Merge branch 'dsa-misc-improvements'
[deliverable/linux.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38
39 #define RT_FL_TOS(oldflp4) \
40 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41
42 #define DRV_NAME "vrf"
43 #define DRV_VERSION "1.0"
44
45 struct net_vrf {
46 struct rtable __rcu *rth;
47 struct rtable __rcu *rth_local;
48 struct rt6_info __rcu *rt6;
49 struct rt6_info __rcu *rt6_local;
50 u32 tb_id;
51 };
52
53 struct pcpu_dstats {
54 u64 tx_pkts;
55 u64 tx_bytes;
56 u64 tx_drps;
57 u64 rx_pkts;
58 u64 rx_bytes;
59 u64 rx_drps;
60 struct u64_stats_sync syncp;
61 };
62
63 static void vrf_rx_stats(struct net_device *dev, int len)
64 {
65 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
66
67 u64_stats_update_begin(&dstats->syncp);
68 dstats->rx_pkts++;
69 dstats->rx_bytes += len;
70 u64_stats_update_end(&dstats->syncp);
71 }
72
73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
74 {
75 vrf_dev->stats.tx_errors++;
76 kfree_skb(skb);
77 }
78
79 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
80 struct rtnl_link_stats64 *stats)
81 {
82 int i;
83
84 for_each_possible_cpu(i) {
85 const struct pcpu_dstats *dstats;
86 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
87 unsigned int start;
88
89 dstats = per_cpu_ptr(dev->dstats, i);
90 do {
91 start = u64_stats_fetch_begin_irq(&dstats->syncp);
92 tbytes = dstats->tx_bytes;
93 tpkts = dstats->tx_pkts;
94 tdrops = dstats->tx_drps;
95 rbytes = dstats->rx_bytes;
96 rpkts = dstats->rx_pkts;
97 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
98 stats->tx_bytes += tbytes;
99 stats->tx_packets += tpkts;
100 stats->tx_dropped += tdrops;
101 stats->rx_bytes += rbytes;
102 stats->rx_packets += rpkts;
103 }
104 return stats;
105 }
106
107 /* Local traffic destined to local address. Reinsert the packet to rx
108 * path, similar to loopback handling.
109 */
110 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
111 struct dst_entry *dst)
112 {
113 int len = skb->len;
114
115 skb_orphan(skb);
116
117 skb_dst_set(skb, dst);
118 skb_dst_force(skb);
119
120 /* set pkt_type to avoid skb hitting packet taps twice -
121 * once on Tx and again in Rx processing
122 */
123 skb->pkt_type = PACKET_LOOPBACK;
124
125 skb->protocol = eth_type_trans(skb, dev);
126
127 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
128 vrf_rx_stats(dev, len);
129 else
130 this_cpu_inc(dev->dstats->rx_drps);
131
132 return NETDEV_TX_OK;
133 }
134
135 #if IS_ENABLED(CONFIG_IPV6)
136 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
137 struct net_device *dev)
138 {
139 const struct ipv6hdr *iph = ipv6_hdr(skb);
140 struct net *net = dev_net(skb->dev);
141 struct flowi6 fl6 = {
142 /* needed to match OIF rule */
143 .flowi6_oif = dev->ifindex,
144 .flowi6_iif = LOOPBACK_IFINDEX,
145 .daddr = iph->daddr,
146 .saddr = iph->saddr,
147 .flowlabel = ip6_flowinfo(iph),
148 .flowi6_mark = skb->mark,
149 .flowi6_proto = iph->nexthdr,
150 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
151 };
152 int ret = NET_XMIT_DROP;
153 struct dst_entry *dst;
154 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
155
156 dst = ip6_route_output(net, NULL, &fl6);
157 if (dst == dst_null)
158 goto err;
159
160 skb_dst_drop(skb);
161
162 /* if dst.dev is loopback or the VRF device again this is locally
163 * originated traffic destined to a local address. Short circuit
164 * to Rx path using our local dst
165 */
166 if (dst->dev == net->loopback_dev || dst->dev == dev) {
167 struct net_vrf *vrf = netdev_priv(dev);
168 struct rt6_info *rt6_local;
169
170 /* release looked up dst and use cached local dst */
171 dst_release(dst);
172
173 rcu_read_lock();
174
175 rt6_local = rcu_dereference(vrf->rt6_local);
176 if (unlikely(!rt6_local)) {
177 rcu_read_unlock();
178 goto err;
179 }
180
181 /* Ordering issue: cached local dst is created on newlink
182 * before the IPv6 initialization. Using the local dst
183 * requires rt6i_idev to be set so make sure it is.
