Merge remote-tracking branches 'asoc/fix/arizona', 'asoc/fix/cs35l32', 'asoc/fix...
[deliverable/linux.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38
39 #define RT_FL_TOS(oldflp4) \
40 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41
42 #define DRV_NAME "vrf"
43 #define DRV_VERSION "1.0"
44
45 #define vrf_master_get_rcu(dev) \
46 ((struct net_device *)rcu_dereference(dev->rx_handler_data))
47
48 struct net_vrf {
49 struct rtable *rth;
50 struct rt6_info *rt6;
51 u32 tb_id;
52 };
53
54 struct pcpu_dstats {
55 u64 tx_pkts;
56 u64 tx_bytes;
57 u64 tx_drps;
58 u64 rx_pkts;
59 u64 rx_bytes;
60 struct u64_stats_sync syncp;
61 };
62
63 /* neighbor handling is done with actual device; do not want
64 * to flip skb->dev for those ndisc packets. This really fails
65 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
66 * a start.
67 */
68 #if IS_ENABLED(CONFIG_IPV6)
69 static bool check_ipv6_frame(const struct sk_buff *skb)
70 {
71 const struct ipv6hdr *ipv6h;
72 struct ipv6hdr _ipv6h;
73 bool rc = true;
74
75 ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
76 if (!ipv6h)
77 goto out;
78
79 if (ipv6h->nexthdr == NEXTHDR_ICMP) {
80 const struct icmp6hdr *icmph;
81 struct icmp6hdr _icmph;
82
83 icmph = skb_header_pointer(skb, sizeof(_ipv6h),
84 sizeof(_icmph), &_icmph);
85 if (!icmph)
86 goto out;
87
88 switch (icmph->icmp6_type) {
89 case NDISC_ROUTER_SOLICITATION:
90 case NDISC_ROUTER_ADVERTISEMENT:
91 case NDISC_NEIGHBOUR_SOLICITATION:
92 case NDISC_NEIGHBOUR_ADVERTISEMENT:
93 case NDISC_REDIRECT:
94 rc = false;
95 break;
96 }
97 }
98
99 out:
100 return rc;
101 }
102 #else
103 static bool check_ipv6_frame(const struct sk_buff *skb)
104 {
105 return false;
106 }
107 #endif
108
109 static bool is_ip_rx_frame(struct sk_buff *skb)
110 {
111 switch (skb->protocol) {
112 case htons(ETH_P_IP):
113 return true;
114 case htons(ETH_P_IPV6):
115 return check_ipv6_frame(skb);
116 }
117 return false;
118 }
119
120 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
121 {
122 vrf_dev->stats.tx_errors++;
123 kfree_skb(skb);
124 }
125
126 /* note: already called with rcu_read_lock */
127 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
128 {
129 struct sk_buff *skb = *pskb;
130
131 if (is_ip_rx_frame(skb)) {
132 struct net_device *dev = vrf_master_get_rcu(skb->dev);
133 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
134
135 u64_stats_update_begin(&dstats->syncp);
136 dstats->rx_pkts++;
137 dstats->rx_bytes += skb->len;
138 u64_stats_update_end(&dstats->syncp);
139
140 skb->dev = dev;
141
142 return RX_HANDLER_ANOTHER;
143 }
144 return RX_HANDLER_PASS;
145 }
146
147 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
148 struct rtnl_link_stats64 *stats)
149 {
150 int i;
151
152 for_each_possible_cpu(i) {
153 const struct pcpu_dstats *dstats;
154 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
155 unsigned int start;
156
157 dstats = per_cpu_ptr(dev->dstats, i);
158 do {
159 start = u64_stats_fetch_begin_irq(&dstats->syncp);
160 tbytes = dstats->tx_bytes;
161 tpkts = dstats->tx_pkts;
162 tdrops = dstats->tx_drps;
163 rbytes = dstats->rx_bytes;
164 rpkts = dstats->rx_pkts;
165 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
166 stats->tx_bytes += tbytes;
167 stats->tx_packets += tpkts;
168 stats->tx_dropped += tdrops;
169 stats->rx_bytes += rbytes;
170 stats->rx_packets += rpkts;
171 }
172 return stats;
173 }
174
175 #if IS_ENABLED(CONFIG_IPV6)
176 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
177 struct net_device *dev)
178 {
179 const struct ipv6hdr *iph = ipv6_hdr(skb);
180 struct net *net = dev_net(skb->dev);
181 struct flowi6 fl6 = {
182 /* needed to match OIF rule */
183 .flowi6_oif = dev->ifindex,
184 .flowi6_iif = LOOPBACK_IFINDEX,
185 .daddr = iph->daddr,
186 .saddr = iph->saddr,
187 .flowlabel = ip6_flowinfo(iph),
188 .flowi6_mark = skb->mark,
189 .flowi6_proto = iph->nexthdr,
190 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
191 };
192 int ret = NET_XMIT_DROP;
193 struct dst_entry *dst;
194 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
195
196 dst = ip6_route_output(net, NULL, &fl6);
