net: vrf: Create FIB tables on link create
[deliverable/linux.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38
39 #define RT_FL_TOS(oldflp4) \
40 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41
42 #define DRV_NAME "vrf"
43 #define DRV_VERSION "1.0"
44
45 #define vrf_master_get_rcu(dev) \
46 ((struct net_device *)rcu_dereference(dev->rx_handler_data))
47
48 struct net_vrf {
49 struct rtable *rth;
50 struct rt6_info *rt6;
51 u32 tb_id;
52 };
53
54 struct pcpu_dstats {
55 u64 tx_pkts;
56 u64 tx_bytes;
57 u64 tx_drps;
58 u64 rx_pkts;
59 u64 rx_bytes;
60 struct u64_stats_sync syncp;
61 };
62
63 /* neighbor handling is done with actual device; do not want
64 * to flip skb->dev for those ndisc packets. This really fails
65 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
66 * a start.
67 */
68 #if IS_ENABLED(CONFIG_IPV6)
69 static bool check_ipv6_frame(const struct sk_buff *skb)
70 {
71 const struct ipv6hdr *ipv6h;
72 struct ipv6hdr _ipv6h;
73 bool rc = true;
74
75 ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
76 if (!ipv6h)
77 goto out;
78
79 if (ipv6h->nexthdr == NEXTHDR_ICMP) {
80 const struct icmp6hdr *icmph;
81 struct icmp6hdr _icmph;
82
83 icmph = skb_header_pointer(skb, sizeof(_ipv6h),
84 sizeof(_icmph), &_icmph);
85 if (!icmph)
86 goto out;
87
88 switch (icmph->icmp6_type) {
89 case NDISC_ROUTER_SOLICITATION:
90 case NDISC_ROUTER_ADVERTISEMENT:
91 case NDISC_NEIGHBOUR_SOLICITATION:
92 case NDISC_NEIGHBOUR_ADVERTISEMENT:
93 case NDISC_REDIRECT:
94 rc = false;
95 break;
96 }
97 }
98
99 out:
100 return rc;
101 }
102 #else
103 static bool check_ipv6_frame(const struct sk_buff *skb)
104 {
105 return false;
106 }
107 #endif
108
109 static bool is_ip_rx_frame(struct sk_buff *skb)
110 {
111 switch (skb->protocol) {
112 case htons(ETH_P_IP):
113 return true;
114 case htons(ETH_P_IPV6):
115 return check_ipv6_frame(skb);
116 }
117 return false;
118 }
119
120 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
121 {
122 vrf_dev->stats.tx_errors++;
123 kfree_skb(skb);
124 }
125
126 /* note: already called with rcu_read_lock */
127 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
128 {
129 struct sk_buff *skb = *pskb;
130
131 if (is_ip_rx_frame(skb)) {
132 struct net_device *dev = vrf_master_get_rcu(skb->dev);
133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
134
135 u64_stats_update_begin(&dstats->syncp);
136 dstats->rx_pkts++;
137 dstats->rx_bytes += skb->len;
138 u64_stats_update_end(&dstats->syncp);
139
140 skb->dev = dev;
141
142 return RX_HANDLER_ANOTHER;
143 }
144 return RX_HANDLER_PASS;
145 }
146
147 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
148 struct rtnl_link_stats64 *stats)
149 {
150 int i;
151
152 for_each_possible_cpu(i) {
153 const struct pcpu_dstats *dstats;
154 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
155 unsigned int start;
156
157 dstats = per_cpu_ptr(dev->dstats, i);
158 do {
159 start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 tbytes = dstats->tx_bytes;
161 tpkts = dstats->tx_pkts;
162 tdrops = dstats->tx_drps;
163 rbytes = dstats->rx_bytes;
164 rpkts = dstats->rx_pkts;
165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 stats->tx_bytes += tbytes;
167 stats->tx_packets += tpkts;
168 stats->tx_dropped += tdrops;
169 stats->rx_bytes += rbytes;
170 stats->rx_packets += rpkts;
171 }
172 return stats;
173 }
174
175 #if IS_ENABLED(CONFIG_IPV6)
176 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
177 struct net_device *dev)
178 {
179 const struct ipv6hdr *iph = ipv6_hdr(skb);
180 struct net *net = dev_net(skb->dev);
181 struct flowi6 fl6 = {
182 /* needed to match OIF rule */
183 .flowi6_oif = dev->ifindex,
184 .flowi6_iif = LOOPBACK_IFINDEX,
185 .daddr = iph->daddr,
186 .saddr = iph->saddr,
187 .flowlabel = ip6_flowinfo(iph),
188 .flowi6_mark = skb->mark,
189 .flowi6_proto = iph->nexthdr,
190 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
191 };
192 int ret = NET_XMIT_DROP;
193 struct dst_entry *dst;
194 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
195
196 dst = ip6_route_output(net, NULL, &fl6);
197 if (dst == dst_null)
198 goto err;
199
200 skb_dst_drop(skb);