184 */
185 if (unlikely(!rt6_local->rt6i_idev)) {
186 rt6_local->rt6i_idev = in6_dev_get(dev);
187 if (!rt6_local->rt6i_idev) {
188 rcu_read_unlock();
189 goto err;
190 }
191 }
192
193 dst = &rt6_local->dst;
194 dst_hold(dst);
195
196 rcu_read_unlock();
197
198 return vrf_local_xmit(skb, dev, &rt6_local->dst);
199 }
200
201 skb_dst_set(skb, dst);
202
203 /* strip the ethernet header added for pass through VRF device */
204 __skb_pull(skb, skb_network_offset(skb));
205
206 ret = ip6_local_out(net, skb->sk, skb);
207 if (unlikely(net_xmit_eval(ret)))
208 dev->stats.tx_errors++;
209 else
210 ret = NET_XMIT_SUCCESS;
211
212 return ret;
213 err:
214 vrf_tx_error(dev, skb);
215 return NET_XMIT_DROP;
216 }
217 #else
218 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
219 struct net_device *dev)
220 {
221 vrf_tx_error(dev, skb);
222 return NET_XMIT_DROP;
223 }
224 #endif
225
226 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
227 struct net_device *vrf_dev)
228 {
229 struct iphdr *ip4h = ip_hdr(skb);
230 int ret = NET_XMIT_DROP;
231 struct flowi4 fl4 = {
232 /* needed to match OIF rule */
233 .flowi4_oif = vrf_dev->ifindex,
234 .flowi4_iif = LOOPBACK_IFINDEX,
235 .flowi4_tos = RT_TOS(ip4h->tos),
236 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
237 FLOWI_FLAG_SKIP_NH_OIF,
238 .daddr = ip4h->daddr,
239 };
240 struct net *net = dev_net(vrf_dev);
241 struct rtable *rt;
242
243 rt = ip_route_output_flow(net, &fl4, NULL);
244 if (IS_ERR(rt))
245 goto err;
246
247 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
248 ip_rt_put(rt);
249 goto err;
250 }
251
252 skb_dst_drop(skb);
253
254 /* if dst.dev is loopback or the VRF device again this is locally
255 * originated traffic destined to a local address. Short circuit
256 * to Rx path using our local dst
257 */
258 if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
259 struct net_vrf *vrf = netdev_priv(vrf_dev);
260 struct rtable *rth_local;
261 struct dst_entry *dst = NULL;
262
263 ip_rt_put(rt);
264
265 rcu_read_lock();
266
267 rth_local = rcu_dereference(vrf->rth_local);
268 if (likely(rth_local)) {
269 dst = &rth_local->dst;
270 dst_hold(dst);
271 }
272
273 rcu_read_unlock();
274
275 if (unlikely(!dst))
276 goto err;
277
278 return vrf_local_xmit(skb, vrf_dev, dst);
279 }
280
281 skb_dst_set(skb, &rt->dst);
282
283 /* strip the ethernet header added for pass through VRF device */
284 __skb_pull(skb, skb_network_offset(skb));
285
286 if (!ip4h->saddr) {
287 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
288 RT_SCOPE_LINK);
289 }
290
291 ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
292 if (unlikely(net_xmit_eval(ret)))
293 vrf_dev->stats.tx_errors++;
294 else
295 ret = NET_XMIT_SUCCESS;
296
297 out:
298 return ret;
299 err:
300 vrf_tx_error(vrf_dev, skb);
301 goto out;
302 }
303
304 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
305 {
306 switch (skb->protocol) {
307 case htons(ETH_P_IP):
308 return vrf_process_v4_outbound(skb, dev);
309 case htons(ETH_P_IPV6):
310 return vrf_process_v6_outbound(skb, dev);
311 default:
312 vrf_tx_error(dev, skb);
313 return NET_XMIT_DROP;
314 }
315 }
316
317 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
318 {
319 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
320
321 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
322 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
323
324 u64_stats_update_begin(&dstats->syncp);
325 dstats->tx_pkts++;
326 dstats->tx_bytes += skb->len;
327 u64_stats_update_end(&dstats->syncp);
328 } else {
329 this_cpu_inc(dev->dstats->tx_drps);
330 }
331
