638 * and enable it in fullduplex mode
2639 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2640 * 3. only enable CD heart beat counter in 10HD mode
2641 */
2642
2643 /* set force MAC mode bit */
2644 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2645
2646 CHIPGCR = readb(&regs->CHIPGCR);
2647 CHIPGCR &= ~CHIPGCR_FCGMII;
2648
2649 if (mii_status & VELOCITY_DUPLEX_FULL) {
2650 CHIPGCR |= CHIPGCR_FCFDX;
2651 writeb(CHIPGCR, &regs->CHIPGCR);
2652 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2653 if (vptr->rev_id < REV_ID_VT3216_A0)
2654 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2655 } else {
2656 CHIPGCR &= ~CHIPGCR_FCFDX;
2657 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2658 writeb(CHIPGCR, &regs->CHIPGCR);
2659 if (vptr->rev_id < REV_ID_VT3216_A0)
2660 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2661 }
2662
2663 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2664
2665 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2666 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2667 } else {
2668 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2669 }
2670 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2671 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2672 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2673 if (mii_status & VELOCITY_SPEED_100) {
2674 if (mii_status & VELOCITY_DUPLEX_FULL)
2675 ANAR |= ANAR_TXFD;
2676 else
2677 ANAR |= ANAR_TX;
2678 } else {
2679 if (mii_status & VELOCITY_DUPLEX_FULL)
2680 ANAR |= ANAR_10FD;
2681 else
2682 ANAR |= ANAR_10;
2683 }
2684 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2685 /* enable AUTO-NEGO mode */
2686 mii_set_auto_on(vptr);
2687 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2688 }
2689 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2690 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2691 return VELOCITY_LINK_CHANGE;
2692 }
2693
2694 /**
2695 * mii_check_media_mode - check media state
2696 * @regs: velocity registers
2697 *
2698 * Check the current MII status and determine the link status
2699 * accordingly
2700 */
2701
2702 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2703 {
2704 u32 status = 0;
2705 u16 ANAR;
2706
2707 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2708 status |= VELOCITY_LINK_FAIL;
2709
2710 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2711 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2712 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2713 status |= (VELOCITY_SPEED_1000);
2714 else {
2715 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2716 if (ANAR & ANAR_TXFD)
2717 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2718 else if (ANAR & ANAR_TX)
2719 status |= VELOCITY_SPEED_100;
2720 else if (ANAR & ANAR_10FD)
2721 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2722 else
2723 status |= (VELOCITY_SPEED_10);
2724 }
2725
2726 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2727 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2728 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2729 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2730 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2731 status |= VELOCITY_AUTONEG_ENABLE;
2732 }
2733 }
2734
2735 return status;
2736 }
2737
2738 static u32 check_connection_type(struct mac_regs __iomem * regs)
2739 {
2740 u32 status = 0;
2741 u8 PHYSR0;
2742 u16 ANAR;
2743 PHYSR0 = readb(&regs->PHYSR0);
2744
2745 /*
2746 if (!(PHYSR0 & PHYSR0_LINKGD))
2747 status|=VELOCITY_LINK_FAIL;
2748 */
2749
2750 if (PHYSR0 & PHYSR0_FDPX)
2751 status |= VELOCITY_DUPLEX_FULL;
2752
2753 if (PHYSR0 & PHYSR0_SPDG)
2754 status |= VELOCITY_SPEED_1000;
2755 else if (PHYSR0 & PHYSR0_SPD10)
2756 status |= VELOCITY_SPEED_10;
2757 else
2758 status |= VELOCITY_SPEED_100;
2759
2760 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2761 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2762 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2763 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2764 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2765 status |= VELOCITY_AUTONEG_ENABLE;
2766 }
2767 }
2768
2769 return status;
2770 }
2771
2772 /**
2773 * enable_flow_control_ability - flow control
2774 * @vptr: veloity to configure
2775 *
2776 * Set up flow control according to the flow control options
2777 * determined by the eeprom/configuration.