197 if (dst == dst_null)
198 goto err;
199
200 skb_dst_drop(skb);
201 skb_dst_set(skb, dst);
202
203 ret = ip6_local_out(net, skb->sk, skb);
204 if (unlikely(net_xmit_eval(ret)))
205 dev->stats.tx_errors++;
206 else
207 ret = NET_XMIT_SUCCESS;
208
209 return ret;
210 err:
211 vrf_tx_error(dev, skb);
212 return NET_XMIT_DROP;
213 }
214 #else
215 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
216 struct net_device *dev)
217 {
218 vrf_tx_error(dev, skb);
219 return NET_XMIT_DROP;
220 }
221 #endif
222
223 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
224 struct net_device *vrf_dev)
225 {
226 struct rtable *rt;
227 int err = 1;
228
229 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
230 if (IS_ERR(rt))
231 goto out;
232
233 /* TO-DO: what about broadcast ? */
234 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
235 ip_rt_put(rt);
236 goto out;
237 }
238
239 skb_dst_drop(skb);
240 skb_dst_set(skb, &rt->dst);
241 err = 0;
242 out:
243 return err;
244 }
245
246 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
247 struct net_device *vrf_dev)
248 {
249 struct iphdr *ip4h = ip_hdr(skb);
250 int ret = NET_XMIT_DROP;
251 struct flowi4 fl4 = {
252 /* needed to match OIF rule */
253 .flowi4_oif = vrf_dev->ifindex,
254 .flowi4_iif = LOOPBACK_IFINDEX,
255 .flowi4_tos = RT_TOS(ip4h->tos),
256 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
257 FLOWI_FLAG_SKIP_NH_OIF,
258 .daddr = ip4h->daddr,
259 };
260
261 if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
262 goto err;
263
264 if (!ip4h->saddr) {
265 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
266 RT_SCOPE_LINK);
267 }
268
269 ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
270 if (unlikely(net_xmit_eval(ret)))
271 vrf_dev->stats.tx_errors++;
272 else
273 ret = NET_XMIT_SUCCESS;
274
275 out:
276 return ret;
277 err:
278 vrf_tx_error(vrf_dev, skb);
279 goto out;
280 }
281
282 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
283 {
284 /* strip the ethernet header added for pass through VRF device */
285 __skb_pull(skb, skb_network_offset(skb));
286
287 switch (skb->protocol) {
288 case htons(ETH_P_IP):
289 return vrf_process_v4_outbound(skb, dev);
290 case htons(ETH_P_IPV6):
291 return vrf_process_v6_outbound(skb, dev);
292 default:
293 vrf_tx_error(dev, skb);
294 return NET_XMIT_DROP;
295 }
296 }
297
298 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
299 {
300 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
301
302 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
303 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
304
305 u64_stats_update_begin(&dstats->syncp);
306 dstats->tx_pkts++;
307 dstats->tx_bytes += skb->len;
308 u64_stats_update_end(&dstats->syncp);
309 } else {
310 this_cpu_inc(dev->dstats->tx_drps);
311 }
312
313 return ret;
314 }
315
316 #if IS_ENABLED(CONFIG_IPV6)
317 /* modelled after ip6_finish_output2 */
318 static int vrf_finish_output6(struct net *net, struct sock *sk,
319 struct sk_buff *skb)
320 {
321 struct dst_entry *dst = skb_dst(skb);
322 struct net_device *dev = dst->dev;
323 struct neighbour *neigh;
324 struct in6_addr *nexthop;
325 int ret;
326
327 skb->protocol = htons(ETH_P_IPV6);
328 skb->dev = dev;
329
330 rcu_read_lock_bh();
331 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
332 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
333 if (unlikely(!neigh))
334 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
335 if (!IS_ERR(neigh)) {
336 ret = dst_neigh_output(dst, neigh, skb);
337 rcu_read_unlock_bh();
338 return ret;
339 }
340 rcu_read_unlock_bh();
341
342 IP6_INC_STATS(dev_net(dst->dev),
343 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
344 kfree_skb(skb);
345 return -EINVAL;
346 }
347
348 /* modelled after ip6_output */
349 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
350 {
351 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
352 net, sk, skb, NULL, skb_dst(skb)->dev,
353 vrf_finish_output6,
354 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
355 }
356
357 static void vrf_rt6_release(struct net_vrf *vrf)
358 {
359 dst_release(&vrf->rt6->dst);