332 return ret;
333 }
334
335 #if IS_ENABLED(CONFIG_IPV6)
336 /* modelled after ip6_finish_output2 */
337 static int vrf_finish_output6(struct net *net, struct sock *sk,
338 struct sk_buff *skb)
339 {
340 struct dst_entry *dst = skb_dst(skb);
341 struct net_device *dev = dst->dev;
342 struct neighbour *neigh;
343 struct in6_addr *nexthop;
344 int ret;
345
346 skb->protocol = htons(ETH_P_IPV6);
347 skb->dev = dev;
348
349 rcu_read_lock_bh();
350 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
351 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
352 if (unlikely(!neigh))
353 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
354 if (!IS_ERR(neigh)) {
355 ret = dst_neigh_output(dst, neigh, skb);
356 rcu_read_unlock_bh();
357 return ret;
358 }
359 rcu_read_unlock_bh();
360
361 IP6_INC_STATS(dev_net(dst->dev),
362 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
363 kfree_skb(skb);
364 return -EINVAL;
365 }
366
367 /* modelled after ip6_output */
368 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
369 {
370 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
371 net, sk, skb, NULL, skb_dst(skb)->dev,
372 vrf_finish_output6,
373 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
374 }
375
376 /* holding rtnl */
377 static void vrf_rt6_release(struct net_vrf *vrf)
378 {
379 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
380 struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
381
382 RCU_INIT_POINTER(vrf->rt6, NULL);
383 RCU_INIT_POINTER(vrf->rt6_local, NULL);
384 synchronize_rcu();
385
386 if (rt6)
387 dst_release(&rt6->dst);
388
389 if (rt6_local) {
390 if (rt6_local->rt6i_idev)
391 in6_dev_put(rt6_local->rt6i_idev);
392
393 dst_release(&rt6_local->dst);
394 }
395 }
396
397 static int vrf_rt6_create(struct net_device *dev)
398 {
399 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
400 struct net_vrf *vrf = netdev_priv(dev);
401 struct net *net = dev_net(dev);
402 struct fib6_table *rt6i_table;
403 struct rt6_info *rt6, *rt6_local;
404 int rc = -ENOMEM;
405
406 rt6i_table = fib6_new_table(net, vrf->tb_id);
407 if (!rt6i_table)
408 goto out;
409
410 /* create a dst for routing packets out a VRF device */
411 rt6 = ip6_dst_alloc(net, dev, flags);
412 if (!rt6)
413 goto out;
414
415 dst_hold(&rt6->dst);
416
417 rt6->rt6i_table = rt6i_table;
418 rt6->dst.output = vrf_output6;
419
420 /* create a dst for local routing - packets sent locally
421 * to local address via the VRF device as a loopback
422 */
423 rt6_local = ip6_dst_alloc(net, dev, flags);
424 if (!rt6_local) {
425 dst_release(&rt6->dst);
426 goto out;
427 }
428
429 dst_hold(&rt6_local->dst);
430
431 rt6_local->rt6i_idev = in6_dev_get(dev);
432 rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
433 rt6_local->rt6i_table = rt6i_table;
434 rt6_local->dst.input = ip6_input;
435
436 rcu_assign_pointer(vrf->rt6, rt6);
437 rcu_assign_pointer(vrf->rt6_local, rt6_local);
438
439 rc = 0;
440 out:
441 return rc;
442 }
443 #else
444 static void vrf_rt6_release(struct net_vrf *vrf)
445 {
446 }
447
448 static int vrf_rt6_create(struct net_device *dev)
449 {
450 return 0;
451 }
452 #endif
453
454 /* modelled after ip_finish_output2 */
455 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
456 {
457 struct dst_entry *dst = skb_dst(skb);
458 struct rtable *rt = (struct rtable *)dst;
459 struct net_device *dev = dst->dev;
460 unsigned int hh_len = LL_RESERVED_SPACE(dev);
461 struct neighbour *neigh;
462 u32 nexthop;
463 int ret = -EINVAL;
464
465 /* Be paranoid, rather than too clever. */
466 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