201 skb_dst_set(skb, dst);
202
203 ret = ip6_local_out(net, skb->sk, skb);
204 if (unlikely(net_xmit_eval(ret)))
205 dev->stats.tx_errors++;
206 else
207 ret = NET_XMIT_SUCCESS;
208
209 return ret;
210 err:
211 vrf_tx_error(dev, skb);
212 return NET_XMIT_DROP;
213 }
214 #else
215 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
216 struct net_device *dev)
217 {
218 vrf_tx_error(dev, skb);
219 return NET_XMIT_DROP;
220 }
221 #endif
222
223 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
224 struct net_device *vrf_dev)
225 {
226 struct rtable *rt;
227 int err = 1;
228
229 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
230 if (IS_ERR(rt))
231 goto out;
232
233 /* TO-DO: what about broadcast ? */
234 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
235 ip_rt_put(rt);
236 goto out;
237 }
238
239 skb_dst_drop(skb);
240 skb_dst_set(skb, &rt->dst);
241 err = 0;
242 out:
243 return err;
244 }
245
246 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
247 struct net_device *vrf_dev)
248 {
249 struct iphdr *ip4h = ip_hdr(skb);
250 int ret = NET_XMIT_DROP;
251 struct flowi4 fl4 = {
252 /* needed to match OIF rule */
253 .flowi4_oif = vrf_dev->ifindex,
254 .flowi4_iif = LOOPBACK_IFINDEX,
255 .flowi4_tos = RT_TOS(ip4h->tos),
256 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
257 FLOWI_FLAG_SKIP_NH_OIF,
258 .daddr = ip4h->daddr,
259 };
260
261 if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
262 goto err;
263
264 if (!ip4h->saddr) {
265 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
266 RT_SCOPE_LINK);
267 }
268
269 ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
270 if (unlikely(net_xmit_eval(ret)))
271 vrf_dev->stats.tx_errors++;
272 else
273 ret = NET_XMIT_SUCCESS;
274
275 out:
276 return ret;
277 err:
278 vrf_tx_error(vrf_dev, skb);
279 goto out;
280 }
281
282 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
283 {
284 /* strip the ethernet header added for pass through VRF device */
285 __skb_pull(skb, skb_network_offset(skb));
286
287 switch (skb->protocol) {
288 case htons(ETH_P_IP):
289 return vrf_process_v4_outbound(skb, dev);
290 case htons(ETH_P_IPV6):
291 return vrf_process_v6_outbound(skb, dev);
292 default:
293 vrf_tx_error(dev, skb);
294 return NET_XMIT_DROP;
295 }
296 }
297
298 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
299 {
300 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
301
302 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
303 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
304
305 u64_stats_update_begin(&dstats->syncp);
306 dstats->tx_pkts++;
307 dstats->tx_bytes += skb->len;
308 u64_stats_update_end(&dstats->syncp);
309 } else {
310 this_cpu_inc(dev->dstats->tx_drps);
311 }
312
313 return ret;
314 }
315
316 #if IS_ENABLED(CONFIG_IPV6)
317 /* modelled after ip6_finish_output2 */
318 static int vrf_finish_output6(struct net *net, struct sock *sk,
319 struct sk_buff *skb)
320 {
321 struct dst_entry *dst = skb_dst(skb);
322 struct net_device *dev = dst->dev;
323 struct neighbour *neigh;
324 struct in6_addr *nexthop;
325 int ret;
326
327 skb->protocol = htons(ETH_P_IPV6);
328 skb->dev = dev;
329
330 rcu_read_lock_bh();
331 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
332 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
333 if (unlikely(!neigh))
334 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
335 if (!IS_ERR(neigh)) {
336 ret = dst_neigh_output(dst, neigh, skb);
337 rcu_read_unlock_bh();
338 return ret;
339 }
340 rcu_read_unlock_bh();
341
342 IP6_INC_STATS(dev_net(dst->dev),
343 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
344 kfree_skb(skb);
345 return -EINVAL;
346 }
347
348 /* modelled after ip6_output */
349 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
350 {
351 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
352 net, sk, skb, NULL, skb_dst(skb)->dev,
353 vrf_finish_output6,
354 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
355 }
356
357 static void vrf_rt6_release(struct net_vrf *vrf)
358 {
359 dst_release(&vrf->rt6->dst);
360 vrf->rt6 = NULL;
361 }
362
363 static int vrf_rt6_create(struct net_device *dev)
364 {