360 vrf->rt6 = NULL;
361 }
362
363 static int vrf_rt6_create(struct net_device *dev)
364 {
365 struct net_vrf *vrf = netdev_priv(dev);
366 struct net *net = dev_net(dev);
367 struct rt6_info *rt6;
368 int rc = -ENOMEM;
369
370 rt6 = ip6_dst_alloc(net, dev,
371 DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE);
372 if (!rt6)
373 goto out;
374
375 rt6->dst.output = vrf_output6;
376 rt6->rt6i_table = fib6_get_table(net, vrf->tb_id);
377 dst_hold(&rt6->dst);
378 vrf->rt6 = rt6;
379 rc = 0;
380 out:
381 return rc;
382 }
383 #else
384 static void vrf_rt6_release(struct net_vrf *vrf)
385 {
386 }
387
388 static int vrf_rt6_create(struct net_device *dev)
389 {
390 return 0;
391 }
392 #endif
393
394 /* modelled after ip_finish_output2 */
395 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
396 {
397 struct dst_entry *dst = skb_dst(skb);
398 struct rtable *rt = (struct rtable *)dst;
399 struct net_device *dev = dst->dev;
400 unsigned int hh_len = LL_RESERVED_SPACE(dev);
401 struct neighbour *neigh;
402 u32 nexthop;
403 int ret = -EINVAL;
404
405 /* Be paranoid, rather than too clever. */
406 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
407 struct sk_buff *skb2;
408
409 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
410 if (!skb2) {
411 ret = -ENOMEM;
412 goto err;
413 }
414 if (skb->sk)
415 skb_set_owner_w(skb2, skb->sk);
416
417 consume_skb(skb);
418 skb = skb2;
419 }
420
421 rcu_read_lock_bh();
422
423 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
424 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
425 if (unlikely(!neigh))
426 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
427 if (!IS_ERR(neigh))
428 ret = dst_neigh_output(dst, neigh, skb);
429
430 rcu_read_unlock_bh();
431 err:
432 if (unlikely(ret < 0))
433 vrf_tx_error(skb->dev, skb);
434 return ret;
435 }
436
437 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
438 {
439 struct net_device *dev = skb_dst(skb)->dev;
440
441 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
442
443 skb->dev = dev;
444 skb->protocol = htons(ETH_P_IP);
445
446 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
447 net, sk, skb, NULL, dev,
448 vrf_finish_output,
449 !(IPCB(skb)->flags & IPSKB_REROUTED));
450 }
451
452 static void vrf_rtable_release(struct net_vrf *vrf)
453 {
454 struct dst_entry *dst = (struct dst_entry *)vrf->rth;
455
456 dst_release(dst);
457 vrf->rth = NULL;
458 }
459
460 static struct rtable *vrf_rtable_create(struct net_device *dev)
461 {
462 struct net_vrf *vrf = netdev_priv(dev);
463 struct rtable *rth;
464
465 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
466 if (rth) {
467 rth->dst.output = vrf_output;
468 rth->rt_table_id = vrf->tb_id;
469 }
470
471 return rth;
472 }
473
474 /**************************** device handling ********************/
475
476 /* cycle interface to flush neighbor cache and move routes across tables */
477 static void cycle_netdev(struct net_device *dev)
478 {
479 unsigned int flags = dev->flags;
480 int ret;
481
482 if (!netif_running(dev))
483 return;
484
485 ret = dev_change_flags(dev, flags & ~IFF_UP);
486 if (ret >= 0)
487 ret = dev_change_flags(dev, flags);
488
489 if (ret < 0) {
490 netdev_err(dev,
491 "Failed to cycle device %s; route tables might be wrong!\n",
492 dev->name);
493 }
494 }
495
496 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
497 {
498 int ret;
499
500 /* register the packet handler for slave ports */
501 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
502 if (ret) {
503 netdev_err(port_dev,
504 "Device %s failed to register rx_handler\n",
505 port_dev->name);
506 goto out_fail;
507 }
508
509 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
510 if (ret < 0)
511 goto out_unregister;
512
513 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
514 cycle_netdev(port_dev);
515
516 return 0;
517
518 out_unregister:
519 netdev_rx_handler_unregister(port_dev);
520 out_fail:
521 return ret;
522 }
523
524 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
525 {
526 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
527 return -EINVAL;
528
529 return do_vrf_add_slave(dev, port_dev);