467 struct sk_buff *skb2;
468
469 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
470 if (!skb2) {
471 ret = -ENOMEM;
472 goto err;
473 }
474 if (skb->sk)
475 skb_set_owner_w(skb2, skb->sk);
476
477 consume_skb(skb);
478 skb = skb2;
479 }
480
481 rcu_read_lock_bh();
482
483 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
484 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
485 if (unlikely(!neigh))
486 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
487 if (!IS_ERR(neigh))
488 ret = dst_neigh_output(dst, neigh, skb);
489
490 rcu_read_unlock_bh();
491 err:
492 if (unlikely(ret < 0))
493 vrf_tx_error(skb->dev, skb);
494 return ret;
495 }
496
497 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
498 {
499 struct net_device *dev = skb_dst(skb)->dev;
500
501 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
502
503 skb->dev = dev;
504 skb->protocol = htons(ETH_P_IP);
505
506 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
507 net, sk, skb, NULL, dev,
508 vrf_finish_output,
509 !(IPCB(skb)->flags & IPSKB_REROUTED));
510 }
511
512 /* holding rtnl */
513 static void vrf_rtable_release(struct net_vrf *vrf)
514 {
515 struct rtable *rth = rtnl_dereference(vrf->rth);
516 struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
517
518 RCU_INIT_POINTER(vrf->rth, NULL);
519 RCU_INIT_POINTER(vrf->rth_local, NULL);
520 synchronize_rcu();
521
522 if (rth)
523 dst_release(&rth->dst);
524
525 if (rth_local)
526 dst_release(&rth_local->dst);
527 }
528
529 static int vrf_rtable_create(struct net_device *dev)
530 {
531 struct net_vrf *vrf = netdev_priv(dev);
532 struct rtable *rth, *rth_local;
533
534 if (!fib_new_table(dev_net(dev), vrf->tb_id))
535 return -ENOMEM;
536
537 /* create a dst for routing packets out through a VRF device */
538 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
539 if (!rth)
540 return -ENOMEM;
541
542 /* create a dst for local ingress routing - packets sent locally
543 * to local address via the VRF device as a loopback
544 */
545 rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
546 if (!rth_local) {
547 dst_release(&rth->dst);
548 return -ENOMEM;
549 }
550
551 rth->dst.output = vrf_output;
552 rth->rt_table_id = vrf->tb_id;
553
554 rth_local->rt_table_id = vrf->tb_id;
555
556 rcu_assign_pointer(vrf->rth, rth);
557 rcu_assign_pointer(vrf->rth_local, rth_local);
558
559 return 0;
560 }
561
562 /**************************** device handling ********************/
563
564 /* cycle interface to flush neighbor cache and move routes across tables */
565 static void cycle_netdev(struct net_device *dev)
566 {
567 unsigned int flags = dev->flags;
568 int ret;
569
570 if (!netif_running(dev))
571 return;
572
573 ret = dev_change_flags(dev, flags & ~IFF_UP);
574 if (ret >= 0)
575 ret = dev_change_flags(dev, flags);
576
577 if (ret < 0) {
578 netdev_err(dev,
579 "Failed to cycle device %s; route tables might be wrong!\n",
580 dev->name);
581 }
582 }
583
584 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
585 {
586 int ret;
587
588 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
589 if (ret < 0)
590 return ret;
591
592 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
593 cycle_netdev(port_dev);
594
595 return 0;
596 }
597
598 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
599 {
600 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
601 return -EINVAL;
602
603 return do_vrf_add_slave(dev, port_dev);
604 }
605
606 /* inverse of do_vrf_add_slave */
607 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
608 {
609 netdev_upper_dev_unlink(port_dev, dev);