2778 */
2779
2780 static void enable_flow_control_ability(struct velocity_info *vptr)
2781 {
2782
2783 struct mac_regs __iomem * regs = vptr->mac_regs;
2784
2785 switch (vptr->options.flow_cntl) {
2786
2787 case FLOW_CNTL_DEFAULT:
2788 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2789 writel(CR0_FDXRFCEN, &regs->CR0Set);
2790 else
2791 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2792
2793 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2794 writel(CR0_FDXTFCEN, &regs->CR0Set);
2795 else
2796 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2797 break;
2798
2799 case FLOW_CNTL_TX:
2800 writel(CR0_FDXTFCEN, &regs->CR0Set);
2801 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2802 break;
2803
2804 case FLOW_CNTL_RX:
2805 writel(CR0_FDXRFCEN, &regs->CR0Set);
2806 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2807 break;
2808
2809 case FLOW_CNTL_TX_RX:
2810 writel(CR0_FDXTFCEN, &regs->CR0Set);
2811 writel(CR0_FDXRFCEN, &regs->CR0Set);
2812 break;
2813
2814 case FLOW_CNTL_DISABLE:
2815 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2816 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2817 break;
2818
2819 default:
2820 break;
2821 }
2822
2823 }
2824
2825
2826 /**
2827 * velocity_ethtool_up - pre hook for ethtool
2828 * @dev: network device
2829 *
2830 * Called before an ethtool operation. We need to make sure the
2831 * chip is out of D3 state before we poke at it.
2832 */
2833
2834 static int velocity_ethtool_up(struct net_device *dev)
2835 {
2836 struct velocity_info *vptr = netdev_priv(dev);
2837 if (!netif_running(dev))
2838 pci_set_power_state(vptr->pdev, PCI_D0);
2839 return 0;
2840 }
2841
2842 /**
2843 * velocity_ethtool_down - post hook for ethtool
2844 * @dev: network device
2845 *
2846 * Called after an ethtool operation. Restore the chip back to D3
2847 * state if it isn't running.
2848 */
2849
2850 static void velocity_ethtool_down(struct net_device *dev)
2851 {
2852 struct velocity_info *vptr = netdev_priv(dev);
2853 if (!netif_running(dev))
2854 pci_set_power_state(vptr->pdev, PCI_D3hot);
2855 }
2856
2857 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2858 {
2859 struct velocity_info *vptr = netdev_priv(dev);
2860 struct mac_regs __iomem * regs = vptr->mac_regs;
2861 u32 status;
2862 status = check_connection_type(vptr->mac_regs);
2863
2864 cmd->supported = SUPPORTED_TP |
2865 SUPPORTED_Autoneg |
2866 SUPPORTED_10baseT_Half |
2867 SUPPORTED_10baseT_Full |
2868 SUPPORTED_100baseT_Half |
2869 SUPPORTED_100baseT_Full |
2870 SUPPORTED_1000baseT_Half |
2871 SUPPORTED_1000baseT_Full;
2872 if (status & VELOCITY_SPEED_1000)
2873 cmd->speed = SPEED_1000;
2874 else if (status & VELOCITY_SPEED_100)
2875 cmd->speed = SPEED_100;
2876 else
2877 cmd->speed = SPEED_10;
2878 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2879 cmd->port = PORT_TP;
2880 cmd->transceiver = XCVR_INTERNAL;
2881 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2882
2883 if (status & VELOCITY_DUPLEX_FULL)
2884 cmd->duplex = DUPLEX_FULL;
2885 else
2886 cmd->duplex = DUPLEX_HALF;
2887
2888 return 0;
2889 }
2890
2891 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2892 {
2893 struct velocity_info *vptr = netdev_priv(dev);
2894 u32 curr_status;
2895 u32 new_status = 0;
2896 int ret = 0;
2897
2898 curr_status = check_connection_type(vptr->mac_regs);
2899 curr_status &= (~VELOCITY_LINK_FAIL);
2900
2901 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2902 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2903 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2904 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2905