365 struct net_vrf *vrf = netdev_priv(dev);
366 struct net *net = dev_net(dev);
367 struct fib6_table *rt6i_table;
368 struct rt6_info *rt6;
369 int rc = -ENOMEM;
370
371 rt6i_table = fib6_new_table(net, vrf->tb_id);
372 if (!rt6i_table)
373 goto out;
374
375 rt6 = ip6_dst_alloc(net, dev,
376 DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE);
377 if (!rt6)
378 goto out;
379
380 dst_hold(&rt6->dst);
381
382 rt6->rt6i_table = rt6i_table;
383 rt6->dst.output = vrf_output6;
384 vrf->rt6 = rt6;
385 rc = 0;
386 out:
387 return rc;
388 }
389 #else
390 static void vrf_rt6_release(struct net_vrf *vrf)
391 {
392 }
393
394 static int vrf_rt6_create(struct net_device *dev)
395 {
396 return 0;
397 }
398 #endif
399
400 /* modelled after ip_finish_output2 */
401 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
402 {
403 struct dst_entry *dst = skb_dst(skb);
404 struct rtable *rt = (struct rtable *)dst;
405 struct net_device *dev = dst->dev;
406 unsigned int hh_len = LL_RESERVED_SPACE(dev);
407 struct neighbour *neigh;
408 u32 nexthop;
409 int ret = -EINVAL;
410
411 /* Be paranoid, rather than too clever. */
412 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
413 struct sk_buff *skb2;
414
415 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
416 if (!skb2) {
417 ret = -ENOMEM;
418 goto err;
419 }
420 if (skb->sk)
421 skb_set_owner_w(skb2, skb->sk);
422
423 consume_skb(skb);
424 skb = skb2;
425 }
426
427 rcu_read_lock_bh();
428
429 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
430 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
431 if (unlikely(!neigh))
432 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
433 if (!IS_ERR(neigh))
434 ret = dst_neigh_output(dst, neigh, skb);
435
436 rcu_read_unlock_bh();
437 err:
438 if (unlikely(ret < 0))
439 vrf_tx_error(skb->dev, skb);
440 return ret;
441 }
442
443 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
444 {
445 struct net_device *dev = skb_dst(skb)->dev;
446
447 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
448
449 skb->dev = dev;
450 skb->protocol = htons(ETH_P_IP);
451
452 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
453 net, sk, skb, NULL, dev,
454 vrf_finish_output,
455 !(IPCB(skb)->flags & IPSKB_REROUTED));
456 }
457
458 static void vrf_rtable_release(struct net_vrf *vrf)
459 {
460 struct dst_entry *dst = (struct dst_entry *)vrf->rth;
461
462 dst_release(dst);
463 vrf->rth = NULL;
464 }
465
466 static struct rtable *vrf_rtable_create(struct net_device *dev)
467 {
468 struct net_vrf *vrf = netdev_priv(dev);
469 struct rtable *rth;
470
471 if (!fib_new_table(dev_net(dev), vrf->tb_id))
472 return NULL;
473
474 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
475 if (rth) {
476 rth->dst.output = vrf_output;
477 rth->rt_table_id = vrf->tb_id;
478 }
479
480 return rth;
481 }
482
483 /**************************** device handling ********************/
484
485 /* cycle interface to flush neighbor cache and move routes across tables */
486 static void cycle_netdev(struct net_device *dev)
487 {
488 unsigned int flags = dev->flags;
489 int ret;
490
491 if (!netif_running(dev))
492 return;
493
494 ret = dev_change_flags(dev, flags & ~IFF_UP);
495 if (ret >= 0)
496 ret = dev_change_flags(dev, flags);
497
498 if (ret < 0) {
499 netdev_err(dev,
500 "Failed to cycle device %s; route tables might be wrong!\n",
501 dev->name);
502 }
503 }
504
505 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
506 {
507 int ret;
508
509 /* register the packet handler for slave ports */
510 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
511 if (ret) {
512 netdev_err(port_dev,
513 "Device %s failed to register rx_handler\n",
514 port_dev->name);
515 goto out_fail;
516 }
517
518 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
519 if (ret < 0)
520 goto out_unregister;
521
522 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
523 cycle_netdev(port_dev);
524
525 return 0;
526
527 out_unregister:
528 netdev_rx_handler_unregister(port_dev);
529 out_fail:
530 return ret;
531 }
532
533 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
534 {
535 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