610 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
611
612 cycle_netdev(port_dev);
613
614 return 0;
615 }
616
617 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
618 {
619 return do_vrf_del_slave(dev, port_dev);
620 }
621
622 static void vrf_dev_uninit(struct net_device *dev)
623 {
624 struct net_vrf *vrf = netdev_priv(dev);
625 struct net_device *port_dev;
626 struct list_head *iter;
627
628 vrf_rtable_release(vrf);
629 vrf_rt6_release(vrf);
630
631 netdev_for_each_lower_dev(dev, port_dev, iter)
632 vrf_del_slave(dev, port_dev);
633
634 free_percpu(dev->dstats);
635 dev->dstats = NULL;
636 }
637
638 static int vrf_dev_init(struct net_device *dev)
639 {
640 struct net_vrf *vrf = netdev_priv(dev);
641
642 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
643 if (!dev->dstats)
644 goto out_nomem;
645
646 /* create the default dst which points back to us */
647 if (vrf_rtable_create(dev) != 0)
648 goto out_stats;
649
650 if (vrf_rt6_create(dev) != 0)
651 goto out_rth;
652
653 dev->flags = IFF_MASTER | IFF_NOARP;
654
655 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
656 dev->mtu = 64 * 1024;
657
658 /* similarly, oper state is irrelevant; set to up to avoid confusion */
659 dev->operstate = IF_OPER_UP;
660
661 return 0;
662
663 out_rth:
664 vrf_rtable_release(vrf);
665 out_stats:
666 free_percpu(dev->dstats);
667 dev->dstats = NULL;
668 out_nomem:
669 return -ENOMEM;
670 }
671
672 static const struct net_device_ops vrf_netdev_ops = {
673 .ndo_init = vrf_dev_init,
674 .ndo_uninit = vrf_dev_uninit,
675 .ndo_start_xmit = vrf_xmit,
676 .ndo_get_stats64 = vrf_get_stats64,
677 .ndo_add_slave = vrf_add_slave,
678 .ndo_del_slave = vrf_del_slave,
679 };
680
681 static u32 vrf_fib_table(const struct net_device *dev)
682 {
683 struct net_vrf *vrf = netdev_priv(dev);
684
685 return vrf->tb_id;
686 }
687
688 static struct rtable *vrf_get_rtable(const struct net_device *dev,
689 const struct flowi4 *fl4)
690 {
691 struct rtable *rth = NULL;
692
693 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
694 struct net_vrf *vrf = netdev_priv(dev);
695
696 rcu_read_lock();
697
698 rth = rcu_dereference(vrf->rth);
699 if (likely(rth))
700 dst_hold(&rth->dst);
701
702 rcu_read_unlock();
703 }
704
705 return rth;
706 }
707
708 /* called under rcu_read_lock */
709 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
710 {
711 struct fib_result res = { .tclassid = 0 };
712 struct net *net = dev_net(dev);
713 u32 orig_tos = fl4->flowi4_tos;
714 u8 flags = fl4->flowi4_flags;
715 u8 scope = fl4->flowi4_scope;
716 u8 tos = RT_FL_TOS(fl4);
717 int rc;
718
719 if (unlikely(!fl4->daddr))
720 return 0;
721
722 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
723 fl4->flowi4_iif = LOOPBACK_IFINDEX;
724 /* make sure oif is set to VRF device for lookup */
725 fl4->flowi4_oif = dev->ifindex;
726 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
727 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
728 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
729
730 rc = fib_lookup(net, fl4, &res, 0);
731 if (!rc) {
732 if (res.type == RTN_LOCAL)
733 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
734 else
735 fib_select_path(net, &res, fl4, -1);
736 }
737
738 fl4->flowi4_flags = flags;
739 fl4->flowi4_tos = orig_tos;
740 fl4->flowi4_scope = scope;
741
742 return rc;
743 }
744
745 #if IS_ENABLED(CONFIG_IPV6)
746 /* neighbor handling is done with actual device; do not want
747 * to flip skb->dev for those ndisc packets. This really fails
748 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
749 * a start.