2906 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2907 ret = -EINVAL;
2908 else
2909 velocity_set_media_mode(vptr, new_status);
2910
2911 return ret;
2912 }
2913
2914 static u32 velocity_get_link(struct net_device *dev)
2915 {
2916 struct velocity_info *vptr = netdev_priv(dev);
2917 struct mac_regs __iomem * regs = vptr->mac_regs;
2918 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2919 }
2920
2921 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2922 {
2923 struct velocity_info *vptr = netdev_priv(dev);
2924 strcpy(info->driver, VELOCITY_NAME);
2925 strcpy(info->version, VELOCITY_VERSION);
2926 strcpy(info->bus_info, pci_name(vptr->pdev));
2927 }
2928
2929 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2930 {
2931 struct velocity_info *vptr = netdev_priv(dev);
2932 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2933 wol->wolopts |= WAKE_MAGIC;
2934 /*
2935 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2936 wol.wolopts|=WAKE_PHY;
2937 */
2938 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2939 wol->wolopts |= WAKE_UCAST;
2940 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2941 wol->wolopts |= WAKE_ARP;
2942 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2943 }
2944
2945 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2946 {
2947 struct velocity_info *vptr = netdev_priv(dev);
2948
2949 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2950 return -EFAULT;
2951 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2952
2953 /*
2954 if (wol.wolopts & WAKE_PHY) {
2955 vptr->wol_opts|=VELOCITY_WOL_PHY;
2956 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2957 }
2958 */
2959
2960 if (wol->wolopts & WAKE_MAGIC) {
2961 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2962 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2963 }
2964 if (wol->wolopts & WAKE_UCAST) {
2965 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2966 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2967 }
2968 if (wol->wolopts & WAKE_ARP) {
2969 vptr->wol_opts |= VELOCITY_WOL_ARP;
2970 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2971 }
2972 memcpy(vptr->wol_passwd, wol->sopass, 6);
2973 return 0;
2974 }
2975
2976 static u32 velocity_get_msglevel(struct net_device *dev)
2977 {
2978 return msglevel;
2979 }
2980
2981 static void velocity_set_msglevel(struct net_device *dev, u32 value)
2982 {
2983 msglevel = value;
2984 }
2985
2986 static const struct ethtool_ops velocity_ethtool_ops = {
2987 .get_settings = velocity_get_settings,
2988 .set_settings = velocity_set_settings,
2989 .get_drvinfo = velocity_get_drvinfo,
2990 .get_wol = velocity_ethtool_get_wol,
2991 .set_wol = velocity_ethtool_set_wol,
2992 .get_msglevel = velocity_get_msglevel,
2993 .set_msglevel = velocity_set_msglevel,
2994 .get_link = velocity_get_link,
2995 .begin = velocity_ethtool_up,
2996 .complete = velocity_ethtool_down
2997 };
2998
2999 /**
3000 * velocity_mii_ioctl - MII ioctl handler
3001 * @dev: network device
3002 * @ifr: the ifreq block for the ioctl
3003 * @cmd: the command
3004 *
3005 * Process MII requests made via ioctl from the network layer. These
3006 * are used by tools like kudzu to interrogate the link state of the
3007 * hardware
3008 */
3009
3010 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3011 {
3012 struct velocity_info *vptr = netdev_priv(dev);
3013 struct mac_regs __iomem * regs = vptr->mac_regs;
3014 unsigned long flags;
3015 struct mii_ioctl_data *miidata = if_mii(ifr);
3016 int err;
3017
3018 switch (cmd) {
3019 case SIOCGMIIPHY:
3020 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3021 break;
3022 case SIOCGMIIREG:
3023 if (!capable(CAP_NET_ADMIN))