536 return -EINVAL;
537
538 return do_vrf_add_slave(dev, port_dev);
539 }
540
541 /* inverse of do_vrf_add_slave */
542 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
543 {
544 netdev_upper_dev_unlink(port_dev, dev);
545 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
546
547 netdev_rx_handler_unregister(port_dev);
548
549 cycle_netdev(port_dev);
550
551 return 0;
552 }
553
554 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
555 {
556 return do_vrf_del_slave(dev, port_dev);
557 }
558
559 static void vrf_dev_uninit(struct net_device *dev)
560 {
561 struct net_vrf *vrf = netdev_priv(dev);
562 struct net_device *port_dev;
563 struct list_head *iter;
564
565 vrf_rtable_release(vrf);
566 vrf_rt6_release(vrf);
567
568 netdev_for_each_lower_dev(dev, port_dev, iter)
569 vrf_del_slave(dev, port_dev);
570
571 free_percpu(dev->dstats);
572 dev->dstats = NULL;
573 }
574
575 static int vrf_dev_init(struct net_device *dev)
576 {
577 struct net_vrf *vrf = netdev_priv(dev);
578
579 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
580 if (!dev->dstats)
581 goto out_nomem;
582
583 /* create the default dst which points back to us */
584 vrf->rth = vrf_rtable_create(dev);
585 if (!vrf->rth)
586 goto out_stats;
587
588 if (vrf_rt6_create(dev) != 0)
589 goto out_rth;
590
591 dev->flags = IFF_MASTER | IFF_NOARP;
592
593 return 0;
594
595 out_rth:
596 vrf_rtable_release(vrf);
597 out_stats:
598 free_percpu(dev->dstats);
599 dev->dstats = NULL;
600 out_nomem:
601 return -ENOMEM;
602 }
603
604 static const struct net_device_ops vrf_netdev_ops = {
605 .ndo_init = vrf_dev_init,
606 .ndo_uninit = vrf_dev_uninit,
607 .ndo_start_xmit = vrf_xmit,
608 .ndo_get_stats64 = vrf_get_stats64,
609 .ndo_add_slave = vrf_add_slave,
610 .ndo_del_slave = vrf_del_slave,
611 };
612
613 static u32 vrf_fib_table(const struct net_device *dev)
614 {
615 struct net_vrf *vrf = netdev_priv(dev);
616
617 return vrf->tb_id;
618 }
619
620 static struct rtable *vrf_get_rtable(const struct net_device *dev,
621 const struct flowi4 *fl4)
622 {
623 struct rtable *rth = NULL;
624
625 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
626 struct net_vrf *vrf = netdev_priv(dev);
627
628 rth = vrf->rth;
629 dst_hold(&rth->dst);
630 }
631
632 return rth;
633 }
634
635 /* called under rcu_read_lock */
636 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
637 {
638 struct fib_result res = { .tclassid = 0 };
639 struct net *net = dev_net(dev);
640 u32 orig_tos = fl4->flowi4_tos;
641 u8 flags = fl4->flowi4_flags;
642 u8 scope = fl4->flowi4_scope;
643 u8 tos = RT_FL_TOS(fl4);
644 int rc;
645
646 if (unlikely(!fl4->daddr))
647 return 0;
648
649 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
650 fl4->flowi4_iif = LOOPBACK_IFINDEX;
651 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
652 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
653 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
654
655 rc = fib_lookup(net, fl4, &res, 0);
656 if (!rc) {
657 if (res.type == RTN_LOCAL)
658 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
659 else
660 fib_select_path(net, &res, fl4, -1);
661 }
662
663 fl4->flowi4_flags = flags;
664 fl4->flowi4_tos = orig_tos;
665 fl4->flowi4_scope = scope;
666
667 return rc;
668 }
669
670 #if IS_ENABLED(CONFIG_IPV6)
671 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
672 const struct flowi6 *fl6)
673 {
674 struct rt6_info *rt = NULL;
675
676 if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
677 struct net_vrf *vrf = netdev_priv(dev);
678
679 rt = vrf->rt6;
680 dst_hold(&rt->dst);
681 }
682
683 return (struct dst_entry *)rt;
684 }
685 #endif
686
687 static const struct l3mdev_ops vrf_l3mdev_ops = {
688 .l3mdev_fib_table = vrf_fib_table,
689 .l3mdev_get_rtable = vrf_get_rtable,
690 .l3mdev_get_saddr = vrf_get_saddr,
691 #if IS_ENABLED(CONFIG_IPV6)
692 .l3mdev_get_rt6_dst = vrf_get_rt6_dst,
693 #endif
694 };
695
696 static void vrf_get_drvinfo(struct net_device *dev,
697 struct ethtool_drvinfo *info)
698 {
699 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
700 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
701 }
702
703 static const struct ethtool_ops vrf_ethtool_ops = {