750 */
751 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
752 {
753 const struct ipv6hdr *iph = ipv6_hdr(skb);
754 bool rc = false;
755
756 if (iph->nexthdr == NEXTHDR_ICMP) {
757 const struct icmp6hdr *icmph;
758 struct icmp6hdr _icmph;
759
760 icmph = skb_header_pointer(skb, sizeof(*iph),
761 sizeof(_icmph), &_icmph);
762 if (!icmph)
763 goto out;
764
765 switch (icmph->icmp6_type) {
766 case NDISC_ROUTER_SOLICITATION:
767 case NDISC_ROUTER_ADVERTISEMENT:
768 case NDISC_NEIGHBOUR_SOLICITATION:
769 case NDISC_NEIGHBOUR_ADVERTISEMENT:
770 case NDISC_REDIRECT:
771 rc = true;
772 break;
773 }
774 }
775
776 out:
777 return rc;
778 }
779
780 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
781 struct sk_buff *skb)
782 {
783 /* loopback traffic; do not push through packet taps again.
784 * Reset pkt_type for upper layers to process skb
785 */
786 if (skb->pkt_type == PACKET_LOOPBACK) {
787 skb->dev = vrf_dev;
788 skb->skb_iif = vrf_dev->ifindex;
789 skb->pkt_type = PACKET_HOST;
790 goto out;
791 }
792
793 /* if packet is NDISC keep the ingress interface */
794 if (!ipv6_ndisc_frame(skb)) {
795 skb->dev = vrf_dev;
796 skb->skb_iif = vrf_dev->ifindex;
797
798 skb_push(skb, skb->mac_len);
799 dev_queue_xmit_nit(skb, vrf_dev);
800 skb_pull(skb, skb->mac_len);
801
802 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
803 }
804
805 out:
806 return skb;
807 }
808
809 #else
810 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
811 struct sk_buff *skb)
812 {
813 return skb;
814 }
815 #endif
816
817 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
818 struct sk_buff *skb)
819 {
820 skb->dev = vrf_dev;
821 skb->skb_iif = vrf_dev->ifindex;
822
823 /* loopback traffic; do not push through packet taps again.
824 * Reset pkt_type for upper layers to process skb
825 */
826 if (skb->pkt_type == PACKET_LOOPBACK) {
827 skb->pkt_type = PACKET_HOST;
828 goto out;
829 }
830
831 skb_push(skb, skb->mac_len);
832 dev_queue_xmit_nit(skb, vrf_dev);
833 skb_pull(skb, skb->mac_len);
834
835 out:
836 return skb;
837 }
838
839 /* called with rcu lock held */
840 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
841 struct sk_buff *skb,
842 u16 proto)
843 {
844 switch (proto) {
845 case AF_INET:
846 return vrf_ip_rcv(vrf_dev, skb);
847 case AF_INET6:
848 return vrf_ip6_rcv(vrf_dev, skb);
849 }
850
851 return skb;
852 }
853
854 #if IS_ENABLED(CONFIG_IPV6)
855 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
856 const struct flowi6 *fl6)
857 {
858 struct dst_entry *dst = NULL;
859
860 if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
861 struct net_vrf *vrf = netdev_priv(dev);
862 struct rt6_info *rt;
863
864 rcu_read_lock();
865
866 rt = rcu_dereference(vrf->rt6);
867 if (likely(rt)) {
868 dst = &rt->dst;
869 dst_hold(dst);
870 }
871
872 rcu_read_unlock();
873 }
874
875 return dst;
876 }
877 #endif
878
879 static const struct l3mdev_ops vrf_l3mdev_ops = {
880 .l3mdev_fib_table = vrf_fib_table,
881 .l3mdev_get_rtable = vrf_get_rtable,
882 .l3mdev_get_saddr = vrf_get_saddr,
883 .l3mdev_l3_rcv = vrf_l3_rcv,
884 #if IS_ENABLED(CONFIG_IPV6)
885 .l3mdev_get_rt6_dst = vrf_get_rt6_dst,
886 #endif
887 };
888
889 static void vrf_get_drvinfo(struct net_device *dev,
890 struct ethtool_drvinfo *info)
891 {
892 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
893 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
894 }
895
896 static const struct ethtool_ops vrf_ethtool_ops = {
897 .get_drvinfo = vrf_get_drvinfo,
898 };
899
900 static void vrf_setup(struct net_device *dev)
901 {
902 ether_setup(dev);
903
904 /* Initialize the device structure. */
905 dev->netdev_ops = &vrf_netdev_ops;
906 dev->l3mdev_ops = &vrf_l3mdev_ops;
907 dev->ethtool_ops = &vrf_ethtool_ops;
908 dev->destructor = free_netdev;
909
910 /* Fill in device structure with ethernet-generic values. */