530 }
531
532 /* inverse of do_vrf_add_slave */
533 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
534 {
535 netdev_upper_dev_unlink(port_dev, dev);
536 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
537
538 netdev_rx_handler_unregister(port_dev);
539
540 cycle_netdev(port_dev);
541
542 return 0;
543 }
544
545 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
546 {
547 return do_vrf_del_slave(dev, port_dev);
548 }
549
550 static void vrf_dev_uninit(struct net_device *dev)
551 {
552 struct net_vrf *vrf = netdev_priv(dev);
553 struct net_device *port_dev;
554 struct list_head *iter;
555
556 vrf_rtable_release(vrf);
557 vrf_rt6_release(vrf);
558
559 netdev_for_each_lower_dev(dev, port_dev, iter)
560 vrf_del_slave(dev, port_dev);
561
562 free_percpu(dev->dstats);
563 dev->dstats = NULL;
564 }
565
566 static int vrf_dev_init(struct net_device *dev)
567 {
568 struct net_vrf *vrf = netdev_priv(dev);
569
570 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
571 if (!dev->dstats)
572 goto out_nomem;
573
574 /* create the default dst which points back to us */
575 vrf->rth = vrf_rtable_create(dev);
576 if (!vrf->rth)
577 goto out_stats;
578
579 if (vrf_rt6_create(dev) != 0)
580 goto out_rth;
581
582 dev->flags = IFF_MASTER | IFF_NOARP;
583
584 return 0;
585
586 out_rth:
587 vrf_rtable_release(vrf);
588 out_stats:
589 free_percpu(dev->dstats);
590 dev->dstats = NULL;
591 out_nomem:
592 return -ENOMEM;
593 }
594
595 static const struct net_device_ops vrf_netdev_ops = {
596 .ndo_init = vrf_dev_init,
597 .ndo_uninit = vrf_dev_uninit,
598 .ndo_start_xmit = vrf_xmit,
599 .ndo_get_stats64 = vrf_get_stats64,
600 .ndo_add_slave = vrf_add_slave,
601 .ndo_del_slave = vrf_del_slave,
602 };
603
604 static u32 vrf_fib_table(const struct net_device *dev)
605 {
606 struct net_vrf *vrf = netdev_priv(dev);
607
608 return vrf->tb_id;
609 }
610
611 static struct rtable *vrf_get_rtable(const struct net_device *dev,
612 const struct flowi4 *fl4)
613 {
614 struct rtable *rth = NULL;
615
616 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
617 struct net_vrf *vrf = netdev_priv(dev);
618
619 rth = vrf->rth;
620 dst_hold(&rth->dst);
621 }
622
623 return rth;
624 }
625
626 /* called under rcu_read_lock */
627 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
628 {
629 struct fib_result res = { .tclassid = 0 };
630 struct net *net = dev_net(dev);
631 u32 orig_tos = fl4->flowi4_tos;
632 u8 flags = fl4->flowi4_flags;
633 u8 scope = fl4->flowi4_scope;
634 u8 tos = RT_FL_TOS(fl4);
635 int rc;
636
637 if (unlikely(!fl4->daddr))
638 return 0;
639
640 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
641 fl4->flowi4_iif = LOOPBACK_IFINDEX;
642 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
643 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
644 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
645
646 rc = fib_lookup(net, fl4, &res, 0);
647 if (!rc) {
648 if (res.type == RTN_LOCAL)
649 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
650 else
651 fib_select_path(net, &res, fl4, -1);
652 }
653
654 fl4->flowi4_flags = flags;
655 fl4->flowi4_tos = orig_tos;
656 fl4->flowi4_scope = scope;
657
658 return rc;
659 }
660
661 #if IS_ENABLED(CONFIG_IPV6)
662 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
663 const struct flowi6 *fl6)
664 {
665 struct rt6_info *rt = NULL;
666
667 if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
668 struct net_vrf *vrf = netdev_priv(dev);
669
670 rt = vrf->rt6;
671 dst_hold(&rt->dst);
672 }
673
674 return (struct dst_entry *)rt;
675 }
676 #endif
677
678 static const struct l3mdev_ops vrf_l3mdev_ops = {
679 .l3mdev_fib_table = vrf_fib_table,
680 .l3mdev_get_rtable = vrf_get_rtable,
681 .l3mdev_get_saddr = vrf_get_saddr,
682 #if IS_ENABLED(CONFIG_IPV6)
683 .l3mdev_get_rt6_dst = vrf_get_rt6_dst,
684 #endif
685 };
686
687 static void vrf_get_drvinfo(struct net_device *dev,
688 struct ethtool_drvinfo *info)
689 {
690 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
691 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
692 }
693
694 static const struct ethtool_ops vrf_ethtool_ops = {