704 .get_drvinfo = vrf_get_drvinfo,
705 };
706
707 static void vrf_setup(struct net_device *dev)
708 {
709 ether_setup(dev);
710
711 /* Initialize the device structure. */
712 dev->netdev_ops = &vrf_netdev_ops;
713 dev->l3mdev_ops = &vrf_l3mdev_ops;
714 dev->ethtool_ops = &vrf_ethtool_ops;
715 dev->destructor = free_netdev;
716
717 /* Fill in device structure with ethernet-generic values. */
718 eth_hw_addr_random(dev);
719
720 /* don't acquire vrf device's netif_tx_lock when transmitting */
721 dev->features |= NETIF_F_LLTX;
722
723 /* don't allow vrf devices to change network namespaces. */
724 dev->features |= NETIF_F_NETNS_LOCAL;
725 }
726
727 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
728 {
729 if (tb[IFLA_ADDRESS]) {
730 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
731 return -EINVAL;
732 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
733 return -EADDRNOTAVAIL;
734 }
735 return 0;
736 }
737
738 static void vrf_dellink(struct net_device *dev, struct list_head *head)
739 {
740 unregister_netdevice_queue(dev, head);
741 }
742
743 static int vrf_newlink(struct net *src_net, struct net_device *dev,
744 struct nlattr *tb[], struct nlattr *data[])
745 {
746 struct net_vrf *vrf = netdev_priv(dev);
747
748 if (!data || !data[IFLA_VRF_TABLE])
749 return -EINVAL;
750
751 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
752
753 dev->priv_flags |= IFF_L3MDEV_MASTER;
754
755 return register_netdevice(dev);
756 }
757
758 static size_t vrf_nl_getsize(const struct net_device *dev)
759 {
760 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
761 }
762
763 static int vrf_fillinfo(struct sk_buff *skb,
764 const struct net_device *dev)
765 {
766 struct net_vrf *vrf = netdev_priv(dev);
767
768 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
769 }
770
771 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
772 const struct net_device *slave_dev)
773 {
774 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
775 }
776
777 static int vrf_fill_slave_info(struct sk_buff *skb,
778 const struct net_device *vrf_dev,
779 const struct net_device *slave_dev)
780 {
781 struct net_vrf *vrf = netdev_priv(vrf_dev);
782
783 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
784 return -EMSGSIZE;
785
786 return 0;
787 }
788
789 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
790 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
791 };
792
793 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
794 .kind = DRV_NAME,
795 .priv_size = sizeof(struct net_vrf),
796
797 .get_size = vrf_nl_getsize,
798 .policy = vrf_nl_policy,
799 .validate = vrf_validate,
800 .fill_info = vrf_fillinfo,
801
802 .get_slave_size = vrf_get_slave_size,
803 .fill_slave_info = vrf_fill_slave_info,
804
805 .newlink = vrf_newlink,
806 .dellink = vrf_dellink,
807 .setup = vrf_setup,
808 .maxtype = IFLA_VRF_MAX,
809 };
810
811 static int vrf_device_event(struct notifier_block *unused,
812 unsigned long event, void *ptr)
813 {
814 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
815
816 /* only care about unregister events to drop slave references */
817 if (event == NETDEV_UNREGISTER) {
818 struct net_device *vrf_dev;
819
820 if (!netif_is_l3_slave(dev))
821 goto out;
822
823 vrf_dev = netdev_master_upper_dev_get(dev);
824 vrf_del_slave(vrf_dev, dev);
825 }
826 out:
827 return NOTIFY_DONE;
828 }
829
830 static struct notifier_block vrf_notifier_block __read_mostly = {
831 .notifier_call = vrf_device_event,
832 };
833
834 static int __init vrf_init_module(void)
835 {
836 int rc;
837
838 register_netdevice_notifier(&vrf_notifier_block);
839
840 rc = rtnl_link_register(&vrf_link_ops);
841 if (rc < 0)
842 goto error;
843
844 return 0;
845
846 error:
847 unregister_netdevice_notifier(&vrf_notifier_block);
848 return rc;
849 }
850
851 module_init(vrf_init_module);
852 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
853 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
854 MODULE_LICENSE("GPL");
855 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
856 MODULE_VERSION(DRV_VERSION);
This page took 0.047536 seconds and 5 git commands to generate.