3024 return -EPERM;
3025 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3026 return -ETIMEDOUT;
3027 break;
3028 case SIOCSMIIREG:
3029 if (!capable(CAP_NET_ADMIN))
3030 return -EPERM;
3031 spin_lock_irqsave(&vptr->lock, flags);
3032 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3033 spin_unlock_irqrestore(&vptr->lock, flags);
3034 check_connection_type(vptr->mac_regs);
3035 if(err)
3036 return err;
3037 break;
3038 default:
3039 return -EOPNOTSUPP;
3040 }
3041 return 0;
3042 }
3043
3044 #ifdef CONFIG_PM
3045
3046 /**
3047 * velocity_save_context - save registers
3048 * @vptr: velocity
3049 * @context: buffer for stored context
3050 *
3051 * Retrieve the current configuration from the velocity hardware
3052 * and stash it in the context structure, for use by the context
3053 * restore functions. This allows us to save things we need across
3054 * power down states
3055 */
3056
3057 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3058 {
3059 struct mac_regs __iomem * regs = vptr->mac_regs;
3060 u16 i;
3061 u8 __iomem *ptr = (u8 __iomem *)regs;
3062
3063 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3064 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3065
3066 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3067 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3068
3069 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3070 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3071
3072 }
3073
3074 /**
3075 * velocity_restore_context - restore registers
3076 * @vptr: velocity
3077 * @context: buffer for stored context
3078 *
3079 * Reload the register configuration from the velocity context
3080 * created by velocity_save_context.
3081 */
3082
3083 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3084 {
3085 struct mac_regs __iomem * regs = vptr->mac_regs;
3086 int i;
3087 u8 __iomem *ptr = (u8 __iomem *)regs;
3088
3089 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3090 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3091 }
3092
3093 /* Just skip cr0 */
3094 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3095 /* Clear */
3096 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3097 /* Set */
3098 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3099 }
3100
3101 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3102 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3103 }
3104
3105 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3106 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3107 }
3108
3109 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3110 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3111 }
3112
3113 }
3114
3115 /**
3116 * wol_calc_crc - WOL CRC
3117 * @pattern: data pattern
3118 * @mask_pattern: mask
3119 *
3120 * Compute the wake on lan crc hashes for the packet header
3121 * we are interested in.
3122 */
3123
3124 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3125 {
3126 u16 crc = 0xFFFF;
3127 u8 mask;
3128 int i, j;
3129
3130 for (i = 0; i < size; i++) {
3131 mask = mask_pattern[i];
3132
3133 /* Skip this loop if the mask equals to zero */
3134 if (mask == 0x00)
3135 continue;
3136
3137 for (j = 0; j < 8; j++) {
3138 if ((mask & 0x01) == 0) {
3139 mask >>= 1;
3140 continue;
3141 }
3142 mask >>= 1;
3143 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3144 }
3145 }
3146 /* Finally, invert the result once to get the correct data */
3147 crc = ~crc;
3148 return bitrev32(crc) >> 16;
3149 }
3150
3151 /**
3152 * velocity_set_wol - set up for wake on lan
3153 * @vptr: velocity to set WOL status on
3154 *
3155 * Set a card up for wake on lan either by unicast or by
3156 * ARP packet.