695 .get_drvinfo = vrf_get_drvinfo,
696 };
697
698 static void vrf_setup(struct net_device *dev)
699 {
700 ether_setup(dev);
701
702 /* Initialize the device structure. */
703 dev->netdev_ops = &vrf_netdev_ops;
704 dev->l3mdev_ops = &vrf_l3mdev_ops;
705 dev->ethtool_ops = &vrf_ethtool_ops;
706 dev->destructor = free_netdev;
707
708 /* Fill in device structure with ethernet-generic values. */
709 eth_hw_addr_random(dev);
710
711 /* don't acquire vrf device's netif_tx_lock when transmitting */
712 dev->features |= NETIF_F_LLTX;
713
714 /* don't allow vrf devices to change network namespaces. */
715 dev->features |= NETIF_F_NETNS_LOCAL;
716 }
717
718 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
719 {
720 if (tb[IFLA_ADDRESS]) {
721 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
722 return -EINVAL;
723 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
724 return -EADDRNOTAVAIL;
725 }
726 return 0;
727 }
728
729 static void vrf_dellink(struct net_device *dev, struct list_head *head)
730 {
731 unregister_netdevice_queue(dev, head);
732 }
733
734 static int vrf_newlink(struct net *src_net, struct net_device *dev,
735 struct nlattr *tb[], struct nlattr *data[])
736 {
737 struct net_vrf *vrf = netdev_priv(dev);
738
739 if (!data || !data[IFLA_VRF_TABLE])
740 return -EINVAL;
741
742 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
743
744 dev->priv_flags |= IFF_L3MDEV_MASTER;
745
746 return register_netdevice(dev);
747 }
748
749 static size_t vrf_nl_getsize(const struct net_device *dev)
750 {
751 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
752 }
753
754 static int vrf_fillinfo(struct sk_buff *skb,
755 const struct net_device *dev)
756 {
757 struct net_vrf *vrf = netdev_priv(dev);
758
759 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
760 }
761
762 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
763 const struct net_device *slave_dev)
764 {
765 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
766 }
767
768 static int vrf_fill_slave_info(struct sk_buff *skb,
769 const struct net_device *vrf_dev,
770 const struct net_device *slave_dev)
771 {
772 struct net_vrf *vrf = netdev_priv(vrf_dev);
773
774 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
775 return -EMSGSIZE;
776
777 return 0;
778 }
779
780 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
781 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
782 };
783
784 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
785 .kind = DRV_NAME,
786 .priv_size = sizeof(struct net_vrf),
787
788 .get_size = vrf_nl_getsize,
789 .policy = vrf_nl_policy,
790 .validate = vrf_validate,
791 .fill_info = vrf_fillinfo,
792
793 .get_slave_size = vrf_get_slave_size,
794 .fill_slave_info = vrf_fill_slave_info,
795
796 .newlink = vrf_newlink,
797 .dellink = vrf_dellink,
798 .setup = vrf_setup,
799 .maxtype = IFLA_VRF_MAX,
800 };
801
802 static int vrf_device_event(struct notifier_block *unused,
803 unsigned long event, void *ptr)
804 {
805 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
806
807 /* only care about unregister events to drop slave references */
808 if (event == NETDEV_UNREGISTER) {
809 struct net_device *vrf_dev;
810
811 if (!netif_is_l3_slave(dev))
812 goto out;
813
814 vrf_dev = netdev_master_upper_dev_get(dev);
815 vrf_del_slave(vrf_dev, dev);
816 }
817 out:
818 return NOTIFY_DONE;
819 }
820
821 static struct notifier_block vrf_notifier_block __read_mostly = {
822 .notifier_call = vrf_device_event,
823 };
824
825 static int __init vrf_init_module(void)
826 {
827 int rc;
828
829 register_netdevice_notifier(&vrf_notifier_block);
830
831 rc = rtnl_link_register(&vrf_link_ops);
832 if (rc < 0)
833 goto error;
834
835 return 0;
836
837 error:
838 unregister_netdevice_notifier(&vrf_notifier_block);
839 return rc;
840 }
841
842 module_init(vrf_init_module);
843 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
844 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
845 MODULE_LICENSE("GPL");
846 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
847 MODULE_VERSION(DRV_VERSION);
This page took 0.087975 seconds and 5 git commands to generate.