911 eth_hw_addr_random(dev);
912
913 /* don't acquire vrf device's netif_tx_lock when transmitting */
914 dev->features |= NETIF_F_LLTX;
915
916 /* don't allow vrf devices to change network namespaces. */
917 dev->features |= NETIF_F_NETNS_LOCAL;
918 }
919
920 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
921 {
922 if (tb[IFLA_ADDRESS]) {
923 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
924 return -EINVAL;
925 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
926 return -EADDRNOTAVAIL;
927 }
928 return 0;
929 }
930
931 static void vrf_dellink(struct net_device *dev, struct list_head *head)
932 {
933 unregister_netdevice_queue(dev, head);
934 }
935
936 static int vrf_newlink(struct net *src_net, struct net_device *dev,
937 struct nlattr *tb[], struct nlattr *data[])
938 {
939 struct net_vrf *vrf = netdev_priv(dev);
940
941 if (!data || !data[IFLA_VRF_TABLE])
942 return -EINVAL;
943
944 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
945
946 dev->priv_flags |= IFF_L3MDEV_MASTER;
947
948 return register_netdevice(dev);
949 }
950
951 static size_t vrf_nl_getsize(const struct net_device *dev)
952 {
953 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
954 }
955
956 static int vrf_fillinfo(struct sk_buff *skb,
957 const struct net_device *dev)
958 {
959 struct net_vrf *vrf = netdev_priv(dev);
960
961 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
962 }
963
964 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
965 const struct net_device *slave_dev)
966 {
967 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
968 }
969
970 static int vrf_fill_slave_info(struct sk_buff *skb,
971 const struct net_device *vrf_dev,
972 const struct net_device *slave_dev)
973 {
974 struct net_vrf *vrf = netdev_priv(vrf_dev);
975
976 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
977 return -EMSGSIZE;
978
979 return 0;
980 }
981
982 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
983 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
984 };
985
986 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
987 .kind = DRV_NAME,
988 .priv_size = sizeof(struct net_vrf),
989
990 .get_size = vrf_nl_getsize,
991 .policy = vrf_nl_policy,
992 .validate = vrf_validate,
993 .fill_info = vrf_fillinfo,
994
995 .get_slave_size = vrf_get_slave_size,
996 .fill_slave_info = vrf_fill_slave_info,
997
998 .newlink = vrf_newlink,
999 .dellink = vrf_dellink,
1000 .setup = vrf_setup,
1001 .maxtype = IFLA_VRF_MAX,
1002 };
1003
1004 static int vrf_device_event(struct notifier_block *unused,
1005 unsigned long event, void *ptr)
1006 {
1007 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1008
1009 /* only care about unregister events to drop slave references */
1010 if (event == NETDEV_UNREGISTER) {
1011 struct net_device *vrf_dev;
1012
1013 if (!netif_is_l3_slave(dev))
1014 goto out;
1015
1016 vrf_dev = netdev_master_upper_dev_get(dev);
1017 vrf_del_slave(vrf_dev, dev);
1018 }
1019 out:
1020 return NOTIFY_DONE;
1021 }
1022
1023 static struct notifier_block vrf_notifier_block __read_mostly = {
1024 .notifier_call = vrf_device_event,
1025 };
1026
1027 static int __init vrf_init_module(void)
1028 {
1029 int rc;
1030
1031 register_netdevice_notifier(&vrf_notifier_block);
1032
1033 rc = rtnl_link_register(&vrf_link_ops);
1034 if (rc < 0)
1035 goto error;
1036
1037 return 0;
1038
1039 error:
1040 unregister_netdevice_notifier(&vrf_notifier_block);
1041 return rc;
1042 }
1043
1044 module_init(vrf_init_module);
1045 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1046 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1047 MODULE_LICENSE("GPL");
1048 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1049 MODULE_VERSION(DRV_VERSION);
This page took 0.051184 seconds and 5 git commands to generate.