3157 *
3158 * FIXME: check static buffer is safe here
3159 */
3160
3161 static int velocity_set_wol(struct velocity_info *vptr)
3162 {
3163 struct mac_regs __iomem * regs = vptr->mac_regs;
3164 static u8 buf[256];
3165 int i;
3166
3167 static u32 mask_pattern[2][4] = {
3168 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3169 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3170 };
3171
3172 writew(0xFFFF, &regs->WOLCRClr);
3173 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3174 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3175
3176 /*
3177 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3178 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3179 */
3180
3181 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3182 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3183 }
3184
3185 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3186 struct arp_packet *arp = (struct arp_packet *) buf;
3187 u16 crc;
3188 memset(buf, 0, sizeof(struct arp_packet) + 7);
3189
3190 for (i = 0; i < 4; i++)
3191 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3192
3193 arp->type = htons(ETH_P_ARP);
3194 arp->ar_op = htons(1);
3195
3196 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3197
3198 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3199 (u8 *) & mask_pattern[0][0]);
3200
3201 writew(crc, &regs->PatternCRC[0]);
3202 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3203 }
3204
3205 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3206 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3207
3208 writew(0x0FFF, &regs->WOLSRClr);
3209
3210 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3211 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3212 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3213
3214 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3215 }
3216
3217 if (vptr->mii_status & VELOCITY_SPEED_1000)
3218 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3219
3220 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3221
3222 {
3223 u8 GCR;
3224 GCR = readb(&regs->CHIPGCR);
3225 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3226 writeb(GCR, &regs->CHIPGCR);
3227 }
3228
3229 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3230 /* Turn on SWPTAG just before entering power mode */
3231 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3232 /* Go to bed ..... */
3233 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3234
3235 return 0;
3236 }
3237
3238 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3239 {
3240 struct net_device *dev = pci_get_drvdata(pdev);
3241 struct velocity_info *vptr = netdev_priv(dev);
3242 unsigned long flags;
3243
3244 if(!netif_running(vptr->dev))
3245 return 0;
3246
3247 netif_device_detach(vptr->dev);
3248
3249 spin_lock_irqsave(&vptr->lock, flags);
3250 pci_save_state(pdev);
3251 #ifdef ETHTOOL_GWOL
3252 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3253 velocity_get_ip(vptr);
3254 velocity_save_context(vptr, &vptr->context);
3255 velocity_shutdown(vptr);
3256 velocity_set_wol(vptr);
3257 pci_enable_wake(pdev, 3, 1);
3258 pci_set_power_state(pdev, PCI_D3hot);
3259 } else {
3260 velocity_save_context(vptr, &vptr->context);
3261 velocity_shutdown(vptr);
3262 pci_disable_device(pdev);
3263 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3264 }
3265 #else
3266 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3267 #endif
3268 spin_unlock_irqrestore(&vptr->lock, flags);
3269 return 0;
3270 }
3271
3272 static int velocity_resume(struct pci_dev *pdev)
3273 {
3274 struct net_device *dev = pci_get_drvdata(pdev);
3275 struct velocity_info *vptr = netdev_priv(dev);
3276 unsigned long flags;
3277 int i;
3278
3279 if(!netif_running(vptr->dev))
3280 return 0;
3281
3282 pci_set_power_state(pdev, PCI_D0);
3283 pci_enable_wake(pdev, 0, 0);
3284 pci_restore_state(pdev);
3285
3286 mac_wol_reset(vptr->mac_regs);
3287
3288 spin_lock_irqsave(&vptr->lock, flags);
3289 velocity_restore_context(vptr, &vptr->context);
3290 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3291 mac_disable_int(vptr->mac_regs);
3292
3293 velocity_tx_srv(vptr, 0);
3294
3295 for (i = 0; i < vptr->num_txq; i++) {
3296 if (vptr->td_used[i]) {
3297 mac_tx_queue_wake(vptr->mac_regs, i);
3298 }
3299 }
3300
3301 mac_enable_int(vptr->mac_regs);
3302 spin_unlock_irqrestore(&vptr->lock, flags);
3303 netif_device_attach(vptr->dev);
3304
3305 return 0;
3306 }
3307
3308 #ifdef CONFIG_INET
3309
3310 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3311 {
3312 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3313
3314 if (ifa) {
3315 struct net_device *dev = ifa->ifa_dev->dev;
3316 struct velocity_info *vptr;
3317 unsigned long flags;
3318
3319 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3320 list_for_each_entry(vptr, &velocity_dev_list, list) {
3321 if (vptr->dev == dev) {
3322 velocity_get_ip(vptr);
3323 break;
3324 }
3325 }
3326 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3327 }
3328 return NOTIFY_DONE;
3329 }
3330
3331 #endif
3332 #endif
This page took 0.144515 seconds and 5 git commands to generate.